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%

The purpose of this volume is twofold. First, it reports on
recent developments of singular perturbation and two-time-scale methods

for modeling, analysis and design of control systems. The results obtained
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in the last five years are summarized in thirty papers which appeared in the
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period of 1976-1980. Second, it responds to the need for a comprehensive

T and systematic treatment of this rapidly developing field of research. For

- this reason seven earlier papers are included and the whole collection is

.- Lob

! organized in a logical rather than chronological order.qwiirst three sections
§ .- 4

deal with modeling and analysis, while the subsequent four sections are
devoted to the design and optimization of linear, nonlinear and stochastic
control systems. The last two sections treat large scale system problems

with multiple controllers and incomplete models.
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Singular Perturbations and Order Reduction
in Control Theory — An Overview*!

P. V. KOKOTOVIC, R. E. O'MALLEY, Jr.§ and P. SANNUTI)|

Singular perturbation methods are physically motivated tools for order reduction,
separation of time scales and other simplifications in control system analysis and design.

Semmary—Recent results on singular perturbations are
surveyed as a tool for model order reduction and separation
of time scales in control system design. Conceptual and
computational simplifications of design procedures are
examined by a discussion of their basic assumptions. Over
100 references are organized into several problem areas.
The content of main theorems is presented in a tutoriul
form aimed at a broad audience of engineers and applied
mathematicians interested in control, estimation and
optimization of dynamic systems.

INTRODUCTION

ALTHOUGH many control theory concepts are valid
for any system order, their actual use is limited to
low order models. In optimization of dynamic
systems the ‘curse of dimensionality’ is not only in a
formidable amount of computation, but also in the
ill-conditioned initial and two point boundary
value problems. The interaction of fast and slow
phenomena in high-order systems results in ‘stiff”
numerical problems which require expensive
integration routines.

The singular perturbation approach outlined in
this survey alleviates both dimensionality and
stiffness difficulties. It lowers the model order by
first neglecting the fast phenomena. It then
improves the approximation by reintroducing their

* Received 28 April 1975; revised 15 September 1978.
The original version of this paper was presented at the 6th
IFAC Congress which was held in Boston/Cambridge, MA,
U.S.A., during August 1975. The published proceedings of
this IFAC meeting may be ordered from ISA—Instrument
Society of America, 400 Stanwix Street, Pittsburgh, PA
15222, U.S.A. It was recommended for publication in
revised form by associate editor E. J. Davison.

+ This work was supported in part by the National
Science Foundation under Grant ENG 74-20091, in part by
the Joint Services Electronics Program (U.S. Army, U.S.
Navy and U.S. Air Force) under Contract DAAB-07-72-
C-0259, in part by the US. Air Force under Grant
AFOSR 73-2570 and in part by ONR Grant No. N00014-
67-A-0209-0022.

t Department of Electrical Engineering and Co-
ordinated Science Laboratory, University of [ilinois,
Urbana, 1L 61801, U.S.A.

§ Department of Mathematics, University of Arizona,
Tucson, AR 85721, US.A.

)| Department of Electrical Engineering, Rutgers the
State University, New Brunswick, NJ 08903, U.S.A.

effect as ‘boundary layer' corrections calculated in
separate time scales. Further improvements are
possible by asymptotic expansion methods. In
addition to being helpful in design procedures, the
singular perturbation approach is an indispensable
tool for analytical investigations of robustness of
system properties, behavior of optimal controls
near singular arcs, and other effects of intentional
or unintentional changes of system order.

This paper is a tutorial survey of recent works on
singular perturbations in control and estimation
theory. Only several other references are mentioned
to establish mathematical background and illustrate
related approaches. Among surveys and mono-
graphs providing a broader view of the field are
[A1-10].

ORDER REDUCTION
Suppose that a dynamic system is modeled by
X = f(x,2z,u,t, 1), 4]
pZ = g(x,2,u,t, p), 0]

where ;>0 is a scalar and x, z and u are n-, m-, and
r-dimensional vectors, respectively. For u =0, the
order n+m of (1, 2) reduces to n, that is (2) becomes

0 = g(%,2,4,1,0) 3)
and the substitution of a root of (3),
Im «f’ﬁst), (4)

into (1) yields a ‘reduced’ model
R = fI,HR,0,0),4,0,0]mf(%,8,0). (5

The use of . = 0 is formal since then 2 = g/u in (2)
may be unbounded for g % 0. An analysis validat-
ing this order reduction procedure is outlined in the
next section where it also becomes apparent that a
reduced model (4) represents slow and neglects fast
phenomena in (1, 2). In this respect the singular
perturbation approach is related to familiar
“dominant mode” techniques ([B2,E4] which
neglect “high-frequency” parts and retain “low-
frequency” parts of models.




jpiaien-nutonr: AN

Y

P. V. Koxorovic, R. E. O’MALLEY, Jr. and P. SANNUTT

We note that (3) may have several roots each
resulting in a different reduced model (4). Most of
the available theory is restricted to models (4)
corresponding to real and distinct roots of (3),
along which 8g/éz is nonsingular. At points where
dg/oz is singular, z may jump from one root to
another [C6]. In the special case when gis linearin z
the reduced model (4) is unique. For a linear system

%= Ay x+Aynz+Byu, 6)
2 = Ay X+ Aggz+ Byu M
the root (4) is
Zm = Agt Ay X~ Ayt Byu, ®
yielding the reduced model
R=(Ay—ApAdntAn)R
+(By— A;3 Ase~! By)i. )

In applications, models of various physical systems
are put in form (1), (2) by expressing small time
constants T;, small masses m,, large gains X, etc., as
T; = c;p, my = c; u, Ky = ¢j s, etc., where ¢, ¢, ¢y are
known coefficients [AS5,B5]. In power system
models x can represent machine reactances or
transients in voltage regulators [B8], in industrial
control systems it may represent time constants of
drives and actuators [Bl1], in biochemicai models
@ can indicate a small quantity of an enzyme [B4),
in a flexible booster model x is due to bending
modes [B3] and in nuclear reactor models it is due
to fast neutrons (B7,9,12}]. Singular perturbations
are extensively used in aircraft and rocket flight
models [B6,10,13,16}, and in chemical reaction
diffusion theory [B14,15]. Other order reduction
techniques [B17] can be interpreted as singular
perturbations [B18].

INITIAL VALUE PROBLEMS

When does a reduced solution £, Z approximate
the original solution x, z and in what sense? For
clarity we begin with the linear system (6, 7),
assuming that it is time invariant and that u = 0.
To exhibit the error z—7 = 2+ Ayt Ay, % let

17-Z+Aa-1Anx+“M1x (IO)

and choose M, such that the substitution of (10)
into (6), (7) separates the n-subsystem as

.% = (Au— Al‘ Aa—l An+F»M2)x+A1’7" (1 l)

un = (A +pMyn. (12)

It is easily shown that there exists 4* >0 such that

M, = M;(u), i=1,2,3, are bounded for all

ne(0,u*). For u—-0 the ecigenvalues of the

independent »-subsystem (12) tend to infinity like

the eigenvalues of (1/u) Ag. Thus (12) is the ‘fast’

part of (6, 7). It can be written as

DD m (U ruMn(s), (1)

where = is the ‘stretched time scale’ defined for all
»30,

1'-';'0, r=Qatt=t, (14)

The system (13) depends continuously on u and at
# = 0 it becomes

2D e Ao, as)
From (8) and (10) at u = O the initial condition for
(15) is

7(0) = z(19) — Z(t,)- (16)

The solution 7(r) of the ‘fast’ subsystem (13) is the
input to the ‘slow’ subsystem (11). The homo-
geneous part of (11) is an O(u) perturbationt of
the reduced model (9) with u = 0. If the eigenvalues
of Ay all have negative real parts, then 5(r)—>0 as
7-»00, that is for u small 7 as a function of ¢ rapidly
decays away from 7,. Under this condition,
integration by parts in the variation of parameters
formula for the solution of (11) yields

x(1) = %(0) + O(p) an
and, on substitution into (10),
(1) = Z(1) +n(r) + O(p). (18)

. Thus the reduced model state #(r) approximates the

x-part of the actual state, while to approximate its
z-part we need both 2(¢) from (8) and n(r) from (14).
The ‘boundary layer’ correction 7(7) is significant
only during a short interval [, 4] after which

2(e) = 2(6) + O(p). (19)

A remarkable property of the singularly perturbed
model (1, 2) is that the structure of the approxima-
tion (17, 18) remains the same for time-varying and
nonlinear systems. This is established by a funda-
mental theorem due to Tihonov [Cl], whose
essential conditions are imposed on a ‘boundary
layer’ system for y = z -2

gg— = g%, 2+ n(7),,1,0), (20)
a nonlinear analog of (15). By virtue of (3) an
equilibrium of (20) is 5 =0. Assuming the
existence and smoothness of (1), 3(+) for
t€{ty, T}, the conditions imposed on (20) are, first,
that 5 = 0 be an asymptotically stable equilibrium
of (20) at ®(#y), 2(ty), d(ty), 1o With 9(0) = z(t,) — Z(to)
belonging to its domain of attraction; second, that
for all re(t, T] the ecigenvalues of dg/éz along
X(r), Z(¢), a(r) all have real parts less than a fixed
negative number. Then (17, 18) hold for all
tefty, T] and (19) holds for all e[t T).

t A function of u is denoted by O(u*) when for ail
p € [0, x*] its norm is less than cu*, where ¢> 0, u* >0 and
& are some constants.
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The proof of this theorem is found in [AL,S8;
C1-3] and, under slightly weaker conditions, in
[C4). The separation of time scales is exemplified
by the fact that in the boundary layer system the
variables £,2,d and ¢ are fixed parameters. The
boundary layer correction 7(r) used in (18) is the
solution of (20) with (16), where #,2,d and ¢ are
fixed at their values for ¢ = 1,

Expressions (17) and (18) represent O(y)
approximations of x(t), z(t). If fand g in (1), (2)
possess k+2 derivatives in their arguments, then
x(1), z(t) can be approximated up to O(u*) using
series with terms depending on ¢ and terms depend-
ing on r. These terms can be generated by methods
in [A4,8,10;C4, 5).

BOUNDARY VALUE PROBLEMS

In boundary value problems when z(¢) is specified
at both t=1t, and +t=T, two boundary layer
correction terms 7y, and 75 are needed to compen-
sate for z(2,) — £(%e) and z(T) — Z(T), respectively. The
correction 7z is the same as 7 in the initial value
problems. To define 7z an additional stretched
variable is introduced for all x>0,

o= (t—T)u, o=0Oatt=T, @1

and (20) is rewritten in o-scale with X, Z, @ and ¢
fixed at their values for ¢ = 7. Then g = ng(0) is
its solution for nz(0) = z(T)—#(T). The approxi-
mation of z(t) is sought in the form

2() = 2)+nL () +nr(0)+0W) (22

such that nz and ng decay exponentially as 7>
and o-—-—co, that is their norms satisfy the
‘dichotomy condition’

[nzllScrexp(—c37) for 0gr <o, } -
Inzll€caexp(cs0) for —0<a<0,

where c¢,,...,c, are positive constants. A simple
illustration is again the linear system (12). its
solutions in = and o scales at u = 0 are

71(7) = exp (A2 7)n(0), } 29
Ng(0) = exp (A )15 (0).

Let the first k ecigenvalues of Ay have negative
real parts and the remaining m—k eigenvalues
positive real parts. Then (23) will result if
n.(0) = z(t,)—2(t,) belongs to the -eigenspace
corresponding to the first k-eigenvalues of A4, and
if 7x(0) = z(T)—2(T) belongs to the eigenspace
corresponding to the remaining m—k& eigenvalues
of A, Under this condition (17) and (22) hold for
all te(ty, T), while (19) holds for fo<ty<t<ty>T.
In some problems the initial conditions are always
in the required subspaces due to the physical nature
of the variables , and nz. In others, they have to

be set there by the user. Since it cannot be done
exactly, such problems may appear ill-posed.
Fortunately, it follows from [G6, 13] that control
problems allowing combined open loop-feedback
realizations are well posed in this sense.

In nonlinear problems dg/dz along %(¢), #(¢), 4(r)
is assumed to possess the above cigenvalue distribu-
tion throughout the interval [¢,, ). Also z(fp)—
2(t,) and z(T)—2(T) are restricted to be on mani-
folds for which the equilibrium n =0 of (20) is
attractive in forward and reverse directions of ¢,
respectively. Then (17) and (22) hold for all
te[t,T). Higher order approximations are
possible by asymptotic expansions [A4, 8, 10; C4).

In a wider class of ‘matched’ expansion methods
[A3,9] other conditions for ‘matching’ of ‘outer’
(slow) and ‘inner’ (fast) terms are used. They are
often motivated by specific applications, such as in
inter-planetary guidance problems [D6]. The
conditions outlined here originate from [A1; D1-5)
and can be found in more recent works [A8, 10;
D7,8] and, in a compact form. ‘n [D9]. These
conditions are particularly sui . for optimal
control problems whose Hamili 'n symmetry is
related to the dichotomy (23). ‘tical implica-
tions of this relationship are -ussed in the
section on ‘Trajectory Optimiza’

STABILITY AND STABIL SLITY

In approximations discussed so far stability
requirements were imposed only on (20), and the
reduced solution () was permitted to be unstable.
In infinite time-interval problems it is of interest to
establish stability properties of x(¢), z(r) from
stability properties of %(z) and 7(r). Several such
results are available.

For linear time-invariant systems a stability
result immediately follows from the upper trianguiar
form of the system (11, 12). Its m+n eigenvalues
are perturbations of the n eigenvalues of A,, -
Ayg Age™! Ay, and of the m eigenvalues of (1/p) Agg.
If the real parts of these eigenvalues are negative,

Re AM{Ay} <0, ReM{Ay— Ay At Ay} <0, (25)
that is, if the reduced solution %{¢) and the boundary
layer correction n(r) are asymptotically stable, then
there exists u*>0 such that the original solution
x(t), z() is asymptotically stable for all u [0, u*].
For linear time-varying systems a similar condition
is derived in [EI, 7], assuming that the reduced
model be uniformiy asymptotically stable and that
for 121, the eigenvalues of Ay(?) have real parts
less than a fixed negative number -4. This
contrasts with the general case in which Re A{F(¢)}
< — & for all r does not imply stability of & = F(t) 0.

In nonlinear systems the first requirement of (25)
is imposed on the eigenvalues of 8g/dz evaluated
along (1), 2(1), @(r) for all +3¢, In addition,
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(1), 2(¢) and
of of (%\ %
Finy= ox 0z (5;) ox (26)

evaluated along %(¢), 3(2), 1(t) are assumed to have
finite limits %(co), Z(cc) and F(cc) as t—>oc, where
Re X{F(c0)} <0. Then, if x(t) and 2(#,) are in the
appropriate domain of attraction, the limits x(¢)
and z(¢) as t—+oo are

xX(1)> %)+ O0u), z(8)>Ho)+0(p). (27)

This is the content of the stability theorem in
[E10], whose proof, along with an estimate of the
domain of attraction, is given in {E12]. Alternative
sets of conditions are given in [El]. In [ES,6]
similar conditions are employed to analyze stability
of networks with parasitics, while a problem of
absolute stability is discussed in {E8] and stability
bounds for u are estimated in [E9). Some early
results on stability of control systems with infinite
gain coefficients are found in {Bl]. Related
theorems on linear systems with siowly varying
coefficients are found in [E2, 3, 11], [E4, Section 32}
and [E16, pp. 125-128].

A general stabilizability condition for linear
time-varying systems is formulated in [G6].
Special cases for linear time-iavariant systems, are
discussed in [E13-15).

REGULATORS AND RICCATI EQUATIONS

Among the most actively investigated singularly
perturbed optimal control problems is the general
linear-quadratic regulator problem. For brevity
we consider only the time-invariant case. When the
system (6), (7) is optimized with respect to

=3 j ' y+u' Ru)dt, (28)
1]
where y = Cyx+ Cyz and R>0, then to implement

the optimal control

X

u = — R-1{B/’ B,'/;;.]K[ ] 29)

z

we have to solve
K[ Ay Ayg ]+[ Au: Aui/i" ]K
Anlp Aglu Ay An/p
B,
-K R-1[B B,/Iu}K+C'C=0,
By/u

(30)

where C=[C, C,]. To avoid unboundedness as
@~ 0 the solution is sought in the form

K K
nlp) ap 1:(}‘)] ah)

K=K(u)= [ ,
BKi' (1) pKo(p)

which permits us to set 4 = 0in (30). At p=0an
m x m equation for Ky,

KaAa+Aa’Kn—KaS’Ka+C” C’ - 0,
(32)

where S, = B,R™! B,’ separates from the (n+m) x
(n+m) equation (30). If Ag, By is a stabilizable
pair, and if Ag,C, is a detectable pair, then a
unique positive semidefinite solution K, exists and
the eigenvalues of Ay —S, K,y have negative real
parts. Another result of the substitution of (31)
into (30) is that at & = Q it is possible to express K,
in terms of K;; and Ky, and to obtain an nxn
equation for K,

Ry A+ A'Ry~R, BRI B'R,+C' C=0. (33)

The expressions for 4, 8 and € are given in [F5].
An interpretation of (32) and (33) is that (32) yields
a ‘boundary layer regulator’ for the fast variable
7(7), and (33) yields the regulator for the reduced
state variable %(f). For 4, 8 stabilizable and 4. ¢
detectable, the implicit function theorem applied to
(30) with (31) shows that

K, =R, +0(), ij=1,2 (34)

Not only are the approximations K;; calculated
from lower order equations, but in addition the ill-
conditioning of (30) has been removed.

If R,; are used instead of K; the system (6), (7)
with feedback control (29) becomes

X = (A~ 8, Ky - SR ) x+ (A, — SRw) 2, (39)
]J.Z' = (Azl-‘S‘Kll—SQKII’)'V*-(AZZ—Szkﬂ):‘ (36)

where S, = B, R18,' and §= 8, R-18,". If this
system: asymptotically stable, then because of (34),
its solutivn x(¢), z(¢) is within ((u) of the optimal
solution. The stability condition (25) can now be
applied to the feedback system (35), (36). The
brundary layer stability condition is satisfied by
Az —Ss Req. The condition for the reduced system
is satisfied by the solution of (33). Thus (35), (36) is
a near-optimal system.

The singularly perturbed regulator problem was
posed in [F1] with Cy =0 and A4, stable, which
gave Ky = 0. The general time-varying problem
was treated in [F3, 5] using the notion of boundary
layer controllability-observability. These results
and extensions [F6,7,9,10,13] are based on the
singularly perturbed differential Riccati equation.
An alternative approach via boundary value
problems is presented in {GS, 19], its relationship
with the Riccati approach is analyzed in [F12]. In
{F2} it was shown that the reduced Riccati equation
(33) can also be obtained from the reduced mode!
(9). Asymptotic expansions are constructed in
[F6,7) and applied to a 17th order power station
model in [F8). Two other order reduction
techniques [F4, 11] lead to equations similar to (33)
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and it would be of interest to investigate their
relationship with the singular perturbation
approach.

TRAJECTORY OPTIMIZATION

In trajectory optimization problems for the
system (1), (2) some conditions are imposed on
x,z at both t = ¢, and ¢t = T, and a control u(¢) is
sought to minimize the performance index

J= J' T V(e zundr, e
4
An optimal solution must satisfy H, = 0 and
x=H, p=-H, (38)
I"z = Hqs M - -Hgv (39)

with 2n+2m boundary conditions. Here H,, H,,
H,H,=f H,=g, denote the partial derivatives
of the Hamiltonian H = V+p'f+q’'g, and the
adjoint variables for (1) and (2) are p and pug,
respectively. At u=0 weuse H,=0and H,=0
to eliminate z and ¢ from (38) and to get the reduced
system

=8, p=-8, (@0)

for which only 2n conditions can be imposed.
Suppose that they are uniquely satisfied by a
continuously differentiable reduced solution X(f),
p(1). Since the reduced variables 2(¢), §(r) obtained
from H, = 0, H, = 0 may not satisfy the remaining
2m conditions, corrections 1.(7), nx(e) for z, and
pr(7), prl(o) for g, are to be determined from
appropriately defined layer systems

d d
'dn_TL - Q(nl.! PL)' TPT'L' == Hz("'l-’ Pt)’ (41)

d d
%! = H/ (Mg Pr) T‘::S = —H (np pr)y (42)

where (41) is used at 7 =ty and (42) at r = 7. To be
specific consider the problem with fixed end points.

(1) = 2% 2(T)=:T, (43)
Then the initial values for n, and nz are
72(0) = 2°=2(tg), 7g(0) = ZT—X(T) (44)
and the additional boundary conditions are
N pL+0, T+, g pp>0, o —cx. (43)

Existence of optimal solutions and their approxima-
tion by reduced solutions have been investigated in
[G1,3,9] and extended in [G16,17] by a construc-
tion of asymptotic expansions. Unfortunately, the
applicability of these results is restricted by the
requirement that 7,(0) and 7zx(0) be sufficiently
small. To what extent such restrictions can be
avoided in a general nonlinear problem (1), (2) and
(37) is still an open question. Results without

9

restrictions on z° z7 are available for linear time-
varying systems [G6,8,13,19]) and for a special
class of nonlinear systems [G14,15,20]. They are
briefly outlined here.

Let the performance index be (28), but on the
interval [f,, T), and consider the trajectory opti-
mization problem for (6), (7) allowing that the
matrices in (6), (7) and (28) be time varying.
Using a ‘dichotomy transformation’ proposed in
[G6]

xmhtr, zml+ry, (46)

MESNEC W
= P(t) +N(t) , 47
q A ry

where P(r) is a positive definite and N(t) is a
negative definite solution of a differential equation
analogous to (30), we transform (41), (42) into two
separate ‘layer regulator systems’

8 o (At~ Sl Pultlnz, (48)

T8 w (4T~ S N Dl 49)

where ny = L=k, np=ry—7; and Pully), Ne(T)
are the positive and the negative definite roots of
(32) at tyand T If for all te(ty, T')
rank [Ba, Aa B’. ceny Aam—l B’] =m, (50)
rank [Cy, A’  Cy' ..., A ™ 1 C' 1= m,  (51)
then the approximations (17), (22) and
P(8) = B(e)+Ow), (52
q(t) = §(t) + Pu(te) 1L+ Ne(T) g+ O(p)  (53)
hold for arbitrary boundary values =9, =T since (43),
(49) satisfy the dichotomy condition (23). A less
restrictive stabilizability-detectability condition can
be used instead of (50), (51). This result of {G13]
delineates a class of well-posed singularly perturbed
trajectory optimization problems. The use of
—R1B, Pyyz+u® results in a stable feedback
realization of the initial layer and u® = R-1 B,}(Ppy—
Nyy)ry is the open-loop control of the end-layer.
An ‘inverse’ Riccati approach to the linear fixed
end-point problem is developed in [F9]. In [G8] a
different set of conditions is derived and asymptotic
expansions are constructed for the linear boundary
value problem.
In [G14, 15] the above resuits have been extended
to the nonlinear problem

X = fi(x, 1)+ Ayg(x, ) 2+ By(x, ) u, (54)
i = g,(x, 1) + Agg(x, 1) 2+ By(x, 1) u, (5%)

T
J = % [o(x, ) +2'Cy/(x,2) Cy(x, 1) 2
Jly

+u' R(x,t)u]dr. (56)
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It is shown in [G15] that, if the matrices in (32)
and (48)—(51) are interpreted as the matrices of (54)~
(56) evaluated along *(z), then (50), (51) are
sufficient for the approximation (17), (22), (52),
(53) to hold for (54)~(56) with arbitrary 2°, zT.
The conditions derived in {G14] extend the results
of [G8] to (54)~(56). Among other works on
trajectory optimization, (G18] shows that (40) can
also be obtained from the reduced system, .C1)
analyzes the scalar problem, [G2,B5] give ap-
proximations without layer corrections and [G10]
makes an attempt to include control inequality
constraints. Applications to aircraft control
problems are discussed in [G4,5,11,12] and in
[B6,10,13,16]. A class of singular problems is
analyzed in [G22]. A result on periodic controls
appears in [G21]. An application to a pursuit~
evasion problem is discussed in [G2, 3).

CONTROLLABILITY AND TIME
OPTIMAL CONTROL

In the design of time-optimal controls difficultics
with high-order systems are considerable even in
the linear time-invariant problems. A simpiified
design procedure has been developed in {H1,2,3).
The discussion here is based on [H2), where also
the following controllability result is obtained. The
use of (10) and

§ = x—pdiy Ayt n+0(p?) 57
transforms (6), (7) into
¢ = [A+0W)é+[B+OW)uy, (58)
pij = [Agg+O()] 9+ [By+O(w)lu,  (59)
Whel‘e/{ = Au_AnAn-l An, B a 81—141’141’—132,
see (9).

It follows from (58), (59) that for u small the
controllability of the reduced and the boundary
layer systems, that is of the pairs 4, B and Ay, B,,
implies the controllability of the original system
6), (7).

In the time-optimal control problem a control
u, subject to constraint | |<1, i=1,...,r, is to
transfer the state of (6), (7) from x(0) == x0, z(0) = z?
to x(T) = 0, z(T) = 0 in minimum time T. Equi-
valently the problem can be solved in terms of ¢
and v. A coatrol steering £, # to zero in minimum
time is of the form

u=—sgn{B exp[d(T-1)]p

+ By exp(— Ay 0)q}, (60)
where o is as in (21), p and ¢ are constant vectors
and O(u) terms have been neglected. When the
cigenvalues of Ay all have negative real parts, the
term depending on o is significant only near . For
some o*<0 and 01T+ uo® the control (60)
can be approximated by

i = —sgn{B exp[4'(T-1)p}, (61)

which is interpreted as a time-optimal control for
the reduced system (9), steering ® to zero. For
T+uo®*<t<T the control (60) is approximated

by

u, = —sgn{B’ p+ By exp(—Ano)g}. (62)
We note from (8) that, after the last switching of 4,
z may be far from the origin and the boundary layer
control u, is needed to correct this error.

This separation of slow and fast switchings was
first analyzed for single-input systems in {H1}], and
then generalized in [H2). A special case when (7) is
due to actuator dynamics is discussed in [H3]. An
iterative method based on these results is developed
in [H4].

FILTERING AND SMOOTHING

Results on singular perturbation of linear-
quadratic regulator problems should have their
counterparts in the linear-quadratic-Gaussian
filtering and smoothing problems. Preliminary
investigations along this line have been reported in
[I1,3-6). The analysis in [I6] shows that the
duality is not complete and the singularly perturbed
filtering and smoothing problems require separate
treatment and cautious interpretation. The
analysis is more complicated since the white noise
input process u in (58), (59) ‘fluctuates’ faster than
the fast part # of the state no matter how small
1>0 is. In the limit, 5 becomes a white noise
process whose covariance is the same as the
covariance of the reduced solution %, and the
integral error covariance of %(f) ~#(t) tends to zero.
Thus, as an input to a slow system, #(¢) can replace
7(¢), but not as an approximation for each .
Pursuing such considerations it is shown in [I6]
that a filtering (or smoothing) problem for the
system (6), (7) can be obtained by solving two
lower order problems in separate time scales.

An example given in [I2] indicates that deter-
ministic observers also can be approached as
singular perturbations. Control problems with
small noise are treated in [17,8].

CHEAP CONTROL AND SINGULAR ARCS

In singular perturbation problems considered so
far a small parameter 1 multiplies derivatives and
the differential order is reduced when u=0.
Another sign of singular perturbation phenomena
is a characteristic lowering of dimensionality for
the limiting problem, such as in limit approaches to
singular optimal controls [J1}. An example of these
problems is

X = Ax+ Bu,

x(0) = x9, (63)
., l J. T y 2,
-5 (X QX"“P» u Rll)df, (64)
]
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where J is to be minimized for p small. In [L2]
analogous problems for systems governed by partial
differential equations are called ‘cheap coatrol’
problems since the cost of the control u is cheap
relative to that of the state x (for @>0). Other
applications include study of limiting possibilities
for regulators and filters [J2, 5;18].

When u =0, the resulting problem is a well-
known singular problem [J3] whose solution
satisfies the singular arc condition

BKy=0 (65)

for >0 and the appropriate Riccati gain X,
Motion is thereby restricted to a manifold of
dimension at most n—r. By obtaining the asymp-
totic solution of (63), (64) as u—0, we show how
this reduction in order comes about and, simul-
taneously, discover the nature of the initial control
impulse. For x>0, the feedback control is

U= —-1—312"1 B Kx, (66)
p

where K>0 satisfies the singularly perturbed
problem

p‘%—‘f-}-p’(KA-FA'K-E- Q)= KBR1B'K,

K(T)=0. (67)

The limiting solution K, of (67) within (0,7)
satisfies the singular arc condition (65). An
asymptotic solution of (67) is complicated and
considerably different, however, in a hierarchy of
cases: Case | where B'QB>0, Case 2 where
B'QB=0 and B,'QB,>0 for B, = AB—B. This
reflects the situation for the singular arc problem
[13,4) where the initial optimal control successively
becomes increasingly impulsive and the singular ar¢
increasingly restrictive. A singular perturbation
analysis in [J6-10] reveals the detailed structure of
these phenomena. Its use for numerical solution of
ill-conditioned Riccati equation is discussed in
(311}

TIME-DELAY SYSTEMS

The difficulties incumbent with control systems
having time delays have motivated various approxi-
mations. When the delay is small, it is often
neglected and a tractable ‘nominal’ problem is
solved. Such design procedures can be justified in
terms of singular perturbation methods. Boundary
layer phenomena do occur, although they are not of
lowest order importance. Interesting and significant
extensions are to problems with both small para-
meters multiplying derivatives and small delays.
Discussions with applications to nuclear reactor
models occur in [KI-4]. In [KS5] a method is
proposed replacing several small time constants by
a single time delay.

DISTRIBUTED PARAMETER SYSTEMS

From the results of [L1, 3] it can be expected that
the singular perturbation techniques will be among
the main tools for asymptotic analysis and design of
optimal control of distributed parameter systems.
Several generalizations of the finite dimensional
linear-quadratic problems are available. In
particular, a distributed parameter analog of the
method [F5,7] is developed in [L3] for systems
described by singularly perturbed parabolic differ-
ential equations.

CONCLUSION

It seems that, instead of giving a short summary
of solved problems, the conclusion of a survey of a
new direction of research should concentrate on
missing links, restrictive assumptions and hints of
new problems. Starting with order reduction the
need for a systematic modeling procedure to
formulate the model (1), (2) is apparent. Con-
versely, this model is expected to interpret other
order reduction procedures as limit processes. In
initial and boundary value probiems, controliability
and stabilizability studies may relax the restrictions
of stable initial and final manifolds. Although
optimal regulators seem a solved probiem, there
remains a desire to reduce the dimensionality of the
feedback matrix. In trajectory optimization,
restrictions on norms of boundary layer jumps
should be, and very likely can be, removed for a
wider class of Hamiltonian systems. The only
result with constrained control is the linear time-
optimal control. Various generalizations to other
bang-bang controls are visible.

In addition to linear regulators, other optimum
feedback design problems need to be solved.
Order reduction in dynamic programming and
Hamilton-Jacobi optimization approaches would
result in even bigger conceptual and computa-
tional simplifications. Singularly perturbed filter-
ing, smoothing, singular arc, distributed systems
and time-delay problems require further explora-
tion. More work on numerical aspects of these
problems is also needed. What has been surveyed
here is only a first step.
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Singular Perturbation and Iterative
Separation of Time Scales*
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Based on singular perturbations concepts, an iterative method for separation of time
scales removes inconsistencies of the classical quasi-steady-state approach, and it
systematically improces the accuracy of lower order models.
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Abstract—This tutorial paper presents an iterative method for
the separation of slow and fiast modes, which removes the
inconsistencies of the cisssical quasi-steady-state approach
and systematically improves the accuracy of the lower order
models. [t also serves as 2 sell-contdined introduction to
singular perturbations. State variable reformuistion and time
scale identificauon are discussed and illustrated with power
system exampies. A correction procadure for nonfinear sys-
tems is also presented.

NOTATION

D machine damping
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€ component of voltage Sehind transient reactance
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A component of voitage behind transient reactance
due to direct axis llux linkages (with the field
windings)

E;, exciter output voltage
machine inertia constant

X, voltage regulator gain

K¢ exciter gain

K, feedback compensator gain

W £ leakage inductances

L, L;  self inductances

Aypdy flux linkages

turns ratios

R, feedback compensator state
R,,R; transformer resistancas
S.(Eze) exciter saturation
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T, fesdback compensator time constant
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Ve voltage regulator output
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X, direct axis synchronous reactancs

X, quadrature axis synchronous reactance.

[. INTRODUCTION

REALISTIC models of large scale systems involve
interacting dynamic phenomena of widely dif-
ferent speeds. In a power system model, for
example, voltage and frequency transients range
from intervals of seconds, corresponding to gene-
rator voltage regulator, speed governor action
and shaft energy storage, to several minutes,
corresponding to load voltage regulator action,
prime mover fuel iransfer times and thermal
energy storage (Luini, Schulz and Turner. 1975).
Since such models are of high order and numerni-
cally stiff, order reduction and separation of time
scales are often made using aggregation, modal
analysis and similar techniques (Sandell and co-
workers, 1978; Undrill and Turner, 1971). The
underlying assumption is that during the fast
transients the slow variables remain constant and
that by the time their changes become noticeabie,
the fast transients have already reached their
quasi-steady-states (‘qss’). Based on this gss as-
sumption and experience, the state variables are
divided into n ‘slow’ states x and m “fast’ states =,
that is the full scale model is

dx
E-f(x,:.t). x(fo)-xo (l)
d:
E-G(x. at), 2t)=m:® 12)

Then the only states used for short term studies
are :, disregarding (1) and considering the states
x as constant parameters. In long term studies
the only states used are x and the differential
equations for = are reduced to algebraic or
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transcendental equations by formally setting
2=0. The qss model is thus

dx, 0
T'ﬂ"" z,t)  x(to)mx 3)
0= Gix,, 2,,¢). )

Examples of power system models derived in
such a fashion are many, as illustrated in Alder
and Nolan (1976). An inconsistency of this classi-
cal qss approach is the requirement that :, equal
a constant, as implied by dz,/dc =0, is violated by
(4) which defines z, as a time varying quantity.
Furthermore, the initial condition for z had to be
dropped ‘in (4), since there is no freedom to
satisfy it. If a qss model fails to provide a good
approximation of the actual solution x(r) and
2(¢), there is no provision for improving the
approximation.

This tutorial paper presents an iterative scheme
for the separation of slow and fast modes which
removes the inconsistencies of the classical gss
approach and systematically improves the ac-
curacy of the lower order models. It modifies the
qss assumption into the multi-time scale property
of singularly perturbed systems (Kokotovic,
O'Malley and Sannuti, 1976; Chow, Allemong
and Kokotovic, 1978) and applies the modified
qss assumption at each iteration step to the
model obtained from the previous step. The
accuracy of the models for the slow and the fast
modes is improved at each step and they are
further separated from each other. The iterations
are related to. but simpler to interpret than
standard  asymptotic  expansion  methods
{Hoppensteadt, 1974; O'Malley, 1974). The suc-
cessive use of the modified qss assumption can be
followed without any background in singular
perturbation theory. The iterations offer more
freedom to select various, possibly nonuniform,
combinations of correction terms. Finally, the
tutorial use of the classical qss assumption as an
introduction to singular perturbations clarifies
the relationship between the classical model re-
duction and the singular perturbations method.
The classical approach can now be justified and
improved to any degree of accuracy.

2. SINGULAR PERTURBATIONS AND
TIME SCALES
Assuming that r is properly scaled for the slow
phenomena. let us introduce a new time variable
t and scale it for the fast phenomena. For
example. if ¢ is in minutes. ¢ can be in seconds.
The ratio of the time scales. in this case 1,60. is
in gencral a small positive parameter £ This
parameter will be the main tool for our asymp-

totic analysis. Using ¢ the new time variable t is
defined by

tm(t=t)e (5)

and its initial instant t=0 is chosen to cor-
respond to a particular instant [’ in ¢ time scale.
The wider the separation of the time scales.
such as seconds and hours, the smaller ¢ will be.
On the other hand, the smailer ¢ is, the larger ¢
will be for a given (r~1’) interval. In the limit as

-g=+0 even a short interval in ¢ is ‘stretched’ to an

infinite interval in t. When ¢ is sufliciently large.
the fast phenomena have adequate time to reach
their steady-states. This, however, does not con-
tradict the assumption that (1—¢') is sufficiently
short to consider the slow variables as constants.
Thus, the limit of ¢~0 is equivalent 10 the gss
assumption, but without its inconsistencies.

A more difficult task is to reformulate the
model (1), (2) to incorporate the scaling (5). If it
is known that the dynamics of the states z are Iz
times faster than x, then 2 is about 1'¢ times
larger than % and G can be rescaled as

g=:G (6)

such that f and g are of the same order of
magnitude. The model (1), (2) then becomes

dx

E‘f(x' o) x{tg)mx® (7)
d:

s;-g(x, o} 2(te)m:O {8)

The above qualitative reasoning is based on some
empirical estimates of dx,;dt and d=/dr. When this
information is not available. then physical para-
meters such as time constants, loop gains and
energy storage constants (masses. inductances.
etc.) are examined to determine which states are
slow and which are fast. Not every choics of state
variables will be separabie in this sense. Where
separable, a2 model (7), (8) will be obtained by
expressing the smail time constants and the in-
verses of the high gain coefficients as multiples of
a single small parameter ¢ (see Section 3 and the
companion paper (Winkelman and co-workers,
1980)].

In the limit ¢=0, the model (7), (S). being in
the ¢ time scale. defines the quasi-sieady-states
x,(t), =,(¢) as

X,
<=/ (Xge 55 8) X, (L) mx® )]
Omg(x,, 2. 1) (10
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Although this is the same qss model (3), (4), its
origin and meaning are different. The crucial
difference is that d=,‘dt %0 as required by (10) is
not contradicted by e(ds,/dt)=0 which is now
due to ¢=0. and not dz,/dr =0. To obtain the fast
parts of x and z we rewrite (7). (3) in the fast
time scale ¢

dx ,
a;-sf(x,z,t +e1) (11)

-

dz ,
d—:'g(""" +et) (12)

and again examine the limit as e-=0. Then
dx/dt=0, that is x is constant in the fast time
scale. This implies that ay e=0 the only fast
variations are the deviations of : from its quasi-
steady-state z,. Denoting them by z, =z -z, and
letting e=0Q in (11), (12), we obtain

dz
a‘-g(.@, 242(th o) 2, (0)m2® =20 (13)

The fixed instant ¢’ has been chosen to be r, and
hence the model constants are to, x° 0=z,(t,),
which is suitable for the fast phenomena occur-
ting near to.

Using (9), (10) as the slow model and (13) as
the fast model one expects to approximate x and :
by

R {FE X(3) (14)

)=z (0)+2, (’—:—'2) (15)

where 2 (t) is expressed in the ! time scale. When
is such an approximation valid? How can it be
further improved? Singular perturbations ad-
dresses these issues much better than other model
simplification methods. The tool at hand, not
present in other methods, is the scaling para-
meter ¢,

Recent results by Chow, Allemong and
Kokotovic (1978) show that systems with lightly
damped high frequency oscillatory modes can
also be expressed in the form of (7), (8). The
reduction procedure (9)-(15) and the iterative
separation method discussed in Section 4 also
hoid for these systems. However, the interpre-
tations of the reduction process for these two
types of systems are quite different. With well
damped fast modes, the state : rapidly reaches its
quasi-steady-state :z,. When the state : exhibits
high frequency oscillations, the state x is approxi-
mated by the slow subsystem (9), (10) due to the
‘averaging' or filtering effect of the slow sub-

system. Furthermore, for lightly damped oscii-
latory systems, the validity of the approximation
(14), (15) is only up to a finite time ¢ which
depends on the accuracy of the high frequency
being approximated.

While the full order models (7), (8) and (11),
(12) are exact, the separated lower order models
(9), (10) and (13) are in error because they
assume ¢=0, instead of the actual ¢>0. This
parameter change is called ‘singular’ and it re-
sults in an inherent perturbation in model order.
The approximation (14), (15) can now be im-
proved by constructing asymptotic expansions in
e. It is crucial that each expansion term s
caiculated at e¢=0, retaining the advantage of
having separate lower order models. The stan-
dard expansion techniques are described in
Hoppensteadt (1974) and O Malley (1973). Our
iterative technique is presented in Section 4,
illustrated with a power system example in
Section § and extended to a class of nonlinear
systems in Section 6.

3. SEPARABLE AND MIXED STATES

Before proceeding to the iterative separation of
lime scales, we illustrate the state separation
problem by two elementary examples. In the
IEEE type ! voltage regulator (IEEE Committee
Report, 1968) commonly used state variables are
separable, that is the fast parts of some states are
small compared with their slow parts. The modei
(7). (8) can be obtained without redefinition of
the state variables. On the other hand the com-
monly used state variables in a transformer mo-
del are not separabie. In this ‘mixed’ case another
choice of state variables exists for which the
model is in the form (7), (8).

Voltage regulator. We use the standard model
in Fig. | with the exciter saturation Sq(E )
=4, .exp([B,E,] retained but limit type non-
linearities neglected. The numerical vaiues are
given in Tabie 1. The feedback compensator is
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Tasts |. VOLTAGE REGULATOR CONSTANTS

T, = 0063 K, = =0044s
T, = 055 K, = 016

1.' = 10s Agar @ 0001123
K, =250 Buy = 03043

represented by two parallel paths in order to
exhibit R,. The state equations are

dve K.[K, Va
- T,[T, (Ry~E/q) K:-AV] (16)

s L VKB =SB 0] D)

@ T,
drR, 1
T:L"r;‘sf“kf’ (18)

where AV = Vu—=V. To separate the states let us
identify the fast and slow loops in Fig. 1. Since
T, is much smaller than T, and T, the amplifier
loop is fast and its state ¥, wiil have a non-
negligible fast part. The nature of E, is less
obvious. If it has a fast part, it would not pass
through the low pass R -path (T, is large), but it
would pass through the parallel path. We there.
fore disregard the R, -path and examine the re-
maining system. Using K; as some linearized
equivalent of the exciter gain, we see that the
loop gain K,7,/K K, is high because K, is large
and KK, is small. The conclusion is that E,, as
a signal in a high gain loop will have a fast part.
The remaining state R, is a candidate for 2 slow
state,

Our next step is to examine whether this
choice of state variables can be scaied for (7), (8).
Since the fast phenomena are caused by the
smallness of 1/K, =004 and T, =0.06, we take
e=0.04, that is

Kl-e and T, =l.5: (19)

A

In addition to the time scaling, the states must be
scaled to ailow a meaningful limit as e=0. It is
apparent from Fig. | that V= If K, -, that
is if e=0. Hence we will use ¢¥, as a fast state
variable. With

R,.X' E,‘-:l- VR-:Z (20)

and with the given numerical values. the voltage
regulator model in the form (7), (8) is

—-!:|-X "l)

de

:%-2(:,-0.0445::. =£Sg(2,)] (22)

dz;
‘-d-‘-’--B[O.XG(x-:,)—Zz"'AV]- (23)

Applying the reduction procedure (9)~{15), the
slow model (9), (10) is

de, 1
il ¥

Y
S NN

4 (24)

zh‘o

and the fast model is

dz dz -1

To get an idea how this approximates the fuil
scale model, we linearize (21), (22), (23) and
compare its eigenvalues with those of (24) and
(25) mutltiplied by 1/eé=25. They compare very
closely as 0.00916 to 0, and -8.80=,8435 to
-8.334,7.99.

Transformer. In the coupled circuit in Fig. 2

R. R!
— |~ e I
Iy q Ay :N. 'ltc A, D 7

FiG. 2. Transformer model.

the ratio of leakage inductances /,, /, and the
self inductances L,. L. is assumed to be the same
small parameter

_/_I-/_l-“' ("6'
L‘ Lz -

Using the flux linkages

N
Ayml el iy 'vl‘ Lyiy
a7

. Ny .
iym -V:L'l"i'“ + iy
'

as the state variables and eliminating i,. iy from
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3
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{27) using equations

d/ . da, .
d—ll--Rll|+U ?--Rzlz ’.28)
we abtain the model
d;-. \." l +z . h .
e T e T, ry+EY (29)
d-, 1, Jl+e,
s S A

where hmTNyTN;, Ty=LyR, Ti=LyR,.
The small parameter ¢w2u+u? muitiplies both
derivatives. and hence both /, and /, are fast.
that is witen we, for example, take /= =1, /,
=0, v =0, both derivatives will tend to infinity if
¢=0. However the system matrix becomes sin-
gular indicating the possibility of a hidden siow
phenomenon. Since both 7, and /, are fast, we
form the slow state by subtracting out the fast
phenomena in 4, and Z,. This is equivalent to
defining a state x as a linear combination of /.,
and /4, such that the derivative of x will not be
muitiplied by & In this case, an appropriate
transformation is x=, =h.,, and the variable
=/, is kept as the fast variable. Then (29),
{30) becomes

E-- l‘hl+l I+ 31)
&I AT !

I S (LN PR S
T\

where |, (1 +¢) is approximated by 1 +¢/2. This is
aow a model of the type (7). (8) having the
physically meaningful slow model dx, di=
~x,/ (T, + T;)+v for the Mlux linkage of an ideal
transformer and the fast mode! dz,/dt= - (T}
+ T3 ')z, representing the flux leakage.

4. ITERATIVE SEPARATION OF
TIME SCALES

As a special case of (7), (8) we consider a linear
system

tmAX+B:  x{ty)mx® (33)

c2mCx+Dz  =ty)m20 {34)

where d/dr is denoted by a dot and D! is
assumed to exist. The gss assumption 2, =0, that
is Omz, =D~ 'Cx,, yields z,= —D~'Cx,. The true
x.z will differ from <,z mainly by their [fast
parts. To find the fast part of = we introduce 7,

Singular perturbation and iterative separation of time scales

as the difference between z and ¢z,
n=z+D"'Cx (35)
which transforms (33), (34) into

X=m(4=BD"'C)x+Bn,=A,x+Bn, (36)

ey meD 'CAx+(D+eD"'CB)y, =C,x+Dn,.
(37)

This is a model of the type (7), (8) with n,
playing the role of z. The crucial difference is
however in the weaker presence of x in the n,
equations where C, is O(e)* The gss of n,
obtained from Om=p, +D;'C,x, is only Ofe),
that is, n, is predominantly fast. Continuing this
process we introduce

nymn +D7'Cix (38)

as the error due to the gss assumption eij,, =0
and substitute (38) into {36), (37). Repeating this
step k times with

Mymyey =D Conyx No=2 (39)
we end up with the system

x= A4, x+8n, (40)
&tjy m Co X + Dy, (41)

whose matrices are defined by

Aym Ao =BD L Coey Ag=A (42)
C.'CD;.‘]C.-““. Co-C (43)
Dl-Dt‘l+SD:-‘lct'lB DO-D. (44)

Again C, has been reduced, this time to O(¢*). To
recover : from n, and x we observe [rom (39)
that

[ [
Z ("l-"l-l)-"h-:‘( Z D{.‘.C,»-l>x.
is] is]
45

Block diagram representations of the iterations
are given in Fig. 3. The gss model is indicated in
thick lines. The speed of integration in the fast
loop is large due to its high gain l/e. The input
from x into each successive fast model is weaker.
In the limit (k=) the model becomes the fast-
slow cascade in which 4. contains ail the slow

*A vector or matrnx function ¥ig) of a positive scalar ¢ s
said 10 be Ote*) if there exist positive constants ¢ and &* such
that | w(e)| Sce' for all e ge’.
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(e}
Fi1G. 3. Block diagram models.

modes and D_/e¢ all the fast modes. Using (42),
(43) and (44) we can determine A =4 -8D"'C
+0(¢) and D, =D+ 0(e), that is, the slow and
the fast subsystem matrices which would have
been obtained using (9), (10) and (13) as Ofe)
approximations of A, and D,. Note that 4,
and D, are obtained in terms of the original
subsystem matrices without ill-conditioned modal
transformations. Another practical advantage
over the modal method is that the physical
meaning of the original state variables is pre-
served. From (45), the definition of x remains the
same, while the new state variabie 5, has the
same meaning as >.

After k iterations the model (40), (41) still has
the full fast input Bp, into the slow subsystem
which we now want to reduce. Expressing
from {41) in terms of s, and x and substituting
into (40)

$=¢BD; 'ri, = (4, ~BD;'C)x = A, x (46)
suggests
el SX—EBD,:"]. ‘47)

as the slow part of x. The slow subsystem then
becomes

$,mA, 3 +¢4,, 8D, "h;""nfl +8,,m. {48)

Since B,, is O(e) the fast input hay been reduced.

Next we define J, as the slow part of ¢, etc, that
is we construct the iterations

$je1 =, —eBD'n,  Somx, 49)
where

Ayjor=Ay = Ban-] ! G
Bth 1 -cAt}"' |Bt"D;"
Dy;.,=D,;+¢C,8,, Dy}

Bgo = B (51 )
Dyo=D,. (52)
The weakening of the fast input has been accom-
plished since after each iteration B,; is reduced by
an order of ¢ and tends to zero as j— . la other
words the slow and the fast subsystems of the
resulting system

¢ilto) =&} (83)
mlte)=n]  (54)

é;" Ay + B
oy =C 3+ Dym

are only weakly coupled because B,; is O(¢/) and
C. is O(¢"). It is also easily seen that A,, D,; are
O(e**’) approximations of 4, D .

To recover x from §; and n, we observe from
(47) that

J i
S (EmGmr) =i —xm “QZ, Bu_.D,,,-,)q,.
isy -

(55)

Thus the slow variable 3, is the dominant part of
x, whose fast part is Ofe) It is of practical
importance that I, has the same physical mean-
ing as x.

Remark. OQObserve that the recursions remain
the same if we use C,e and D/ instead of C and
D. This means that g which is cructal in the
asymptotic analysis of validity and convergence.
does not have to be explicitly identified in the
iterations.

In conclusion our objective to reduce a system
with coupled siow and fast parts has been met. In
the transformed system (33). (54) the coupling
terms 8,, and C, are weak and can be neglected.
Instead of the original full order system (53}, (5¢)
we will use the separate lower order subsystems

3, = Ak,Ep e, = Dy (56)

with the initial value 2 obtained from x°, =° via
(45) and :? obtained from x° and 4 via (55).
The simulation of s, can be performed in the fast
time scale t.

The error &,(1)=¢,(r) is O(¢f) while the error
M) = () is O(*) Using (1) f(c) we obtain

o i i L .

—
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the corresponding approximation of x(t), z{¢) by
evaluating ¥(¢) from (35) and Z(¢) from (45). The
error x(t)—x(¢) is O(g) where i=mmin(j,k+1)
while the error z(t)=3(t) is O(¢) where im
min (j, k). In long term or short term studies a
further simplification would be to keep only one
of the two models (56). In general we need to
compute four matrices A,; D,; and the sums in
(45) and (55). They can be generated by (42)-(44)
and (50)%-(52).

An alternative algorithm is presented in
Kokotovic (1975) and is motivated by (45) and
(35). Substitution of i = : <+ Lx into (34) yields

eimMx+(D+elBin (57)

whete M =C—=DL+el(A-BL) To compictely
decouple x from n in (57), we choose L such that
M=0Q. The expression M =0 rewritten as L=
D™'C+eD~'L(A~BL) suggests that L can be
solved for iteratively as

L.-l-D-lC+w-ng(A‘BL.)

where L, =D~'C. The system (33). (34) aficr &
L-iterations has the form (40), (41), where the
matrices are now defined as 4, mA—-BL,, C,=
C-DL +L,A,, and D,=D+L,B. Note that as
k-x, L,., converges to L when ¢ is sufficiently
small.

Similarly. substitution of &= x—¢Hn, into (41)
vields

g" (Ae=HC )+ Nn, (58)

and we set N« B-~HD +e(A,—=HC,)H =0 to de-
couple n, [rom ¢&. Rearranging the expression
N =(Q we obtain

H=B8D'+e(d,~HCHD;!
and solve for H iteratively as
H”- | = BD;I +€(A.- H."Ck)H”D; !

where H,, =BD; ' The system (40), (41) after
1 H-iterations has the form (53), (54) where the
new expressions for the matrices are A,;=A,
"H”C., B”'B-H.IDI+A.1H” 3nd Dij-Dl
~CH,; .

The L- and H-iterations avoid repeated matrix
inversions of D, and D,; which are required by
the iterations (39) and (49). The development of
£39), (30) complements the L.. H-iterations by
showing that L and H are obtained from a
succession of gss assumptions. In the compu-
tation of A4,,, D,;, we will use the L., H-iterations.

Some other aspects of computing A,;,, D\, are
given in Anderson (1978).

5. AN ILLUSTRATIVE APPLICATION

In the companion paper (Winkelman and co-
workers, 1980) a systematic separation procedure
using the iterative scheme is proposed and ap-
plied to the two-time-scale and four-time-scale
investigations of a 20th order model of a three-
machine power system. Here we analyze a sev-
enth order model of the single machine-infinite
bus system in Fig. 4. A five cycle 3 phase fault is

3

+ » z
o,
Ere iy ,x' ' X, J
W e
v:10410.2
av slu l‘ §
v AR | v;’|°°l°°

¢ Vit
'

Fic. 4. Single machine—mfinite bus system (AVR is the
voltage regulator from Fig. 1).

applied on circuit ‘a’ close to bus 2, and is
cleared by opening circuit ‘a’. This example will
illustrate some features of the separation pro-
cedure and introduce the time scales to form a
basis for the analysis of the three machine system
studied in the companion paper. The block AVR
in Fig. 4 is the voltage regulator described in
Section 3 and its model (16), (17), (18) will be
retained with the generator terminal voltage V
defined by

atVim(a=1)(e, +e)+2(a-1)
x (e;cosd—e,sind)V+V:  (59)
where a=(X'Y)"! and Y is the admittance of the

transmission line. The four additional state
equations

1
Tio | =[1+(X,=X"Y1e,

3

e, =

~(X,~X)YVsind+E,,  160)

1
é". v 4 X
T (X, = X'3YVcosd
~[1+(X, - XY]e,, o)
d=m 3T w=—1) {62}

(ba—[&—D(w—l)
@

= YWe,cosd +¢;sin 6)] 163)
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describe the flux linkage decay transients in the
direct (d) and the quadrature (q) axes (60), (61)
and the mechanical transient by the swing equa-
tions (62), (63). The numerical values in Table 2
are typical. It should be noted that in this
problem formulation the quadrature axis leads
the direct axis.

TASLE 2. SYNCHRONOUS MACHINE DATA

H =50s X, =025pu
[2) =a20pu Tew =50s
X, =12pu Tw =058
X, =10pu X, =00lpu
X =025pu X, =001lpu

To determine the fast and slow states we first
note that the earlier reason for ¥, and E,, to be
fast remains valid in this enlarged system. The
linearized swing equations (62), (63), with all the
variables constant except for § and w, show a
typical swing frequency of about 1.4 Hz. Hence
both § and w will be fast. Finally for the flux
linkage equations we note that the quadrature
axis has a much smaller time constant (0.55s)
than the direct axis (5s). Therefore we assume
that ¢, is fast and ¢, is slow, and order the states
as follows:

‘;1 R/) ‘llv 6v w, Efd' VR (64)

considering e,, R, as siow and the remaining five
variables as fast. Upon linearization of the non-
linear model at the nominal values given in Fig.
4. the system matrix is as follows:

-0.58 0 0 -0.269
0 -10 0 0
0 0 -50 2.12
0 0 0 0
|=0.141 0 0.141 =02
Y 0 0 0
=173 66.7 =116 409
0 0.2 0]
0 1.0 0
0 0 0
377 0 0 (65)
-0.28 0 0
0 0.0838 20
0 ~66.7 -16.7,

The system ecigenvalues -0.36%,0.56. -0.86
«;84. ~393, ~8.53+,822 also indicate that
there should be two slow and five fast states. In

view of the remark in Section 4 we proceed with
iterations without an explicit value for ¢.

The post-fault simulation resuits using the sub-
systems are quite revealing. The simple gss slow
model causes iarge errors in the linearized states
Ae, and AR, (Figs 5 and 6). Alter only one
iteration of the slow and fast subsystems (j=i
=) the error is practicaily unnoticeable. The
response of fast state Ad for both the uncorrected
fast model and after one iteration is shown in
Fig. 7. That is typical of all five fast states.

6. A CORRECTION METHOD FOR
NONLINEAR SYSTEMS

With minor modifications the iterative pro-
cedure of Section 4 is applicable to linear time
varying systems. It can also be extended to
nonlinear systems of the type (7), (8) where f and
g are continuous and differentiable in all its
arguments by first linearizing (7). (8) along the
trajectory (14), (15) and then applying the me-
thod for linear time varying systems. As in stan-
dard asymptotic expansion methods this requires

006
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Fic.. 5. Slow variable de,: exact (solidl gss 2pproximation
{dotted 1a}] and alter one iteration [dotted (b)),
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the time varying Jacobian matrices f,, f.. g.. g
and the inverse of g.. From a computational
point of view it is more desirable to deal with /
and g directly. Allemong (1978) has proposed
such a method for a class of nonlinear systems
including power systems considered here and in
the companion paper. In the following outline of
the method we drop ¢ from f and g and let ¢,
=0,

Section 2 discussed the problem of obtaining
reduced order models for nonlinear systems wi-
thout corrections. Equations (9), (10) and (13)
vield these approximations. Using these solutions
for x,, =, and z, we proceed as foilows.

Let z,=my(x,) be a root of g=0 in (lO)
Substitute

z=my(x)+n (66)

into (7) and assuming that the nonlinearities in x
and z are separable, (7) may be written as

x=f(x,y(x))+ f(y(x)n)

2 fi()+ fi(¥(x). 1) x(0)=x®.  (67)
Note that neglecting f;, which contains the do-
minant fast part, yields the slow subsystem (9),

(10).
The integral form of (67) is

x-x°4-k+‘rfl(x)dt+ff,(W(x),ry).dz.-k'
0 0 .
(68)

where we have added and subtracred

k-f .f;(:,.:,)dx (69)
0

where z,, 2z, are obtained from (9), (10) and (13).

To better approximate the stats x we introduce
the expression x= ¢, +x, and solve the slow part
as

¢i=fii2) & 0)=x?+k (70)

that is, we include the influence of the fast part as
a shift k¥ in the slow initial condition. The
remaining terms in (68) are fast and are soived by
approximating y(x) with 2, and n, by z,, that is

'ef.fl(:u :f). .t,(O)- -k (71)

where z, is known from (9), (10) and 2z, from (13).
If desired. the next step can be a further improve-
ment of the {ast subsvstem

iy mg(E, +xp 2, +m ) 0, (0)m2® =2,(0) (72)

where ¢,, x, and 2, are now known from (10),
(70) and (71) (Allemong, 1978).

This method has been tested on the single
machine mode! (16)=(18), (60)~(63). The only
types of nonlinearities in these equations ar2 sine
and cosine functions and the saturation Sg(E, ).
Limit type nonlinearitiess on ¥, are not con-
sidered here. The uncorrected slow variables e,
and R/, obtained from (9), (10) are shown in Figs
8 and 9. Then the corrected ¢, and R, are
solved from

., 1 . .
e ™ = fz {1+ (Xe=X)Y]e(
+(X=X)YVsiné,~E,.)  (73)

{
Rpw 7 (Eray=R;y) (74)

e;,(O)tG;(O)w-kl. Rf"RI(O)+k: (75)

|
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FiGi. 8. Slow varable ¢,: exact (sohd) Qss approximation
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TIME sec)

FiG. 9. Slow vanable R,. exact (solid) gqss approximation
{dotted (2)] and one iteration [dotted (b)).

XYV ("
k“_uf F(3,, 6,)dt
Teo 0
l k-
T‘O [}
l k J
T Jo
where

F(d,, 5,)msind,(cosd, —1)+cosd,sind,. (78)

Their fast parts are solved from

é',fﬂ —L, u.\’,-X')YVF(&,, 5/)
Teo
'-E[‘f)v 2'.,(0)‘-‘:, (79)

1
RII'?’EIU' Rps(O)= =k, (30)

where o,. £, are known from (10) and d,. £,
are obtained from the uncorrected fast model
(13). The corrected slow variables are in Figs $
and 9 and the quality of the approximations is
almost as good as in the linear case. The un-
corrected and corrected fast variable é is shown
in Fig. 10. The behavior of other fast variables is
similar. Although this method requires further
testing, these first experiments are encouraging.

7. CONCLUSIONS

This paper discusses the appiication of singular
perturbation methods to eliminate the incon-
sistencies of the classical quasi-steady-state ap-
proach to model reduction. The iteranive

8 (radiens)

]
12 Y 4} T : T { T

f

] 0
TIME (see)

FiG. 10. Fast varisble 4: exact (solid), qss approximation
(dotted (a)] and after one iteration [dotted (b)].

method presented is a means for improving the
accuracies of the reduced models. A correction
method for nonlinear systems with sine, cosine
and exponential nonlinearities is also presented.
The modeling and separation of time scales are
illustrated by several systems common in electri-
cal engineering. Further application of the me-
thod is developed in the companion paper
(Winkelman and co-workers, 1980).
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.- SUBSYSTEMS, TIME SCALES, AND MULTIMODELING

?. V. Koketovic

Coordinated Science Laboracory

¢ Universicy of Illinois

ABSTRACT

Through a couple of naive examples the coutrol
theorists are invited co reexamine the role of mod~-
eling in the study of large scale dynamic systems.
Instead of assuming the exiscence of "Y diagonally
douinanc blocks," thay should ideatify one strongly
coupled slow core aad N weakly coupled fast subsystems.
This sctucture is exhibited with a physically msaning-
ful choics of sctata variables. The controls ars introe-
duced following the recent concept of multimodeling.

INTRODUCTION

Most coantrol studies of large scale systems scart
with 4 aodel possaessing some known hiararchical or
diagoual dominance properties. This sssumption
expresses our desire Co escape the cask of modeling.

AL the extreme are the researchers for whom it i35 move
racional to design stracegies for controlling an unkmowm
plant, thas to f4irst spend some tima developing a model
for it. Ia siapler and smaller size syscams a cartain
disregard of azodeling is tolerable. The sicuation is
differsnt in large scale systems vhare the phenomenz
occurring are too rich to be handled by all-purpose
concrol scratagies. Cousider, for instance, the stabi-
lizacion stratagies based ou the assumption of diagomal
domisance, and designed by vector Lyapunov function
mechods (Siljak, 1978). As the two power systaa
examples in Jocic etal. (1978) and Grujic et al. (1979)
show, the success of these scrategies sricically
depends ou what i{s modeled as a subsyscem. If the sub-
systets are siaply cakan to be tha individual gener-
ating units, the resulcs ars extramely coanservative.
Wich a carveful choice of "coharsat areas" as subsystems,
the rssults becoms 30re mesaniogful.

Iastead of assuming thac an '3ff-the-shalf” model
i3 already availadle iz a neat waakly couplead form, a
deeper undarstanding of che causas for weak coupling
oust be gained and used in modaling of subsystems. In
chis 7aper we aske an attempt ¢n this direction. e
first examine the relationship of diagonal dominance
and time scales (n the decomposition of Markov chaing
and show chat similar decompositions apply to elec~
trical, zechanical, and elsectromechanical necworks.
de chen outline a grouping procedure for detearmination
of subsystems and saparation of time scales. A general
proparty of the cousidered systems is chat they are
strongly coupled in the slow tize scale, and weakly
caupled in che fast time scale. Ous to this proparty
every subsystem coutroller can neglect all other fas:
subsysctems axcept for his owa. This aultimodeling
situacion is discussed in cthe last seccionm of Che
saper. To ighlight che ideas and avoid tachaicalitias,
che paper is wriccet as aa iaformal discussion of
representacive examples. More general and rigorous
tTeachent zan Ye found ia quotad teferences.

SUBSYSTEMS AND TIME SCALES TN MARKOV CHAINS

In attempcing to decompose & svstam incy sube
syscams, che first sceap is co idencify she units of
the system and juancify chei: inceractions. This is
a toncrivigl task sad i{ts ocursome aav nave €0 de
revised «iter iubsequent steps. With units and

Urbana, Illinois 61801, USA

interactions defined, the next ecep is co form the sub-
systems as groups of unmits. A criterioa for this
grouping may be to require that the "imner” incer-
actions be scronger than che "outer” inceractions,
that {s, & unit should be coupled more strongly vich
the unics i{m its own subaystem, than with the other
yaits. Rapresaencing the {antaractions of 1 units as
the eatries of an nxa aatrix, the decomposition imco ¥
subsystems is considered o be possible 1f theres is an
ordering +f che units for vhich che iantarsction macrix
possessas Y dominanc diagonal blocks.

For dyvamic syscems we brosdea this rvsascuing to
include a separation of %ime scales. Since the
aggregacion of Markov chains {s a parcticularly clear
illuscracion of chis, ve begin with a siogulsr percur-
bation interpretition of the results of Pervozvamski
and Smirmov (1974), Gaitsgori and Pervogvanski (1975),
and Delebecqus and Quadrac (1978,1980).

ia & system described by a finite stata Markov
chain, the states are the units of the systes and their
interactions are the trangitiocn probabilities. If some
of these interactions ara weak, they can be nsglected
over shorter periods of time. For example, in the
four-scate chain in Pig. ls, we say chooss o neglect
all the interactions sualler than or equal co .2.
Then the 3taces are grouped into two classes: 1,2
and 3,4. By increasing the self-interactions to
compensate for the neglected weak interactions che ctwo
"fast" chaing can be formad as in Fig. lb.

ey A
e
7Y be €D,
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This means that the last mstrix (n
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183 been neglacted.
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Preparing for an asymptotic analysis, we repra-
sent all the weak intersctions as 3ultiples of & small
sositive scalar ¢, that i{s we represeat the last macrix
in (1) by cAy. Furthermore, we denote by Ae+l and
Ao+l the cransition macrices of the chains in Fig. la
and b, respectively, observing that the row sums of
Ag, Ays and cA, are all zero. Thus & general expres-
sion of che type (1) 1is

(A‘+I) - (A°+I) + cA. (2)

By this construction A, is aade of diagonal blocks.
Zach block contributes one right and one left aigen=-
vector of Ay for A=(. The right eigenvectors are of
the form [00111000)', vhere ' denotes a transposa,
and the number and the pouition of cthe ones are deter-
=ined by the dimension and the positioa of che dia~
pu.ltuoek“u AT Simtlarly, the lu? eigenvectors
are of the form (0 0 q,q441 4 0 0 0] where q,, .
q447 8Fe che :uctaug ;'réutﬁ:.uu for ¢=0 :} chet
stactes i, i+l, {+2 in the same class and, hence, their
sum is one. For an n-state chain with N blocks the
right eigenvectors of A, for \=0 form an uxN macrix R
and the left aigenvectors form aa ¥xn macrix Q. In
our example (1) ve have

Lo s o o
2e|l O 7T 7 3
Y Rl PP A N ”
L 1 13 13

To summarize, the tight and left null spaces of A, sre
charsctarized by

Aol =9, QAo =0, R= T“ (4)

vhere H is the NxN identity.

Lat us aov form a continuous cime zodel of che
chain. Assuming chat (ig+l) is the transitiou macrix
ia "fage" time t¢, the transition matrix ia slov cime

tects is % (Ag+1). For example, if c-% and 1f ¢, is

in iays, thes t will be in wesks. Since we are inter-
ested in the longer tarm behavior of the chain, we
wil]l use the model ia slow ctime

et on, ok ageny

where the o-vow p(t) is the probabilicy discribucion at
tizg =. 1If che inigial digscribution p(0) ic far from

2(0)Ay =0, then % PA, >> 7, and the inicial fasc tran-
sient can be approximscely determined from x&i-} PA,-

Since A, is block-diagonal, the fasc cransient is
formed of separate transients within the classes.
After some t the probability p(t) will be ¢ close %o
the compositae of the stationary distribuctions wichin
the ¥ classes. From then on ?A; is uo longer negli-

gible wich respect to % pA° and the ctransitions

becween the classes must bHe taken inco accounc. To do
chis leat us i{ntroduce ¥4 = the aggregate probabilicy
for the scata to be in the ith class. The M-row of the
aggregate probabilities (s

y = k. (6)
Ia our example (1) chis simply seans y, o *0q,
The probability p, co de & s:lu j can te

Y5 ® P44

lipr sed as che probadilicy 37, to be in ics class
times the probabilicy to bde in That scata wvhen in the
class. If the latter is approximscad by the scationary

probabilicy then pj -ykqj- This motivates the rapre-
santation of p as

P =yQ+ oV,

vhere 2 is an (n-N)-row and che choice of che constanc
(neN)xn astrix W is in agreement with (4) and (6).
Intuitively che term represents fasc fluctuscions
around yQ. If wa mulciply (7) by an ax(n-N) macrix S
such that

WR=0 &)

Qs=0, W=t
then the result is

z = ps. 9

att? ®

We need to choose § for a meaningful definition of g,
sacisfying (8). 1In our exampls such a choice {s

~ -
A 0
bl
)
-z.. o g’. - —L - i
'QI 1 qz
S = , (10)
0 -+ i LY
13 23,71
3 Y%
-+
q
L 4
The cotrresponding W is chen
94, 44 ) 0
wel| 2 172 . (1)
L0 0 459 959,

In zenaral, fast variables 2, should be defined as
veighted differsnceas of probabilities within a class.

Wa now use (7) zo express (5) ia terms of y and z.
After simple manipulacions we obtain

e yQAIR +* :"All (12)

k- qQAls + zF 13
where the (n=N)x(n~N) astrix

Fe U(AoﬂAI)S (14)

is scable, By having cransgformed (3) into che scandard
singular perturbation form (12), (13), ve have
accomplished one of the goals of this section. It is
straightforvard now to analyze the time scale proper-
ties of (12), (13) using asymptocic or iterative
techniques, such as in Kokotovic, 0'Malley, and

Sannutl (1976) and Fokocovic et al. (1980). The slow
subsystem of (12), (13) is
F = 5(oa R-svA 20, ST = § X, (s

Por t=0 it reduces =0 the aggragate proposed Sy
Sairnov and Pervozvanski (1974), The transition macrix

(&+l,) represents an aggregata chain whosa states are
the Ciasses of the original chaia.
cthis axzatrix is

(,‘\4-1“) a [:‘ ;6]

For our example(l)

(16)

i s ul Al am !




aand che aggregate chain is showa in Fig. lc. The
fast fluctuacions sre approximately governed by

.
¢

Py e

ds, 136 .06 (
P - ag n
o 023 .1

whers the aumerical values are for our example (1).
It is crucial co point ouc chat due to tha form (14)
of ¥, its diagomal blocks are indeed dowminant. The
sigenvalues of F {n the example -.14 and -0.09 are
close to its diagopal elements. Hence, (17) describes
N saparace fluctuacions withia esch of the N classes.
Zven though transition probabilities as:large as 0.2
have been neglected, the approximacion is excellenc.
The stacionary probability discridbutiom p={.18 .21
.28 .33] is approximaced by ¥Q= (.17 .22 .28 .33].

oy el

OQur final conclusion is that the original chain
(3) should be decomposed not into N, but inco M+l
subsystems. One of them is the slow subsystem which
defines the Markov chain of ¥ scrongly coupled aggre-
gats staces. The ramaining N fast subsystems are not
Markov chsins, but represent intarnal flucctustions
withia che N classas.

oy

NETWORKS, SUBNETWORKS, AND TIME $CALES

A sizilar reasouing can be used 0 determine time
scales and subsystems of electrical, mechanical, and
alectromecnanical networks.

i . | 9 La [ ™

. R R

! R lc; R LJ# (‘ )
)/ Ly, Lyvl,
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As an {llustracion we consider a siapls RL-network in
e~ Fig. 2a, vhere the {nductors are of the same order of
[ ssgaitude, sad zhe nonuniformity of interactions is

dus to the fact thac the rasiscors R are such larger

chan the resisctors r. This acnuniformity suggescs
chac there 28y exist a way Co approximaca the aetwork
by soma sizpler subanetworks. The syatem equacion

#ich the inductor curTents as the sctacas is

LBt R 0 0
L L
L2 @ I 0
keaxse| b2 L L (18)

0 L .2 2

L :3 Ly

0 o X g
L bt

vhere decoting r = ¢R the astrix .\C is expressed as
‘g"o*“'z‘ chst Ls

r-%éoo. F--L%: o o]
A= %.q ° +¢ 0-7;% o.(19)
-o o%-%.‘ 0 0 0o

We note that A, Tepreseats the two subnetworks in
Fig. 2b, which, dus to the all-inductor loops, possess
equilibrium subspacas. If the initial currents ars
far from these subspaces, xx(O)h.z(O) aad x;(O)h‘(O).
the currencs (x;-x;). amd (X3~x.), will flo¥ chrough
the resistors R, pvan.d by

S N
(X~%)), E(‘l %)  (RyR), f;("a %o (20

vhere t.j
is ¢=0,is considersd. The subsystems {20) are "fast"
because R is large, aad the corresponding "fast" sub-
networks are shown in F13. 2c. Y%hen the subnetwork
squilibria are approximacely reached, che stata x {s
close to the null-spacs of A, and, heace, cAyx is a0
longer negligible with respect o A_x. Ia tle long
tern, the state of (18) -vill continue to be in the
neighborhood of the aull-sapca of Aa' whose basis we
denoce by V, an axN sacrix vhich in chis example has
the columns (1100]' and {0011]'. ZRapresencing x as

LV
k.?ji:l.:'“ ( )o indicates that only Ao, that

x = Vy + Hz, AOV-O (€39
and iatroducing nactrices M and P satisiying

Wel, ¥M=0, PE=I ., FVeo (22)

NO
wve obtain
y = Mx, = Pxg (23)

where y will be the slow and z the fast vartablas.
Since ve have already observed chac o iy} and Xy=%,
are fast, latc us use chis observacion and (22)°cte
determine ?, For our axasple this vill YHe

. rl -1 0 0]; 3 = X%,

g (24)
L0 01 -1

22 - xa-x‘

which sacisfies PV= 0. Then using & and M ia the fora




h 0 0 0
ge| ° , ¥ ["- "2 (2%
Q h3 [+] 4] Yy 2
Q ha
we ses from the firsc three condizions of (22) that
by el mptm, el 2
h.;-hk =1, b3 =3y, '3"6 » 1.

Physically mesningful quantities which satisfy these
relations are

t t L L
1 3 4
QTR RN B WO,
iy b 3 3

Thus we ses that our "slow”" currencs are the weighted
sums of the currents within the subnetworks

L L
e g
N “©, 1 L, X2

L, L+, (28
L L

4
V. X, b m—
2 r.:ﬂ.,. 3 LJ'H‘A %

Iz is worcth noting chat y, and y, are not exactly
analogous to the Markov axample, whare 7 PI”Z
and 7, ®9y%p,, nor is (24) analogous to (10).
Howevar, gnd we taken the fluxes as the state
variables instead of the currents, the analogy would
have been complete. Applying che craasformacion (24),
(28) to the original system (18) and exprassing R=%
we obtain che singularly perturbed system analogous

to (12), (13)

4,

2z r
-——-—y a..——yqn 2, +*a.2
L LA 2 5 te3

. £ 4
y 0 t—— ‘v - em—
2 I‘!‘"‘A 1 Ls'i-!‘.A 7% 1321 +* 2,2, (29
€2, ® sa.y; +oagy, - r(-r_};-i'%) 2, * a2,
2

:iz = a7, + 58,7, *e8,42 - r(é;*;};)z._,

whera ths coefficients .i““" o are of the form ¢
divided by appropriate {fiduccances. The firsc poinc
we wvanc Co a3ake is that the f{ast subsystea aatrix of
(29) 1is diagonslly dominant. Ics diagonal encriss

TS TR SURUPYe S ¥
R(Ll*r'z)' R(LJ*LA) cepresent the subnetworks ia

Tig. 2¢, as axpectad. The second imporcant poiac s
that, up to as ¢-error, the slow subsystem represeats
the subanetwork ia Fig. 2d. Thus, the subnetworks of
the original network ia Fig. 2a are the two fast sub-
aetwvorks ia Fig. 2c and one slow subnecwork i(n

Fig. 24. A simple rule is apparest: che fast sub-
aecworks are obcained dy cousidering the small
resistors r as short circuics, while the slow subdb-
aetwork is obtained by considering the large
cesiscors R as oven circuics. IC mey come &8 3
surprise that chis sizple Tule 7ields aa axcellant
approxisstion, as it csa de seen rom the comparison
of the sczual aecwork eigenvalues with che subnetwork
eigenvaluas

-Xt(ut\nrk) .08 .77 8,47 15.8

-xt(subumtim) .09 .78 8,33 15.0

The accuracy can be iaproved by including the c-cernms
and scill keeping the subnetworks decoupled. Lac us
remind the reader cthat we have examined ths asympcocic
behavior of (18) as £+ 0 by incroducing r«= cf.

For connoisseurs of singular perturbations it aay
be of ucgruc co nocice chat.had ve {nscead subsci-
tuted Ro3 i (18), we would have obtained s singular
singularly pertucbed system. Following a differeat
rvoute, such as in Campbell (1979), we would have
arrived st the same sctandard form (29).

A GRQUPING ALCORITEM BASED OW °COHERENCY™

Although this msy not be obvious, the probles we
have been discussing is a disguised version of a well
knowe problem ia power systea analysis. Most power
engineers are familiar wich the problem of grouping of
syachronous zachines into coherent arsas. The
literature on this subject is rich and will noc be
quoted hers. Only s recsntly devsloped algoritha
(Aveamovic, 1980; Avramovic et al. 1980; Winkelaan
et al. 1980) will be aitlined because of its diract
connection with the preceding two sections. 4iAc
prasent Avramovic's algoritha s being applied to
conservacive systsms of the form*

x= (Aonal)x - Ax (30)

such as electromechanical models of power systems, -MI‘
spring models of flextible scructures atc. Ia power
systems X represents the rotor angles.

The 30 called slov coherency problem {s to f{ind
the groups of machines vhich "swing togecher” with
Tegpect to N slowest modes of A,, The zachines { and }
for which the difference x;-x, contains a negligible
concribucion of siov modas, ate grouped in the same
cohersnt area. If V. (s a basis axN macrix for the
salected ¥ slowv modes of Ay, then che encries of the
ich row of V, are the waights with which the modes
appear in the state x,., If the rows 1 and j are
identical, the nchia%s 1 and 3 are coherenc, that is
Xy~x, councains only fast modes., Avrsmovic's algoritha
p.n&cu the ordering of the states, cthat is the
ovrdering of the rows of V., until che firsc N rows
beacoms as linearly independent as possibie. The N
machines corresponding to chese rows definitely are noc
coherenc and esch can be used as a reference machine
for a distinct area. To asssociace other sachines with
these reference machines denoce the firse N rows of 7,
by V; and the remaining n-¥ rows by Vj, » vhen V.
is postaultiplied by V]:l a magrix Le vzv; sppears

LA Pl ] V' = (3L

which 1is the main tool of the groupiag alzoritha.
The fast variables are then defined as

2 1

zex -f.: (32)

1

where x~ is the subv-ctos of che angles of all che X

raference nachines and x° of the remainiang n=¥
nachines. The slow coherance is approximately
achiaved if esch row of L concains only one eacry
close to one, and all ochar encries close to 2ero.
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3y replacing the near-ous satries by ones, aad the
near-sero eatrias by zervs, a "grouping aacrix” L, is
formad. %When used to replace § ia (32) chis mac
dafines the cowponenty of whose difierences
with the components of x* in (32) ars predominantly
fasc. They then belong to che arsa whose referesncs
is the component of appearing in the diffsrancs.

If wve were o apply Aveamovic's algorithm to our
aectwork io Fig. 2a, wa would find that x, aud x, cas
be used as "referemces curreacs.” They be the

componsnts of x* and x; aad x; the compoments of x2.
Then (32) with Lg teplacing L, «#auld becons

'1] 1 0 Xy
x:’J 0 1 x,
which 1is _!.n agresmsnt with (24).

z = (33

What discinguishes Avramovic's algorithm from
the discussion in the preceding sections, is that it
aliminacas the need for an explicit separation of A
inco A_ aod ti,. Inscesd of & grouping based om thé
nu.u-c%u. of i heuristically or sapirically com=
structed matrix A,, this algoritha computes & basis
7. for che actual slow eigemspace of A¢ and then
#inds L= 7,77l by a Gaussiaa elimination procedurs.
For our sysctem (18) a basis V¢ for A;=~.08 and
'Az.-‘ 77 is

ro.ss 0.56
10,36 0.67

T " [0.61 0.21 (34)
0.62 0.25

which, after a permutation to place the rowe 2 and 4
as the first two rows, gives

0.36 0.6 0.33 0.66 .1 [1-007 0.05
v, » Ty AN (38
* Lo.s2 0. 0.61 0.21 -0.07 1.0

The final step is to approxinzats vz‘ql by the
groupiag maczix in (33).

A common featurs of our cwo examples and
Avrsmovic's algorichm is a search for a set of
physically asaningful scate variablas to exhibit the
subsystems and cheir cime scales. Of course, the time
scales of linear time {nvariant systems can be
axhibited Yy modal cransformacifons, but the meaning of
the m0odal varisbles zay be far from the neaning of
the original scace variables. The otriginsl scace
variables obcained from physical lawe ar experiments
contain a wealth of intuitive and empirical {aforma-
tion which a racional aodeler wants tO preserve. Our
axamples illuscrace how this can bSe accomplished by
a constrTuctive uss of the dacompositions such as (7)
and (21), which to an slgebraisc are zers projectioas.
W“ith physically zesningful subsystems not only
linearized, but also coslinear analysis +«will be sim-
plified. Ia & recent applicacion (Winkelman et al.
1980) of Avvamovic's algorithm to a noulinear 48
afchine model of che fascern Unictad Scaces pover
systesm, aonlizear ausiogs of =he subsvstCems iden-
tified on a Linearized =odel wars used. Siaulation
cesults coanfirmad che validity of the subsystaz
models and time scales.

MOIDODILING

Thus far we have not considered the presescs of
control inputs. How are they to bs allocated smong
the subsystems? Political, geographic, and othar
issuss may interfare with our stricetly dymamtic
criteria. A transformstion of sa original msodel iaco
a model exhibiting cime scales and subsystems will
also transforam the control macrix B. When cransformed,
at lsast ona control variable should be allocatad to
each fasc subsystem while the presence of other fast
subsystem controls should be weak., If this is noc che
case with the original control varisbles, voluactary
grouping of controls and sutual relesse of concrol
auchority is required. After this has heen accom-
plishad, the linearized model of a large scale
system exhibiting one slov and N fastc subsysctems can
be written a8

L] N
de Ac"jsl‘cj'j +j£1‘¢1“1 (36)
tiii-Aicy¢AuzL+t ‘11‘11‘1*'1.1“1 37

vhers we have allowed each fast subsystea to have a
different small paramatar ¢, and to be waeakly coupled
to ocher fast subsystems chrfough ¢;4. The fasc sub-
system i is coactrolled by its owm idput ugy. The slow
subsysten (36) s the common slow "core" and, in
genersl, will have the ianput from sevaral or all fast
subsystea controls.

Ia a situacion like this it 1s rational for a fast
subsystem coutroller co neglect all other fast sub-
systens and to councancrata on its owvn subsyscem, plus,
of course, the slow incaraction with others through
the "core." For the ith controller "to neglect all
other subsystesms' simply zeans to sec all ¢ paraseters
equal to zero axcepc for :8 which {s to be kept at ics

true value. The ith concrdller's sizplified nodel is
than
i"-Ay"H\ z,+8 ,u,+ L8 u (33
1 C A T A AT PR 2
1 39
Cdy T AT RALE 8y (9
vhers
-1 - (40)
- : » - . hs
AT At itertstyer Byt By Acsisyy

We denote y" with a superscript racher than a subscript
to stress che fact that yi 1s soc a compomenc of v,
but the izh concroller's view of y. Ia realicy, the
wodel (38),(39) Ls often all the ith controller knows
about the whole system. The kth controller, on the
other hand, has a diffarenc kth model of the sass
large scale system. This situation, called zulci-
modeliag, has been formulaced and invescigated ia
fhalil and Xokocowic (1978, 1979a, 1979b, 13980) and,
more broadly, i{a Volume II of the U.S5. Department of
Energy report (Fiak and Trygar, 1979).

What cemsins of (36),(37) vhen all ¢ psramaters
are neglectad is the slow core, which is , in
general, a scrougly coupled subsystem. Decsacralized,
tsaz, and game spproaches o the design of concrol
stracegies have been considered for chis subsvsces.
Control uy can be divided iaco s slow jart, which
contributas to the control of the core, aand a fast
part controlling only its own fast subsvscea.
Somatiaes the total authority for the slow subsystan
can be delegatad to a single conczollaer-coordtnstor.

In this case the coatrol Rierarchy would naturally
aacch the hierarchy of tha tioe scales.
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Singular Perturbation Analysis of Systems with
Sustained High Frequency Oscillations*¥

JOE H. CHOW, JOHN J. ALLEMONG and PETAR V. KOKOTOVIC}

Singular perturbation techniques, extended to treat systems with slightly damped high
frequency modes, provide better understanding of the system’s structural properties, and
they yield computational advantages since the resulting subsystems are analyzed in

separate time scales.

Key Word ladex—Perturbation techniques; cigenvalues; two time scales; system order reduction:
approximation theory; modeling; power system control.

Semmary —Using singular perturbation techniques. a system
with high {requency oxillations 1s decomposed into two lower
order subsystems, one containing only the slowly varying part
and the other containing only the fast osciilatory part.
Eigenvalue and state approximations achieved by the subsystems
are given. A mass-spring-damper cxample shows that a suff
spring can be regarded as a perturbation of a rigid rod and an
interconnected power system example illustrates the occurrence
of coherency and inter-machine oscillations.

1. INTRODUCTION

MECHANICAL and electromechanical systems often
have slightly damped modes oscillating at frequen-
cies much higher than the rest of the system. Well
known examples are spring-mass suspension sys-
tems and multi-machine power systems. In linear-
ized models of such systems some eigenvalues
have smail real parls and large imaginary parts.
Typically they are due to either strong coupling, or
small masses and inertias, or both. Synchronous
machines connected through a low impedance can
serve as an illustration.

In properly designed systems the amplitudes of
high frequency oscillations are small and their effect
negligible. However. the analysis and design me-
thods must take these potentially troublesome
modes into account. This leads to numerically stiff
problems requiring expensive integration routines.
A way out of this difficulty is to treat systems with
oscillatory modes as singularly perturbed systems
and analyze their slow and fast parts in different
time scales. Presently available singular pertur-
bation methods{1] assume that the fast modes

*Received June 29, 1977 revised November 17. 1977. The
onginal version of this paper was not presented at any [FAC
meeting. It was recommended for publication in revised form by
associate editor K. J. Astrom.

+This research was supported by the U.S. Energy Research
and Development Administration. Electric Energy Systems
Division, under Contracts EX-76-C-01-2088 and EC-77-C-05-
5566.

tDecision and Controi Laboratoey, Coordinated Science
Laboratory, University of lllinos, Urbana. [llinois 61801. U.S.A.

decay in the fast time scale during a boundary layer
interval. Thus they do not incorporate the case of
slightly damped or purely oscillatory modes. This
paper extends the singular perturbation approach
to systems with fast oscillatory modes.

Our approach is to decompose a system with high
frequency oscillations into two separate subsystems,
one containing the slowly varying dynamics and the
other containing the oscillatory modes. We show
that the decomposition in [2, 3] is also applicable to
systems whose slightly damped large eigenvalues
result in sustained high frequency oscillations. The
slowly varying dynamics can be approximately
analyzed by averaging methods{4-6]. However for
the linear time-invariant case considered here, our
algebraic decomposition is more direct and yields
estimates of the eigenvalues and states of the
original high frequency oscillatory system. This
procedure requires only the verification of an
assumption given in the next section and the
computation of a matrix inverse. Furthermore our
decomposition retains the meaning of the physical
variables.

Illustrating the decomposition proced re by a
simple mass-spring-damper system in which one of
the springs is stiff, we show that the slow motion of
the masses can be obtained by approximating the
stiff spring as a rigid rod. The high frequency
oscillations between the masses are then analyzed
using a fast time scale. An interesting application of
this procedure is in the transient stability studies of
interconnected power systems. If several machines
belong to a ‘coherent’ group, they are usually
represented by an ‘equivalent” machine{7-9]. Our
procedure gives a perturbational interpretation of
the coherency approach. Moreover, it reintroduces
the intermachine high frequency oscillations by
representing them separately by an oscillatory
subsystem. Hence this procedure is applicable when
the intermachine oscillations are not negligible.
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The organization of the paper is as follows.
Section 2 outlines the modeling aspect of high
frequency oscillatory systems. The technique of
averaging is used in Section 3 to obtain the slowly
varying part of the oscillatory states. Section 4
contains our main results on eigenvalue and state
approximations of the subsystems. Sections 5 and 6
are devoted to the examples.

2. MODELING OF SYSTEMS WITH HIGH
FREQUENCY OSCILLATIONS

Systems governed by physical laws such as
Newton’s law and Kirchhoff’s law can be modeled
as second order matrix differential equations

§+P§+Qs=0, f(t0)=§o, S(t0)=50 (1)

where se R" and P, Q are r x r matrices. We assume
that system (1) is in the form

___[31] P___I:Px Pz] Q=|:Ql Qz/ﬂz]
s: Py P} Qs Qui
2)
where u is a small positive parameter which arises
due to the presence of stiff springs or small masses
and is responsible for the high frequency oscillations
in (1). Then (1), (2) can be rewritten as a singularly
perturbed system of first order differential equations
X=Ax+Bz, x(ty)=x, (3a)
ui=Cx+ Dz, z(tg)=z24 (3b)

where

M RS L
ESNEN] %2 Sa/k
-

A= 0 { ] le: 0 0 ]
| -Q, -P, -Q: —uP,

0 0 0 I
C= , D= . (4)*
| —Q, ‘PJ] [-Q.x "I“P-L]

Our analysis of (3) does not require the matrices
4. B, C, D to be in the special form (4). The only
assumptions that system (3) has to satisfy are the
following:

I. The norms of A, B. C. D are bounded about p
=0 and the state - is of even dimension, that is,
ze R,

II. The matrix D is in the form

uD, D, .
= - 3}
P [ D, uDa] ‘

*The matnx / denotes an identity matnix of an appropnate
dimension.

where D,, D, are m x m nonsingular matrices and
the matrix D,D; has simple and negative eigen-
values —w}f, i=1,2,...,m.

There is no restriction on the dimension n of the
state x€R". Assumption Il guarantees that high
frequency oscillations will occur in (3).

As an example of a system in the form of (3), we
consider a mass-spring-damper system shown in
Fig. 1 where the spring k, is stiff. A set of convenient

; .

ky
ARAA AAAA
Yy yyeyy
M2 fa M; fy
—z T
e e

FiG. 1. A muss-sprmg-dampcr‘syslem.

NI

state variables for this system is the position of the
center of mass

St=(Mlsl+leS:)/lM. M=M1+Mz (6)
and the relative displacement between the masses
$4=5, =52 (7)

where s,, 5. are the positions of the masses M ,, M..
The equation of motion for this system is
. N
S.+ Vi Sc+

My .k kM,
ME TR T e

5;,=0
scuo):s«:w §c([0)= vc“l))= Ueo

s N (M MY
v, s‘*’(‘wl..wfw“wz 54

k k.M k M3}
s (l+ : l')s,:O

AMl M|IWZ kzlwz

Salto) =Sy Sally)=tylly)=t,.  (8)
Since the spring k, is stiff, we define

1 kM

W MM

9)

-

such that g is small. In the state variables

Xy =S, Ny=S.o=mr. oz, =s, 0,

TS =L U (10)
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{8) becomes
X) =X,
fl kﬂwz fuM:
x;——ﬁlx,—ﬁx;—uz V2 Li—H M2 22
Ui =:z;
; kl fl zkle -
Ha= = 9 M (H“ MM, )"
SIM: LM
B [ e 1
”(M‘M*.M,Mz : (b

which is in the form (3) and satisfies Assumptions [
and II with

kM,
2o gyt 2
G ™

3. AVERAGING OF OSCILLATORY STATES

Before analyzing (3), we investigate the behavior
ol the system

uw=Dw+u (12)

where D satisfies Assumption Il. The characteristic
polynomial of D/u is

ol2)
id-D, -Dyn
=d°'[ —D,u Al- DJ:I

=det[ 0

=Dy u+puil = D,)D; 41— D, )]
-D,pu

;.I - D;

= -l-l)"'det[/'.ll-i.(D4+D;‘L D;)
—‘D:DJ"#:DJ)J‘ID|DJ)/I»‘:]- 13)

Let T diagonalize D,D, such that

TD,D;T"'=A
=diag(~wi ~wi..... ~wl)
(14
and rewrite the characteristic polynomial as
oli)= —i=11det[i2 1 =R, A= (A + 2R, u’]
{15y
where
R =T(D,+D;'D, D)\ T™!
and

RzzTD,‘D;ID|DJT<I.

Expanding the determinant in (15), it is readily
shown that the coefficients of i, i =0, 1,..., 2m, are of
the form a;(u)/u*™~‘for i even and a;(u)/u*" ¢~ for
i odd, where a;(u) is bounded about p=0.
Neglecting xR, and the off-diagonal elements in
R,, (15) becomes

¢(d)=—=(~1r[] A2 =204+ w}/u?) (16)
i=]
where 2g; is the ith diagonal element of R,. The
coefficients of A' of (16) are also of the form
by(u);u*™ ! for i even and b;(u)/u*™ '~ ! for i odd,
and furthermore, b,(u) approximates a,(u) to
O(u?). Instead of (13) @(4) can be expressed as

oi)= ~(—=1y"det[i*] —itD, +D;'D,D,)
—(DyD; =u*D,D;' DDy )p*].  (17)

Letting S=ITD;' where I' is any nonsingular
diagonal matrix, we obtain SD;D,S$~'=A. Then
the diagonal elements of

S(D,+D;'D,D,)S""

are identical to those of R, and (17) can also be
approximated by (16). To analyze the roots of ¢(4)
we use the following lemma.

Lemma 1. If D satisfies Assumption I, then, as u
—07, the eigenvalues of D/u approach infinity as

o, tjoyu, i=12... m. (18)

By Lemma 1, as u—07, the eigenvalues of (12)
approach infinity along asymptotes parallel to the
imaginary axis. Note that the large imaginary parts
of (18) are the consequence of solving for 4 of the
quadratic equations in (16). If some of the eigen-
values of D,Dy are cither positive or not simple.
then in general some of the eigenvalues of D'y may
be positive and O(1/u). This case of fast instability
is less realistic and will not be considered here.

Due to the eigenvalues with large imaginary
parts, the response w(r) of (12) will in general consist
of high frequency oscillations superimposed on
slowly varying dynamics. Our purpose is to com-
pute this slowly varying response due to the input
u(t).

Lemma 2. If D satisfies Assumption II and if utr)
=d(r)+4(r) is an input where (1) is the slowly
varying part with i S ¢, and ju| S ¢, for some fixed
¢; and ¢, and dt(r) is the oscillatory part. then there
exists a finite T(x) such that the slowly varying part
wit)of wityof (12) for 1, StsT is

0
\E'(r)a—[ - D(; ]ﬁ(lH—O(uL (19)




o

A o Al i i e

-

o —

~

J. H. CHOW, J. J. ALLEMONG and P. V. KOKOTOVIC

Proof. Integrating the variation of constants
formula

wit)=®(. L, )w(lo)+£ﬂv¢(!,t)u(t)dt (20)

where
o, t)=exp Dt —thu;,

by parts, we obtain

w(t)= =D~ () + (L, 1, )w(ty)
+ D7, 1, ilty)
+D7' i @, thi(r)de

+%I:o¢"'r)d(f)dt. 21

But the first integral term in (21) is O(u) since a
further integration by parts reveals that for 1y St

sT
i, @, hii(e)de] Sul D™ le\ (1 +{®(e.t,)])

C e )i o i dr. (22)
We also note that d(r) generates high frequency
terms and the terms contributed by ®(r.1,) are
approximately of the type

expio;(t — o)} sin{w,(t ~ to)/ )
and
expioi(t —1, )} cos(wt =t,l/u), i=12,...m.

Since

D-[= ”'Xl D;l+”le (-,3)
Dy'euX, X, :

the input and w as the output, the input-output
behavior of system (12) is that of a lowpass
wideband filter. Then w(z) is the dominant part of
the filter output which shows the relationship with
the usual assumption in the technique of averaging
(4-6]. Thus w(t) approximates w(t) closely if the
high frequency component of w is negligible or if
w(t) is used as an input to a slow filter.

4. EIGENVALUE AND STATE APPROXIMATIONS

Letting x be the slowly varying part of x and
either applying Lemma 2 to (3b) or setting u=0, we
obtain the slowly varying part Z of z as

F=~D"'Cx+O0(n)
=~D"'Cx+0(u). (26)

To separate completely the slowly varying part 2
from z, we introduce the change of variables

n=z+D 'Cx+uGx=z+Lx 27)

and determine G such that (3) is transformed into

X=(Ay~uBG)x+ Bn (28a)
un={(D+ulLB (28b)

where
Ao=A-8D"'C. (29)

Thus G is required to satisfy
- DG +(D7'C+uGWAo—uBG)=0. (30)

by the implicit function theorem, the solution of (30)
is

G=D"*Cdo+O0ly)

=D"C4,+0(u) (1)
where
h
X,==(Dy=§’D,D; 'D,)"'D,D;’ where )
4 =‘ - -‘ .
X,==D; 'D.X, Ae=4-BD"'C 32)
Let
X,=-D;'DX, (24) ¢ i
D, D ub, D; 1!
= —(D;-u?D,D5'D,)"' D, D; ", D+utB=|Ht FE BT S g
s (D:=4#°D\ D37 D) 103 tuLB . D, wuD, # Dy uD,
the only significant slowly varying part ~ D~ 'i(t) +0u)
of wi(t) in (12) is approximated to O(u) by i )
—D~'u(t), where - wD,+D;'C,B) D,+uD;'C,B,;
| Dy+uD:'C B, uD,+D;'C,B.,)
0 D, )
= * 2 +0)
o2 %] e
_[r#D D 2 2
implying (19). =hDJ “D‘]ww )= D+0(*) (33)
This analysis justifies a simple method to obtain
wit), which is to set u =0in (12), as is usually done in where
singular perturbat.ion; However. t_he _meaning_ of B=[B, B, Ca[C 1]. (34)
setting u =0 here is different. Considering u =i as C,
. ———
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Then the upper block triangular form (28) exhibits
the eigenvalues of (3).

Lemma 3. If Assumptions [ and II are satisfied,
then the eigenvalues of A, and Dyu are an O(u)
approximation to the eigenvalues of the original
system (3). Furthermore as u—07, the eigenvalues
of D, u approach infinity as

pitjoiu i=12,...m 135)
where 2p; is the ith diagonal element of the matrix
T(D,+D;'D\ DT 1.

The second statement of Lemma 3 follows from
Lemma 1. The meaning of Lemma 3 is that n
cigenvalues of system (3) are small. They are
responsible for the slowly varying dynamics of the
system. The large imaginary parts of the other 2m
eigenvalues are responsible for the high frequency
oscillations while the real parts modulate the
envelope of these high frequency oscillations.

The approximation in Lemma 3 is purely
algebraic and does not require the eigenvalues of
system (3) to be stable. However, it can be used to
guarantee the stability of system (3) as the following
observation shows.

Corollary 1. Under the assumptions of Lemma 3,
if 4, is Hurwitz and p;, i=1, 2, .... m, are negative.
then there exists a u® >0 such that system (3) is
asymptotically stable for all ue (0, u*].

This corollary is of interest when feedback control
is implemented in system (3) and can be used to
separately stabilize the slowly varying and the fast
oscillatory subsystems. Such control laws can be
designed using an extension of the methodology
described in [10], as it will be explored in a
forthcoming paper.

To separate the slowly varying part in x. we
introduce

S=x—-u(CD '+uNm=x—uHp (36)
and choosc v such that
B+pu(4,—uBG)H -H(D+ulLB)=0. (37)
By the implicit function theorem,

N=4,BD"?=BD :CBD ' +O(u)
=1,BD"*=BD CBD~'+Diu). (38)

This completes the transformation (27). (36) which

becomes
& I-uHL —-uH || x
G T e

and its inverse is

H{—l L :-”,fiu][ﬂ- (40)

The original system (3) rewritten in the state
variables ¢, n is completely decomposed into the fast
and slow subsystems

= (a1
uh=4n {42)

where o/ =4, —uBG, ¥ =D+ ulLB.

The decomposition (39), (40) is an exact block
diagonalization transformation. Neglecting the
O(u) term in (41), we define the slowly varving
subsystem of (3) as

£=A,%  $(y)=Xg {43a)

i==-D7ICx. 43b)
The oscillatory subsystem
ui=D3 ty)=z,+D"'Cx, (44)

is obtained from (42) by neglecting the O(u?) terms
in 9.

The state approximations achieved by the sub-
systems (43), (44) are stated as follows.

Theorem 1. If the original system (3) satisfies
Assumptions I and [I, then there exists a finite T(u)
such that the states of (3) are approximated to Otu)
by the subsystems (43), (44) for (St ST, that is.

x(t)=%(t)+ O0(u) (45a)
z(t)=3()+ 2(t)+ O(u). (45b)

The result of Theorem | implies that if the initial
condition |Z(t,)| is much smaller than |<(t,)|, then
the high frequency oscillation can be neglected and
the original system (3) is adequately modeled by its
lower order slowly varying subsystem (43).
Furthermore the subsystems (43), (44) can be uied
to simulate approximately the actual response of (3).
Due to the presence of u. the ill-conditioned (n
+ 2m)th order system (3) requires a prohibitively
small integration stepsize. However, using the lower
order subsystems. the small integration stepsize is
necessary only for the 2mth order fast oscillatory
subr em (44), while the integration of the slowly
vary. v bsystem (43) can be computed with a
much 1. stepsize, resulting in savings of comput-
ing time. In the case when the high frequency
oscillations are negligible, only the integration of the
siowly varying subsystem is required.
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5. MASS-SPRING-DAMPER SYSTEM

We illustrate the subsystem decomposition pro-
cedure with the mass-spring-damper system (i1).
Neglecting the u terms, the siowly varying sub-
system (43) of (11} in the original state variables is

k .
l.c = —ﬁgc-tj_}'fv "Tc”l))= “co

(46)
S =
EJ=0'

Subsystem (46) represents the motion of the center
of mass asif M, and M, are connected by a rigid rod
and are moving together. Intuitively this can be
explained by assuming that the spring restoring
force k,, remains finite in the limit as k, — x. The
displacement s, becomes negligible, that is the
spring becomes a rigid rod.

To reintroduce the high frequency oscillations
due to the fact that k, is finite, we consider the [ast
osciilatory subsystem (44)

- 2
:1 ‘[()J:Sdoi”-

=
¥ P)
I
(XN

"~

<

uiy=-—

flMZ f:l\" . . v
- — )2,  I:{tg)=rtu
. u(M,MﬁwxMz b Galtg)=twi

(47)

Since the spring k, is stiff, the initial displacement s,,
is small. In the spring and rod analogy, the rod is
now allowed to be slightly elastic. Assuming that
forces are finite, =, =s, u° is not large and is actually
properly scaled. The same property holds for =,
=y, pu as isj=pjr,| due to the high frequency
oscillations in s, We rewrite (47) in the original
variable 5;=u°3, as a second order equation

c (fiMs M\ 1,
S —_—— = — 5= 48)
’“’(Awuvf’M..wz St zh=0

that ts,

.\/I .w: z . j. ‘wz 3 -
_lw s‘+(j2+#z—z->s,,+k;sd=0. (49)

Equation (49) describes the motion of the masses
M, and M, connected by a spring k, and a damper
fs+41 M3 M3 Thus our decomposition procedure
shows that in analyzing the high frequency modes.
the spring k, can be neglected while the damper f, is
reflected through the connections and increases the
effective damping.

Thus concluding from Theorem 1. if the initial
conditions s,, and v, are of O(u}. we obtain

s.=5.+0W) v.=C.+0(u)
(3 3 < [4 50
s;=0(u), vy =0(u). 0)

6. POWER SYSTEM EXAMPLE

A potentially important field for the application of
this methodology is in power systems. In transient
stability studies of interconnected power sys-
tems[ 8. 9], coherent machines* are usually modeled
as a single unit to reduce the dimension of the
problem. We now interpret this coherency idea by
applying our decomposition procedure to a three
machine system shown in Fig. 2.

|vy)«10 {val =1.05
05
co2 60 T WWWr————1qs o128
TR =w—0R
sarst: Siaaa
M, 3 0.1220 secZ/eiect roa M2 :001193 sec?/glect roa
are 0u2s

~2
£ . E=a
[ .
i t ! My*00I484 sec?/eec! ra0

1

Note  AH vaiues Jiven in oev anit on JOO Mvo Bo%e  MOCF:ne reaCiances «nCiude Lnit
‘rgnyformes gnd 17ans.ent reacrance

FiG. 2. Three machine pov.er system.

The opening of one transmission line from bus 1
to bus 2 causes the system to oscillate. The following
post-disturbance differential equations for the ma-
chine rotor angles may be written(11]

M3, =Pia, - VY cosl,, =V ViY,,
x cos(8,,+0,—9,)
=ViViYisc08(8,5+95—90,)

M3, =P, =ViYc080,, -V V1Y,

x cos(t),, +8, —0,)
—ViViYaycos(@y+6;,—d;) (5D

"'13‘5'3 =P, - ViYyycos8,, - ViViYy;
x costf,; +9d, =J:)
- l/":l”_‘)'n COS‘O:J +(5: ‘—'53 )-

The notation for this and other equations of this
example is given in the Appendix.

If Y,, is large compared to Y, and Y;. then
machines 2 and 3 will be strongly coupled. In this
case it is convenient to rewrite (51) in terms of the
variables

M0y + M9, _
JPESRLEUERE L TP S U S Y
S=TRL T, T fnmdamd 2

*Two machines are defined to be coherent if the difference
between their angles s sufficiently smali(8. 9].

-
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as a fourth order system

v _Pin, ¥ Piny— Vi Yy cos8,, ~ VY5050,

‘T M
P, — VY, cos,,
M,
VivLY, M, | . )
ERSELRAN L pS sy =—=3,y—0
M., “°S(w‘- M BT
ViVLY,, M, C
————=cos{ ¥, 3 +—=0.3—94,
;wls 13 M 23 d)
2V, V5 .
-— ’Y;;cos()z,cosoz; (53)

P — V#Yy;c080,, R, - ViYyscos0;y,

Sa = -
4 M, M,
ViVLY,, M,
——lﬁ;_l_cos<olz—ocl_‘—v’—oll>
ViViY, . M,
+———=cos{ 8,3 -9, +—=4
M, 13 17y 0
VyVyYs .
—#"‘-—JCOS(Wz_;—()z_;)
Mg,

where J, is used as the reference.

In order to apply the decomposition procedure,
we linearize (53) about the equilibrium point 82, and
335. The linearization yields the following differen-
tial equations for the perturbations Ad,, and Ad.;

Ad = —a,,Ad,, +a,,Ad,,

v . . 54
A0y =d3, 80, —a;,40,;. >4

In the case of strong coupling between machines 2
and 3. a,, is much larger than 4,,, a,, and a.,.
Hence, let

1
F=au. (55)
Defining
X1 =A8,,.X;=08.,.2, =A0,5/ 4% 2; =488, 1
(56)
{54) becomes
X, =X,
Xo=—ay X, +uaa3,
uiy =1,
UEs=dy Xy =2, (157)

Equation (57) is in the form of (3). Setting u=0 in
(57) gives the following for the slowly varying
subsystem

Xt )=x1to)
ay Xy, Xpltg)=x,(t)

} (58a)
} (58b)

Equation (58a) describes the oscillation of the
center of inertia of machines 2 and 3 with respect to
machine 1 and is identical to the linearized swing
equation obtained by regarding machines 2 and 3 as
an equivalent unit{8.9]. Since machines 2 and 3 are
relatively weakly tied to machine 1. this oscillation is
of a relatively low frequency. Thus assuming that
the initially Ad,; is small, we show that the fast
oscillations are negligible when only the slow
dynamics are of interest.

To recover the intermachine oscillations. we
obtain the fast oscillatory subsystem (44) as

Lay,

u
u

1 =3, Il =zy(ty) =da; X (L)

-:l' 51([()]=:;(t0).

LR TA

=
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Equation (59) describes the oscillation of machine 3
with respect to machine 2. Since the connection
between machines 2 and 3 is relatively strong,
compared to their respective connections to ma-
chine 1, this oscillation is of a higher frequency than
the oscillation of the center of inertia of machines 2
and 3 with respect to machine . Equation (59) will
be useful when the intermachine oscillations be-
come significant.

We may readily solve (58) and (59) by hand.
Expressing the solutions in terms of the original
variables gives

Ad, (t)=acos, a,, i+bsinay, ¢
(60)
hd 1 . l
A0,3(t)=ccos—r+dsin—t.

u u

The initial conditions are

A5, (0)=4d,,(0)

A8,,(0)=0
Ad53(0)=A6,3(0)~ua,,Ad,, (0)
A3,3(0)=0

(61)

where the u* term is retained for improved accuracy.
Using (61) in (58) and (59) gives

A, {1)=Ad, (0)cos | J.—,r 62)

3 . l
A3;,(r)=[Ao‘1,(0) — 1218, (0)] cos;r.
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Now by applying (45) we can write

Ad, (1) =4S, (1)

A5 30} = Ad,5()+Ad,5(t). (63)

Substituting {62) into (63) and using the fact that

Ad,y=ulay Ad,,
yield
A8, (1) = AS,,10)cOS , ayy ¢t

Adyyity=pta,, Ad,,(0)cos \/:z:t (64)
+[A9d,,(0)

hi - l
—uray, Ad, (0] cos;t.

Finaily. we recall that

‘?:l”)=‘s?d+A‘jc~l“) (65)
023“)‘3()23 + AO:,(H.

Hence we may write the following solutions for the

angles

0.1 (8)=0¢, +[0,,(0)—~ 97, J cos v";:f
33(1) = 0% +4%a3,[0:,(0) =02, Jcos \, a1 t

+{[0:3(0)1 =031~ p?a,,[9,,(0)
o a1 1
-0 1} cos;t. (66)

From the numerical values given in Fig. 2. the
following expressions may be obtained

0,,(1)=32.86°-18.75°cos 8.130t
O.3(1)= —1.88°+0.3435”cos 8.130¢ (67)
—0.3235°cos 26.02t.

Note that (67) is expressed in electrical degrees since
this unit is in more common use than electrical
radians.

Figure 3 shows a plot of J,,(¢) as obtained from
the nonlinear system (53) and from the analytic
solution (67) for a period of 1 second following the
opening of the line from bus 1 to bus 2. Figure 4
shows a similar plot for d,,(r)from (53)and (67). We
note the excellent agreement. Of course this result
depends on the fact that the disturbance applied to
the system caused only small oscillations of the
machines. The accuracy of the time scale decom-
position is much better than it would appear in these
curves. The error indicated is mainly due to
linearization. Had the solution of the full linearized
system (57) been compared to the time decom-
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position approximation (67), the curves would have
been indistinguishable.

6. CONCLUSION

It has been shown that singular perturbation
techniques are applicable to systems which possess
slightly damped modes oscillating at high frequen-
cies. Our analysis procedures consist of first
identifying the small parameter u and expressing the
system in the form (3). Then the original system is
decomposed into a slowly varying subsystem and a
fast oscillatory subsystem. Using these subsystems.
we obtain Otu) approximations of both the eigen-
values and the states of the original system (3).
Beside the computational advantages of dealing




P e i

I Y

s

owed G e "

Singular pertucbation analysis of systems with sustained high frequency oscillations

with the lower order subsystems, the concept of
subsystems contributes to the understanding of
structural properties of physical systems. The
limitation of this decomposition procedure is that
we require a sufficient separation between the
frequencies of the slowly varying dynamics and the
fast oscillatory modes. A mass-spring damper ex-
ample shows that a stiff spring can be regarded as a
perturbation of a rigid rod, the imperfection
resulting in high frequency oscillations between the
masses. [n an inter-connected power system, neg-
lecting the intermachine oscillations, the power
angles of the tightly connected machines are shown
to be coherent.
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APPENDIX
Notation used in 1511

8,. rotor angle of machine i n clectrical radians.
inertia constant of machine i n sec? elect. rad.
P, . input powet to machine i in per unit

} . voltage behind transient reactance of machine ¢ in per
umit.

Y, per unit magnitude of the ijth clement of the reduced
network admittance matrix.

1. anglen radians of the th element of the reduced network
admittance matnix.

Votation used in 133}

M= \’:4- \,,

¥

3

UL G SR
( ———) = —--——) cos* U, ,
\M, . M M,

I 1y, M
*(—4- -—) sinc g . tan¥, = —— tand,
MM, 1 l)
M M,

[IAACTRT A S NN
( ~) = - — ) cos O+
M, M M

|

G )

1 I\
4-(-—-+ —) sinzl).».tan Y = —'l———‘—lﬂﬂou

MM, )
MM,

(L)

(1 1y M, M,
+( —+ —) sinU,  tan¥,; = ————"— tant,;.
MM, (l 1)
M.oM,
Notation used in (54)
l”lv,:yl; 4 w.l N : ‘
), = —————sm(‘(‘,;— —-o‘},-oj’.)
M, °
|22 ¢
+-‘—’—2;m(w,,¢—-o‘,-oﬁ)
M,
| 220 I I 3
== — === —sm( 1_--—-:)_,-02'.)
M, M
Vb LY M, (v M, )
- ———= —Zsin Pl T
v, ! s 3 !
2051
-— Yyycos8,,stnd%,

iy Y, f M
“:l"[“‘ : I-sin(",:—d;’,——)d‘;,)
M, M

Vi, M,
- J-"—'—isin( 0, =0% + =23%, );l
M, : M
LA LIS o M
Uy = —— -sm(ﬂ,;-—ofl— ——()':,)
M, 1
VibiY M, (t) M, )
+ ——— —sin -07 + — 0%
M, v N v o

Fiby Yy

+-

sineW,, =08,
23
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TWO-TIME-SCALE SYSTEM PROPERTIES
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Coatrolisbility and Time-Optimal Control
of Systems with Slow and Fast Modes

P. V. KOXOTOVIC, smion MBMBER, IEES, AND
A. H. HADDAD, ssviok MuMBER, IRER

Abswracs—The contrellability of limear systoms with largs and smmall
tme coustents (slnguierly pertwbed systoms) s established. The time-
opthmal contrel of such systems is shown to be separabie inte twe time
scales related to the siow and fost medes of the system. Aa sppreximete
dasign methed of the time-optimal contrel is propesed, which is based 0w
the separsbiiity of the fest snd slow contrels.

INTRODUCTION

Colcdlymwithhrpmdmlldmeoimnu.otwimdowmd
fast modes, are frequent in apphications. A mode! of such systems is

FmA x+A s+ By M)
pim Ay x+ Aps+ Byu @

where x,2, and » are a,m, and r vectors, respectively, and the scalar
parameter p represents small time constants. If x4 is neglected and (2) is
replaced by

O0m Ay X+ A2+ Baa, €))

and if A5 exists, then the substitution of 2 into (1) results in a reduced
order system:

Xw A2+ Bolt (O]
where

Ap= Ay = A A5, —A;A5'B,. 9

In the design of time-optimal controls, this order reduction is motivated
by the well-known difficuities with high-order systems which are consid-
mbhmmthehmme«nvmlmbkms An approach to

design of time-optimai controls is the quasi-optimum techni-
que by Friedland {1], (2]. Also related is an averaging approach by
Gerashchenko e¢¢ al. {3]. The only explicit trestment of the time-optimal
control for a singularly perturbed system of the type (1), (2) is a recent
study by Collins [4], whose results we generalize in several directions.
Collins uses the phase-canonic form of (1), (2) and restricts his deriva-
tions to single-input systems.

We first establish that the controllability properties of the system (1),
(2) are determined by the controllability properties of the siow and fast
subsysterns. We then demonstrate how the fast-slow separation can be
accomplished in a general formulation of the time-optimal control prob-
lem.

‘p- ,,

CONTROLLABLITY OF SLOW AND Fast Mopes

An interpretation of (3) is that for u=0, the slowly varying “steady
state” of z is 2= — A4, X. To separate ? from the fast transient of z, a
change of variables is used:

n=z+Ap'Ayx+ uGxmz+ Lx, 6)

transforming (1), (2) into

kw(Ag—pAG)x+ Apn+ B m
Mas April‘.lﬂlh recomunended by D. L. Qunnu
of the IRBE $S-CS Optimal Sysums Co-':vm-n-mby n?omd
Joint Services Eloctronics Program (Us.ArnlLUSN-vyud Poren)u-d-r
Coatract DAARO?T-72-C-0299, snd in Research
nﬁCumAMl 73-2§70.
The authors are with the Department of Electrioal and the Coordinated

Laboratory, University of filinois, Urbase, TH. 61901,

i Fx+ (A + slA I+ (854 ALB)w ®

where Fw - AyG+(A5' 4y, + #G) (Ag— #13G). By the implicit func-
tion theorsm, the solution of F=0 is

G= Ag My, Ag+0( ). )

With Fa0, system (7), (8) is biock upper triangular, and hence we have
the following result.

Lemma I: Suppose that A5' exists. Then, as p—0, the first a ei-
genvalues of the original system (1), (2) tend to the cigenvalues of the
reduced system (4), while the remaining » cigeavalues tend to infinity as
the cigenvalues of (1/p)Ap.

To seperate the slow modes, we introduce

§mx—p(ApAg' + psMmmx— piin
and chooss M such that
A+ p(Ag~pA3G)H = H(An+ plA ) =0.
By the implicit function theorem,
M= Ad g AG? - ApAg A d A5 +0(p).

The transformation (6), (10) can be written as

Hikaied B
[:H-l ,_f”,u,][f,]

where /, and [, are the X n and m X m identity matrices, respectively.
We note that (13) is a special case of a transformation due to Chang [5).
The original system (1), (2) is finally transformed into

fmdt+ Bgu (15)
m=dyn+ B (16)

where Qo= Aq—pu4;G, Bo=By~n (HLB,+ MB)), &= Ay~ plAy
B,= 8, + uLB,. The controllability properties of (1), (2) are the same as
the properties of (15), (16). The subsystem (15) is a regular perturbation
of the reduced system (4). The subsystems (15) and (16) are connected
through u, but have different cigenvalues. These facts prove the follow-
ing theorem.

Theorem |: If A" exists and if

(19

(m

(2)

13)

and its inverse is

(14)

rank{BoAoBy - A5~ !By =n an
rank{ 8y, Apy By, - - AR 'By} = m, %)
then there exists u® >0 such that the system (1), (2) is controllabie for ail

BEO,p°).

It should be pointed out that, in view of (18), a matrix K exists such
that A5, + 8,X is nonsingular. Also, the controllability of (1), (2) is not
influenced by u= Kz +v. Thus, even if 45! does not exist, Theorem |
still holds, but with the matrix 4, + By KX replacing Ay, in the definition
(5) of Ao and ao.

ConTroL OF SLow MopEs

The problem in this section is to steer the variable x of the system (1),
(2) from an initis} value x° at r=0 to zero in minimum time subject to

p)ﬂuomwdﬁnmmup'mdcnnhm‘hmm

1A I % &
satiefies | /] <en = [Op°)
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lu i< 1, k=1, --,r. No specific requirements are imposed on the vari-
able z. Its behavior is of interest only insofar as it can impede or improve
the coatrol of x. The minimum principle for (1), (2) or, equivalently, for
(15), (16) yields

u= —sn{ R T 4 %c“"""q} (19)

where (p’.¢’l is a coustaat (n+m) vector. If (16) is asympiotically
stable, ¥ is bounded, { is O(u) at 1= T, the term depending on (T~ ¢/p)
in (19) rapidly decays away from 7', and hence the control in (19) can be
approximated by a “siow-mode control”

2= -sgn{ BT}, @0

which is a time-optimal control for the slow subsystem (15). When -0,
then @y—Ay Bg— By and # becomes a “reduced control” &, that is, a
time-optimal control for the reduced system (4). In applications, 2 is
often a “parasitic” variable, that is, Ay;, 4. 4,,, B, are not known and
the only data available about the system (1), (2) are the matrices 4, By,
Then, instead of 2, the reduced control &, is applied to (1), (2). To
summarize this discussion, we define systems (1), (2) in which 4, has all
the eigenvalues with negative real parts as “robust” systems,

Lemma 2: Suppose: a) the system (1), (2) is robust; b) the time-
optimal control problem for the reduced model (4) is normal; ¢) x=0 is
reachable from x°. Then there exists u* >0 such that for all x €[0,4*),

the slow-mode control 7 is a near-optimal control for the system (1), (2).

in the sense that it steers x to a O(u) neighborhood of zero in the
slow-mode minimum time T. An analogous statement applies to the
reduced control 8, and Ty, the minimum time for (4).

CONTROL OF FAST AND SLOW MoDEs

The problem is now to steer x° 2% of (1), (2) or, equivalently, £ 7° of
(15), (16) to zevo in minimum time. In addition to the minimum principle
condition (19), we now also use the fact that the Hamiltonian is zero for
all ¢, 1t follows that (¢/pu)= § remains finite as p—~0. After substituting
q= uq, we rewrite (19) more compactly as

u-—sp{:(T—t)d-f(L;—l)}. @n

For 5 we assume that it has N, zeros, that they are distinct, and that they
are located in a subinterval {0,¢,] of the interval [0, ). Then s +0( u) also
has N, zeros and they all lie in O( u) neighborhoods of the corresponding
s zeros. We recall that in a robust system, f exhibits a rapid exponential
decay. Thus, /< O(p) in (0,1,). Hence, g= s+ fm s+ 0( x) has N, zeros in
[0.+,] and they lie in O( #) neighborhoods of the corresponding zeros of s.
These N, zeros determine the “siow™ switchings of the control (21). At
the end of the interval {0, T), there is a subinterval (1, T} in which f is not
negligible and g may have N, additional zeros. In view of the rapid decay
of £, intervals (0,¢,] and (1, 7] are disjoint, ¢, <, and 7 ¢, =O(p). The
additional N, zeros define the “fast” switchings of the control (21) and
are to be determined in a fast time scale ow(T—¢/u). We assume that
the zeros of 3(0) + f(o) are distinct. Since 3( uo) + f{o) = 5(0) + f(a) + 0 u),
we see that if o’ is a zero of 5(0)+ f(0), then "= T~ {0’ + 0 p)] is & zero
of (T = t}+ f(T~ 1/ u). These [acts are summarized as follows.
Theorem 2: Let (1), (2) be a robust system and x =0, : =0 be reach-
able from x° :°. Suppose that the zaros of s(T - r) as well as the zeros of
3(0)+ f(0) are distinct. Then thers exist u* >0 and >0 such that for all
K E€(0.5°], the time-optimal control (21) is separable in the following

sense:
u- u, (1)
u(r),
whers r= §~ o and the switchings of u,(¢) are in O( ) neighborhoods of
the zeros of s(T-r) and the switchings of u(r) are in O(x) neigh-

borhoods of the zeros of s(0)+ f(#~ 7).
To interpret and exploit this important separation property, we express

0< i< T—pb
0<r<d

(22

RSB TRANSACTIONS ON AUTOMATIC CONTROL, FEBRUARY 1978

§(T) and 7(T) in terms of w,(¢) sad ur). We bave

e(r)-c"-'{c‘-'}% k ;.“i-"g,u,(:)dx} +uf bertat-0gy(v)dr

. 23)
where /= T~ ud and
W(T)=eityes [ ‘-8 u(r)dr 24
where
RN L WA (T 29

is the value to which u, (1) steers n after its last switching; see (16). In
view of the rapid decay of the 1 transient, A is an exponentially small
term and will be neglected henceforth. From (24) and (25), an interpreta-
tion of u(7) is that it steers n° o zero in minimum time r=4. On the
other hand, it is clear from (23) that the contribution of ulr) to §T) is
O( ). Thus «,(¢) steers £ to a O( g) neighborhood of zero. This means that
4,(t) can be approximated by the slow-mode control @ or, even simpler,
by the reduced control @, (see Lemma 2). From Theorem 2 we know that
(1) can be approximated by

g(r)= - sgn{ B~ "5 +35(0)) (26)

where g is 1o be determined such that n* for (16) is steered to zero. As a
further simplification, &,, $;in (26) can be replaced by A, B, respec-
tively.

In conclusion, to obtain a near-optimum conatrol for (1), (2), we first
calculate the time-optimal control #y(s) or 2(s) for the reduced order
model (4) or for (15). Then we use n* as the initial condition for the fast
subsystem (16) and <valuate the fast control ,(r) from (26) to steer the
state of this subsystem to zero. This control is near optimum in the sense
that the error in §T), #(T), and hence in x(T), z(T), is O(p).

It is possibie to further correct the siow control by selecting u,(¢) as
the time-optimal control for steering £ from £° to §(f)= -~
B S e %" B0 (r)dr=m ~ u*, as seen from (23). To obtaia & correction

u, (1) m 2(1)+ Bu(2) @
let 7, and 1, be switching times of 4, and (u,),, respectively, and let / and

p be the corresponding final time and co-state vector for the corrected
control. Then we may write

tym i+ Ly
faT+ Yl
PP+ (28)
then
2] —m(G+) 0<(e-4)<my, forg>0 @)
w(iy+) wy<(c-4)<0  fore <.
The corrections in the switching times become approximately
- - -1
=T+ (i) ' doc (i,)] (30)

where ¢, is the jth column of e®T-%@ . The substitution of (28), (29),
and (30) in (23) results in the following set of linear equations for 5 and
T

c'l(l'v)ﬁ

— | on
?'doc,(iy)

~g&=TBoa(T-23 Za(i,+)o (i) T'+
oy

The solution of (31) together with (30) and (29) yields the corrected
control u,(¢). The resulting errors in & T), and hence in x(T), become
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0(4?). Since no correction is applied to #, the etror in n and z remain
0( 4); however, it docays o zero very rapidly.

Examrre

In most dc motors, the mechanical time constant is large compared to
the electrical time constant. Let w and i be the speed and armature
current, respectively; then

d B Kt
T--Tu-b 5 (32)
:% %o—i-ﬁ% (33)

where the armature voltage u is the control. We introduce 1, ={(B//J)+
(K¢K,/JR)]™" and p=(L/Rr,). Thea (32), (33) in the new time scale
¢ =t/1, become

. 1 "l
Linh Al Fy 34
. k
p--;—x—z+bu 3%)
1

where xmw.zmik;=(Kp/B)k=k(K,/R)b=(1/R). We seek the
time-optimal coamtrol to steer both speed and current 10 zero, that is,
§T)=9(T)=0. The control of the slow mode is

8(r)=a,()= ~sgnf®, 0<t< T-:ln[l-l-q,“ol (36)

The error in §T) is obviously zero, but the final value of n(T) and the
miss distance for x(T) are pven by

a(Ty= (14 Zignet)e "= Loguiom - Loguge (1)

o Lk s

sgng’ (38)

x(T)= - pk, n(f) = pky —x—

where

bk 1
agm(1=pA) "' gy =(1 = ph), by= H'k[l-» (Zc)]

c=A(1=pA), A=[(1~pA)’ - 4}

(—){-\/ = |

(|+k)(|-m)

k
~T+% +0( p).
The fast variable may now be controlled by using the control 2/(r)
wsgnf® 0<r<f=(1/ayIn2. The exact miss distance in &T) at T
al+ph:
G(T)'ll‘f""]%!m"'o(ﬁ)- 39

which is the same as the miss distance in x(T) since n(T) is negligible.
The slow control may now be corrected for this miss distance.

ConcLusION
The controllability properties of the original system are determined by
2 separate analysis of the slow and fast subsystems. An application of

(11 B. Friediand. “A

4]
llu
5] KW

this approach to the time-optimal control problem bas revealed similar
timo-ecale separation properties of linear time-optimal coatrols.

The time-scale separation property is shown to be particularly useful
in a near-optimum design procedure, which can be divided into two
lower order phases, corresponding to the design of a slow mode, or a
reduced control, and, in a different time scale, a fast control.
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A Riccati Equation for Block-Diagonalization
of Ti-Conditioned Systems

PETAR V. KOKOTOVIC

A“—A*WMM!-'M
pertarbed systems, is now applicable to a larger cins of time-lnvariant
systoms.

INTRODUCTION
In this note we discuss a method to transform
[ %, o4 Au|[®
‘2] [An "n]["] M
into
r"‘l B, Ap|[=
_i:]'[o a,][y;] @
and into
r’l 8 0 b4
)’:] [0 B, {I;I ™

where x, and y, mn,voeton.udx, and y, are a,-vectors. The
transformation is particularly convenient for systems possessing n, small
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TBCHNICAL NOTES AND CORRESPONDENCE

“slow™ and “fast™ subsystems of (1). In this context the transformation
has been introduced by Chang (1} [2] to study singularly perturbed
systems and it was also applied to an optimal coutrol problem (3]. The
conditions obtained here for time-invariant systems are less restrictive
than those in (1], (2] and the system (1) need not be singuiarly perturbed.
Instead, it is sufficient that the norms of its submatrices satisfy an
inequality. In the course of the proof of this result a convergent iterative
procedure is derived for calculation of the transformation matrices.

Tuz RiccaTt EQUATION
To transform (1) into (2) we use
Y= xy+ Lx, (O]
and require that the »; X », matrix L be a real root of
ApL— LAy + LApL=Ay =0 ®

If L exists then the substitution of (4) into (1) yields the block-triangular
sysiem (2) where

By=Ay—AL ®
BymAp+ LAy 4
Assuming that 4y, is nonsingular we introduce
LowAg'Ay, Ag=Ay-Aule ®
and seek L in the form
Laly+D )
where D is a real root of
DAg~(Agy+ LA 3)D ~ DA 13D+ LoAg=0. (10)

The following lemma gives a sufficient condition for the existence and

uniquenass of a real root D and establishes a bound for its norm || D||. It

also formulates a convergent procedure for iterative calculation of D.
Lemma 1: I Ay is nonsiogular and if

1451 < 3 (4ol + 1Azl 1 Lol ™" an

then a unique real root of (10) exists satislying

20 Aoll I Loll
Al + 1A 2l Lolt *

This root is an asymptotically stable equilibrium of the ditference
equation

Dy, = AR (LoAg+ DyAg— LoA 3D~ DA 2Dy )mf(D,)  (13)

and its domain of attraction encompasses the set of matrices defined by
12).
Proof: For a={|Agl, b=1l4all | £qll. e= |45} and
1Dl
%= Al I Lol

0<iipi< (12)

(14)
we obtain from (13)

d,,,<c[l+(¢+b)d.+ahd}]<c(g—;-£d,+l)z (15)

and we analyze the upper bound of 4, defined by

4,.-:("*2‘”1.”)’. (16)

Obviously d, < &, for all k. When c<}(a+8)~" then the scalar dif-
ference squation (16) has two real equilibrium points d° and 4” > ¢’ and

d’ lies in the interval [0, 2(a+ b)~']. For all &, w4’ in this interval we
bave |4, ,~ d'| <|d, - d'|, which proves that D, is bounded, that is

0<|ld | <2a+b)"" an

hoids for all k=1, 2,---,if it bolds for k =0. Substituting 8D, = D, - D
into (13) we get

8D, . = A%' (8D, (49— A 3D )~ (Ly+ D)A 8D, - 8D, A,,8D,] (18)
which, usiag (3D, (| % o, < || Dyl| +1| D1, implies
O e1 S cla+ b+ 34, ID I+ 14l | Dylloy. a19)
Whea both | D, || and || D] satisly (17), then (19) yields

o.,.|<c(a+b¢:—:bs)o.<3c(¢+b)q (20)

and, hence, if c <}(a+b)"", as required by (11), then f(D,) in (13) is a
contraction mapping and D is its fixed point. We complete the proof by
noting that v, is a Lyapunov function and o,,,—0, <0 for all D,

satisfying (17).
Using (13) with the initial condition Dy=0 we can calculate D
iteratively. By (11) and (20) after k iterations the relative error is

Dy-D

and it decreases as ||A5'| and |[Agfi decrease, that is as the ill-
conditioning of the system () increases.
Brock-DiagoNaLizaTion
To further transform (2) into (3) we use
y1=x =~ My, (22)
where the n, X 7, matrix M is & real root of
B M- MB,+A,;=0. (23)

The following lemma formulates a convergent iterative method for
solving (23).

Lemma 2: Under the conditions of Lemma | the solution M of (23) is
the asymptotically stabie equilibrium of the linear difference equation

My =[(Ayy =~ ApL) M - M LA UG + 445" 24)
Proof: For m, = || M, — M|| we obuin from (23) and (24)

my . <cla+d+21A4,,11DN]m, (25)
and, by virtue of (13),
4
m..,<c[a+b+a—:%]m.. (26)

Thus, m, ., <m, if c<{(a+b)~" which is satisfied by (11).
To summarize, the transformation of (1) into (3) is

L. 1, M "
EIR B 4 a
where /, and /; are the n- and ny-dimensional identity matrices,

respectively. The transformation (27) is performed in two stages, (4) and
2.

CONCLUDING REMARKS

In applications L can be calculated from (9) and the iterative scheme
(13). It is somewhat simpler to program the equivalent iterative scheme
for (5) with the initial value Ly as in (8). In several tests with matrices

i
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satisfying (11) an accuracy of four significant digits was achieved after
only two iterations, indicating that (11) is a conservative condition. An
example when (11) is not satisfied is 3 power system model developed in
(4, pp. 104-106] whoss matrix

-011 002 003 000 002
000 -017 000 000 017

A=| 000 200 -400 000 000 (29
-400 000 000 -200 000
000 000 000 475 -500

with #; =2, 5; =3 and the absolute value norm yields a=0.676, 5= 0.968,
and c= 1.425, seven times larger than in (11). After four iterations the
accuracy better than four digits has besn achieved and the cigsnvalues
=0.15538 £ j0.11466 of B,, and —5.0273, —3.9938, ~1.9482 of B,, are
within +0.00005 of the eigenvalues of 4. Thus, the method can be used
even whea Lemma 1 is violsted. When (11) is satisfied rapid coavergence
can be expected.
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Eigensensitivities in Reduced Order Modeling
J. J. ALLEMONG anp P. V. KOKOTOVIC

Abstract—Expressions for eigenvalue and eigenvector sensitivities are
derived with respect to the singuler perturbation parameter whose variation
changss the system order. They are ilustrated by the seasitivity of 2 power
system model with respect ¢o its negiected fast part.

INTRODUCTION

For almost twe decades eigenvalue and eigenvector sensitivities have
been among the most common tools in circuit and system analysis
[1}~{5} They are used 1o determine influence of system components and
parameters ou individual modes.
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This correspondence extends the aotion of seasitivity to the cass of &
parameter whoss variation changes the system order. Using the expres-
sions derived here it is possible to analyze modes’ seusitivities with
respect 1o neglected parasitics and to the fast modes eliminated from a
reduced order modsi.

The change of system order is parametrized by writing the system
equation in a singularly perturbed form (7], that is,

x=mAx+ Bz 0)
¢=Cx+ Dz ?
where the small positive scalar ¢ is of the order of the ratio of speeds of
slow and fast modes. When ¢ is set equal to 0, that is when the transients

of the fast modes are assumed to be instantaneous, then the substitution
of z from the quasi-steady-state expression

Q= Cx+ Dz 3)

into (1) yields

%w(A~BD"'C)x & Agx. O]
This is the reduced order model frequently used as an approximation of
(1) and (2). Considering ¢=0 corresponding to the simplified model (4)
as the “nominal” value of ¢, we now investigate how the eigenvalues and
eigenvectors change when, instead of 0, ¢ has a small positive value
corresponding to the exact modet (1) and (2).

EIGENVALUE SENSITIVITIES

It is shown in (6], (7] that the models (1) and (2) can be transformed
into the block diagonal form

x = @()x, (%)
<y = D(e)z, ()
where
()= Ay—eBD ~CAy+X?) ©)]
()= D+eD~'CB+U(c). ®

We first consider the eigenvalues A, of &(¢) and denote by i, and v,
such that v/, =1, the cigenvectors of @(¢) and of its transpose @°(¢),
respectively. Using the well-known [1], (3] eigenvalue sensitivity expres-
sion

A ae
AR The ®

and evaluating 3@ /3¢ from (7) we obtain

%’- = =\o;BD ~*Cu,.
Aanalogously, for the eigenvalues g of D (¢), with ¢ and p, p,q,- 1, being
the corresponding eigenvectors of GD(«) and D ‘(¢), we obtain, in view of
@)

(19

1

-g - -'; p;CBg, 1)
The expressions (10) are the actual sensitivities of those cigenvalues of

(1) and (2) which remain finite as ¢~+0. The remaining eigenvalues gz, /¢

tend to infinity as ¢~0 and expressions (11) are the sensitivities of their

asymptotes.

EIGENVECTOR SENSITIVITIES

Differentiating @i, =Au, and evaliating the derivatives at ¢=0 we
obtain

(A,-A,l)aT':i = 3t +\,BD"Cu,. (12)

Following (3] and assuming that the eigeavalues are distinct this expres-

0018-9286,/80,/0800-0821300.75 ©1980 IEEE
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TABLE1 Rargaances
EIGENVALUES AND SENStTIVITIES OF (17)
O 3 d Sensitvity m ux.ru.a.:avurmcwmdunuam San

5 s 1|1l.Cnu.$..!A$ Sengitivity Anelysis. Sucedsburg, PA: Dowdes,
~03622/.36 -042/58 ~-0335x/.36 0044=/02 B L N O
-39 -in -195 ~023 (3] B. Porter a8d R. Crossley, Modal Cotrel. New York: Taykor asd Frascie, 1972,
~853=,8.22 -8.292,7.95 -8.50=,823 -0.21=,28 4] ). E Van Ness, ’uh;swh' -:d F.P. é-d- ":L-:tg\:: d;l.t-.m -y :
- - ; - - i trol - Trans. Automat. Contr., P X8~

0.86 = 8.37 0.78%,8.39 0.85 = ;8.38 0.07+,.01 - ;“l le Siahe., o R. T. H. Aldes, “Eigeavalus saasicivities of power .

system inclhuding astwork aand shalt dysamice.” /EEE Trens. Power App. Sym., vol.
PAS-95, pp. 1318~ 1324, 1976.

sion can be © i ujo;-uumumn..umulm i ’ ? '
o N P. V. Kokotovie, J. 5. All J. R. Winkelmss, aad J. H. Chow,
;-20.«,. ki (13) porturbations asd i paration of time scales.” Ausemaenica, vol. 16, Jan. 1960,
;
whers
Al ’ -2 :
LT A*-A, 0.’0 Cll‘ (l‘) 1
i and ¢, =0, Similarly,
E .
=" Svate  kwi %)
where

! ,
¥ mhc% . (16)

and ¥,=0.
Erers i
The matrix appearing in a seventh-order model of a synchronous
machine coanected to an infinite bus [6), [7] is

A B
le ip
€ <€ -
b} 058 0 0 -021 0 02 o
: 0 -10 0 0 0 0 o
; 0 0 -50 21 0 0 0
? - o 0o o 0 Mmoo 0
~014 0 014 -02 -028 0 0
0 o o 0 0 008 20
173 667 -116 409 0  —667 —167
f an

whers 4 is 2x2 and D is 5x 5, that is, the simplified model (4) is of
second order. In this case we scale the fast modes by ¢=0.1. Note
bowever that the approximations such as

A{)mA(0)+ .%:'— (18)

do oot depend on this scale factor since the seasitivities are scaled
correspondingly. In Table I we give the approximations of the type (18)
for ail the eigenvalues of (17). The columns from left to right are the
exact cigenvalues, the uncorrected cigenvalues of 4, and 1/¢D, the
corrected eigenvalues of (17) and their sensitivities. [t should be noted
. that the errors of 10 percent or more have been reduced to less than 2
P percent.

CONCLUSION

When the change of system order is parameterized using singular
perturbations the cigensensitivities with respect to this change can be
evaluated from the expressions analogous to the usual expressions for
sensitivities with respect to parameters.

i'
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SUBSPACE ITERATIONS APPROACH T0 THE TIME SCALE SEPARATION*

B. Avramovic
Decision and Control Laboratory
Coordinated Science Laboratory
University of Lllinois

Urbana, Illinois

ADSTRACT
Some properties of the time scale separation are
revieved and & new globally convergent algorithm is

proposed. A connection between the new algorithm and
the exiscing Riccati-like algorithms is established,

BASLS FREE TIME SCALE SEPARATION
After introducing necessary notation we will state
basic properties of che time scale separaction. We use
)'L(“ to denote i-th eigenvalue of A and we assume that
w2l 1e1,2,000 01 M
The spectrum of A is
sy =t @i, t=1,2,.. 0k @)

Then the problem of the time scale separation for a
system k ®Ax, x€" particioned with given nlndu X

as
-~ = r
x A A x
O I Bt § S 1 3
2] L M |
is to find a cransformation yielding
~ - ~ -
&, 8 A x
10 I R U I O ! @
2 o & ||

vich cthe speccrum of A separated into 0(B,) and a(8,)
such that

e sup a(lz) Ixnlﬂ(”l
E -
iat a(8)) Ixnl(A)I

<1, (3)

Every L sacisfying (5) will be called admissidle. We

remark that the formulatioa (5) is appropriate vhen
the action of the subsystem (xl,Au) on (xz.Azz) is

weaker than the reverse action. An example of such
systems are the power systems considered in (6]. An
snalogous probles formulation with

sup o(8,) < iaf J(B,) (6)
1§ 2

ts also possible. Without the loss of generality for
the rest of this paper we assume (5).

If an admissidle oy is known, then 1t was showm
in [2,8,10) that & numerically suitable transformation
for the cime scale separacion is

Yo%+ “"1 (€]
vhere L sscisfies

'mu work was supported by the U.S. Department of
Enecgy, Electric Energy Systems Division, under
Contracts EC-77-C-0J-5566 and EX-76-C-01-2088,

61801

R(L) 'AzzL -uu+u12x. .A21 =0 (8)

and the macrices in (4) are
By Ay Al

Bymhyp v,
Conditions on existence of L and its explicic form are
given in cthe following standard result {see e.g., 7,
11], rephrased here in a basis free form.
isamp l: Given (1) and an admissible n, let op "
{lki(A)l, i- 1.2....,n1} be the dominant spectrum and
let & be the dominant eigenspace of A.

i

9

Further,

nxa,
ljer be a basis for

2

let the columns of & matrix
v

&. Then, provided vl is nons
(7) satisfying

lar, the solucion of

°('1) 9, (10)
is
-1
L"vzvl . (¢33
Proof: Note first that L is invariant to the bais of

8§, that is there always exists a nonsingular matrix K
such that {f M=VK, then

-1 -1
VZVL - H2H1 .

In particular let the columns of M=

(12)
[*'1
vectors (and the generalized eigenvectors) of A span-
ning &,

be the eigen-

oY 4

A - J

) i)

Now if (7) is rewritten as

4
R(L)=-[L TI)A [ ]
-L

1 as

and c(Jl) -cD.

(14)
then it simply follows from (13) and (14) thac
x(-nzuil) -n(-vzvil) -0, (1s)
To prove (10) we use (13) in cthe expanded form
-1 .l
Hl (Au+AquH1 )HI‘JI (16)

which, due to (ll) and (13), proves that By =A AL
has as its spectrum the dominant spectrua %p°
Discussion: The three important facts about this lesma

should be noticed, First, that L can be expressed in
4 basis free form. Second, that 0, is adaissible and

third, chat i is nonsingular,

CH1486-0/79/0000-0684$00.75 © 1979 1EEL




The freedom in expressing L is an advantage ex-
plored more in the naxt section. The need to specify
ny {s a disadvantage since an arbitrary ny may not be

admissible and/or V1 may be singular. Therefore it is

desirable that an iteracive algorithm has the capabil-
ity to detect if n, (s not admissible snd to redefine

ic.

For an admissible ny, as shown in (4], there

always exiscs an ordering of variables wicthin a stace
vector x for which Vl is nonsingular. It is desirable

to find this ordering before the block trisngulariza-
tion is actempced, For this purpose it is useful to
note (11] thac che existence of L, that is the non-
singularity of v, is related to the controllabilicy

and observability properties of the pairs (Au,Au)
and (“22'A12)'~ 1f 51 is vieved as a regulator system

matrix with L as a feedback assigning the dominanc
spectrum, thean for vl to be aonsingular all the sigen-

values of All. uncontrollable through AIZ must be in

the dominant spectrum., Since the same L is an observ-
er matrix assigning the noadominaal spectrum to Bz.

all the eigenvaluss of A22 uncbservable through A12
must be in the nondominant spectrum.

These conditions are likely to be met if an
ordering of scates is such thac the norm of A22 is che
smallest possible meaning chat Xy should contain slow

variables only. Such an ordering usually results {n
the reduction of the norm of either Ayg orF Ay and

hence :(Au) becomes close to a(sl) and g(Azz) close
to 3(32). For the class of systems implied by the
formulation (5) this further means that the solution L
of (8) will have small anorm.

The following example illustrates some of these
cbservacions. The system

5 0

x, 0, =2 (17

o o N
O W O r
& O O O

0
0
0

is already in a2 block trisngular form but with a(Bl) $
Ipe For this system there is no L of (6) which

achieves time scale separation (4) and (5). The rea-
sons are the misplaced eigenvalues A =4, which is

unobservable, and \ =2, which is uncoatrollable. It
1s obvious that the same system with reordered states

xe (Xl.x,..xz-x:)r has Vl of (l1) nonsingular and L=0

satisfies (7). Although \ =2 is scill unobservable
and A ®4 is uncoatrollable, they both belong to the
appropriate spectrum and do not have to be moved.

SUBSPACE METHOD

The well documented globally convergent simyl-
tansous icteration method for computing a basis of the
dominant sigenspace {1] is now applied to solve for L
{n (L1). It consiscs of a simple iteracive scheme

k+1 Kk

v - AV . (18)

Through Lterations (18) initially given column vectors
of V rotate uncil they form & basis of ». As an

o nxn
initial guess almost any full rank matrix VO €R 1
can be used. The only restriction considered as mild

(1], is that no column of VO is orthogonal to amy of
the lefct etlgenvectors of A corresponding to %~ A

matrix v° generated by the random number generator will
almoat always be admissible, However such a matrix may
need many iterations (1§) before it makes a basis for
&. It was found experimentally that with che ordering
of states according to the preceding discussion a
becter initisl condition is givea by

0 “LJ

vV = . a9)
A

For numerical reasons at sach iteration columns of
V are scaled to have unit norms. Occasionally, an
orthonormalizacion of V is also performed in order to
retain a good basis for an nl-dmmtoul subspace.

Further discussion of the numerical aspects of (18) is
contained in (1].

It has been shown in [l] that the subspace itera-
tions have linear rate of convergence with the slowest

converging column of \Ik differing after k Lteracions
from the corresponding vector in 4 by o(ek). Thus by

observing the speed of convergence of the colums one

can decide whether to reduce the assumed ay. After ny

is reduced the iteracion process continues with the
remaining columns in Vk.

The convergence behavior of (18) {s best monitored
through the error matrix

E = AQ - QT. €20)
The matrix Q in (20) is
Q= Vk .U (21)

where vk is an orthonormal matrix from (18) and U is

an orthonormal matrix transforming nl-dmmloml

T, kK

macrix (Vk) AV to a quubuppcr-:runguut' T,

uF (v Tavkyu = 1. @)

Note that as \lk approaches a basis for 4, Q approaches
the Schrer vector basis {l] for the same space and LY

tends to zero. Furthermore L{f in esch step diagonal
blocks of T are ordered in descending order of eigen-
value magnitudes, then the firsc columns ia Q tend
faster to the basis vectors and correspondingly the
firsc columns in E, tend faster to zsro.

The computacional load of the convergence monitor-
ing is contained in computing the unitary transforma-
tion of the lovw order matrix of (22). Altematively,
when it is known beforehand that ny is admissible a

convergence test using JR(L)H computed from (8) can be
used,

Due to linear convergence of (18), predicted by
(1], the two consecutive tests of column norms {n E
can be used for several purposes.

*
Diagonal elements of T are 2x2 blocks containing
complex eigenvalues and lxl blocks containing real

eigenvalues of (vk) T.\vk.
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First, to predict che number of iterations before each
of the columns in Q falls below the specified toler-
ance, . Second, to reduce ny if che slow convergence is

predicted for some columns. Third, to remove from vk
the columns that satisfy (22), They are reconsidered
again only during the orthonormalization.

Example: In the following 7-th order power system
example (6], we Lllustrate the speed of convergencs of
the subspsce iterations by showing nors of colums in
E as a function of iterations and esigenvalue separa-~

tlon €. In (18) we use A™> inscead of A and hence
problem formulation (6). From Figures lb and l¢ Lt s
clear that smaller £ results in faster convergence,
Figure ld shows that for ¢ =l there is no convergence
for some columns. The convergence behavior of Figure
ld would suggest to reduce ny from 4 to 3. Eigenvalues

of A are given in figure la.

With V obtained from (18) the transformation

-1
T T PP 23)
due to Lemma 1, yields the time scale separation (4),
(5). 1In order to have a well conditioned vl before

the inversion an ordering of states (equivalent to row
perautations of V) can ba performed to make & norm of
V1 as large as possible. Then, as discussed earlier,

resulting L will have a small norm.
The subspace iterations are particularly useful
for large systems wich sparse A. An advaantage of

sparsity can be taken while carrying out the recursion
(18) and while storing A,

2 4 6 8 10 12 I
—————t——

la Eigenvalue Magnicudes of A
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Figures b, ¢, d: Convergence behavior of the
subspace iterations.

RELATION BETWEEN THE SUBSPACE AND
THE RICCAT] ITERATIONS

We aow establish a relation between the subspace
iterations (18) and che Riccati iterations

et = b 7 R g Al ™ 24)
where R(Lk) is defined by (8). If the iteration (24)

converge wea will show that they yield the spectrum
separation (5). Simtlar iterations were proposed in
[2,3] for obtaining the separation (6). They are
claimed to be locally convergent., Here we show that
(24) is globally convergent, By using a similar
approach the same can be proved for the algorithms in
(z,3].

Lerma 2: Provided all indicated inverses exist, the
sequences -(V?(v:)-l) of the subspace algorithm (18)
and Lk of the Riccaci algorithm (24) are identical

1 2 3 4 X
; ¢
'
.01
+ t=1,2
Q01T
000! 1
00001 ¢
'/
E
I
a, = 2, ¢= 0.17
(%)
j
. : _ } : , -
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k, k. -1
Lk--vz(VL) . (25)

Subscituting v; --kat into the partitioned form of
(18) one gets, after some simple manipulations

k+1 k K
4 (Au-Alsz) ® Ay ,P -Azl. 26)

Using '&'-Lk, where Lk satisfies (24), the equation
(26) is identically satisfied for every k.

This lemma shows that both algorithms have the
same speed of convergence. Their differences are in
numerical conditioning, memory requirements, and
ability to redefine ny-

CONCLUDING REMARKS

We have considered the application of the sub-
space method and Riccati iterations for the time scale
decomposition. It has been shown that both algorithms
have global convergency property. They converge
linearly wich the corresponding error after k itera-

tions being O(ek), where ¢ 1s a measure of spectrum
separacion (5). In light of the established connec-
tion between the two algorithms, the stringent re-
quirements on the initial condition of Riccati
iteracions (required earlier) are replaced by the
mild restriczions of the subspace iterations., Sub-
space method provides an opportunity to redefine ny

when necessary by observing the convergence rate.

wWhen initial ordering of state vector variables
is such thac 3 contains physically fast variables and

%y physically slow variables then an initial guess

for v° given by (19) is preferable over randomly
generated one.

The subspace iterations are particularly useful
for the time scale decomposition of large dynamical
systems resulting in sSparse system matrices A, In
the case that tne dimension of the slow subsystem {s
much smaller than the dimension of the fast subsystem,
a2 modification of the subspace method is suggested:

- use A-l instead of A in (18)
- order states so that ®y contains slow
variables and Xy the fast ones,

These changes amount to using problem formulation (6)
inscead of (5) and result in less computer work.
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Preservation of controllability in linear time-invariant perturbed
systemst

J. H. CHOW;

The controllability of systems with weak connections is studied. A necessary sud
sulfficient condition for a singulsrly perturbed system to be strongly cuntroilable is
obtained. The controllability invariance of the slow subsystem of & singularly
perturbed system dus to s class of fast feedback controls is shown.

1. Introduction

Systems with small parameters are common in control problems. These
small parameters, with values proportional to a small positive number u,
represent weak connections or parasitics (Desoer and Shensa 1970). In
networks, for example, they are the stray capacitances and lead inductances,
which induce high and low frequency behaviour. In this paper the dependence
of the controllability on 4 is discussed for regularly perturbed systems (O'Malley
1974) where the system matrices are bounded for u=0, and for singularly
perturbed systems (Q'Malley 1974, Kokotowic et al. 1976) where the system
orders are reduced as u—0. It is shown that these systems may lose their
controllability without weak connections and the loss of controllability is
investigated by using Jordan forms. A necessary and sufficient condition for
a singularly perturbed system to be ‘strongly controllable ' is obtained.
Furthermore, the controilability of the slow subsystem of a singularly perturbed
system is shown to be invariant to a class of fast feedback controls, and hence
we can neglect the fast subsvstem if it is stable. These results clarify those
obtained by Kokotovic and Haddad (1975), Kokotovic and Yackel (1972) and
Chow and Kokotovic (1976 b). The presentation in this paper is aimed at
giving a structural interpretation of the controllability (Lin 1974) of perturbed

systems.

2. Weakly and strongly controilable systems
Consider a linear time-invariant perturbed system

2w A(u)z+ Bluyu (1)

where the state z is an n-vector, the control » an m-vector, u a small positive
parameter and .A(u), B(u) are matrix polynomials in x which are bounded at
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w=m0. System (1) is regularly perturbed (O"Malley 1974) and letting u=0, {
that is, eliminating the weak connections, it becomes the unperturbed system . i

tmdZ+ Bu (2)

where 4 = 4(0), B= B(0).

It is known (Lee and Markus 1967) that the set of all controllable pairs
(d, B) of system (2) is open and dense, that is, if the pair (4, B) is controllable,
then there exists a positive u* such that the pair (4(u), B(u)) is controllable '
for all ue{0, u*). Here we show that controllability of the perturbed system 1
(1) for u >0 does not guaransee the controllability of the unperturbed system
{2). A counter example is the system

EN l‘-s 0 0 0 Trxﬂ r,n
I" 0 -l 0 0 x, 1
- + u (3
Z, 0 0 =l~p 0 zy 1
L 24 L 0 0 0 -1=-2u =] L1]

which is controllable for xe(0, 2), but is uncontrollable at =0,
TUsing a Jordan form transformation £=S(u)z with S(u) nonsingular and
bounded for » small and non-negative, the perturbed system (1) becomes

e

~

2 8(u)d (u)S=Nu)E + S(u) Blu)u

s

A 0 Gy(w)
f - Tolw) 2+ G,g,‘) u (4)
I o Sw]  LGdw

where J,(u), i=1, 2, ..,k are Jordan blocks. Note that the unperturbed
system of (4) is also the Jordan form of the unperturbed system (2) because
S(u) is continuous with respect to p. Eliminating the weak connections in
{4), the O(u) elements in the matrices &,(u) will become zero, and if the eigen-
values of the Jordan blocks J,(u) and J,(x) differ only by O(u), J,(0) and
J,(0) will have the same eigenvalue. If the last rows of the matrices G,(0)
corresponding to J,(0) having the same eigenvalue are linearly dependent.
. then the unperturbed system of (4) is not controllable (Chen 1970). For ‘
- example in system (3), we have G,(0)=[0] and hence the state x, is ' 1
uncontrollable. Furthermore, J,(0), i=2, 3. 4 have the same eigenvalue and -
since G,(0), i=2, 3. 4, are linearly dependent, the controilable subspace of the
states I,, T, r, is only the subspace z, =z, =z,

We define the perturbed svstem (1) to be * weakiy controllable ' if it loses
its controllability when the weak connections or parasitics are removed. In
the terminology of Lin (1974), the unperturbed svstem (2) of a weakly con-
trollable svstem (1) can be structuraily controllable as it regains its con-
trollability by a slight perturbation. On the other hand, we define system (1)

oAl o Ko b .
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Controllability of systems with weak connections

to be " strongly controllable’ if its controllability is maintained at u=0.
From this definition and that of Lee and Markus (1967), we conclude that the
perturbed system (1) is strongly controllable if and only if the unperturbed
system (2) is controllable.

A property of weakly controllable systems (1) is that controls with gains
of the order of L/u or higher are required for the placement of the weakly con-
trollable eigenvalues. For example, placing the pole -3 of system (3) at
~ 8, the control u= —(1/u)x, is required, while placing the poles -1, -1~
~-1-2uat =2, -3, —4, the control

- 2,8 - 2 _ 4,3
ua—iz‘+(6 11p +8u p.)zs_(3 1lp + 122 = 4u3)
u? @ :

2
W
is required (Mayne and Murdoch 1970). It is of practical importance that these
undesirable situations involving large gains can be revealed by investigating
the unperturbed system (2).

Z, (8)

3. Singularly perturbed systems

In this section the controllability of a singularly perturbed system as u—0
is discussed with respect to its slow and fast subsystems (Chow and Kokotovic
1976 b) because its system matrix is unbounded at u=0. A necessary and
sufficient condition for a singularly perturbed system to be strongly controllable
is obtained.

A linear time-invariant singulariy perturbed system is modei:ed as

g dy(uly+ Az + By(uyu (84)
pim Ay (p)y + Ana(n)z + By(p)u (85)

where the states y, z are n,, n, vectors, the control » an m-vector and x a small
positive parameter. A (u), Biu) =12, j=1,2, are matrix polynomials
in u where d,,(0), B;(0), which are denoted by 4,;, B;, are bounded and d,,
is non-singular.

We first define the slow and fast subsystems of the singularly perturbed
system (6). It is known (Kokotovic and Haddad 1975) that system (6)
possesses slow modes with n, small eigenvalues of magnitude 0(1) and fast
modes with n, large eigenvalues of magnitude 0(1/s). Assuming that the
transient of the fast modes is instantaneous, that is, letting u =0, we obtain
from (8) the reduced order system

yl.Allyl+Alfz!+Blu1 (7a)
O-Anyl"'Aazs"'B:“s (7b)

where the subscript s denotes the slow modes. z, can be solved from (7 5)
and its subatitution into (7 a) yields the slow subsystem

"‘-Aoa*‘Bou, (8)

where s=y,, 1, is a control of slow variables only and
domdy~dypdygtdy (9a)
B°- Bl—Alz‘izﬂ-lBt' (9 b)
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On the other hand, assuming that the slow modes are constant during the
fast transient period and the perturbations in A,(u) and By(u) are small, the
fast subsystem is obtained from (7 b) as

}Lf- Aggf+ B,u' (10)

where f is the fast part in z and u, is a control of fast variabies only. For
@40, the fast sysbsystem (10) is controllable if and only if the pair (d,,, B,) is
controllable.

Since the eigenvalues of 4, and .,/ are far apart for u sufficiently small,
the following lemma holds.

Lemma 1

If 4,y is non-singular and if the subsystems (8), (10) are controllable, then
there exists a x*>0 such that the singularly perturbed system (8) is con-
trollable for all xe(0, u*].

Lemma 1 is kaown from the work of Kokotovic and Haddad (1975). Here
we show that the controllability of the singularly perturbed system (8) for u >0
does not necessarily require the controllability of the subsystems (8), (10).
To illustrate this possibility, consider the system

M N

(shown in Fig. 1) which is controllable for ue{0, 1). For u>0, the state z is
not equal to the control u but is tracking it with a small time delay, and hence
the state y is controllable. But letting u—0, the control for the state y is
eliminated and the slow subsystem §= —s is uncontroilable. Note that the
fast subsystem is controllable because there is a strong dynamic connection
between the control » and the state z. This strong dynamic connection is
different from the weak static connection in the perturbed system (1).

| |

! ‘ f

Figure 1. Block diagram of system (11).

Another example is the control of the fast subsystem through the slow
subsystem. The system

2T

{(shown in Fig. 2) is contronllable for x>0 but its fast subsystem uf= -f is
uncontroiiable. In the complete system (12), the connection between the
control « and the state y is a strong connection by itseif, but it acts as a slow
filter such that the fast transient in the state z is weaklv affected by the
control .

[ U
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Controllability of systems with weak connections

Figure 2. Block diagram of system (12).

Similar to the perturbed system (1), weak connections may also cause a
singularly perturbed system (8) to lose its controllability as u—0. The system

/] -1 0 0 y 1
2, =} 0 -1 0 i+ 1lu (13)
gty 0 0 =l-u]lz 1

is controllable for ue(0, 1). Howsver, the state z, is connected to Z, through
a gain of —1/u~1 and the gain —~1 is a weak connection because it is small
compared to the gain - 1/u for u close to zero. Hence the fast subsystem

[#f; R FANE

- + u (14)
Ffs] [ 0 - l][f:] [1}
is not controllable.

Although the strong dynamic connections in systems (11) and (12) are not
weak connections by themselves, they create weak connections when combined
with other parts of the systems, which can be revealed by a proper transforma-
tion of the singularly perturbed system (8). Since d., is non-singular, there
exists a transformation :

£ y
[ ]-T(#) [ ] (18)
n z

with T'(u) bounded and non-singular for 4 small, such that system (68) becomes

- -+ u (16)
7 0 Jyw jln Gelw) J

where J,(u), J,(u) are composed of Jordan blocks and J(0), J¢(0), G4(0), &¢(0)
are bounded (Kokotovic and Haddad 1973). Note that system (18) is not the
Jordan form of the singularly perturbed system (8) except for u=1. Since
1T(u){ =0(1), the pairs (J,(0), G4(0)), (J((0), G¢(D)) can be obtained through
transformations of the pairs (d4,, By), (44, B,), respectively. Thus if the nairs
(o) Gow)), (Jo(n), Gy(n)) maintain their controllability without weak
connections, then the subsystems (3), (10) are controllable. Hence the study
of the controllability of a singularly perturbed system for p—0 reduces to the
study of weak connections in the pairs (J (), G (x)) and (J (), Gylu)).
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Consider the systems (11)-(13) in the form of (16). For system (11),
G, () = /(1 = )] and hence its slow subsystem is uncontrollable as G,(0)=(0].
For system (12), Gyu)={—ui(l~pu)] and hence its fast subsystem is un-
controllable as G,(0)={0]. Since the eigenvalues are the same in

-1 0
Jelu)= (an
0 =l=u

at u=0, the controllable subspace of the single-input fast subsystem of (13)
is only the subspace f, = f,.

Similar to a perturbed system (1), we define the singularly perturbed system
(6) to be weakly controllable if it loses its controllability as u—0, and strongly
controllable if it maintains its controllability as u—0. Combining this defini-
tion and Lemma 1, the following theorem is immediate.

Theorem 1 .

The singularly perturbed system (8) is strongly controllable if and only if
its subsystems (8), (10) are controllable.

Note that the placement of weakly controllable eigenvalues in singularly
perturbed systems (8) requires controls with gains of the order of 1/u ot higher.
For example, placing the pole —1 of system (11) at — 2, the control

um(l=1jupy~z (18)

is required. Hence our definitions of weak controllability for the perturbed
system (1) and the singularly perturbed system (6) are consistent in this sense.

The above discussion of weak and strong controllability of singularly
perturbed systems (8) complete the results presented by Kokotovic and
Haddad (1973). Itisimportant to note that the separation of designs proposed
by Chow and Kokotovic (1978a, 1976b) for the approximate designs of singularly
perturbed systems (6) is applicable only when they are strongly controllable.
In addition to saving numerical computation, this method avoids dealing with
the ill-conditioned system matrices of (8). For weakly controllable singulariy
perturbed systems, exact designs are possible, but their computations are
often numerically unstable. Hence in practice, these systems are undesirable.

4. Invariance of slow subsystem coatrollability

Examining the singulariy perturbed system (68) and-its slow and fast sub-
systems (8), (10), we observe that to change the dynamics of the subsystem
(10), we need the fast feedback control

umy+ Fz (19)

where | F) =0(1) and (d,,+ B,F) is non-singular. System (8) controlled by
(19) becomes

g= Auply +{do(p) + Byu) Flz+ By(pv (20 a)

pdm gy (u)y + [Aaalp) + By(u) Flz + By(piv (20 3)

fed o B

—
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and its slow and fast subsystems are

dm dg*s + Byy, (21)
uf =(Agy+ BoF)f+ By (22)
respectively, where
de*=s A = (djs+ B F)(dyg+ B F)"tdy (23 a)
By* = B, = (d3+ By F)(d s+ By F)-1B,. (23 b)

Since the state : contains a slow part as well as a fast part, the fast control
(19) also changes the slow subsystem from (8) to (21) whose dynamics is very
much different from that of (8). However, the controlabillity of the slow
subsystem of (8) is preserved with the fast control (18).

Theorem 2

If 4. and (d,4+ B, F) are non-singular, then system (21) is controilable
if and only if system (8) is controllable. Furthermore, if | F'| m0(1), the slow
subsystem controllability of the singularly perturbed system (8) is invariant
to the class of fast controls (19).

Proof
For system (8) we construct a non-singular transformation J/ of the control
u,, such that the new control is = J/-1u,, and then introduce a partial feedback
w=v,+ s, such that system (8) becomes
-5-(.40+B°MN)8+B°M0,. (24)
Let M =]~ F(dy+ ByF)~1B, such that J/-'=[ + Fd,~'B,. Then using the
identity
Ay I = BoF(dgy+ By F)-' = (dgy+ B, F)! (25)
we obtain
By = (B = d13d o™  By)[{ ~ Fd g+ By F)7'By]
= Bl - Axgdlzg-l[I - B:F(oig: + BQF)-I]Bg- BIF(S{QQ + BQF)—LBQ

=B,*. (26)
Lbﬂ N’ - F.i,g-ldgl. Then
Ao + BQJI.V L J Ao + BQ‘N

mdy = (dyg+ B Fdyg~tdg +(d+ By F)
X (dag+ ByF )™ BoF dpytdy
- ‘411 - (All + B’,F)[I - (Azz + B’F)-IBQF]Jlg"l.".s!
=do* (27)

Hence system (24) reduces to system (21). Since the transformation w=
M-y, and the partial feedback control w=v,+¥s do not change the coun-
trollable subspace of system (8), the columns of (By, 448y, ..., 4"~ B,) and
1Bg*, 49® 8, ... dy*™1~15;*) span the same subspace. and the first part of
the theorem is proved. In addition. if |F%=0(1), then system (21) is the
slow subsystem of the singularly perturbed system (20), and hence the con-
trollability of the slow subsystem of (8) with feedback (19) is preserved.
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Theorem 2 shows that to determine whether the slow subsvstem of (8) is
controllable or not, we only have to test the controllability of the pair {dy*, B,*)
for a single value of F. In addition, we can arbitrarily place the fast poles
(deg+ By F)/u without affecting the controliability of the slow subsystem.
I (d,,+ B,F) is stable, we can neglect the fast subsystem because we are
able to control the slow subsystem for any disturbances of the type (19).

Theorem 2 alao clarifies the issue that different sufficient conditions are
obtained by Kokotovic and Yackel (1972) and Chow and Kokotovic (1976 b) for
the existence of the near-optimal solution to a singularly perturbed regulator
which is decomposed into a slow and a fast regulator. In the paper by
Kokotovic and Yackel (1972) the fast regulator problem is solved at the first
stage and then the slow regulator problem is solved at the second stage which
requires the controllability of the pair (d,*, By,*). In the work of Chow and
Kokotovic (19768 b), due to the separation of designs, the solution of the slow
regulator problem requires only the controllability of the pair (44 B,). By
Theorem 2, these conditions are equivalent.

5. Conclusion

It is shown that a perturbed system will lose its controllability without
weak connections if it is weakly controllable. Pole placement of such weakly
controllable systems requires controls with large gains. A necessary and
sufficient condition for & singularly perturbed system to be strongly controllable
is the controllability of its slow and fast subsystermns. In addition, the con-
trollability of its slow subsystem is invariant to a class of fast feedback controls.
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Uniform Asymptotic Stability of
Linear Time-Varying Singularly
Perturbed Systems™

by s. H. JaviD?

Department of Electrical Engineering
Coordinated Science Laboratory
University of lllinois, Urbana, [llinois 61801, U.S.A.

ABSTRACT: An upper bound for the singulur perturbason parameter is found for the
uniform asymptotic siability of singularly perturbed linear time-varying systems.

L Introduction
Svstem (1)

x"Au(l)X*‘Alz(l)Z x(l,,)=x0

(H
= Ay {tx+ Az z{ty) = 2,

where x and z are n- and m-dimensional vectors respectively, u is a small
positive scalar and t, is any initial time, is referred to as a singularly perturbed
system. The “reduced” system

£2(AWD=Ap(DAR) T Ay (NER A £(t,) = x, (2)

is a singular perturbation of (1) resulting from setting uw =0 and is here
assumed to be uniformly asymptotically stable.

We make the following hypotheses concerning (1).

{H1) The matrices 4,(0)i, j=1. 2 are bounded and have bounded first
derivatives for all «.

(H2) The cigenvalues of Agy(¢) satisfy Re(A () <-y <0 for all ¢ where v is a
constant.

It has been shown (1), (2) that under Hl and H2 where system (2) is
assumed uniformly asymptotically stable, system (1) is uniformly asymptotically
stable for w sufficiently small. Under these hypotheses this paper finds a bound
1 * such that for w & (0, w*), system (1) is uniformly asymptotically stable.

It is well known (3) that {or u sufficiently small, a condition for the motion
Z(0) of (2) to be an () approximation of x(¢) of (1), is the uniform asymptotic
stability of the “fast’”” subsystem

wimAg(ni (3)

* This work was supported in part by the U.S. Air Force under Grant AFOSR
73-2570 and in part by the Encrgy Research and Development Adminisiration under
Contract U S. ERDA E(49-1R) 2088,

* The auther s preseatly with Systems Control, [nc., Paio Alto, CA. 94304
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Thus it is of interest to be able to determine the stability of (3). Ciearly H1 and -
H2 alone are aot enough for (3) to be stable. The existence ol a o such that
when H1 and H2 are satisfied and u € (0, wo), system (3) is uniformly :
asymptoticaily stable has been shown (4). From Theorem 12 of [(6). p. 117]a ‘-
bound for the stability of (3) can be obtained. Another bound is found here in
Theorem [ which is less conservative for 2 wide class of systems.

Before stating the main results of this paper several facts should be pre-
sented. First, under HI,

[A2(t) = Axa(ta)l S B(t = to) (4)

where 8 is a positive constant equal to the maximum of A,,(¢) for all ¢ by the
mean value theorem. Also for ¢ =1, there exists a K such that

exp (An(to) t—;-[g) ’ sKexp (- y(-!i—'ﬂ» ()

when H?2 is satisfied (7).
Let ®,a(, 1) be the state transition matrix of (3) and define @ft, &)

@ (6 to) & Dy(t, to) = exp (Au(:o)(i-;—"‘!)). (6)

Lemma 1. Assume H1 and H2 are satisfied and 4 = a?/8K where 0<a<y.
Then for » € (0, &), (L t,) possesses the properties

ollor o) =0 ™)
uK?p —of
(e ‘°’“%=<a=-,u<m°“’( ) )

where g=y—-a>0.

This {emma which is proved in the next section gives an estimate {or the
error [p(t, ly)| which results from using exp (Aa(t)({1 = t,)/ & }) to approximate
@42 (1. to). Thus for u & (0, &) system (3) is uniformly asymptoticaily stable. ﬁ
Thatis, as = 0. D5(1 to) = exp (A (t)((t=16)/ k) and we may approximate
the solution of (3) by the solution to the time-invariant system

wi= Agpte)  2(ty) =z, 9)

obtained from (3) by fixing Aaa(t) at . Since Aq(ty) is a constant matrix we
can always solve for exp (Aa(t){(t = to)/ ) whereas it is oiten difficult to find 2
closed form solution for @44(¢, ).

The upper bound on a in Lemma 1 is y and consequently we state Theorem
[ which is proved in the next section.

Theorem [

Assume H1 and H2 are satsfied and wo= y*/BK. Then for u & (0. my)
system (3) is uniformly asymptoticaily stable.

ff we set

it

oo |

F=yip. B=Blu (10)

lournal ot The Franklin (nstitute [ 7
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and
- 1
Axnl) = :Au(‘) (11)

we obtain the time-varying system
w=An(Dw  wit) =2z, (12)

from (3). From Theorem [ for 8 < $¥/K, (12) is uniformly asymptotically stable.
The bound obtained for (12) in [(6), p. 117] is B<y %K In K. Thus for
systems where K > e the bound obtained in Theorem [ is less conservative. It is
interesting to note the correspondence between small w in (3) and slow-varying
matrices Aj,() in (12).

In the proof of the next theorem we treat the transtormed system

= A (tx+A ()0

ph = L)+ LIOA()x+ Ag(t)n + wl(DA (00 ()
which is a result of applying the transformation
n=z+An(D T Ay (xdz+L(1) (14)
to (1). Here A, is as defined in (2).
Theorem [l

Let (2) and (3) be uniformly asymptoticaily stable systems so that their state
transition matrices satisfy (15) and (16) respectively

|©1(4 to)| = Kyexp (= o, (¢=to))
Vig, tZ 1.

[¢u(‘, zo)t s Kz exp (- 0'-1(£;_‘n>). (16)

(15)

If constants M,, M,, and M, exist such that for all ¢
[A(ISM,, [LIOA(OSM,, Lo+ LA (DS M,, (17)

then for all w € (0. ), where u, = o 02/(0, KoMy + KM Ky M), system (1) is
uniformly asymptotically stabie.

The new resuit in this theorem is the explicit expression for u,. For linear
time-invariant systems (5, 3, 10). Zien (10) obtains a bound for & which when
integrated with (15), (16), and (17)is u,.

The next corollary follows immediately from Lemma ! and Theorem I[I.

Corollary 1. Let w*=min (g, &,). If system (2) is uniformly asymptotically
stable, then H1 and H2 guarantee that for u € (0, u™®), system (1) is uniformly
asymptotically stable.

In (1) and (2) the existence of x* is shown via Lyapunov functions.

The new results of this paper are the explicit bounds wg, &, and w* and the
expression bounding le(t. 1,)|. Section Il contains the proofs of Lemma 1 and
Theorems [ and [I. and Section [II gives an example.
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IL Proofs

In the proofs we will use the following lemma.

Gronwall's Lemma (6): Let A{t) be a real continuous function and y(¢) a
non-negative continuous function on the interval [f, ,]. If a continuous
function y(t) has the property that

y(t)SA(t)+I y(s)y(s) ds (18)
to

for (=t s, then on the same interval

y(t)SA(t)+I A(s)y(s) exp (J' (0 dr) ds. (19)
Proof of Lemma 1:
The definition of (1, t,) implies (20) and (21),
#(to, 19) =0 (20)

. Alallt Axn(t)-A t—1t,
¢(‘v [0) --2—'(2 ‘P(f, [o)+—22-£—)-—-£-2(—‘°_) Cxp (Azz(‘u)(‘_-'))- (21)
® N @
Applying the variation-of-coastaats formula to (21), we obtain

ot t0) =§ j exp (Au(r.»(‘—;—’))mzz(r)

to

- Azlto)) exp (An( ‘o)('_.-%rg)) dr

1 f Ty

+—j (6 N Anl) - Anlto) xp (Aseli =) ) ds. (22)
M Jie “

We let y = a + o, muitiply (22) through by exp (o((i = to)/)) and let n(t. ty) =

exp (o ({t =10l )} @(t 1o) to yield:

n{%, to) -i- L exp (a(%‘-’)) exp (Au(ro)('—;z))(An(f)

=\ 1 ' T=1n
-A A ) | — - - T ——
n(ro))exp( zz(‘))( " ))df “L it >exp(0( ))

X (A22(7) = Agaltg)) exp (Auun)(i-})) dr. (23)
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Uniform Asymptotic Stability

We next construct the successive approximation

(g ro>=-f;L' exp (o =2 == )exP(Azz(‘o)( ))Aut)

= Azlto)) exp (Au(fo)(l‘:—@)) dr +% J.: n* ¢, ) exp (a’(?; ‘°))

X (Aga(r) = Agalto)) exp (An(:a(l;—“)) dr (24)

with initial guess 7'®(t, t,) = 0. The initial guess corresponds to the assumption
that for w small (3) has a solution near to that of the time-invariant system (9).
Substituting (4) and () into (24) and integrating for n'"(s, t,), we obtain

P lo)lsyJ;’B exp (_a(t-;q)))(l - ) ;.;lf:f (25)

for all ¢, t,, t = t,. Taking the difference between two successive terms for n, we
obtain

1 ¢
100 t0) = (s 1) = " I (6 7)=n“="( 7))

X exp (0’<%‘0))(Azz(f) = Aqa(ty)) exp (Au(fo)(f—;'[‘o)) d= (26)
Substituting in (4) and (5), yieids
In™* =V, to) = 01, 1)

J; It 7)==, =) BK( )exp( ( ;%)) dr. (27

Suppose for k=p

(6 1) =00 1) s C (28)
where C*) are constants. Then by (27)
[0 )= 1 i SEEF o @9)
for all ¢, t5 and t 2 t,. Since for k=1
" 1) =0, )i s 2 “Keﬁ. (30)
we have by induction
(e ) = 04, ro)lsz(““\ (a.e, ) (31)

Voi. 303, No. 1, January 1978




e

i

o e - Q*

- ;f:'?’?"':""“’f”“""“”’"m 3

e s

2PNy S L

S. H. Javid

Define p = uBK/a?. Since

It 1, 1) = ﬂ(k_-l)(lv )| S Z |ﬂm(" ta) = 77(“(" to)l

i=i

2 1~ k KZ
ctpie oo nEED) o (E)(ECD)

then for p<1 or p<a?/BK

. . 2 (KB wK?B
(k) = ok ) - =
Jimir ™4t il = i )= ""°)'51—p(a2e2) ErEE T

Thus for u < a?/8K the successive approximation (24) converges to a solution
which satisfies

uK3g
e 4
In(t, )s2 PP T (34
Now exp o(1=1ty/ 1)) w(t, to) = n(t, ty) and therefore
w2K’g (_ (t-m)) <
le(t, t°)|se‘(az-p.BK) expl|—=o =) (35)

This completes the proof of Lemma 1.

Proof of Theorem I: Define u,=v¥ /8K and a =i (uBK)+ %2 where ne
(0, wo). Then o=y —a >0 and for we(0, u,) equation (35) impiies that {3) is
uniformly asymptotically stable since the definition of a implies that a*~ uK3
is never equal to zero.

Proof of Theorem [I: Applying the variation-of-constants formufa to (13), we
obtain

st

x(t)=¢l(t,to)xo+J ® (1, 7)A i T)n(s) dr
to

Dos(t, YLITIA G(TIN(T) dT (36)

-

n{(r) = Dy(1, fo)no*f
te
[ Dot rHLI = L{71A (hx{7)d7

‘ta
where ng= z,+ Aza (o)A, (ta)x,. The bounds of Egs. (15), (16). and {17) imply

x(O1S K, exp (=, (¢ = ta))l xol "j Kyexp(=at~=mM in(s)dr (37)
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Uniform Asymptotic Stability

.

[n(0)ls K, exp (~‘ 0'2(5;“"0)) ol + I: K, °le (‘Vz(%:))Mz in(r)dr

+ j K, exp (-o‘;(l—;':))Ms x(n)ldr. (38)

| In this proof we apply Gronwail’'s Lemma to (37) and then to (36) to derive the
upper bound p, such that for u € (0, w,), {x(¢)f and In(0)f are bounded by a
! decreasing exponential. Letting w(t) = exp (o24w) [n(0)| in Eq. (38), yields
- w(l) s K, exp (ato/ 1) |00l +J Ky exp (s )M, [x{7)| dr +j KoMyw(r)d=
‘o o
. (39

- Appiying Gronwall's Lemma and integrating, we obtain

w(t)S K, exp (o2ta/ ) |nol exp (KyMa(t = t5))

+J exp (KoMt =) Kyexp (o) My Ix(2)|ds (40)

which yields

“’)(’)|$Kzexp("°'1("'fo))|"10]+J KM exp (= o5(t=7) [x(r)ldr (41) b
‘o ¢

where o3 = 02/ = K,;M,. In the following we will need o > 0.
Substituting {41) into (37), yields

[x(0)f s K, exp (=0 {t~ o)) |4l

+J K exp(=o,(t=t)M Ky|nol exp (= asiz~ty)) d~

J-I K,exp (=c(t=*)M, (f KzM,exp(—a;(l-s))Ix(sylds) dr (42)

o to
which implies

See corrections

Y « 1! SV Kain,
fx(I)ISKlixné—é'—l‘mexp(—a,(t-rn))*m on the next page
Ty =T Ty=

K M, K M,

1

x exp (=os(t=1o)) + j exp (=o3(t=m)xis)dr. (43)
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Let y(1) = exp o3¢ |x(t)], apply Gronwall’'s Lemma and integrate to obtain
KM, K3 |94) ( gy
< -
‘x(t)‘ 0’3- l KlIW|K1l»l3

+ (K. lx“l_ﬁﬁ"\_’{:_h_d)(“i) exp (= a(t=1)) +(

)exp (= st = to)

0'1"'10‘

Ty =Ty My(oy=-0ay)

| K.MK KM, KM
-;(Kl I,,O,__t_i._z.l"_ﬁ)) exp (_'_..T'r_g_z _,3(,-,0)) (44)
1 .

Ty~ 0,

where
K M KM,

o

(45)

TROy~a,—

Thus for (13) to be uniformly asymptotically stable, we need inequalities (46)
and (47) to be satisfied, i.e.

03‘2- K21W2>0 (46)
“
oy - MM, (a7)
T
Let
T2

= .
T K2M1+ KlRW1KIIW3
If we(0,u,) inequalities (46) and (47) are satisfied and cherefore (13) is
uniformly asymptotically stabie which implies that (1) is uniformly asymptoti-
cally stable.
IIl. Example

The system

£ -3+cost 1 0 x
[ui.]*[ 1 —-1+1.lcos*t 1=-1.1sintcos t] [z,] (48)
Wiy 0 ~1-1.1sintcost =1+L.lsin*t JLlz,

has the reduced system
F=(~3.474+cost—1..2"sin 1)% (39)
and fast subsystem
. -1+1.1cos®: 1-1.lsintcust] i
“n’[~l—l.lsintsinrcos: —1+l.lsinern' (50}

When uw = | an unstable fundamenuai solution of (30 is

0.1 -r

[ <08 ! e sint

®,(1,0)= . S
2t [- e®Vsint e cos r:\ {
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CORRECTIONS OF EXPRESSIONS (42) through (47)

In (42) variable T was mistakenly taken as t. Instead, (42) should

read
~o. (t-t ) t -o,(t-1) -, (t-t )
Ix(t)szle 1o Ixol +f Kpe 1 Mlelnole 3 e
t:O
t —ol(t-t) T -03(1-5)_
‘*{ Kle Ml({ K,Mqe I'x(s)|ds)dt.
(o} [+

Replace (43)-(47) by

Klnllenol}e-ol(t-to) K.M_K lnol -0y (t-t )

1172
|x(e)| s (K |x | - +
1o 9371 0370
-0t t (0,70,)T T 0,8
+ K1K2M1M3 e 1 (f e 13 ( e 3 [x(s)|ds)ds. 3)
% %
Integrating by parts (47) becomes
-0, (e-t ) o4 (t=t ) £ g3 ) o0l
[x(t)] < P.e + Pe + P f [x(t)]dt
1 2 3 g,-0
t 173
(44)
where
Pl - Kl‘ b's - K_.l::ﬁ-az_l:‘i P2 - _K_l_b}g"KE—lono{ P3 = KleMlMB.
-0 371 3771
Take G3> 01 (condition I) (44) can be written as
-a, (t=-t ) -0, (t-t ) P t -0, (t-1) ‘
[x(t)] < Ple 1 ° +p.e 3 ° 4+ 3 f e 1 lx(r)[dr. (45) :
2 o ,~C 3
3J71e {
° |
Olt i
Let y(t) =e |x(t)|, apply Gronwall's lemma and integrate to obtain '
I
o, (t-t ) -0, (t-t ) -(g,=P,)(t-t ) -g,(t-t )
lx(t)l <Pe 1 o L p e 3 ° L p (e 1 4 o' _ o1 o ]
1 2 1
v, (t-t ) -(g,=P,)(t=-t ) (46)
+ P2P4[e 3 °' Lo 14 °" ]




- ‘”q!..é.:w.,_-

o

a W

where

Py

37%

P4 = g

Thus for (13) to be uniformly asymptotically stable we need the following

inequalities to be satisfied

01 > Pa and 03 > cl
i.e.
9 9
— KM >0, =» Yy < ————=_ (46a)
u 22 1 01+K2M2
K. K. MM G,0
al>E-—L—3—l—3—— - w<— 21 . (46b)
2 O+ KM, 0. +K. KM M
. KZMZ-UI 1 221 12713
From (46a) and (46b)
0,0
by = 12 47)

3
a0 Kty + K M KoM,

Petros Ioannou, CSL
November 1980
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 Uniform Asymptotic Stability

even though the eigenvalues of Ay, (¢) have real parts = ~(.45 for all ¢ {9, p.
147). Since system (48) satisfies H1 and H2 and system (4-° is uniformly
asymptotically stabie, we know that for u sufficiehtly smail. both systems (49)
and (48) are uniformly asymptotically stable. In this example we find bounds
ko and u,.

Fixing the coefficients of the “fast” subsystem at any ¢ =, we obtain the
linear time-invariant system

(52)

. -1+1llcos®ty 1+ 1.1sintcost,
BOZl cl=~t.0singgeosty =1+1.1sin*¢

The state transition matrix for (52) is

= Q“(‘") cos 0-8357- 61 l(‘())) a|z(‘()) Siﬂ 0835.‘)
exp Azz(‘(’)‘r [ a11(f0) sin 0-8351’) dzz(lo) COs 0.8357 - 522(‘0)) (53)

where v = (¢ = ty)/ 1

@y, (1) = (1.377 = 1.617 sin? to + 1.734 sin* )3,
a,3(tp) = (1.198 = 1.317 sin ¢, cos tg),
az,{ty)=(=1.198 =1.317 sin t, cos tn).

azaity) = (1.377=1.617 cos? 1, + 1.734 cos* t,)},
5.ty =tan™"(0.614 - 1.317 sin? 1),

822(t0) =tan~'(0.614 = 1.317 cos? 1,).

Using as a norm (Sa(1))} we find that K = 7.358 and y =0.45. Correspond-
ingly we find the max A, (¢)=1.355=8. The values of 3. K and vy and
Theorem [ imply that we=0.0177 and that for 0<p <, System (3.3) is
uniformly asymptotically stable. The bound obtained using Theorem (2 of ((6),
p- 117] is 0.0089 which is approximately § of uq.

We next find a bound for the stability of the fuli-order system (48). From
Lemma 1 we obtain

! _._”'.ISB_.) -
D )l s K<l+ze:(az-uKﬁ) exp(-ot/u). (54)

If we let @ = o = y/2 we obtain 2 value for & of 0.00442. Fur u € (0, ) we
may use the bounds of (54) for ®j,(t ). This saves the work which would be
necessary to derive ®y,(1, ). Thus

K
e = K{1+ 2T )
and oy = o =0.225. From Eq. (49)
|E(t) S | xo} exp (=1.89(t=1tq))
which yields X =1 and o, =1.89.
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Values for M,, M,, and M, are 1, 1.956, and 7.09 respectively. Substituting
these values into

ns 7,03 —_

yields p, =0.00317. Since u, <2 we know from Coroilary 1 that for u €
(0, ;) system (48) is uniformly asymptotically stable.

This example illustrates the use of Lemma 1, Theorems ! and (I and
Corollary 1 in obtaining the stability bounds of u in systcm (48). The bounds
K; and o, are direct results of Lemma 1, thus making it unnecessary to
determine the state transition matrix for the fast subsystem directly.

IV. Conclusion

The main resuits of this paper are contained in Lemma | and Theorems [
and II. These provide bounds for the stability of the *“fast’” subsystem (3) and
the full-order system (1). These bounds are found through consideration of
reduced-order systems of order m and n. Thus the uniform asymptotic stability
of an n+ mth order system can be shown while considering only the reduced-
order system and fast subsystem. Furthermore, the state transition matrix of
the “fast’” subsystem can be approximated by the more easily determined
exp (Aza{to)({t =)/ ) to within (¢, &) error. The bound oun ¢(4 ¢) found in
Theorem | is a byproduct of the derivation of the bound u,. The fact that
@(t ¢} is 0(w) and is exponentially decaying with an O{u) time constant is aiso
of use in proofs of various optimality results for time-varying singularly
perwurbed systems. For instance it may be used in extending results already
proved for linear time-invariant systems to time-varying systems. Thus. this
paper unifies the work of a number of authors and adds bounds for u.
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Stability of Singularly Perturbed Systems and Networks
with Parasitics

R. R. WILDE anp P. V. KOKOTOVIC

Abstract==][t is noted that some recent stability results for singular
perturbation problems are special cases of earlier theorems by
Klimughev and Krasovskii, A simplified proof of one of thess
theorems is given.

In [1]-[3] Descer and Shensa present s stability analysis of
singularly perturbed time-invariant systems and apply it to net-
works with small and large parasitics. The purpose of this corre-
spondence is to point out that Klimushev and Krasovekii (4] en-
compass the stability theorems in [1)-[3]. As an illustration of this
we quote and prove a theorem for linear time-varying systems,
which represents the stability part of {4, theorem 1]. It is hoped that
the familiar style and notation of the proof given here will contribute
to better understanding of the little-known results of (4].

The theorem that follows deals with uniform asymptotic stability
of the (n + m)-dimensional system

2 = Au(t)z + Au(t)s
pt = An(t)z 4+ An(t)s 1)

where 4 is a small positive scalar and a dot denotes derivative with
respect to t. Stability properties of (1) for u sufficiently small are
deduced from stability properties of two suxlh‘ry systems: the m-
dimensional system

§ = An(0)g (2)
where 8 > 4 is a fixed parameter, and the n-dimensional system
P = [Au(t) = 4u()An~N)An(t)]p. 3)

Theorem: If

1) all the matrices 4,;(t) in (1) and their derivatives are bounded
and continuous functions of £ forall2 > {4,

2) the real parts of all the eigenvalues of An(#) are smaller than
s fixed negative number for all # > &,

3) system (3) is uniformly asymptotically stable,

then there exista a u® > 0 such that system (1) is uniformly asymp-
totically stable for all » € (0, u*].
Proof: Define 8z and #y using

=2 + &
=g+l — An"ldndz (4)

where (z,, 2;) and (2y, 23) are solutions of (1) corresponding to two
different initial conditions. (For brevity, argument ¢ is dropped when
no confusion results.) Upon substitution of (4) into (1),

§2 = Riz + Andy
- “:A.ay + (($ + SRYz + SAudy) )

where B = An — Audn~'An, § = An-'4u. Clearly, when (5) is
uniformly asymptotically stable, so is (1). Let M(8) be the unique
positive definite solution of
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An'(OM 4 MAn(0) = ~Ia (6)

for all # > ¢. Here and in (9) I, denotes a k¥ X k identity. From
condition 2) it follows that ¢’M(#)q is a Lyapunov function for (2).
Let the function p’N(t)p, whoee derivative for.(3) is —p‘p, be a
Lyapunov function gusranteeing condition 3). This function exists
by a well-known Lyapunov theorem, such as [5, theorem 3].

It is now shown that, for a sufficiently small positive x4, the function

w = 3’N(tMz + sy’ M(t)sy €4
is 8 Lyapunov function for (5) satisfying the requirements for uniform
asymptotic stability, such as the conditions of [5, theorem 1]. By
definition of M(t) and N(t) there exist continuous nondecreasing

functions « and 8 of the norm |3z, sy|| such that a(0) = 0, 8(0) = 0,
and

0 < alllaz, #l) < v < 8(ljsz, 3yl ®)
holds for all ¢ > f and all 32 » 0, 3y » 0. The derivative of w for
(5)is
W =

[az]'[ A NAu + ($ + sm'M.] [sz]
sy L (Ndu + (S + SRYM)’ —(1/ulm+ L sy
' 9

where L = M + (SAu)'M + M(SAu). After substitution of 8 by ¢
in (6) and differentiation with respect to ¢, it follows that

M) - f AT O o (UM (L) + M(Odu(t))eA®D do.  (10)
[

Hence L is bounded for all ¢ > {4 and is dominated by —(1/u)m
when x is sufficiently small. Inspection of leading principal minors of
the symmetric matrix in (9) shows that there exists a positive u°

‘such that for all x & (0, u*], all¢ > Land alléz = 0, 3y = 0

w < —y(fz, syl < 0 (1)

where + is a nondecreasing function and y(0) = 0. Properties (8)
and (11) of w and w prove that (5) is a uniformly asymptotically
stable system forz € (0, u*].

The technique of this proof also gives bounds for perturbed
solutions and can be extended to nonlinear systems [4]. Some as-
sumptions made here and in [4] can be relaxed. Stability theorems in
{1]-(3] proven by a different technique are special cases of the theo-
rems in [4]. The resuits of {4) have remained unnoticed not only in
{1}-(3], but also in the book [6] and the survey (7]. A more general
result on asymptotic stability of singularly perturbed systems is
found in (8].
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Reduced order modelling and control of two-time-scale
discrete systemst

R. G. PHILLIPS}

A olass of linear shift-invariant discrete systems satisfying & two-time-scale property
is defined and & model satisfying this property is given. A pair of explicitly invertible
block diagonalizing transformations are used to obtain reduced order fast and siow
models analogous to the continuous singularly perturbed case. A deadbest approxi-
mation to the fast modes results in & reduced order siow model, and a * boundary
layer ' error in the original fast states. For control law design, the dual nature of
these block diagonalizing transformations allows partial or total eigenvalue placement
for fast and/or slow modes based on feedback designs for the reduced order slow and
fast models.

1. Introduction

Methods for approximate control of large scale systems have received a
great deal of attention in recent works. Of these methods, aggregation and
singular perturbations seem to be the most well known (Aoki 1978). The
analysis and control design of continuous linear singularly perturbed systems
has been well documented (Kokotovic ef al. 1976, Chow and Kokotovic
1976 a, b). The multiple-time-scale property of these systems has been used
in deriving reduced order models and control laws for high order * stiff * models.
Until recently, all the work done on systems possessing a multiple-time-scale
property has been on continuous systems. The area of discrete two-time-
scale systems has received little attention.

In this paper a class of discrete systems satisfying a two time-scale property
is introduced. A pair of block diagonalizing transformations are then derived
based on the properties of the two-time-scale model. The appealing feature
of these transformations is that they have an explicit inverse. This block
diagonal form is then used to obtain reduced order models for both simulation
and control design. A design procedure is given which allows all eigenvalues
of the higher order model to be placed at desired locations based on control
laws designed for the reduced order models. Finally, an eighth order power
system example is given.

2. Basic definitions
Consider the completely state controllable linear shift-invariant discrete-

time system
z,(k+1) Ay A Ttk B,
- + u(k) (1)
xq(k+1) Ay dgg ]| 25tk B,
Received 12 September 1979.
t This work was supported in part by the Department of Energy. Electric
Energy Systems Division, under Contract EX-76-C-01-2088 and in part by the
Joint Services Electronics Program under Contract DAAG-29-78-C-0016.

U S: Coordinated Science Laboratory, University of Ilhnois. Urbana, Illinois 61801,
JS.A.
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where z,(k)e RM, x (k) RM, u(k)eRM.
There will exist a basis such that (1) takes the form

z,(k+1) 4, 0 ([ =,k B,
- + u(k) 2
z(k +1) 0 4,]] x(k) By

such that, if
Al mjsx | Al 49|
A, &min [A(4,)]|
then
A< A,

The system (2) is not necessarily in its modal form, however, multiple and com-

plex conjugate eigenvalues are naturally grouped together in either 4, or 4,.
System (1) is thus said to possess a two-time-scale property if there is

sufficient ‘ gap ’ between the eigenvalues of 4, and 4,. Noting that

min |A(4,)| > | 4,7 (lower bound)
max [A(Ae)] < || 4l (upper bound)

The two-time-ascale property can be expressed as
I47~1> [ 4l 3

3. System forms and block disgonalization
A class of discrete systems possessing a two-time-scale property has the form

zy(k+1) 4y pHAR[aE] [B
-l S IREC) (4)

x,(k + 1) ’LjAu “Au .‘t,(k‘) B.
where A4,,~! exists, 0<j <1, and p is a small positive parameter and can be

defined as || Agl/|| Ay, -

he permutation and/or scaling of states necessary to put two-time-scale
continuous systems into specific forms is discussed in Avramovic (1979) and
Chow (1975). Our purpose now is to transform (4) into form (2) and show that
the resulting 4, and 4, submatrices satisfy the two-time-scale property of (3).

It will be convenient throughout the remainder of the paper to use the
following notation.

Ayympl=idyy, Ay=p'dy,, du=pdy ()

These substitutions will be made interchangeably throughout the remainder
of the text, depending on whether or not the relative magnitude of the sub-
matrix norms is needed explicitly.

For (4) to possess the two-time-scale property as has been defined, it will
be necessary that the spectrum of (4) consist of V, ‘ slow ' eigenvalues of magni-
tude 0(]| 4,,]) disjoint from N, * fast ' eigenvalues of 0(u) magnitude. Various
norm bounds can be derived to guarantee that (4) has this property (Feingold
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Reduced order modelling and control ’

and Varga 1962, Stewart 1971). Here, we apply a lemma from Kokotovic
(1975) and extended results in Arvamovic (1979) and Phillipe (1979) to achieve
a bound on u in terms of the submatrix norms such that (4) possesses the
two-time-scale property defined by (2) and (3).

Lemma
Given system model (4) let

AgmAgg— Ay 4, 4,y (8)

and define the scalars )
s=|dy,? “;n"» /= "*‘iuA_u'l“» a=|dyf, c=[d,1
by=f. “An"’ by=s. llAull' .dl’a+bt' ds'a+b-
It
d,
ogpu< c(dg + 8aby,) (7

Then there exists a unique Pfe R¥1<Vs gatisfying

. 2a
P <wr (1455 ) ®
such that
I.V.
2 < ), A 4range space (9)
Pt

is the invariant subspace of A corresponding to o(d4,,+ 4,,Pf). Moreover,
a(d) is the disjoint union of o(d,; — A, Pt)Uc(Ay+ PlAdy,). Also, if

o<y <c——(d,’+8ab,) (10)
there exists a unique P RV satisfying
2a
=), ————
1P <o (14025 an
such that
Iy,
R (12)
(PyT

is the invariant subspace of AT corresponding to o(d,, + P°4,,). Moreover,
a(d) is the disjoint union of o(d,, + P*d,; ) Uo(dee— A4, PY).

Proof

An application of results obtained in Avramovic (1979), Kokotovic (1875)
and Phillips (1978). An outline is given in Appendix B.

Consider now the transformation on (4)

Ya(k) = zo(k) + Pz, (k) (13)
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where P! is selected such that
P! transforms (4) into
zy(k+1) A4,,-A4,Pt 4,y z,(k) B,
- " u(k) (15)
Ysk+1) 0 Agg+ P4, || y(k) B, + P'B,

To complete the block diagonalization, let

yolk) = 21(k) — Qtys(k) (18)
where Q! is the solution to the Lyapunov equation
(All—AltP‘)Qt—Q‘(A”"'Pta41’)+Al’so (17)

Iterative techniques (Avramovic 1979, Kokotovic 1975) for obtaining
solution to (14) and (17) are briefly reviewed in Appendix A. Convergence of
the iterative algorithms is assured for every un satisfying (7). (13) and (16)
give a net transformation

[1,~QtPt —Qt]

ylk) = (k) (18)
| Pt I, |
which has the explicit inverse
[' Il Q! 7
z(k) = y(k) (19)
| - Pt I,-PQ!]

This will be called the ‘ F’ transformation. When applied to (4), this trans-
formation gives

Ay~ 4, Pt 0 (I-Q'PYB,-¢'B,
yk) +
0 Ao+ Pty P'B, + B,

If the d,, block has been removed from (4) first, a dual transformation to (16)
results which will be called the S’ transformation. Let

yalk) =z, (k) + Poxyk) (21)

ylk+1)= [ ] u(k) (20)

where P* is the solution to

Rs(Ps)Aa.'ll’—AllP'—P!4431P‘+P“An=0 (22)

P* transforms (4) into

nik+1) A,y + Prdy, 0 k) B, + P*B,
= + u(k) (23)
ok + 1) dgy Agg— dg P || x,(k) B,

To complete the block diagonalization

Yalk) = 2,70 — Qoy, (k) (24)
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where @ is the solution of the Lyapunov equation
(dyg— A P)Q*~ QYA+ Py )+ gy =0 (25)

Again, convergence of the iterative algorithms for obtaining solutions to
(22) and (25) is assured for every p satisfying (10). This transformation
takes the form

r 1, P
ylk) = ] (k) (26)
- L-gpr

which possesses the explicit inverse

[, - P%Q® - P*
z(k) = y(k) (27)
| e I,
and when applied to (4), the transformed system takes the form
A+ Pody ]
ylk+1)= y(k)
0 Agg— Ay Po
B, + P*B,
+ w(k)  (28)
-Q°B,+(I-Q*P*)B,
It is easy to see from the lemma that
| Pt} &0(ut=7), || Pt £0(u')
If we let
F.(l—j)Pa= P, F;pt,pt (29)

then (20) and (28) satisfy the two-time-scale property as defined by (3), since
for u sufficiently small

(dy "'I-’-Ps“i.zx)"l [-* >P'”(“Izz- “Inps)“ (30)
ey =pd P11 > pl( Ay + PAL,)| {31)

il

Inequalities (30) and (31) are given here to show our transformations
lead to block diagonalizations that are consistent with our norm definition of
a two-time-scale system (3). The set of values of u that satisfy (30) and (31)
will, in general, be a subset of the value defined by (7) and (10) respectively.
In the remainder of this paper (7) and (10} will be used to determine if the system
can be put into two-time-scale block diagonal form. It should be noted here
that bounds obtained from norms tend to be conservative. That is, the
methodology presented here is applicable to some systems not satisfying (7)
and (10).

4. Reduced order modelling

One of the applications of singular perturbations is the ability to obtain low
order well-conditioned models from high order ill-conditioned models of contin-
uous linear systems. The approximation made in obtaining these reduced
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order models is to assume that the real part of the stable fast eigenvalues go to
minus infinity. Thus, all fast modes are assumed to decay instantaneously.
In the discrete case, this is analogous to approximating all fast eigenvalues as
‘ deadbeat ’, thatis |A| =0. For model (4), this means approximating the group
of N, eigenvalues clustered within an 0(u) radius of the origin of the complex
plane as zero eigenvalues. Thus,

Yyk) =0, k>0 (32)
and from the ‘ F’ transformation
i) =gy(k), k>0 (33)
zofk) = ~ Pty;(k), k>0 (34)
Applying (33) and (34) for all £, our reduced order model becomes
B+ 1)= A (k), £(0)=2,(0) (35)

and the ° fast ’ states appear only as quasi steady-state functions of £,(k)
2y(k) = — P'4,(k) (36)

In (36), we eliminate any dependence of x,(k) on z,(0). Thus, from k=0 to
some k =k*, (36) may differ considerably from the actual x,(k) states. Since all
fast modes are stable in this analysis, the question is not whether £,(k) will
converge to z,(k), but how soon

|£2(k) = z,(k)| < ¥ (37

for some y >0 and k> 0.

The interval [0, k*] is referred to as the ‘ boundary layer ’ in the analysis
of continuous singularly perturbed systems (Kokotovic et al. 1976). For u
small, k* can be as small as 1.

Ezample

From Calovic (1971), the discrete model of a steam power system is given
as

0-9014 0-1179 0-0525 0-0167 0-02104

-0-0196  0-8743 0 0-025 0-02934
z(k+1)=| —0-0071  0-7342 0-20175 0-013 0-21067 | z(k) (38)
-075  -00557 —0-032  0-19357 —0-014076

-0-306 —0-0i894 -0-011 0-14278 0-013217

This model was found to fit the model (4) with ¥, =2, N,=3. The corres-
ponding submatrix norms were

1Ay, =0-0415, [A,y] =0-0825, [y =08184, [ Ay =0-2441

Condition (7) is satisfied with 0<0:259 25 <0-338 38. Using one iteration
of the Pt matrix recursion

-0-02583 ~1-029
Pf=| 10207 -0-006867 (39)

04817 -0-06101

[V
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we obtain the slow subsystem

0-875521 0-17486
e k+1)= z,4(k) (40)

—0-05932 0-87798
which has eigenvalues
Mz =0-876 75 + 0-101 84

which compares favourably to the actual eigenvalues of (38) given here for
comparison purposes
ALg=0-8777 + 0-1054 7
Ay =0-0179
Mg, 5 =0-2055 + 0-0236;

The entire system dynamics of (38) will now be simulated using
£k + 1) = A E (k), £,(0)=x,(0)
where the remaining three states appear as output functions or
£qo(k) = — P! £,(k)

To compare this second order model with our fifth order model, the response
of the system to an initial perturbation of

zo=(1, — 08, 0-5, 0-2, 0-6)

is plotted versus its lower order approximation (Figs. I to 5). The actual
(high order) states will be designated x,(k), while the approximated state will
be identified by £;(k). Using just one iteration of P! results in good z~curacy.
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Figure 1. Reduced order approximation of state z,(k).
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Figure 2. Reduced order approximation of state zg(k).

5. Control law design

The explicit inverses of the block diagonalizing transformations and the
two-time-scale nature of the proposed model, enable partial or total pole place-
ment to be carried out by solving reduced order pole placement problems.

3‘4 First, two cases for partial pole placement will be covered. Then, a two stage
; design for total pole placement will be outlined.

Case 1

Only slow eigenvalues need to be altered.

Using transformation (21), our resulting system is of the form (23). Let
A,=4,,+P*4, and B,= B, + P*B, and observe that the pair (4,, B,) spans
only the ‘ slow ’ controllable subspace.

s s g
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Figure 3. Reduced order approximation of state x,(k).
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Figure 4. Reduced order approximation of state x,(k).

Design G, such that the eigenvalues of (4,+ B,G,) are at N, desired loca-
tions. This gives a closed loop system

[.%UH' 1)] [ (4,+B,G,) 0 ][!]1(")]
= (41)
Zy(k+1) (A + BoGy) Ay || xo(k)
where A = dyq— 4, P*.
This system has N, eigenvalues of 4,+ B,G, and N, eigenvalues of A,.
The feedback control takes the form

u(k) = Gy, (k) (42)
'[Gs GHP']x(k)

0.7 T
: -4
C — k) ]
050k — g ]
o.2sf] 3
- -4
0.00] 3
~02sF 3
- -
z ]
-0.50 3
- p
‘0.75- PR R U USRS U V0 U OF B U VIS N AU SR S U O U B SO I
o ) 10 15 20 25 30

Iteranons, (k)

Figure 5. Reduced order approximation of state zy(k).
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Case 2

Only fast eigenvalues need to be altered.

Using transformation (13), we obtain the upper block triangular system
(15). Let d,=dy+ Ptd,, and B,=B,+ P'B, and observe that the pair
(A, By) spans only the fast controllable subspace.

Design Gy such that the eigenvalues of (4, + B,G,) areat N, desu'ed locations.
This gives a closed loop system

z,(k+1) 4, A+ B,G [z (k)
= : (43)
Yok +1) 0 A;+B,G || yslk) '
where d,=d,, - 4,,PL

This system has N, eigenvalues of 4, and N, eigenvalues of 4,+ B,G,.
The feedback control takes the form

u(k) = Goyy(k)
=[G P Glz(k) (44)

If the design requirement entails moving both slow and fast eigenvalues,

_then a two stage procedure can be implemented.

Given a system of form (4) that has been put into block diagonal form via
either the ‘S’ or * F’ transformation,

Yk +1) 4, 0 ][y B,
- + u(k) (45)
Yok +1) 0 A4 |[ylk) B,
We can design for either slow or fast subsystems pairs (d,, B,) or (4, By).
Arbitrarily, the pair (d4,, B,) is selected first.

Find a feedback gain @, such that 4.+ B,G, has NV, desired ‘ slow ’ eigen-
values. The resulting partially closed loop system is of the form

Tulk+1) 4,+B,G, 0 [y k) B,
= + u,(k) (46)
yalk +1) B,G, g [ yalk) B,
where
w(k) = Gy (k) +uglk)
Now, let
24(k) = yq(k) — Sy, (k) (47)

which results in
2ok + 1) = [BG, + A8 - S(A, + B,G,) ]y (k) + Agzg(k) + (B, — S Beu(k)
Choose § such that
4,8-8(4,+ B,G,)+ BG,=0 (48)
This Lyapunov type equation has a unique solution if

o(d)Na(d,+ B,G,) = ¢ (49)
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Thus, one of the design requirements of the first stage is that the desired
slow spectrum be disjoint from the open loop fast spectrum. The solution to
(48) can be found iteratively like @f and Q® or algebraically (Bartels and
Stewart 1977). (46) now becomes

nik+1) A,+B,G, 0 |[y(k) B,
- + uy(k) (50)
2k +1) 0 Al 2k} | B,-8B,
Now, design a feedback gain G, such that (4,+ (B,-SB,)G,) has N, desired

eigenvalue locations.
The composite feedback is of the form

ed e B Geed

[}

u(k) = uy(k) + uy(k)
= Gy, (k) + Gezy(k)
= (G4~ GS)y, (k) + Geya(k) (51)

Depending on whether the ‘S’ or ¢ F’ transformation was used, y,(k) and
Yy(k) can be expressed as functions of our original states. For example,
I using the ‘ S’ transformation

yi(k) = {1 : P*Ja(k)
Ya(k) =[—Q*:1 - Q*P* (k)
and (51) becomes

(k) =[Gy~ Ge(S + Q%) : G, P* + Gy — Gy(S + Q%) P*Jx(k) (52)

which places .V, eigenvalues of (4) according to A(4, + B,G,) and .V, eigenvalues
according to A(4,+ (B;-S8B,)G,).

S, g
-

Example
The discrete model of an eighth order power system (Calovic 1971) is given
as
i 0835 O 0 0 0 0 0 0 ]
1 0096 0-861 0 0 0 0 0 0-029
-0-002 ~0-005 0-882 —0-253 0-:041 —0-003 —-0-025 - 0-001
A= 0007 0014 -0029 0-928 0 0-006 0059 0-002 (53)
. : -003 -0061 2:028 -2:303 0-088 —0-021 -0-224 -0-008
: ‘ 0048 0758 0 0 0 0:165 O 0-023
-0-012 —-0-027 1-209 -1.4 0-1681 -0-013 0-136 0-006
0813 O 0 0 0 0 0 0-011 |
0 0 0-29¢ -0-038 2762 0 1473 O
, BT= (54)
! 3-205 0-152 -0-003 0-01 ~0-051 0056 -0-015 2:477

which is of the form (4), with V=V, =4, and u =0-259 04.
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After three iterations,
0-012 0-035 ~—2-102 1-809]

0095 —1-083 0 0

Ps‘ =
~0020 -0-006 -—2-168 1:546
| -0-009 0O 0 o |
[ 0 0 0 0
0 0 0 —-0-034
¢f=
~0-043 0 -0-005 0
| -0:004 -0009 —0-109 —0-003 ]
The slow subsystem is given as
0-835 0 0 0 ]
0-126 0-861 © 0
A4,=
0-004 -—-0-009 0-913 -0-288
| 0-010 0-021 0-098 0-836 |

0

0 0-394 0-054
BT=
3295 0-125 -0-002 0-003

The desired slow eigenvalues are

Ay o(Des) = 0-9 + 0-05;
2y Des) =0-85

A(Des) =0-8
and the feedback
0032 ~0-01 0 0
G, =
-0:088 -~-0-027 -0-347 0-676
places the eigenvalues of A,+ B,G, at these desired locations.
This gives S as
[ ~0-170 ~0-121 -1.013 1-508
0-01 -~ 0003 0 0
S=
~0-134 ~0-131 -~-0904 1:076
| -0028 0008 0 o |

(85)

(56)

(87)

(59)

(60)
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and the resulting fast subsystem
[0-003 —0-005 -—0-064 0 )

0 0-165 0 - 0-009
dy= (61)
0-07 0-001 0-302 0-011
0 0 0 0-011 |
2302 O 1-074 0
(By~8B,)T = (62)
0-587 0-176 0-394 -—0-692
The desired fast eigenvalues are
2g o(Des) = 0-2 1 0-01;
A,(Des) = 0-15
Ay(Des) = 0-1
and the feedback
0 -~0-039 0 -0-333
Gy= (63)
0 0-010 -0-052 0-029

places the eigenvalues of 4,+ (B,—SB,)TG, at these desired locations.
The composite feedback analogous to (52), places the closed loop eigen-
values at
A, 4(CL) =0-900 + 0-051;
A4(CL) = 0-846
A(CL)=0-799
Ag,¢(CL) = 0-199 + 0-014;
A+(CL) = 0-161
2As(CL) = 0-003

Thus, & maximum error of 7-3%, after 3 iterations, and an absolute error well
within the convergence rate bound 0(u3), where

pd=0:017

6. Conclusions

A model for a class of discrete systems having a two-time-scale property
has been defined. By satisfying certain subsystem norm conditions, reduced
order models may be derived without a priori knowledge of the eigenvalues of
the system. This is appealing to exceptionally large discrete systems (i.e.
economic, sociological, etc.) where the computation of eigenvalues may be
impossible. Dual block diagonalizing transformations are used to obtain
reduced order fast and slow models. Order reduction is achieved by approxi-
mating the fast modes at deadbeat. Thus, the original fast states are approxi-
mated as quasi steady state output functions of the slow states. Partial or
total pole placement for the higher order system is implemented using designs
based on the reduced order fast and slow subsystems.
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Appendix A

Iterative techniques to obtain solutions to (14), (17), (22), and (25) appeared
in Avramovic (1979) and Kokotovic (1975). The subspace method (Avramovic
1979) leads to the following matrix recursion equation for Pt

Ppt=P = Ry(Pf) (A = A1y P h)1 (Al)
P)l= - A4, (A2

In the case of (4), the convergence of (A 1) is guaranteed for all p satisfying (7)
and the convergence rate will be 0(u*) since

sup |o(dyy+ Pld,,)|

- 40 A3
inf [o(dyy ~ 413 P () (43

A computationally more efficient form of (A 1) is proposed in Kokotovic
(1975), where the approximation

(An-ﬂ'*‘iuP‘ )iz 4, (Ad4)
leaves (A 1) in the form
Py t=(AggPt+ Pt APt~ A4)4,,! (A 5) }

which possesses the same local convergence properties of (A 1). Bounds on
 for the convergence of (A 5) have beea considered in Phillips (1979).

The subspace method of Avramovic (1979) can be extended to find an 4
iterative solution for P¢. This is seen by letting P*=.{,~! M,, where the rows
of (M, M,] are left eigenvectors of the system matrix in (4) spanning the domi-
nant .V, dimensional eigenspace. The iterative solution can then be shown to
be of the form

Pr*=P 4+ (A + P Ay)t . R(PY) (A6)
Pyt=A,"t 4, (A7

The conditions for convergence and the convergence rate of (A 8) are analogous .
to those of (A 1). i
Again, from Kokotovic (1975), making the approximation -

(Ay +pPy dgy) x4,y (A8)

L

(A 6) becomes
Pk'f-l'- All-l(Al’+Pk. A”- Pk' A’IP,‘.) (A 9)
which is also considered in Phillips (1979).
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Solutions to (17) and (25) have been well documented and can be found
algebraically (Bartels and Stewart 1977) or recursively (Kokotovic 1975).
From Kokotovic (1975), the following successive approximations converge
under mild bounds at an O(u¥) rate

Quir’ = Ay "M (A3 PO + @ (Agg + Pt ) - 4y,) (A 10)
Qof=— A, d,, (A11)
Qra® = ((dgg— A PR —Q® Pod g + Ag) A ! (A12)
Qo' =dg 4, (A 13)

In the example (A 10) and (A 11) have been used.

Appendix B

The existence of an equilibrium solution to (A 5) is guaranteed if i is bounded
by (7) which also establishes (8). These results were first derived in Kokotovie
(1975) and applied to discrete. systems in Phillips (1979). However,
Avramovic (1979) has shown that (A 5) is a simplified form to the matrix
recursion (A 1) in that convergence of (A 5) assures convergence of (A 1) to an
equivalent result. From Avramovic (1979), the sequences of (A 1) are shown
to be equivalent to the sequences of the following simultaneous iteration for
computing the basis of a dominant eigenspace of 4

Pkl 4 VESE (A 14)

Ve
Vi= €RNxN,
V.

and S* is a scaling matrix. Thus,

Pit= — VX (VX2 (A 15)

where

and the spectrum separation property and (8) are established.

The existence of an equilibrium solution to (A 8) is guaranteed if ;. is bounded
by (10) which also establishes (11). The left eigenvector approach to the deriva-
tion in Avramovic (1979) results in (A 6) and (A 7) of which (A 9) has been
shown to be a simplified form. Thus, the dominant eigenspace iterations of
Avramovic (1979) can again be applied in analogous fashion to establish (12)
and the spectrum separation property.
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Multi-Time-Scale Analysis of a Power System*

JAMES R. WINKELMAN®, JOE H. CHOWt, JOHN J. ALLEMONG?
and PETAR V. KOKOTOVIC§

Singular perturbations, applied to a model of a three machine power system,
procided reduced models which yield good cigenvalue and time response approxis

mations of the original system.

Key Woeds—Compurational methods; time scale modeling: sysiem order reduction: ilerative methods;
power system simulation: dynumic responss: large scale systems.

Abstruct—A time-scale separation procedure is outlined and
ipplied 10 4 thres mackine intercounected power system
modeied with fux linkage and oltage reguiator dynamucs.
Pastial models such as the clectromechanical model and
single machine-infinite bus modet are used L0 identiiy the slow
and fast states of the systems. Linear simulation results in
two- and four-time-scales Jemonsirate the potential applica-
tility of the singuiar perturbation approach 1o long-term
dynamic siudies of power systems.

1. INTRODUCTION

THis paper presents an application of the singu-
iar perturbation method for separation of
time scales described in a companion paper
{Kokotovic and co-workers, 1980). A linearized
20th order model of a three machine power
system with realistic data is analyzed in two- and
four-time-scales. The model includes the elec-
tromechanical, flux linkage and excitation system
dynamics. Following an electrical disturbance the
model exhibits a rich frequency spectrum of
restoring motions. Due to the strong interactions
between machines, the individual machine vari-
ables are found to be mixed and hence is not
suitable for direct state separation into a slow
and a fast subsystem. The identification and the
reformulation of the slow and fast variables are
therefore among the major problems.

A state-space model of a muiti-time-scale sys-
tem is s: 'd to be state separable if the fast parts
of some of its states are small compured wirh their
slow parts and with the fast parts of the other

“Received January 19, 1979: revised Juiy 5, 1979, The
onginal version of this paper wus preseatced at the IFAC
Symposium on Computer Applications in Larye Scaie Power
Systems which was held in New Deihi. India duning August
1979. The published Proceedings of this IFAC Meeting may
be ordered from: Pergamon Press Lid. Headington Hill Hall.
Oxford OX30BW. U.K. This paper was recommended for
publication in revised form by associate editor B. Wollenberg.

This research was supported by the U.S. Depanment of
Energy, Division of Electric Energy Systems through contract
number EC.77.C-05-5566.

*Eleciric Utility Systems Engineening Depaniment, Generai
Electnc Company, Schenectady. NY 12345, U.S.A,

sAmerican Electnc Power Service Corporation, New York.
NY 10004, US.A.

iDecsion and Comtrol Laboratory, Coordinated Science
Laboratory, University of Hilinois. Urbana. [L 61801, U S.A.

states. The fast parts may arise due to either
modes that are well-damped. that is. eigenvaiues
with large negative real parts, or high frequency
oscillatory modes, that is, eigenvalues with large
imaginary parts. Such models can be put in the
standard singular perturbation form (Kokotovic.
O'Malley and Sannuti. 1976) and the time scale
separation method discussed in the companion
paper is directly applicable. However, in a large
scale system the situation is more complex. Even
if the subsystem models are state separable, their
interconnections may introduce new phenomena
and change the speeds of some of the states.
Then a new choice of state variables may be
needed to make the interconnected model state
separable. An example is the angle transfor-
mation used here to deal with electromechanical
interactions. To make the determination of fast
and slow states more systematic, we propose the
following separation procedure. First, we study
readily identifiable phenomena, in this case the
electromechanical interactions and the single ma-
chine characteristics to identify the fast and slow
states. The next step is to apply the iterative
scheme to validate the choice of the slow and fast
variables and to improve the accuracies of the
slow and the fast subsystem.

The paper is organized as foilows. The modei
of the three machine system is given in Section 2.
The separation procedure is proposed in Section
3. Time scales of the electromechanical model are
discussed in Section 4. In Sections 3 and 6. the
full model is analyzed as a two-time-scale system
and the simuiatuon results are discussed in
Section 7. Section § is an extension to a four-
time-scale analysis.

2. THE TEST SYSTEM
For the three machine test system in Fig. 1 the
disturbance of interest s a iive cyvcle three phase
fault on bus 8 followed by the loss of line 3-9.
Constant impedance loads are assumed. The six
¢lectromechanical equations are
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3, =31 w,=1) im1,2,3 (n
. 1 IP
wi-m[z’:—bt(wi l)
3
-3 m/,x,.cos(oi,.w,.-ai)]
=t
i=1,2,3 (2)

where ¥, are generator voltages, Y,;,6;; intercon-
necting admittances, D; damping terms, P;
mechanical input powers and A, inertias.

H{sec)6 4 H{sec)33.01
otmazz.s . , 6 os(umo
i~ B I L L 5
20684pere | R I Zo09t0e
Tp:1.012410.1648p0 ¥,:1022+i0.082920¢

P: emun
3 5 Q:
1.25+70.500 0.90+10.305u

NQTE ALL (040 FLOW
INFQRMATION 1S FOR
PREDISTURBANCE CON-
01TIONS. THE 9ASE
POWER 1S 1Q0MVA.

%21.06+i0ps

% H(sec):23.64
0.7230w  0.2703pu 0fpul:9.6

U From Ta A low) X (o) 8/2 iow)

1 1 4 [} 0.0587 Q9

2 e ] 0.0v7 0.092 0.079

3 S [} 2.039 0.170 0.179

. 3 [ ] [] 1.0888 ]

] [ ] ? 0.0119 0.1008 0.1048
| ] 4 4 0.0088 9072 0.0748
] 2 0 0.0828 Q

[ ] 1} 9 0.032 Q.18¢ 0.183

9 ] 4 X1 0.088 0.088

FiG. 1. 5 machine, 9 bus test system.

The voltages induced in th: d-axis and the ¢-
axis by the flux linkages « (Schulz, 1972) for

i=],23
. 1 , .
é“-T‘—w[-Q"“Plxw—xw)l“] 3)
[ ".T‘["-"qi = (X=X, + E/J.J (4)
7:[0-'

where E ., is field voltage and the currents are

)
L .
~e,sin(0,+9,-4,)] {51
3
i = Y Y,(e,cosi0, +d,-0,)
e
+e,sm 0, +0;=6)]. (6

The machine data are given in Table 1.

TARLE 1. SYNCHRONOUS MACHINE DATA (100 MVA sasg)

Machiae #

Paramster 1 o 2 L ) 3

H (sec) 23.64 6.4 3.0l
D (puw) 9.6 2.5 1.0

X (pw) 6.6 0.8958 0.9
Xq(pu) 0.58 0.8645 0.85
Xl(pu) 0.056 0.110 0.18
Xy (pu) 0.0608 0.1198 0.1813
x&(pu) 0.0608 0.1198 0.1813
Tyo(ses) 4.0 6.0 5.0
Téo(sec) 0.25 0.54 0.65

The same IEEE Type | voltage regulator
({EEE Committee Report, 1968) is used for all
machines with the exponential saturation
function ,

SelEsg)m A exp (B Ep) o]
rctained but limit type nonlinearities neglected.
The amplifier. exciter zad feedback compensator
eyuations are, for i=|, 23

R ]
Vg, = — [Kni(Kr'.(R/. e T A

T
=V Voeri) = V] 3)
1
En-"ﬁ V=K eE i + SglEp)) = Vo D)
I
R[i-ﬁ‘.("Rll+Erﬁ) “0)
Via(e, + N,y + e, =X, {n

and their paramcters are listed in Table 2.
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TaAME 2. VOLTAGE REGLULATOR CONSTANTS

T, =0.06s K¢ = -0.0345
Ty =05 K, = 0.16

Ty =10s A= 0001123
K,=2§ 8,.= 03043

This model is described by twenty-one differcn-
tial equations whose linearized form will be ana-
Ivzed in two- and in four-time-scales. [t is well-
known that for machines with non-uniform
damping, the system order can be reduced by one
as one of the angles can be used as a reference
{Prabhakara and E!-Abiad, 1975). However, for
illustrative pucrposes. we use the individual ma-
chine angles and eliminate the extrancous angle
variable only after we have introduced the angle
transformation. This model wiil be referred to as
the full 20th order model.

3. THE SEPARATION PROCEDURE
The iterative scheme developed in the com-
panion paper starts with a model in the state
separable form

X 4 BY«x ’

CHe o]
where x is predominantly slow and : contains
fast transients or osciilations superimposed on
slowly varving juasi-steady-state (qss). Note that
the scale factor ¢ is incorporated in C and D (see
Remark in Section 4 of the companion paper).

This full system is then decomposed into a slow
subsystem

Si= A, (13)
and a fast subsystem
fix = Dy My, (14)

and the original variables x and : are approxi-
mated by

Xyj=y; +Hym,
Ty m = Lexy, ; {15)

where k and j denote the number of iterations
performed on the fast and slow variabies,
respectively.

For completeness, we summarize the werative
procedure (57), (58) in the companioa paper as
follows. We first compute L, from
L,=D"'C+D"'L,. (A=BL,.,) L,=D"'C
(16)

" T | AR e, e we s Ghe

i=2,..., k, and obtain

Al’.‘l‘BLg
Ck’C-DL.+Lk.‘1l ‘17)
D,=D+L3B.

Then, we compute H,; from

H,=BD '+(4,-H.,COH,- D",
H, =BD;! (18)
im2... j, and obtain
A=A -H,,C
B, =B=H D =A,H, 119)
D, =D +CH,,

The iterations (16), (17) are used for correcting
the fast variables i, and (18), (19) for the slow
variables ;. Different j and k are possible de-
pending on the accuracy requirements f{or the
slow and the fast vartables. [[ a better accuracy of
the slow variables is required while some in-
accuracy of the fast \ariables can be tolerated.
then a few more H-iterations are used and vice
versa. Note that the quasi-steady-state modeis as
defined in the companion paper is obtained by
substituting 4,, D, 0 and L, for A D,;, H,; and
L, in (13)(13).

In contrast to modal analysis. A, and D,
approximate the slow and the fast modes of 112),
respectively, in groups rather than individuaily.
There are two disunct advantages in this ap-
proach. First, (15) indicates that ; retains the
physical nature of the original variable x while n,
retains that of the ‘ariable =. Second. the ex-
pressions (16)~(19) for 4;; and D,; are expressed
in terms of the original matrices A, B. C and D.
and the calculations are straightforward. The
price to be paid for these advantages is that a
model has to be in a state separabie form (12). In
this paper we demonstrate how this is done in
practice using a Sth order electromechanical mo-

al and a 20th order modei of the test system.

The separation procedurs which we follow m
the examples consists of two phases.

Modeling phase. As 15 the case in power svs-
tems, large scale systems often are composed of
individual systems having the same types of
components. If these individual systems Jare
weakly interconnected. the slow and fast states of
the overall system could be obtamned by determin-
ing the siow and fast states of the individual systems.
However, it 1s usuaily the case that intercon-
nections resuit in an altering of the slow and fast
variables as determined from the study of the
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individual systems. As a result transformations
may be required to put the total system into state
separable form. This may be achieved by a global
study of the appropriate interacting components.
Such a study will allow us to propose candidates
for the slow states x and the fast states :.

Validation phase. Norm conditions such as
those in Kokotovic (1975) usually yieid con-
servative results and hence are not used here.
Experience has shown eigenvalues to be a better
indication of convergence. Given a proposed mo-
del in the form (12) the gss model and modeis
obtained by using the iterative method with one
or two levels of correction (k=j=! or 2) are
used in this validation phase. I the increments of
the eigenvalues in successive A,; or D, are small
then the choice of slow and fast variables is
adequate. Otherwise, a different selection of states

.is required, that is, a return to the modeling

phase. Alternatively, eigenvectors of 4,; or D,;
may be used to indicate convergence.

The models (13) and (14) which passed the
validation phase may be iteratively improved
using (16)=~(19) to match the needs of applications
such as simulation in two-time-scales and decom-
posed control design. In this paper, only the
linear simulation resuits are presented. The above
procedure can be extended 10 muiti-time-scales
bv a repeated application of the two-time-scale
procedure.

4 THE ELECTROMECHANMNICAL MODEL

ft can be expected that the time scales n-
troduced in the single-machine analysis in Section
$ of the companion paper will have to be
modified here primarily due to elcctromechanical
interactions between the machines. These interac-
tions are considered first by assuming that the
voltage V,. V4, ¥; n (1), (2) are constant. From
the fault location and the physical parameters of
the system. three different speeds of system dy-
namics are to be expected. The slowest 15 the
motion of the whole system as a single umt. The
second is the motion of the two smaller machines
moving together against the center of inertia.
which is analogous to the motion of the single

machine against an infinite bus. Finally the fas-
test is the motion of thé two smaller machines
relative to each other. These motions are better
exhibited in a new set of variables

H|o.| +H261+”;63
H, +H,+H,

H,0, ‘."H)é) -3
Hy+H, !

o=

o=

“5=8y-6;  (20)

and a similar set of variables ¢,, w,, w, in terms
of w,, @, ;. Since the dynamics of the other
five variables do not depend on 4,, this angle is
not included and the model reduces to filth
order. The ¢, coordinate (20) is commonly used
in stability analysis (Stanton, 1972: Luini. Schuiz
and Turmer. 1975). The linearized post-fault sys-
tem is

(Aw,] [-0.198 000756 000486 000733 -0.00181] [Ac,]

As, 0 0 377 0 0 A0, .

Ao, | = | 00122 =033 -0.91 00304 -000454| |Ac,| . (21)
As, 0 0 0 377 Ad,

Aw, -0292 0163 -00292 -0426 -0.75 | |ao

To test whether this model can be separated
into three subsystems, we apply the iterative
scheme to decompose (21) into the slow sub-
system (Awm,. Ad.. Aw,) and the fast subsystem
(80,, Acyy), and then further decompose the slow
subsystem into two subsystems (Aw,) and (AJ..
Aw,). The gss models are

Aw, = =0.199Ac,

Ao, - 0 3”7 A0, 23
Aw || ~0.102 =093 || dw.| °"

Ad, 0 37 M A,
Aw, || -0426 =0.175 || Aoy, |

Since the order of the {ull system is small we
compire the eiyenvalues of the gss models di-
rectly to the eigenvalues of the full system. As
Table 3 shows. their eigenvalues approximate the
eigenvalues of the full model (21) within 2°,

This excellent separation of the time-scales
motivates the use of the variabies (20) in the 20th
order system.

. TWO-TIME-SCALE MODELING
Now we proceed 1o perform a (wo-time-scale

——
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TAnE ). EiGENVALUES OF ThE FULL vOORL (21)
AND THE SUBSYSTEMS (22)

Full model s mudeis
-0.199 -0.199
=0.0969 + j6.09 -0.0965 £,6.20
~00357 #1229 -0.0877 ¢ 127

decomposition on the full 20th order model. The
choice of the slow and fast variubles for this
model will be based on the results obtained (rom
two partial models, namely. the single machine
model in the companion paper and the clec-
tromechanical model in the previous section.

In the 7th order single machine model using
data close to those of machine 2, the vuriables
(0eg, AR,) have been identified as slow and the
other variables (Ae;, A9, dw, AV, AE,,) as fast.
Similar conclusions are obtained using data from
each of the three machines, On the other hand,
the electromechanical model from Section 4
exhibits one state (Ac),) whose speed is compar-
able to Ae, and AR/, and four states (AJ;. Aw,.
Ad,, Amy) whose speeds are comparable with the
fast variables in the single machine model.

Whether the choice of states suggested by the
two partial models is applicable to the full model
depends on the interactions. From this point of
view, the voltage regulator variables AV, and
AE , should be retained as fast, and AR, as
slow in the full model. Furthermore. the Aw,
variable is assigned to the slow time-scale and
4d,, Aw,, Ad,, Awy, are assigned to the fast time-
scale. Their interaction with the voltage regulator

but not the (requencies. The decision on the
remaining Ag,,, Ae, is considerably more com-
plex and likely to depend on the parameters of
the specific system. The single machine sepa-
ration of Ae;, as slow and Ae as fast seems a
good starting point for systems with weak and
moderate interactions.

In view of the above discussion, we propose
the (7, 13) decomposition

x" = (Aw,, B¢, AR, de,;, ARy, Aeyy, AR,4)T
2T = (A, Al A€, AD,, A AVpy, AE,,,,
av, 2. AE,.:. AVR)- AE,,‘;, MJ, A(l)‘)r. 20

The system matrix lor this ordering of the states
is given in Fig. 2.

A particular mernit of this grouping of state
variables is that x contains the system frequency.
all the slow f{lux linkage variables and all the
slow regulator modes. while - contains all the
fast flux linkage variables, the fast regulator
modes and the swing modes. This grouping of
variables of similar physical nature simplifies the
identification of the slow and fast variables. With
the slow and fast states tentatively identified, we
may proceed to the validation phase immediately.
Note that the above decomposition does not
depend on the knowledge of the exact eigen-
values of the full system.

An alternative approach is possible if the exact
eigenvalues are given as they are in Table 4.
Then we first note that there is a gap between the
7 small eigenvalues and the 13 large eigenvalues.
and hence, the order of the slow subsvstem is

is known to significantly change the damping,
. o -
. e, |-.206 -.06120 ..01420 -.01610 .00677 .0i1} 00863 00477 -02170 a o0 O o0 O 00168 -.300903
i. s, |o <560 0 L0736 0 138 0 .1S3  +.0629 -.0842 -.0184 0 o .3 0 o a o awe o
) e o o -1.00 T o 0 0 ° ] 0 e 10 0 ¢ o o o 0
30, 10 +0M7 0 <327 0 .14 0 .0816 04 .0830 -.121 0 o a o wro o .12 0
W, | ° s o ‘oo o 8 0 ° ° 0 ° o & 12 0 o & 2
o, {0 AR 0. 7t 0 -.338 9 L0986 - 06l) 0387 -.16k O e o o o o o .03 3
. a0 [ ° 9 [ S ) -1.00 0 [} [ [ 0 3 [} [ 3 1.0 o ) i
3 sy, 1o 130 78 0 0 1 L1 L1 e 0 ¢ o o o0 6 o -tos 2
s, o <868 & 516 0 - 883 0 26 -6.4) L&) - %08 0 o 8 o 3 8 8 Lot ) .
sy |0 <683 0 296 0 4217 0 4TS 122 3.9 - 949 ) L L L N T TR
W, [0- e o0 o o o 0 -0 - -0 9 o . 0 0 3 8- 08 3 3 2 ;
Bw, |09 008260 - 06820 -.06850 0°4 00M9-0M0-101 -8 0 o o0 o o o oy - sz
) vy, |o 4353 66.7.00.5 0  -13.0 0 94 l68 le? (6.4 3 6.7 4670 2 a9 e
! |0 ° ° o o o- o o o 0 s 3 Wwes 3§ 9 2 )
Wy |0 -32.7 0 270 6.7 66 0 <l3.6 ITL 436 9.8 3 1 1. 6670 3 e 3 ‘
7 Begafo - 0 ? 0 ° o o 0 o ° ° a ¢ o 23 oamtod o 2 2
’ e |0 <810 0 482 3 120 .7 -12.6 63.0 .2 MY O L S B T P Rl N I |
&, l0 * s o ¢ o0 s 0 0 0 2 0 3 0 9 o 20 .0 3 :
! 8, | ° e o o e o 9 ° ° 9 e o o 2 a2 o @ w
- L..'““ 046 0 -2 8 a3 0 -ud -6 2 10 -aMd 0 0 3 3 o m - uo_]

F1G. 2. Systém matnx of full model.
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TasLt 6. EIGENVALUE AND EIGENVECTOR APPROXIMATIONS OF THE 7.13 DECOMPOSITION

Cosines of the priacipal aagles
£ . ; E:;egv;lucs of b:i:con the eigeavectors of the
igeavalues o the Subsystems system and subsystems
the 20th Order Tirst Level]Second Level Ficst Ef e1] Secoad Levell
System Subsystems] qss Models | Correction |Correction |qss Models | Correctioa |Correction
-.2465 -. 268 -, 265 . -.265 - }.998 .998 1
=.362¢5.502 Slow -.372+j.538¢ - 336?) $05|~.342+j.502 {.990, .977 1 .991, .977 1., 1.
- 66701 m - Sll:g 7701 - 6630 JT74{-.466%i.776 | .987, .930 | .987, .932 |1., .998
-1. 16+J 866 <1.06+j.673] -1. IS:J 784)-1.17%;.866 | .982, .806 | .989, .315 1., .98
-2.11 -2.33 -2.08 -2:04 .831 .956 .993
<6.17 «4.0S -6.17 «6.17 .979 .999 1.
-.759+j4.63 -.667+j6.T71| -.763+j4.62]-.759+j4.63 | .988, .939 | 1., .999 |L., 1.
-7.36" Fast -7.59" 1.3 -7.36" .987 1. 1.
-8.17+j7.70 -8.29+j7.95 | -8. 16+37. 71/-8.16¢37.70 | .927, .771 | 1., .998 i., 1.
-8.46%j8.06 -8.29%j7.95 | -8. 46¥]8.06!-8. 46+j8.06 | .853, .S47 | 1., 1. 1., L.
-8.55%j8.26 -8. 29#17 951 -8. 55038 26{-8.55%j8.23 {.975, .313{ 1., 1. 1., L.
-1. ‘20311 1 -1. 330111 0§ -1.42%j11.1f-1. 42:)11 11.999, .997}| 1., 1. l., L.

tentatively set at 7, while that of the fast sub-
system is set at 13.

To identify the slow and fast variables, we
attempt to correlate groups of eigenvalues of the
partial modeis with the exact eigenvalues. For
example, the swing modes are recognizable in
Table 4 by being close to the swing modes in
Table 3. To be specific, the pair —1.42+/11.1
corresponds to the intermachine swing modes
Ad,, Awy,, the pair =0.759+4.63 corresponds to
the center of swing AJ,, Aw, of machines 2 and 3,
and the mode ~0.245 corresponds to the system
frequency Aw,. Note that the inclusion of voltage
regulators has improved the damping, but does
not significantly alter the frequencies of these
modes.

Another group of eigenvalues which can also
be easily correlated are the pairs —8.17+,7.70,
-846+,8.06 and —8.55+,8.24, which corres-
pond to the fast voitage regulator modes AV,
AE,, (see the companion paper). Furthermore,
the modes ~7.36, —4.17 and -2.11 are close to
the eigenvalues —=9.16, —5.64 and -=2.56 of the
3 x 3 Je), submatrix obtained from the 4 matrix,
implying that they are associated with Aejy,. The
remaining eigenvalues therefore correspond to the
Ae,,, AR, modes. This analysis deals with groups
of modes rather than the individual modes. The
same 7 slow and 13 fast state separation (23) is
obtained.

6. TWO-TIME-SCALE VALIDATION

We now apply the iterative scheme to validate
the choice of the siow and the fast variables by
comparing the eigenvalues of the gss models with
the eigenvalues of the first and second level
corrected models (k=j={,2) given in Tabie 4.
The eigenvalue approximation between the gss
models and the first level (k=j=1) corrected

models is within 119, Between subsystems with
fiest level corrected models and second level
corrected models (k=j=2), the increment is
within 5°;. This indicates that the choice of state
variables (23) for the fast and slow subsystems is
appropriate. Note that even though the [ast-slow
ratio defined as | —2.11}/] =1.14 £/0.866{=1.5 is
not much larger than one, the iterative scheme is
still applicable.

We now illustrate how eigenvectors may be
used as an indication of convergence. For real
eigenvectors, we compute the angle 0
=cos™! {(u.o)|u||c|} between the eigenvector u
corresponding to the accurate eigenvalue » and
the eigenvector ¢ corresponding to the eigenvalue
of (13), (14) and (15) approximating ~. where (.}
denotes the dot product between two vectors. For
the complex eigenvector w=u, & ju. and its ap-
proximation ¢=r, +/r,, we compute the incli-
nation of the subspace S$'={r,. r;} spanned by
the vectors ¢,.r, with respect to the subspace $
={u,, u;} spanned by the vectors u,.u,. This
inclination can be measured by the principal
angles 9,.4, (Bjorck and Golub. 1973) which are
defined as foliows:

1. 0, is the smallest angle between any pair of
vectors a, €S and b, S, that 1s. u, =mcu,
+Cyity, by meyr, +¢,ry. Where ¢, are scalar
quantities.

2. 0, is the smallest angle between any pair of
vectors u«,€S and b,&S subject to the
constraints s i ¢y, by L b,.

The smaller the angles 0,.f, are, the better the
approximation of the eigenvectors computed
from the subsystems will be. This 15 because the
orientation of the subspaces § and §' is almost
parallel. From the definition of 0, and ¥,. it

seems that a search scheme is required to find 0,
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and 0,. However, it is shown in Laub (1977) that
cosd,, cosl, are directly given by the square
roots of the eigenvaiues of the 2x2 matrix
UCoUF*U where U=(UTU)WT, V's=
TV, U lugu,) Vel cs)

For large systems., comparisons between the
eigenvectors of the subsystem models with dif-
ferent levels of correction may be used.
Alternatively if the order of the full system is not
large. as in this case. comparisons between the
full order system and the subsystem models may
be performed. The cosines of §, and 6; between
the accurate eigeavectors and the eigenvectors
constructed from the subsystems are shown in
Table 4. With first leve! correction, the cosine of
the worst principal angle is 0.815, which im-
proves to 0.984 with one more level of correction.

7. TWO-TIME-SCALE SIMULATION

-From the validation phase it can be expected
that the 7th order slow subsystem mode! {13) and
the 13th order fast subsystem modet (14) with first
level correction wiil provide a satisfuctory approxi-
mation of the 20th order model. The subsysiem
models are used to simulate a five cycle three
phase fault on bus 8 followed by the loss of line
8-9. The original state variables x,: may be
obtained from the subsystem variables Z, 7 by
using (15).

Figures 3(a~d) show the responses of two slow
variables Aw,, A¢),, and two fast variables Aw,,
AVy,. Other cesponses are similar and with even
smaller approximation error. For the fast vari-
ables, the accuracy is excellent as the difference
between the exact curves and the first level
approximate curves is virtually indistinguishable.
In the slow variabies, the error is noticeable but
small.
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Abstract. The notion of slow coherency is introduced as a less demanding
definition of coherency, which allows for a lack of coherency in the fast part
of machine transieats. The relationship between the time scale properties and
the slow coherency is shown to be the dichotomic solution of a matrix Riccati
equation. A grouping algorithm is presented which reduces the area
decomposition problem to one of obtaining a basis for the slow subsystem and

performing a Gaussian elimination.

grouning algorithe is also presented.

machine snd a l6-machine example.

A geometric interpretation of this area
The procedure is illustrated with a 3-
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ar perturbations; identification.

INTRODUCTION

The size of any present day power system is
such that full scale simulation of even a
basic wmultimachine electromechanical model
may be too costly. It has been observed that
in post-fault transients represented by this
model only some machines closer to the fault
respond as individual units, while other ma-
chines more discant from the fault swing
together with "in-phase” slow motion. In a
typical study, each of these groups is con-
sidered to be a "coherent area". Then, only
the faulted area is modeled in detail, while
other areas are represented by equivalent
machines.

A critical step in such studies is the group-
ing of the machines into areas. Coherent
machines are identified either from actual or
simulated wmachine responses, (Marconato,
Mariani and Saccomano, 1973; Podmore, 1978),
or by an algebraic evaluation of the modes
present in the linearized response of each
machine (Pai and Adgaonkar, 1979; Lawler and
others, 1979; Saccomano, 1974s, 1974b; DiCap-
rio and Marconato, 1978; Price and others,
1978; Bhatt, Kwatny and Mablekos, 1976).
Most analytical techniques require that ma-
chines be coherent throughout the duration of
their transients. In this paper we introduce
a less demanding definition of "slow coher-
ency,” which allows a lack of coherency in
the fast part of the transients. It may be
interpreted as a requirement that the equiv-
alent machines of the areas represent as
closely as possible a preselected group of
the slowest modes. The resulting area decom-
position is 1independent of various fault
locations. -

W, ‘h our approach the slow and the fast modes
are dichotomically separated as groups using
a transformation well known from the singular
perturbation technique (Chow, Allemong aad
Kokotovic, 1978; Kokotovic and others, 1980).
Grouping machines accordiag to the slow
cohereacy criterion mesas in singular pertur-
b. .on terms that the equivalent machines
constitute the slow subsystem. The fast
subsystem is then formulated to represent the
fast oscillations within each area. The slow
and fast subsystem amodels are obtained from
the dichotomic transformation matrices L and
M, which define a set of physically meaaing-
ful state variables. In the idesl slow
coherency case the dichotomic L is a "group-
ing" matrix, whose elements are zeros and
ones, and the state variables of the fast
subsystem are wmachine angle differences
within areas. On the other hand, the matrix
M, which separates the slow subsystem, actu-
ally defines the slow variables as the area
centers of inertias (Stanton, 1971; Marcona-
to, Marisni and Saccomano 1973; Saccomano,
1972). In a nonideal case our approach is to
search for a dichotomic L whose elements are
in some sense close to zeros and ones. This
dichotomic L is then approximated by a group-
ing matrix and the corresponding M is com-
puted as & function of this matrix. This
results in areas which contain machines that
are near-coherent in their slow modes, aad in
weakly coupled rather than decoupled slow and
fast subsysteas.

In the literature on power system dynamic
equivalents, there has been a continuing
interest in the development of a systematic
area decomposition procedure. Our grouping
algorithm reduces the decomposition procedure
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to the calculation of a basis for the slow
subsystes and a Gsussisn elimination. In the
formulation of our algorithm we have bene~
fited from insights and results of the above
referenced authors. In particular, s motiva-
tion to relate coherency and singular pertur-
bations is found in DiCaprio and Marconmato
(1978) and some important properties of what
ve call r-decomposable systems appear or are
alluded to in Saccomano (1974a). Our amaly-
sis incorporates these properties in a
unified framework of dichotomic solutions of
Riccati equations and establishes new proper-
ties. These properties are the tools for the
development of the algorithm aad the separa-
tion of time scales.

In the next section we first review somse
properties of the model used in this paper.
The third section defines the notion of slow
coherency and reveals the structure of ideal~
ly decomposable systems. A grouping algo-
ritha is develuped for near-decomposable
systems in the fourth section. The f£ifth
section introduces the slow variables. While
the original states contain a mix of fast and
slow phenomena, the aew states aske it pos-
sible to apply singular perturbation tech-
niques to nonlinear electromechanical aand
poteatially more extensive power systes
models. The presentation in the fourth and
fifth sections is illustrated by a lé-machine

example.
ELECTROMECHANICAL MODEL

The well-known electromechanical model (An-
derson and Fouad, 1977) of an a-machine power
system is

&i = Q, - 1), (2.1)
W, = <D, (w,-1) + (B -P,), (2.2)
where

i=z1,2, ...,",
61 = rotor angle of machine i (radians),
w, = speed of machine i (per unit),

P-i’ mechanical input power of machine i (per
unit),

P_.= electrical output power of machine i
(per unit),

Hi = inertia coastant of machine i (seconds),

D, = damping constant of wmachine i (per
Y univ),

Q = base frequency (radians per second).

In this model disturbances sre represented by
appropriate selection of initial coaditions,
and the following assumptions are usually
made.

(Al) Mechanical input power P_. is constant.
(A2) The electrical output polkr is

3 2
P.i = jil. "1"1'“"““{5)" 1G£i’

j#i
i=1l,2,...,n. (2.3)

vhere the per unit voltage V. behind tran-
sient reactance is assumed to Be constant and
salieacy is neglected. Loads are represented
by passive impedances, and G and B are the
real and imsginary parts of the reduced
admittance satrix Y at the internal sachine
nodes. The off-diagonal resistive terms of Y
are neglected.

The iotermachine motions are largely deter-
mined by the natural frequencies and the mode
shapes of the linearized electromechanical
model around the stable equilibrium &% and
w2 1.0. The linearized model is t

88, = Qa,, (2.4)
n

2H ab, = =D &w, ~ jil kijddj, (2.5)

where

Mi = Gi - 6“!_'. - (2.6)

&, 2w -1, 2.7)

a
kii = jil vi.vjnijc“(si-éj)lé*, (2.8)

j#i
1j = vivjnijc“(si-aj)lﬁ* , j#. (2.9)

At 8% and w*, the eigenvalues of (2.4) and
(2.5) are of the following three types:

k

1. a zero eigenvalue corresponding to the
motion of all the machine angles,

2. a small aegative real eigenvalue corre-
sponding to the aggregste speed of all
the machines, and

3. (n-1) pairs of lightly damped oscilla-
tory modes which typically range iam
frequency from 1/2 to 2 Hz.

Models involving more details such as excita-
tion systems and governors would still com-
tain the ahava get af aiemnuslnee madifiad
mostly in the damping and not in the frequea-~
cies (Podmore, 1978). Since the small
damping coastsats D. do not significaatly
affect the ftequenctes of the oscillatory
modes (DiCaprio and Sccomano, 1970) they may
be neglected. Thus, the model used ia this
paper is

x = ~(1/2)00" 1K x @ ax, (2.10)
where

xiSMi

H =diag (H, H,, ..., H)

X ’(ki)'

J




Therefore instead of dealing with a system of
order 2n, we oanly need to deal with the nxa
matrix A. Due to Assumption (A2), K is
symmetric if Y is symmetric which is true for
networks without phase shifters.

The properties of the eigenvalues of the A
matrix are as follows:

(P1) A has a zero eigenvalue whose eigenvec-
tor is

v, = (1 ... 1) (2.12)

Property (Pl) follows from Av =0, which is
due to (2.8) and (2.9) as the s0a of each row
in A!(aij) is

a
I a,.=0 i=1,2,...,a (2.13)

r M

]

(P2) Whea K is symmetric A is diagonalizable
because it is similar to the symmetric matrix

-2y g71/2

where HI/ 2

is the square root of K.
Thus, all the eigenvalues A. of A are real.
It follows that the eigenvalues of the second
order system (2.10) are :oi, where

o, = JXT (2.14)

For A. negative, they are on the imaginary
axis close to the slightly damped eigeavalues
of (2.4) and (2.5). The double eigenvalue
0.=0 corresponds to the aggregate motioan of
the machine angles and speeds. Ian the
following analysis, it is importaant to note
that the low frequency modes of (2.4) and
(2.5) are the slow modes of A.

SLOW COHERENCY

In most actual and simulated responses the
groups of machines "swinging together" are
discernible only in slow motion. This moti-
vates the following definition of coherency
which allows responses of coherent machines
to have different fast dynamics.

Definition 3.1

Given r smallest ia magnitude eigenvalues
(slowest modes) of A in (2.10). Then ma-
chines "i" and "j" are slowly coherent if for
all t of interest, possibly te{0,®), their
angles xi(t) and xj(t.) satisfy

:i(t) - xj(t) = zij(t) (3.1)

where 2z..(t) contains none of the r slow
modes. A coherent area consists of all the
machines coherent to each other.

This definition of coherency may be inter-
preted as a row property of the nxr matrix V
of slow eigenvectors. Machines i and j are
coherent if rows i and j of V are identical.
It is not hard to see that this remains true
for the columns of V that form any basis of
the slow eigensubspace.

We note that in this definition no machines
from different areas can be coharent, that is
no coherent area can be divided into more
sreas. An individual machine can constitute
an area if it is not cohereat with any other
machine.

Although Definition 3.1 does not require that
the number of cohereat areas be equal to the
oumber of slov wmodes, systems with this
property, which will be called r-decomposable
systems, are of particular interest for
separation of time scales. The study of r-
decomposable systems is an essential step
toward the anslysis of more common "near~
decomposable” systems, that is systems with
near-coherent rather than coherent areas.

Definition 3.2

The machines "i" and "j" are near-coherent if
in Definition 3.1 the contribution of the
slov modes in 2z..(t) is small. A nesr-
coberent area consists of all machines which
are near-coherent to each other. Aa r near-
decomposable system consists of r near-
coherent areas.

Our approach to area determination is to
first consider r-decomposable systems. We
show that in this idealized case the dicho-
tomic solution of a matrix Riccati equation
automatically groups the machines into areas.
We then use this result to develop s grouping
algorithm for near-decomposable systems.

To define s compact notation for aress we
introduce a reference set of machines and a
grouping matrix. In each area we pick an
arbitrary machine as the reference machine.
The reference machine angles acp considered
as components of an r-vector x , while ail
other angles form the (a-r)-vector x°.
Equation (3.1) motivates the use of a group-
ing matrix L_ to assign machines to areas
The (i,j) eniry of L is 1 if machines x.
and xi are in the sfme area, and is ze

otherwise. Thus, given x', x° and L_ the
areas are uniquely determined. Howkver.
given the, areas there is no unique choice of
x- and x°, and hence msay possible choices
for L M exist.

As an illustration consider a three area
five-machine system. Given

1 - '
x° = (x), x5, X,)
2 '
X = (x3| xs) (3-1)

I:l o 0]
L = 3.2)
£ Jlo 1 o

the three areas, which are composed of ma-
chines ! and 3, machines 2 and 5 and machine
4, are uniquely deﬁ.nefl. For the same areas
a different choice of x and x“, such as

x" = (x‘. Xq, xz)'
x?a (x), %g)' (3.3)
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" will result in a different I.‘, that is

0 1 0
L = (3.4)

Note that the zero column in L_of (3.2) or
(3.4) indicates the presence $f a single
machine area.

Using L‘. (3.1) is rewritten more compactly
as

x2(t) - L.xl(t) s 2%(e) (3.5)

where the componeats of xz(:) are the corre-
sponding functions z; (t). In the case where
an area contains k Lchinu ztlnu will be
exactly (k-l) elements in z°(t) for this
area.

We interpret (3.5) as a special case of a
more general coordinate transformation
(Kokotovic and others, 1980)

"xl‘! I 0-: [xl xl 3.6)
i = 1 = T 3.6
[zzi -1 1 sz Lig?
-l
where the (n-r) x r matrix L is not necessar-
ily a grouping matrix. The substitution of

(3.5) into (2.10), that is into X=Ax, results
in

b § 1
x B. A x
tz = [:1 12 ] (3.7

z R(L) B, 2]
whece

Bl L] An + AIZL ’ 32 = A22 - “12 (3.8)

R(L) = AL - LA, - LAuL + Ay (3.9)

and A,., A A sre,the submatrices of
A conB 2"“3.1 'be}“ xz. We are particu-
larly interested in L which satisfies

R(L) = ApLoTAy ~TApLedyy 20 (3.10)
and
|Aj(lx)| < [Ai(32)| (3.11)

for all i=l,2,...,n~r and j=1,2,...,r. Such
aa L is cslled dichotomic and denoted by L ..
It is known from Wu (1977), Marteasson
(1971), Avramovic (1979), and Medanic (1979),
that for diagonalizable A the generalized
Riccati equation (3.10) can have at most ome
dichotomic solution LzL,. The following
property of an r-deconposfble system relates
I‘d to s grouping matrix L‘.

Theotem 3.1

In an a-machine system let :1 be t!c angles
of r unon-coherent machines and x~ be the
angles of the other n-r machines. This
system is r-decomposable if and only if the
dichotomic solution L=zL, of the corresponding
equation R(L)=0 is a ;rguping matrix L_, that
is if sad only if s

Ly = L (3.12)

Proof: 1If the syatem i r-decomposable, then
for the given x  and x* a grouping mstrix L
exists such that (3.5) is satisfied

z contains no slow modes. Substituting LaL
iato (3.7) through (3.11) we can show thad
(3.10) and (3.11) must hold or else z° would
contain slow modes. This is clear from

B v wla
1 M2 . s (3.13)
R(L) B, 0 0

vhere A_ is the diagonal matrix of the r slow
eigenvalues and the rows of [W'0'] are

correspoading eigenvectors ia the (x',
z2%)-coordinates. Hen? R(])W=0, wvhich im-
plies R(L)=0. Then £“=B,z° and (3.11) must
also hold. This proves he if part of the
theorem, because L, is unique. Conversely,
if an L, exists a*d is a grouping mstrix,
then the system is r-decompossble because L
satisfies (3.10) and (3.11). s

An interesting interpretation of R(L )30 is
a2 set of slow cohereacy coanditioas skisfied
by the voltages, admittances, machine angles
and inertias of an r-decomposable system.
Let a(i) be the set of machines belonging to
area i. Then using the structure of L_ and
R(l’.‘)io we may conclude that s

v
£ I VB _cos(§-8) =
l{‘r mea(i) [ 0, | r a
zi
b3 VB. cos(§.-6.) (3.14)
ﬂj sea(i) I I

for all i, k=1, 2, ..., r, i#k

vhere r is the reference machine in area k
and j is any machioe in area k. In other
words, the sum of the interconnections be-
tween the refereance machine r in area k and
all the machines in area i is the same as the
sum of the intercoanections between any
sechine j in area k and all the machines in
area i. These conditions hold for all
areas. Such "tuned" conditions will general-
ly aot hold in practical situations. How-
ever, ia practice, for relatively normsl
conditions, voltages are close to 1.0 p.u.
and the cosines ia (3.14) are close to 1.0.
Thus, the coherency condition (3.14) is
primarily determined by machine inertias and
line admittances, that is by network con-
figuration and much less by the operating
conditions. A quantitative criterion for
interpreting deviations from the coaditions
in (3.14) requires further investigation and
is beyoad the scope of this paper.

Suppose now that we know that a system is
r-decomposable, but we do not know its
areas. How can Theorem 3.1 help ug to figd
them? First, we make a choice of x~ and x°,
which in turn defines the correspfnding
equation R(L)=0. If our choice of x does
not contain cohereat machines this equation




will have the dichotomic solution L, which is
the grouping matrix needed to find ihe areas.
1f our x~ coatains coherent machines, L 6 will
not exist. The nentivc outcome would mean
that a new choice of x would have to be made
and a new equation R(L)=0 solved.

If the system is not r-decomposable, then no
grouping -Qt,rix L will satisfy R(L )=0.
Therefore z* in (3%) will contain both8fast
and slov modes, that is
2_.2..2
2" = zpvzg

(3.18)

For near deconponblez systems there exist xl

and L_ such that 2 is small. Rewriting
(3.5) for the slow paris
2 1 2
X - I.. x, 2z, (3.16)
1

We now have the problem of finding x” snd L
such that some measure of the slow coheren:

error z. is minimized. From (3.6) with L=Ld
it folldws that

2 1

xg - Ld xg = 0. (3.17)

Substicuting (3.17) into (3.15) we obtain
2_ . . 1
z, = (Ld I.g) xg (3.18)

An important conc}nsion is that the slow
coherenc! error 2z  relative to the magni-

tude x_ of the slow respoase of the refer-
ence machines is bounded by uLd-LSI , that
is

2

[2%]

s

< aLd-Lgﬂ (3.19)

fx 1

s
vhere the norm is

: |

L = I L., i=l,... 3.20

| | m:x & lJI' i=l,...,n ( )

Note that (3.19) is 2ero for r-decomposable
systems. For near-decomposable, systems
(3.19) motivates a search for x~ and L
yielding the smallest [L.-L | . 1a principld
this search involves the !oupu-ison of all
possible grouping matrices L_ with the
dichotomic solutions L correspoﬁding to s}l
possible choices of rdeference machines x°.
However & wmuch simpler grouping algorithm
based on properties of I‘d is given in the
next sectioa.

To motivate the grouping algorithm and te
illustrate the use of (3.19) we consider in
detail the three sachine system given in
(Figure 3.1). For the given numerical values
the undamping linearized model is

. -14.3 5.5 8.8
x = | 16.3 =49.4 35.1 |«x.
58.%

81.5 -140.
To decompose the system into two areas, there
are only threc possible choices of reference

(3.21)

n,chines for this example, x'= (x,,x,)',
x =2(x,,X.)' and x =(x,,x,)' and two p%u ble
choicBs 3f L 2(0,1] ahd {1,0]. As our first

choice of ré&ference machines consider x =
(x,,x,)'. Then the dichotomic solution of
thd cgrrupondin; equation R(L)=0 is

H(sec):6.4 H(sec)z3.00
D(pu)=22.5 8 , Dlpu}=1.0
1.63py——me | 1 | ? ? ‘O—O.GSW

3
00654puve | o} U —e01095pu
V,:1.01240.1648pu 10+0.35pu | V;:1.0224j0.08292pu
Pz
9 . - 5 Q: ==
1.25+j0.50pu 0.90+0.30p4
NOTE: ALL LOAD FLOW .
TET S M-
N - | Vi21.04 ¢
DITIONS. THE BASE 12104 ¢i0pe
POWER IS 10OMVA. $ - Hlse):2364
0.723pu  0.2703pu  D{pu):9.6
Line # From To R (pu) X {pu) 8/2 (pu)
1 1 4 0 0.0567 [+ ]
2 4 5 0017 0.002 0.079
3 H [} 0.039 0.170 0.179
4 3 8 o 1.0588 o
S 6 7 0.0119 0.1008 0.1045
[ 7 8 0.0088 0.072 0.0745
7 8 2 0 0.0625 o
8 8 9 0.032 0.161 0.183
9 9 4 0.01 0.085 0.088
Fig. 3.1. Three Machine Test System

L, = [-0.470 1.47].

0f the two possible grouping matrics L =[0 1]
yields the minimum ILd-L 8

(3.22)

frgtgd =006 (3.23)

The second choice of x1=(x ,X,)' will result

in a dichotomic solution ot2 thz corresponding

equation R(L)=0

I‘d = {-2.13 3.13]. (3.24)

Of the two possible grouping matrics L =[0 1]

yields the minizum [L 4L $
8

bogr, ) = o.26. (3.25)

The third possiblé choice of x1=(x X))

will result ia a dichotomic solution &f the

corresponding equation R(L)=0

Ld = {0.320 0.680]). (3.26)

0f the two possible grouping matrics L =[0 1]

yields the minimum !.d-I.8 g

bt | = 0.6 (3.21)

Of these three cases, L, of (3.26) yields t{e

snll,st 'I. -L ll . Ford this case, L, x,

ar? x indiguf that machine 1 is in ofe srea

and machines 2 and 3 form the other ares.
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This example shows that it is possible to
have more than one element in D which results
in the same ares grouping as is the case with
the first and third choices of reference
machines. However, the grouping is wmost
clearly shown by the third choice. It is
also interesting that for the third choice
It} is the smallest of all three. The
sechnd choice has the largest JL,-L_§ and the
reference machines are from t.hi fme area.
Another interesting observation about L, is
that the sum of rovw elements in all &:ee
cases is 1.

Due to R(L ) not being equal to zero, the
eigenvuluu'of B, aand B, will not be equal to
those of A. Hovever, 7the eigenvalues of Bl
and 32 are close to those of A

A, (3,)=0.0, A, (B)=-28.6, "1“2)"175"’8)
.2
AI(A)ao.O, AZ(A)=-37.0, Aa(A)=-166.o

which can be used as an indication that the
areas are near-coherent.

The above direct search is presented only as
& motivation for the systematic grouping
algorithm proposed in the next section.

GROUPING ALGORITHM

From the three machine example it is apparent
that finding the areas comsists of two
interdependent tasks: first, choosing the
reference machines - and, second, associatiog
the other machines to the reference machines.
The approach used in the three machiae examy
ple is to exhaust all possible choices of x
and L _, that is for eac Ld, a particular L
vas Hound to minmizehﬂhd-l.| . The best
choice of x* is the one corr&pondin; to the
smsllest of these minims. When the order of
the system is large, this exhaustive search
would be computationally prohibitive. Due to
the properties of the set D established in
Lesmas 4.1 and 4.2, the exhaustive search can
be avoided. The algorithm presented in this
section computes only one element of the set
D, which does not necessarily minimize JL
L[|, but still unambigously determines the
aleas. We also provide a geometric interpre-
tation for this algorithm.

Lemmna 4.1
Every element I‘d of D bas the property that
r

IL
i=l

di j =1, i=l,2,...,n-r 4.1)

that is, the cow sum of Ld is 1.

The proof of Lemma 4.1 is given in the
Appendix. From (4.1), if all the entries of
L, are grester than or equal to zero, then
ldl.dll is 1, which is the smallest nomm
achievable by aay I‘d in D. Furthermore,

N

since the only nonzero entry in amy row of L
is 1, any grouping matrix L s row norfl
equal to 1. Thus, to nininfee Ld-l. , 8
necessary condition is that II. J be®cibse to
1. This motivates finding an l‘.d with a small
uorm instesd of sa L, wvhich Sininizes It,-

Ll
The following result indicates how h‘dl
depends on choice of reference machines.

Lesms 4.2

Let the asngles of a given set of refeyence
sachines be ordered as components.of x and
all the other machige angles as x°, and let
the columns of the axr matrix

v
v = [ 1] (4.2)
Vz -

where the rxr matrix V. is nonsingular, be a
basis of the eigensubspace of the slow
modes. Then

~1
a4 = Vzv1 (6.3)

L
is the unique dichotomic solution of the
Riccati _equation (3.10). Furthermore, let
v1 and V, be obtained by exchanging rows of
v, for :g\as of V,, that is by a permutation
VAPV of the rows?of V. Provided that V. is
nonsingular, ghg_flenenr. of D correlyon!ling
to x=Px is L d=V2V1 .

The proof of Lesma 4.2 is given in the
Appendix. This lemma establishes the con-
nection between the Riccati approach pre-
sented here with the modal approach given in
Saccomano (1974a). The lemma shows that to
compute all the Ld elemeats in D, we oanly
need to compute one V. Furthermore, multi-
plying both sides of (4.2) by V1 we see that

-1 I
v \l1 = (4.4)
Ly

is also a basis for the eigeaspace of the
slov modes. In the r-decomposable case, V
will be singular 1{ two machines from th*
same area are in x . In the near-decompos-
able systems V, will be close to sin;ular if
two nur-coher&nr. machines are in x . This
is due to the fact that the two rows involved
are almst_f’.dentical. When V., is close to
singular V7] is large, result{ng .in a large
L.,. Thus wé aim at finding r large and most
Ifne-tly independent rows of V. This would
result ino a V., with a large aorm such that
JLyll of (4.3) Lould be small.

To find this set of r rows, we use Gaussian
elimination with complete pivoting. During
the elimination, the rows and columns of V
are permuted such that the (1,1) entry of the
resulting V is the largest eatry in magai-
tude. Note that permuting the rows of V is
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equivalent to changing the ordering of the
machines. This (1,1) eatry of V is used as
the pivot for performing the first step of
the Gaussian eliminstion. Then the largest
entry is chosen from the remsining (a-1)x(r-
1) submatrix of the reduced V and is used as
the pivot for the next elimination step. The
elimination terminates in r steps and the
machines corresponding to the first r rows of
the final reduced V matrix are designated as
the reference machines. In this Gaussian
elimination process, rows haviag small ea-
tries will not be used as the pivoting row
because these small entries are the result of
elimination with almost identical rows al-
ready used as pivoting rows. Thus, this
algorithm does not put twe near-coherent
machines together as reference machines.

For the set of reference machines found by
the algorithm the correspondiig I‘d is readily
computed from

viLy = V3 (4.5)

using the LU decomposition of V1 obtained
from the Gaussian eliminatioa. The next step
is to find an L_ approximating L,, that is to
find the sachinbs belonging to each area. We
examine each row of L, and if the largest
positive entry is the f-th entry ic the row
i, then in the matrix L entry (i,j) is l.
The resulting I.8 will yifld the nininu.l[.d-
Ls"
We now summarize the grouping algorithm as
follows:

Step 1: Decide on the number of areas.

Step 2: Compute a basis matrix V for a
given ordering of the x variables.

Step 3: Apply Gaussian elimination with
complete pivoting to V and obtain
the set of reference machines.

Step 4: Compute L, for the set of reference
sachines chosen in step 3. Con-
struct the matrix L_ and find the
sachines in each areal

¥

T T T
s I

The main computational load is in the step 2.
However, only a partial eigensubspace V of A
is required and since A is similar to a
symmetric matrix, eigenvalue-eigenvector
computatioa is well conditioned (Wilkenson
and Reinsch, 1971). Alternatively we can
make an initial guess of the set of reference
wachines and apply the Riccati iterative
algorithm in Kokotovic (1975) to calculate
L,. If the solution converges, then the
:gsulting Ld can be used to construct the
basis (4.4).

This area grouping algorithm which finds L
of small norm is supported by the geo-er.ris
interpretation of near-decomposable systems.
For such systems, the row vectors of V cor-
responding to machines in the same area are
almost identical. In other words, the row
vectors of machines belonging to the same
atea are clustered in a cone. These cones
are narrov for near-decomposable systems arnd
degenerate to lines for r-decomposable sys-
tems. The role of Gaussian elimination is to
select the most ligearly independent vectors,
one from each cone, which are then considered
as the reference vectors for the areas. The
encries in L, are the projections of other
vectors on :hg reference vectors. Therefore,
it is easy to see that in each row of L, the
entry close to 1 corresponds to the ptSjec-
tion of the vector on the corresponding
reference vector, and the entries close to
zero are projections of the vector to the
other reference vectors. '

We illustrate this area selection procedure
on a 16 machine model (Figure 4.1) in Schulz
and others (1974). The data are given in the
reference and hence will not be repeated
here. The mwodel is linearized aad the damp-
ing is neglected to obtain the A matrix in
(2.10). Ia the first step of the algorithm
we specify that we want 5 areas, that is r=5.
From this point on the algorithm proceeds
asutomatically giving the following results.
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AN ANALYSIS OF INTERAREA DYNAMICS OF MULTI-MACHINE SYSTEMS

J.R. Winkelman, J.H. Chow, B.C. Bowler

General Electric Company
Schenectady, New York 12345

ABSTRACT

The slow coherency concept is introduced and an
algorithm is developed for grouping machines having
identical slow motions into areas. The singular
perturbation method 1s used to separate the slow
variables which are the area center of inertia vari-
ables and the fast variables which describe the inter-
machine oscillations within the areas. The areas
obtained by this method are independent of fault
locations. Three types of simulation approximatjons
1llustrated on a nonlinear 48 machine system indicate
the validity of this algorithm.

1. INTRODUCTION

This paper presents a systematic procedure for
grouping the machines of a power system into areas.
The concept of an area is based upon the observation
that in postfault transients only some machines close
to the fault location respond with fast intermachine
oscillations, while other machines more distant from
the fault swing together in groups with "in phase”
slow motion. Our approach is to define areas by
grouping the machines which exhibit this slow co-
herency phenomenon. Allowing the machines in the same
area to differ in their fast dynamics makes it possi-
ble to retain the same area grouping for different
fault locations. The resulting conceptual simplifi-
cations and computational savings are significant in
simulation and planning studies when many contin-
gencies need to be examined.

The notion of slow coherency is expressed in the
following way. I[f we consider the r slowest modes of
the system's response to any fault, then machines "i"
and )" are slowly coherent if the difference of their

angles x_(t) and xj(t)

X (t) - xj(t) = zU.(t) (1.1)
contains none of the r slowest modes. This definition
disregards differences of the fast dynamics of ma-
chines within the same area. In contrast to the

more conventional definitions of coherency [1-6],
which require that the total angular difference z. . (t)
be within a specified tolerance, here the tolerandd is
specified only for the slow modes in zij(t).

80 SM 533-0 A paper recommended and approved by the
TZEE Power System Engineering Committee of the LEEE
Power Engineering Society for presentation at the
IZEE PES Summer Meeting, Minneapolis, Minnesota,
July 13-18, 1980. Manuscript submitted February 4,
1980; made available for printing April 21, 1980.
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Our approach to grouping machines starts with the
linearized electromechanical model without damping,
and separates its slow and fast modes using the so
called dichotomic transformation from the singular
perturbation technique (7]. The dichotomic transfor-
mation matrices L and M define a set of physically
meaningful state variables. In the ideal slow coher-
ency case the dichotomic L is a '"grouping” matrix,
whose elements are zeros and ones, and the state
variables of the fast subsystem are machine angle
differences within areas. On the other hand, the
matrix M, which separates the slow subsystem, defines
the slow variables as the area centers of :inertias
{1,2,4]. In a nonideal case we search for a dicho-
tomic L whose elements are close to zeros and ones.
This results in areas which contain machines that are
near-coherent in their slow modes.

The slow interarea dynamics and the fast 1iatra
area dynamics are suitable for two time scale analysis
of power systems by the singular perturbation method.
This method is applicable to systems in the so called
state separable form

g_g - -t 3
it - ey, B ) = (1.2}
e § = 880 L n(e) = 0° (1.3)

where £ and n represent the “'slow" states and the
"fast" states of the system p2spectively, and £ is a
small positive parameter which accounts for small time
constants, inverses of high gain coefficients, K small
inertias, etc. [If the separation between time scales
in (1.2) and (1.3) is ‘arge, € will be small and may
be approximated by €=0. The model (1.2) and (1.3)
with €=0 then defines the quasi-steady-state §s(t),
ns(t) as

g () R
T ° . N, t) Qs(to) =t (1.}

0= g(§, g t) (1.5

where the differential equations for n have been
reduced to algebraic or transcendental equations.

In (1.2), (1.3) t.e variables § are predominantly
slow, that is, £(t) = £ (t), while the variables n(t)
contain a significant "fast component n(t) - n_tt)
which becomes infinitely fast as £+0. For applxcailon
of the singular perturbation method it 1s necessarv to
express the system dynamics in the form (1.2) (1.3).

System models which describe fast and slow phe-
nomena do not always appear in this form. For exam-
ple, the electromechanical model using 'ndividual
machine speeds and angles as the state variables does
not exhibit this slow-fast separation. A new set of
state variables which brings the model to the form
(1.2), (1.3) are the interarga motions which represent
the “slow"” states &, and intra area motions of the
mechines within an area which represent the "fast"
states n in (1.2), (1.3).
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The procedure preseated in the first part of this
paper transforms the conventional nonlinear electro-
mechanical model into the form (1.2), (1.3) by app-
lying the area grouping obtained in the study of the
linearized model. In the second part of the paper ve
demonstrate some properties of the transformed non-
linear models which are useful in understanding inter-
area motions and model simplifications. When only the
area motions are of interest, all the dynamic equa-
tions for the intra area fast variables are reduced to
equations (1.5) regardless of the fault location. A
property observed in the example, which results in a
different approximation, is that the fast phenomena
from different areas are weakly coupled, while the
coupling of slow phenomena is strong. This fact
enables us to reduce the dynamic equatioas of intra
area variables outside the study area to the static
equations (1.5), while retaining the study area in
detail. A further simplification is to neglect all
the equations for the intrs area variables outside the
study area by assuming that the angles between ma-
chines are constant, which is the approach used ia
{4]. These three approximations are demonstrated on a
48 machine system.

2. ELECTROMECHANICAL MODEL

The well-known electromechanical model [8] of an
n-machine power system is

61 = Q(mi -1, (2.1)

leidai = -Di(wi-l) + (Pni'Pex)' (2.2)
i=1,2, ..., n,

where §., w., Pni. P ., Hi' D are the rotor angle,
speed, mechanical iaﬁut power, electrical output

power, inertia constant, damping constants of machine
i, respectively, and Q is the base frequency. In this
model the following assumptions are made.

(Al) Mechanical input power Pn' is constant.
(A2) The electrical output powér is

n
P = I V.V.[B .sin(6.-8.)+G. .cos(6. 8 )]+V3G. .,
el = o 1 ioj ij ij iii
j#iL
i=1,2, ..., n, (2.3)

where the per unit voltage V. behind transient re-
actance is assumed to be constant and saliency is
neglected. Loads are represented by passive impe-
dances, and G and B are the real and imaginary parts
of the reduced admittance matrix Y at the internal
machine nodes.

Disturbances are represented by initial- condi-
tions, and in the case of structural changes, by
changes in the Y matrix. The time scales are largely
determined by the natural frequencies of the lin-
earized electromechanical model around the equilibrium
6"{ and w"'i‘ =1.0,

Mi =QAwi. (2.4)

(2.5)

n
ki, ® jfl .kij' j#i (2.6)
kij = 'vivj'1j°°'(6i°6j) & j#i, (2.7)

in which the terms involving Gij are neglected.

At 8% and w*, th: cigenvalues of (2.4) and (2.5)
are of the following three types:

1. a 2ero eigenvalue corresponding to the motion of

all the machine angles,

2. a small negative real eigenvalue correspoading to
the aggregate speed of all the machines, and

3. (n-1) pairs of lightly damped oscillatory modes
which typically range in frequency from 1/2 to 2
Hz.

Models involving more details such as excitation
systems and governors would still coantain the above
set of eigenvalues modified mostly in the damping and
not in their frequencies [4]. Since the small damping
constants D. do not significantly affect the fre-
quencies of the oscillatory modes they may be ne-
glected. Thus, the linear model used in this paper is
the second order system

x = ~(1/2) K x & ax, (2.8)

where x. = 5., H = diag (H,,H,,...,H ), and K is the

matrix of k. ' Therefore insfead of dealing with a
system of order 2n, we only need to deal with the nxn
matrix A.

From (2.6) and (2.7), K is symmetric if Y is
symmetric which is true for networks without phase

shifters. Thus, A is diagonalizable because it is
similar to the symmetric matrix
-y Va2 (2.9)

1/2

vhere H is the square root of H.
eigenvalues A. of A are real.
eigenvalues +. of the second order :’ystel (2.8) are
on the imagina axis close to the slightly damped
eigenvalues of (2.4) and (2.5). Thus, the low fre-
quency modes of (2.4) and (2.5) are the slow modes of
A.

Thus, all the
For A, negatie, the

3.  SLOW COMERENCY

In this section we study systems in which 1t 1s
possible to group the machines into r areas such that
the difference z. .(t) in (1.1) contains none of the r
slow modes. Sucﬂ"’iduuzed systems, in which the slow
coherency is exsct and the number of coherent areas is
equal to the number of slow wmodes, are called r-
decomposable. In r-decomposable systems there exists
8 direct relationship between the time scales and the
coherent areas. This relationship is established in
this section and serves as a basis for the development
of the grouping algorithm in the next section.

Let us first define a compact notation for areas
by introducing a reference set of wmachines and a
grouping matrix. In each area we pick an arbitrary
machine as the reference machine. The ceference
machine anqles are then considered as components of an
r-vectoric , while all other angles form the (n-r)-
vector x°. Equation (1.1) motivates the use of a
grouping matrix L of dimension (n-r)xr to assign
machines to areas.” L_ has as many rows as the number
of machines in x° and &s many columns as the aumber of
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In step 2 s basis for the S-dimensional slow
subspace is computed. In step 3 the Gaussian
elimination is performed and the set of
reference machines is found to be 5, 12, 14,

1S, 16. In step & the dichotomic L, corre-
sponding to this reference set is %o-puud
anad is given in Table 4.1. The largest
element in each row of L, which are under-
lined in Table 4.1, are uged to identify the
machines in each area. As a result the
following area grouping of machines is ob-
tained:

Area 1: machines 1-9
Area 2: machines 10-13
Ares 3: machine 14
Ares 4: machine 15
Ares S:  wmachine 16.

Note that for machines 1, 2, 3, and 8, the
entries in the column uader machine 12 are
not significantly smaller than those under
machine 5. This can be interpreted that the
responses of 1, 2, 3, and 8 are only slightly
more coherent to 5 thaan to 12. Nevertheless,
this ares grouping gives quite favorable
results as it will be demonstrated in the
next section.

INTERMACHINE AND AREA VARIABLES

Using the framework of singular perturbation
theory we now show that an area decomposition
is an essontial step in two time scale aad
reduced order modeling. A model is singular-
ly perturbed if some of its states are pre-
dominantly slow and others predominantly
fast. The two time scale property can be
exhibited by the different choices of the
state variables. For linear time invariaat
models a possible choice are the modal vari-
ables. However, a frequent requirement is
that the states be, or at least closely

reflect, the actual variables of physical
units in the system. We are therefore inter-
ested in a physically meaningful choice of
state variables which in addition exhibits
the time scale properties.

The state variables of the originsl electro-
mechanical model (2.1), (2.2) and its linear-
ization (2.4), (2.5) are physically meaning-
ful but each of them contains mixed slow and
fast parts. However, if the system is near-
decomposable and the nesr-coherent areas have
been found, a the model (3.6) exhibiri the
fast part #°2B,2°. The fast states z= are
physically uenﬁn:ful. They represeat the
intermachine oscillations x,-x. of the ma-
chines i sad j within aa ar a, Juhere machine
j is the reference machine of the area. The
other states x of the model (3.7) still have
"mixed" fast and slow parts and should be
replaced by some predominantly slow states.

Knowing that the slow eigenvalues of A are in

Bl’ we now separate the slow subsystem using

BALAE e

TABLE 4.1. Matrix L

d
oth a Ref Machi
er H etference cnines

Machines T4 T1Z; 15 T 16 5
F S . i c b —

1 10599 .411 -.0156 : .0222 !.522

2 [.0335 .422i-.0135 | .0014 .557

3 1.0320 -.387'-.0132 |-.000466 .95

4 ..0221 .178°-.00818 | .00225 ,.806

6 1.0217 -.193 -.00971 |~.00404 1.799

7 *.0227 !.198 -.00987 .-.00312 '.793

8 ,058% i.377.-.0170 . .0186 -.563

9 ..0372 |.215;-.0183 ,-.00352 .769

10 .100 |.618'-.0179 | -110  1.189

11 1.0720 |.643(-.000447 .133  |.152

13 :.oouo].sni-.oous ! .0197 Loona .
Syt Sl R RS

B, PO l::‘:l
= 2 (5.2)
0 32 z
which shows that, if M satisfies V
B(M) = H:Bz-BlH + A12 =0 (5.3)
thea ;138 zl. Hence 2! contains oaly slow

modes and represents a possible choice of the
slow variables. 1Is this choice physically
meaningful? To answer this question we need
the following result whose proof is given in
the Appendix.

Lemma 5.1

Consider the matrix Ax-(1/2)QH™ K of (2.1)
where K is symmetric and H is the diagonal
matrix of machine inertias whose {xr and &2-
r)x(n-r) diagonal blocks are H" and .
respectively. Then the solutions L of
R(L)=0 and M of P(M)=0 are related by

R R A e (5.4)

A similar relationship can be obtained by
modal methods (Saccomano, 1974a). Under the
conditions of this Lesms the complete trans-
formation from x to z variables (3.5) and
(5.1) is

=l,1

1 el 2 1
z alwl owlew?| [x
a8 a
2| 2 le:l (5.5)

2z -L I
where
H, = B+ DAL (5.6)

If the system is r-decompossble, that is L=L
then the physical meaning of z° is readil’
recognized from the first row of (5.5) chat
is from

1 1.1 ]
Bz = Wx 0L‘Hx (5.7)
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by noting the special structure of I.'ll2 and
H . Since,the entries of L_ are zefos and
ofies and H® is diagonal, Ehd‘nonzero entries
:5 L' are replaced in L'H® by the entries of

. .Fut:henore, L'H L ®is diagonal, because
L'L_is diaggnal. 2 an be seen that each

tfy of L'H is the sum of machine iner-
tias in an Sared excluding the inertia of the
reference sachine in that ares. Thus H is
a diagonal matrix of the area ipertias, that
is

H‘i =2 Hj, for all j in avea i. (5.8)

It follows that the i-th component z: of z!
is

2l =3 Hox/H ., for all j in ares i (5.9)

1

and hence its physical meaning is the famil-
iar notion of the "area center of inertia,”
which has been used in Marconato, Mariani and
Saccomano (1973).

In conclusion we emphasize that for an r-
decomposable system an area decomposition
results in physically meaningful slow aad
fast variables. For near-decomposable sys-
tems we still use the area variables (5.9)
and the intermachine differences (3.1) as
states. Although the time scale sepafation
is not cowplete, the area variables 2z~ will
be ptedoninzntly slow and the intermachine
variables z° will be predominantly fast. The
same conclusion applies to mwmodels with
damping (2.4), (2.5) sad nonlinear models.

As aa illustration we will consider the 2ax2n

linearized model (2.4), (2.5) which includes

damping. We define z to represent both

angles and speeds: z  for the ares variables

and z° for the intermachine variables. Then

the model (2.4), (2.5) becomes

3t £, Fal [

2] = 2 (5.10)
FZI F22 2°].

The singular perturbation approach in Koko-

tovic and others, 1980) is to use

z

1 -1 1 1

£, = (F)FpFp ) 7, 8F, 2 .1
to approxisate the slow subsystem and

2 _ 2

if = l‘zzzf (5.12)

to approximate the fast subsystem of (5.10).

We now examine this approximation om our 16~
machine example, with the areas defined in
the preceding section. As an indication of

accuracy, we compare the eigenvalues of F_ in
(5.11) and F,, in (5.12) with the accubate
eigenvalues. %1 Table 5.1 shows, the worst
error is 3.6% for the pair -.08790 + j4.531.
In this example even though L, is not very
close to L , especially in :owg 1, 2, 3, and
8, the eigoﬁvulu: approximstion is excellent.

TABLE S.1. Eigenvalue Approxi-
mations of EE Ié
fachine 3!".-

P—— e e e = . - o - o —

Singular
Sub- Perturbation
Systea Accurate Approximation
Slow .0002318 .0002318
.1969 .1969
.1063 + j2.576 |-.1058 <+ j2.589

.09877 + j3.498
.08970 ¥ j4.531
.09399 + j5.068

.09882 ¥ j3.496
.09097 ¥ 14.695
.09385 ¥ §5.07S

Fast 1206 + §5.997 |-.1219 + §5.975 |
-.1162 ¥ j6.534 [-.1222 ¥ §6.445
| - 1178 ¥ §7.159 |-.1177 ¥ 37.156
l -.07192 ¥ §7.485 |-.07207 ¥ §7.481
‘ -.1198 ¥ j7.962 [-.1195 ¥ j7.962
: -.09360 ¥ j7.970 |-.09425 ¥ j7.959
; -.08926 ¥ j8.405 |-.08873 ¥ 18.259
; -.1350 ¥ 39.267 |-.1351 ¥ j9.267
! -.1007 ¥ §9.650 |-.1025 ¥ §9.646
: -.1264 ¥ §9.732 {-.1266 ¥ j9.732

’ -.2013 % j11.419,-.1986 ¥ j11.378 |

CONCLUSION

The concepts of slow coherency and r-decom-
posable systems have exhibited the time scale
properties and retained the physical mesning
of the fast and slow variables in electrome-
chanical models of the power systems. The
time scale interpretation of the notion of
coherent aress has provided an analytical
basis for the grouping algorithm proposed in
this paper.

The algorithm uses the dichotomic solution of
a lower order Riccati equation expressed in
terms of a basis of the slow eigensubspace.
First a basis is found, and then a particular
dichotomic solution is obtained via Gaussian
elimination. A grouping matrix, which is the
closest approximation of the dichotomic
solution, can be cbtained and used to define
areas. This algorithm is illustrated by a
16-machine example. Although the areas are
determined oo a simplified linearized model,
it is expected they can be used to bring more
detailed and nonligear models to a singularly
perturbed form. This opens new possibilities
for obtaining aonlinear lower order equiva-
leats by singular perturbation techniques.
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APPENDIX
We start with the proof of Lemma 4.2 because
the proof of Lemma 4.1 is easily obtained
from the proof of Lemma 4.2.

Proof of Lemms 4.2

Since the columns of V form a basis of the
slow eigensubspace, then there exists a
satrix A whose eigenvalues are equal to the
slow eigenvalues of A such that AV=VA whose
partitioned fora is

ApYy * ALY, = VA (A1)

v

2 * Y (a2)

A Ty




wvhere A.. are the submatrices of A of appro-
priate dikensions.

Premultiplying (Al) by vl sad using it to
eliminate A from (A2) yiclals

-1
Ay Vi*hppVa Va¥y (A *AypYp)=0  (A3)
Thus, (3.1_01) follows from post-multiplying
(A3) by V", and lf.d is identified es in
(6.3). Furlhnmu,

-1
1% A YAk YWY,
cag be obtained from post-multiplying (Al) by
V,", implying that the eigenvalues of B, are
tke slowv eigenvalues. The uniqueness &f I‘d
follows from Medanic (1979).

B (M)

The proof of the second part of the lemma
follows from the first part. Since V is of
full rank, there sre more than 1 cosbination
of the rows of V forming a noansingular
matrix Vl, and hence the statement is sesa-
ingful.

Proof of Lemma 4.1

From the proof of Lemms 4.2, if u is an
eigenvector of Bl. then

u
v = [ (As)
I.du

is an eigeavector of A. In particular, if
v=v , thes from (P1),

u 1
vEe = ° ]z [2 ] (A6)
l’.duo 1

Thus (4.1) is obtained by writing r‘d“o in
scalar form.

Proof of Lemma 5.1

Let us first rewrite R(L)=0 and P(M)=0 as

[L 1]a [{] =0 (A7)
T u]s [—;1] = 0. (A8)

where

8= [‘1 "12]
o B,
1

Substituting B=’!‘LAT into (A8) yields

(I-ML M) A [‘-u ]
1-1M

s (1-4L M) (KK [en (A9)
(3]
= ((1-myad) 7Y uw?) Tl a [I-'gtu ]- 0.
I-1M)

Pre- and post-gultiplying (A7) by [HZ(1-LM)]'
and [(I-ML)(H") "]' and comparing to the
transpose of (A9), we obtaia

wH' s (1-u)HiL (A10)
vhich simplafies to (5.4).

ni
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sschines dn x'. ,The (i,j) emtry of L is 1 if me-
chines x, and X, are in the same ared and is zero
omruu‘.

As an illustration consider s three ares five
sachine system vith

1 T
x = (xz, Xq» xs) 3.1)
2=y, )’ (3.2)
001
L= 1300 - (3.3)

The 2(1:.:‘1-« of L indicates that the first machine
ig x“ belongs to same area as the third machine in
z, and the s,cond rov of L indicates that the secoad
machine in x°, belongs to same ares as the first
machine im x . Thus the three areas composed of
sschines $ and 1, machines 2 sad 4, aad machine 3 are

iquely defined. For a different choice of x aad
x°, such as

xla (x,, X5, 13)1' (3.4)
= (x,, %" (3.9

we need a different l.’.‘ that is

010
L= (i 0ol (3.6)
to define the same areas. Note that the zero coluamn
in L of (3.3) or (3.6) indicates the presence of a
singl® machine area.

Using L', (1.1) is revritten more compactly as
HORR (v = 23(e) (3.1

vhere the components °£l zz(t) are the corresponding
functions z. . (t). For x ,x° and L_defined in (3.1) -
ij 3
(3.3),
- x,
S
<)

x
Ao} (3.8)
4

Our procedure interprets (3.7) as a special case
of the more general coordinate transformation

xl] [ 1 of |«
™ (3.9)
z2 -L 1 xz

where the (n-r)xr matrix L is not necessarily s
grouping matrix. The application of the transforma-
tion to (2.8) results in

x1 ;.Bl A12 ' xl

- = 2 (3.10)

z Lray 8, | L2
vhere
Bl = All + AuL , 32 = A22 - LAu (3.11)
R(L) = Azzl. - LAu - LAuL + AZI (3.12)
and A ., A Ay are the submatrices of A con-
fomilvn.hlv n&& xf.zz

We asre particularly interested in a so called
dichotomic L which satisfies R(L) = 0 and |A(B,)|<
[A(B,)| , that is, which groups the slov modes into the
mstFix B,. It can be shown that the Riccati equstion
R(L)=0 i& (3.12) can have at most one such dichotomic
solution L-I.d [9]. HMoreover, for r-decompossble

" matrix, that is L sL

systems the dichotomic solution is slso a grouping
{9], sad any choice of r ma-
chines, each froms ‘n Sfterent sres, gives an L_ wvhich
solves R(L ) = 0. If two machines from the safle ares
wvere in refersnce set, then the corresponding
Riccati equation would not have s dicbotomic solution.

This grouping approach has a geometric repre-
sentation in terss of s basis of the eigensubspace of
the slov modes of A for s particular ordering of the
machine angles in x. Coamsidering such s basis as the
columns of an nxr satrix V, we see that if the ma-
chigces i aad j are slowly coherspt, the ith and jth
rows of V must be identical. If no machines from the
same ares are in x°, the rxr submatrix V. of the basis
satrix !

]

is nonsingular and the dichotomic solution of R(L) =
0 is given by [9]

-1
Ld = I.' = Vzv1 .
If two machines from the samse ares are in xl. then Vl
is singular since it has two identical rows. Hence Ld
does not exist.

(3.13)

(3.14)

The transformation of (2.8) iato (3.10) with
R(L)20 decouples the fast subsystem, but the slow
subsystem is still coupled through Al . Kaowing that
the slow eigenvalues of A are ia B,, 2\00 now separate
the slow subsystem from the fast. }pplyin. the trans-
fomtion

z

frn ] [x!
= (3.159)
22 L0 I 2%
to (3.10), with R(L)=0, we obtain
2! 8, p)] [z
- |® 2 (3.16)
3 L0 Bz 2°].
For M in (3.15) we use the solution of
P(M) = HBZ - Bl N+ A‘IZ =0 (3.17)

which completely separates (3.16) into the slow and
fast subsystems. It has been showa (9] that the
solutions L of R(L.) = 0 and M of P(M) = 0 are re-
lated by 8 8

1 T,2, \=1.T.2
+ L°H°L H .18
8= (H L' ') I.' (3.18)
where Hl and l-l2 arg the and (n-r)x(a-r) diagonal

matrices of the x
tively.

and x° machine inertias respec-

Thus, the complete traasformation from the x to
z variables using (3.9) and (3.15) is

2! i R SR A L B
a a a g .
22 -L I J x2

(3.19)

vhere

1 1,2
H H® + LHL . .20
2 T o g (3.20)
Since the entrift of the grouping matrix L are zeros
and ones and H™ is du,ogal matrix of malhine iner-
tias, each entry in L H'L_ is the sum of machine

inertias in an area dclu‘ing the inertia of the

alandtads




is a dis-

Thus, K
gonal matrix of the ares inertias, that il. the ith
diagonal element, H_ ., of H‘ is the sum of all the
inertias of nchinﬂ'fh area i

reference machine in that areas.

1l-‘o:- an E-deco-ponble system the physical meaning
of z and 2° can be readily determined by examining
(3.19). We see that the fast states z represent the
fast intermachine oscillations x. -~ x. of machines i
and j within an area, where machifie B the reference
machine of the area. From (3.19) we also see that

Hz!' = ul! v L:lizxz

(3.21)
and it follows that the slow states of z1
the familiar center of inertia variables,
component wise

represent
that 1is

z: = mjxj/“ai' for all j in area i. (3.22)
These area varisbles are the weighted sums of the
machine angles in the areas. They can be regarded as
the angles of equivalent machines for the areas (1,
2,4]. As a consequence of our separating the time
scales, these equivalent machines have larger inertias
and hence exhibit slower motions.

4.  THE GROUPING ALGORITHM

For idealized r~decomposable systems  the deter~
mination of areas asmounts to finding an x° vector of
reference machines for which a dichotomic solution of
R(L) = 0 exists. The difficulty with realistic
models, which are not exactly r-decomposable, is that
in general for a given x° a dichotomic solution of
R(L) = 0 exists, but is not a grouping matrix. For
such realistic situations, we present a group-
ing algorithm to determine the areas.

We begin by considering the case when the slow
coherency definition (1.1) can only be approximately
satisfied. Machines "i" and "j" are said to be near-
coherent if in (1.1) the contribution of the slow
modes 1n z..(t) is small in some prespecified sense.
Then a neafdcoherent area is an area composed of all
machines which are near-coherent to each other.
Following the approach for r-decomposable systems, we
need to first find the reference machines and then
approximate Ld by an L_, since now I‘d 1s different
from L . 8

8

For near-coherent areas, the row vectors of any
slow eigensubspace basis matrix V corresponding to
machines 1n the same area are not the same. However,
they are close in the sense that they are of approxi-
mately the same length and are clustered in a narrow
cone. There are r such nonintersecting cones, one for
each area. .

To identify the areas, we find the r "most lin-
early 1ndependent vectors", one from each cone, and
use them as the reference row vectors. After that, V
1s reordered such that V., consists of the ret‘eregfe

row vectors, see (3.13). Recalling that Ld z Vzv1 .
we see from
L 1
vV = | C (k1)
1 L ‘
N P

that the entries of L, are the projections of other
rows vectors onto the reference vectors. Therefore,
in each row of L, the entry close to | corresponds to
the projection 8( the vector on the corresponding
reference vector, and the entries close to 2zero are

projections of the vector omto the other reference
vectors. .

An important property of L, is that it is inde-
pendent of the scaling of V. vacn 8 basis matrix V,
any other basis can be obtained as

VIS
Vs = (4.2)

VZS

vhere S is an rxr noasingular matrix. The matrix I’d
is invariant to this change ia basis, that is

-1
L, = VZS (VIS) = VvV

1
d 2'1
To find a set of the r "most linesrly inde-~
pendent" row vectors to be used as the reference row
vectors, we apply Gaussian elimination with complete
pivoting to V. During the elimination, the rows aad
columns of V are permuted such that the (1,1) eatry of
the resulting V is the largest in magnitude. Note
that permuting the rows of V is equivalent to chaaging
the ordering of the machines. This (1, 1) entry of V
is the pivot for performing the first step of the
Gaussian elimination. Then the largest entry from the
remaining (n-1)x(r-1) submatrix is used as the pivot
for the next elimination step. The elimination ter-
minates in r steps and the machines corresponding to
the first r rows of the final reduced V matrix, are
designated as the reference machines. In this Gaus-
sian elimination process, rows having small entries
will not be used as the pivoting row because these
small entries are the result of elimination with
almost identical rows already used as pivoting rows.
Thus, the algorithm does not put two near-coherent
machines into the reference set.

(4.3)

For the set of reference machines found by the
algorithm the corresponding I.d is readily computed
from
T,.T T
V1 L 4= V2
using the LU decomposition of V, already obtained from

the Gaussian elimination. The next step is to find an
L_ approximating I‘d’ that is to find the machines be-

(6.4)

longing to each area. To do this we examine each row
of L,. If the largest positive entry in row i is the
jth entry, then in the matrix L entry (i, j) is 1 and
all other entries in the ith row'are 0.

Summarizing, the grouping algorithm consist of
four steps:
3. computation of a basis V for the slow subspace of
Av
b. Gaussian elimination of V,
¢ computation of L, by (4.4),
d. approximation ot’dl.d by an L‘.

With the reference machines and L known, the aveas
are determined. 8

The algorithm is efficient because its most time
consuming part the basis calculation in step a is only
for r modes where r<<n and is carried out on the
symmetric matrix (2.9). There are special purpose
programs available in EISPACK which make use of these
properties for handling large scale systems.

5. APPLICATION TO A NONLINEAR MODEL
The grouping algorithm and slow coherency pro~

perties are now examined on a 43 machine NPCC test
system (10]. This model is of particular interest

T L . ndit
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This localized nsture of the fast dynsmics can be
used to improve approximation Al by including the
differeatial equations of the fast difference vari-

ables in the study ares. Thus, for this approximstion

Figure 6.2 are an approximation to the slow dynamics
pr::ur. in the huptznchino varisbles in the faulted (A2) ve have a set of differential “I‘:‘““ﬂ; for both
ares. The smaller the sagnitude of these slow dynam- the asres variables and the 1“0;;“ ine ilfi:ruc:
ics the closer the system is to an r-decomposable variables in the lt.utlyi balru. :“ exlt.&m“h nt.:;
Figure 6.3 illustrates the response of indi- machine difference variables are e v €=0,
:z::a-luch?m “"1” in sres 1 which is adjaceat to that is with a set of stitic equstions. Fi.;urnlé.bé
o Tulied eir T clows vt S the 50 f24 &6 1w e clos sessent e oo

exact curves and the approximation es at e
fa:t dynsmics in srea 1 is small even though the fast the neglected fast dynamics in the external aress.

1 i . Thus, A2 curves are more accurate than those of Al.
cs ia the faulted srea are substantial. However, both aspproximstions provide the correct

steady state value.
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6.  APPROXIMATE SIMULATIONS

From the above discussion we have shown that the
time scale properties are preserved in the nonlinear
model. Having expressed the system dynamics in the
form of (1.2) and (1.3) we present three differeat ap-
proximate simulations of the Medway fault.

After the fault was cleared, ve set ¢ = 0 for the
entire fast subsystem and obtain a set of equations in
the form of (1.4) and (1.5). With this approximation
(A1) the slow dynamics are in differential equation
form (1.4) and the slow part of the fast dynamics are
represented by a set of static equations (1.5).
Figures 6.1, 6.2 and 6.3 show the close aggreement
between the exact solution (E) and the approximstion
Al for selected machines in the faulted as well as
adjacent area. The error introduced by this approxi-
mation is ouly in the fast dynamics and there is no
steady state error between Al and E. The Al curves in

|001
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S
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Figure 6.1: Individual machine angles area 5, exact
and approximation Al
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1f the test system were truly aam r-decomposadble
system the difference variables would contain no slow
area motions. Figure 6.2 iodicates how closs our
system is to an r-decomposable system. If ve make the
assusption that the test system i3 r-decomposable and
that the fast dynamics are strictly local to the study
area then the intermachine difference variables
remain constant outside the faulted area. This ap-
proximation is basically similar to the equivalencing
technique used in [4]. Errors introduced by this
approximation (A3) will be both in the fast variables,
for the same reasons as discussed above, aud in the
slow variables, which will have a steady state error.
This steady state error is due to the fact that wve
have constrained the angular differences between
machines outside the study srea to be the same as the
pre-fault equilibrium conditioas. These angular
differences are represented as phase shifters in
{4]. In approximation A2, these angles are allowed to

0 T T 7T 1 1
0 l 2 3 4 5
TIME SECONOS
Figure 6.7: Individual machine angles area 5, exact

and approximation A3
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Figure 6.8: Aagular difference variables srea 5,

exact and spproximation Al

vary with time. Depending on the post-fault equi-
librium this may or may not be a significant error.
The agreement between approximstion A3 sad the exact
solution E is shown in Figures 6.7, 6.8 and 6.9.
Within the study area, Figures 6.7, 6.8, the agreement
remains good. However, A3 cucrves for area 1 (Figure
6.9) do oot compare as well to the exact curves as ip
previous cases. This is due to the approximation of
the intermachine difference variables as constants.

80—

60~ >,

0

0 T T 7 T )
0 ! L2 3 4 5
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Figure 6.9: Individual machine sngles area 1, exact

and approximation A3

7.  CONCLUSIONS

The concepts of slow coherency and r-decomposable
systems have exhibited the time scale properties in
electromechanical models by introducing a set of
physically meaningful fast and slow variables. These
variables are obtained through the dichotomic trans-
formation which is the solution of a lower order
Riccati equation. A grouping algorithm is formulated
to find a particular dichotomic solution, from which
the grouping matrix csn be obtained and used to define
the areas.

Through the 48 machine system, we show that the
areas obtained from linear analysis are valid for
nonlinear simulations and are fault location inde-
pendent. Three types of approximations using the
singular perturbation technique are illustrated. By
neglecting all the intermachine variables, the slow
variables reproduce the area motioas. The accuracy of
the simulation is improved by including also the
intermachine dynamics in the study area. Without much
loss in accuracy, the intermachine variables in the
external ares can be kept constant. These approxi-
mations offer new approaches to reduced simulations
for power system studies.
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1f the test systes were truly an r-decomposable
system the difference variables would coatain no slow
ares motions. Figure 6.2 indicates how close our
systes is to an r-decomposable system. I[f we make the
assumption that the test system is r-decomposable and
that the fast dynamics are strictly local to the study
area then the intermachine difference variables
remain constant outside the faulted area. This ap-
proximation is basically similar to the equivalencing
technique used in [4]. Errors introduced by this
approximation (A3) will be both in the fast variables,
for the same reasons as discussed above, aand in the
slow variables, which will have a steady state error.
This steady state error is due to the fact that we
have constrained the angular differences between
sachines outside the study area to be the same as the
pre-fault equilibrium conditions. These angular
differences are represented as phase shifters in
(4]). In approximation A2, these angles are allowed to
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vary with time. Depending on the post-fault equi-
librium this may or may not be a significant error.
The agreement between approximstion A3 and the exact
solution B is shown in Figures 6.7, 6.8 and 6.9.
Within the study area, Figures 6.7, 6.8, the agreement
remains good. MNowever, A3 curves for ares 1 (Figu're
6.9) do not compare as well to the exact curves as in
previous cases. This is due to the spproximation of
the intermachine difference variables as constants.
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7.  CONCLUSIONS

The concepts of slow coherency and r-decomposable
systems have exhibited the time scale properties in
electromechanical models by introducing a set of
physically meaningful fast and slow variables. These
variables are obtained through the dichotomic trans-
formation which is the solution of a lower order
Riccati equation. A grouping algorithm is formulated
to find a particular dichotomic solution, from which
the grouping matrix can be obtained and used to define
the areas.

Through the 48 machine system, we show that the
areas obtained from linear analysis are valid for
nonlinear simulations and are fault location inde-
pendent. Three types of approximations using the
singular perturbation technique are illustrated. By
neglecting all the intermachine variables, the slow
variables reproduce the area motions. The accuracy of
the simulation is improved by including also the
intermachine dynamics in the study area. Without much
loss in accuracy, the intermachine varisbles in the
external area can be kept constant. These approxi-
mations offer new approaches to reduced simulations
for power system studies.
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Singular Perturbation of Linear Regulators:

Basic Theorems
PETAR V. KOKOTOVIC anp RICHARD A. YACKEL, MEMBER, IEEE

Abstract—=The behavior of the solution of the Riccati equation
for the linear regulator problem with a parameter whose perturbation
changes the order of the system is analyzed. Sufficient conditions
are given under which the solution of the original problem tends to
the solution of a low-order problem. This result can be used for the
decomposition of & high-order problem into two low-order problems.

InTRODUCTION

HE DEPENDENCE of the solution of a linear

regulator problem on a paramcter whose small
perturbation can change the order of the system is analyzed.
The svstem considered is

% = A+ Az + B, z(te) =2 (la)
N Az + Az + B, 2(t) =22 (1b)

where \ is a small positive scalar, r and 2z are n- and m-
dimensional states, respectively, and u is an r-dimensional
control. The performance index to be minimized is

L3
J = WPy + %L (wDy + wRuydt  (2)

where y = Ciz + (2 = CX is an s-dimensional output,
X is the (n + m)-dimensional state of (1) and C =
(GG

In physical systems our parameter \ represents small
time constants, masses, moments of inertia, etc.! Following
his intuition and experience a designer usually neglects
these small parameters during the design of a regulator
system. He has at least two strong practical rcasons for
this simplification. An evident reason is that the presence
of these ‘‘parasitic’”’ parameters can make the dimen-
sionality of a dynamic system prohibitively high. Another,
less apparent, reason is that equations describing systems
with small parameters multiplying derivatives belong to a
class of “stiff”” differential equations, which are difficult to

Manuseript received July 3, 1970; revised March 31, 1971, and Sep-
tember 20. 1971. Paper recommended by L. Silverman, Chair-
man of the IEEE 8-CS Linear Systems Committee. This work was
supported in part by the U.8. Air Force under Grant AFOSR-
1579C, in part by the Joint Necrvices Electronics Program under
Contract DAAB-07-67-C-0199, and in part by the National Science
Foundation nnder Grant GGK-:3893,

P. V. Kokotovi¢ is with the Coordinated Science Laboratory,
University of Illinois, Urbana, 111

It. A, Yackel is with the Department of Electrical Engineering,
University of llinois, Urbana, Il.

' For example, if 7 iy a small time constant and M is a small
maxs, then we can write T = ax and W = a3\, where a; and ay are
appropriate coetficients.
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solve even when the dimensionality of the system is not
high [1].

In the method of this paper the small parameter X is not
neglected in the state equation (1), but rather in an
appropriately formulated Riccati system for the regulator
problem (1), (2). At x = 0 this “full’”” Riccati system is
decomposed into two smaller Riccati systems, one corre-
sponding to the variable z, and the other corresponding
to the variable z. An efficient decomposition is achieved
since the z Riceati system does not depend on the z
Riccati system and thus can be solved separately. It is of
practical importance that the z Riccati system is algebraic
rather than differential, even for a finite time interval
problem. In contrast to the full Riccati system (9), the
two smaller Ricecati systems (11l¢) and (16) constitute a
“reduced” system. In Theorems 1 and 2 conditions are
formulated under which the full solution tends to the
reduced solution as A = 0+, Hence, for \ sufficiently small,
the reduced solution can be used as an approximation of
the full solution. In a future paper [2] an asymptotic
expansion method is developed which improves this
approximation.

To appreciate the nontriviality of the perturbation
problem considered, note that at A = 0 the matrices

4 4 1 .
A [:Ia/)\ J.../A]’ B = [E,/x] @)
of the state equation (1), that is, of the system
dX
i AX+Bu, Xty =X 4

may be unbounded at N\ = 0. To analyze this singular
perturbation problem a “boundary layer” concept is
introduced in the Riccati system. The “‘thickness” of this
layer is a short time interval (4, ;] during which a rapid
transient of the z Riccati system decays. Asymptotic
stability of this transient is a crucial condition in most
theorems of singular perturbation theory [3], {4]. Readers
unfamiliar with singular perturbation theory are referred
to theorems of Levin and Levinson (5] and Hoppensteadt
[6] in the Appendix.

This paper is organized as follows. After preliminary
notation and definitions the main result is presented in
Theorem 1. This result is then extended to the infinite
time interval ({; = =) problem. Theorem 2. It should be
noted that in Theorem 2 the existence and uniqueness of
the full solution is established via controllability and
observability test for the reduced system, thus avoiding
the difficulty with the unboundedness of matrices . and B

o e




as A =+ 0. Singular perturbation of linear regulators was
first considered in (7]. This result now appears as a special
case of Corollary 2.

PRELIMINARY DEFINITIONS

In the regulator problem (1), (2) the following usual
conditions are set for ¢t € [t, ¢{;] and A € [0, \°].

l) .Il, IIQ, IIQ, Zc, 81, Bg, and C&l’e continuous in ¢ and
A.

2) R and D are positive definite and continuous in ¢
and A,

3) F is time invariant, positive semidefinite, and
continuous in A.

It is well known [8] that under these conditions and
for A > 0 and ¢, finite the optimum control is

u = —R-\B'RX (5)
where K is the solution of
B - —RI- 1R+ RBR-BER
-CDC, Ry = C'FC (6)
and the optimum regulator system is
B (A - BEBRX. @

Partitioning K, § = C'DC, and 1T = 'FC into n by n,
n by m, and m by m arrays,

e-Le e} e-[& 8l

- M A\,

i [m,' m,] ®)
and denoting S, = BiR-'8y, §, = B.R~Ry, and S =
B,R-'B,’, we rewrite (6) as

AR,

E = —K.Xl - .‘I;'Kl - Kz‘ 3 - “Ialkz’ + KlSlKl

+ R38Ry + RQR, + R &Ky — $: (9a)
dk,

k_d? - -Kp'Iz - Kﬂz‘ b )\‘Il’Kz - Jxlka + XK]S[K1

+ KISKz + mzslﬁlz + KzA§2K3 - Q: (9b)

R% = —RK:'.IQ - x&IQIKQ - K;:L - .I\'K;
+ AR/ SR, + \Ky'SK; + KSR,
+ RSk - O (9¢)
with the end condition
K](t,) = I-Il, Kz(t,) = ng, K:(t/) = fI;. (10)

The preceding form of K makes the Riccati system (9)
suitable for singular perturbation analysis. This system is
called the full system. If \ is zero. the full svstem formally
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reduces to a system of one differential and two algebraic
equations, called the degenerate system,

:—Ifl = —Ky(4, — SKy') — (41 — SK¢)'K,
+ K\SiK, — K:4; — 4/Ky’
+ KiS:Ky — Qi  Ki(t) = IIt (11a)
0 = KiS:K; — 4) - K14 — A/K;
+ K8K; — @ (11b)
0 = —Kydi~ A/Ki 4+ KiS:K; — Qs (11e)

where the absence of a tilde above a matrix denotes the
evaluation of that matrix at A\ = 0,

Note that as A = 0 in (9) the derivatives dK:/d¢t and
dR,/dt may tend to infinity sinee, in general, Ky = II,
and K, = II; do not satisfy (11b) and (11l¢) and thus the
right-hand sides of (9b) and (9¢) are not zero at A\ = 0
and ¢ = t,. Hence, in an interval about ¢, the solution (9)
differs markedly from a solution of (11) and, since dK,/dt
and dR,/dt are large, K: and K; rapidly change in this
interval. This interval is called the boundary layer
because of an analogy with problems in fuid dynamics
[9]. To analyze this boundary layer phenomenon the
following boundary layer system is introduced:

(% 2 La(0)[Se(t)La(7) — AD)] + [Ki()S(t)

— 4'O}La(r) = Ki()42(t) ~ Q) (12a)

dL;( 1')

ar = —Ly(r)d () = A ) Ls(r)

+ La(n)8:()La(r) ~ Qs($) (12b)

where the independent variable is 7. and ¢ is considered as a
fixed parameter, t & [ty, {;]. The variable r is often referred
to as ‘“fast time’ sincc (12) can be viewed as being ob-
tained from (9) by the use of the “stretching” trans-
formation ¢ = Ar 4+ {, and allowing A = 0, sce (3. p.
254]. Using (12b) we now introduce two important
definitions.

1) The system (1) is called boundary layer controllable
if for each fixed t € [to, {/]

rank (By, AiBy, -+, A"'By] = m. (13)

2) The system (1) is called boundary layer observable
if for each fixed ¢ € [ty, ¢/]

rank {C', ASCY, -+, (AN™C ] = m. (14)

Next note that a solution of the degencrate system
(11) is not unique, since (11¢) has several roots. It will be
shown in Lemma 1 that a unique positive definite root
K, of (11c¢) exists such that [, — S;K;] has an inverse
for all t € (6. {;]. Then the root Kg of (11b) is uniquely
defined

K: - (K[S’\’a - K;Az - .'l;'K; - Qg)
Ay = SiKD)

&
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The stability of the root is discussed in Lemma 2. Given
K,, the root K is a linear function of K

K, = K\E, — E; (15b)
where
Ey = (SK; — A2)(4, — S:Ki) !
E; = (A/K: + Qi) (A — S:Ky)M. (15¢)
Substituting K; into (11a) gives
dK,

= - -K\A - A’K\ + K.BR—'B'K; - {,

Ki(t) = I, (19)

where

A = A, + E\ds + SEY + ES:EY (17a)
B = B, + E\B: (17b)
Q= —Ed; — AVEY — ExS:EY + Q. (170)

The system (16), along with K, and K, defined pre-
viously, is called the reduced system. The dimensionality
of the reduced system (16) is n by n, while the dimen-
sionality of the full system (9) isn + m by n 4+ m. The
existence and uniqueness of the solution of (16) will be
established later in Lemma 3.

MaiN THEOREM
Theorem 1

Let conditions 1)-3) be satisfied and assume that the
system (1) is

4) boundary layer controllable;
5) boundary layer observable.

Then for t € [k, t;] and X € [0, A\°] the unique solution
R(t, A) of (9) with K(f, \) = II exists on the interval
[‘o, 4 /] and

ljmoKI(t, A) = Ky, t € [t t) (18)

lim Ry(t, \) = Ka(t), € [t ty) (193)
A—0

lim Ky(t, \) = Ki(t), (€ [t ty) (19b)
A—0
where K;(t) is the unique positive definite root of (1lc),
Ks(t) is defined by (15) and K,(¢) is the unique solution
of the reduced system (16). The limit (18) is uniform in ¢
on the interval (b, ¢,] and the limits (19) arc uniform in ¢
on any interval [fy, #]. where ¢ is arbitrarily close to ¢,
h <t

The proof of this theorem is carried out in four lemmas.
In lemma 1 it is shown that boundary layer control-
lability and obscrvability (13), (14) insure that the
solution Li(+) of the boundarv layer equation (12b) will
be attracted to the asymptotically stabie positive definite
root K;(t) of (11¢) for cach fixed ¢ & [to, ¢,]. Lemma 2
gives a similar result for (12a) and (11b) at ¢t = ¢, In
Lemma 3 these facts assure the cxistence and uniguencss

U

of the solution to the reduced system (16). Finally,
Lemma 4 guarantees that the asymptotic stability of the
boundary layer system (12) is uniform with respect to ¢
which is the essential condition for the application of
Theorem L in the Appendix.

Lemma 1

Let conditions 1)-5) be satisfied. Then for each fixed
t € [t /], first, there exists a unique positive definite
root K,(t) of (11c); second, this root is an asymptotically
stable equilibrium of (12b) as r = — = ; third, II; belongs
to the domain of attraction? of this root; and fourth,

o) = Al) = Si(OK(0) (20)

is a stable matrix.?

Proof: The lemma follows directly from well-known
results of the output regulator theory for completely
controllable and observable plants [8], [10] since for each
fixed t € [t, ¢,] conditions 1)-5) insure thut

:—j = Ab)2(r) + Ba)u(r) (21a)

J = *j;.[z'(f)Q:(l)Z(r) + u'(r)R(Ou(r)] dr (21Db)

is a well-defined regulator problem.

Lemma 2

If conditions 1)-3) are satisfied then the root of (11b)
at ¢t = ¢,

Ks(t) = [ILS(t)Kis(ty) — Mds(t) — As' (()Ka(t)
- Qltpla=(t) (22)
is an asymptotically stabie equilibrium of (12a) as r —»

-_—,

Proof: Rewrite (la) as

D) o L) latt) + B )]+ 2 b (2D
where
B(r, 1) = St K = La(o)] (248)

v(r. t) = —=IL{d:(t) = SE)Ls(7)] — Ad'(t)La(7)
— Qut). (24b)

In view of known results for the stability of linear systems,
see [12, p. 70, thcorem 9], it follows that if a) (s, t)) =
0as r - —o, and b) L(r) = 0 is an asymptotically
stable equilibrium of

dLy(7)
dr

= —Ls(r)alt)) (25)

then K.(¢;) is an asymptotically stable equilibrium of
(18). Condition a) is satisfied by (24a). To prove b) let

t Following Hahn [11] a matrix is called stable if all its eigagv:ldups
efined in

?ave negative real parts. The domain of attraction is also
11}.

1




,‘4‘],@7;; "ﬂ‘-’"""" it

. Bt

1{7) be the ith row of L; and consider (25)

;il;: = —[4(t) ~ S:(t)K,(t) )y,

i=12...,n

(26)

Since by Lemma 1 {44(¢;) — Ss(¢/)Ks(t,) ] is a stable matrix,
the null solution of (26) is an asymptotically stable
equilibrium as r = — .

With Lemmas 1 and 2 we satisfy condition L2 in the
Appendix. To satisfy the condition L3 we establish
the existence and uniqueness of the solution K,() of the
reduced system (23).

Lemma 3

If conditions 1)-3) are satisfied, then Q is positive
semidefinite and therefore the solution K;(!) of the
reduced system (16) exists and is unique on the interval
{to. L,].

Proof: 1t follows from [8] that if R is symmetric positive
definite. and @ and IT; are symmetric positive semidefinite;
then the solution K, exists and is unique on the interval
{to, t;]. To show that Q is symmetric positive semidefinite
we apply a matrix identity from (1lc) to (17¢) to obtain

Q = (Q: + AYK)(AVK; + Q) 'Qu(dSKs + Q)1

(Q: + 47K3)" —~ Qu(AJKs + Qi)' ~HQy

+ Kidy) — (@ + Kuda) (4K + @) '@y

+ Q. 27
For an arbitrary vector 8 let
v=6andw = — (A/K;: + Q)1 (Q: + A/K;)'0. (28)
Since by condition 2) Q is positive semidefinite,

Q8 = vQuw + v'Quw + w'Q'v + wQuw > 0. (29)

Thus @ is positive semidefinite. Since condition 3) implies
the positive semidefiniteness of Il,, and R is positive
definite by assumption, all the conditions of [8] for the
existence and uniqueness of K () are satisfied.

Finally we show in Lemma 4 that the Jacobian of the
system (9b) and (9¢) evaluated along the reduced solution
is a stable matrix as required by the condition 14 in the
Appendix. Map the matrices K;, K, and K; into an,
nm, and mm-vectors K, K, and K, respectively, and
rewrite (9) in vector form

1K,
‘d—f = fi(Ky, Ky, £, \) (30)

.

x.d—t - f'l(xb K‘l) KI’ t x) (312\.)

dk;

X—E = JI(K‘h K‘) t' k)- (31b)

The Jacobian I'(\) of [f2’fy’]’ is then given by
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Pa(M) Ta())
OB Beiited] 2

where

of

P‘-!(X) - -a—x'— (Kl) K’y Kln t! A)l iy] = 2, 3. (33)
H

Let T'(0) denote T'(A) evaluated along the reduced solution
Ky(t), Ka(t), Ka(t).

Lemma 4

If conditions 1)-5) are satisfied then all the eigenvalues
of T'(0) have positive real parts for ¢t € [tq, ¢,].

Proof: Since I'y(0) = 0 the eigenvalues of I'(0) consist of
the eigenvalues of I':2(0) and those of I'y(0). Note that
['22(0) and Tu(0) can be expressed in terms of Kronecker
products [13],

I'e(0) = —(A¢ = S:K)' X Iy (34a)
T33(0) = =Ty X (4, = S:K3)' — (Ay — S:K3)' X Iy
(34b)

where Iy and I are n X n and m X m identity matrices.
Therefore, the mm cigenvalues of T'u(0) are u¢ + uy

i, j = 1, --,m, and the nm eigenvalues of T'n(0) are
4y ¢ = 1,+ -, m, each one of which is of multiplicity =,
where u,, ¢ = 1, -+ -, m are the eigenvalues of — (4, —
S:K3), see [14]. Since by Lemma 1 all the eigenvalues
uy ¢ = 1, -+, n, have positive real parts, all the eigen-

values of T' have positive real parts.

With Lemmas 1-¢ we satisfy all the conditions of
Theorem L in the Appendix. This completes the proof of
Theorem 1.

When A,(?) is a staple matrix, Theorem 1 can be ex-
tended to systems which are not boundary layer control-
lable or observable. Corollaries 1 and 2 deal with two
extremne situations.

Corollary 1

Let conditions 1)-3) be satisfied and instead of condi-
tions 4) and 5) assume that for all fixed ¢ € [to, ¢/]

6) A(¢) is stable;
7) Ba(t) = 0.

Then the results of Theorem 1 still hold.

Proof: Lemma 1 holds since (12b) is an asymptotically
stable Lvapunov equation, and Lemmas 2, 3, and 4 hold
since So(t) = 0 and a(t) = A{l) — S(HKs() = A(t)isa
stable matrix for all fixed ¢t € [t, t,].

Corollary 2

Let conditions 1)-3) be satisfied and instead of condi-
tions 4) and 5) assume that for all fixed ¢t € [k, ¢/]

7) A.(t) is stable;

8) Qi(t) == 0.
Then using the root Ki(f) = 0 of (1lc) the results of
Theorem 1 still hold.

R S e .

P

—




e B . o D

-4

KOKOTOVIC AND YACKEL: SINGULAR PERTURBATION OF REGULATORS

Proof: The result of Lemma 1 for the unique positive
definite root Ks(t) of (11¢) now applies to the isolated® root
Ks(®) = 0 of (11¢) with @4(¢) = 0. This result for the
Riceati equation (12b) with @s(8) = 0 is known from [15],
{16]. Since a(t) = A,(f) — S:y()Ki(t) = A,(¢) is a stable
matrix for all fixed t € [ty, ¢,], Lemmas 24 still hold.

A special case of Corollary 2, when A(t) is negative
definite and IT; = 0 was considered in {7].

As a further extension it may be shown that Theorem 1
will still hold if conditions 4) and 3) are violated, but
uncontrollable or unobservable modes of (21a) are asymp-
totically stable.

TiME-INVARIANT PROBLEM

An important class of regulator problems occurs when
t, = o and the system (1) and C, D, and R in (2) are
time invariant. For the finite time interval problem the
existence of the solution of the full system (9) is assured
by the conditions 1)-3) which are easily checked. The
existence problem for (9) when {, = = is harder since the
controllability and observability of A, B, and C must be
checked for all A € [0, \°]. This is particularly difficult
for A very small, since i and B contain terms As/A,
A4/, and Ba/\. This difficulty is avoided in Theorem 2
where controllability and observability conditions of the
reduced system guarantee the cxistence and uniqueness
of the #3lution of the full problem for \ sufficiently small.
A second result of Theorem 2 is that the reduced solution
approximates the full solution for X sufficiently small.

For the time-invariant problem, conditions 1)-3) are
modified as follows:

1* 4, d» ds, 4, By B: and C are time invariant
and continuous in A for A € [0, A\°];

2*) R and D are symmetric positive definite, time
invariant, and continuous in X for A € [0, \°];

3% F==0.

Theorem 2

Let conditions 1)-3*) and 4) and 3) be satisfied. Also
assume that the matrices of the reduced system (17
satisfy

9) rank [(, '4,0",-- -, (A)*'¢"] = n where ( is a

solution of C'C = Q;
10) rank [B,48, -, (i)*-'8] = n.

Then for sufficiently small A the asymptotically stable
equilibrium K=()) of the full system (9) exists. Moreover,

lxirr:)l‘\’{'(k) =K° i=123 (35)

where K,” is the asymptotically stable equilibrium of the
reduced system (11).

Proof: The structure of the proof is to divide the time
interval into two parts (* < ({ < {,and — @ < ¢t < *
We apply the result of Theorem 1 to the first interval

_*That Ky() = 0 is not a multiple root follows from the non-
singularity of the Jacobian 'y in Lemma 4.

since it is finite and then show that the hypotheses of a
theorem by Hoppensteadt (Theorem H in the Appendix)
are satisfied on the second interval.

If conditions 1*)-3*) and 4) and 5) are satisfied then
by Theorem 1 there cxists a A\* > 0 and a ¢* < ¢, such that*
IR (t*, 2*) — K(M|| < ¢ for an ¢ which satisfies the ¢
closeness requirement of Theorem H. Furthermore, (9)
has the unique solution K(t, A*) on [t*, ¢,] satisfying the
end condition K (¢, \*) = 0 and K(t, A) = K(t) as\ ~ 0
on [t* t,] where t* < {, <{,.

Hypotheses H1, 2, 4, 5 of Theorem H are evidently
satisfied by the form of (9) and conditions 1)-3). From
the results of the linear regulator theory, conditions
1*)-3*) and 9) and 10) insure the existence and asymptotic
stability of the solution Ki(t) of (16) on (— =, t*], as
required by H3 and H6. The crucial hypothesis H7 is that
the solution of the boundary layer equation (12) be
asymptotically stable uniformly in initial conditions
and the parameters ¢ and K, for { € (— =, t*] and K,
positive definite. By 1*) and 3*) the system (12) does not
depend on ¢, nor does (12b) contain K,. Hence by Lemma 1
the solution L of (12b) satisfies H7. By Lemma 2 the
solution Ls of (12a) is asymptotically stable uniformly in
K,. This completes the proof of Theorem 2. Extensions
similar to Corollaries 1 and 2 are immediate.

Two-STAGE DEsiGN

Using the results of Theorems 1 and 2, the linear
regulator design can be decomposed into a two-stage
procedure. At the first stage the algebraic system (llec)
is solved for Ki(t). At the second stage the differential
system (16) is solved for Ki(t), and Ky(t) is evaluated
using the explicit formula (15).

This decomposition and reduction of dimensionality is
particularly efficient in finite time interval problems with
time-invariant systems. In this case the accurate design
requires solution of the full 1/2(n + m + 1)(n + m)-
dimensional differential system (6), and the whole regula-
tor matrix K(Z, ) is time-varying, while in the two-stage
design the reduced differential system (16) is 1/2 (n + I)n
dimensional. The time-invariant K is easily obtained by an
algebraic method and is less expensive to implement than
Ri(t, ).

A familiar speed control problem for a small de motor is
used to demonstrate the two-stage regulator design.
The motor state equation is

dw

e (D/GY (36a)

)\L?-}t = —~Cw — Rt + v (36b)
where w, 7, and v are speed, current, and voltage deviations

from their respective nominal values 400 rad/s, 0.25 A,
11.8 V. The motor constants are R, = 7,9Q, L = 0.0136 H,

«The norm of a matrix is taken to be the sum of the absolute
values of ite elements.
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C = 00246 V-.8/rad, G = 1.32 X 10-* kg-m?*. In (36) the
armature inductance, being a small parameter, is multiplied
by a factor A. Let the performance index be

J - 0. Olu

+% f (w? + 46002% + 30v%) dt.  (37)

Even in this extremely simple problem the full system

dk,
dt
dR,

"E’ = —18854K; + 581K, + 1.8K; + 180R,R,

36Kz + ISOKg -1, Kl(t,) = 0.01 (38&)

(38b)

dR,

*Tu— = —\37308K; + 1162K; + 180K,* — 4600
with K; and K; zero at ¢ = ¢, must be solved on a com-
puter. Note that, at ¢t = ¢, dK;/dt = —4600'\, and hence
for A = 1 the change of K, is 4600 times faster than the
change of K, so that (38) can be considered a stiff system.
In the degenerate system

dK,

E‘ - 36K1 -+ 180Kz= - l,

(38c)

Ki(t;) = 0.01 (39a)

0 = -186541(1 + 581K: + 1.8Ka + 180 K:;K:
0 = 1162K, + 180K;? — 4600 (39c)

the positive definite root of (39c) is K; = 2.77. Solving
(39b) for K; = 17.3 K, — 0.0046, and substituting it in
(39a) we obtain the reduced system

(39b)

= 33K, + 53683K,* - 1.013, Ki(t) =001 (40)

dt

which can be solved analytically. The reduced solution
Ki(t), Ky(t), and K, is shown as dashed curves in Figs.

e e

5 6 7 8 El 10
{ms)

Optimal and reduced Riceati gains K, and X,.

1~-3. The solid curves represent the full solution Ki(¢, \),
R.(¢, \), and R;(t, N) for different values of A\. From the
family of curves in Fig. 1 it is apparent that the limiting
process Ky(¢, \) == K,(¢) is uniform on the whole interval.
The families of curves in Figs. 2 and 3 show that the
limiting process for K.({, A) and Ks(t, \) takes place for
t < t, = 10 ms. The convergence is not uniform on the
whole interval due to the boundary layer phenomenon
near ¢,.

A shortcoming of the two-stage design method pre-
sented here is that it does not give an estimate of a range
A € {0, %] in which the reduced solution can be used as a
“good’”’ approximation of the full solution. Although the-
oretically important, this shortcoming does not seem to be
critical in regulator design practice. Recall that even
when the accurate K is designed several trials for weighting
matrices R and J are made, and the resulting system is
tested before an acceptable control is found. Thus no
loss of system performance will occur when these trials
are carried out with the reduced solution K,, Ks, and K.

The two-stage design has been introduced using full and
reduced Riceati equations. This procedure can now be
interpreted by an analysis of the full and reduced state
equations of the resulting regulator system. In an imple-
mentation of the control law (5), K,, Ks, and K; are used
instead of K, K, and K;

u = "R"[(B;’Kl -+ BQ'KQ’)I + ()\B{K!

+ B/Kyz] (41)

and the full state equation of the regulator system be-
com