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I PREFACE

\VThe purpose of this volume is twofold. First, it reports on

recent developments of singular perturbation and two-time-scale methods

3 for modeling, analysis and design of control systems. The results obtained

in the last five years are sumrized in thirty papers which appeared in the

period of 1976-1980. Second, it responds to the need for a comprehensive

and systematic treatment of this rapidly developing field of research. For

this reasonseven earlier papers are included and the whole collection is
4,

organized in a logical rather than chronological order.4'U-irst three sections

deal with modeling and analysis, while the subsequent four sections are

devoted to the design and optimization of linear, nonlinear and stochastic

control systems. The last two sections treat large scale system problems

with multiple controllers and incomplete models.
r

-* This research has been supported by several grants and contracts,

which are acknowledged at the end of each paper. Editing, publication and

V_ dissemination of this volume is supported in part by the Joint Services

Electronics Program (U.S. Army, U.S. Navy, and U.S. Air Force) under Contract

N00014-79-C-0424, in part by the U.S. Air Force under Grant AFOSR-78-3633,

[ and in part by the National Science Foundation under Grant ECS-79-19396.
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1Aatomalea, Vol 12, pp. 123-132. Prgamon Press, 1976. Printed in Great Britain

*Singular Perturbations and Order Reduction
in Control Theory-An Overview*t

7- P. V. KOKOTOVIC,: R. E. O'MALLEY, Ja.§ and P. SANNUTIJI

._ -Singular perturbation method are physically motivated tools for order reduction,
separation of time scales and other simplifications in control system analysis and design.

4.

Simsr-RAcent results on singular perturbations am effect as 'boundary layer' corrections calculated in
surveyed a a tool for model order reduction and separation separate time scales. Further improvements are
of time scales in control system design. Conceptual and
computational simplifications of design procedure are possible by asymptotic expansion methods. In
examind by a discussion of their basic assumptions. Over addition to being helpful in design procedures, the
100 references am organized into several problem areas. singlar perturbation approach is an indispensable
The content of main theorms is presented in a tutorial
form aimed at a broad audience of engineers and applied tool for analytical investigations of robustness of
mathematicians interested in control, estimation and system properties, behavior of optimal controls
optimization of dynamic systems. near singular arcs, and other effects of intentional

or unintentional changes of system order.
INTRODUCTION This paper is a tutorial survey of recent works on

ALTHouGH many control theory concepts are valid singular perturbations in control and estimation
for any system order, their actual use is limited to theory. Only several other references are mentioned
low order models. In optimization of dynamic to establish mathematical background and illustrate
systems the 'curse of dimensionality' is not only in a related approaches. Among surveys and mono-

J formidable amount of computation, but also in the graphs providing a broader view of the field are
ill-conditioned initial and two point boundary [AI-I0].
value problems. The interaction of fast and slow

i phenomena in high-order systems results in 'stiff' ORDER REDUCTION
numerical problems which require expensive Suppose that a dynamic system is modeled by
integration routines.

The singular perturbation approach outlined in 1 -f(x,z,u, t,), (!)
this survey alleviates both dimensionality and
stiffness difficulties. It lowers the model order by P - g(x, --, u, t, 1), (2)

first neglecting the fast phenomena. It then where p > 0 is a scalar and x, z and u are n-, m-, and
1 improves the approximation by reintroducing their r-dimensional vectors, respectively. For I = 0, theA.J __order n + m of (1, 2) reduces to n, that is (2) becomes

Received 28 April 1975; revised 15 September 1975. 0 - g?, 1, 4, 1, 0) (3)
The original version of this paper was presented at the 6th
IFAC Congress which was held in Boston/Carnbridge, MA, and the substitution of a root of (3),
U.S.A., during August 1975. The published proceedings of
this IFAC meeting may be ordered from ISA-Instrument (2f, a, t), (4)
Society of America, 400 Stanwix Street, Pittsburgh, PA3 15222, U.S.A. It was recommended for publication in into (1) yields a 'reduced' model
revised form by associate editor E. J. Davison.

t This work was supported in part by the National 2 Wf[2, 0Q, a, t), a, 40] .f(, a, t). (5)
Science Foundation under Grant ENG 74-20091, in part by
the Joint Services Electronics Program (U.S. Army, U.S. The use of IA - 0 is formal since then 2 - g/ s in (2)
Navy and U.S. Air Force) under Contract DAAB-07-72- may be unbounded for g 0 0. An analysis validat-
C.409, in part by the U.S. Air Force under Grant
AFOSR 73-2570 and in part by ONR Grant No. N00014- ing this order reduction procedure is outlined in the
67-A-0209-0022. next section where it also becomes apparent that a

: Department of Electrical Engineering and Co- reduced model (4) represents slow and neglects fast
* ordinated Science Laboratory. University of Illinois, phenomena in (1, 2). In this respect the singular

Urbana, IL 61801, U.S.A. perturbation approach is related to familiar
I Department of Mathematics, University of Arizona, "dominant mode" techniques [B2, E41 which

Tucson, AR 35721, U.S.A. neglec t moe " t s and w -
ii Department of Electrical Engineering, Rutgers the neglect "high-frequency" parts and retain "low.

State University, New Brunswick, NJ 08903, U.S.A. frequency" parts of models.
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We note that (3) may have several roots each where 1" is the 'stretched time scale' defined for all
resulting in a different reduced model (4). Most of /A ; 0,
the available theory is restricted to models (4)
corresponding to real and distinct roots of (3), r--, r- 0attw-to. (14)
along which ag/8z is nonsingular. At points where P 1
ag/Oz is singular, z may jump from one root to The system (13) depends continuously on /A and at ;"
another (C61. In the special case when g is linearin z i -0 it becomes
the reduced model (4) is unique. For a linear system d,(T) )

kAux+A 12z+Bu, (6) d" " Ass 0). (15)

td Anx+Anz+Bu (7) From (8) and (10) at p -0 the initial condition for

the root (4) is (15) is

I - An-' An- An-'ilu, (8) (0) - z(t)-2(t8). (16)

yielding the reduced model The solution q(-r) of the 'fast' subsystem (13) is theinput to the 'slow' subsystem (11). The homo-

1-(Au-ArsAn 1 ArO geneous part of (11) is an O(p) perturbationt of

+(f -AnaA,, -sBI)rZ. (9) thereduced model (9) with u - 0. Ifthe eigenvalues

In applications, models of various physical systems of An all have negative real parts, then q(.r)-0 0 as

are put in form (1), (2) by expressing small time T- oo, that is for p small '1 as a function of t rapidly
constants T, small masses mi, large gains K, etc., as decays away from to. Under this condition,

T- - cip, m, - c, 1L, K, - C/!, etc., where cl, C1, c, are integration by parts in the variation of parameters
known coefficients [AS, BS]. In power system formula for the solution of (11) yields
models is can represent machine reactances or x(t) - f(t)+O ) (17)
transients in voltage regulators [BNJ, in industrial
control systems it may represent time constants of and, on substitution into (10),
drives and actuators (BIl ], in biochemical models z(t) - (t) + n(ir) + O(IL). (18)

Scan indicate a small quantity of an enzyme [], Thus the reduced model state R(t) approximates the
in a flexible booster model ps is due to bending x-part of the actual state, while to approximate its
modes [B3] and in nuclear reactor models it is due z-part we need both 1(t) from (8) and ?J-) from (14).
to fast neutrons (B7,9,121. Singular perturbations The 'boundary layer' correction t/(") is significant
are extensively used in aircraft and rocket flight only during a short interval to, (] after which

models [B6, 10,13,161, and in chemical reaction

diffusion theory [B14, 15]. Other order reduction z(t) - 1(t) + O(js). (19)
techniques [B171 can be interpreted as singular A remarkable property of the singularly perturbed
perturbations [B18]. model (1, 2) is that the structure of the approxima-

tion (17, 18) remains the same for time-varying andINITIAL VALUE PROBLEMS nonlinear systems. This is established by a funda-

When does a reduced solution ., approximate mental theorem due to Tihonov [C], whose
the original solution x, z and in what sense? For essential conditions are imposed on a 'boundary
clarity we begin with the linear system (6, 7), layer' system for q - z -"
assuming that it is time invariant and that u - 0.
To exhibit the error z-1 - :+A, - A.2 let d g[, ! + 1*0), , t, 0], (20)dr.

- z + An-Au x+Mx (10) a nonlinear analog of (15). By virtue of (3) an
and choose M, such that the substitution of (10) equilibrium of (20) is t -0. Assuming the

into (6), (7) separates the q-subsystem as existence and smoothness of R(t), 1'(t) for
t (Au-A 1sAn,1 An+1AM2)x+A1 1q, (11) tE[to, TJ, the conditions imposed on (20) are, first,

(An+ AM) 7. (12) that -q - 0 be an asymptotically stable equilibrium
of (20) at .(to), !(to), f.(to), to with ?(0) = Z 0 ) - (to)

It is easily shown that there exists 10 > 0 such that belonging to its domain of attraction; second, that
M, - M (1), i - 1,2,3, are bounded for all for all t e t, T] the eigenvalues of ag/az along
pe(0,1*]. For 1A-*0 the eigenvalues of the R(t), !(t), i(t) all have real parts less than a fixed
independent ,7-subsystem (12) tend to infinity like negative number. Then (17, 18) hold for all
the eigenvalues of (1/js)A 3 . Thus (12) is the 'fast' t e [t0, T] and (19) holds for all t e [t1 , T].
part of (6, 7). It can be written as I

?t A function of p is denoted by O(pk) when for all
• -(A 3 +1M 3P)7K), (13) p eC0,1[ OtJits norm is less than cl, where c>0, s>0 and

dr k are some constants.
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The proof of this theorem is found in [A 1, 8; be set there by the user. Since it cannot be done
CI-31 and, under slightly weaker conditions, in exactly, such problems may appear ill-posed.
[C41. The separation of time scales is exemplified Fortunately, it follows from [06, 131 that control
by the fact that in the boundary layer system the problems allowing combined open loop-feedback
variables 9, , a and t are fixed parameters. The realizations are well posed in this sense.L boundary layer correction 27(r) used in (18) is the In nonlinear problems 8g/z along 9(t), 1(t), a(t)
solution of (20) with (16), where A, a and t are is assumed to possess the above eigenvalue distribu-
fixed at their values for t - to. tion throughout the interval [to, T). Also z(to) -

Expressions (17) and (18) represent O(") 2(t.) and z(T)- I(T) are restricted to be on mani-
approximations of x(t), z(t). Iff and g in (1), (2) folds for which the equilibrium 17 -0 of (20) is
possess k+2 derivatives in their arguments, then attractive in forward and reverse directions of t,
x(t), z(t) can be approximated up to O(pks) using respectively. Then (17) and (22) hold for all
series with terms depending on t and terms depend- t e [to, T). Higher order approximations are
ing onr. These terms can be generated by methods possible by asymptotic expansions [A4, 8,10; C4].
in (A4, 8,10; C4,5]. In a wider class of 'matched' expansion methods

[A3,9] other conditions for 'matching' of 'outer'
(slow) and 'inner' (fast) terms are used. They are

BOUNDARY VALUE PROBLEMS often motivated by specific applications, such as in

In boundary value problems when z(t) is specified inter-planetary guidance problems [61. The
at both t - t. and t - T, two boundary layer conditions outlined here originate from [Al ; DI-5]
correction terms 'iL and 7' are needed to compen- and can be found in more recent works [A8, 10;
sate for z(to) - 2() and z(T) -2(T), respectively. The D7,8] and, in a compact form. 'A [139]. These
correction '1L is the same as I7 in the initial value conditions are particularly sui . for optimal
problems. To define 'iR an additional stretched control problems whose Hamill .n symmetry is
variable is introduced for all 1k o 0, related to the dichotomy (23). -tical implica-

tions of this relationship are -ussed in the
a-(t-T)/4, a - Oat t -T, (21) section on 'Trajectory Optimizw

and (20) is rewritten in a-scale with 2, , a and t
fixed at their values for I - T. Then 7)R =- 'T)(a) is STABILITY AND STABIL .iLITY

its solution for taR(O) = z(T)- 1(T). The approxi- In approximations discussed so far stability
mation of z(t) is sought in the form requirements were imposed only on (20), and the

z(t) - (t) + 7L (r)+ ,R (a) + O(#) (22) reduced solution .(t) was permitted to be unstable.
In infinite time-interval problems it is of interest to

such that ?7L and '/R decay exponentially as r-.+oo establish stability properties of x(t), z(t) from
and a--.-oo, that is their norms satisfy the stability properties of 2(t) and i)("). Several such
'dichotomy condition' results are available.

II ,Ir c1 exp (-cs?) for 0 -<o, For linear time-invariant systems a stability
11)L14cjexp(-c~) for- o O,)) (23) result immediately follows from the upper triangular
I1li8II4c~exp(c~a) for .- ao<aQO, form of the system (11, 12). Its m+n eigenvalues

where cj, ..., c4 are positive constants. A simple are perturbations of the n eigenvalues of An -

illustration is again the linear system (12). its A11 Ai-'A, and of the m eigenvalues of (l/h)A 3 .

solutions in i and a scales at p = 0 are If the real parts of these eigenvalues are negative,

7A") - eXP (Aft 7')7L(0), () Re,{Am)<0, Re {An-AnAs-, At}<0, (25)

11L(a) - exp (Au )'), j (24) that is, if the reduced solution 9(t) and the boundary
Let the i I) - exp (A3 a) 'is (0). layer correction 7(r) are asymptotically stable, then
Let the first k eigenvalues of An have negative there exists 10>0 such that the original solution
real parts and the remaining m - k eigenvalues x(t), -(t) is asymptotically stable for all 1A e [0, ,*].
positive real parts. Then (23) will result if For linear time-varying systems a similar condition
71L(O) - z(to) - 2(t.) belongs to the eigenspace is derived in [El, 71, assuming that the reduced
corresponding to the first k-eigenvalues of Af, and model be uniformly asymptotically stable and that
if qjt(O) - z(T) - I(T) belongs to the eigenspace for t ; to the eigenvalues of A(t) have real parts
corresponding to the remaining m-k eigenvalues less than a fixed negative number - . This
of An. Under this condition (17) and (22) hold for contrasts with the general case in which Re A(F(t)}
all te[t., T], while (19) holds for to<t <t< t>T. <-8foralltdoesnotimplystabilityofv-F(t)v.
In some problems the initial conditions are always In nonlinear systems the first requirement of (25)
in the required subspaces due to the physical nature is imposed on the eigenvalues of 8g/8z evaluated
of the variables liL and 71R. In others, they have to along 2(t), 2(t), a(t) for all t ; t0. In addition.
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.i(t), 2(t) and which permits us to set - 0 in (30). At I - 0 an

f t f 1 ggi-i g m x m equation for Rn,
,(- 2 (26) K- +C,'C,=O,

ax 0Z ax9A'f'9t9SX'C'2-0

evaluated along .(), !(t), fi(t) are assumed to have (32)

finite limits f(oc), !(ac) and F(ac) as t--. c, where where S2 = BtR - t B,' separates from the (n + m) x

Re, {F(oo)}<0. Then, if x(to) and z(t,) are in the (n+m) equation (30). If As B, is a stabilizable
appropriate domain of attraction, the limits x(t) pair, and if An, C2 is a detectable pair, then a
and z(t) as t-oo are unique positive semidefinite solution 4, exists and

the eigenvalues of Ass-S1 Kss have negative real
x~t) .f( ) +O( ), z(t)-*(o)+ O(/). (27) parts. Another result of the substitution of (31)

This is the content of the stability theorem in into (30) is that at p -0 it is possible to express k,,
[El0], whose proof, along with an estimate of the in terms of ,1 and Kss, and to obtain an n x n
domain of attraction, is given in [E121. Alternative equation for K 1,
sets of conditions are given in [Ell. In [E5,6] KA+,'n- 1A tR i+C'C,0. (33)
similar conditions are employed to analyze stability
of networks with parasitics, while a problem of The expressions for A, A and C are given in (F5].
absolute stability is discussed in (E8] and stability An interpretation of (32) and (33) is that (32) yields
bounds for I are estimated in [E9]. Some early a 'boundary layer regulator' for the fast variable
results on stability of control systems with infinite 7(,), and (33) yields the regulator for the reduced
gain coefficients are found in [BI]. Related state variable .A(t). For 4,, A stabilizable and ,i. f
theorems on linear systems with slowly varying detectable, the implicit function theorem applied to
coefficients are found in [E2, 3, 11], [E4, Section 32] (30) with (31) shows that
and [El6, pp. 125-128]. gji .y+O(IA), Q - 1,2. (34)

A general stabilizability condition for linear
time-varying systems is formulated in (G6]. Not only are the approximations Rii calculated
Special cases for linear time-invariant systems, are from lower order equations, but in addition the ill-
discussed in [E 13-15]. conditioning of (30) has been removed.

If K , are used instead of K4 the system (6), (7)
with feedback control (29) becomesREGULATORS AND RICCATI EQUATIONS

Among the most actively investigated singularly - = (All- S1 R, -SR 1 2')x+(A12 -S5n):, (35)
perturbed optimal control problems is the general P= = (421-S'11-St 9,')x+(A2-S2 K.))r,(36)
linear-quadratic regulator problem. For brevity
we consider only the time-invariant case. When the
system (6), (7) is optimized with respect to system i asymptotically stable, then because of(34),its solutitn x(t), z(t) is within O(/h) of the optimal

1 _°  (2 solution. The stability condition (25) can now be
J=2;( 'y4u'Ru)dt, (28) applied to the feedback bystem (35), (36). The

where y - Cx + Ctz and R > 0, then to implement boundary layer stability condition is satisfied by
the optimal control A-S 2 4K. The condition for the reduced system

is satisfied by the solution of (33). Thus (35), (36) is
Sx 1 a near-optimal system.

,-R-RB 1 ' B'/p] K (29) The singularly perturbed regulator problem was
z posed in [FI] with C,- 0 and An, stable, which

we have to solve gave K,, - 0. The general time-varying problem
was treated in [F3, 51 using the notion of boundary

K Al A12 + [ l'A1 K layer controllability-observability. These results
A1 / j AJjp A12' A '/] and extensions [F6,7,9,10,13] are based on the

singularly perturbed differential Riccati equation.

[B B] An alternative approach via boundary value-KRB B' //f]K+,C .0 problems is presented in [G8, 191, its relationship
(30) with the Riccati approach is analyzed in [FI2]. In 4
(30) (F2] it was shown that the reduced Riccati equation

where C = [C1 C,]. To avoid unboundedness as (33) can also be obtained from the reduced model
,u 0 the solution is sought in the form (9). Asymptotic expansions are constructed in

K11(j&) JAKi 1 [F6,7] and applied to a 17th order power station
K -K( ) - ,)] (31) model in [F81. Two other order reduction

K K , K 2'()A) fIK(p) techniques (F4, I I ] lead to equations similar to (33)
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and it would be of interest to investigate their restrictions on , zr are available for linear time-
relationship with the singular perturbation varying systems [06,8,13,191 and for a special

, approach. class of nonlinear systems [GI4,15,20). They are
briefly outlined here.

T OLet the performance index be (28), but on theSTRAJECTORY OPTIMIZATION interval (to T], and consider the trajectory opti-
In trajectory optimization problems for the mization problem for (6), (7) allowing that the

system (1), (2) some conditions are imposed on matrices in (6), (7) and (28) be time varying.
x, z at both t - to and t - T, and a control u(t) is Using a 'dichotomy transformation' proposed in
sought to minimize the performance index [G6]

J fV(xzu,). (37) x-11+, Z-+rl, (46)

P~~ ~ - t) i +N(t) r x (47)

An optimal solution must satisfy H. - 0 and qItrJ (

t - Hp, 0 - -H, (38) where P(t) is a positive definite and N(t) is a

pt - He, 1s4 - - H,, (39) negative definite solution of a differential equation

with 2n + 2m boundary conditions. Here H, H,, analogous to (30), we transform (41), (42) into two

H,H, '- f H, - g, denote the partial derivatives separate 'layer regulator systems'

of the Hamiltonian H - V+p'f+q'g, and the d% [A(to) S.(r) P
adjoint variables for (1) and (2) are p and 1Aq, (48)

respectively. At 1= 0 we use H. - 0 and H, - 0
to eliminate z and q from (38) and to get the reduced d - A(T) - S,(T) N(T)] ' (49)
system Ta-

-h7,p, 1 -- R (40) where h -L2-12, 'i-r-f, and P.O.), NU()

for which only 2n conditions can be imposed. are the positive and the negative definite roots of
Suppose that they are uniquely satisfied by a (32) at to and T. If for all te(to, T]
continuously differentiable reduced solution (t), rank [B. , An B2,..., A12 - 1 B2] - (50)
p(t). Since the reduced variables 1(t), 4(t) obtained
from H, - 0, H, - 0 may not satisfy the remaining rank [C2', A2&', Cl' ... , An'm-1 C2'] = m, (51)

2m conditions, corrections 17L(r), 71,(a) for z, and then the approximations (17), (22) and

PA,),PR(a) for q, are to be determined from
appropriately defined layer systems P(t) - fi(t) + O(jA), (52)

dL dL (41) q(t) - 4(t)+Pu(to))' L+ Nu(T)1iR+ 0(0) (53)

WA ,('LPL), d 7(1L, PD), (41) hold for arbitrary boundary values zo, ZT since (48),

(49) satisfy the dichotomy condition (23). A less
dR dpft - 17(,iR, pR), (42) restrictive stabilizability-detectability condition can

0 '7Th Pw' dc, be used instead of (50), (51). This result of [G13]
where (41) is used at : - to and (42) at t - T. To be delineates a class of well-posed singularly perturbed

specific consider the problem with fixed end points, trajectory optimization problems. The use of
-R- 1 B,'Pa:+u° results in a stable feedback

z(t.) - z , z(T) - :T. (43) realization of the initial layer and uO - R-1 B1 (Pu -

Then the initial values for 17L and "1R are Nn)rs is the open-loop control of the end-layer.
An 'inverse' Riccati approach to the linear fixed

1I(0) - Z0-,.(t), '(0) - T-( ) end-point problem is developed in [F9]. In [G8] a

and the additional boundary conditions are different set of conditions is derived and asymptotic

17LPL_0' 0 t r ; 'i7R'pR , a (45) expansions are constructed for the linear boundary,pr*O, ' ; RpR , c - .45) value problem.

Existence of optimal solutions and their approxima- In [G14, 151 the above results have been extended
tion by reduced solutions have been investigated in to the nonlinear problem
[GI,3,91 and extended in (G16, 171 by a construc-
tion of asymptotic expansions. Unfortunately, the " -f(x, t) + A1 1(x, t):+ B1(x, t) u, (54)
applicability of these results is restricted by the g,(x,t)+Afu(x, t)z+B(x,t)u, (55)
requirement that 'U(0) and 71ft(0) be sufficiently I T

small. To what extent such restrictions can be J- V , [V(X, ) +Z'C2'(x,t) C(x,) z
avoided in a general nonlinear problem (1), (2) and t

(37) is still an open question. Results without + u'R(x, t)u] dt. (56)Ii9

,,C. ,
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It is shown in (015] that, if the matrices in (32) which is interpreted as a time-optimal control for
and (48)-(51) are interpreted as the matrices of (54)- the reduced system (9), steering R to zero. For
(56) evaluated along 2(t), then (50), (51) are T+jw*<t4T the control (60) is approximated
sufficient for the approximation (17), (22), (52), by
(53) to hold for (54)-56) with arbitrary zo, ZT .  u, -- sgn(A'p+B,'exp(-Aar)q}. (62)

The conditions derived in [014] extend the results We note from (8) that, after the last switching of a,
of (G8] to (54)-(56). Among other works on z may be far from the origin and the boundary layer
trajectory optimization, [(181 shows that (40) can control u, is needed to correct this error.
also be obtained from the reduced system. Zl] This separation of slow and fast switchings was
analyzes the scalar problem, [G2,BS] give ap- first analyzed for single-input systems in (HI], and
proximations without layer corrections and [(10] then generalized in [H21. A special case when (7) is
makes an attempt to include control inequality due to actuator dynamics is discussed in [113]. An
constraints. Applications to aircraft control iterative method based on these results is developed
problems are discussed in [(4,5,11,12] and in in [H41.
[B6,10,13,161. A class of singular problems is
analyzed in [G22]. A result on periodic controls
appears in [G21]. An application to a pursuit- FILTERING AND SMOOTHING
evasion problem is discussed in [(2,31. Results on singular perturbation of linear-

quadratic regulator problems should have their
CONTROLLABILITY AND TIME counterparts in the linear-quadratic-Gaussian

filtering and smoothing problems. Preliminary

In the design of time-optimal controls difficulties investigations along this line have been reported in
with high-order systems are considerable even in [11,3-6]. The analysis in [16] shows that the
the linear time-invariant problems. A simplified duality is not complete and the singularly perturbed
design procedure has been developed in [HI, 2,3]. filtering and smoothing problems require separate
The discussion here is based on (H2], where also treatment and cautious interpretation. The
the following controllability result is obtained. The analysis is more complicated since the white noise
use of (10) and input process u in (58), (59) 'fluctuates' faster than

-x -- AnA23-1 + O( z)  (57) the fast part 7 of the state no matter how small

transforms (6), (7) into I >0 is. In the limit, i7 becomes a white noise

A A process whose covariance is the same as the
- . [ - -O(j)] + [B+O(.)] u, (58) covariance of the reduced solution n, and the
-, (As +O()] 7,+ [B2 + O(IA)] u, (59) integral error covariance of t)(t)- (r) tends to zero.

where A - An-AAn An - ' An, = B, -An, A 2 -B, Thus, as an input to a slow system, (t) can replace
see (9). t(t), but not as an approximation for each t.

It follows from (58), (59) that for 1A small the Pursuing such considerations it is shown in [16]

controllability of the reduced and the boundary that a filtering (or smoothing) problem for the

layer systems, that is of the pairs A4, A and A, B, system (6), (7) can be obtained by solving two

implies the controllability of the original system lower order problems in separate time scales.

(6), (7). An example given in [12] indicates that deter-

In the time-optimal control problem a control ministic observers also can be approached as
u, subject to constraint I u I 1, i - 1,..., r, is to singular perturbations. Control problems with

transfer the state of(6), (7) from x(0) - x8, z(0) - z °  small noise are treated in [17,81.

to x(T)- 0, z(T)-0 in minimum time T. Equi-
valently the problem can be solved in terms of CHEAP CONTROL AND SINGULAR ARCS
and 17. A control steering J, 17 to zero in minimum

time is of the form In singular perturbation problems considered so
u- -sg B'exp [.4'(T-)]p far a small parameter p multiplies derivatives and

the differential order is reduced when 1A - 0. -.

+ B,' exp (- An c) q}, (60) Another sign of singular perturbation phenomena

where a is as in (21), p and q are constant vectors is a characteristic lowering of dimensionality for

and O(ps) terms have been neglected. When the the limiting problem, such as in limit approaches to i
eigenvalues of An all have negative real pans, the singular optimal controls [J 11. An example of these

term depending on a is significant only near T. For problems is

some o*<0 and 04tcT+1w" the control (60) -Ax+Bu, x(O)=x, (63) [
can be approximated by

a -sgn(A'exp[iA'(T-t)J , (61) J.1 f (x'Qx+10u'Ru)dt, (64)

fi sp -x ........ 1_p) (61) 2 for...
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where J is to be minimized for p small. In [1.2] DISTRIBUTED PARAMETER SYSTEMS
analogous problems for systems governed by partial From the results of [L), 3] it can be expected that
differential equations are called 'cheap control' the singular perturbation techniques will be among
problems since the cost of the control u is cheap the main tools for asymptotic analysis and design of
relative to that of the state x (for Q >0). Other optimal control of distributed parameter systems.
applications include study of limiting possibilities Several generalizations of the finite dimensional
for regulators and filters [J2, 5; I]. linear-quadratic problems are available. In

When At -0, the resulting problem is a well- particular, a distributed parameter analog of the
known singular problem [J3] whose solution method [F5,7] is developed in [L3] for systems
satisfies the singular arc condition described by singularly perturbed parabolic differ-

B'K0 - 0 (65) ential equations.

for t>0 and the appropriate Riccati gain K CONCLUSION
Motion is thereby restricted to a manifold of It seems that, instead of giving a short summary
Sdimension at most n - r. By obtaining the nsymp- of solved problems, the conclusion of a survey of a
totic solution of (63), (64) as is-,.0, we show how new direction of research should concentrate on
this reduction in order comes about and, simul- missing links, restrictive assumptions and hints of
taneously, discover the nature of the initial control new problems. Starting with order reduction the
impulse. For 1& > 0, the feedback control is need for a systematic modeling procedure to

Bformulate the model (1), (2) is apparent. Con-
- - versely, this model is expected to interpret other

where Ko 0 satisfies the singularly perturbed order reduction procedures as limit processes. In

problem initial and boundary value problems, controllability
and stabilizability studies may relax the restrictions

tO! ps+(KA + A'K+ Q) - KBR-_ B' K, of stable initial and final manifolds. Although
dt optimal regulators seem a solved problem, there

K(T) - 0. (67) remains a desire to reduce the dimensionality of the
feedback matrix. In trajectory optimization,

The limiting solution Ko of (67) within (0, T) restrictions on norms of boundary layer jumps
satisfies the singular arc condition (65). An should be, and very likely can be, removed for a
asymptotic solution of (67) is complicated and wider class of Hamiltonian systems. The only
considerably different, however, in a hierarchy of result with constrained control is the linear time-
cases: Case I where B'QB>O, Case 2 where optimal control. Various generalizations to other
B'QB - 0 and B'QB1>0 for B, - AB-A. This bang-bang controls are visible.
reflects the situation for the singular arc problem In addition to linear regulators, other optimum
[J3,4] where the initial optimal control successively feedback design problems need to be solved.
becomes increasingly impulsive and the singular arc Order reduction in dynamic programming and
increasingly restrictive. A singular perturbation Hamilton-Jacobi optimization approaches would
analysis in [J6-10] reveals the detailed structure of result in even bigger conceptual and computa-
these phenomena. Its use for numerical solution of tional simplifications. Singularly perturbed filter-
ill-conditioned Riccati equation is discussed in ing, smoothing, singular arc, distributed systems
[311]. and time-delay problems require further explora-

tion. More work on numerical aspects of these
TIME.DELAY SYSTEMS problems is also needed. What has been surveyed

The difficulties incumbent with control systems here is only a first step.
having time delays have motivated various approxi-
mations. When the delay is small, it is often REFERENCES
neglected and a tractable 'nominal' problem is Surveys and monographs
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Singular Perturbation and Iterative

Separation of Time Scales*
PETAR V. KOKOTOVIC,t JOHN J. ALLEMONG.+ JAMES R. WINKELMAN§

and JOE H. CHOW§

I Based on singular perturbations concepts, an iterative method for separation of time
scales removes inconsistencies of the classical quasi-steady-state approach, and it
systematically Improvers the accuracy of lower order models.

14y Woriii-Comptational methods: time scale modeling; system order reduction; iterative methods:
power system simulation. nonlinear systems,

Absract-This tutorial paper presents an iterative method frt -r;, open circuit quadraturoe axis time constant
the separation of slow and fast modes, which removes the v, voltage regulator output
inconsistencies of the classical quasi-steady-sate approach up machine speed
and systematically improves the accuracy of the lower order X, direct axis synchronous reactanice
models. It also, serves as a self-contained introduction to X, quadrature axis synchronous reactance.
singular perturbations. State variable reformulation and time
scale identification are discussed and illustrated with power
system examples. A correction procedure for nonlinear sys.

*tems is also preseted. 1. INTRODUCTION

REALISTIC models of large scale system involve
NOTATION interacting dynamic phenomena of widely di-

D machine dampiin$ ferent speeds. In a power system model, for
j machine angle example, voltage and frequency transients range

C; component of voltage behind transient reactance fo=nevl fscndcrepnigt ee
due to quadrature axis flux linkages (not with the frmitvasose ndcrsp dngogn-
fiel windinge) rator voltage regulator, speed governor action

0; component of voltage behind transient reactance and shaft energy storage, to several minute.
due to direct axis tlux linkae (with the rwl orsodngt odvlae euao cin

-awindinp)corsodn tola votg reuao ati,
*Ef,, exciter output voltage prime mover fuel transfer times and thermal

ff machine inertia constant energy storage (Luini, Schulz and Turner. 1975).
K, volte rlr gain Since such models are of high order and numeri-
K, ledback compensator gain cally stiff, order reduction and separation of time
e'1 leakage inductances scales are often made using aggregation, modal
;,., L, x slfinucanes analysis and similar techniques (Sandell and co-
,Vj.jV turns ratios workers, 197S; LUndrill and Turner, 1971). The
Rf feedback compensator state underlying assumption is that during the fast
R1, R5  trailsfariner reis transients the slow variables remain constant and
S.IR,) exciter saturation
TA voltage regulator tim constant that by the time their changes become noticeable,
rT, oeciut ietuns ie constant the last transients have already reached their

* Tr. eck oenatr time constant quasi-steady-states ('qss'). Based on this qss as-
__________sumption and experience the state variables are

*Receives 19 January 197: revised 3 July 1979. The divided into n 'slow' states x and m 'fast' states
original version of this paper was presented at the IFAC that is the full scale model is

* - Sym1posiuM an Computeir Applications in Lag Scale Power
Systems0 which was held in New Delhi. India. during August ii)

6 ~1979. The published Proceedings of this IFAC !4eeting may dt X ,t V t)-V 1
he ordered from: Pergamon Press Ltd, H~eadington Hill HaIL d

*Oxford 0X3 03W, U.K. This paper was recommended for dJpublication in revised form by associate editor B. Wollenberg. MG(X..0 t)= o1)This resarch was supported by the U.S. Deportment of dt
Energy, Division of Electric Energy Systems through contract
number EC-77-C.05.566.

t~ecision and Control Laboratory, Coordinated Science Then the only states used for short term studiesIILaboratory, University of Illinois, Urbana, I L 61801. U.S.A. are -, disregarding I1) and considering the states
:American Electric Power Service Corporation. New York. 's as constant parameters. In long term studiesNY 10004. U.S.A.
Ilectric Utility System Engineering Deparment, cpw the only states used are x and the differential

Electric Company, Schenictadty, NY 12345. U.S.A. equations for are reduced to algebraic or
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transcendental equations by formally setting totic analysis. Using c the new time variable t is
f -0. The qss model is thus defined by

-,./f(., Z., ) x(to),x 0  (3) :m(r-e)/a (5)

and its initial instant :0-o is chosen to cor.
0- G(x,, Z, £). (4) respond to a particular instant t' in r time scale.

The wider the separation of the time scales.
Examples of power system models derived in such as seconds and hours, the smaller z will be.
such a fashion are many, as illustrated in Alder On the other hand, the smaller a is, the larger :
and Nolan (1976). An inconsistency of this classi- will be for a given (r-t') interval. In the limit as
cal qss approach is the requirement that :, equa -a-0 even a short interval in t is 'sretched' to an
a constant, as implied by d:c-0, is violated by infinite interval in :. When r is sufficiently large.
(4) which defines ., as a time varying quantity. the fast phenomena have adequate time to reach
Furthermore, the initial condition for : had to be their steady-states. This, however, does not con-
dropped in (4), since there is no freedom to tradict the assumption that (t-t') is sufficiently
satisfy it. If a qss model fails to provide a good short to consider the slow variables as constants.
approximation of the actual solution x(t) and Thus, the limit of c-O is equivalent to the qss
.:(r), there is no provision for improving the assumption, but without its inconsistencies.
approximation. A more difficult task is to reformulate the

This tutorial paper presents an iterative scheme model (1), (2) to incorporate the scaling (5). If it
for the separation of slow and fast modes which is known that the dynamics of the states : are la
removes the inconsistencies of the classical qss times faster than x, then ! is about Ic times
approach and systematically improves the ac- larger than i and G can be rescaled as
curacy of the lower order models. It modifies the
qss assumption into the multi-time scale property g-EG (6)
of singularly perturbed systems (Kokotovic,
O'Malley and Sannuti, 1976; Chow, Allemong such that f and g are of the same order of
and Kokotovic, 1978) and applies the modified s ud Th e odel are(o) the beome
qss assumption at each iteration step to the magnitude. The model (1), (2) then becomes
model obtained from the previous step. The dx
accuracy of the models for the slow and the fast (X , t) X(1o)-X (7)
modes is improved at each step and they are d7
further separated from each other. The iterations d:
are related to. but simpler to interpret than - (., 0
standard asymptotic expansion methods
(Hoppensteadt, 1974; O'Malley, 1974). The suc- The above qualitative reasoning is based on some
cessive use of the modified qss assumption can be empirical estimates of dx/dt and d:-dt. When this
followed without any background in singular information is not available, then physical para-
perturbation theory. The iterations offer more meters such as time constants, loop ains and
freedom to select various, possibly nonuniform, energy storage constants (masses. inductances.
combinations of correction terms. Finally, the etc.) are examined to determine which states are
tutorial use of :he classical qss assumption as an slow and which are fast. Not every choice ofs-tate
ai:Odouction to singular perturbations clarifies variables will be separable in this sense. Where
the relationship between the classical model re- separable, a model (7). t8) will be obtained by
duction and the singular perturbations method. expressing the small time constants and the in-
The classical approach can now be justified and verses of the high gain coefficients as multiples of
improved to any degree of accuracy, a single small parameter & (see Section 3 and the

companion paper (Winkelman and co-workers. --

2. SINGULAR PERTURBATIONS AND 1980)].
TIME SCALES In the limit r:-O. the model (7), iS). being in -

Assuming that r is properly scaled for the slow the r time scale. defines the quasi-steady-states
phenomena. let us introduce a new time variable x,(t). :,(t) as

and scale it for the fast phenomena. For
example. if t is in minutes. r can be in seconds.
The ratio of the time scales. in this case 1,60. is -d (x,. 0 ,(1o)=X (9)
in gencral a small positive parameter P. This
parameter will be the main tool for our asymp- 0g(-x,,:..tI (10) 1

Iw,
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Although this is the same qss model (3)L (4), its system. Furthermore, for lightly damped oscil-
origin and meaning are different. The crucial latory systems, the validity of the approximation
difference is that d:,.'dt*0 as required by (10) is (14), (15) is only up to a finite time t whichI not contradicted by z(d:,/dt)-0 which is now depends on the accuracy of the high frequency
due to ei=0. and not d:,/dt =0. To obtain the fast being approximated.
parts of x and z we rewrite (7). (8) in the fast While the full order models (7), (8) and (11),
time scale r (12) are exact, the separated lower order models

(9), (10) and (13) are in error because they

a g assume s-0. inteta of the actual >0. This

If'duO (.stZan-+C

-d,.i(r~ zt+:)(1 parameter change is called 'singular' and it re-

ps asuits i an inherent perturbation in model order.

a ia io s r -t de to ns : ro i T he ap p ro xim a tio n (14) (1 ) ca n n o w be im.
le g (2 iproved by constructing asymptotic expansions in

It. It is crucial that eac h expansion term is
and again examine the limit as z-0. Then calculated at s-0, retaining the advantage of
hcd -0, that is x is constant in the fast time having separate lower order models. T oe stan-
scale. This implief that as p mo-0 the only fast dar c expansion techniques are described in
variations are the deviations of T from its quasi- Hoppenstedt (1974) and O xamley (197). Our
steady-state :,. Denoting them by z az - , and iterative technique is presented In Section ,
letting 8,o0 in (11), (18), we obtain illustrated with a power system example in

Section 5 and extended to a class of nonlinear

:()(xo,(zo+:f(()mto)n used stat variable systems in Section 6.

3.O):-:o  SEAABEAD3)E SAE

The dlxed instant n a has been chosen to be to andATE r
hence the model constants are to, x , :o =.:c(to), Before proceeding to the iterative separation of
which is suitable for the fast phenomena occur- time scales we illustrate the state separation
rinse near to.  problem by two elementary examples. In the

Using (9), (i0) as the slow model and (13) as IEEE type I voltage regulator (EEE Committee
the fast model one expects to approximate x and Report, 1968) commonly used state variables are
by separable, that is the fast parts of some states are

small compared with their slow parts. The model
X()oaX,(o (14) (7), (8) can be obtained without redefinition of

the state variables. On the other hand the com-

(15 damped high steqenc oscillalor mode cannsome o

\s/ del are not separable. In this 'mixed' case another
choice of state variables exists for which the

where e(r) is expressed in the t time scale. When model is in the form (7, (8).
is such an approximation valid? How can it be Voltage regulator. We the standard model
further improved? Singular perturbations ad- in Fig. 1 with the exciter saturation -- -f,)
dresses these issues much better than other model -A.,exp[B.Efjj retained but limit type non-
simplification methods. The tool at hand, not lineaities neglected. The numerical values are
present in other methods is the scaling para- iven in Table 1. The eedback compensator ismeter c.

Recet results by Chow, Allemong and EXCITER

Kokotovic (1978) show that systems with lightly
damped high frequency oscillatory modes can ppri -also be expressed in the form of (7), (8). The too_~ .T _1,l~ j;. j . .,

reduction procedure 19)-15.) and the iterative "
separation method discussed in Section 4 also-- ,

hold for these systems (9. (1) the interpre- . ..... "---------- "---
tations of the reduction process for these two FEEEyACX COPaErAOR
types of systems are quite different. With well
damped fast modes. the state z rapidly reaches its ,-"

i quasi-steady-state :,. When the state : exhibits 1, 1 r
;, high frequency oscillations, the state x is approxi-

mated by the slow subsystem (9), (10) dlue to the L.___ . _.
" 'averaging' or filtering effect of the slow sub. Fto. 1. IEEE type I voltagel regulatzor.
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TANE I. VOLTAGS INGULATOR COSTCANWIS dz 2
TA-K -t-2z-O.O44 Seri -aSz(:d)] (22)

r, 0.06s LK -0.0,s
a L1s K, - 0.16 dz IK-0. A,,- a 0.0-12---.O.16(x-:)-z

2 +AV. (23)

Applying the reduction procedure (9H5), the
represented by two parallel paths in order to slow model (9), (10) is
exhibit R,. The state equations are i "

dx .I

i1V
d~1-CxKErjS,(E.r)1 (17) ZaX+.1
dt T E d f zUM0

d (Ef, - R) (18) and the fast model is
dt

d ,- 2 2r dzf . 1 (0. 16: , f + :I ). (25)-dz1  s d2  -"l

where AV- Vmt-V To separate the states let us d 2 dr 1.(
identify the fast and slow loops in Fig. 1. Since
TA is much smaller than T and T, the amplifier To get an idea how this approximates the full
loop is fast and its state V will have a non- scale model, we linearize (21). (22), (23) and
negligible fast part. The nature of Erd is less compare its eigenvalues with those of (24) and
obvious. If it has a fast part, it would not pass (25) multiplied by I/i=25. They compare very
through the low pass Rr-path (T is large), but it closely as 0.00916 to 0, and -8.80/J8. 4 5 to
would pass through the parallel path. We there - 8.33 ±1J7.99.
fore disregard the Rs-path and examine the re. Transformer. In the coupled circuit in Fig. 2
maining system. Using Kj as some linearized
equivalent of the exciter gain. we see that the
loop gain KAT,/KEKf is high because KA is large R
and KKK is small. The conclusion is that Erd as
a signal in a high gain loop will have a fast part.
The remaining state R is a candidate for a slow

state.
Our next step is to examine whether this

choice of state variables can be scaled for (7), (8).
Since the fast phenomena are caused by the Fir- 2. Transformer model.
smallness of 1/K-0.04 and T=0.06, we take

S-0.04, that is
the ratio of leakage inductances /, !, and the
self inductances L. L: is assumed to be the same

-,c and Tm 1.5 (19) small parameter

In addition to the time scaling, the states must be 16)
scaled to allow a meaningful limit as z--0. It is - n-nj1. (.61
apparent from Fig. I that Vn-c if K,-.:c. that L
is if -0. Hence we will use cV1 as a fast state Using the flux -inka.es
variable. With

Rfmx, Eld-a:. Vjt ": (20) !l +p)Liz - Lp1 .

and with the given numerical values, the voltage (27)
regulator model in the form (7). !S) is .I --- ' Li, + + , L.i2

dA-:, -x 2) as the state vriables and eliminating i,. i, from

'I1
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(27) using equations as the difference between z and z,

dd; drh 'll + D Cx (35); t-, -t t+v "-11111 - Rliz (28)
• "dt dt

which transforms (33). (34) into
we obtain the model

i .t-(A -BD-'C)x+Btyl =A,.+Bql (36)

ST 4-.-- .+ &V (29) E4, =D'CAlx+(D+cD-tCB)j z 4-Cix+Diqt.
dt T,(37)

G, Ii~C - -/T A t At (30) This is a model of the type (7), (8) with q1ST7playing the role of z. The crucial difference is
where h-T.V,/TN:., TjLlRI. T-LRZ. however in the weaker presence of x in the q

The small parameter £2M4.s. multiplies both equations where C, is O(s).* The qss of iqth derivatives, and hence both ,. and .- are a obtained from 0-q,+DT'Cxd is only O(e),thriaties. w hene o h xam , ane .1 arehat is, )1, is predominantly fast. Continuing this; that is wh~en we, for example., take ;., - - 1. ,.,

=0., r -0. both derivatives will tend to infinity if process we introduce

-0. However the system matrix becomes sin-
gular indicating the possibility of a hidden slow +D"'C x 138)
phenomenon. Since both ;., and ;.1 are fast, we
form the slow state by subtracting out the fast as the error due to the qss assumption is-0
phenomena in ;., and ;.,. This is equivalent to and substitute (38) into 36). (37). Repeating this
defining a state x as a linear combination of - step k times with
and ., such that the derivative of x will not be
multiplied by z. In this case, an appropriate _ '7o. (39)
transformation is x-;. -,., and the variable
:,, is kept as the fast variable. Then (29) we end up with the system

I .xi=Ag + Bq? (40)130) &ec om es t A x 4 pk( 0

& T + (31) v,- C'.c + D&,, (41)

1 1 d: 1 \ (32) whose matrices are defined by

d T, 2TJ Ak-Ak-t-BD 11 Ck., Ao-A (42)

where 0 ( ) is approximated by I +-.2. This is Cki-aD 1 C1 .. 1A1  Co-C 43)
now a model of the type (7), (8) having the Dk-Dk.+&Dk;2 1 C'.B Do-D. (44)
physically meaningful slow model dx, dt -
-x '(T + T2) c for the flux linkage of an ideal Again C, has been reduced, this time to O(e). To
transformer and the fast model d:i,'d -- (Tj' recover from 11 and x we observe from (39)
+ T'):, representing the flux leakage. that

41. ITERATIVE SEPARATION OF (a- 1,_)q 1-- :-5 D[.11Ci. I x.
TIME SCALES (4)

As a special case of (7), (8) we consider a linear
system Block diagram representations of the iterations

are given in Fig. 3. The qss model is indicated in
.x- AX B: X(to)MX 0  (33) thick lines. The speed of integration in the fast
aa loop is large due to its high gain I/e. The input
zZ',,Cx+D: :(10)M: °  (34) from x into each successive fast model is weaker.

In the limit (k- z) the model becomes the fast-
where ddt is denoted by a dot and D- I is slow cascade in which .4 , contains all the slow
assumed to exist. The qss assumption .i, ,0. that
is0-:-D-Cx, yields , - - D - '"Cx,. The true A vector or mata function o(So of a positive scalar c is

x. : will differ from .,,.:, mainly by their fast said to be ol0) if there exist poSitive constants c and a, juch
parts. To find the fast part of we introduce Ih that I(z) 1 ce for all its .

'r---'' __...-.-I__ , ,_
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Z - a . Next we define , as the slow part of etc., that
is we construct the iterations LJ~

~.ii4-SBJ~iT~i~k 0 mx, (49)

(6a ) where _,.

Akj,-Akj-Bk,D'Ci, Ao-A, (50) - -

Bakj, I , Akj..B j ' Bo 0 = B (51)

DI., -D1j + &C B,,D D&o - D . (52)

X = The weakening of the fast input has been accom-
h-1, plished since after each iteration B, is reduced by

an order of s and tends to zero as j-. o. In other
words the slow and the fast subsystems of the
resulting system

4 j - Ak,4j + Bkqk gi(to)'-- (53)
7 f , &,Ck~ j +- /, Iq, (to)-ti °  (54)

4are only weakly coupled because Bj, is O(e) and

1€) C, is O(e). It is also easily seen that ,,, D,, are

FiG. 3. Block diagrm models 0( " ) approximations of A, D.
To recover x from 4, and 1, we observe from

modes and D./a all the fast modes. Using (42), (47) that

(43) and (4) we can determine A. aA- BD" -C
+0(4) and D,,-D+0(a), that is, the slow and E wj"j1i
the fast subsystem matrices which would have = U
been obtained using (9), (10) and (13) as 0(c) (55)

approximations of A, and D,. Note that A,
and D,. are obtained in terms of the original Thus the slow variable ., is the dominant part of

subsystem matrices without ill-conditioned modal X, whose fast part is 0(c). It is of practical

transformations. Another practical advantage importance that , has the same physical mean-

over the modal method is that the physical ing as x.
meaning of the original state variables is pre-

served. From (45), the definition of x remains the Remark. Observe that the recursions remain

same, while the new state variable 1, has the the same if we use C, a and Die instead of C and -.

same meaning as :. D. This means that e, which is crucial in the

After k iterations the model (40), (41) still has asymptotic analysis of validity and convergence.
the full fast input Bo? into the slow subsystem does not have to be explicitly identified in the

%hich we now want to reduce. Expresm.ng il iterations.
from (41) in terms of ij, and x and substituting In conclusion our objective to reduce a system

into 40) with coupled slow and fast parts has been met. In 1
the transformed system (53). (54) the coupling

t - BD-'q=(Ak-BD 'C,).1=,-,x (46) terms B, and C, are weak and can be neglected.
Instead of the original full order system (53). (54)

suggests we will use the separate lower order subsystems

,~ M -1 B O ,7 (47 ) , , a "', m D ki?, ( 6 )

as the slow part of x. The slow subsystem then with the initial value I obtained front x0 . :0 via

becomes (45) and :0 obtained from x0 and ,1o via (55).
The simulation of P. can be performed in the fast

%, -A,z, ,l&,BD' ?1%,-.1A41 +Bk1 ,7. (48) time scale r.
The error 4(:)-,(t) is 0(J) while the error

Since B&, is 0(c) the fast input has been reduced. ii(t)- (t) is 0(r'). Using r(j). j(t) we obtain

* -- I ll-.
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the corresponding approximation of x(t), :(t) by Some other aspects of computing A1q, Dij are
evaluating .1(t) from (55) and 1(r) from (45). The given in Anderson (1978).
error x(t)-.?(t) is O(si) where i-min(j.k+l)
while the error :(t)-!(t) is O(si) where i- S. AN ILLUSTRATIVE APPUCATION
min j. k). In long term or short term studies a In the companion paper (Winkelman and co-
further simplification would be to keep only one workers, 1980) a systematic separation procedure
of the two models (56). In general we nee to

using the iterative scheme is proposed and ap-
compute four matrices Ak,. Dj and the sums in plied to the two-time-scale and four-time-scale
(45) and (55). They can be generated by (42)-(44) investigtions of a 20th order model of a three-
and (50)-(52). machine power system. Here we analyze a sev-
An alternative algorithm is preeted in enth order model of the single machine-infinite

Kokotovic (1975) and is motivated by (45) an bus system in Fig. 4. A five cycle 3 phase fault is(35). Substitution of il=-:+ Lc into (34) yields

AL't +ID+ LB)q (57) , I _

where M-C-DL+L(A-BL). To completely avrH , 0+11.Z

decouple x from ?I in (57), we choose L such that t v:l0+o0o
.MI-0. The expression M-0 rewritten as L-
D'C+eD'L(A-BL) suggests that L can be
solved for iteratively as Fio. 4. Single machine--nfinite bus system (AVR is the

volta-e regulator from Fig. tI.

applied on circuit 'a' close to bus 2, and is

where L,=D-C. The system (33). (34) afr k cleared by opening circuit 'a'. This example will

L-iterations has the form (40), (41), where the illustrate some features of the separation pro-

matrices are now defined as A&-A-BL,, -t cedure and introduce the time scales to form a

C-DL +LA , and Dk, D+L,B. Note that as basis for the analysis of the three machine system

k--x, L,., converges to L when a is sufficiently studied in the companion paper. The block AVR

smalL in Fig. 4 is the voltage regulator described in

Similarly. substitution of -x-cH'it into (41) Section 3 and its model (16), (17). (iS) will be

yields retained with the generator terminal voltage V
defined by

(A&- HCk) +,Nr, (58) -+
a V 1-(a-) 2 (e,"+e )+2(a-I)

and we set N=B-HD+e(A,-HC,)H,,O to de- x (e cos6-e;sin6)V+ V (59)
couple q,, from 4. Rearranging the expression
V-O we obtain where am (X'Y) and Y is the admittance of the

transmission line. The four additional state
H - BD + (A - HC,, HD ' equations

and solve for H iteratively as 1
H~~~~~~~j~~e -= D-I+z(A k~)~ T;o 1, - (1t + (X, - X') Y]e',

--(X, -X') YVsin j Ef ,; M6)

where H, wmBD ' -. The system (40), (41) after
j H-iterations has the form (53), (54) where the I
new expressions for the matrices are ,p-A, ,''o (X-X'.)YVcos6
-H,,C,, B,,-B-H.,Dk+A,,Hj and D%,,Dc
* CHk,. -El X6" l

The L- and H-iterations avdid repeated matrix
inversions of D, and D,, which are required by -377(o -I)

the iterations (39) and (49). The development of IlrP.

t39. (40) complements the L-. H-iterations by L. -- D(w-l)
showing that L and H are obtained from a

succession of qss assumptions. In the compu- Y Vje' cos6.-e sin j) (63)

lation of .4,, O,, we will use the L-. H-iterations.

h-ii wo
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describe the flux linkage decay transients in the view of the remark in Section 4 we proceed with
direct (d) and the quadrature (q) axes (60), (61) iterations without an explicit value for g.

and the mechanical transient by the swing equa- The post-fault simulation results using the sub.
tions (62), (63). The numerical values in Table 2 systems are quite revealing. The simple qss slow
are typical. It should be noted that in this model causes large errors in the linearized states
problem formulation the quadrature axis leads A and &R, (Figs 5 and 6). After only one
the direct axis. iteration of the slow and fast subsystems (j=k

-1) the error is practically unnoticeable. The
response of fast state d.6 for both the uncorrected

TAsLI 2. SYNCHRONOUS '4ACHIME DATA fast model and after one iteration is shown in
H -S.Os X. =1123 pu Fig. 7. That is typical of all five fast states.
D -Z.Opu T. S.Os
X, = t.2pu Tr,, 0.5
X, = i.0PU X. M.0O pu
X' -0.25pu X, -o.0t pu 6. A CORRECTION METHOD FOR

NONUNEAR SYSTEMS

With minor modifications the iterative pro-
To determine the fast and slow states we first cedure of Section 4 is applicable to linear time

note that the earlier reason for Vt and E,, to be varying systems. It can also be extended to
fast remains valid in this enlarged system. The nonlinear systems of the type (7), (8) where f and
linearized swing equations (62), (63). with all the g are continuous and differentiable in all its
variables constant except for 6 and wu, show a arguments by first linearizing (7). (8) along the
typical swing frequency of about 1.4 Hz. Hence trajectory (14), (15) and then applying the me-
both 6 and w will be fast. Finally for the flux thod for linear time varying systems. As in stan-
linkage equations we note that the quadrature dard asymptotic expansion methods this requires
axis has a much smaller time constant (0.5s)
than the direct axis (Ss). Therefore we assume [
that e is fast and e; is slow, and order the statesas follows:

e;, Rf, e, J, CU, E¢,, VA (64) .

considering e', R as slow and the remaining ive . ..,
v a r ia b les a s fa s t. U p o n in e a r iz a t io n o f t h e n o n - -- - - -- - - -- - - -
linear model at the nominal values given in Fig. -.....
4. the system matrix is as follows:

-- 0.58 0 0 -0.269 0 2 1 s a 0

-. 0 0 0 Fi 5. So variabe ;.: xat (solid L 4ss approximation
0 0 -5.0 2.12 [dotted Ial] and after one iteration (dotted (bl].

0 0 0 0.10.141 0 0.141 -0.2 (13

-66. -116 "0

0 0.2 0
0 1.0 0
0 0 0 _±01 *

377 0 0 (65) 1
-028 0 0 . -

0 0.0838 2.0 00 .....

0 -66.7 -16.7 1
• 01 iI

The system eigenvalues -0.36 -jO.56, -0.86 TIM.E sc

±j8.-k -3.93, -8.53.±j 8.2 2 also indicate that FiG. 6. Slow %ariable WZR euaiilidl. q flp3Wmfl

there should be two slow and five fast states. In (dotted (al) and after one Iteration (dotted (bi)].

WNW
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03 To bettr approximate the stale x we introduce
the expression x--1 +x1 and solve the slow part

02. as

i0.1 f(.,). 41 (0)i 1x +k (70)

S". . .that is. we include the influence of the fast part as
a< a shift k in the slow initial condition. The

-0.1 remaining terms in (68) are fast and are solved by

approximating 4f(x) with :, and '" by Z., that is

-0712
•0 fwf(A,, :f), x1(O) -k (71)

0 2 4 (.6 where -, is known from (9), (10) and ,f from (13).

F:(. 7 Fast xariabie 4): exact (oilidl. 4ss approximation If desired. the next step can be a further improve-
(dotted ia)] and afterone iteration isanie ,s exact). men of the fast subsystem

the time varying Jacobian matrices f., f, g. g. Ott-9g(1 - 'Cf. )q,(O)-: 0 -:,(0) (72)
and the inverse of g.. From a computational
point of view it is more desirable to deal with f where 4, x, and z, are now known from (10).
and g directly. Allemong (1978) has proposed (70) and (71) (Allemong. 1978).
such a method for a class of nonlinear systems This method has been tested on the single
including power systems considered here and in machine model (16-(18, (60H63). The only
the companion paper. In the following outline of types of nonlinearities in these equations are sine
the method we drop r from f and g and let to and cosine functions and the saturation SEfEr).
=0. Limit type nonlinearities on VR are not con-

Section 2 discussed the problem of obtaining sidered here. The uncorrected slow variables e,,
reduced order models for nonlinear systems wi- and RO, obtained from (9), (10) are shown in Figs
thout corrections. Equations (9), (10) and (13) 8 and 9. Then the corrected e; and Rr. are
yield these approximations. Using these solutions solved from
for x, :, and zf we proceed as Follows.

Let z,- ,(x,) be a root of g=O in (10). [1
Substitute e- o

z. x+l(66) + (X4 -X') YVsin 6, -Es.,L,i (73)

into (7) and assuming that the nonlinearities in x A. -Erh-Rf.) (74)
and : are separable, (7) may be written as

f ". f (.'C/( )) +f : (0 ( ) q e x ( )= ; ( ) k I, R f. = R f (O )+ k , (7 5 )

'. f- f(x) 0 W(tn(x) ,), x()'Mx0. (67) 106

Note that neglecting f2, which contains the do- 10 -
minant fast part, yields the slow subsystem (9).
(10). 1.The integral form of (67) is 1021

x MX ook fi(V)dt+ f2  (x),#)dk - 1000 . .
(68) .

where we have added and subtracted

091
k - f7(:,, :f)d: (69) 0 2 4 1 s 1 0

Fit;. S. Slow variable exact ihd. qis 3pproximation
where :,, :f are obtained from (9). (10) and (13). (dotted (al] and after one iteation (doued ibi].

a -



P. V. KOKOTOVIC et al. i

0210- -06-&

06 -06 S

do 6

0 2 4TIME ksecl 6 o0 2 4TIME ISMe)

Fic. 9. Slow variable R exact (solid),k qas approximation FIG. 10. Fast variable 6: exact (solid), qas approximation

[dotted (a)] and 1wte one iteration [dotted (b)]. (dottedl (a)] and ailf e itkm uo ueud (b)].

(X - X')Y V method presented is a means for improving the
-' F(S6,J 6) dt accuracies of the reduced models. A correction

T~~o .1 f a method for nonlinear systems with sine, cosine
and exponential nonlineanities is also presented.

+-..L f i E, dr (76) The modeling and separation of time scales are
T~o J0  illustrated by several systems common in electri-

cal engineering. Further application of the me-
thod is developed in the compaiiion paper

k2  fs Ef4d d (77) (Winkelman and co-workers, 1980).
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Through a couple of naive examples the cftroL interactious defined, the next @cap is co form the sub-

theorists are invited to reexmine the role of mod- system as groups of units. A criterion for this

eling in the study of large scale dynamic system, grouping my be to require hat the "neer inner-
T ad of asuming the existece of 'N diagonally actions be stronger than the "outer" interactions.shat i., i a umi should be coupled mare strongly with

* dominant blocks," they should Identify one srouly the un±: in t, ow abeyste, the with the other
coupled slow core and N weakly coupled fast suboyste , Uthunit In itson of n ut oe

This structure to eihibited with a physicaLly meaming- uhe enties of A nn eat , the c a mpotoa ninto a

fuI choice of state variables. The controls are itro- she ettris o spder t e posileither i a
duced f• Ing the recent concept of maltode", subsystems is considered cc be posslJe IfJ thret Ja an

d oo t r n co- n ordering if the units for which the interaction acrix
posae N dominant diagnal blocks.

Most control studies of Large scale syscm start For dynamic system we broaden thin reasoning to
with a mode pomesasing some known hierarchical, or include a separation of time scales. Since the
diagonal dominance properties. This assumption aggegation of fvArov chain is a particularly clear
expresses our desire co escape the cask of modeling. illustration of chis, we begin with a singular prtur-
At the etreme are the researchers for whom it is more bation incerpretation of the results of Pervosezaski
rational co design sctracies for controlling an unknown and Suirnov (1974), Gaitsgori and Perwotwmaki (1975).
plant. than to first spend some tine developing a model and Dalabecque and Quadrat (1978,1980).
!or it. In siapler and smller size systems a certain
disregard of modeling is tolerable. The situation is Za a system described by a finite state Xarkov
d0iffranw in large scale system where the phenomena chain, the states are the units of the systes and their
occurring are too rLch to be handled by all-purpose interactions are the transition probabilities. If some
control strategies. Consider, for instance, the stabi- of these interactions ane veak. they can be neglected
Lizacion strategies based on the assumption of diagonal over shorter periods of time. For example, in the
dominance, and designed by vector Lyapunov function four-atate chain in Fig. La, we ay choose to neglect
methods (SIjak, 1978). As the two power system all the interactions sualler than or equal co .2.
examples in Jocic cal. (1978) and Grujic ec al. (1979) Then the states are grouped into two classes: 1,2
show, the success of these strategies critically and 3,4. By increasing the self-interactions to
d depends on what La modeled as a subayscm. If the sub- compensate for the neglected weak interactions the two
system are simply taken to be the individual gener- "fast" chains can be formed an in Fig. lb.
&ting units, the results are extremely conservative.
'With a crefuL choice of "coherent areas" as subsystem,

~,the results become more aeaniogful.

Instead of assuming that an"off-the-shelf" model
is already available in a neat deakly coupled form, a , .
deeper understanding of the causes for weak coupling
must be ganed and used in modeling of subsyscam. in

i this paper we asks an attempt in this direction. We
first eaine the relationship of diagonal dominance
and :lm scales in the decomposition of Miarkov chains ..

* and show that similar decompositions apply to elec-
trical, mechanical, and electromechanical networks.
"e then outline a grouping procedure for determination
of subsystem and separation of tlme scales. A general
property of the considered systems Ls that they are

.J strongly coupled in the slow tine scale, and weakly
coupLed in the fast time scale. Due to this property •
every subsystem controller an negelect all ocher fast

j subsystems except for his own. This adulndelingMC)
situation La discussed n the last section of the
paper. !o highlight the ides and avoid tachicalicles, Fi.
the gaper is wriccon as an informal discussion of
representative examples. %ore general and rigorous
treatment can be !ound in quoted references. Mis 2sas t the Lat mt

. 0 011 F6z :3 0 0J 1 0 0oLa
IL .2.1 .1 * 1.r .CM 0 0 0 -. 2 .1 .L

'0 .1 .2 .7 " 0 .3 .7 0 .0 .1 j
In actempting to decoapose a system into sub- 1 0 .6 .3  LO . . .4 L 0 0-I system, the !irs: step is co dnct!7 :he units of (1)

the system and qanctify their inceractions. This is has bee neglacced.
a .ontri -al task and its ourcone .av have co beg revised ftier ubsaquoenc staps. W.ith .nits and

W c*
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Preparing for an asymptotic analysis, we repre- probability thun pj ykqj. This motivates the repre-

sent all the weak interactions as muLciples of a small rentaion of p as |

positive scalar a, that is we represent the last matrix .
in (1) by C 1 . Furthermore, we denote by A I4 and
A04. the transition matrices of the chains in Fig. La P yQ + SV, 'Ai-0 (7)

and b, respectively, observing Chat the roy su of where a is an (n*-)-rov and the choice of the constant
•t, A,. and cA. a z Thus & general expr- (nu-)xu matrix W is in agreement vich (4) and (6).
Sion of Cho tpe (1) is Zntuitively Cte tca represents fet fluctuations

(A +) a (A +I) +cA. (2) around yQ. if we m=ltiply (7) by an nx(n-N) matrix S
( a such that

By this construction A. is made of diagonal blocks. QJ- 0, vs1a In-*# (8)
Each block contributes one right and one left elgen-

* vector of Ao for 10C. The right eigenvectorS are of
the form (00lUO000 1' where I denotes pose, then rsspust is

and the nuer and the position of the ons are deter-
mid by the d-mmusim and the position of the da- - p8. (9)
enl block ia AO. Similarly, the left elgenvoctors We mned to choose S for a meamigful definition of z,

are of the form (0 0 qtil q i 2 0 0 01 where $Ltql. . saslmfy ng (8). In out exmple such a choice is
q +2 are the sa prob± lutles for C-0 o te
states i. i1, 1+2 in the same class and, hence, their
sun is one. For an n-state chain with N4 blocks the J 0
right "Lgonvoctors of AO for Am0 form an uxN matrix R q1
and the left eigenvectors form an Nxn matrix Q. In p P
our example (1) we have 1 0 . 1 U

a o ~ () rq -q1q q2

e i t. 0-aS 2  0 (10)1 0 7 = (3) 0 - L P3 P4

0nn0 0 TYa 1 eo3 2 q 3  U
01

To summaie, the r eht and ieefd nu lf spces of Ar aie in
charcternzed by

The worrsepondi-g W L then

SO yQ" 0. gWAO 0.12) I

S -0, P -+ A A- ) , [ qCq q 1q2 0 (1]
where th is te NO i enth e. 2 t m (11)

Lat in noe !ar a fontinous time iodtl of the L 0 0 qd3qi -q3q

chain.Assumin t hen Ac iAsan the irniti fat ranix (4C 2 S(4

in "fst" be of, the tlran s tinetrx fo slow e i stagl, fast vtrables z should be defined s

Sne is blc-iagoralxatpe fsttanient is igulted pfferteanc of probbliies (3h e alse .

it oys, the b p w ill be n c le o ter- fe amae (7) to exprele (h) i le of p aed z.
tsed no one th e tr behai or of ht chain, e itner simple mnipuatig ae obtai e
,11 use the model i sla thnme

-sy o 1 + 3 Ai ( I2)

* ths L t us inrouc +Y -i th grgt rbbiiya9QygQAS 1 + - (13)

agere te a-ov p(r ) a the probabFlr dttribetoc at wo the ar g p
ir a n. rf the vovnk d(1tr'ibution t(a) it far fmamtrp(0)Ao- 0, then po ),, p'h. ad th* initia fast tra-- I a W(A0otA)S (14)

sln ca. (6) apprximtel represents anafegtrhaowosmttu r

sienc~~~~~ ~~~ Pa eapo:mtlydcmle ~ A 4O. is stable. By having transformed (3) into the standard'

Since AO is block-deigonal, the fast transient is singular partufoclon form U2). (D), we have q

fomud of separa e transints wen the clas". acomplshed o f the goals of his ratouan. It i
After some the probability p(t) w l be c cloe to straightforwrd now to anlyze the tme scale proper-
the comp ose the -satonry distribution within ties of (12), (13) ung asympo£tc or iterative
the I classes. Pros thent an pAl i.s no Longer negli- techniques, such an in Koiocovic, O ,lley, and

gil ihrsec o paadth rniin Sannut: (1976) ad Kokocovc eac &1. (1980). The slow I
l~b, e .thrupet co ? o nd € ee ,=sobseysem- of (12), C13) is

betieen the plasses m t t e been ano account. To 1othis Let ,s introduce 7£ - the aggreglate probability- q1RtA3QZFL)- . 15

for h state o b e nt h cs. The -ro of c he I.

agsregafte Lobabiltte is pr pro iim aduces : the atheettai ooposed by
PR () aiLrnov and Pervozvanaki (1974). The transition matrix

MY(AL represents an aggregate chea whose scares are
In urexapl (1 tissimly*sag a "' he Slasses of tho original chain. For our ezpls(l)

J y ea p e P 4 he probab l y o ean U $tics , ca c hi s  -atr x i~s
yp=?lss . ,ho pobablic7 11, o be inf st:c cas 94

cim the probblit£y to be in &Ca state when in the (.9.) (16)

class. If the lectter is approzimacad by Cho stationry



and the agregace chain is shown in Fig. 1c. The
fast fluccuactiom are appresamitely governed by 0 0

t f f .073 .1- A Cx - z '2 '2 (1.8).130 . 1 - =£ .,.t 0

where the unmrlea1 value ame for our ample (1). L3 L3  L3
It is crucial. o point ou rthat due to the form (14) 0 a
of F, its diagonal blacks are indeed dominant. The L4
ageenvalus of F in the example -. 14 and -0.09 are 4
c lose to its diagonal eleents. Zence. (17) describes
N separate fluctuations within each of the N clases. ihere dmwtiaL r a-c the mcriz A L exptessed as
-ven though transition probabilities an-large as 0.2 A-A,+U. , *tha A
have beam neglected, the approximation is excellenc. C

The stationary probability distribution p a C.18 .21
.28 .3 3 ] is approndiaced by FQ* (.17 .22 .28 .33). -J -L 0 0 0 0 0

0 0 0
Our final conclusion is that the original Chain 0 0L -

(5) should be decomposednot into , but Inco 4'1 A " 2 2  2 L2 
"  (19)

subsystem. One of them is the slow subsystem which 0 0 - 0 -L --L 0
defines the Mackay chain of N strongly coupled aggre- L3 L3 L 3
ate states. The remining fast subsyaemm are aoc 0 0 .. -.- 0 0 0 0

Markov chains, but represent internal fluc cuations L L
within the . clas.4

We note that Ao represents the two subuetworks in
E403 , SUBNVMERS, A.I TIM SCALES ?IS. 2b, which, due to the all-inductor loops. possess

equilibrium subspaces. If the initial currents are
A similar reasoning can be used co determine tine far from these subapaces, Z] (O)#1c(0) # nd

scales and subsyate sm of electrical, mechanical, ad the currents (zl.-xZ2 ) gad (x3-z) 0  wil flow through
electrom anical networks. the resis tors I, R. v2 ,rued by

CO.)~ ~ ~ ~ ~ ~ ~~41( -- -,- ndr. h uys--(2 ) (20")s

Lul La.=2 .12 %-2 -Y L343

A% As

y4. mis~ re ~.iI~where and ( ~indicates that only A0  thatI (e.)is :-0,ia considered. The subsystems (20) ate fat"
because R is large, and the corresponding "fast" sub-
networks are show in Fig. Zc. When the subuetwork

6 equilibria are approximately reached, the scats x is
ce to the nuLl-space of AG and, 'io-ce. cA x is no

R longer negligible with respect to A z. In tie long
tar, the state of (18) -411 continue to be in the

(&) neighborhood of the null-sapca of A , whose basis we
denoca by V, an axf matnr which in athis exaple hasthe coluMM (11001' and [0011.]'. Representing s

D L, J-Vy + , - (21)

and a anroducing -etrcs H and P iatisfcong

K ft ,',(23)

were y will be the slow and the fast variables.

Since we have already observed chat x,-x 2 and . 3 -x.
rig-. 2 are fast, let us use this observation and (22) to

determine ?. For our example this will be

As an illustration we consider a pl RL-necr c in FL - 0 01. •L - o-2
Fig. 2s, where the inductors are of the same order of • 0 (24)
m aglntcude, and .he a muaforty of iteractions is 0 0 1 -1 z2  x 3-x
due to the fact that the resistors R are much Larger
thn the resistors r. This monuanformity suggests which satisfies FV 0. Then using E and H in the form
chat there my exist a -,y to appoxiate the network
by soam simpler subare'orks. The system equation
Ach the inductor currents as the stacs is



r r ~m I iiii-r l !i

[h :1 0X -(network) 08 .77 8.47 L5.8
h 2 a 0.0 - X -. (sub. mrk) . .09 .78 6.33 L5.0

The accuracy can be improved by including tb c-cerms
0 h and Mc1i1 keeping the subnecworks decoupled. Lac usreaid the reader chat we have examined the asympto tic

behavior of (18) as g-0 by introducing re-.
we see from the first three conditions of (22) that

For co liseeure of singular perturbatios it ey
b-1 , 1  o mn2. , 12 aIbe of intirest to notice that.had we instead suheci- -

(26) tuted ref in (18), we would have obtained a singular
h -h 4 a 1. h3 , m4, 234%4 a singularly perturbed system. Following a different

route, such As n Campbell (1979), we would have
lhysically meaningful quantities which satisfy thwe arrived at the sam standard form (29).

relations are

I, L L4
*2 2 a L'L2 ' L 3 +-t4 ,'4 L4 (2 Although this my not be obvious, the problem we

have bee. discussing is a disguised version of a well

Thus we see that our "slov" currents are the weighted known problem Lu power system analysis. Most power
sus of the curr ents wtchint he subnemtvrks engineers are familiar with the problem of grouping ofsynchronous machine into coherent areas. The

L L literature on this subject is rich and will not be
x2 quoted here. Only a recently developed algorithm

1 "L2 YL+ ' 2  (Avyrmovic, 1980; Avraovic et al. 1980; inkel an
(28) ec cL. 1980) will be atlinad because of its dirict

L L4  connection with the precedig two sectlons. At
2 xL+L4 3 + L3+ . present Avramovic's algorithis . being pplied to

conservative systmsr of the foru"

It is worth noting that y and y.) are not exactly xu(Ao+t&Qx - A~1 (30)
analogous to he Markov c a exaple, where 7L ' Pl"2
and y2 ap +p, nor is (24) analogous co (10). such as electromechanical models of power system, mas-
Bovever, JZd e taken the fluxes as the state spring models of flexible structures etc. In pover
variables instead of the currents, the analog would system x represents the rotor angles.
have been complete. Applying the transformation (24),
(28) to the original system (18) and expressing R- The so called slow coherency problem is to find
we obtain the singularly perturbed system analoSous the groups of machines which "swing tolther" wich
to (12). (13) respect to 8 slowest modes of A. The machines i and

for which the difference xi-x1 contains a negligible

r contribution of slow modes, ate grouped in the samev- 1,L 2 1 L,+L.2 72* A 
l l e 2Z2  aober t are. If Ve is a basi *xtS ac for the

2 L-.L(leced a i slow modes of Ac. then the encries of the
42. r r it Lh raw of VC are the weights wtlh which the moesa

L3 L4 I L3 +4 7 + ~zl* 12 2appear in the state x ., 1 the rows i and j are-'' Z L" Y' '~z~aZZ(29) identicl, the mhablas I and j are coheet, that i

*j o +C 67. )z c,ta x-xcua only fast modes. &vramovic's Algorithm
-- pe~rtes the ordering of the sctats, chat is the

•- CA37 1 a t +A r( - L) ordering of the rows of VC, until the first 9 rows
10Y2 1. lt 3 L4 2 become as linearly independent As possible. The N(

machines corresponding co these rowe definitely are not
where the coefficienta a.... ,a 1 O are of the form r coherent and each can be used as a reference machine
divided by appropriatce iOdu-ctnes. The firsc poin for a distinct area. To associate other machines with
we want co make is that the fast subsystem matrix of these reference machines denoce the first NI rove of Ve
(29) is diagonally dominant. ca diagonal entries by V, and the rmaining n-N rows by V2 , NW, when VC

d.. l represent the n r n is posmultiplied by V a matrix La V2,' appears

Fig. Ic. as expected. The second important point is V V 1-I (31)
that, up to an -error, the slow subsystem represents V L
the subnetwork in ?ig. 2d. Thus, the subnetworks of
the original network in Fig. 2a are the two fast sub- w
networks in Fig. 2c and one slow subnetwork in which is he mai tool, of ihe groupialgorithm.

Fig. 24. A simple rule is apparenc: the fast sub- The fast variables are then defined as
networks are obcained by considering the small 2-_' I
resistors r as short circuits, "hile the slow sub- 2 a x Lx (32)
network L obtained by considering the Large where xl is the suhvecto of the angle of all the .l

resistors t as oe crcULtu. yi may come as a reference machines and x of the remaining n-N

appr i eaton. s I cae be see fs :he eomparsen achines. The slow coherence is approximately
of te acpual rnetio k enasvatue aibh the subneork achieved if each row of L contains only oue encry

tenvaluesw close to e, and all ocher entries close to zero.



3y replacing the near-one entries by ones, and the MI
- near-zero entries by zeros, a "grouping mtrix" L is ooe

formed Whn ued o tp~c~ la (2) hisThus far we haye not considered tits pregeace of
defines the Component# of k hose difreces control inputs. Row are they to be allocated among

wth the Componens of x6 in (32) are predominantly tho subsystems? Political, geographic, eg other
fast. They then belong to the area who*e reference issues my interface with out strictly dynmic
is the component of x1 appearing in the difference. criteria. A transformation of am original m=del into

A a model exhibiting lue soas end subsystem will
*If we were to apply Avrmvic 'a algorithm to our also trensform the control matrix B. When transformed.
netwOrk in Fig. Za, we would find that x, and %4 can at least one control variable should be allocated to

F be used a "reference currents." They w~l be the each feet subsystem while the preseame of other fast
copnnsOf xl and xl aud x3 the components Of x2- subsystem controls should be weak. If this is tot the5 Then (32) with LZ replacing L, would becoom case with the original control variables, voluntary

grouping of controls and mutual relesa of control
Authority is required. After this has been accon-

(33) plished, the Linearized mdel of a large scale
:13 0 01 [s 11system exhibiting one slow and N feet subsystem can

be written as

which is la agreamo with (24).
to uc+9A (36)

What distinguishes Avraumvic 's algorithm, from L CJ J4 J. cal
the discus Ion in the preceding sections, is that it
e~lsi ates the need for en explicit separation of A C ioiyAz, cj ljsU 1(37)
into A aid t&,.. Instead of a grouping based on thl ~ ~ c*iz~Eci~x~~u
oull-siace of a heuristically or empirically Con-
structed matrix A, this algorihm computes a basis where we have allowed each fest subsystem to have a
V. for the actual SLOW eiganspate of At and then different small parameter c, and to be weekly coupled
fids L, - V1,71L by a Gaussian elimination procedure. to other feet subsystem chhough cu The feet sub-
For our sytem (18) a basis Vt for AX--.08 and system I is Controlled by its own iiput ui. The slow
%-Y 77 is subsystem (36) is the common slow "core" and, in

general, will have the input from several or all fast

.33 .66"subsystem controls..
0.36 0.67 In a situation like this it is rational for a fast

V MI 02 (34) subsystem controller to neglect all. other feet sub-
a C 1 02 system and to concentrate On its own subsystem. plus,

0.6z 0.3 of course, the slow interaction with others through
the "core." ?or the ith Controller "to neglect all
other subsystems' simply neans to set all c parameters

which, after a permutation to place the row 2 and 4 equal to zero excae for c which is to be kept at its
as the first two rove, gives true value. The ith contrkler's simplified model is

then

.[0.36~ . ,7. 03 0.' -l [L.007 *i1(5 iAt '~iy ciz i + e. jISj (38)
L0.6z~,2 0. 0.61 0. Vz21 L-0.07 1.y0

i*c z ILS a u (39)

The final stop is to approximate V.,V by the
grouping matrix in (33). where

A Common feature of our two example and A, A- IA A 1A (40
Avramvic's algorithm is a search for a sa f cj~ j 'j j'- ij cj-A j 1iJj* 4

physically neaningful state varliables to exhibit the ;deoeyiwtasurciprch hnasbcitsubsystem and their tine scales. Of course, the time ~ ~ ywt uesrp ahrta usrp
scale* of Linear tine invariant syCste can be to stress the fact that y-i is hot a component of '

exhibited by m=dal transformations.* but the meaning of moebut,3) sote l the ith controller knows ~ ralt, hthe sodal, variables my be far from the meaning of mc 3)(9 sotnalteihcnrle nw
the original slate variables . The original state about the whole system. The kth controller, on the
variables obtained from physical Laos or experismts other hand, has a different kth model of the sam
contain a wealth of intuitive and empirical inform- large scale system. This situation, Called aulti-
tian which a rational, modeler wents to preserve. Our modeling, has been formulated and investigated in
aemplas illustrate, how this can lie accomplished by M~alil end Kakotovic, (1978, 1979a, 1979b, 1960) end,
a constructive -me of the deconpositione such as (7) moe* broadly, in Volume UI of the Ui.S. Departmnt of
and (2U), which to an algebraist are 2are projections. Energy report (Fink and Trygar, 1979).
With physically maingful subsystem not only
linearized, but also nonlinear analysis will be sim. What remains of (36).(37) wjhen all c parameters
plified. In a recent application CvWinkelnan atal are neglected is the slow core, which is ,in
1960) of Avremvic's algorithat to a nonlinear 48 general, a strongly coupled subsystem. Decentralized,
machine model of the Eastern Unoited States power teem, and gae approaches to the design of control
system, nonlinear aualogs of the subsystems Iden- strategies have beet considered for this subsystem.
tified an a linearized model were used. Sinulation Control i can be divided into a slow part, which
results confirmed Che validity of the subsystem contributes to the control of the core, and a fast

mdl an mescales. part controlling only its own fast subsystem.
del ad tmeSometimes the total auelority for the slow subeystenm

can be delegated to a single controller-coordinator.
In this case the control hierarchy would naturally
atch the hierarchy of the time scales.
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Singular Perturbation Analysis of Systems with
Sustained High Frequency Oscillations*t

j JOE H. CHOW, JOHN J. ALLEMONG and PETAR V. KOKOTOVIC+

Singular perturbation techniques, extended to treat systems with slightly damped high
frequency modes, provide better understanding of the system's structural properties, and
they yield computational advantages since the resulting subsystems are analyzed in
separate time scales.

Key Woed llaiax-Prturbation techniques; eigenvalues. two time scales; system order reduction.
approximation theory; modeling; power system control.

Samnlry-Using singular perturbation techniques, a system decay in the fast time scale during a boundary layer
with high frequency oscillations is decomposed into two lower interval. Thus they do not incorporate the case of
order subsystems, one containing only the slowly varying part
and the other containing only the fast oscillatory part. slightly damped or purely oscillatory modes. This
Eigenvaiueand state approximations achieved by thesubsystems paper extends the singular perturbation approach
are given. A mass-spring-damper example shows that a stiff to systems with fast oscillatory modes.
spring can be regarded as a perturbation of a rigid rod and an
interconnected power system example illustrates the occurrence Our approach is to decompose a system with high
of coherency and inter-machine oscillations, frequency oscillations into two separate subsystems,

one containing the slowly varying dynamics and the
1. INTRODUCTION other containing the oscillatory modes. We show

MECHANICAL and electromechanical systems often that the decomposition in [2,3] is also applicable to
have slightly damped modes oscillating at frequen- systems whose slightly damped large eigenvalues
cies much higher than the rest of the system. Well result in sustained high frequency oscillations. The
knwn examples are spring-mass suspension sys- slowly varying dynamics can be approximately
tems and multi-machine power systems. In linear- analyzed by averaging methods['4-6]. However for
ized models of such systems some eigenvalues the linear time-invariant case considered here, our
have small real parts and large imaginary parts. algebraic decomposition is more direct and yields
Typically they are due to either strong coupling, or estimates of the eigenvalues and states of the
small masses and inertias, or both. Synchronous original high frequency oscillatory system. This
machines connected through a low impedance can procedure requires only the verification of an
serve as an illustration, assumption given in the next section and the

In properly designed systems the amplitudes of computation of a matrix inverse. Furthermore our
high frequency oscillations are small and their effect decomposition retains the meaning of the physical
negligible. However, the analysis and design me- variables.
thods must take these potentially troublesome Illustrating the decomposition proced ire by a
modes into account. This leads to numerically stiff simple mass-spring-damper system in which one of
problems requiring expensive integration routines, the springs is stiff, we show that the slow motion of
A way out of this difficulty is to treat systems with the masses can be obtained by approximating the

1- [ oscillatory modes as singularly perturbed systems stiff spring as a rigid rod. The high frequency
and analyze their slow and fast parts in different oscillations between the masses are then analyzed
time scales. Presently available singular pertur- using a fast time scale. An interesting application of
bation methods(l] assume that the fast modes this procedure is in the transient stability studies of

interconnected power systems. If several machines

9 Received June 29. 1977; revised November 17. 1977. The belong to a 'coherent' group, they are usually
original version of this paper was not presented at any IFAC represented by an 'equivalent' machine[7-9]. Our
meeting. It was recommended for publication in revised form by procedure gives a perturbational interpretation of
associate editor K. J. Astrhm.

tThis research was supported by the U.S. Energy Research the coherency approach. Moreover. it reintroduces
and Development Administration. Electric Energy Systems the intermachine high frequency oscillations by
Division. under Contracts EX-76-C-01-2088 and EC-77-C-05- representing them separately by an oscillatory
5566.Decison and Control Laboratory Coordinated Science subsystem. Hence this procedure is applicable when
Laboratory. University of Illinois. Urbana. Illinois 61801. U.S.A. the intermachine oscillations are not negligible.
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J. H. CHOW, J. ALLEMONG and P. V. KOKOTOVIC L
The organization of the paper is as follows, where D2 , D3 are m x m nonsingular matrices and

Section 2 outlines the modeling aspect of high the matrix D2 D3 has simple and negative eigen-
frequency oscillatory systems. The technique of values - wit, i=1,2 ., n."
averaging is used in Section 3 to obtain the slowly
varying part of the oscillatory states. Section 4 There is no restrction on the dimension n of the

contains our main results on eigenvalue and state state xeRn. Assumption II guarantees that high *,

approximations of the subsystems. Sections 5 and 6 frequency oscillations will occur in (3).

are devoted to the examples. As an example of a system in the form of (3), we --

consider a mass-spring-damper system shown in
2. MODELING OF SYSTEMS WITH HIGH Fig. 1 where the spring k, is stiff. A set of convenient

FREQUENCY OSCILLATIONS

Systems governed by physical laws such as k /
Newton's law and Kirchhoffs law can be modeled
as second order matrix differential equations

S+Po+Qs=0, j(r0)= 0, s(t)=So (1)

where se R' and P, Q are r x r matrices. We assume FIG. . A mass-spring-dampersysiem.
that system (1) is in the form

s=Si F], p=[P, P2 ], Q.[Ql Q21 U21 state variables for this system is the position of thesLSJ, LQ Q. 112 center of mass
P21s,=(Mts 1 +Mzs,.)IM,v=M 1 s+M2  (6)

(2)

where u is a small positive parameter which arises

due to the presence of stiff springs or small masses and the relative displacement between the masses
and is responsible for the high frequency oscillations
in (1). Then (1), (2) can be rewritten as a singularly
perturbed system of first order differential equations Sd,= -2 (7)

x= Ax + B, x(to)=xo (3a) where s1, s, are the positions of the masses M, M,.

.=Cx+D, :(to)--o (3b) The equation of motion for this system is

where . . k, k1 M2

F-i ;W A1
X " §L:J i sC(to)=S,.O, s,(t 0 )=L;(to)=,0

, wz~ 1-V/111+ sC 0 '1 Df[ 0 0

_ Q -] Q [ k , k( )1 kA +

Our analysis of (3) does not require the matrices + , s + + s,=
.4. B. C. D to be in the special form (4). The only s,,(to=so, i tto)=r 1a,. (8}
assumptions that system (3) has to satisfy are the
following: Since the spring k, is stiff. we define

I. The norms of -A. B. C. D are bounded about p ,
=0 and the state : is of even dimension, that is. I k2M
S6 R". = 9)

II. The matrix D is in the form " M,

D= [pD1 D, 15) such that ki is small. In the state %ariables

*The mamx I denotes an identitq matrix of an appropnate
dimension. ".. 2 =L 4 / (10)

bI



Singular perturbation analysis of systems with sustained high frequency oscillations

(8) becomes Expanding the determinant in (15), it is readily
shown that the coefficients ofA', i = 0, 1 .. 2m, are of

• t =x the form a(p)1,21"-' for i even and a(p )/*"m-'- ' for
i odd, where ai(pu) is bounded about =O0.

_ 1. xi _L. k1 M 2  !i2 .. Neglecting A R 2 and the off-diagonal elements in
M M 2  A R1, (15) becomes

M O ~()(- * H ( 2 -20" +o.,jO/p 2 ) (16)
"-Jk ft 22". i-I

.M1  M, ~ i'where 2au is the ith diagonal element of R. The

If:M M\ coefficients of i of (16) are also of the form
-U +MZ ) Z (11 bi(u)/u 2,-i for i even and b( )/, 2"- for i odd,

and furthermore, b1(p) approximates ai(/u) to

which is in the form (3) and satisfies Assumptions 1 O(,U2). Instead of (13) (p(i) can be expressed as

and II with D,.) = -( - 'det[ 2 1 -(D + DDD 2 )
oPji) -i -+rde[A2 kiD,+M2

+M ,M • -(DDz -u 2 DD -D,DD,)Mu]. (17)

Letting S=rTD;' where r is any nonsingular

3. AVERAGING OF OSCILLATORY STATES diagonal matrix, we obtain SD3D,S- '=A. Then
the diagonal elements of

Before analyzing (3), we investigate the behavior

of the system S(D, + D- 1D D ,)S- 1

p w=Dw+u (12) are identical to those of R, and (17) can also be
.. . approximated by (16). To analyze the roots of q(p()

where D satisfies Assumption 11. The characteristic we use the following lemma.
polynomial of D/M is

m oLemma 1. If D satisfies Assumption II, then, as p

01l) --*0, the eigenvalues of D~ju approach infinity as
I detf -- D ,l  -D,/ l_

=-detI aD +j1 oil, i=1,.... m. (18)

By Lemma 1, as u-.O, the eigenvalues of (12)
= d -D/,+ul-D )D D '(;.I-D, ) approach infinity along asymptotes parallel to the

detLD3 P - D, imaginary axis. Note that the large imaginary parts

of (18) are the consequence of solving for ;. of the

=D D, quadratic equations in (16). If some of the eigen-
= - I -l¢'det[;. 2 -- (D+ D3 3 3 values of D,D 3 are either positive or not simple.

-(D.D 3 -p'-D4 D 'D1 D3 )/p]. (13) then in general some of the eigenvalues of DM may
be positive and O(l!,). This case of fast instability

Let T diagonalize D,D3 such that is less realistic and will not be considered here.
Due to the eigenvalues with large imaginary

TD2 D3 T- = A parts, the response wit) of(12) will in general consist
of high frequency oscillations superimposed on

=diag(-wo. -co "..... -w;) slowly varying dynamics. Our purpose is to com-

(141 pute this slowly varying response due to the input
u(t).and rewrite the characteristic polynomial as

.=-l (- .)'"det[21t-R,.1A pR,),p] =air)+t) is an input where lt) is the slowly

(151 varying part with 1619c, and al jc, for some fixed
c, and c, and atr) is the oscillatory part. then there

where exists a finite Tip) such that the slowly varying part

R, = T D, -4- D3 D, D3 )T- 'rt) of wt) of 112) for r, 5. t ;5 T is

and
l]aft)+0(111. f(19(

R2 =TD D;,DD 3 T 0 t+I.
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Proof Integrating the variation of constants the input and w as the output, the input-output
formula behavior of system (12) is that of a lowpass;

W I , wideband filter. Then w(t) is the dominant part of I.
w(t)=(t, o)Wto)+-SO@(t,r)u(t)dt (20) the filter output which shows the relationship with

the usual assumption in the technique of averaging
where [4-6]. Thus v(t) approximates w(t) closely if the

0(t, r)fexp D(f- r)/,u;, high frequency component of w is negligible or if
by parts, we obtain w(t) is used as an input to a slow filter. .

w(t)= - D- (t) +00, to)w(to) 4. EIGENVALUE AND STATE APPROXIMATIONS I"
Letting 9 be the slowly varying part of x and

+ D- 't(t, t0  )(to) either applying Lemma 2 to (3b) or setting p = 0, we

+D- S o0 (t, ()d? obtain the slowly varying part ! of z as

21) D -=C-D-C +O(p)
+ , (t, t)a(r)d?.-(21) = - -Cg + O(p). (26)

But the first integral term in (21) is 0(p) since a To separate completely the slowly varying part 2
further integration by parts reveals that for to t from z, we introduce the change of variables

~T
q=z+D-'Cx+pGxmz+L (27)

Ij,,0(t, rjti(r)dr j iOp - 'I lc, (I +0 j t. t,, ))

-+c2 PoPt ,r)dr;. (22) and determine G such that (3) is transformed into

We also note that a(r) generates high frequency -= (A, -,BG)x+Bi& (28a)

terms and the terms contributed by 0(t, to) are /u =(D + pLB)t (28b)
approximately of the type where

expo,(rt - to)I sin(w(t - to)/p ) A, A - BD 'C. (29)

and Thus G is required to satisfy

explai(t-to)lcos(wji(t-t,)/p), i=l,2,....m. -DG+(D-IC+pG)(Ao-pBG)=0. 130)

Since By the implicit function theorem, the solution of (30)
D-' + 2 X," is

D-LDA , D 3 (23) G=DIsCA+O(p)
D2I+UX XG= D- 'C A, + 0(p) (1

where =D-CAo+0(A) (31)

X, (D3 -A 2D. 4D'1Dr'DDi' 1 where

X, =- D- 1 D.,X, A,= .4 - Bb-C. (32)

X 3 = - D- 1 DIX, (24) Let

.'D DD' FLDB=FpD, D2 1 [pD, D2 1 CB
X= - (D,-,DD-'D,)-'DD-'. 1D+LB I3 D, J+'L D3  pDj

the only significant slowly varying part - D 'fi(t) + O(p )
of wit) in 112) is approximated to 0(p) by
- It). where =[pf D , + D-'CB,) 1

L D3+pD-1CB, u(D,+D.-'C,B_)J

o=[o D,] (25) +o,2,

implying 119). L 3  b.J+Ol2)M)+Olp2) (33!

This analysis justifies a simple method to obtain
ti't), which is to set =0 in (12). as is usually done in where

singular perturbations. However, the meaning of B=[B, B2], C- C1 (34)
setting u =0 here is different. Considering it 6 as LC2
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Then the upper block triangular form 128) exhibits and its inverse is
the eigenvalues of (3).

Lemma 3. If Assumptions I and II are satisfied, 1.E . H ( (40)
then the eigenvalues of , and D/M are an O(M) LJ -L I-LHJL J

approximation to the eigenvalues of the original
system (3). Furthermore as p-0', the eigenvalues The original system (3) rewritten in the state

• of Aj, approach infinity as variables , q is completely decomposed into the fast I
and slow subsystems

I pj±jtoj/,, i= 1,2,.....m 135)

(41)
where 2p is the ith diagonal element of the matrix M/ -!21 (42)

T),+D3- '0D 3)T where .-J = A, -uBG, !L = D +uLB.
The decomposition 139), (40) is an exact block

The second statement of Lemma 3 follows from Tedcmoiin(9,(0 sa xc lc
Tema s he sment of Lemma 3 ollos fm diagonalization transformation. Neglecting the

Lemma I. The meaning of Lemma 3 is that n O(p) term in 141), we define the slowly varying

cigenvalues of system (3) are small. They are
responsible for the slowly varying dynamics of the subsystem of (3) as

system. The large imaginary parts of the other 2m
eigenvalues are responsible for the high frequency x,;,, .(t,)=Xo (43a)
oscillations while the real parts modulate the C=- .iD'. 43b)
envelope of these high frequency oscillations.

The approximation in Lemma 3 is purely The oscillatory subsystem
algebraic and does not require the eigenvalues of
system (3) to be stable. However, it can be used to b= . -(to) = :o + ) -Cx 0  (44)lguarantee the stability of system (3) as the following
observation shows. is obtained from (42) by neglecting the O(,:2) terms

Corollar 1. Under the assumptions of Lemma 3, in .
if 40 is Hurwitz and pi, i = 1, 2. m, are negative. The state approximations achieved by the sub-
then there exists a * >0 such that system (3) is systems (43), (44) are stated as follows.
asymptotically stable for all ue (O,,u*]. Theorem 1. If the original system (3) satisfies

4 This corollary is of interest when feedback control Assumptions I and 1I, then there exists a finite T(ju)
is implemented in system (3) and can be used to such that the states of (3) are approximated to O1,)
separately stabilize the slowly varying and the fast by the subsystems (43), (44) for t0  t & T that is.
oscillatory subsystems. Such control laws can be
designed using an extension of the methodology xW = (t) + 0(,u) (45a)
described in [10], as it will be explored in a
forthcoming paper. :t)- (t)+.( t)+ O(). (45b)

To separate the slowly varying part in x. we
introduce The result of Theorem I implies that if the initial

condition i,2(to)l is much smaller than 1.f(t), then
, =x-uaCD- +AiN)qmx-_H7 (36) the high frequency oscillation can be neglected and

the original system (3) is adequately modeled by its
and choos. , such that lower order slowly varying subsystem (43).

Furthermore the subsystems (43), (44) can be u ;ed
B+ p.4o - BG)H -HID + pLB)=O. (37) to simulate approximately the actual response of (3).

Due to the presence of p. the ill-conditioned In
By the implicit function theorem, + 2in)th order system (3) requires a prohibitively

small integration stepsize. However, using the lower
N = 4)BD BD- -CBD- + 0(m) order subsystems. the small integration stepsize is

=ioBD-I-BD-2 CB. -' +f0(p). 38) necessary only for the 2rth order fast oscillatory
subr -m (44), while the integration of the slowly

This completes the transformation (27). (36) which vary. : bsystem (43W) can be computed with a

becomes much i... stepsize, resulting in savings of comput-
ing time. In the case when the high frequency

l.r,-,,o(39) scillations are negligible, only the integration of the
' L I slowly varying subsystem is required.

i--- - - - -
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5. IASS-SPRING-DAMPER SYSTEM s=c.s+O(.) tc=r+O() (50)
We illustrate the subsystem decomposition pro- 5" = O(Mu). c', = 0(,$).

cedure with the mass-spring-damper system (11).
Neglecting the i terms, the slowly varying sub- 6. POWER SYSTEM EXAMPLE
system (43 ) of (It jin the original state variables is A potentially important field for the application of

this methodology is in power systems. In transient
--. , §, (to) = Sco stability studies of interconnected power sys-

k. J" , temsL8,.9], coherent machines* are usually modeled
v,.- -- - (to)= ", as a single unit to reduce the dimension of the

(46) problem. We now int,-rpret this coherency idea by
applying our decomposition procedure to a three

= 0 machine system shown in Fig. 2.

F= 0.

Subsystem (46) represents the motion of the center I,
C02 60__ _qNt :4 4,125

of mass as if Mt and M2 are connected by a rigid rod - -
and are moving together. Intuitively this can be u oM2.0.0193 ,*o K2,, ,n,

explained by assuming that the spring restoring -m 1 125

force k 2 . remains finite in the limit as k, - :. The -um. ------- r1- "

displacement s, becomes negligible, that is the
spring becomes a rigid rod. " ' . .

To reintroduce the high frequency oscillations Fio. 2. Three machine pover system.
due to the fact that k, is finite, we consider the fast
oscillatory subsystem (44)

The opening of one transmission line from bus 1

u =Z I,, -(to = Soi t  to bus 2 causes the system to oscillate. The following
post-disturbance differential equations for the ma-

J -fM chine rotor angles may be written[t1]
(L2JI 2 (to) =UdJ, P.

(47) =Pi, - V" Y, , Cos 0, - V', V, Y,2
x coslO1.+0, -0

Since the spring k, is stiff, the initial displacem ent Sd o - V 't V 3  cos( -3 + 0 0)

is small. In the spring and rod analogy, the rod is
now allowed to be slightly elastic. Assuming that
forces are finite, : = s,," 2 is not large and is actually - .-' I C S - . .. .

properly scaled. The same property holds for :, x cos101, +6, -62)
=L,/ as isa =/,uLL' due to the high frequency -V,V 3 Y, 3cos(O, 3+1 3-6) 151)
oscillations in s,. We rewrite (47) in the original
variable i, =A: as a second order equation 2 - 'Y cos0 3 3 - r,"' I'31r3

%1f353, f,'d ". I Y3o sOS t)3 +O "()I 1

+ I- -7-,Sd+--Sd=O (48) _V1,. 3 cosO,3 + i,_ i3(.
\ ,I M M , ,/ p

t  "+"

that is, The notation for this and other equations of this

() : example is given in the Appendix.
M sd+ J2# M" / If Y23 is large compared to Y,, and Y,3. then

machines 2 and 3 will be strongly coupled. In this

case it is convenient to rewrite 151) in terms of the
Equation (49) describes the motion of the masses variables
. 1 , and M2 connected by a spring k, and a damper
f. +J] .",l , MVl. Thus our decomposition procedure M\f,. + .t 13 3  -.
shows that in analyzing the high frequency modes. , 1 , . ,= -(3 (52(
the spring k, can be neglected while the damperjf is "
reflected through the connections and increases the
effective damping.

Thus concluding from Theorem 1. if the initial *Two machines are defined to be coherent if the difference
conditions sj,, and r,, are of O(u1. we obtain between their anles is sufficcntl. ,mal(s. 9].

m --- .-- .. ... , .. .. : 7 k . -_.. - -z : .7 7 ? a -a " i - - " 7 " _ 'l 7 7 ----: ' -: - 7 U 'I
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as a fourth order system .=.., .,(to)=xt(t)
,= -a,. 1 ,, .R,(to)=x,.( ) 5

Ps,, + P.,3 -v,,cos ,,- -Y,3 cos -•M "(58b)%/
=0.

Eut, - Vion Y I Cos 0 11
Equation (58a) describes the oscillation of the

V'1 ',Y 1, 3 6 , center of inertia of machines 2 and 3 with respect to

M - machine 1 and is identical to the linearized swing
- cequation obtained by regarding machines 2 and 3 as

- [I V3 Y13 C MW -6 an equivalent unit[8.9]. Since machines 2 and 3 are

M 1 3  M ) relatively weakly tied to machine 1. this oscillation is

2V;V'3 of a relatively low frequency. Thus assuming that
- Y,3 cos0 23 cos6 23  (53) the initially A6. 3 is small, we show that the fast

oscillations are negligible when onl% the slow
dynamics are of interest.

,3= P '
- __ __

Y s  
'.3 __ 

- V 32 3  To recover the intermachine oscillations, we
MM 3  obtain the fast oscillatory subsystem (44) as

M "Cos k0t2-6, ---- P3J -- ,, I (to) = (t, )-a,IxI (to)
.= -. (to)=(to).

VtV'Y 3  / M.\ "5
"V3 COSt 3 -6cI +"- 2 3J 59)

V .. Equation (59) describes the oscillation of machine 3
- coS(11 2 3 -6 2 3 ) with respect to machine 2. Since the connection

M 23  between machines 2 and 3 is relatively strong.
compared to their respective connections to ma-

where 6 t is used as the reference. chine 1, this oscillation is of a higher frequency than
In order to apply the decomposition procedure, the oscillation of the center of inertia of machines 2

welinearize(53)about theequilibrium point and and 3 with respect to machine l. Equation (59) will
623. The linearization yields the following differen- be useful when the intermachine oscillations be-
tial equations for the perturbations A6, and A6, 3  come significant.

S= -aA6, 1 + We may readily solve (58) and (59) by hand.

54) =+Expressing the solutions in terms of the original
AS,3 =aAtcI _a'AN6,3. 154 variables gives

In the case of strong coupling between machines 2 A. (It) = a cos . a, z + b sin','at t t
and 3. a2 is much larger than a, , a,, and a,,. 1 1 (60)
Hence, let A0 2 3 (t) = c cos- t + dsin - t.

I - 5 The initial conditions are

Defining Ac (0) A6, 0)

x, -- A6,.x-A . :1 -AO 2 3 ,,,.AO 3 p ACt(0) =0

(54) becomes (56)AO 3(O)=AO,()-6a, AAd,, 1(0) (61)

.j =X, A l 3 (0) -0

= - a1 t x1 +/~ 2, ,where the p' term is retained for improved accuracy.

JI-I =.2 Using (61) in (58) and (591 gives

P-2,. =a,Ixl - :1. 157)

A(.()=6 0)cos \ at t ~ (62)
Equation (57) is in the form of (3). Setting j=0 in

(57) gives the following for the slowly varying A3Z.3t=[A6,s!Ol_ ,.a"Ai, (0)]CoslI.
subsystem

- - - -. .... - '- --
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Now by applying (45) we can write 6 - -

, -SA,(t) A 3, () 2(t) .

A62 3(t) Z:Aj3 t) +63 -j 3 lx

Substituting t62) into (63) and using the fact that 40 .

yield

Ab, (t)-a Ajt (0)o ,O ant 

A6, 3 (t) a
2 a, , A6, 1 (O)cOs v'a I t (64) 20

+A6 23 (0)
1-/ 4a21 A6,1 0)]co -t COS t' 10t i
, 0 0.2 0.4 0.6 0.6 1.0

Tim@, sac
Finally, we recall that Fru. 3. Plot of accurate and approximate 6,.

(65)

623( )=6-3 + A6- 3(t).

Hence we may write the following solutions for the 1%
angles

6" ft)a6c1 +,t (O)-60] C ai-- '
St=O + [, (0) - o pv'a[,1 t 01t

O S . ( -2.. -

JSD

4 & 0 . 0. . . '

,. (t)= 32.80(866) -21 ..--t m minFrm henuercl va-ues]gienini. [ O 2. th

~following expressions may be obtained-
- 0 0.2 0.4 0.4 0.6 0O

O~t(t)=32.86 - 18.75°cos8.130t Thme, mmn
FI(,. - Plot of accLrate and approximate .

6,3 (t 1 - 1.880 + 0.3435o COS 8.130t (67) *)... -.

- 0.3235" COS 26.02t.

Note that (67) is expressed in electrical degrees since position approximation (67), the curves would have
this unit is in more common use than electrical been indistinguishable.
radians.

Figure 3 shows a plot of 6,(t) as obtained from
the nonlinear system (53) and from the analytic 6. CONCLUSION
solution (67) for a period of I second following the It has been shown that singular perturbation
opening of the line from bus I to bus 2. Figure 4 techniques are applicable to systems which possess
showsasimilarplotfor6,.3 (t)from153)and167). We slightly damped modes oscillating at high frequen-
note the excellent agreement. Of course this result cies. Our analysis procedures consist of first
depends on the fact that the disturbance applied to identifying the small parameter M and expressing the
the system caused only small oscillations of the system in the form 3). Then the original system is
machines. The accuracy of the time scale decom- decomposed into a slowly varying subsystem and a
position is much better than it would appear in these fast oscillatory subsystem. Using these subsystems.
curves. The error indicated is mainly due to we obtain Op) approximations of both the eigen-
linearization. Had the solution of the full linearized values and the states of the original system (3).
system (571 been compared to the time decom- Beside the computational advantages of dealing

- .. i
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with the lower order subsystems. the concept of - It )_

subsystems contributes to the understanding of - o)s 0.

structural properties of physical systems. The
limitation of this decomposition procedure is that
we require a sufficient separation between the l 1 0
frequencies of the slowly varying dynamics and the "l tillIw fast oscillatory modes. A mass-spring damper ex-
ample shows that a stiff spring can be regarded as a
perturbation of a rigid rod, the imperfection
resulting in high frequency oscillations between the COS' 0, +
masses. In an inter-connected power system, neg- "%I

lecting the intermachine oscillations, the power

angles of the tightly connected machines are shown + I , s,to be coherent. W W) I I
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APPENDIX [" lYI, .Ia,=-i- sinl\0. -6"- 6

•oration used in 151 1 Vf

,: rotor angle of machine i in electrical radians. 
1 i %Isin/li0, -i' +

'f,: inertia constant of machine i in ic elect. rad. %I, -
"

P',tP: input powei to machine i in per unit

I: soltage behind transient reactance of machine i in per
unit. y tO ,"

V sin( 11, -, - u.JI)
pi ;,: unit magnitude of the ijth element of the reduced I
network admittance matrix.

i,:angle in radians of the lith element of the reduced networkm x"I,,.l sk., i
admittance matrix. M, V* A

Votation used in 153) V" f 1 ', y ,- 5

14 = \: %)::*j~
VI %I.%I
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P

ComtbbUIkm ty mnd ThIm E Cm 6 1 pd- Fk+(An+ 4,2 )q+( +2+pL5, ()
of Syleom wkh Shm w sd Faog M dods where F- -AnG+(AijA 2 j +pG) (Aq-po.4,G By the implicit lame-

P. V. KOKOTOVI, 3 Itesin 1 1. urn, 1WA tion theorem, the solution of F-O is
A. H. HADDAD, sm amt Wa am G-Ai,2A21Ao+0(p). (9)'

Abina-Tbe P , 1d 0-3f im s am ,l Imlp nds ml With FmO- system (7), (8) is block upper triangular and bence we have
tm esm (d ltd I - - I samnm) ilimi. The the the following result.-pdie P-l d md* syllm in s15 I e e le I o t Im hee Lamm 1: Suppos that Afl Tha as p.m0 the frt n i-
sed rdel em i m mw wd mae m odm syim. Am - p am of the oriina systa ( (2) tend to d elenvalues of the

1dP m0m Of 6e "Ih'e1 P 8"ml I PI1 0, W i b i10W W reauced sysms (4). while the remaining n eiluevaluee ond to infinity as
de swmlddW d o fast mi dew Wo. the of (I/p)AW

To eparate the slow modes, we introduce

INROUszPN - ss(A , 2A4n'I. M)q-pJHq (10)
Control ovtm with large and small cim contnts. or with slow and

ft modes. ga frequent i applications. A model of such iystms is and Chose M such that
.kmAjla+A 13 + BI (1) A I,+ j(AO- pAisG)N - N(An+ pL.A 12)-0. (11)

pk-A z +A8=+ A8 (2) BY the implicit function thorem.

where xz,, and v are x,m. and r vectors respectively, and the scaR MAonA2 Ai AAt2Ai,2A21AaAi'+O(p). (12)

parameter p represen small time consants. If p is nelected and (2) is Te transformation (6), (1O) can be writtensr, pisce by

0-A2 1 z+AnZ+32fl. (3) fe*q4gL - pH (13)
and if A- 1 exists. then the substitution of I into (I) results in a reduced
order system: and its inv is

weeAoT+BON (4)wher [x].m[,a ', L ][,],
"TAD-Ajj-Aj2Aj2A21. Bo'-,-A2Af2B2. (5) 9 -L. I.-p.,f il

In the desp of time-optimal controls, this order reducton is motivated
by the well-known difficulties with high-order systems which an consid- where I. and 1., are the x ao and mx,- identity marices respectively.
s-able even m the linear tme-invanant problems. An approach to We note that (13) is a special cae of a trandormation due to Chang [5.
simplified dee of ime-optimal controls a the quast-optimum echmi- The ongmal system (I), (2) is finaly transformed into
que by Friedland [ll [21. Also related is an averaing approach by
Oeraechenko w &I. [31. The only explicit treatment of the time-opmal - 4+ SON (IS)
control for a singularly perturbed system of the type (1), (2) is a re t
study by Collins [41 whose results we generalize in several directions. (36)
Collins uses the phase-canonic form of (1), (2) and restricts his deriva- where o-AO-A 2 G, %3-Bo-p (HL,+MB2), 9-An-P4 2..
onsto sine-input syems. 2 + PL. The conrollability prope of (I), (2) are the same u

We first establish that the controllability properties of the system (1), the properties of (15). (16). The subsystem (15) is a regular perturbation
(2) are determined by the controllability properties of the slow and fast of the reduced system (4). The subsystems (15) and (16) are connected
subsystems. We then demonstrate how the fast-slow separation can be through . but have different genvalues. These facts prove the follow-
accomplished in a general formulation of the time-optimal control prob. theom
lm. Theam I: If A jj' exists and if

CoNmTouemurrv or SLow Am FAST Moss maik(,&A.4 A• -1- J- n (17)

An interpretation of (3) is that for un0. the slowly varying "steady ranfi 2.A2151 ,..A. U-'B1-m, (18)
state" of : is Z- - A'A 21z. To separate z from the fast transient of :, a
change of variables is used: then there exists p >0 such that the system (I). (2) is controllable for all

ii: +A-'A2 1 x+sGxmz+Lx. (6) It should be pointed out that, in view of (18), a matrix K exists such
that A22+B.K is nonsingular. Also, the controllability of (1). (2) is not

transforming (I). (2) into influenced by u - Kz + v. Thus, even if Af2 does not exist, Theorem I

x-(Ao- 0A,2 G)x +A 2 i+ BIu (7) still holds, but with the matrix An+ 82K replacing A2 in the definition
(5) of AO and Bo.

CONTROL Of SLOW MOS

Muumuni r e rAl s. 1yne. Ppar. oe~m D, Im~um~edu m u mu , C a The problem in this section is to steer the variable x of the system (1),
o ftmB s-cs t 0 ,ug.u= CAmmin. This ,wk d ,me ta e (2) from an initial value x° at t-0 to zero in minimum time subject to
jon W lwmam PMrM (U. I av.U. S. Nawn, aul . P At ) agi

DAAW.7-C.023 sW ' pwt by A& Fom Office of 5eSatiine Itnrh

The saemB we wOt tbs Depwaest of Eleeres afajwI a am the Coaeisstd 1A thesdtlo itz piIO) it ew.e positi 0ates 01 sa" eC t the 6MGM III
Labeisw. Ualiti of Iisi Urea. TI.L estima 111 4 PW to n al 10,01.u

Copydlht 1975, by the Intitute o ElactiUd and EWeConla Enginea, Ins,
MINTED IN THE U.S-A. Annals No. 502ACOIS

______._ _.. .. . . .. . .. . . . ... ."__... . . ... .. .. . .*
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&tA:J < . kin1,,- . No peiirquirmentsanimposedon the vri C(T) and 11(T) in termasof w,t) anstfj(4,)We have
able :. Its behavior is of interet only Wnsofar as it can impede or improve
the control of x. The minimum principle for (IN (2) or, equivalently, for f(~,#4 +,f6D;10+4~d

01), (16) yields fo

o9) be,;_r -pe nd(23) -

whom (P'.q'r is a constant (n+m) veto. If (16) is asyptotclly ( )e+' %iird (24)
stable. V is bounded. J is 0(p) at I - , the team depending on (r- 1h0)o
in (19) rapidly decays away from T, and hence the control in (19) can be where
approximated by a "slow-mnods control" j.-' 2 M()&25

am -P(1;r~r-1P),(20) is the value to which u,(#) steer '1 after its last switching; see (16). In
view of the rapid decay of the 'i transient, A is an exponentially small

which a a time-optimal, control for the slow Suabsystem (15). When p-0.~, tarm and will be neglected henceforth. From (24) and (25) an interpreta-
then do-oA %OBe and a becomes a "reduced control" as, that is- a tin of 49~r) is that it steer 19' to zero in mainimumt time r-0. On the
time-optimal control for the reduced system (4). In applications z is other hand. it is clear from (23) that the contrbution of wa/i.) to C(T) is
often a "perasitic variable, that is. A 12,AZIA 21, B2 are not known and O(pi). Thus a,Q) steer i to a (p) neighborhood of zero. This means that
the only data available about the system (IN, (2) are the matrice A0,60. aa,(t) can be approximated by the slow-mode control a or, even simpler
Then, instead of 1. the reduced control 11 is applied to (I). (2). TO by the reduced control no (see Lemma 2). From Theorem 2 we know that
summarie this discussion, we defmne Systems (1), (2) in which A22 has all uf(i.) can be aproximated by
the elgenvalues with negative real parts as "robust" system.

LAwm 2: Suppose. a) the system (1), (2) is robust; b) the time- of.) S( e,,4$0)(26)
optimal control problem for the reduced model (4) is normal; c) x -0 is - {'" +( )
reachable from x 0.Tnthere eists p*> 0such that for all is[-1, 10, where is to be determined such that il*for (16)is steered to zero. As a
the slow-mode control a is a necar-optimal control for the system (1), (2), further simplification. 61, %-,-n (26) can be replaced by A 2,2 respec-
in the sense that it stemrsxto a 0()neighborhood ofwro in the tively.
slow-mode minimum time 7. An analogous statement applies to the In conclusion. to obtain a near-optimum control for (1). (2), we first
reduced control Be, and To,. the minimum time for (4). calculate the time-optimal control fo(') or R(t) for the reduced order

model (4) or for (15). Then we use i1* as the initial condition for the fast
COMOL OF FAST AD SLOW MOVES subsystem (16) ana -valuate the fast control U,.(r) from (26) to steer the

state of this subsystem to zero. This control is near optimum in thesee
C.The problem is now to steer x0,20 of (1), (2) or. equivalently, e .p of that the error in k(T), ij(T) and hence in x(T) z(T), is 0(p).

(15), (16) to zero in minimum time. In addition to the minimum principle It is possible to further correct the slow control by selecting auJQ) as
condition (19N. we now also use the fact that the Hamiltonian is zero for the time-optimal control for steering 4 from (0 to 1(t)- -
all:I. It follows that (q/l)-4 remains finite asjs-*0. After substituting p f'%oIrrsseen from (23). To obtain acorrection
q-p~ we rewrite (09) more compactly as

u,(sP ~r-t(:)+f&. (21 (27)

let 4 and I,, be switching times of 9,and (ua,),, respectively, and let ;and
* Fors we assume that it has N. zeros, that they are distinct, and that they p be the corresponding final time and co-state vector for the correted

are located in a subintervall 10, ,] of the interval (0, TJ. Theni + 0(#) ,as control. Then we may write
has N, zwero and they all lie in (0 ) neighborhoods of the corresponding
s zeros. We recall that in a robust system. fexhiibits arapid exponential v +W
decay. T7hus fe.O(p) in (0. t,3 Hence, S - i f- s+O(p) has N, zeros in
A tI and they lie in 0(p) neighborhoods of the corresponding zeros of. TO
These N, zeros determine the "slow" switchings of the control (21). At
the end of the interval 10, Tbthere is asubinterval [ TJin which fis not (3
negligible and g may have N1 additional zeros. In view of the rapid decay then PFp;(8
of f. intervals [0, 1 and (a, F] are disjoint.t, < tp and T- If-0004.The
additional N1 zeros define the fast" switchings of the control (21) and f 2 ,i + , 0-( y <p~, f rt 0 ( 9are tobe determined in afast timeswile a -(rT- tF). We assume that 8~. -1(*, 0(-), 4 , fr~O (9
the zeros of s(0)+f(s) are distinct. Since s(O~e)+f(e)- s(O)) (#), (I(~,) - Ft.-) < . for I; < O.

*we see that if a' is a zero of s(0) +f(o). then e'- T- p(e'+ 0(#g)j is a zero
of s(T- t)#f( T- 1/0a). These facts arm summarized as follows. The corrections in the switching times become approximately

Theorem 2: Let (1). (2) be a robust system and x -0. z -0 be reach--
able fromn Aso:. Suppose that the zeros of s(T- I) as well as the zeros of r - T'41'CJ(0)(p,'4,(i,)] (30)
s(O)+f(e) are distinct Then there exit IO 0and 9 >0 such that for all 4
,ie(0.,ii the time-optimall control (21) is separable in the following where c., is the jth column of edo(?) -0t. The substitution of (23). (29).
son": and (30) in (23) results in the following set of linear equations for j and

{u(I). 0-C,<T-0D(2)rc0t
uk). 04?<* rT3a()2 +a(i +),4)T POP 3)

where m*-O- and the switchings of a,(t) are in (pj) neighborhoods of J
the zrero of s(T-s) and the switchings of uf1.) are in 0(pa) neigh-
borhoods of the zereof s(0).f(9-r). The solution of (31) together with (30) and (29) yields the correted

To interpret and explost this important separation propert, we express control it,(t). The resulting errors ifi 6(T) and hence in x( T) become

A-I



O(1, 2), Since no coreetio is applilid to III the error in 1R and z remain this approach to the tisse-optimal control problem hall freale simila
O(pj); however, it decays to zero very rapidly. timcl separatiols propeirties of linear time-optimal controls.

The time-eak separation property is shown to be patlulady usefu
EXME in a asir-ptiu deep~ procedure which can be dividedl into two

lower order phases, corresponding to the deeip of a slow mode. or a
In moot dc motors the mechanical time conastant is large compared to reduced control, and in a different timo scale. a fast control.

the electrical time constant Let wd and i be the speed and arature
current, reoplectively; then Rmvc

jW+ 71 (32) (11 2. Frkdk Aws f qmmmoteaoima Tos=L"rA ASME (J. baicEa.MIA ~ ~ J J i121 9. Friezusid m r: 4; 0 =t "Qvau-opamnm ocal for umana re-
K. adamk /SEE Trm AWM C. (Shorl Pupe)6 val. AC.I . pp, 525-526,

Ra* R" +1 (33) in. Oktabamo cme d'e applimuah" o manhddof desmepim of
i'a T 0000 to te aawy d syehe "" ivi;o nqeli -3im is AW. S IPAC

where the armature voltage u is the control. We introd.ucer 1,m(3/) g;... L'utm i. d d 16 93
(KrvX/Jt)- and #a-(L/RsJ Then (32), (33) in the new time scale 151 DevekU Oivhipsu A, Coarw.u. J. DAuumy pb.-S

r.r become JN&AiI,#?t.520_32. Aug. Jig.

T _+ x +-1 +I S(34)
lkl~

where xmzn.klI(Kr/B),k-k(K5 /R),b(I/R). We seek the
time-optimal control to ster both speed andl current to zero, that is,
J(T) - (T) - . Thet control of the slow mode is TLNArOSO U01TCCN L @mM17

do b A Rlccad EqualS. for Block.Dl - lzde

5The error in J(T) is obviously zero, but the finall value of it(?) and the of IUCaiidl@@e Syftm
miss distance for x(?) are given by PETAR V. KOKOTVIC

it0 q4 -r, ! h--A f (37)
VM aal at Ahea'f-A jimb smsientims migiy - -in ter,

pudMb I~em b - q e" to a loarerbdm d1 t~his

where atIM1DClIt4

A , I + c)+0 In this note we discuss a method to tranisform,

C -X0 - PA). a..[(l - PA- into l2 A A

1 x~ir'~ A,2 (2)
________0_D2z 0

\.( It Ii (3)- I*

Isk wh r,[ J 0 j
The fast variable may now be controlled by using the control afle) wher xand Yiam NrWfttf5. an 2 and y2 are n2 -vector. The
-spnO, O.1-.*-(/a 2)In2. The exact miss distance in f(T) at T tr otion is particularly conveienmt for systemls po~ssig ill $=
-?.I sli R2 larg G~vl when (2) and (3) can be uased to separate the

b(9 MMOemiFt 1ade Jun. X5 197S. ih wort -n supleatd is psn b, thm jaw,

~~~(a T)WW WWWOl P op1 Is4. 3)~m * camnes DAAO11772-C-025. the U.S. Air Faa,.

which is the same as the miss distance in x( T) since ij(T) is negligible. TU audea * wft do Depogtuent at Ekcui sijaf w~ugd Comdased sums
The slow control may now be corrected for this miss distance. Law Y. Uiva Fy Or tmk Urbt... ise. t

The controllability properties of the original system are determined by COYM 17 bV Thialmsu of ecWslm iEhcesimn gb %cr , s
a separate analysis of the slow seld fast Subsystems. An application of PA d UA Aw~bN4L 512AC024



TUODEICAL NOMa AND CONSMONDW4

"slow" and "fut" subsystems of (I). In this context the trusforation d' lie in the interval [0. 2(a+ b)-]. For all dvd' in this inteval we
has been introduced by Chun [1). [2) to study Singlary pWUrW have13k+ I - d'I< -d, which proves that D, is bounde that is
systems and it was also appid to an optimal control problem (3]. The
conditions obtained here for tmne-mnvaiant systems ae lss restrictive O lld&41 2(a+b)-' (17)
than those in (It (21 and the system (I) need not be singularly peraurbed.
Insead, it is sufficiant that the norms of its sbmatric satisfy an holds for all k- -, 2," " ,if it holds for k O. Substituting SD - D,- D
inequality. In the course of the proof of this result a convergent iterative into (13) we get
proedure is derived for calulation of the transformation matrices. ID,+ImA~'[8DA(Ao-AIZD)-(Lo+D)AI5Dk-IDhAI 2 D,] (18)

TNERICcATIBEtIAnioN which, using I8Dkl"v IIjl + IID II, implies

To transform (1) into (2) we use v,+1 (c [a+ b + 311A 1l IIDII + IA 211 IDkIIll],. (19)

y 2-x 2 +Lxl (4) When both ilDIj and IDII satisfy (17), thes (19) yields

and require that the x X a, matrix L be a real root of ok +14c(a + b+ '-)abb- 3(, b)., (20)

and, hence, if c<j(a+b) " ', a required by (II), thenf(D,) in (13) is a
If L exists then the substitution of (4) into (I) yields the blo k-uangla contraction mappinll and D is its fixed point. We complete the proof by
system (2) whie noting that ok is a Lyapunov function and ok.I-o k <0 for all Dk

B5,A,,-A12 L (6) satisfying (17).
Using (13) with the initial condition Do-0 we can calculate D

,62 "A22+ LA12. (7) iteratively. By (1!) and (20) after k iterations the relative error is

Assuming that An is nonsingular we introduce liD - II

L4 A'At, Ao-Att-AjLG. (5) IIDII 1A;"tl(IIA°II IIAIIIIII)]h (21)

and seek L inhe form and it decreases as IIAi'll and IlAolI decrease, that is as the ill-
conditioning of the system (1) increases.

L-L,+D (9)

where D is a real root of BLocK-ioomA ,zTO

To further transform (2) into (3) we use
Y-X 1 -MY 2  (22)

hefollowng lemma ges a stffacient condition for the existence and where the n X n2 matrix A is a real root of
uniquens ofa real root D and establishes a bound for its norm IIDII. It
alo formulates a convergent procedure for iterative calculation of D. SM- MB2+ A1 2 -0. (23)

Laemaul: 11 A is nosinular and if
The following lemma formulates a convergent iterative method for

IlAi '114 i(IAoII + IIA121 IIL. )' (11) solving (23).
3 Lonsma 2: Under the conditions of Lemma I the solution M of (23) is

then a unique real root of (10) exists sasying the asymptotically stable equilibrium of the linear difference equation

21 AolII .L( M.aI-[(All-A12L)M,-M&L,4,LlA' '+A, 2 Aj t'. (24)
0 e 110 ll -C IlAoR+ DAta 12/11 l " (12) Proof: For m&-1IM&- MII we obtain from (23) and (24)

This root is an asymptotically stable equilibrium of the dilfe e mn c, Ir c (a + b + 21A 121111D 1]m, (25)
equation

D.1-A '(oAo+DkAo-LoA 1aD-D&AaD)mf(D 5) (13) andbyvirtueof(d),

and its domain of attraction encompasses the set of matrices defined by W"'1" a +b+ 4 Mk. (26)
(12).

Proof: For a-IAoI1, b-IIAtaiII1o1I. e-IlAi'll and Thus, -k.t< m, if c<I(a+b) - which is satisfied by (11).

IIDl~l To summarize, the transormation of (1) into (3) is
d -IAl III oll (14)

we obtam from (13) X" -L I - L.M1 Y;

A.~ Icl + (a + b)dc + ab <c(b. + 1) (15) where I and I are the uil- and n2-dimensional identity matrices.
2 1respectively. The transformation (27) is performed in two stages. (4) and

(22).
and we analye the upper bound of 4, defined by

, I€C( a I (16) CoNcLtmma RaApm

In applications L can be calculated from (9) and the iterative scheme
Obviously dc for all k. Whn c<j(a+b)' then the sa, dif- (13). It is somewhat simpler to proPam the equivalent iterative scheme
ference equation (16) has two real equilibrium points d' and d' > d' and for (5) with the initial value L as in (8). In several tests with matrices
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This correspondence extends the notion of sensitvity to th. ase of a
stusdying (11) en accuracy of four Significant digits was achived after parmeter whoe varied=i changes Ubs system Order. Using the expree.
Only two iudtteao. indicating that (11) is a conservative condition. An ss~ derived bere it is possible to analysis modes' setiesuvides; with
examlel when (11) is not satidfed is a power system model developed in repc to nelec paasiti and to th fasodes eliminated fro a
[K PP. 104-061 wose matrix reduced order model.

Thes change of systemt order as parametrizedi by writing the System
-0-1 0.02 0.03 0.00 0.021 equad=o in a singularly perturbed form [7n that is,

00 107 00 .0 0
Am[0.00 2.00 -4.00 0.00 0.00 (28) xi-Ax+8z (I)

-400 0400 0.00 -2.00 0.00I
0.0 0.00 0.M 4.75 _*5.00 ei-Cx+Dz (2)

2with a -2 e3 and the abeolute value norm yields a -0.676, b0.k where thet small poeitive scalar t is of the order of lb. ratio of speeds of
an 5Ac - 1.425, seven diee rsis I ..a in (I1 Afte fou itraongt slow ad fast modes. When nis set equal toO0, that is when the transents
accuracy bete than fou digits has betachieved an . esonau of the fast modes ane assumed to be insrtantaneous, then the subtitutioni
- 0 15 538:tj0.1 1466 of B,, and -5.M273, -3.9938 - 1.9482 of 4~ ar of I from the qosai-steady-state epresio
wilbin2 000005 of the *ignvalues of A. Thus, the method can be used 0- Cx+ Dr (3)
even wham Lemm I is violated. Whens (11) is satisfied rapd converenes
castbe expected. ino (1)yields

;rv~ -(A -BD -C)xA A. (4)

This is the reduced order model frequently used as an approximation of
The author wishes to thank Prof. S. Dingiac, for expert help in (1) and (2). Considering c-0 corresponding to the simoplified model (4)

nusmerical eeuPsflUIs. as the "nominal" value of e. we now investigate how the eigenvalues and
eigenvectoral change when. instead of 0.st has a small positive value

RIetiUUcas corresponding to the exact model (1) and (2).

111 IL W. Chse "Sagai pinwb~lti of a panal boundary vii.. Problem.- SIAM EtzNvALuz SmNsrrlvnms
A. NM k Aw. vol.3. pp, 53042a, 1972

1206 A 4 C&Cu. sea JbP farY tiaVel Meisa ntes Oct 194 pp uti shown in (6b Mn that the models (1) and (2) can be transfoemed

790 -79C ~ .N~dd into the block diagonal form
00010 -fth se imfih 1fer etm" IS" ?teas AWMM Ce.. (Shin Pie) va.x dsX

AC0App, 111-113. Peb 1975. d('gX(5

SallP. Uivl. 07isw Urbas4PS 1971. oher eleuid-aDW~S) (6)

d(e)-A 0 -c5D -CA40(e
2) (7)

dl(e)w D+cD -C+0(,2 ). (8)

We first consider the eigsnvslues A4 of d(e) and denote by u% and v.
asuch that clul-P , the cigenvectors of d(g) and of its transpose d'(t4

respectively. Using the well-known (lb. [3) eigenvalue sensitivity expres-
Sion

W __-rV (9)
,s -

and evaluating 8d/8c from (7) we obtain

Elgeneouddkes In Reduced Order Modeing vD-C.(0
J . ALLEMONO AmC P. V. KOKOTOVIC .-- ;,D Ca (0

Analogously, for the eigenvalues g6 of 6D (e), with q, and pj, pqj~ -31 being
Ahssixt-Liprisslim for el@nr ed SI ra a* the corresponding eigenvectors of Q (4g) and 'JV(t). we obtain, in view of

*- dosve wMi I -c to the I g I -esbee Ie ae whoesde (3),11610 M
*h~ gstM 3 , o a -rTey are nastrseby do eelddry of apaer I(

sIte On"e wo th ec soPW No elece fast LP a

IP4TsoOIcTcioI The expresins (10) are the actual sensitivities of those eigenvalues of

*For alnoet two decades eigeinvalue and eigsivector sensitivities have (1) and (2) which remain finite as ot.O. The remaining eigenvalues is/s
been among the most common tools in circuit and system analysis tend to infinity as c-0O and expressions (11) are the sensitivities of their
[11-(5t. They are used to determine influence of System components and asymptotes.
parameters on individual modes.

EMouevucroi SaNsmfvmzsI Miain~wts ue Nevenmbar 14. 1979. This -wor was supported is pan by tbe Jbait
warinnPropu (U.S. Army. U.S. Navy, &M US. Air Farte )uader Ceetrt Differentiating if a - A1. and evaltiating the derivatives at t -0 we

NUSI4.7.444 is pea by the U.S, Am Forme ear ram AFOSK.75 3433. and to obtain
pen by tae Divsion of 21ecule Eawas Sysas usder Cojuasct EC-77-C-05.SS46, TIM

Powe W an atde 13th AW"iM, Cealffem. am CirWarn Syrtm% a C05- 0U1.,I aw .,U+\B-C, (12)
pwPst Or.... CA. Nov. 5-7. to"9 (A WI)d We~ ,~. l

1.) JAssmesg in wth Amae i esm PaMW N. Now Yor NY 1006
Kkeesew IL w61 th er00Stee ehrey.Un.ct Following (31 and assuming that the elgenvalues are distinct thi espfes-

[ 0018.9286/80/000a02l$00.75 01930 IEEE
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TABLE I m'uamm
EOMiv,%LMs Aw SIMTM or (17)

Exact U ncorrected C orrected Sensitivity (1 0 ILF Sudu0" V.dN . A& . A "-,WPRl. &S u 0d W A MA . S
PfanLD CA. FrOGOLu1 1963.

-0.362"j.6 -O.4j.58 -0.3S35j.56 0.044kj.02 I I L .C . ... pnmiSfdw FA:n3." HutMlOM Maw 1973.
33 - 3.72 - 3.95 -0.23 131 M. onm ad Les. C 1,3y. . 1w York: Taylw sd Frowd.r ifM.

-8.531j22 -. 29 "J17.5 -8.50±j8.23 -0.21 tj.28 [41 J.3. vai Ne J. M. boyle, and F. P. Imd "SwemaW of Isge mv bpsop

-0.86-,Fl.7 -0.73,j8.39 -085-,j8.3 -0.07-,j.01 4Mi.u.I Sysm"IN. 7m AwaML C~..T. voL AC0., mp 30-315. 1S.
151 P. 1. NoMan N. K. &"k and R. . IL Aldes. -iamvalw s. msiids of ppsW

eykmJ ijdid silork saW daft dymsm." IEEE rrom Pow AN &An. voL
PAS-95. pp. 1311-1324. 1974

so can be reduced to 161 J. J. Aflemoog 'A sieul petusam appeoso to posr ssmam dyami."
Ph.D. dlnu. Univ. of tlmw Utrhi. 1975.

17J P. V. Kkossvie. J. J. Aftomoe. J. . Wia9ke= ned . It. ChoX .Mow, *

- 4. , k .i (13) Pintbida sd a sMU, M s Ofe i t"se" 4AMiuuM. vt . 1900.

where

-(14)

ad #, -0. Similarly.

Where

*jk A I -9 ~qj(16)

and*

EXAMPLA

The maix appeang in a seventh-order model of a synchronous
machine connected to an infinite bus [6, (71 is

05 0 0 -0.27 0 0.2 0
- 0 -1.0 0 0 0 . 0

0-5.0 2. 0 0 0

0 0 0 0 37 0 0
-. 4 0 0.14 -0.2 -0.28 0 0

0 0 0 0 0 0.08 2.0
-173 66.7 -116 40.9 0 -66.7 -16.7

(17)

whmA is 2x2 and D is 5 x , tat is, the im ified mode (4) is o(
second order. In this cas we scale the fast modes by c-0.1. Note
however that the approximations such as

Me().-,(o) + I--t (18)

do am depend on this scale factor since the senitivities am scted
correspondingly. In Table I we give the approximaon of the type (I#)
for all the eigevaluss of (17). The columns from left to rlght ar the
exact estavalues, the uncorrected egenvalue s of AO and /0. the
cofrect eigeuvalues o( (17) and their sensitivities. It should be noted
that the errors of 10 percent or more have been reduced to less than 2

CoNCLUSON

When the change of system order is prasnmeterized using singular
perturbations the eilense ntivities with respec to this change can be
evaluated from the expressions anaiogos to the usual expressions for
seaitviue with resqpct to parameters.

m I i I II I IIII



SUBSPACE ITERATIONS APPROACH M THE TUME SCALE SEPARATION*

B. Avramovic
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R(L) -A 22 L -A tal L&l2L - 21 - 0 (8)

Some properties of the time scale separation are and the matrices in (4) are
reviewed and a now gLobaLly convergent algorithm is
proposed. A connection between the new algorithm and 5l A 1A - A1 2 L
the existing Riccati-l.ike algorithms is established. (9)

S I a2 "22 +*A12
Conditions on existence of L and its explicit form are

After introducing necessary notation we will state siven in the following standard result [see e.g., 7,

basic properties of the time scale separation. We use 111, rephrased here in a basis free form.
to(A) o denote L-th aigenvalue of A and we assume that

i1,2...,-l. .amn..L: Given (I) and an admssible n1, let O0 =
IxL(A)l >, ..(A)I. t -. ,,..... -L. ( ) "(A)l, i- , ..... n II be the dominant spectrum and

The spectrum of A is let Z be the dominant sigenspace of A. Further,

a(A) -I.it(A)i. iL,2,....nJ. (2) let the columns of a matrix l E be basis for

Then the problem of the time scale separation for a 4. Then, provided V1 is non- LV Lar, the solution of

K system k-Ax, a E I
n partitioned with given a I dimx 1  (7) satisfying

as ] ]+ o
a(3i 

0
D (10)

I (3) is(,

21-V22 11] (11)

is to find a transformation yielding Proof: Note first that L is invariant to the bais of

I.., ~ -~ g~, that is there always exist$ a nonsinguLar matrix K
1]i _B l  A12 lx such that if M-VK, then

i 0  a J y2 21 -1  (12)

with Cthe spectrum of A separated into a(B,) and a(2) In particular let the columns of M- be the *igen-

such that vectors (and the generalized eigenvectors) of A span-

sup (B2) MI+1(A) i

aif 0(3i) thA A' 1. (5) [M 1 . N~li(3A [ - 1]J (13)

Every n. satisfying (5) will be called admissible. We i

remark that the formulation (5) is appropriate when and o(J 1 ) . 0
D . Now if (7) is rewritten as

the action of the subsystem (xt,AL1 ) on (x2 ,A2 2 ) is

weaker than the reverse action. An example of such R(L)-(L 11A (14)
syste

i
e are the power systems considered in (6]. An

analogous problem forualation with

sup a(1 ) < inf U( 2 ) (6) then it simply follows from (13) and (14) that

I I < -l (1))
is also possible. Without the loss of generality for R(-N 2N1 ) -a(-V2 V ) 0, (15)
the rest of this paper we assume (5). To prove (10) we use (13) in the expanded form

If an admissible n is known, then it was shown -I (A1+A2(16)

in [2,8,10) that a numerically suitable transformation 1 ( 11  12M2Ml) Jl (16)

for the tim scale separation is which, due to (11) and (L3), proves that 61-A l-A12L

+L has as its spectrum the dominant spectrum aD"

where L satisfies Discusaon: The three important facts about this lem
_should be noticed. First, that L can be expressed in

This work ws supported by the U.S. Deparment of a basis free form. Second, that aL is admissible and

Energy, Electric Energy System Division, under third, that VI is nonsingular.
Contracts EC-77-C-0J-5566 and EX-76-C-0l-2088.

CR1466-0/79/0000-0684500.75 0 1979 TIES



The freedom In expressing L is an advantage ex- nm

plored more in the next section. The need to specify initial guess almost any full rank matrix VO R
nI is a disadvantage since an arbitrary n, may not be can be used. The only restriction considered as mild

admissible and/or V1 may be singular. Therefore it is (1., is that no column of V
0 
is orthogonal to any of

desirable that an iterative algorithm has the capabiL- the left eigenvectors of A corresponding to aD. A

ity to detect if n1 is not admissible and co redefine matrix V0 generated by the random number generator will
it. almost always be admissible. However such a matrix may

need many iterations (16) before it makes a basis for
For an admissible nl as shown in (41, there Al. It was found experimentally that with the ordering

of states according to the preceding discussion a

always exists an ordering of variables within a state better initial condition is given by
vector x for which V1 is nonsingular. It is desirable . -.

to find this ordering before the block triangulariza- V0 .A
l l  

(19)
tion is attempted. For this purpose it is useful to i ()
note (1L that the existence of L, that is the non- [2lJ
singuLarity of V1 is related to the controllability

For numerical reasons at each iteration colums of
and observability properties of the pairs (All,A12) V are scaled to have unit norms. Occasionally, an

and (A2 2 ,A12 ). If BI is viewed as a regulator system orthonormalization of V is also performed in order to

matrix with L as a feedback assigning the dominant retain a good basis for an n-dimensional subspace.

spectrum, then for Vl to be nonasingular all the eigen- Further discussion of the numerical aspects of (18) is

values of A11 uncontrollable through Al2 must be in contained in (1).

the dominant spectrum. Since the same L is an observ- It has been down in [1) that the subspac iteara-
er matrix assigning the nondominant spectrum to B2 , tions have linear rate of convergence with the slowest

all the aigenvalues of A22 unobservable through A12  converging colusm of V
k 

differing after k iterations

must be in the mondomtnant spectrum. from the corresponding vector in O by 0(C ). Thus by
observing the speed of convergence of the columns one

These conditions are likely to be mat if an can decide whether to reduce the assumed n. After ni
ordering of states is such that the norm of A22 is the is reduced the iteration process continues with the

smallest possible meaning that x2 should contain slow remaining columns in V
k .

variables only. Such an ordering usually results in
the reduction of the norm of either A12 or A2 1 and The convergence behavior of (18) is best monitored

hence 2(A 1 1 ) becomes close to a(8I) and j(A 22 ) close through the error matrix

to 7(B2). For the class of systems implied by the E - AQ - qr. (20)

formulation (5) this further means that the solution L The matrix Q in (20) is
of (8) will have small norm.

The following example illustrates some of these QV "U (21)
observations. The system where V

k 
Is an orthonormal matrix from (L8) and U is

0 1 an orthonormal matrix transforming n -dimensional
Omatrix (v k)TAV

k 
to a quasi.upper-rianguLar* T,

I x, n1 -2 (17) I c

0 0 3 0UT ( k)TAVk)U -T. (22)

0 0 j Note that as V
k 

approaches a basis for a, Q approaches

is already in a block triangular form but with 0(BL) 0 the Schrer vector basis (1] for the same space and ri
tends to zero. Furthermore if in each step diagonal

D For this system there is no L of (6) which blocks of T are ordered in descending order of sigen-
achieves time scale separation (4) and (5). The rea- value magnitudes, then the first columis in Q tend
sons are the misplaced aigenvalues X -4, which is faster to the basis vectors and correspondingly the
unobservable, and Xs2, which is uncontrollable. It first Coluuns in EL tend faster to zero.
is obvious that the same system with reordered states

x(x '4 -2 lx3) T has V1 of (11) nonsinguLar and L -0 The computational load of the convergence monitor-
Ihsing is contained in computing the unitary transforma-

satisfies (7). Although \ -2 is still unobservable tion of the low order matrix of (22). Alternatively,

and k 4 is uncontrollable, they both belong to the when it is known beforehand that nL is admissible a
appropriate spectrum and do not have to be moved, test using iconvergenc@et usin )I)t computed from (8) can be

used.
THg SUBSFACE ?MTHOD

The well documented globally convergent simuil- Due to linear convergence of (18), predicted by

taneous iteration method for computing a basis of the (1], the two consecutive tests of column norms in E

dominant eigenspace III is now applied to solve for L can be used for several purposes.

in (LL). It consists of a simple iterative scheme

Vkl - AV
k .  

(iS) Diagonal elements of T are Zx2 blocks containing
complex eigenvaLues and lxL blocks containing real

Through iterations (18) initially given column vectors eigenvalues of (V ) TAVk .

of V rotate until they fo. a basis of .As an 1

_0[



T *

First, to predict the number of iterations before each
of the columns In Q falls below the specified toLer- 1 2 3 4 K

ace. Second, to reduce n1 If the slow convergence is I

predicted for some columns. Third, to remove from Vk
the columns that satisfy (22). They are reconsidered 1
again only during the orrhonormalization.

.21 i3
Exame: In :he following 7-th order power system
example (61. we Illustrate the speed of convergence of

the subspace iterations by showing norm of colums in .001

E as a function of Iterations and eigenvolue separa- I 2

tion C. In (18) we use A
1

- instead of A and hence 
000.

problem formulation (6). From Figures Lb and Ic It is
clear that smaller e results in faster convergence. .00001.

Figure Id shows Chat for e -1 there is no convereee
for some columns. The convergence behavior of FIre
Ld would suggest to reduce nI from 4 to 3. Elgenvalues E
of A are given in figure a. n 1 -3, e 0.47

With V obtained from (18) the transformation (c)

* 
1  

1 2 3 4 K

Y2 "x 2  2 V2V (23) "

due to Loom 1, yields the time scale separation (4),

(5). In order to have a well conditioned V L before 1 3, 4

the Inversion an ordering of states (equivalent to row

permutations of V) can be performed to make a norm of
VI as large as possible. Then, as discussed earlier,

resulting L will have a small norm. 001

The subspace iterations are particularly useful .0001 i 1, 2

for large systems with sparse A. An advantage of
sparsity can be taken while carrying out the recursion 00001

(18) and while storing A.

2 4 6 8 10 L2

(d)

Ia Eigenvalue Magnitudes of A Figures b. c, d: Convergence behavior of the
subspace iterations.

1 2 3 4 K RELATION BETWEEN THE SUBSPACE AND

THE RICCATI ITERATIONS

.We now establish a relation between the subspace

iterations (18) and the Riccati iterations

0- . 2 Lk+LI k - R(Lk) (ALL A12Lk,)- (24)
001

where R(Lk) is defined by (8). If the iteration (24)

0001 converge we will show that they yield the spectrum

separation (5). Similar iterations were proposed In

.0000i [2,31 for obtaining the separation (6). They are
claimed to be Locally convergent. Here we show that

(24) Is globally convergent. By using a similar

approach the same can be proved for the algorithms in

(2,31.

n- 2, c- 0.17 LommA 2: Provided all indicated inverses exist, the

(b) sequences -(V2(Vk) ) of the subepace algorithm (18)

and Lk of the RLccati algorithm (24) are Identical

I-



kt k -1Lk-V 2 (Vl) . (25) 153,163, 1978.

Substituting V k.PkVk into the partitioned form of [41 N. Narasimamrchy and F. F. Wu, "On the Riccaci
2 1 Equacion Arising from the Study of Singularly

(18) one gets, after some simple manipulations Perturbed Systems," Proc. JACC, 1244-1247, 1977.

k+1 A pk 22k (51 E. J. Davison, "A Method for Simplifying Linear

P (A it-A12Pk) - A "22  -A21. (26) Dynamic System," IEEE Trans. on Automatic

Control, Vol. AC-l1, 99-101, :in. '966.
Usin4 -'*Lk where Lk satisfies (24), the equation
(26) is Identically satisfied for every k. (61 J. Winkelman, J. Chow, J. Allemoag and P.

Kokotovic, "Multi-Time-Scale Analysis of a Power

This lema shows that both algorithms have the System," IFAC Symp. on Computer Applications of

same speed of convergence. Their differences are in Large Scale Power Systems, New Delhi, India,

numerical conditioning, memory requirements, and August 16-L8, 1979.

ability to redefine n1. [73 K. Haxtensson, 4On the Matrix Riccati Equation,"

lnforma-ion Sciences, 3, 17-49, L971.
CONCLUJDING REMARKS

(8) K. W. Chang, "Singular Perturbation of a General
We have considered the application of the sub- Boundary Value Problem," SIAM J. Math. Anal., 3,

space method and Riccati iterations for the time scale 520-526, 1972.
decomposition. It has been shown that both algorithms
have global convergency property. They converge f9] A. J. Laub, "A Schur Method for Solving Algebraic
linearly with the corresponding error after k itera- Riccati Equations," Proc. of the 17th IEEE Conf.

tions being 0( k), where z is a measure of spectrum on Decision and Control, San Diego, Calif., 60-

separation (5). In light of the established connec- 66, 1979.

tIon between the two algorithms, the stringent re-
quirements on the initial condition of Riccati Invariant Subspaces of Closed Linear Operators,"
iterations (required earlier) are replaced by the
mild restrictions of the subspace iterations. Sub- SIAM 3. Numer. Anal., 8, 796-808, 1971.
space method provides an opportunity to redefine n, 111] 3. M. Medanic, "on the Geometric Properties and
when necessary by observing the convergence rate. Invariant Manifolds of the General Riccaci

Equation," submitted for publication.
When initial ordering of state vector variables

is such that x ontains physically fast variables and

x2 physically slow variables then an initial guess

for V
0 

given by (19) is preferable over randomly
generated one.

The subspace iterations are particularly useful
for the time scale decomposition of large dynamical
systems resulting in sparse system matrices A. In
the case that tne dimension of the slow subsystem is
much smaller than the dimension of the fast subsystem,
a modification of the subspace method is suggested:

-l
- use A instead of A in (18)

- order states so that xc ontains slow

variables and x2 the fast ones.

These changes amount to using problem formulation (6)
instead of (5) and result in less computer work.
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Preservation of controUability in linear time-invariant perturbed
Isystemst

J. H. CHOW:
The controllability of systems with weak connections is studied. A necessary smd

sufficient condition for a singularly perturbed system to be strongly controllable is
obtined. The controllability invariance of the slow subsystem of a singulary
perturbed system due to a class of fast feedback controls is shown.

1. Intvduction

Systems with small parameters are common in control problems. These
small parameters, with values proportional to a small positive number gs,
represent weak connections or parasitics (Desoer and Shensa 1970). In
networks, for example, they are the stray capacitances and lead inductances,
which induce high and low frequency behaviour. In this paper the dependence
of the controllability on A is discussed for regularly perturbed systems (O'Malley

l 1974) where the system matrices are bounded for t-0, and for singularly
I perturbed systems (O'Nalley 1974, Kokotovic et al. 1976) where the system

orders are reduced as JA-0. It is shown that these systems may lose their
controllability without weak connections and the loss of controllability is
investigated by using Jordan forms. A necessary and sufficient condition for
a singularly perturbed system to be 'strongly controllable' is obtained.
Furthermore, the controllability of the slow subsystem of a singularly perturbed
system is shown to be invariant to a class of fast feedback controls, and hence
we can neglect the fast subsystem if it is stable. These results clarify those
obtained by Kokotovic and Haddad (1975), Kokotovic and Yackel (1972) and
Chow and Kokotovic (1976 b). The presentation in this paper is aimed at
giving a structural interpretation of the controllability (Lin 1974) of perturbed
systems.

2. Weakly and strongly controllable systems
Consider a linear time-invariant perturbed system

S= A (I)z + B(I),(1)

where the state z is an n-vector, the control u an m-vector, g a small positive
parameter and A(M,), B(IA) are matrix polynomials in 1z which are bounded at

Received 2 March 1976.
+ This work was supported by the Joint Services Electronics Program (U.S.

Army, U.S. Nary. and Lt.S. Air Force) under Contract DAAB-07-72-C-0259, in part
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J. H. Chow
j&.0. System (1) is regularly perturbed (O'Malley 1971) and letting Is=0,

that is. eliminating the weak connections, it becomes the unperturbed system

~- Ai+ B (2)

where Am A(0), B m B(O).

It is known (Lee and Markus 1967) that the set of all controllable pairs
(A, B) of system (2) is open and dense, that is, if the pair (A, B) is controllable,
then there exists a positive u* such that the pair (A(IM), B(IA)) is controllable
for all pe[O, j*). Here we show that controllability of the perturbed system
(1) for/1 > 0 does not guarantee the controllability of the unperturbed system
(2). A counter example is the system

M 0
tj 0 - 1 0 0 X, } I

+ U ! (3)
zJ 0 0 -JA 0 X3{ 1

t4,  0 0 0 - 1- .z'j .I

which is controllable for I.e(0, 2), but is uncontrollable at M 0.
Using a Jordan form transformation I -S(p,)z with S(tM) nonsingular and

bounded for small and non-negative, the perturbed system (1) becomes

I - S(A)A( )S-1 (M) + 8(p)B(&)

-,;)0 'G1GO)

-J.2( ) ] G,(.4) u(4)

where J.(4), i-I. 2 ... , k, are Jordan blocks. Note that the unperturbed
system of (4) is also the Jordan form of the unperturbed system (2) because
S(/p) is continuous with respect to IA. Eliminating the weak connections in
(4), the 0( &) elements in the matrices G0(.) will become zero, and if the eigen-
values of the Jordan blocks J.(IA) and J( . ) differ only by 0(M), J,(0) and
J,(0) will have the same eigenvalue. If the last rows of the matrices G.(o)
corresponding to J4 (0) having the same eigenvalue are linearly dependent.
then the unperturbed system of (4) is not controllable (Chen 1970). For
example in system (3), we have G,(0) = (01 and hence the state x, is
uncontrollable. Furthermore, Jj(0), i - 2, 3. 4 have the same eigenvalue and
since G(0), i - 2, 3. 4. are linearly dependent, the controllable subspace of the
states x,, x3, x4 is only the subspace z= x - x,.

We define the perturbed system (1) to be "weakiv controllable ' if it loses
its controllability when the weak connections or parasitics are removed. In
the terminology of Lin (1974), the unperturbed system (2) of a weakly con-
trollable system (1) can be structurally controllable as it regains its con-
trollability by a slight perturbation. On the other hand, we define system (1)

I



J Controllability of satems with aveak connections

to be strongly controllable' if its controllability is maintained at IA-0.
From this definition and that of Lee and Markus (1967), we conclude that the
perturbed system (1) is strongly controllable if and only if the unperturbed
system (2) is controllable.

A property of weakly controllable systems (1) is that controls with gains
of the order of I//p or higher are required for the placement of the weakly con-
trollable eigenvalues. For example, placing the pole -5 of system (3) at
-6, the control u , - (1/j)x 1 is required, while placing the poles - 1, -IA-/.

-- 2 at -2, - 3, - 4, the control

3 (6 -I&+ 6 s-M 3 ) (3 -- I III,+ P'
Ir -Z+ A2  (5) X

is required (Mayne and Murdoch 1970). It is of practical importance that these
undesirable situations involving large gains can be revealed by investigating
the unperturbed system (2).

3. Singlarly peru"e systems
In this section the controllability of a singularly perturbed system as 4- 0

is discussed with respect to its slow and fast subsystems (Chow and Kokotovic
1976 b) because its system matrix is unbounded at a,-0. A necessary and
sufficient condition for a singularly perturbed system to be strongly controllable
is obtained.

A linear time-invariant singulariy perturbed system is modeied as

# - u(IAy +All~~z Bj~')U(8 a)

*i - A tt(p)y + A n(I)z + B,(I)u (6 b)
where the states y, z are n, ni vectors, the control u an m-vector and p a small
positive parameter. Ajj(,u), B(p), i- 1, 2, j -1, 2, are matrix polynomials
in IA where Aj 1(0), Bj(0), which are denoted by As,, B,, are bounded and A21
is non-singular.

We first define the slow and fast subsystems of the singuilarly perturbed
system (6): It is known (Kokotovic and Haddad 1975) that system (6)
possesses slow modes with n, small eigenvalues of magnitude 0(1) and fast
modes with n2 large eigenvalues of magnitude 0(l,'). ALssuming that the
transient of the fast modes is instantaneous, that is, letting - O, we obtain
from (6) the reduced order system

Ally.+ Alz, +B~u,(7 a)

.0 -Ally. + A 2z, + B.u, (7 b)
where the subscript s denotes the slow modes. z, can be solved from (7 b)
and its substitution into (7 a) vields the slow subsystem

i , Ars +B 0  (8)
where .s y,, its is a control of slow variables only and

AO = A,,- A12A.,-A, (9 a)

B0 - B, - A12A, 2-1,B2. (9 b)

I
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On the other hand, assuming that the slow modes are constant during the
fast transient period and the perturbations in Aa(p) and B(M) are small, the
fast subsystem is obtained from (7 b) as

-AUf + Bul (10)
where f is the fast part in z and uj is a control of fast variables only. For
I 0, the fast syabsystem (10) is controllable if and only if the pair (A,,, B2) is
controllable.

Since the eigenvalues of A. and AslJh are far &part for JA sufficiently small,
the following lemma holds.

Lemma 1
If An is non-singular and if the subsystems (8), (10) are controllable, then

there exists a 1* >0 such that the singularly perturbed system (6) is con-
trollable for all j&(O, i*].

Lemma 1 is known from the work of Kokotovic and Haddad (1975). Here
we show that the controllability of the singularly perturbed system (6) for p > 0
does not necessarily require the controllability of the subsystems (8), (10).
To illustrate this possibility, consider the system

(shown in Fig. 1) which is controllable for A-{O, 1). For ;&>0, the state z is
not equal to the control u but is tracking it with a small time delay, and hence
the state y is controllable. But letting 14-0, the control for the state y is
eliminated and the slow subsystem j = -a is uncontrollable. Note that the
fast subsystem is controllable because there is a strong dynamic connection
between the control u and the state z. This strong dynamic connection is
different from the weak static connection in the perturbed system (1).

Figure 1. Block diagram of system (11).

Another example is the control of the fast subsystem through the slow
subsystem. The system

M K u (121

,shown in Fia. 2) is controllable for /A>0 but its fast subsystem &= -f is -.

uncontrohiable. In the complete system (12), the connection between the
control u and the state y is a strong connection by itself, but it acts as a slow
filter such that the fast transient in the state is weakly affected by the I
control u.

K
!



Controflability oj aytema with weak connections

Figure 2. Block diagram of system (12).

Similar to the perturbed system (1), weak connections may also cause a

singularly perturbed system (6) to lose its controllability as A-0. The system

0 -1 0 X, +  1 (13)

Ud 0 - I-1Aj J -z,

is controllable for jse(0, 1). Howiver, the state z1 is connected to tj through
a gain of -lI/p-1 and the gain -l is a weak connection because it is small
compared to the gain - 1/1 for 1A close to zero. Hence the fast subsystem

is not controllable.
-Although the strong dynamic connections in systems (11) and (12) are not

weak connections by themselves, they create weak connections when combined
Twith other parts of the systems, which can be revealed by a proper transforma-
2tion of the singularly perturbed system (6). Since A,, is non-singular, there

exists a transformation

with T(.) bounded and non-singular for I, small, such that system (6) becomes

[J j) 0 )]1 ]+irG,(M,)lU(6
0 j ( )JL'7JL

where J,(ps), Jt(,) are composed of Jordan blocks and J,(0), Jt(O), G,(0), Gt(O)
are bounded (Kokotovic and Haddad 1975). Note that system (16) is not the
Jordan form of the singularly perturbed system (6) except for JA- I. Since
'!T(,) I -0(1), the pairs (J,(0), G,(0)), (J(0), Gt(0)) can be obtained through
transformations of the pairs (A0 , Bo), (An, B2), respectively. Thus if the ra,

(J,(p), G.(JA)), (Jt(u), Gt(A)) maintain their controllability without wveak
connections, then the subsystems (8), (10) are controllable. Hence the study
of the controllability of a singularly perturbed system for /-O reduces to the
study of weak connections in the pairs (J,(14), G,(I,)) and (J,( s), Gf(,)).
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Consider the systems (11)-(13) in the form of (16). For system (I1),
G(j) - (l ( - P) and hence its slow subsystem is uncontrollable as G,(0) (0].
For system (12), Gf(k)-(- )] and hence its fast subsystem is un-
controllable as Gt(O)= (0]. Since the eigenvalues are the same in

[-il) 3 (1'7)
JIA-10 - I- ,](1,

at i,-0. the controllable subspace of the single-input fast subsystem of (13)
is only the subepace f", wf.

Similar to a perturbed system (1), we define the singularly perturbed system
(6) to be weakly controllable if it loses its controllability as u-0, and strongly
controllable if it maintains its controllability as ,-0. Combining this defini-
tion and Lemma 1, the following theorem is immediate.

Theo"em 1
The singularly perturbed system (6) is strongly controllable if and only if

it subsystems (8), (10) are controllable.
Note that the placement of weakly controllable eigenvalues in singularly

perturbed systems (6) requires controls with gains of the order of l/,s or higher.
For example, placing the pole - 1 of system (11) at - 2, the control

SM- (1 - 1/ )-: (18)

is required. Hence our definitions of weak controllability for the perturbed
system (1) and the singularly perturbed system (6) are consistent in this sense.

The above discussion of weak and strong controllability of singularly
perturbed systems (6) complete the results presented by Kokotovic and
Haddad (1975). It is important to note that the separation of designs proposed
by Chow and Kokotovic ( 1976 a, 1976 b) for the approximate designs of singularly
perturbed systems (6) is applicable only when they are strongly controllable.
In addition to saving numerical computation, this method avoids dealing with
the ill-conditioned system matrices of (6). For weakly controllable singularly
perturbed systems, exact designs are possible, but their computations are
often numerically unstable. Hence in practice, these systems are undesirable.

4. Invariance of slow subsstem coatmolability
Examining the singularly perturbed system (6) and-its slow and fast sub-

systems (9), (10), we observe that to change the dynamics of the subsystem
(10), we need the fast feedback control 1

i = Fz (19)

where i F! = 0(l) and (A,2 - B 2F') is non-singular. System (6) controlled bv
(19) becomes

-Aii(j')y 4-(Aj(p) +. B,( ,4flz- BI()v (20 a)

-,i A.(p)y + (A,(p) + B2(IA)F]z + B(I()r (20 b)

1
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and its slow and fast subsystems are

i = Ao*a + BG*v, (21)

-(At, + BF)f + B,'a (22)
respectively, where

Ao* - -41, - (Alt + BIF)(Att + BjF)-A,1  (23 a)

Bo* - B1 - (A12 + B 1F)(A.2 + BIF)-'B. (23 b)

Since the state : contains a slow part as well as a fast part, the fast control
(19) also changes the slow subsystem from (8) to (21) whose dynamics is very
much different from that of (8). However, the controlabillity of the slow
subsystem of (6) is preserved with the fast control (19).

Theorem 2
If A.2 and (A,,+B,F) are non-singular, then system (21) is controllable

if and only if system (8) is controllable. Furthermore, if 11 Fj - 0(l), the slow
subsystem controllability of the singularly perturbed system (6) is invariant
to the class of fast controls (19).

Proof

For system (8) we construct a non-singular transformation M of the control
u,, such that the new control is w - M-u,, and then introduce a partial feedback
w -V, +.Na, such that system (8) becomes

- (AO + BOM-)a + BOJv,. (24)

Let M - I - F(At2 + B2F)-'B, such that M- L- I + FA,-"1 B. Then using the
identity

A.,-l(I - B.F(A,,+ BF)-'] (A,, + BF)-I  (25)

we obtain

BOX - (BI - A ,,A ,,-'B,)(I - F(A.2 + BF)-'B,,]

- B, - AlA 22-'I - BF(A2: + BF)-')B. - BF(A, +B.F)-'B.

SBe*. (26)

Let .V -FA,,- 1 A,,. Then
"" Ao + BOXY¥ = AO + BO* N

- All - (Al, + BtF)A,,-'A,, + (A,, + BF)

x (A, + B2F)-BIF.- t,-L.4

- All - (A, + BF)[I - (A, + BF)-1BF]A3,-'A,,
-- A40M . (27)

* Hence system (24) reduces to system (21). Since the transformation ,, -
J-U, and the partial feedback control w - v, + N.s do not change the con-

* trollable subspace of system (8), the columns of (Bo, AoB,..., A1-1B,) and
D'3*1, *.... .... A0*;-Bo*) span the same subspace. and the first part of

the theorem is proved. In addition. if !F!! = 0(1), then system (21) is the
slow subsystem of the singularly perturbed system (20), and hence the con-
trollability of the slow subsystem of (6) with feedback (19) is preserved.

[
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Controllability of systems with weak connections

Theorem 2 shows that to determine whether the slow subsystem of (6) is
controllable or not, we only have to test the controllability of the pair (AO*, BO*)
for a single value of F. In addition, we can arbitrarily place the fast poles
(A22+Bj1)/ without affecting the controllability of the slow subsystem.
If (A.2 + BF) is stable, we can neglect the fast subsystem because we are
able to control the slow subsystem for any disturbances of the type (19).

Theorem 2 also clarifies the issue that different sufficient conditions are
obtained by Kokotovic and Yackel (1972) and Chow and Kokotovic (1976 b) for
the existence of the near-optimal solution to a singularly perturbed regulator
which is decomposed into a slow and a fast regulator. In the paper by
Kokotovic and Yackel (1972) the fast regulator problem is solved at the first
stage and then "he slow regulator problem is solved at the second stage which
requires the controllability of the pair (A,*, B0*). In the work of Chow and
Kokotovic (1976b), due to the separation of designs, the solution of the slow
regulator problem requires only the controllability of the pair (A., B0 ). By
Theorem 2, these conditions are equivalent.

5. Coecitmon

It is shown that a perturbed system will lose its controllability without
weak connections if it is weakly controllable. Pole placement of such weakly
controllable systems requires controls with large gains. A necessary and
sufficient condition for a singularly perturbed system to be strongly controllable
is the controllability of its slow and fast subsystems. In. addition, the con-
trollability of its slow subsystem is invariant to a class of fast feedback controls.
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Uniform Asymptotic Stability of
Linear Time-Varying Singularly
Perturbed Systems*

J by S. H. JAVID"

Departnent of Electrical Engineering
T Coordinated Science Laboratory

University of Illinois, Urbana, Illinois 61801. U.S.A.

AgSTRAcr: An upper bound for (fe singular perturbation parameter is found for the
uniform asymptotic stability of singularly perturbed linear tine. uarying systems.

L Introduction

System (1)
• i " A jt(t)x + A j(t)z x(t,) x ( )

i. A21(t)x + A2.(t): z(t,,) ,
where x and z are n- and m-dimensional vcctors respectively. M. is a small
positive scalar and t,, is any initial time, is referred to as a singularly perturbed
system. The "reduced" system

I = (A 1 ,(t)-A 1z(t)A 22(t)"A._(t))I A1()j 1(t0 ) (2)

is a qiitgular perturbation of (1) resulting from setting J. =0 and is here
assumed to be uniformly asymptotically stable.

We make the following hypotheses concerning (1).
(HI) The matrices A,,(t)i, j-1. 2 are bounded and have hounded first

derivatives for all t.
(H2) The cigenvalucs of A22(t) satisfy Ru(A,(t))< -y<0 for all t where v is a

constant.
It has been shown (1). (2) that under H I and H2 where system 2 is

assumed uniformly asymptotically stable, system (1) is uniformly asymptotically
stable for 1A sufficiently small. Under these hypotheses this paper finds a bound
A* such that for * e (n, A.*), system (I) is uniformly asymptotically stable.

It is wcll known (3) that for #A sufficiently small, a condition for the motion
. ~1(t) of (2) to be an 0(A) approximation of x(t) of (I). is the uniform asymptotic

stability of the "fast" subsystem

ui - A(t). (3)
*This work was supported in part by the U.S. Air Force undcr Grant AFOSR

73-2570 and in part by the Energy Research and Development Administratiun under
Cositract U S. ERDA .(4Y-18 2088.

The author is presmutly with Systems Control. Inc.. Palo Alto, CA. 94304.
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S. H. Javid

Thus it is of interest to be able to determine the stability of (3). Clearly H I and
H-2 alone are not enough for (3) to be stable. The existence of a g.o such that

when HI and H2 are satisfied and A E (0, p,), system (3) is uniformly
asymptotically stable has been shown (4). From Theorem 12 of ((6), p. 117] a
bound for the stability of (3) can be obtained. Another bound is found here in
Theorem I which is less conservative for a wide class of systems.

Before stating the main results of this paper several facts should be pre.
sented. First, under Hi,

}A22(t)- A22(t)I - 3(t -to) (4)

where $ is a positive constant equal to the maximum of A.2:(t) for all t by the
mean value theorem. Also for t z to there exists a K such that

when H2 is satisfied (7).
Let to(, to) be the state transition matrix of (3) and define ((, to)

(4, to)'022(t4 to)-exp (A(to) (22). (6)

Lemma 1. Assume HI and H2 are satisfied and 1 =az/fK where O<at <y.
Then for Ia a (o, ;,), p(t, to,) possesses the properties

T(to, to) 0 (7)

4where or 'y-a >0.
This lemma which is proved in the next section gives an estimate (or the

error to(, to)l which results from using exp (A12(t,)((r- 1 ,))) to approximate
(02 (t. to). Thus for .e (0, .) system (3) is uniformly asymptotically stable.
That is. as L - 0. 022(t, to) - exp (A 22(to)((t- tn)I )) and we may approximate
the solution of (3) by the solution to the time-invariant system

At -u A22(to i :(to - ZO (9)

obtained from (3) by fixing A::(t) at to. Since A:z(tn) is a constant matrix we
can always solve for exp (A,2 (to)((t - tO)/A)) whereas it is often dilficult to find a
closed form solution for 0 22 (t, to).

The upper bound on a in Lemma 'is -f and consequently we state Theorem
I which is proved in the next section.

Theorem t
Assume HI and H2 are satisfied and jo- y" '1K. Then for . s (0. Ao) --

system (3) is uniformly asymptoticaily stable.
If we set Y0

I, / 1 a/, 1i [O)
leumai of The Fromiam Intmt



Uniform Asymptotic Stability

and
I A22(t) A, ( t) (11I)IA I..

we obtain the time-varying system

- AA(t)w w(to) zo (12)

from (3). From Theorem I for < f /K, (12) is uniformly asymptotically stable.
The bound obtained for (12) in [(6), p. 117] is $< y'/K In K. Thus for
systems where K > e the bound obtained in Theorem I is less conservative. It is
interesting to note the correspondence between small A in (3) and slow-varying
matrices A2(t) in (12).

In the proof of the next theorem we treat the transformed system

x -A (t) z + A 2(t) 7(

A 0)= (L+ L(t)A 1(t))x + A22(t)yj + AL()A 12(t)7(

which is a result of applying the transformation

zl z + A22( t)-t A2,()x A : + L(t) (14)

to (1). Here AI is as defined in (2).

Theorem II
Let (2) and (3) be uniformly asymptotically stable systems so that their state

transition matrices satisfy (15) and (16) respectively

101(t, to)l s Klexp (- oa(t- to)) (15)
Vto, t a

1(022(4, &o)' K.2 exp (1-6. '') l)

If constants M, M2, and M3 exist such that for all t
jA,2(t)j:S~f, jL(0)A12(01:'%f, IL(t)+L('),)s (17)

then for all A, e (0. A.), where A = -' Tai2(o'tK2 M2:+ K1M1KM 3), system (1) is
uniformly asymptotically stable.

The new result in this theorem is the explicit expression for J.. For linear

time-invariant systems (5. 8, 10). Zien (10) obtains a bound for ;& which when
integtrated with (15), (16). and (17). is ,

The next corollary follows immediately from Lemma I and Theorem II.
Corollary I. Let /A*= min (4i, A,). If system (2) is uniformly asymptotically

stable. then HI and H2 guarantee that for A e (0, A*), system (1) is uniformly
asymptotically stable.

In (1) and (2) the existence of A* is shown via Lyapunov functions.
The new results of this paper are the explicit bounds .o, At, and ;L* and the

expression bounding Ip(t. r,)I. Section II contains the proofs of Lemma I and
Theorems I and 1I. and Section III gives an example.

Val. JOS. 1. "."e 1978
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IL Proofs

In the proofs we will use the following lemma.
Gronwall's Lemma (6): Let A(t) be a real continuous function and y() anon-negative continuous function on the interval [tj, tj]. If a continuous

function y(t) has the property that

y(t < k(y+ , (s)y(s) ds (18)

for tosz t:S t, then on the same interval

1 1i
y(O)S A(t)+ A (s) y(s) exp (j(t) dt ds. (19)

Proof of Lemma 1:

The definition of (t, to) implies (20) and (21),

q(to, to) - 0 (20)

0( A 0)s (to) + A2 2z()- A 12(tu) e f..2(t-1 A\"') (1

Applying the variation-ot-coastaacs tormula to (21), we obtain

W (, to)  exp A2 (t)) (A,.(-.)

.+.1 f' ) e(A2 2( A 22 (t 0 ) x ( 2O)( .±) dr.(22

We let y ct + r, multiply (22) through by exp (t((t - )/g)) and let TI(t. to) -
exp (o-((t -to)I) 9(t, to) to yield:

-A22(to)) exp (A22(t*)(Z-_) d,- 77flt, r.) cxp

x (A Z2(.r)- A2,(to))*exp A '(t 0)(=.l) d -. (23)

I

IO...lW O{ Th Fr:a~,lti f al q( [



Uniform Asymptotic Stability

j We next construct the successive approximation

-- (AL.1(t to) exp ( o.(! p 2(A(,.)

-A22(to)) exp (A,,(o)(r - t)) d.-r J1 Y)t ) expo(1 c)

wit intia guss ~0~t, X (A22(r) - A22(to)) exp (A 2 20 0 )(L-to)) dr (24)
with initial guess 77('(4, to) = 0. The initial guess corresponds to the assumption
that for p. small (3) has a solution near to that of the time-invariant system (9).
Substituting (4) and (5) into (24) and integrating for t o(, to), we obtain

111,-(4 to)I:StK 2 eXp (25)t'/--o2  Z

for all t, to, t a to. Taking the difference between two successive terms for 1, we
obtain

,1 (k*t)(t, to)- 71(k)(1, to) 1 7(')C"(4 T)-,c" ( "T)j

I x exp (a-(3 '))(A.. 2(,)- A22 (to)) exp (A 22 (-) ") dr. (26)

Substituting in (4) and (5), yields'q " ) (t, 1o)- 711"'(4 to)l

S fuITp(poe, - Y7 ")(t,. )I K('.) ex(- (--rd)) d. (27)

Suppose for k s p

j 117(k)(t, ~) - 17c' "(4 i")1 s C (28)

where C") are constants. Then by (27)

I Ijl(kL)(t , to)- q(k)( 4 to) E (29)

for all , to and t ato. Since for k -I
[1"Y, "- ,71" (t, ".)I~ 1 " 2 e 2_.. (30)

Iwe have by induction

j\()t to) / \ .e K . (31.)

3 Vol. 30. ,. 1. janary 1974

I



S. H. Jauid

Define p .'43Klaz. Since

!. " t, t)- n,-" t l 1.t<  ,10)(1. 10)- (, to)l .
i-t'

* ie KZ k~ 7k~i22 (32)

then for p< 1 or .<Z<2/I$K

I 2  2 [ KZ -=2  K (33)
I-. .a e / e(a -M$zOK)

Thus for A < a2I/K the successive approximation (24) converges to a solution
which satisfies

n(t, toj S 2 ,K (34t)

Now exp o(t - to/ A)) p(r, to) - T(t, to) and therefore

A.2K Cxp- (35)[ (t, to)l -S e2(z' _ A.OK)ie p7 1,( 5

This completes the proof of Lemma 1.

Proof of Theorem I: Define .o = -y IK and a - ',(gOK) '/2 where A e
(0, AO). Then cr=- a >0 and for k e (0,.4,) equation (35) implies that (3) is
uniformly asymptotically stable since the definition of a implies that a - KO
is never equal to zero.
Proof of Theorem II: Applying the variation-of-constants formula to (13), we
obtain

X(t t J 'D, to),X0+ d?

t "0 2 (t, to) 0 + fb22(, r)L(')A1 ,( 'vU) d-" (36)

0 - 2(1- r)(' L('iA -.))x(r) di

where i7= z,--A-(tt)AI(to)x.. The bounds of Eqs. ('5), (16). and (17) imply

x(6s: K, exp (a- t(t- t0)IXoj K1 eX,( (-l)1 TI WI)& (37)

IA,
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Uniform Asymptotic Stability

I-q(t)l s K2 exp/.ozL )I J+[ K2 exp a-,-o'r) )M ,r), dr-

+ K. exp (- 2 (' ))M!x(r)dT. (38)

In this proof we apply Gronwall's Lemma to (37) and then to (36) to derive the
upper bound ;. such that for . e (0, IL,), Ix(i)j and I'i(t) are hounded by af decreasing exponential. Letting w(t)-exp (o 17) Ii()1 in Eq. (38), yields

-- )K exp (oyaIt.&) I"qol + K2 exp ('r.)N3 Ix (r)l d r + Kz,'l w(-") dr.

(39)

- Applying Gronwall's Lemma and integrating, we obtain
4

w(t) s K2 cxp (ot,/;.) '17o exp (K2,%/ (t- t))

+ exp (KzMz(t- r))K 2 exp (o2i.)M !x(') di (40)

I which yields

1i'(t)lSK 2 exp (-cr 3(t-to)) lol+ K2,'4f exp (- o3(t-r)) Ix(,r)! dr (41)

where oo=3 - a/1 - KM 2. In the following we will need o'3>0.
Substituting (41) into (37), yields

Ix(t)l S K, exp (- -,(t - to)) jx0

+ K, exp (- o,(t - r))M, K 2 [r11 exp (- 1 t-,)) dr

K- exp (-o,(t -- ))', KM3exp(-o-3(t-s))jx(s jds d- (42)

which implies

K,__K. Kt M, K,I ,h! See corrections
- -x(t) Krx exp U(- ot(-)) on the next page

X exp (- ,3(t - 0))#K exp (-ao(t-r))xti-)I di-. (43)
€ 

(171

1 Vat. 301. No. 1. ;OAU". 19"R
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Let y(t) - exp o,: Iz(t), apply Gronwall's Lemma and integrate to obtain

Ix(LtS K ' 'K1 (TI eMK ; p(- -o.r -030 -

+ (K, Ix. K I MKz 1 )(1 1 +1) eXp (-a01(t - 0)) 4 11o

@'3-@' II 47 a,0.t a -0

',K,1'jK ll -ol)) exp (K, M. KMz -0( o)(4

where
a -0 K-M.K 2M3  (45)

0*t

Thus for (13) to be uniformly asymptotically stable, we need inequalities (46)
and t47) to be satisfied, i.e.

o 3 a al- Kz Mz > 0 (46)
Ki M, K,M3  .

., - >0. (47).t

Let
! t 0IK.,M2 KI.WIK2M 3.

e (0, )inequalities (46) and (47) are satisfied and thereore (13) is
uniformly asymptotically stable which implies that (L) is uniformly asymptoti-
cally stable.

111. Example

The system

L -I+1.cos t 1-1. sin tcost z, (8)0 -l- 1.1sintcost 1+1.1 sin

has the reduced system
.2 - (- 3.,44 + os t - 1..22" sin -t)i (49)

and fast subsystem
- I. 11Cos t 1- 1.1 sin t cos t|'-1-1.lsintsin cost _i+1.1sinZt (50)

When . = I an unstable fundamental solution of (50) is I
S0) ef) I Cos(t e- sinti (51)

-e°" sint -'cost I I
Journal of The Franklin, InsItitute
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CORRECTIONS OF EXPRESSIONS (42) through (47)

In (42) variable T was mistakenly taken as t. Instead, (42) should

read

jx~)1. K - 1(t-to)Ix01 t K1e-a (t-T) Ml 1oe-a 3(T-to0)d

t
0

+f K1e 
M1(f K2M 3e

3  I'x(s)ds)dT.

o 
0

Replace (43)-(47) by

KMIMK21n e-al(t-t) l_2_Ino1 -o3(t-t o )

jx(t)l _s {K1Ix I - aLUo_
Io a3a1 a31a

+ KK2MM3 e -a [f e (f e 3slx(s)Ids)ds. (43)

t t
0 0

Integrating by parts (47) becomes

jx~~l:S e-a 1(t-to0) + -a3 (t-to0) +P t [e- 3( t - -) e -Cfl1(t-T)l ] XT)
Ix(tI < P~e 1 +P 2e + f e e x(r) Id

t 13
o (44)

where

K 1 M 1 KMI2n° KIM1K21n.1
P, K Ix i 112 p 1 2 P = K KM M

1 3-4 P2 a 3-i P3 1 2M13"

Take a 3> a (condition I) (44) can be written as

-al(-t) (t-t (tt) P t -al (t-T)
jx~~j P 0+ Pe- T3(t-o) P f e I x(-')IdT. (45)

Let y(t e ' -x(t), apply Gronwalls lemma and integrate to obtain

jx(t)l S_ P e  1 0+ P e  3 0+ PI( e  1-0 e l  0

[- 3(t-t)0 -(a 1-P4) (t-to) 
(46)

-- - - . . - - - - -" _ .,_-- . . .__ - -



where

P p 3
4 a3-a1

Thus for (13) to be uniformly asymptotically stable we need the following

inequalities to be satisfied

a > P4  and a3 > a1

i.e.

2-K M >0 a 1 2 (46a)

1 a 2_ a12 KMG K M2 22 1 1 21

2 212

From (46a) and (46b)

PI 1 2M 2KMKM (47)

Petros toannou, CSL
November 1980
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even though the eigenvalues of A22 (t) have real parts - - 0.45 For all 1 ((9), p.

147]. Since system (48) satisfies HI and H2 and system (4-' is uniformly
asymptotically stable, we know that for I. sufficiently small, both systems (49)
and (48) are uniformly asymptotically stable. In this example we find bounds
;, and 4,.

Fixing the coefficients of the "fast" subsystem at any t to, we obtain the
linear time-invariant system

-+ L.1 cos to 1 + 1.1 sin to cos t,-
A l 11.1 sin toCOSto -I+ 1.1 sin 2 (0 Ti. (52)

The state transition matrix for (52) is

exp A22( 0)T- [at(tI,) cos 0.835'r- 1 ( 0 )) ,i,(4t,) sin 0.835-) 1
a,,((,)) sin 0 .35-) a 2U0 ) cos 0.835i - 522())j )

where r (t - to)Ip..

a,(to) - (1.377 - 1.617 sin2 to + 1.734 sin' to)i,

a 12(i) - (1.198 - 1.31 7 sin to cos to),

a21 (9)(- 1.198 - 1.317 sin to cos tn).

a22(4,) - (1.377 - 1.617 COS 2 t,, + 1.734 COs" tw)l,

81,(to) - tan-'(0.6 14- 1.317 sin 2 to),

822(tO) - tan'(0.614- 1.317 cos' to).

Using as a norm (Jaq(to)). we find that K = 7.358 and .,' 0.45. Correspond-
ingiy we find the max A2,2(t) -1.555 - (3. The values of 3. K and -y and
Theorem I imply that .o, 0 .0 1 7 7 and that for 0<L<A,, System (3.3) is
uniformly asymptotically stable. The bound obtained using Theorem 12 of ((6),
p. 117] is 0.0089 which is approximately j of /A,

We next find a bound for the stability of the full-order system (48). From
Lemma 1 we obtain

1022(t. tj~ K I + 2 , gKo exp(-'/) (54)
e 2(a 2 _ ;LKO3)/

If we let a - a - "y/2 we obtain a value for A of 0.00442. Fur j. e (0. .) we
may use the bounds of (54) for (z2(t. to). This saves the work which would be
necessary to derive (022(t. to). Thus

K. -K( 1+2 ,Kp

and o'2 " -a -0.225. From Eq. (49)
xi(s < IXol exp (- 1.89(t -

which yields K -1 and a, - 1.89.

wA. 305.,40 . Ja 19r. I'?R
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Values for M, M2, and M 3 are 1, 1.956, and 7.09 respectively. Substituting
these values into

aKM2+ K M, KM 3

yields ,, - 0.00317. Since ;L </; we know from Corollary I that for /& e
(0, .&,) system (48) is uniformly asymptotically stable.

This example illustrates the use of Lemma 1. Theorems I and 1I and
Corollary 1 in obtaining the stability bounds of jt in system (48). The bounds
Kz and a(r are direct results of Lemma 1, thus making it unnecessary to
determine the state transition matrix for the fast subsystem directly.

IV. Conclusion

The main results of this paper are contained in Lemma I and Theorems I
and 11. These provide bounds for the stability of the "fast" subsystem (3) and
the full-order system (1). These bounds are found through consideration of
reduced-order systems of order m and n. Thus the uniform asymptotic stability
of an Pt + ruth order system can be shown while considering only the reduced-
order system and fast subsystem. Furthermore, the state transition matrix of
the "fast" subsystem can be approximated by the more easily determined
exp (A22(rt)((- t0)//A)) to within p(c, to) error. The bound on 9(t. to) found in
Theorem I is a byproduct of the derivation of the bound go. The fact that
o(t, to) is 0(A,) and is exponentially decaying with an 01s) time constant is also
of use in proofs of various optimality results for time-varying singularly
perturbed systems. For instance it may be used in extending results already
proved for linear time-invariant systems to time-varying systems. Thus. this
paper unifies the work of a number of authors and adds bounds for j,.
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Stablit of Singularly Prtrbed System and Networks An'(*)M + MAn() (6)
with Parasitic.l for all I. Here and in (9) ib denotsak X k identity. From *

condition 2) it follows that q'M(O)q is a Lyapunov function for (2).
R. IL WELDE AmD P. V. KOKOTOVIC Let the function p'N(t)p, whose derivative for .(3) is -p'p, be a

Lyapunov function guaraneing condition 3). This function exists
Abstrect-It is noted that some recent stability results for srin~ by a well-known Lyapunov theorem, such as [5, theorem 31.

perturbation problems are special cases of earlier theorems by It is now shown that, for a sufficiently small positive it, the function
13imushoev and Krasovskii, A uiliffd prood of onte of these to as z'NQ)8z + §y'MQ)&y (7)

wois4 iseavain sytm anduno fuplnitiooo for (5) saifigterqieet for uniform

sinulaly ertrbe tie-manat sstes ad aplyit orre- definition of M(9) and AV(() there exist continuous nondecresing

sponenc into oin ou tht KimuhovandKraovukii [41 mi- and
compase saiiyterm n[1[1 na illustration of this 0 < .(ilAz, OWil) :5 V : 0(jSz, SO) (8)
we quote and prove a theorem for linear time-varying system,
which represents the stability part of 14, theorem 11. It is hoped that holds for all t to l and all ft 0 0, sy o,'0. The derivative of ws for
the familiar style and notation of the proof given here will contribute (5) is
to better understanding of the little-known results of [41.

The theorem that follows deals with uniform asymptotic stability W~
of the (n + m)-dimensional system OxlF I NA,, + (J~ + 3RYM .1 r&Z

t- A15(L) + Ats(g)s IOU]J [NA,, + (.1 + SR)YM1' -(I /s). + L J LOY]
o- An(f)z + An(t)s (1)(9

wher jasasallpoetiv sclaranddotdentesdervatve ith where L - Mf + (SAit)YM + Mf(SA,t). After substitution of 9 by t
respect to 9. Stability properties of (1) for j& sufliciently small are i 6 n ifrnito ihrsettt tflosta
deduced from stability properties of two auxiliary systems: the m-
dimensional system ft'Q) -J eA-'£i0[4.'(£)M(() + MQj)An() 6 A(l)r d,. (10)

An(G)q (2)
Hence L is bounded for all t '2 to and is dominated by -(IIs)!..

where 0 2:tois a fixed parameter, and the is-dimensional system when pis sufficiently small. Inspection of leading principal minors of

-[AWOt - Au2(9)Anm'(9)Ax(1)1p. () the symmetric matrix in (9) shows that there exists a positive ju
A'such that for all ss E (0, is*], allt 9 2: and all: -zF 0,5 Alf0

Theorem: If ~ .,84) 0(1

1) all the matrices Aij(l) in (1) and their derivatives are bounded
and continuous functions of Ifor all t : to, where -y is a nondecreasing function and -y(O) - 0. Properties (8)

* 2) the real parts of all the eigenvalues of An(*) are smaller than and (11) of ws and ib prove that (5) is a uniformly asymptotically
a afixed negative number for all 02 1% stable system fornx E (0, P *

3) system (3) is uniformly asymptotically stable, The technique of this proof also gives bounds for perturbed

then thereemists a p6> 0 such that system (1) is uniformly asymp- solutions and can be extended to nonlinear system 141. Some s-.
totcaly sabl fo al,* -= 0, l -sumptions made here and in (41 can be relaxed. Stability theorem in

roticl .stable or ald IV (0,ing 11-(31 proven by a different technique are special case of the theo-
Proo: Deine * an v uingremns in [41. The results of 141 have remained unnoticed not only in

-o as, + &Z [11-131, but also in the book [61 and the survey 171. A more general
st +8v -Au-Ausz(4) result on asymptotic stability of singularly perturbed systems is

a, -a, ip- A.Aud ~ ) found in [81.

where (zi, a,) and (z,, st) are solutions of (1) corresponding to two
different initial conditions. (For brevity, argument f is dropped when
no confusion results.) Upon substitution of (4) into (1), RzxnanNCZS

St -R~z A~s111l C. A. Desoer and M. J. 8hensa. 'Networks with very small end very largeAt~~~2 - i tf Natural frequencies and stability." Proc. IEE voll. 58, pp.
f.lM. J. Shona&. "porosities and the stabiliti of equilibrium points of non.

Ij - Attly + [(S~ + SR)U + SA,,upl (5) linear networks." IE Trans. Circuit iteri (Correap.). vol. CT.18,
* ,s p. 481-484.July 1971.[31 . A wr Snular perturbation and bounded-intbodd-tte, i,. 90-47. ug. 6, 19!

where R Ati - Aun'u S - Anu'Ati. Clearly, when (5) is 14 1 A. r. laliushev and N. N. Knesovskii. "U~niform symptotic stability of
systems of difforeatial equations with a small parsaeter in the derivativeuniformly asymptotically stable, so is (1). Let M(O) be the unique terms" (in Russian). Prk.Mae. Mekh.. vol.25. no. 4. pp. 00-690. 1961:

positve dfinie soltionof1[ R.E. Kalman and J. E. Blertram, "Control system analysis ad deea i
the'sectod method' of Lyapuniov--continuous-tims systems.- Tre.. APS&E
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sdi n by theU. S.Air ForceuaderOratAFOSR6& O57D. New York: Jntemsionoe. 390.a
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Reduced order modelling and control of two-time4cale
i dscnrete systemt

R. G. PHILLIPS:

A clas of linear shift-invariant discrete systems matisfying a two-tinme.eoal property
is defined wad a model satisfying this property is given. A pair of explicitly invertible
block diagonalizing transformatios are used to obtain reduced order fast and slow
models analogous to the continuous singularly perturbed cae. A deadbeat approxi.
mation to the fast modes results in a reduced order slow model. and a 'boundary
layer' error in the original fast states. For control law design, the dual nature of
these block diagonalizing transformations allows partial or total eigenvalue placement

-- for fast and/or slow modes based on feedback designs for the reduced order slow end
fast models.

1. Wrodouo
Methods for approximate control of large scale systems have received a

great deal of attention in recent works. Of these methods, aggregation and
singular perturbations seem to be the most well known (Aoki 1978). The
analysis and control design of continuous linear singularly perturbed systems
has been well documented (Kokotovic et al. 1976, Chow and Kokotovic
1976 a, b). The multiple-time-scale property of these systems has been used

- in deriving reduced order models and control laws for high order' stiff ' models.
Until recently, all the work done on systems possessing a multiple-time-scale
property has been on continuous systems. The area of discrete two-time-
scale systems has received little attention.

In this paper a class of discrete systems satisfying a two time-scale property
is introduced. A pair of block diagonalizing transformations are then derived
based on the properties of the two-time-scale model. The appealing feature
of these transformations is that they have an explicit inverse. This block
diagonal form is then used to obtain reduced order models for both simulation
and control design. A design procedure is given which allows all eigenvalues
of the higher order model to be placed at desired locations based on control
laws designed for the reduced order models. Finally, an eighth order power
system example is given.

2. Basic definitions
Consider the completely state controllable linear shift-invariant discrete-

time system

* r~~XI(k+1)1 r A11  A12 1rXI(k)i i
I I - II 1+1 1t(k)()

LX,(k+l)J LA21  AJ x,(k)J B 2

i" Received 12 September 1979.
*" t This work was supported in part by the Department of Energy. Electric

Energy Systems Division, under Contract EX-76-C-01-2088 and in part by the
* Joint Services Electronics Program under Contract DAAG-29-78-C-0016.

* Coordinated Science Laboratory, University of Illinois. Urbana, Illinois 61801,
U.S.A.
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where x,(k)eRN,, x,(k)ERt, u(k)eRM .

There will exist a basis such that (1) takes the form[r-.(<,.+,1 [A. 01x(~r.
J u(k) (2)L (k + 1)J 0 A L(k)J BtJ

such that, if
Atm" I AIA)l

As. A min Ik(A.)1I

then

A,<A

The system (2) is not necessarily in its modal form, however, multiple and com-
plex conjugate eigenvalues are naturally grouped together in either A, or A t.

System (1) is thus said to possess a two-time-scale property if there is
sufficient 'gap ' between the eigenvalues of A. and At. Noting that

mi ,(a,)j 1111 (lower bound)

max I A ,)I IIA II (upper bound)

The two-time-scale property can be expressed as
II A.-Ill-'> IIAU (3)

3. System forms and block dilagonalizadtio
A class of discrete systems possessing a two-time-scale property has the form

[X1(k + 1) 1 . All ,h-412uirz(k) Ir u~k (
-.<k+'>- < ,.A 4A .() B

where A,,-' exists, 0 < , 1, and u is a small positive parameter and can be
defined as 1lanill/11A 1.1.

The permutation and/or scaling of states necessary to put two-time-scale
continuous systems into specific forms is discussed in Avramovic (1979) and
Chow (1975). Our purpose now is to transform (4) into form (2) and show that
the resulting A, and A t submatrices satisfy the two-time-scale property of (3).

It will be convenient throughout the remainder of the paper to use the
following notation.

A xl= /Pl-s Al, A II= / J~ tn , A . f IAA , (5) ;

These substitutions will be made interchangeably throughout the remainder
of the text, depending on whether or not the relative magnitude of the sub- i
matrix norms is needed explicitly.

For (4) to possess the two-time-scale property as has been defined, it will
be necessary that the spectrum of (4) consist of N,' slow ' eigenvalues of magni-
tude 0(1 A11 1) disjoint from Nt ' fast' eigenvalues of O(A) magnitude. Various
norm bounds can be derived to guarantee that (4) has this property (Feingold
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and Varga 1962, Stewart 1971). Here, we apply a lemma from Kokotovic
(1975) and extended results in Arvamovic (1979) and Phillips (1979) to achieve
a bound on IA in terms of the submatrix norms such that (4) possesses the
two-time-scale property defined by (2) and (3).

t Lemma
Given system model (4) let

Ao=A,-, 1 ,-' J1 (6)

and define the scalars

s IA,,,-, A,, I-IIA23,A,,-'Il, a= fA.11, c- IIA,,'l

if

0<,/< dr(7)o < (df2 + sab,)()

Then there exists a unique PteR-rx-v, satisfying

(8)
such that

Srange space (9)ptl

is the invariant subspace of A corresponding to a(A1,+A,2P t). Moreover,
a(A) is the disjoint union of a(A,, -A 2 P)ua(An + P(A,). Also, if

o0t, < (10)
e(d,2 + 8ab,)

there exists a unique P'eR,×vf satisfying

lip 114 W(-)s (I +

such that

(12)

is the invariant subspace of AT corresponding to o(A,,+ PeA ). Moreover,
a(A) is the disjoint union of o(A, + P'A,,)uc(A22 -A,,P').

Proo/
An application of results obtained in Avramovic (1979), Kokotovic (1975)

and Phillips (1979). An outline is given in Appendix B.
Consider now the transformation on (4)

y2(k) x,(k) + Ptx,(k) (13)

- n - - - . .. . . . . ..-
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where Pt is selected such that

Rt(Pt) A Ak + PfA - AnP - PfA 2 Pf- O (14)

Pf transforms (4) intoSX(k +1)rAll -A 1 2P ~ A12  ix2(k)1 r B 1
I-I I 1+U(k) (15)

yI(k + )J 0 A, n+ PA 1 Jly 2(k)J LB + "PBJ

To complete the block diagonalirAtion, let

yl(k) -x(k) -Qty(k) (16)

where Qf is the solution to the Lyapunov equation

(All - A1 2P')Ql - Qt(A, + Pt A 12 ) + A 12 = 0 (17)

Iterative techniques (Avramovic 1979, Kokotovic 1975) for obtaining
solution to (14) and (17) are briefly reviewed in Appendix A. Convergence of
the iterative algorithms is assured for every ju satisfying (7). (13) and (16)
give a net transformation

11 - QfP t - Q t

y(k) x(k) ()

which has the explicit inverse

Jk) - y(k) (19)

This will be called the ' F' transformation. When applied to (4), this trans-
formation gives

Al1 [ 2P 0(I - QfP)B - QfB 21
yk+ 1)- y(k)+ u(k) (20)

0 A n +PfA2 1  [ PtB + B, j

If the A, 2 block has been removed from (4) first, a dual transformation to (16)
results which will be called the ' S ' transformation. Let

y1 (k) -x(k) + P'x(k) (21)

where PO is the solution to

R,(PI) A All - A 11P- - P-AlP- + P-A n = 0 (22)

PO transforms (4) into

yLi(k+)[A+P-A,, 0 [Y(k)+ [Bi+ PB 2] (k) (23) j
.r(k+ )J A? .4A ,4Jx.(k)J [ B J

To complete the block diagonalization J
y2(k) =x, *' -Q'y(k) (24)

I
I

• I,
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where Q5 is the solution of the Lyapunov equation

(An,- AnP8)Q8 - QI(A 1 + P'A) + A, - 0 (25)

Again, convergence of the iterative algorithms for obtaining solutions to
(22) and (25) is assured for every IA satisfying (10). This transformation
takes the form

11I PS 1 x(k) (26)

which possesses the explicit inverse
I, - pSQS - pS'

I2 1 y(k) (27)

and when applied to (4), the transformed system takes the form

y(k + 1) [Au +P .A,1  A, ypY(k)

+[ B + P'B, 1
+ I t(k) (28)

L - Q8B + (I - QOP-)B2J

It is easy to see from the lemma that
jjPjj4 0(P'- ), jlptlj A0(jA)

If we let
(I-J)PS = PS, pjp. pt (29)

then (20) and (28) satisfy the two-time-scale property as defined by (3), since
for p sufficiently small

I (A + ,P-A,)-1 I- 1 > il (A, - A,,P') (30)

1(A 11 - > p.j (An + P~12)1 (31)

Inequalities (30) and (31) are given here to show our transformations
lead to block diagonalizations that are consistent with our norm definition of
a two-time-scale system (3). The set of values of t that satisfy (30) and (31)
will. in general, be a subset of the value defined by (7).and (10) respectively.
In the remainder of this paper (7) and (10) will be used to determine if the system
can be put into two-time-scale block diagonal form. It should be noted here
that bounds obtained from norms tend to be conservative. That is, the
methodology presented here is applicable to some systems not satisfying (7)
and (10).

4. Reduced order modelling
One of the applications of singular perturbations is the ability to obtain low

order well-conditioned models from high order ill-conditioned models of contin-
uous linear systems. The approximation made in obtaining these reduced

IR
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order models is to assume that the real part of the stable fast eigenvalues go to
minus infinity. Thus, all fast modes ae assumed to decay instantaneously.
In the discrete case, this is analogous to approximating all fast eigenvalues as
' deadbeat ', that is I AI -0. For model (4), this means approximating the group
of N t eigenvalues clustered within an 0(e) radius of the origin of the complex
plane as zero eigenvalues. Thus,

y2(k) - 0, k > 0 (32)

and from the ' F ' transformation
zj.(k),-y,(k), k> 0 (33)

x.,k) =-Ptyl(k), k > 0 (34)

Applying (33) and (34) for all k, our reduced order model becomes

and the ' fast ' states appear only as quasi steady-state functions of !,(k)

4(k) = - Pt~l(k) (36)

In (36), we eliminate any dependence of x2(k) on x2(0). Thus, from k = 0 to
some/i =k*, (36) may differ considerably from the actual x2(k) states. Since all
fast modes are stable in this analysis, the question is not whether -2(k) will
converge to x,(k), but how soon

112(k) - xs(k) I < y (37)

for some y> 0 and k> 0.
The interval (0, k* ] is referred to as the ' boundary layer' in the analysis

of continuous singularly perturbed systems (Kokotovic et at. 1976). For IL
small, k* can be as small as 1.

Example
From Calovic (1971), the discrete model of a steam power system is given

as
S0-9014 0.1179 0.0525 0.0167 0.02104
-0.0196 0.8743 0 0.025 0-02934

x(k+ 1)= -00071 0.7342 0.20175 0.013 0.21067 x(k) (38)
-0.75 -0-0557 -0.032 0.19357 -0.014076
L0-306 -0.01,394 -0.011 0.14278 0.013217.

This model was found to fit the model (4) with N. = 2, Nt - 3. The corres-
ponding submatrix norms were

1JA1111 0"9415, I1A11 00625, 1IA.,1I1=0"8184, II ji-0"2441

Condition (7) is satisfied with 0<0.259 25<0.338 38. Using one iteration
of the Pt matrix recursion

-0.02583 - 1.029

pi 1.0207 - 0-09667 (39)
0"4817 -0"06101

I
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we obtain the slow subsystem

0-875521 0.17486 1
xk ) -0053 08791x 8(k) (40)

w h ic h h a s e ig e n v a lu e s A ,2 - 0 8 6 7 . 0 4

A1, -08777 +50.105 4

whe iccorese damical o h t legnaus of (38) given here foriuatdusn

Tcompareo purposecododrmdlwtsu it re oetersos

x.-A1 , -08, 0,052,0-6

Thih oentr sste dyaic of (38)nte wi) nwhibe smted p soinge taewl

whe thfedb rmi .Uing ee st appeaitratio opt utios io d-~.-.a

~~4(k) - 1  1(k)

of te sytem o a iniial ertrations of

is plottFdursu its loerue order approximtion (fgstato 5l). Teata
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0.0

-2

ii -- %2(k)

-0.6- k)

0 O1 15 20 25 30

Iterations,(k)

Figure 2. Reduced order approximation of state z,(k).

S. Control law &dPln
The explicit inverses of the block diagonalizing transformations and the

two-time-scale nature of the proposed model, enable partial or total pole place-
ment to be carried out by solving reduced order pole placement problems.
First, two cases for partial pole placement will be covered. Then, a two stage
design for total pole placement will be outlined,

Case I
Only slow eigenvalues need to be altered.

Using transformation (21), our resulting system is of the form (23). Let
A, - Al + P'A, and B. - B, + PIB 2 and observe that the pair (A., B.) spans
only the 'slow' controllable subspace.

-X 3(k)

Itertoo., W

Figure 3. Reduced order approximation of state zx(k).

I i
Ii
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T -.

Figure 4. Reduced order approximation of state x,(k).

Design G, such that the eigenvalues of (A, + B.G,) are at N, desired loca-

tions. This gives a closed loop system

1)] [ 1 (A. +B.G.) 0 ][yvdk)] (41)Ex,(k +1) J (A21 +E2G.) Aj X2(k)J

where At -All- A, 1 P.
This system has N. eigenvalues of A. + B.,G., and Vf eigenvalues of At.

The feedback control takes the form

u(k) - Gy 1(k) (42)

-~~~ [5 PX,(k)

0.2

0100
-. 25 - lw . r ----
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Case 2
Only fast eigenvalues need to be altered.
Using transformation (13), we obtain the upper block triangular system

(15). Let At-An+PtA1 and Bf-B,+PBt and observe that the pair
(At, B1) spans only the fast controllable subspace.

Design Gt such that the eigenvalues of (At + Bt~t) are at Nt desired locations.
This gives a closed loop system[xi(k +1) FA, A12+BG, 1 rz(k)1.(3

y,(k + 1)j .0 At B+ J I.Y(k)J

where A, - All.- AP t .
This system has N. eigenvalues of A. and Nt eigenvalues of Aj+ BtGt.

The feedback control takes the form

u(k) - Gtd2(k)
-[Gtfl i Gflx(J)  (44)

If the design requirement entails moving both slow and fast eigenvalues,
then a two stage procedure can be implemented.

Given a system of form (4) that has been put into block diagonal form via -

either the S' or 'FP'transformation,

ryl(k+l) 1 FA. 0 iy(k)1r.
S+1 u(k) 15)

Lys(k +1)] L 0 AtJy(k)J B1J

We can design for either slow or fast subsystems pairs (A., B.) or (A t , BI).
Arbitrarily, the pair (A,, B,) is selected first.

Find a feedback gain G, such that A, + B.G. has N, desired 'slow' eigen-
values. The resulting partially closed loop system is of the form

I-I 0I I +11 ut(k) (46)
y(k+t1)jL BfG., A IL ,(k)J LBtJ

where

u(k) = G.y(k) + uf(k)

Now, let

z,(k) - y2(k) - Sy1 (k) (47)

which results in

z (k + 1) - [BjG. + A1S - S(A + BsG,,) ]yl(k) + Atz2(k) + (B, - SBt)uf(k)

Choose S such that

AS-S(A, + BG,) + BtG, - 0 (48)

This Lyapunov type equation has a unique solution if

a(At)na(A, + BG,) "(49)

[
I
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J. Thus, one of the design requirements of the first stage is that the desired
slow spectrum be disjoint from the open loop fast spectrum. The solution to
(48) can be found iteratively like Q2 and Q6 or algebraically (Bartels andJ Stewart 1977). (46) now becomes

Yz + 1) [A, ,G 01 z) B ]
JL [u,(k) (50)

lzs(k+ 1)] 0 11[ z(k) B-SBI

Now, design a feedback gain Of such that (At + (Bt - SB,)Gt) has Nt desired
eigenvalue locations.

The composite feedback is of the form

u(k) - u.(k) + u1(k)

- Gyls(k) + Grz,(k)

- (G5.- GtS)yl(k) + Gty2(k) (51)

Depending on whether the 'S' or ' F' transformation was used, y,(k) and
ys(k) can be expressed as functions of our original states. For example,
using the ' 8 ' transformation

Y1 (k) - [I P'1x(k)
T y,(k). [ - Qs I - Q 'p]x(k)

and (51) becomes

u(k) - [G, - Gt(S + Q5): GP 8 + Of - GI(S + QI)P]x(k) (52)

which places N, eigenvalues of (4) according to A(A, + BG s) and N1 eigenvalues
according to A(A 1 + (BI - 8B.)Gf).

Example
The discrete model of an eighth order power system (Calovic 1971) is given

as

0.835 0 0 0 0 0 0 0
0-096 0.861 0 0 0 0 0 0.029

-0.002 -0-005 0.882 -0.253 0.041 -0.003 -0.025 -0.001
0.007 0.014 -0.029 0.928 0 0.006 0.059 0-002

-0.03 -0.061 2.028 -2.303 0.088 -0.021 -0.224 -0.008 (53)
0-048 0"758 0 0 0 0,165 0 0"023

-0"012 -0-027 1"209 -1"4 0"161 -0"013 0"156 0"006
0"815 0 0 0 0 0 0 0"011

0. 0 0"294 -0"038 2.762 0 1'473 0 1
Hr .J (54)

.3.295 0.152 -0.003 0.01 -0.051 0.056 -0.015 2.477

which is of the form (4), with N, , = 4, and IA 0.2 5 9 04.



R. 0. Phillips

After three iterations,

0.012 0-035 -2.102 1.809"

0.095 - 1.083 0 0

P t  (55)
-0.020 -0.006 -2.168 1.546

-0.909 0 0 0

0 0 0 0

0 0 0 -0.034+'= (56)
-0.043 0 -0.005 0

-0.004 -0.009 -0.109 -0.003

The slow subsystem is given as

[0.835 0 0 0

0.126 0.861 0 0
A,= f(57)

0.004 -0.009 0.913 -0.288

Lo010 0.021 0.098 0.836

0 0 0394 0054]
B9T - (58)

3.295 0.125 -0.002 0.003]

The desired slow eigenvalues are

A,2(Des) - 0.9 ± 0.05j
A3 (Des) - 0-85
A,(Des) - 0.8

and the feedback E0-032 -0-01 0 010,, 0.76 (59)
-0.069 -0.027 -0.34T 0.676

places the eigenvalues of A, + BG, at these desired locations.
This gives S as

-0.170 -0.121 -1.013 1.508"

0-01 -0"003 0 0
8 = (60)

-0.134 -0.131 -0.904 1.076

-0.028 0.008 0 0

........- -- - m-___ ___ ___ ___ __

. . .. .. . . +... ' . . ... . . . . .. .. .. .. . :=' -- . . . .- - - . - " 
'
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and the resulting fast subsystem

"0-003 -0.005 -0.064 0

A=0 0-165 0 -0-009 (61)
0-07 0.001 0-302 0.011

1 0 0 0.011
2"392 0 1-074 0S(BI - S B. )r~ (82)

10.0587 0.176 0.394 -0.692]

The desired fast eigenvalues are

As, (Des) - 0-2 + 0.01j
A7(Des) - 0.15
A,(Des) - 0. 1

and the feedback ro . .o0 9 0 -0.333]
-0 - (63)

0 0.010 -0-052 0-029]

places the eigenvalues of At + (Bt - SB.)TGt at these desired locations.
The composite feedback analogous to (52), places the closed loop eigen-

values at
AL(CL) - 0.900 ± 0-051j

As(CL) - 0-846
A4(CL) = 0.799

As ,(CL) - 0.199 ± 0.014j
A.(CL) - 0-161
A,(CL) - 0.093

Thus, a maximum error of 7.3% after 3 iterations, and an absolute error well
within the convergence rate bound 0(10), where

ps=o-o17

Ii 6. Comdimlo
A model for a class of discrete systems having a two-time-scale property

has been defined. By satisfying certain subsystem norm conditions, reducedj order models may be derived without a priori knowledge of the eigenvalues of
the system. This is appealing to exceptionally large discrete systems (i.e.
economic, sociological, etc.) where the computation of eigenvalues may be
impossible. Dual block diagonalizing transformations are used to obtainIi reduced order fast and slow models. Order reduction is achieved by approxi-
mating the fast modes at deadbeat. Thus, the original fast states are approxi-
mated as quasi steady state output functions of the slow states. Partial or
total pole placement for the higher order system is implemented using designs
based on the reduced order fast and slow subsystems.

[
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Appendx A

Iterative techniques to obtain solutions to (14), (17), (22), and (25) appeared
in Avramovic (1979) and Kokotovic (1975). The subspace method (Avramovic
1979) leads to the following matrix recursion equation for Pf

Pk-ll Pk'- Rf(PA )(Ajj - AIPkf) - ' (A 1)

Pol,, - A21AII - I (A 2)

In the case of (4), the convergence of (A 1) is guaranteed for all A satisfying (7)
and the convergence rate will be 0( Lk) since

sup Ia(An+PA,2)a OIL() (A 3)
inf ja(AI,- AI.P')j

A computationally more efficient form of (A 1) is proposed in Kokotovic
(1975), where the approximation

('-4, ~t =A11 (A 4)

leaves (A 1) in the form

PkIf -, ( AnPi, + Pkf A I$Pkl
- A2I)AII - I (A 5)

which possesses the same local convergence properties of (A 1). Bounds on
ja for the convergence of (A 5) have beea considered in Phillips (1979).

The subspace method of Avramovic (1979) can be extended to find an
iterative solution for P'. This is seen by letting P' = M-I M., where the rows
of (MM,] are left eigenvectors of the system matrix in (4) spanning the domi-
nant N,, dimensional eigenspace. The iterative solution can then be shown to
be of the form

Pk+l - Pk
s 

+ (All + Pk
s 

A 2 1)-
I

. Rs(Pks) (A 6)

Pos - All-' AI (A 7)

The conditions for convergence and the convergence rate of (A 6) are analogous
to those of (A 1).

Again, from Kokotovic (1975), making the approximation

(AjL, +pPk' All)-, ' All-' (A 8) -

(A 6) becomes

Pk. s - All-(A + Pe Ans - P4 k' A2PIk') (A 9) 1
which is also considered in Phillips (1979).

I

iI
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Solutions to (17) and (25) have been well documented and can be found
algebrnically (Bartels and Stewart 1977) or recursively (Kokotovic 1975).
From K,-)kotovic (1975), the following successive approximations converge
under mild bounds at an O(pk) rate

Q1,11 - All-l(AlsPfQk' + Qkt(An + PtA12 ) - Alt) (A 10)

Qot  -Al 1 -' A1 t (A ll)

Qk+L, - ((An - AnP')Q.'- Qk" PeAs + AtI)A 1
-  (A 12)

Q09 - AnA1 1-I (A 13)

In the example (A 10) and (A 11) have been used.

Appendix B
The existence of an equilibrium solution to (A 5) is guaranteed if g is bounded

by (7) which also establishes (8). These results were first derived in Kokotovic
(1975) and applied to discrete. systems in Phillips (1979). However,
Avramovic (1979) has shown that (A 5) is a simplified form to the matrix
recursion (A 1) in that convergence of (A 5) assures convergence of (A 1) to an
equivalent result. From Avramovic (1979), the sequences of (A 1) are shown
to be equivalent to the sequences of the following simultaneous iteration for
computing the basis of a dominant eigenspace of A

Vk + l - AVk8 (A 14)

where

Vk E ' 1 V
7- - [ GR2 XX]

L= Vii J~ N

and Sk is a scaling matrix. Thus,
V 2 k( Vk k)- l (A 15)

and the spectrum separation property and (8) are established.
The existence of an equilibrium solution to (A 9) is guaranteed if t is bounded

by (10) which also establishes (11). The left eigenvector approach to the deriva-
tion in Avramovic (1979) results in (A 6) and (A 7) of which (A 9) has been
shown to be a simplified form. Thus, the dominant eigenspace iterations of
Avramovic (1979) can again be applied in analogous fashion to establish (12)
and the spectrum separation property.
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Multi-Time-Scale Analysis of a Power System*
JAMES R. WINKELMANt, JOE H. CHOWt, JOHN J. ALLEMONG:.

and PETAR V. KOKOTOVIC§

Singular perturbations, applied to a model of a three machine power systerm
prorlded reduced models which Yield good trigenivalue and time response approxi-
mations of the original system.

key Worw-Computational methods; time scale modeling: system order reduction. iterative methods;
power system simulation; dynamic response; large scale systems.

Abslruct-A time-scale separation procedure is outlined and states. The fast parts may arise due to either
p~plitd to .i three machine intercontnected power woctm modes that are well-dampred. that is. eigen'%uuinodcid '%ith rux linkage i--.d %oitave regulator dyn 1macs4.

Pa.tiul models 3su#; is the cietromechaical model ansd with farge negative real parts, or high frequency
single machine-infinite bus model are used to identify the slow oscillatory modes, that is, eigenvalues with large

and fast states of the systems. Linear simulation results in imaginary parts. Such models can be put in thetwo- and liosr-time-scales demonstrate the potential appfica-
bwility of the sangular perturbation approach to long-term standard singular perturbation form (Kokotovic.
dy.namic studies ot power system O'Notalley and Sannuti. 1976) and the time scale

separation method discussed in the companion
1. INTRODU~CTION paper is directly applicable. However, in a larue

TIS paper presents an application of the singu- scale system the situation is more complex. Even
iar perturbation method for separation of if the subsystem models are state separable, their
time scales described in a companion paper interconnections may introduce new phenomena
tKokotovic and co-wvorkers, 1930). A linearized and change the speeds of some of the states.
10th order model of a three machine power Then a new choice of state variables may be
system with realistic data is analyzed in two- and needed to make the interconnected model state
four-time-scales. The model includes the elec- separable. An example is the angle transfor-Jtromechanical, flux linkage and excitation system mation used here to deal with electromechanical
dynamics. Following an electrical disturbance the interactions. To make the determination of fast
model exhibits a rich frequency spectrum of and ilow states more systematic, we propose the
restoring motions. Due to the strong interactions following separation procedure. First, we study
between machines, the individual machine vari- readily identifiable phenomena. in this case the
ables are found to be mixed and hence is not electromechanical Interactions and the single ma-
suitable for direct state separation into a slow chine characteristics to identify the fast and slow
and a fast subsystem. The identification and the states. The next step is to apply the iterative
reformulation of the slow and fast variables are scheme to validate the choice of the slow and fast
therefore among the major problems. variables and to improve the accuracies of thie

A state-space model of a multi-time-scale sys- slow and the fast subsystem.
temn is sw d to be state separable if the fast parts The paper is organized as follows. The model
of some of its states are small cornpared with their of the three machine system is given in Section 2.
slowv parts and with the fitst ptirts of the other The separation procedure is proposed in Section

Reciie Jau~ay 1. 179:re'ase Ju~ 5 199. ue 3. Time scales of the electromechanical Model Are
anginal version of this pape w"s pirested it the IFAC discussed in Section 4. In Sections 5 and 6. the
S'mposium on Computer Applications in Large Scale Power full mnodel is analyzed as a two-time-scale system
System which %as held in New Delhi. India during August and thie simulanon results are discussed inL979. The published Proceedings of this iFAC Meeting may
be ordered from: Pergamon Press Ltd. Headinpton Hill Hail. Section 7.Section 3 is an extension to a four-
Oxford OX308W. U.K This paper was recommended irtt time-icule analysis.
publicaion in revised form by assocae editor 9. Wollenbere.

This research was supported by the U.S. Deimnment coi
Energy, Divison o( ElectmricEergy Systems through contratct THE TEST SYSTEM
number EC-77-C-0S-5566.Fo hthemahntetstminigIth4Eiectric Utility Systems Engineering Department. General Fothtre m hi tssstm nFigthElectric Compeiiy. Schenec ady. NY IW45. U.S.A. disturbance Of interest Is a ive cycle three phase

:Amvican Electrc Power Service Corporation. New York. fault on bus S rollowtcd bv the los-s of line S-9.NY 10004. U.S.A.
30D0sion and Control Lithoratory. Coordinated Science Constaitt impedance loads are assumed. The six

Labomratorv. University of 111inm Urbana. IL 61801. U.S.A. electromechanical equations are

'pM
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Si- 377(ol - 1) im- ,2,3 (1) TASLE 1. SY%0IN0f%oIIS %44011%'t DATA 1100 %IVA BASE)

3 .
i Y Cs(j+6i-a Parainaer 1 2 3 -

i-1,2.3 (2)-

where Vi are generator voltages Yj_1 intercon- t(a)3.4 64.0
necting admittances, D, damping terms, Pi
mechanical input powers and H, inertias.

D (pea) 9.6 2.5 1.0

O(u14132.5 000s:1.0
26 3 060 X X(PU) 0.6 0.3958 0.9

:~~~0I2, ~ ~ ~ 7 i014b 0 O.5a "02 0.082920%
P.X (Pta) 0.58 0.8645 0.85

I.5j.Spa0.90+10.30sia X (PU) 0.056 0.110 0.18
NOTE ALL. LOAO FLOW 4INFORMATIOIS t FOR
PMEOISTUAUANCE COXE- Y 1 1:1 ~:0 4.07
OITIOIES. TME 9ASE SPOWCA 13 oouMvA. Wse:2.6 X (Pu) 0.0608 0.1198 0.18130 0Zg .27O3ou Ofoul :9.6

LOW. P rom TO A lowe) X low.) 62 lam)
I 4 a 0.011117 0 X'(Pu) 0.0608 0.1198 0.1813

2 4 1 0.017 0.062 0.079
3 1 5 0.039 0.170 0.179

7 0.0119 0l0w 0.1041 TV (soc) 4.0 6.0 5.0

A 1 9 0= 0.11 05

T O(e) 0.25 0.54 0.65
FIG. 1. 3 machine. 9 bus test system. _______

The voltages induced in tth: d-axis and the q- The same IEEE Type I voltage regulator
axis by the flux linkages iSchulz. 19716) for (IEEE Committee Report, 1968) is used for all

i123machines with the exponential saturation
I funlction

cE-+' X - X. )t'. (3) S1 E(7)epEB~ 1

rctained but limit type nonlinearities neglected.
r 2.-c-ej.-(X..- -) ill]E, (4) Th rnip~ier. c'tt;iter and feedback coin pensator

etiations are. fo.r - .2

*where Ef,, is field voltage and the currents arc eo- -K.(F(j-,j(T-

i i Ii~~ o Ioj J-,

e,, sin (0,, 4- li,)] (5 Tjd KrEd iE~.) v, 9

ic, iC~4 os (0j, + - (i) A, +E,-i) (10)

The machine data are given in Table 1. and their llnarnictcs are listed in Table 2. I
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TAMU 2. VOLTAGE REGi LATOR cOr.STAW1 i-2,.... k, and obtain

T, -0.06s K, M-,0.0"s A 1 -A -BLt
T =O.s K, - 0.16
T, - 1.0 S 4,,, 0.001t23 C,-C- DL, , +LA (17)i K - 2J8, .- ..'O3

D, - D -- LB.

This model is described by twenty-one differcn- Then, we compute H,, from
tial equations whose linearized form will be ana-
Iyzed in two- and in four-uime-scales. It is well- HL,.BD;' +.(A -H ICk)Hj iD-
known that for machines with non-uniform
damping, the system order can be reduced by one H,, =BD;' (18)
as one of the angles can be used as a reference j... , and obtain
kPrabhakara and EI-Abiad, 1975). However, for

1 illustrative purposes. we use the individual ma- .4jj .4k-Hj1 C,
chine angles and eliminate :he extrancous angle Bkj =- H.,D, - AjH,., 19
variable only after we have introduced the angle
transformation. This model will be referred to as D - D, + CHgq.
the full 20th order model.

The iterations 116). (17) are used for correcting

3. THE SEPARATION PROCEDURE the fast variables 'hk and (18). (19) for the slow
variables ',. Different j and k are possible de-The iterative scheme developed in the com-

panion paper starts with a model in the state pending on the accuracy requirements for the

separable form slow and the fast variables. If a better accuracy of
the slow variables is required while some in-
accuracy of the fast \ariables can be tolerated.

,, [I12) then a few more H-iterations are used and vice
LC D versa. Note that the quasi-steady-state models as

defined in the companion paper is obtained by
where x is predominantly slow and contains substituting .41, D, 0 and L, for At,,. Dki, Hkj and
fast transients or oscillations superimposed on L& in (1 3)-(15).
slowly varying .uasi-steady-state lqss). Note that In contrast to modal analysis. .4,s and Dk
the scale factor s is incorporated in C and D (see approximate the slow and the fast modes of [I').
Remark in Section 4 of the companion paper). respectively, in groups rather than individually.
This full system is then decomposed into a slow There are two distinct advantages in this ap-
subsystem proach. First. (15) indicates that ", retains the

physical nature of the original variable x while q,
1 (1.3) retains that of the variable :. Second. the ex-

a a spressions (16)-(19) for .4A, and De, are expressed
and a fast subsyvstem in terms of the original matrices A, B. C and D.

and the calculations are straightforward. The
,(14) price to be paid for these advantages is that a

model has to be in a state separable form (12). In
and the original variables x and are approxi- this paper we demonstrate how this is done in
mated by practice using a th order electromechanical mo-

-l and a 20th order model of the test system.
Xtj ,i'j + H'iif The separation procedure which we follow in

* zij=, - .vk (15) the examples consists of two phases.

M\odeling phase. As is the cast mn pov.-e: ivs-
where k and j denote the number of iterations tems. !arge scale systems often are composed of
performed on the fast and slow variables, individual systems haing the same t.pes of
respectively. components. If these individual systems arc

For completeness. we summarize the iterative weakly interconnected, the 0low and fast states o"
procedure 57), (58) in the companion paper as the overall system could be obtained by determin-

follows. We first compute L. from ing the slow and fast states of the individual systcms.
However. it is usuaily the case that intercon-

L,1D-'C-D'L,_,(A-BL._,) L, -D C nections result in an altering of the slow and fast
(16) variables as determined from the study of the
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individual systems. As a result transformations machine against an infinite bus. Finally the fas-
may be required to put the total system into state test is the motion of the two smaller machines
separable form. This may be achieved by a global relative to each other. These motions are better
study of the appropriate interacting components. exhibited in a new set of variables
Such a study will allow us to propose candidates
for the slow states x and the fast states . Ha, =H I , + H M 2 + H 363

Validation phase. Norm conditions such as R, +H+H
those in Kokotovic (1975) usually yield con- H,62 H6_-
servative results and henc are not used here. Hm 2 -
Experience has shown eigenvalues to be a better H1 H3

indication of convergence. Given a proposed mo- 6dri-'-63  (20)
del in the form (12) the qs model and models
obtained by using the iterative method with one
or two levels of correction (k-j- I or 2) are and a similar set of variables w.i, (ue, (o, in terms
used in this validation phase. If the increments of of cu. c 2 , v.i. Since the dynamics of the other
the eigenvalues in successive A, or D., are small ive variables do not depend on 6,, this angle is
then the choice of slow and fast variables is not included and the model reduces to fifth
adequate. Otherwise, a different selection of states order. The co, coordinate (20) is commonly used

.is required, that is, a return to the modeling in stability anaysis (Stanton. 1972: Luini. Schulz
phase. Alternatively, eigenvectors of A,, or D,, and Turner. 1975). The linearized post-fault sys-
may be used to indicate convergence. tem is

-0.198 0.00756 0.00486 0.00733 -0.00181 aJ,
.,0 0 3'77 0 0 ao, .

0o, 00122 -0.133 -0.191 0.0304 -0.00454 6". (21)
0 0 0 0 377 4o,

L d. L-0.292 0.163 -0.0292 -0.426 -0.175

The models (13) and (14) which passed the To test whether this model can be separated
validation phase may be iteratively improved into three subsystems. we apply the iterati'e
using 116H19) to match the needs of applications scheme to decompose t21) into the slow sub-
such as simulation in two-time-scales and decom- system (A&),. 16,. 4a)) and the fast subsystem
posed control design. In this paper, only the (ila, .), and then further decompose the slow
linear simulation results are presented. The above subsystem into two subsystems (Ad,,) and lAo.
procedure can be extended to multi-time-scales aw,). The qss models are
by a repeated application of the two-time-scale
procedure. &oM -0.199&.',

& Q, . k- 0.102 - 0.19 J A ,°
4 THE ELECTROMECHANICAL MODEL

it can be expected that the time scales in- . "lit'J,,/
troduced in the single-machine analysis in Section L _ -A. JL .
5 of the companion paper will have to be
modified here primarily due to electromechanical
interactions between the machines. These interac- compare the eigenvalues of the qss models di-
tions are considered first by assuming that the rectly to the eigenvalues of the full system. As
voltage V. V2, V] in (1), (2) are constant. From Table 3 shows. their eimenvailues approximate the
the fault location and the physical parameters of eigenvalues of the full model (21) within 20,
the system. three different speeds of system dy- This excellent separation of the time-scales
namics are to be expected. The slowest is the motivates the use of the variables (20) in the 20th

motion of the whole system as a single unit. The order system.
second is the motion of the two smaller machines
moving together against the center of inertia. S. TWO-TIME-SCALE MODELING
which is analogous to the motion of the single Now we proceed to perform a two-time-scale

t
I
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TAmua . EBMNVALUUS o' ni PFLL 10011L (21) but not the frequencies. The decision on the
AND m., l SUWYIts 82,,) remaining de¢j, 4e;, is considerably more com-

. Full r!"w $ mailds plex and likely to depend on the parameters of
the specific system. The single machine sepa-

-0.1990 .2 ration of e', as slow and del as fast seems a-0.0949*16.09 -. 0965±16.2b0
-0.0857:tj12.9 -a07jl2.7 good starting point for systems with weak and

moderate interactions.
,* In view of the above discussion, we propose

decomposition on the ull 20th order model. The the (7, 13) decomposition
choice of the slow and fast variables for this
model will be based on the results obtained from xT -(a,, &e;. ARt, .e;2, AR,, ag 3 . 4R 3 )T

two partial models, namely. the single machinemodel in the companion paper and the ciec- (At , Ae3 Z. ,. eJ, . AL'),. A1' AEl,
tromechanical model in the previous section. 'IVR. AEf,4 . AVRJ. 4 ,fEJ A 1 ,,, )T.  (23

In the 7th order single machine model using
data close to those of machine 2. the variables The system matrix for this ordering of the states
(Ae;. AR,) have been identified as slow and the is given in Fig. 2.
other variables (4e;, 6j, 4w, AVt, ,Er.) as fast. A particular merit of this grouping of state
Similar conclusions are obtained using data from variables is that x contains the system frequency.

" each of the three machines. On the other hand, all the slow flux linkage variables and all the
the electromechanical model from Section 4 slow regulator modes, while : contains all the
exhibits one state (&.j,) whose speed is compar- fast flux linkage variables, the fast regulator
able to Ae. and 4R.. and four states (A. Aw, modes and the swing modes. This grouping of
A6J. AvW) whose speeds are comparable with the variables of similar physical nature simplifies the
fast variables in the single machine model, identification of the slow and last variables. With

Whether the choice of states suggested by the the slow and fast states tentatively identified, we
" two partial models is applicable to the full model may proceed to the validation phase immediately.

depends on the interactions. From this point of Note that the above decomposition does not
view, the voltage regulator variables 4Vj1t and depend on the knowledge of the exact eigen-
Us. should be retained as fast, and 4R, as values of the full system.
slow in the full modeL Furthermore, the Aw, An alternative approach is possible if the exact
variable is assigned to the slow time-scale and eigenvalues are given as they are in Table 4.
"U,, 4w,, 4j, ico3d are assigned to the fast time- Then we first note that there is a gap between the
scale. Their interaction with the voltage regulator 7 small eigenvalues and the 13 large eigenvalues.
is known to significantly change the damping, and hence, the order of the stow subsystem is

o -. a -.0.8 0 -. 01430 -. 0161 0 .0077.0M ,O MS .01477 -. 0277 0 0 0 0 0 0 .Oat1 *8-00

q 0 -. 5 4 0 .0 (736 .138 0 .153 -. 08L9-.04M -. 1O 4 0 0 .3 0 0 0 *.GL" 0

art 0 0 10 O I a 0 0 0 0 0 .0 0 0 0

S VI, 2 0 -. ,11 .13 0 .U4 041 .030 -. 1L 0 0 0 0 .16 0 0 -. 150
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S O -a a 0 a . -. 0 0 a a ' 0 0 a 0 0 1 .0 0 3

S -2$6 0 .970 0 1 0 -. 77 1.13 1.1 0.64 3 a 0 a a 0 4 - 3

Ia -. 4 6 -. 316* 00 -. 485 0a . 016 -4.63 1. ,3 0- 0 0 4 0 0 0,a 0 0 -01 3

0 -. 63 0 .2 0 -. 77 0 175 L.8 . 1 00 Is -1..? 4 t.0| a ,

,, 0 -0 ,. 0 0 0' 0 0 0F 0 0 2.27 3804 0 O 0 3 3

ABC -. QW~
v 

.0 4 0 - .044a ow a . M06"1 - OU0. - 101 • . 0 0 0 0 a a 0313 • J02:?

4VRI 0 -33. 6. -t. 04 -13. a 1.0 W . W Y, . 66 a L ? - 1. ? 4 4 0 a - ', 1
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TAS4I 4. EIGENVALUR ANO IEIGINVCTOr kPPROXiMA1OsS oe rE i7.13 oe emo T0%o.

Cosines of the principaL sales -"

Eigenvalues of between the eigenVeCtos of th.
Eigenvaluts of th a Subsystems full systm ad subr stm s
the 20th Order First Levei Second Level First Level Second Level
System Subsystem qss Mfodels Correction Correction qss Models Correction Correction -

-.245 -.24S -.245 -.245 .998 .998 1.
.342+j.502 Slow -.372+j.538 -.336.j.505 -.342+j.502 .990, .977 .991, .977 1., 1.
.467;j.777 -.511j.770 -.463;j.774 -.4 66;j.776 .987, .930 .987, .932 1., .998

-1.l4ej.866 01.06tj.673 -1.1S..7-4 1.17Ej.866 .982, .806 .989, .815 1., .984

-2.11 -2.33 -2.08 -2;04 .831 .956 .993
-4.17 -4.05 -4.17 -4.17 .979 .999 1.
:.759 'j4.63 -.667+j4.71 -.763+j4.62 -.759+j4.63 .988, .939 1., .999 1., 1.
-7.36- Fast -7.59 -7.37- -7.36- .987 1. 1.
-8.17 j7.70 :8.29!j7.95 -8.16+j7.71 -8.16+j7.70 .927, .71 1., .998 1., 1.
-8.46;j8.06 -8.29+j7.95 -8.46;j8.06 -8.46;j8.06 .853, .547 1., 1. 1., 1.
-8.ssjS.24 -9.29j7.95 -5.s5;j8.24 -8.55i8.23 .975, .313 1., 1. 1., 1.
-l.42!+pl.1 -33j11.0 -l.42Ejll.l -1.42tj11.1 .999, .997 1., 1. 1., 1.

tentatively set at 7, while that of the fast sub- models is within I 1 0.. Between subsystems with
system is set at 13. first level corrected models and second level

To identify the slow and fast variables, we corrected models (k-j,,2), the increment is
attempt to correlate groups of eigenvalues of the within 5 IV. This indicates that the choice of state
partial models with the exact eigenvalues. For variables (23) for the fast and slow subsystems is
example, the swing modes are recognizable in appropriate. Note that even though the fast-slow
Table 4 by being close to the swing modes in ratio defined as I-2.11H -1.14-A.8661-1.5 is
Table 3. To be specific, the pair -1.42±jl 1.1 not much larger than one, the iterative scheme is
corresponds to the intermachine swing modes still applicable.
U& Ag,, the pair -0.759 ±j4.63 corresponds to We now illustrate how eigernectors may be
the center of swing 46,, Aw of machines 2 and 3. used as an indication of convergence. For real
and the mode -0.245 corresponds to the system eigenvectors, we compute the angle 0
frequency A,. Note that the inclusion of voltage -cos - I(u. c)/lu I Iv1 between the eigenvector it

regulators has improved the damping, but does corresponding to the accurate eigenvalue . and
not significantly alter the frequencies of these the eigenvector r corresponding to the eigenvalue
modes. of (13), (14) and (15) approximating 4'. where (.)

Another group of eigenvalues which can also denotes the dot product between two vectors. For
be easily correlated are the pairs -8.17±+7.70. the complex eigenvector u-ut +ju: and its ap-

-8.46±j8.06 and -8.55±j8.24, which corres- proximation L-r ±jr., we compute the incli-
pond to the fast voltage regulator modes LV,., nation of the subspace $' - r,. r2, spanned by
AE, (see the companion paper). Furthermore, the vectors a,. r2 %with respect to the subspace S,r,~ spsnne the copaio paper)s Furth,.moris
the modes -7.36. -4.17 and -2.11 are close to -. u 2,U, spanned by the vectors u1 .u.. This
the eigenvalues -9.16, -5.64 and -2.56 of the inclination can be measured by the principal
3 3 e;, submatrix obtained from the .4 matrix, angles 0,. illjorck and Golub. 1973) which are
implying that they are associated with Ae ,. The defined is folo%%s"
remaining eigenvalues therefore correspond to the 1 0, is the smallest angle between any pair of
Ade,. AR, modes. This analysis deals with groups
of modes rather than the individual modes. The vectors a, e S and bsS, hat. hat i. aI sCaIr

same 7 slow and 13 fast state separation (23) isbquanhetres.
obtaned.quantities.

2. 0, is the smallest angle between any pair oC
vectors a e S and b_. eS subject to the6. TW O .TIM E-SCALE VALIDATIO Nco s r i t i , i,.b b .

We now apply the iterative scheme to validate
the choice of the slow and the fast variables by The smaller the angles 0,. 0, are. the better the
comparing the eigenvalues of the qss models with approximation of the eigen'vectors computed
the eigenvalues of the first and second level from the subsystems will be. This is because the
corrected models (k -j - 1.2) given in Table 4. orientation of the subspaces S and S' is almost
The eigenvalue approximation between the qss parallel. From the definition of 0, and 0:. it
models and the first level (k-j=l) corrected seems that a search scheme is required to find 0,

. . . . .. .. . ..
__.. . ._.. .__,__.. . . . . . .___________ __ - E_-,
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Land 8j. However, it is shown in Laub (1977) thatio$
cose 1 , cosO2 are directly given by the square
roots of the eigenvaluus of the 2 x 2 matrix£U° 'U where U°m(UrU)-"Ur ,  V -lrl ) " I.T. G .[UtUj.o Vm[V't.J . 00s MOEL

For large systems. comparisons between the
eigenvectors of the subsystem models with dil- -
ferent levels of correction may be used.
Alternatively if the order of the full system is not
large. as in this case. comparisons between the
full order system and the subsystem models may -00
be performed. The cosines of 0, and 02 between
the accurate eigenvectors and the eigenvectors
constructed from the subsystems are shown in 015
Table 4. With first leve! corroction, the cosine of 0 2 s a
the worst principal angle is 0.15, which im-
proves to 0.984 with one more level of correction. PFc. 31b). 7.13 decomposition of , with no and first le~I

Sorr ctios.

7. TWO.TIME-SCALE SIMULATION
-From the validation phase it can be expected

that the 7th order slow subsystem model 113) and xIO
the 13th order last subsystem model (14) with first 01.3

level correction will provide a satisfactory approxi-
marion of the 20th order modeL The subsystem 0.50
models are used to simulate a five cycle three MtDELS

" phase fault on bus 8 followed by the loss of line 0.25
89. The original state variables x.: may be -
obtained from the subsystem variables t,q by .00-o
using (15).

Figures 3(a-.d) show the responses of two slow *0 25.
variables 4.,, Ago. and two fast variables A.cuw,
*V5 1 . Other responses are similar and with even -0V0
smaller approximation error. For the fast vari- 0EXC
ables, the accuracy is excellent as the difference
between the exact curves and the first level -0 - 4 ,0
approximate curves is virtually indistinguishable. 0 iE isec.o
In the slow variables, the error is noticeable but
small. Fir. 3(c). 713 decomposition of Uu', with no and rirsc lcieiP 1 correcUons.

K3

-02

10,
' [X '..T .qit ACTE

703 1. -

2 4 9 1 10 0 2 4t 6; 3
TIME (stC) TIMEIse Il

SF,. (aL. 7.13] tifomposition of , with no and first level Fit.;..idL. 7,13. decompoitlion of IV,, with no and tirt Ievel
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Abstract. The notion of slow coherency is introduced as a less demanding
doinition of coherency, which allows for a lack of coherency in the fast part
of machine transients. The relationship between the time scale properties and
the slow coherency is shown to be the dichotomic solution of a matrix Riccati
equation. A grouping algorithm is presented which reduces the area
decomposition problem to one of obtaining a basis for the slow subsystem and
performing a Gaussian elimination. A geometric interpretation of this area
grouping algorithm is also presented. The procedure is illustrated with a 3-
machine and a 16-machine example.

K . Power system modeling; large scale systems; system order reduction;
singular perturbations; identification.

INTRODUCTION Wi h our approach the slow and the fast modes
are dichotomically separated as groups using

The size of any present day power system is a transformation well known from the singular
such that full scale simulation of even a perturbation technique (Chow, Allemong and
basic multimchine electromechanical model Kokotovic, 197; Kokotovic and others, 1980).
may be too costly. It has been observed that Grouping machines according to the slow
in post-fault transients represented by this coherency criterion means in singular pertur-
model only some machines closer to the fault b, .on terms that the equivalent machines
respond as individual units, while other ma- constitute the slow subsystem. The fast
chines more distant from the fault swing subsystem is then formulated to represent the
together with "in-phase" slow motion. In a fast oscillations within each area. The slow
typical study, each of these groups is con- and fast subsystem models are obtained from
sidered to be a "coherent area". Then, only the dichotomic transformation matrices L and
the faulted area is modeled in detail, while M, which define a set of physically maning-
other areas are represented by equivalent ful state variables. In the ideal slow
machines. coherency case the dichotomic L is a "group-

ing" matrix, whose elements are zeros and
A critical step in such studies is the group- ones, and the state variables of the fast
ing of the machines into areas. Coherent subsystem are machine angle differences
machines are identified either from actual or within areas. On the other hand, the matrix
simulated machine responses, (Narconato, H, which separates the slow subsystem, actu-
Mariani and Saccomano, 1973; Podmore, 1978), ally defines the slow variables as the area
or by an algebraic evaluation of the modes centers of inertias (Stanton, 1971; Marcona-
present in the linearized response of each to, Mariani and Saccomano 1973; Saccomano,
machine (Psi and Adgaonkar, 1979; Lawler and 1972). In a nonideal case our approach is to
others, 1979; Saccomano, 1974a, 1974b; DiCap- search for a dichotomic L whose elements are
rio and Marconsto, 1978; Price and others, in some sense close to zeros and ones. This
1978; Bhstt, Kwatny and Mablekos, 1976). dichotomic L is then approximated by a group-
Most analytical techniques require that ma- ing matrix and the corresponding M is com-
chines be coherent throughout the duration of puted as a function of this matrix. Thistheir transients. In this paper we introduce results in areas which contain machines that
a less demanding definition of "slow coher- are near-coherent in their slow modes, and in
ency," which allows a lack of coherency in weakly coupled rather than decoupled slow and
the fast part of the transients. It may be fast subsystems. I
interpreted as a requirement that the equiv-
alent machines of the areas represent as In the literature on power system dynamic
closely as possible a preselected group of equivalents, there has been a continuing
the slowest modes. The resulting area decom- interest in the development of a systematic
position is independent of various fault area decomposition procedure. Our grouping
locations. algorithm reduces the decomposition procedure



P V V I si(61"4) 'to the calculation of a basis for the slow at j j ij i ii'
j subsystem and a Gauaian elimination. In the

formulation of our algorithm we have bene-
fited from insights and results of the above i 1 1. 2, ... , n. (2.3)
referenced authors. In particular, a motiva-

tion to relate coherency and singular pertur- where the per unit voltage V behind tran-
bations is found in DiCaprio and Harconsto sient reactance is assumed to ia constant and
(1978) and some important properties of whet saliency is neglected. Loads are represented

we call r-decomposable systems appear or are by passive impedances, and G and B are the
alluded to in Saccomano (1974a). Our analy- real and imaginary parts of the reduced
sis incorporates these properties in a admittance matrix Y at the internal machine
unified framework of dichotomic solutions of nodes. The off-diagonal resistive terms of Y
Riccati equations and establishes new proper- are neglected.

ties. These properties are the tools for the
development of the algorithm and the separa- The intermachine motions are largely deter-tion of time scales. mined by the natural frequencies and the mode

in the next section we first review some shapes of the linearized electromechanical
model around the stable equilibrium 6* and

properties of the model used in this paper. wI U 1.0. The linearized model is
The third section defines the notion of slow
coherency and reveals the structure of ideal- Ad i a o ui , (2.4)
ly decomposable systems. A grouping algo-
rithm is developed for near-decomposable n
systems in the fourth section. The fifth 2 i &U, -oi& - i k&0.5. (2.5)
section introduces the slow variables. While i a
the original states contain a mix of fast and
slow phenomena, the new states make it pos- where
sible to apply singular perturbation tech-
niques to nonlinear electromechanical and 45 i Z 6. - 6'#, (2.6)
potentially more extensive power system I L L
models. The presentation in the fourth and Vi = W - 1, (2.7)
fifth sections is illustrated by a 16-machine 1
example.

k a ViVa cos(6 -6 )I6,* (2.8)

ELECTROMECHANICAL MODEL kii Z j.8)

The well-known electromechanical model (An- joi

derson and Found, 1977) of an n-machine power kij a V.VjBij cO( ).-8) I ji. (2.9)
system is i li 18

At 8 and w*, the eigenvalues of (2.4) and
8. = O(w. - 1), (2.1) (2.5) are of the following three types:

211i bi • -Di(Wi 1 l) + (Pmi-Pei), (2.2) 1. a zero eigenvalue corresponding to the

motion of all the machine angles,
where 2. a small negative real eigenvlue corre-

sponding to the aggregate speed of all
i 1, 2, . the machines, and

3. (n-I) pairs of lightly damped oscilla-
rotor angle of machine i (radians), tory modes which typically range in

W, speed of machine i (per unit), frequency from 1/2 to 2 Hz.

p ix mechanical input power of machine i (per Models involving more details such as excita-
mini l ntion systems and governors would still con-
Pmiz unit), ~.an tho xhnvo set Af -t-e.nl,,-- w.A4f4.A

mostly in the damping and not in the frequen-
P electrical output power of machine i cies (Podmore, 1978). Since the small
el (per unit), damping constants D. do not significantly

H inertia constant of machine i (seconds), affect the frequencies of the oscillatoryi modes (DiCaprio and Sccomano, 1970) they may

D. a damping constant of machine i (per be neglected. Thus, the model used in this
I unit), paper is

x base frequency (radians per second). x -(1/2)(1M K x Ax, (2.10)

In this model disturbances are represented by where

appropriate selection of initial conditions, =
and the following assumptions are usually xi 6
made. 

H x diag (Hit H2 0 ... I H a
(Al) Mechanical input power P . is constant.
(AZ) The electrical output pogir is " K = (k ij).I

____ ____ ___ ____ ___ __-____
I- -, I _ 1



Therefore instead of dealing with a system of We note that in this definition no machine s,.
order 2n, we only need to deal with the nxn from different areas can be coherent, that is
matrix A. Due to Assumption (A2), X is no coherent area can be divided into more
syumetric if Y is sy metric which is true for areas. An individual machine can constitute -"

networks without phase shifters. an area if it is not coherent with any other
machine.

The properties of the eigenvalues of the A
matrix are as follows: Although Definition 3.1 does not require that -.

the number of coherent areas be equal to the
(Pl) A has a zero eigenvalue whose eigenvec- number of slow modes, systems with this
tor is property, which will be called r-deconpoable

systems, are of particular interest for
v= ( 111 .. )' (2.12) separation of time scales. The study of r-

decomposable systems is an essential step
Property (P1) follows from Av =0, which is toward the analysis of sore common "near-
due to (2.8) and (2.9) as the A& of each row decomposable" system, that is systems with
in AW(aij) is near-coherent rather than coherent areas.

n Definition 3.2
I a.. = 0 i = 1, 2, ... , n (2.13)

j=l J The machines "i" and "j" are near-coherent if
in Definition 3.1 the contribution of the

(P2) When K is symmetric A is diagonalizable slow modes in z. t) is small. A near-
because it is similar to the symmetric matrix coherent area con±ts of all machines which

/) 1/2-1/2 are near-coherent to each other. An r near-
decomposable system consists of r near-

where H1 / 2 is the square root of H. coherent areas.

Our approach to area determination is to
Thus, all the eigenvalues XA. of A are real. first consider r-decomposable systems. We
It follows that the eigenvalues of the second show that in this idealized case the dicho-
order system (2.10) are +a., where tomic solution of a matrix Riccati equation

automatically groups the machines into areas.
1 = (2.14) We then use this result to develop a grouping

algorithm for near-decomposable systems.
For X. negative, they are on the imaginary
axis close to the slightly damped eigenvalues To define a compact notation for areas we
of (2.4) and (2.5). The double eigenvalue introduce a reference set of machines and a
a.=0 corresponds to the aggregate motion of grouping matrix. In each area we pick an
the machine angles and speeds. In the arbitrary machine as the reference machine.
following analysis, it is important to note The reference machine angles are considered
that the low frequency modes of (2.4) and as components of an r-vector x , while all
(2.5) are the slow modes of A. other angles form the (n-r)-vector x .

Equation (3.1) motivates the use of a group-
SLOW COERENCY ing matrix L to assign machines to areas I

The (,j) enAry of L is I if machines x.
In most actual and simulated responses the and x. are in the sime area, and is zer1

groups of machines "swinging together" are
discernible only in slow motion. This moti- otherwise. Thus, given x , x4 and L the
vates the following definition of coherency areas are uniquely determined. Hojever,
which allows responses of coherent machines given the2 areas there is no unique choice of
to have different fast dynamics. x and x , and hence many possible choices

for Lg exist.
Definition 3.1 

g

Given r smallest in magnitude eigenvalues As an illustration consider a three area
(slowest modes) of A in (2.10). Then ma- five-machine system. Given
chines "i" and "j" are slowly coherent if for x1
all t of interest, possibly tt[O,a), their = (x 1 , x2 , x)'
angles xi(t) and xj(t) satisfy x2 = (x3 , x5)' (3.1)

x.(t) - x(t) = z W(t) (3.1) a 01

where z..(t) contains none of the r slow L a (3.2)
," modes. W coherent area consists of all the

machines coherent to each other. the three areas, which are composed of ma-

This definition of coherency may be inter- chines I and 3, machines 2 and 5 and machine
peteas ainto o proerofhe n mae tr V 4, are uniquely define. Fo the same areaspreted as a row property of the nir matrix 'V a different choice of x" and x-, such as

of slow eigenvectors. Machines i and j are
coherent if rows i and j of V are identical. I Z N' x x
It is not hard to see that this remains true
for the columns of V that form any basis of x 2  

(
the slow eigensubspace. (x1, x5 )' (3.3) I



will result in a different L that is Ld a L (3.12)Ld
r0 1 0 Proof: If the a.tn. it r-decomp.sable, thee

L = (3.4) for the given x and x a grouping matrix L
0 e ists such that (3.5) is satisfied sal

z contains no slow modes. Substituting LzL
Note that the zero column in L of (3.2) or into (3.7) through (3.11) we can shot that
(3.4) indicates the presence &of a single (3.10) and (3.11) must hold or else a would

I machine area. contain slow modes. This is clear from

Using L, (3.1) is rewritten more compactly "11  [ '] (3.13)

x 2(t) -Li t)- zat) (.I(L) 02 10 _
2 where A is the diagonal matrix of the r slow

where the components of a W are the corre- eigenvalues and the rows of ['0'] are te
spoending functions a (t). In the case where c2 rrespnding eigenvectors in the (x ,
an area contains k a 1chi .hes re will be z )-coordinates. Hencm Rqp)1O, which in-
exactly (k-l) elements in a (t) for this plies R(L)=0. Then i 2B z and (3.11) mast
area. also hold. This proves 2 he if part of the

theorem, because L is unique. Conversely,
We interpret (3.5) as a special case of a if an Ld exists aid is a grouping matrix,
more general coordinate transformation then the system is r-decomposable because L
(Kokotovic and others, 1980) satisfies (3.10) and (3.11). g

1' 1xi[l An interesting interpretation of R(L )uO is
[ 0 1 T (3.6) a set of slow coherency conditions sAisfied

tIIJ xby the voltages, admittances, machine angles
L•jand inertias of an r-decomposable system.

where the (n-r) x r matrix L is not necessar- Let a(i) be the set of machines belonging to
ily a grouping matrix. The substitution of area i. Then using the structure of L and
(3.5) into (2.10), that is into ZxAx, results R(L )=O we may conclude that I
in

S[ B1 L) 12 1 F l V B coa(6r-8 ) =

2 R( L 2 r Me(i) *r

where V.
- 7 I V B. cos(8.-60) (3.14)

B1 = A1 1 + A12 L , B2 a A2 2 - LA1 2  (3.8) Hj a(i) ma j

R(L) = A2 2 L - LAll - LA1 2 L + A2 1  (3.9) for all i, kal, 2, ... , r, i~k

and A ,A, A are the submatrices of where r is the reference machine in area k
AcobmaHLl 2 v n We are particu- and j is any machine in area k. In other
larly interested in L which satisfies yards, the sum of the interconnections be-

tween the reference machine r in area k and
all the machines in area i is the sam as the

(L a A2 2 L-LA 1 -LA 1 2L+A2 1 2 0 (310) sum of the interconnections between any
and machine j in area k and all the machines in

area i. These conditions hold for allI?~(3iI <~Ap 2)~(3.11) areas. Such "tuned" conditions will general-
< ly not hold in practical situations. How-

for all i ~l,2,...,n-r and jnl,2,...,r. Such ever, in practice, for relatively normal

an L is called dichotomic and denoted by L conditions, voltages are close to 1.0 p.u.
It is known fro W (1977), Naten~n and the cosines in (3.14) are close to 1.0.

(1971), Avramovic (1979), and H danic (1979), Thus, the coherency condition (3.14) is
that for diagonalixable A the generalized primarily determined by machine inertias and
Riccati equation (3.10) can have at most one line admittances, that is by network con-
dichotomic solution LzL The following figuration and such less by the oprating
property of an r-decompos lo system relates conditions. A quantitative criterion for

Ltoa roudingcmatrib e rinterpreting deviations from the conditions

d  in (3.14) requires further investigation and

Theorem 3.1 is beyond the scope of this paper.

In an n-machine system let x1 be te angles Suppose now that we know that a system isof n on-coheret machines sad x be the r-decomposable, but we do not know its

angles of the other n-r machines. This areas. How can Theorem 3.1 help U to fild
system is r-decomposable if and only if the them? First, we make a choice of x and x ,
dichotomic solution LzL of the corresponding which in turn defines the correspfnding
equation R(L)aO is a grouping matrix L , that equation R(L)=O. If our choice of x does
is if sad only if a not contain coherent machines this equation

,IL



will have the dichotomic solution L which is
the grouling matrix needed to find 9he areas. H():64 H(se):3.0I
If our x contains coherent machines, L will
not exist. The negat ve outcome Woull mean D(pu):2.5 0(pu):l.0
that a new choice of x would have to be made 1.63pu 2 8 6 3p
and a new equation R(LQz0 solved.3

0.0654pu.oi.w9P
If the system is not r-decomposable, then no 1:I.OI24 jO.1648pu I.O4"jO.55pu 7.*024j0.08Z95PV
grouping emtrix L will satisfy R(L )O.
Therefore z in (3.) will contain both'fast P:
and slow modes, that is

9 5
f 2 . +Z (3.15) 1.25+jo.50p _ o.9O~iO. 3Op,

For near decomposable2 systems there exist xi NOTE:ALL LOAO FLOW 4
and L such that z is small. Rewriting INFORMATION IS FOR
(3.5) the slow parts PREDISTURBANCE CON- I V , 1.04 jOpu

DITIONS. THE BASE t I t " " .

x L. x! (3 O 6 OE I OMA .723pu O.2TO3pu D(po):9.6

We now have the problem of finding x and L
such th 2 t some measure of the slow coherenfu
error z is minimized. From (3.6) with L=L Lne# From To R(pu} X(pu) 8j2(pu)
it follos that 1 1 4 0 0.0667 0

1 2 4 5 0.017 0.092 0.079
x2 - L x 0. (3.17) 3 5 6 0.039 0.170 0.179

a 4 3 6 0 1.06N 0

Substituting (3.17) into (3.15) we obtain 5 6 7 0.0119 0.1008 0.1045

2 d 6 7 8 0.0085 0.072 0.0745Zs: (Ld " L ) x
s  

(3.18) 7 8 2 0 0.0025 0

8 8 9 0.032 0.161 0.153
An important con~usion is that the slow 9 9 4 0.01 0.08 0.088
coherenc -error z relative to the magni-
tude x of the low response of the refer-
ence machines is bounded by jLdL I that Fig. 3.1. Three Machine Test System
is

5 < I L -L (3.19)
5,,l 

d

where the norm is

IL 1 = max Z IrLjl, i=l, .. ,n (3.20) Ld = [-0.470 1.47]. (3.22)
i jai Of the two possible grouping matrics Lg (O 1]

Note that (3.19) is zero for r-decomposable yields the minimum ILd-Lg | 1
systems. For near-decomposable 1 systems
(3.19) motivates a search for x and L I L0 (3.23)
yielding the smallest ILd-L I . In principl d 0 1
this search involves the lomparison of all The second choice of x (x x ) will result
possible grouping matrices L with the in a dichotomic solution of2 th corresponding
dichotomic solutions L correspoiding to al equation R(L)=O
possible choices of r'ference machines x
However a much simpler grouping algorithm Ld = [-2.13 3.13]. (3.24)
based on properties of Ld is given in the
next section. Of the two possible grouping matrics L [(0 1]yields the minimum ILd-Lg

To motivate the grouping algorithm and to

illustrate the use of (3.19) we consider in -Ld-Lg - 4.26. (3.25)
detail the three machine system liven in 1"
(Figure 3.1). For the given numerical values The third possible choice of x :(x ',x)'
the undamping linearized model is will result in a dichotomic solution if the

corresponding equation R(L)sO
-14.3 5.5 S.81

x 2 14.3 -49.4 35.1 x. (3.21) Ld a [0.320 0.680]. (3.26)
L58.5 81.5 -140.0

Of the two possible grouping matrics L =(0 1]
To decompose the system into two areas, there yields the minimum ILd-L I1
are only three possible choices lof reference 0.

mlchines for thif eximple, x = (x x ) Ld-LI (3.27)
x 2(x ,x )' and x s(xx)' and two pssble
choich f L 2(0,1] sld "1,0]. As our fifrst Of these three cases, L of (3.26) yields tte
choice of rlference machines consider x a smallest IL-L . Foz this case, L , x ,
(x,,x )'. Then the dichotomic solution of :74 x indigste that machine 1 is in oA area
th crresponding equation R(L)=O is and machines 2 and 3 form the other area.



This example shows that it is possible to since the only nonzero entry in say row of L
have more than one element in D which results is 1, any. grouping matrix L 4a row nor
in the same area grouping as is the case with equal to 1. Thus, to mininmie ILd-LJ , t
the first and third choices of reference necessary condition is that IL I be clse to
machines. However, the grouping is most 1. This motivates finding an L'. with a small
clearly shown by the third choice. It is norm instead of an Ld which ainimizes ILd-
also interesting that for the third choice Lit

is the smallest of all three. The
stand choice has the largest IL -L I and the The following result indicates how ILdI

" reference machines are from Qh8 1m area. depends on choice of reference machines.
4 Another interesting observation about L is

that the sum of row elements in all tiree Lama 4.2
cases is 1.

Let the angles of a given set of refefence
Due to R(L ) not being equal to zero, the machines be ordered as components 2 of x and
eigenvalueasf B and B will not be equal to all the other machine angles as x , and let
those of A. Ho4euer, khe eigenvaluas of B the columns of the nxr matrix
and B2 are close to those of A

I(B)-0.0, X200)-28.6, X( 2)x-175.0 - (4.2)1AI(2 (3.28) IV2
A(A)*., A 2 (A)-37.0, 3CA)-166.0 where the rxr matrix V is nonsingular, be a

which can be used as an indication that the basis of the eigensdbspace of the slow
areas are nmar-coherent. modes. Then

The above direct search is presented only as Ld a V2V;' (4.3)
a motivation for the systematic grouping
algorithm proposed in the next section. is the unique dichotomic solution of the

Riccati equation (3.10). Furthermore, let
GROUPING ALGORITMf V and V, be obtained by exchanging rows of

V for r6 s of V2 ' that is by a permutation
From the three machine example it is apparent #1PV of the rows of V. Provided that V is
that finding the areas consists of two nonsingular, the plement of D corresponling
interdependent tasks: first, choosing the to xzPx is Ld:V2 V1reference machines and, second, associating
the other machines to the reference machines. The proof of Lema 4.2 is given in the

* The approach used in the three machine exam- Appendix. This lema establishes the con-
ple is to exhaust all possible choices of x nection between the Riccati approach pre-
and L , that is for each. Ld, a particular L sented here with the modal approach given inA T was ound fo minimizeULd-L . The be•, Saccomano (1974s). The lemma shows that to
choice of x is the one corretponding to the compute all the Ld elements in D, we only
smallest of these minima. When the order of need to compute one V. Furthermore, multi-
the system is large, this exhaustive search plying both sides of (4.2) by V1 we see that
would be computationally prohibitive. Due to
the properties of the set D established in -
Lmmas 4.1 and 4.2, the exhaustive search can V V-1  (4.4)
be avoided. The algorithm presented in this Ld
section computes only one element of the setr D, which does not necessarily minimize IL - is also a basis for the eigenspace of the

I. LI, but still unambigously determines te slow modes. In the r-decomposable case, V
aeas. We also provide a geometric interpre- will be singular if two machines from thl
tation for this algorithm, same area are in x . In the near-decompos-

able systems V will be close to sinaular if
Lean 4.1 two near-coherint machines are in x . This

is due to the fact that the two rows involved
Every element Ld of D has the property that are almost dentical. When V is close to

. singular llv- ' is large, resulitng .in a large
r L Thus wk aim at finding r large and most
I LL i rI 2dj  1 , i1l,2,.. .,n-r (4.1) linearly independent rows of V. This would
jl result in a V with a large norm such that

that is, the row sum of Ld is 1. 
ILdIl of (4.3) Lould be small.

To find this set of r rows, we use Gaussian
The proof of Lema 4. 1 is given in the elimination with complete pivoting. During
Appendix. From (4.1), if all the entries of the elimination, the rows and columns of V
L are greater than or equal to zero, then are permuted such that the (1,1) entry of the

1 IL. is 1, which is the smallest norm resulting V is the largest entry in magni-
achievable by any Ld in D. Furthermore, tude. Note that permuting the rows of V is

Ii



equivalent to changing the ordering of the The main computational load is in the step 2.
machines. This (1,1) entry of V is used as However, only a partial eigensubspace V of A
the pivot for performing the first step of is required and since A is similar to a
the Gaussian elimination. Then the largest symmetric matrix, eigenvalue-eigenvector ,
entry is chosen from the remaining (n-l)x(r- computation is well conditioned (Wilkenson
1) submatrix of the reduced V and is used as and Reinsch, 1971). Alternatively we can
the pivot for the next elimination step. The make an initial guess of the set of reference
elimination terminates in r steps and the machines and apply the Riccati iterative
machines corresponding to the first r rows of algorithm in Kokotovic (1975) to calculate
the final reduced V matrix are designated as L If the solution converges, then the
the reference machines. In this Gaussian rsulting Ld can be used to construct the -.

elimination process, rows having small en- basis (4.4).
tries will not be used as the pivoting row
because these small entries are the result of This area grouping algorithm which finds L
elimination with almost identical rows aI- of small norm is supported by the geometrig
-eady used as pivoting rows. Thus, this interpretation of near-decomposable systems.
algorithm does not put two near-coherent For such systems, the row vectors of V cor-
machines together as reference machines. responding to machines in the same area are

almost identical. In other words, the row
For the set of reference machines found by vectors of machines belonging to the same
the algorithm the correspondiig Ld is readily area are clustered in a cone. These cones
computed from are narrow for near-decomposable systems and

degenerate to lines for r-decomposable sys-
VjL 2 V2 (4.5) tems. The role of Gaussian elimination is to

select the most linearly independent vectors,
using the LU decomposition of VI obtained one from each cone, which are then considered
from the Gaussian elimination. The next step as the reference vectors for the areas. The
is to find an L approximating L , that is to entries in L are the projections of other
find the mchinis belonging to etch area. We vectors on hl reference vectors. Therefore,
examine each row of L and if the largest it is easy to see that in each row of L the
positive entry is the Y-th entry in the row entry close to 1 corresponds to the prajec-
i, then in the matrix L entry (i,j) is 1. tion of the vector on the corresponding
The resulting L will yiJld the minimum ILd- reference vector, and the entries close to
Lg[ d zero are projections of the vector to the

other reference vectors.
We now summarize the grouping algorithm as
follows: We illustrate this area selection procedure

on a 16 machine model (Figure 4.1) in Schulz
Step 1: Decide on the number of areas. and others (1974). The data are given in the
Step 2: Compute a basis matrix V for a reference and hence will not be repeated

given ordering of the x variables, here. The model is linearized and the damp-
Step 3: Apply Gaussian elimination with ing is neglected to obtain the A matrix in

complete pivoting to V and obtain (2.10). In the first step of the algorithm
the set of reference machines. we specify that we want 5 areas, that is r=5.

Step 4: Compute Ld for the set of reference From this point on the algorithm proceeds
machines chosen in step 3. Con- automatically giving the following results.
struct the matrix L and find the
machines in each area1

I'

64g 4,1 MIt thn es ylN
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Fig. 4.1 Sixte.' Machine Test SystemI
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AN ANALYSIS OF INTERAREA DYNAMICS OF KULTI-MACHINE SYSTEMS
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General Electric Company University of Illinois
Schenectady, New Yor!, 12345 Urbana, Illinois 61801

ABSTRACT Our approach to grouping machines starts with the
linearized electromechanical model without damping,

The slow coherency concept is introduced and an and separates its slow and fast modes using the so
algorithm is developed for grouping machines having called dichotomic transformation from the singular
identical slow motions into areas. The singular perturbation technique [7]. The dichotomic transfo--perturbation method is used to separate the slow mation matrices L and M define a set of physically
variables which are the area center of inertia vari- meaningful state variables. In the ideal slow coher-
ables and the fast variables which describe the inter- ency case the dichotomic L is a "grouping" matrix,
machine oscillations within the areas. The areas whose elements are zeros and ones, and the state
o obtained by this method are independent of fault variables of the fast subsystem are machine angle
locations. Three types of simulation approximations differences within areas. On the other hand, the
illustrated on a nonlinear 48 machine system indicate matrix M, which separates the slow subsystem, defines
the validity of this algorithm, the slow variables as the area centers of inertias

[1,2,41. In a nonideal case we search for a dicho-
1. INTRODUCTION tomic L whose elements are close to zeros and ones.

This results in areas which contain machines that are
This paper presents a systematic procedure for near-coherent in their slow modes.

grouping the machines of a power system into areas.
The concept of an area is based upon the observation The slow interarea dynamics and the fast intra
that in postfault transients only some machines close area dynamics are suitable for two time scale analysis
to the fault location respond with fast intermachine of power systems by the singU.lar perturbation method.
oscillations, while other machines more distant from This method is applicable to systems in the so called
the fault swing together in groups with "in phase" state separable form
slow motion. Our approach is to define areas by d
grouping the machines which exhibit this slow co- dt f(tqt) , (to ) =t (1.2
herency phenomenon. Allowing the machines in the same
area to differ in their fast dynamics makes it possi- C g(t,,t) .(t o) 

= o (1.3)
ble to retain the same area grouping for different dt t (1.3t
fault locations. The resulting conceptual simplifi- where t and ri represent the "slow" states and rhe
cations and computational savings are significant in "fast" states of the system iespectively, and E is a
simulation and planning studies when many contin- small positive parameter which accounts for small Lime
gencies need to be examined, constants, inverses of high gain coefficients, small

inertias, etc. If the separation between time scales
The notion of slow coherency is expressed in the in (1.2) and (1.3) is large, e will be small and may

following way. If we consider the r slowest modes of be approximated by E=0. The model (1.2) and (1 3)
the system's response to any fault, then machines "i" with e=O then defines the quasi-steady-state Is t),
and "j are slowly coherent if the difference of their rsit) as
angles x.(t) and x (t)

I 
5 0t (t).

xi(t) - xj(t) = z, (t) (1.1) ds~t f , )-Y o
dt =f 'q 't st) =t .

contains none of the r slowest modes. This definition 0 = g(s, s, t) (1.5)
disregards differences of the fast dynamics of ma-
chines within the same area. In contrast to the where the differential equations for ri have been
more conventional definitions of coherency [1-6], reduced to algebraic or transcendental equations.
which require that the total angular difference z. .(t)
be within a specified tolerance, here the toleranN is In (1.2), (1.3) t.e variables t are predominantly

*.specified only for the slow modes in z ij(t). slow, that is, (t) 1 t (t), while the variables n(t)
contain a significant fast component nlt) - i_ t)which becomes infinitely fast as c0. For application
of the singular perturbation method it is necessary to
express the system dynamics in the form (1.2) (1.3).

t System models which describe fast and slow phe-
nomena do not always appear in this form. For exam-

ple, the electromechanical model using ndividual
machine speeds and angles as the state variables does80 SX 333-0 A paper recommended and approved by the not exhibit this slow-fast separation. A new set of£ rEEE Power System Engineering Committee of the IEEE state variables which brings the model to the form

Power Engineering Society for presentation at the (1.2), (1.3) are the interarta motions which represent
r£tE PES Summer Meeting, Minneapolis, Minnesota, the "slow" states t, and intra area motions of the
Jul, 13-18. 1980. Manuscript submitted February , machines within an area which represent the "fast"
1980; 'ade available for printing April 21, 1980. states n in (1.2), (1.3).

1980 IEEE
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The procedure presented in the first part of this a,
paper transforms the conventional nonlinear electro- ki = x -k ij, joi (2.6)
mechanical model into the form (1.2), (1.3) by app- Jl

lying the ares grouping obtained in the study of the
linearized model. In the second part of the paper we k ij . -ViV .i cos(6i-6) 86* Jo', (2.7)
demonstrate some properties of the transformed non-
linear models which are useful in understanding inter- in which the terms involving G. are neglected.
area motions and model simplifications. When only the
area motions are of interest, all the dynamic equa- At 6* and S', t.? Lgenvalues of (2.4) and (2.5)
tions for the intra area fast variables are reduced to are of the following three types:
equations (1.5) regardless of the fault location. A
property observed in the example, which results in a I. a zero eigenvalue corresponding to the motion of
different approximation, is that the fast phenomena all the machine angles,
from different areas are weakly coupled, while the
coupling of slow phenomena is strong. This fact 5. a small negative real eigenvalue corresponding to
enables us to reduce the dynamic equations of intra the aggregate speed of all the machines, and
area variables outside the study area to the static
equations (1.5), while retaining the study area in 3. (n-I) pairs of lightly damped oscillatory modes
detail. A further simplification is to neglect all which typically range in frequency from 1/2 to 2
the equations for the intra area variables outside the ia.
study area by assuming that the angles between ma-
chines are constant, which is the approach used in Models involving more details such as excitation
(4]. These three approximations are demonstrated on a systems and governors would still contain the above
48 machine system. set of eigenvalues modified mostly in the damping and

not in their frequencies [4]. Since the small damping
constants D. do not significantly affect the fre-
quencies of' the oscillatory modes they may be ne-
glected. Thus, the linear model used in this paper is

2. ELECTROMECHANICAL MODEL the second order system

The well-known electromechanical model [8] of an x z -(1/2) H
1K x Ax, (2.8)

n-machine power system is
where x. x 66, H diag (H.,H,...,H), and K is the

= (w. " 1), (2.1) matrix hf k. .. Therefore Istead of dealing with a
system of o #er 2n, we only need to deal with the nxn

2.4ij. = -D.(w-l) + (P -Pe) (2.2) matrix A.
, , iei

i 1, 2 . n, From (2.6) and (2.7), K is symmetric if Y is
symmetric which is true for networks without phase

where 6, w., P .. P . H, D are the rotor angle, shifters. Thus, A is diagonalizable because it is
speed, 'mechAnic t iRut power, electrical output similar to the symetric matrix
power, inertia constant, damping constants of machine
i, respectively, and Q is the base frequency. In this -(l/2)0H 2K 1"/2  (2.9)
model the following assumptions are made. where H1/2 is the square root of H. Thus, all the
(Al) Mechanical input power P . is constant. eigenvalues A. of A are real. For A. negati-e, the
(A2) The electrical output powr is eigenvalues +%fr. of the second order 4stem (2.8) are

on the imaginay axis close to the slightly damped
n 2 eigenvalues of (2.4) and (2.5). Thus, the low fre-

Pi : : V[B sin(6 6)*G cos(6 -6.)j1V2 ,G quency modes of (2.4) and (2.5) are the slow modes of
A.

jsi

i = 1, 2, ..., n, (2.3)
3. SLOW COHERENCY

where the per unit voltage V. behind transient re-
actance is assumed to be constant and saliency is In this section we study systems in which it is
neglected. Loads are represented by passive impe- possible to group the machines into r areas such that
dances, and G and B are the real and imaginary parts the difference t. .t) in (1.1) contains none of the r
of the reduced admittance matrix Y at the internal slow modes. SucdJidealized systems, in which the slow
machine nodes, coherency is exact and the number of coherent areas is

equal to the number of slow modes, are called r-
Disturbances are represented by initial- condi- decomposable. In r-decomposable systems there exists

tions, and in the case of structural changes, by a direct relationship between the time scales and the
changes in the Y matrix. The time scales are largely coherent areas. This relationship is established in
determined by the natural frequencies of the lin- this section and serves as a basis for the development
earized electromechanical model around the equilibrium of the grouping algorithm in the next section.
P* and = 1.0,
I L Let us first define a compact notation for areas

by introducing a reference set of machines and a
a.6 = fi' (2.4) grouping matrix. In each area we pick an arbitrary

machine as the reference machine. The reference

n machine anles are then considered as components of an
2HiAi z -D.u - I k..66., (2.5) r-vector x , while all other angles form the (n-r)-

t j=1 J J vector x . Equation (1.1) motivates the use of a
grouping matrix L of dimension (n-r)xr to assign

where 46 6i- , a-i = w-1, machines to areaf,8 L has as many rows as the number
of machines in x andl s many columns as the number of

I



In step 2 a basis for the 5-dimensional slow
subapace is computed. In step 3 the Gaussian TABLE 4.1. Matrix Ld
elimination is performed and the set of

reference machines is found to be 5, 12, 14,
15, 16. In step 4 the dichotomic L corre- "- ",..
sponding to this reference set is lomputed Other Reference Mach'ne
and is given in Table 4.1. The largest Machines 14 1 12 1 - 5
element in each row of L which are under-
lined in Table 4.1, are ued to identify the 1 !.0599 .411 -.0156 .0222 !.522
machines in each area. As a result the 2 :.0335 .422*-.0135 .0014 .557
following area grouping of machines is ob- 3 1.0320 .387'-.0132 -.000466 .595
tained: 4 1.0221 .178*-.00818 I .00225 .806

6 .0217 .193 -.00971 l-.00404 1.799I Area 1: machines 1-9 7 '.0227 !.198 -.00987 ;-.00312 -.793
Area 2: machines 10-13 8 .0585 i.377.-.0170 .0186 .563
Area 3: machine 14 9 .0372 1.215,-.0183 -.00352 .769
Area 4: machine 15 10 .100 1.618'-.0179 .110 .189
Area 5: machine 16. 11 1.0720 1.6431-.0004471 .133 .152

.e 13 ;.001401.9721-.00116 .0197 -.07-Note that for machines 1, 2, 3, ad 8, the L ..

entries in the column under machine 12 are
not significantly smaller than those under
machine 5. This can be interpreted that the
responses of 1, 2, 3, and 8 are only slightly The substitution of (5.1) into (3.6) yields
more coherent to 5 than to 12. Nevertheless,
this area grouping gives quite favorable : 'results as it will be demonstrated in the P( (5.2)
next section. 2 Lo j

INTEREIACEINE AND AREA VARIABLES which shows that, if M satisfies

Using the framework of singular perturbation
theory we now show that an area decomposition 2 1  12
is an essential step in two time scale and 1 1 I
reduced order modeling. A model is singular- then z =3I2 . Hence z contains only slow

sow of o tes are pre- modes and represents a possible choice of the
ly perturbed if some of its states slow variables. Is this choice physically
dominantly slow and others predominantly
fast. The two tie scale property can be meaningful? To answer this question we need

exhibited by the different choices of the the folloing result whose proof is given in
state variables. For linear time invariant the Appendix.
models a possible choice are the modal vari- Lems 5.1
ables. However, a frequent requirement is

4that the states be, or at least closely Consider the matrix Aa(lI2)dfK of (2.1)

reflect, the actual variables of physical where K is symmetric and H is the diagonal
units in the system. We are therefore inter- matrix of machine inertias whose yxr and (
ested in a physically meaningful choice of r)x(n-r) diagonal blocks are H and
state variables which in addition exhibits respectively. Then the solutions L of
the time scale properties. R(L)--O and M of P(M)nO are related by

The state variables of the original electro- z (H 1 + L'H2L)1'L'H2 . (5.4)
mechanical model (2.1), (2.2) and its linear-
ization (2.4), (2.5) are physically maaning A similar relationship can be obtained by
ful but each of them contains mixed slow and modal methods (Saccomano, 1974a). Under the
fast parts. However, if the system is near- conditions of this Lema the complete trans-
decomposable and the near-coherent areas have formation from x to z variables (3.5) and
been found, Yan he model (3.6) exhibit2 the (5.1) is
fast part i z1 z .The fast states z are
physically seazsingful. They represent the z1 n1 H1  HL'H .x (5
intereachine oscillations x -x of the ma- I 12I (a.1
chines i and j within an aria,jwhere machine [

2  L I 2]
j is the reference machine of the area. The
other states x of the model (3.7) still have where
"ixed" fast and slow parts and should be
replaced by some predominantly slow states. H a HI + L'IH2. (5.6)

a

Knowing that the slow eigenvalues of A are in If the system is r-decomposable, 1that is LaL
B1, we now separate the slow subsystem using then the physical meaning of z is readill

a I i x ~recognized from the first row of (5.5) that
1 is fromI :(5.1) Z H x1 + L'H2 x2  (5.7)

2 -.-I"- . -



TABLE 5.1. Elnenvalue Aproui-
mations of 16

by noting the special structure of L'H 2 and a nIdtA
H . Since 2 the entries of L are zefos and
ores and H is diagonal, iheSnonzero entries -n T
of L' are replaced in L'H by the entries of Singular
NL. 3Furtherlore, L'H L Sis diagonal, because Sub- Perturbation
L'L is diaIIl. 8 an be seen that each System Accurate IApproximation
ady of L'H L is the sum of machine iner- ---

tias in angarei excluding the inertia of the Slow .0002318 .0002318
reference machine in that area. Thus H is .1969 1969
a diagonal matrix of the area inertias, that .1063 + J2.576 -. 1058 + J2.589
is :.09877 J3.498 -.09892 J3.496

-. 0870 *j4.531 -09097 J 4.695
H : I H for all j in area i. (5.8) -.09399 J5.068 109385 5.075

It follows that the i-th component z of Z1 .94 + J5.997 -.1219 + J5.975
is 1 as -.1162 *J6.534 1-.1222 ; J6.445

: - .1177 + J7.156ZlI x Ha/Isa for all j in area i (5.9) .019 7.8- 70 J7.I961

jji si, -.119 j7.96 .119577 .962
and hence its physical meaning is the famil- .09360 *j7.970 -.09425 ; j7.959
iar notion of the "area center of inertia," :.08926 j8.405 -.08873 + j8.259
which has been used in Marconato, Hariani and *.1350 J9.267 -.1351 J9.267
Saccomano (1973). .1007 J9.650 -.1025 j9.646

-.1264 j9.732 .1264 j9.732
.2013 jll.419-.1986 + jll.378

In conclusion we emphasize that for an r-
decomposable system an area decomposition
results in physically meaningful slow and CONCLUSION
fast variables. For near-decomposable sys-
tems we still use the area variables (5.9) The concepts of slow coherency and r-deco.-
and the intermachine differences (3.1) as posable systems have exhibited the time scale
states. Although the time scale sepafation properties and retained the physical maning
is not complete, the area variables z will of the fast and slow variables in electrome-
be predoinntly slow and the intermachinse chanical models of the power 5ystems. The
variables z will be predominantly fast. The time scale interpretation of the notion of

same conclusion applies to models with coherent areas has provided an analytical
damping (2.4), (2.5) and nonlinear models, basis for the grouping algorithm proposed in

this paper.
As an illustration we will consider the 2nx2n The aer.
linearized model (2.4), (2.5) which includes The algorithm uses the dichotomic solution of
damping. We define1 z to represent both a lower order Riccati equation expressed in
angle and speeds: z for the area variables terms of a basis of the slow eigensubspace.
:ad z for the intermachine variables. Then First a basis is found, and then a particular
the model (2.4), (2.5) becomes dichotomic solution is obtained via Gaussian

elimination. A grouping matrix, which is the

rl] Fclosest 
approximation of the dichtomic[ = [FI : E (5.10) solution, can be obtained and used to define2 areas. This algorithm is illustrated by

1 216-mthino example. Although the areas are

The singular perturbation approach in Koko- determined on a simplified linearized model,

tovic and others, 1980) is to use it is expected they can be used to bring more
detailed and nonlinear models to a singularly

1 1 (F..F1F_ IF2) z1 4 F z (5.11) perturbed form. This opens new possibilities
s 12 22 21 s 0 a for obtaining nonlinear lower order equiva-

to approximate the slow subsystem and lents by singular perturbation techniques.

S 22z2  (5.12) AC0NWLEDGEMENTS
f 22f
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where A.. are the submtrices of A of appro-
priate himensions.

Premltiplying (Al) by V 1 and using it to
eliminate A from (A2) yielrs

A2 1 v I+A 2 2 V2 -V2 V1 I (A1 1V1+A1 2 V2 ).O (A3) -

Thus, (3.1-V follows from post-multiplying i
(A3) by V , and Ld is identified as in
(4.3). Furihermore,

B1 uA 1 1 + A12 L a VIAV ()

cat be obtained from post-amltiplying (Al) by
V , implying that the sigenvalues of B are
tAe slow eigenvalues. The uniqueness If Ld
follows from Hdaaic (1979).

The proof of the second part of the lms
follows frim the first part. Since V is of
full rank, there are more than I combination
of the rows of V forming a noasinular
matrix VI, and hence the statemsat is mea-
ingful.

Proof of Lema 4.1

From the proof of Lemma 4.2, if u is an
eigenvector of BV, then

[:d] 

(AS)

is an aigenvector of A. In particular, if
vE o 0. then from (P1),

v z vo  (M6)

Thus (4.1) is obtained by writing L dU in

scalar form.

Proof of Lemma 5.1

Let us first rewrite R(L)zO and P(Q)=O as

IBL I] A [LI 0 (A7)

I NJ B 0.(AS)

where

0 3 [ 2 A~

Substituting BzTLATL into (AS) yields

[I-NI. NJ A [iLN

=,I-N NJ (-H1XKI H r 1 (Ag)
s [(I-.)(Hi)-I N(H2)-lj A' I..M. 0.

Pre- and post-Tulriplying (A7) by [H
2 (I-L)'

and ((I-1tL)(H )"]' and comparing to the
transpose of (A9), we obtain F

•N (I-Ll)'H 2L (AlO)

which simplifies to (5.4).



machines , . 2 (ij) entry of L is I if m- systems the dichotomic solution is also a grouping
chines x and xz are in the sam rsA and is zero matrix, that is L aL (91, and any choice of r me-
. otherwise'. xchines, each from i Afferent area, lives an L which

solves R(L ) a 0. If two machines from the sal area
As an illustration consider & three area five were in die reference set, then the corresponding

=chin system with Riccati equation would not have a dichotomic solution.
( I T  (3.1) This groping approach has a geometric repreo-

(X21 x 3' 5)sentation in term of a basis of the eigemsubspace ofS (I, 2)T (3.2) the slow modes of A for a particular ordering of themachine angles in z. Considering such a basis as the

L a1 0 1 1 (3.3) colums of an a .r matrix V, we see that if the ma-
0 chines i and j are slowly coherent, the ith and jth

The first, row of L indicates that the first machine rows of V must be identical. If no machines from the

it x belongs to thl same area as the third machine in sae area are in z , the rxr submatrix V of the basis

z , and the s rond ow of L indicates that the second matrix
machine in x I belongs to he same area as the first

achine in I . Thus the three areas composed ofV
machines 5 and 1, machines 2 and 4, and machine ? are V (313)
ufiquely defined. For a different choice of x and 2

- xo ,such as is nonsingular and the dichotomic solution of R(L) x
x a(, 12, X3) (3.4) 0 is given by (91

2 a x )T (3.5) Ld a Lg = V2V
1 . (3.114)

1
If two machines from the same area are in x , then V1
is singular since it has two identical rows. Hence Ld

we need a different L that is does not exist.

Ll 0 01 (3.6)g8 -1 0 03 The transformation of (2.8) into (3.10) with

to define the sam areas. Note that the zero column R(L)O decouples the fast subsystem, but the slow
subsyite is still coupled through A1,. Knowing that

in L of (3.3) or (3.6) indicates the presence of a the slow eigenvalues of A are in B , "te now separate
Singh machinle area. the slow subsystem from the fast. 4 plying the trans-

Using Lap (1.1) is rewritten more compactly as format1

x2(t) - L x I(t) a z
2 (t) (3.7) 2 

2  (3.15)

where the components of1 z 2 (t) reto (3.10), with R(L)O, we obtain

1-2 (3. 16)

f,,cton z.().For . ,x an L. defined in (3.1) - to(.0,wt ()O eoti

(t.3 (3 .8 ) 0 B 2  z- 2

For H in (3.15) we use the solution of

Our procedure interprets (3.7) as a special case

of the more general coordinate transformation

-i r 1 ]l P(M) 3 M 2 - 11 M I Z1 z0 (3.17)

•12 2 I I~I2(3.9) which completely separates (3.16) into the slow and
2 L I x fast subsystems. It has been shown [9] that the

solutions L of R(Lg 0 and M of P(M) a 0 are re-

where the (n-r)xr matrix L is not necessarily a lated by g

grouping matrix. The application of the transforms- 1 2 LT (I3TH2
tion to (2.8) results in u (H k + )L(318)rig g g

rzA12where R1 and H2 arr the ry and (n-r)x(n-r) diagonal
2 ) (3.10) mtrices of the x and x machine inertias reaper-"ZI LR( arariely.

1. where Thus, the complete transformation from the x to
z variables using (3.9) and (3.15) is

B Z A1 1 +A 1 2 L ,B2 aA 2 2  IA 12(3.11) 181 1 1 1T2 1

R(L) 2 A22 L - LAI1 -LA 2 L + A21  (3.12) z 2] L3 J 2 (3.19)

and A 1 , .A A , 22 are the submatrices of A con-
; " forms jlitjlj jj x. where

* We are particularly interested in a so called H a  H HI + LTH
2L . (3.20)

dichotomic L which satisfies R(L) x 0 and (B )I< a 2

IX(Bi)l , that is, which groups the slow modes into the Since the entrils of the grouping matrix L are zeros
mat ix 9 It can be shown that the Riccati equation and ones and I is diafora1 matrix of mA aine iner-
R(L)sO iA (3.12) can have at moat one such dichotomic tias, each entry in L M L is the sum of machine
solution L=Ld [91. Moreover, for r-decomposable inertias in an area ecluling the inertia of the

_________6____



reference machine in that area. Thus, H is a di- projections of the vector onto the other reference
gonal matrix of the area inertias, that is, the ith vectors.
diagonal element, H, of H is the sum of all the
inertias of machines area i. An important property of L is that it is inde-

pendent of the scaling of V. Gfven a basis matrix V.

for an 1-decomposable system the physical maning any other basis can be obtained as
of z and z can be readily determinVd by examining
(3.19). We see that the fast states 3 represent the
fast intermachine oscillations x. - x. of machines i VS = (4.2)

and j within an area, where achihe j s the reference L2]
machine of the area. From (3.19) we also see that

I I T (2.2where S is an rxr nonasingular matrix. The matrix Ld
z X LTH

2
x (3.21) is invariant to this change in basis, that isa• g .

and it follows that the slow states of z' represent Ld S (V S) s V2V1 (4.3)
the familiar center of inertia variables, that is

component wise To find a set of the r "most linearly inde-

I pendent" row vectors to be used &a the reference row
z. IN i x /N i, for all j in area i. (3.22) vectors, we apply Gaussian elimination with complete

i ipivoting to V. During the elimination, the rows and

These area variables are the weighted sums of the columns of V are permuted such that the (1,1) entry of

machine angles in the areas. They can be regarded as the resulting V is the largest in magnitude. Note

the angles of equivalent machines for the areas fl, that permuting the rows of V is equivalent to changing

2,41. As a consequence of our separating the time the ordering of the machines. This (1, 1) entry of V

scales, these equivalent machines have larger inertias is the pivot for performing the first step of the

and hence exhibit slower motions. Gaussian elimination. Then the largest entry from the
remaining (n-l)x(r-1) submatrix is used as the pivot
for the next elimination step. The.elimination ter-
minates in r steps and the machines corresponding to

4. THE GROUPING ALGORITHI the first r rows of the final reduced V matrix, are
designated as the reference machines. In this Gaus-

For idealized r-decomposable systems Ithe deter- sian elimination process, rows having small entries

minstion of areas amounts to finding an x vector of will not be used as the pivoting row because these

reference machines for which a dichotomic solution of small entries are the result of elimination with

R(L) a 0 exists. The difficulty with realistic almost identical rows already used as pivoting rows.

models, which are not exacfly r-decomposable, is that Thus, the algorithm does not put two near-coherent

in general for a given x a dichotomic solution of machines into the reference set.

R(L) = 0 exists, but is not a grouping matrix. For
such realistic situations, we present a group- For the set of reference machines found by the

ing algorithm to determine the areas, algorithm the corresponding Ld is readily computed
from

We begin by considering the case when the slow T LT v
T

coherency definition (1.1) can only be approximately V1  d 2(4.)
satisfied. Machines "i" and "j" are said to be near-
coherent if in (1.1) the contribution of the slow using the LU decomposition of V already obtained from

modes in z. (t) is small in some prespecified sense. the Gaussian elimination. The next step is to find an
Then a neaIJcoherent area is an area composed of all L approximating Ld, that is to find the machines be-

machines which are near-coherent to each other, longing to each area. To do this we examine each row
Following the approach for r-decomposable systems, we of Ld. If the largest positive entry in row i is the
need to first find the reference machines and then jth entry, then in the matrix L entry (i, j) is 1 and

approximate Ld by an L , since now Ld is different all other entries in the ith rower y 0.

from L d

Summarizing, the grouping algorithm consist of
For near-coherent areas, the row vectors of any four steps:

slow esigensubspace basis matrix V corresponding to
machines in the same area are not the same. However, a. computation of a basis V for the slow subspace of
they are close in the sense that they are of approxi- A,
mately the same length and are clustered in a narrow b. Gaussian elimination of V.
cone. There are r such nonintersecting cones, one for c. computation of L by (4.4),
each area. d. approximation ofdL by an L

dg
To identify the areas, we find the r "most lin- With the reference machines and L known, the areas

early independent vectors", one from each cone, and are determined. g
use them as the reference row vectors. After that, V
is reordered such that V1 consists of the referenfe The algorithm is efficient because its most time
row vectors, see (3.13). Recalling that Ld = V2V 

,  
consuming part the basis calculation in step a is only

we see from for r modes where r<<n and is carried out on the

- symmetric matrix (2.9). There are special purpose
1 programs available in EISPACK which make use of these

(4.1) properties for handling large scale systems.

5. APPLICATION TO A NONLINEAR MODEL

that the entries of Ld are the projections of other
rows vectors onto the reference vectors. Therefore, The grouping algorithm and slow coherency pro-
in each row of L the entry close to I corresponds to perties are now examined on a 48 machine NPCC test
the projection 9f the vector on the corresponding system (101. This model is of particular interest

reference vector, and the entries close to zero are

I



This localized nature of the fast dynamics can be
used to improve approximation Al by including the
differential equations of the fast difference vari-

Figure 6.2 are an approximation to the slow dynamics ables in the study area. Thus, for this approximation
present in the iatenmuchine variables in the faulted (A) we have a set of differential equations for both

area. The smaller the magnitude of these slow dynam- the area variables and the intermachine difference

ica the closer the system is to an r-decomposable variables in the study area. The external inter.

system. Figure 6.3 illustrates the response of indi- machine difference variables are modeled vith cuc,
vidual machine angles in area I which is adjacent to that is with a set of stAtic equations. Figures 6.4,
the faulted area. The close agreement between the 6.5, and 6.6 show the close agreement between 9 and
exact curves and the approximation implies that the A2. The differences between these curves are due to

fast dynamics in area I is small even though the fast the neglected fast dynamics in the external areas.

dynamics in the faulted area are substantial. Thus. A2 curves are more accurate than those of Al.
However, both approximations provide the correct
steady state value.

1
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" /. E 

- -./
\ 0 ,A2
"', A:2. r, .. r• ' ..40- I I A

: -20-

.. Al A22::"

0 1 2 3 4 501 3 4
TIME SECONDS TIME SECONDS

" Figure 6.3: Individual machine angles area 1, exact Figure 6.5: Angular difference variables area 5.
and approximation Al exact and approximation A2

100-

A2 , 60-

60 , .. I # 'A2

40--
," .,,..' ',' /A2A

E 20 "
20 : ... ,%

A 2

0- I I I

0 2 3 4 5 0 2 3 4 5
T IME SECONDS TIME SECONDS
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20 6. APPROXIMATE SIMATIONS

From the above discussion we have shown that the
time scale properties are preserved in the nonlinear

0model. Having expressed the system dynamics in the
form of (1.2) and (1.3) we present three different ap-
proximate simulations of the Medway fault.

0 After the fault was cleared, we set c 0 for the
entire fast subsystem and obtain a set of equations in
the ferm of (1.4) and (1.5). With this approximation

10 ~ .*~.,(Al) the slow dynamics are in differential equation
ferm (1.4) and the slow part of the fast dynamics are
represented by a set of static equations (1.5).
Figures 6.1, 6.2 and 6.3 show the close aggreement
between the exact solution (E) and the approximation

20- Al for selected machines in the faulted as well as
adjacent area. The error introduced by this approxi-
mation is only in the fast dynamics and there is no

-30- ________________ _ steady state error between Al and E. The Al curves in

0 I 2 3 4 5
TIME SECONDS

Figure 5.2: Angular difference variables, ares 5 10
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I.!
If the test system were truly an r-decomposable vary with time. Depending on the post-fault equi-

system the difference variables would contain no slow libriun this my or may not be a significant error.

area motions. Figure 6.2 indicates how close our The agreement between approximation A3 and the exact

system is to an r-decomposable system. If we make the solution E is shown in Figures 6.7, 6.8 and 6.9.

assumption that the test system is r-decomposable and Within the study area, Figures 6.7, 6.8, the agreement

that the fast dynamics are strictly local to the study remains good. However, A3 curves for area 1 (Figure

area then the intermachine difference variables 6.9) do not compare as well to the exact curves as in

remain constant outside the faulted area. This ap- previous cases. This is due to the approximation of

, proximation is basically similar to the equivalencing the intermachine difference variables as constants.

technique used in (4]. Errors introduced by this
approximation (A3) will be both in the fast variables,Ifor the same reasons as discussed above, and in the
slow variables, which will have a steady state error. 80-

This steady state error is due to the fact that we
have constrained the angular differences between
machines outside the study area to be the same as the
pre-fault equilibrium conditions. These angular A3/

differences are represented as phase shifters in -0
[41. In approximation A2, these angles are allowed to ET E. ,

.. , ~~40-.;...-/

100- ,.
E: ,, ._.-EEE /:

SO- ;
I\

L60 1
0

W0 I 2 3 4 5

E TIME SECONDS

Figure 6.9: Individual machine angles area 1, exact

2 and approximation A3

7. CONCLUSIONS

0- The concepts of slow coherency and r-decomposable
0 I 2 4 systems have exhibited the time scale properties in

TIME SECONDS electromechanical models by introduing a set of
physically meaningful fast and slow variables. These
variables are obtained through the dichotomic trans-

Figure 6.79 Individual machine angles ares 5, exact fomtion which is the solution of a lower order
and approximation A3 Riccati equation. A grouping algorithm is formulated

to find a Particular dichotomic solution, from which
the grouping matrix can be obtained and used to define

20- the areas.

Through the 48 machine system, we show that the

10- E areas. obtained from linear analysis are valid for
105non liear simulations and are fault location inde-

A3 pendent. Three types of approximations using the/53singular perturbation technique are illustrated. y
hyneglecting all the intermachine variables, the slow

variables reproduce the ares motions. The accuracy of
the simulation is improved by including also the

-intermachine dynamics in the study area. Without much
Thls i accuracy, the intermachine variables in the

.0'.://external ares can be kept constant. These approxi-
motions offer new approaches t siation s
for power system studies. o rx mations
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If the test system were truly an r-decomposable vary with time. Depending on the post-fault equi-

system the difference variables would contain no slow libcium this may or may not be a significant error.

area motions. Figure 6.2 indicates how close our The agreement between approximation A3 and the exact -

system is to an r-decomposable system. If we make the solution 9 is shown in Figures 6.7, 6.8 and 6.9.

assumption that the test system is r-decomposable and Within the study area, Figures 6.7, 6.8, the agreement - i

that the fast dynamics are strictly local to the study remains good. However, A3 curves for area I (Figure

area then the intermachine difference variables 6.9) do not compare as well to the exact curves as in

remain constant outside the faulted area. This ap- previous cases. This is due to the approximation of

proximtion is basically similar to the equivalencing the intermachine difference variables as constants.

technique used in (4]. Errors introduced by this
approximation (A3) will be both in the fast variables,

for the same reasons as discussed above, and in the

slow variables, which will have a steady state error. 60-

This steady state error is due to the fact that we

have constrained the angular differences between

machines outside the study area to be the same as the

pre-fault equilibrium conditions. These angular A3

differences are represented as phase shifters in 607
(4]. In approximation A2, these angles are allowed to E

100-
EE/

90 2A0- A3. _
t~~ 3,1 E ."

60 1.'
/ .. .I i I I I

0 i 2 3 4 5
TIME SECONDS

40-

A3. "
Figure 6.9: Individual machine angles area 1, exact

S:-and approximation A320-

7. CONCLUSIONS

The concepts of slow coherency and r-decomposable
0 I 2 3 4 systems have exhibited the time scale properties in

TIME SECONDS electromechanical models by introducing a set of

physically meaningful fast and slow variables. Thesevariables are obtained through the dichotosic trans-
Figure 6.7: Individual machine angles area 5, exact formation which is the solution of a lower order

and approximation A3 Riccati equation. A grouping algorithm is formulated
to find a particular dichotomic solution, from which
the grouping matrix can be obtained and used to define

20- the areas.

Through the 48 machine system, we show that the

10- '../E areas obtained from linear analysis are valid for
nonlinear simulations and are fault location inde-
pendent. Three types of approximations using the

;./ Vsingular perturbation technique are illustrated. By

0- : ' :.....neglecting all the Intermachine variables, the slow
variables reproduce the area motions. The accuracy of

the simulation is improved by including also the
intermachine dynamics in the study area. Without much

0- ' ' ', . ! . loss in accuracy, the intermachine variables in the

.. A3 E xfor power system studies.
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Singular Perturbation of Linear Regulators:
Basic Theorems

PETAR V. KOKOTOVI1 AND RICHARD A. YACKEL, MEMBER, IEEE

Abstrt-The behavior of the solution of the Riccati equation solve even when the dimensionality of the system is not
for the linear regulator problem with a parameter whose perturbation high [1].

-changes the order of the system is analyzed. Sufcient conditions In the method of this paper the small parameter X is not
are given under which the solution of the original problem tends to
the solution of a low-order problem. This result can be used for the neglected in the state equation (1), but rather in an
decomposition of a high-order problem into two low-order problems. appropriately formulated Riccati system for the regulator

problem (1), (2). At X - 0 this "full" Riccati system is
IWoDuc'rION decomposed into two smaller Riccati systems, one corre-sponding to the variable z, and the other corresponding

T HE DEPENDENCE of the solution of a linear to the variable z. An efficient decomposition is achieved
regulator problem on a parameter whose small since the z Ricecati system does not depend on the x

perturbation can change the order of the system is analyzed. Riccati system and thus can be solved separately. It is of
The system considered is practical importance that the z Riccati system is algebraic

rather than differential, even for a finite time interval
-- = Jx + J2z - Alu, x(to) = XO (la) problem. In contrast to the full Riccati system (9), the
di two smaller Riccati systems (lic) and (16) constitute a
dz "reduced" system. In Theorems I and 2 conditions are

x - lax + L[4z + Bu, z(tO) - 0 Z (lb) formulated under which the full solution tends to the
reduced solution as X -* 0 + . Hence, for X sufficiently small,

where X is a small positive scalar, x and z are n- and m- the reduced solution can be used as an approximation of
dimensional states, respectively, and u is an r-dimensional the full solution. In a future paper [2] an asymptotic
control. The performance index to be minimized is expansion method is developed which improves this~approximation.

J y'(t,)'y(t,) + I (y']ij + u'Ru) dt (2) To appreciate the nontriviality of the perturbation
problem considered, note that at X - 0 the matrices

where y = C t + Ctz - X is an s-dimensional output, F 1 r[ 1

X is the (n + m)-dimensional state of (1) and C = , \], ffiB 1  I (3)
A3/X A.,X ' 2/

In physical systems our parameter X represents small of the state equation (1), that is, of the system
time constants, masses, moments of inertia, etc. I Following dhis intuition and experience a designer usually neglects = 2,X+Au, X(to) X0 , (4)
these small parameters during the design of a regulator dt
system. He has at least two strong practical reasons for may be unbounded at X = 0. To analyze this singular
this simplification. An evident reason is that the presence perturbation problem a "boundary layer" concept is
of these "parasitic" parameters can make the dimen- introduced in the Riccati system. The "thickness" of this
sionality of a dynamic system prohibitively high. Another, layer is a short time interval [ti, if] during which a rapid
less apparent, reason is that equations describing systems transient of the z Riccati system decays. Asymptotic
with small parameters multiplying derivatives belong to a stability of this transient is a crucial condition in most
class of "stiff" differential equations, which are difficult to theorems of singular perturbation theory [3], [41. Readers

unfamiliar with singular perturbation theory are referred

Manuscript received July 3. 1970; revised March 31, 1971, and - to theorems of Levin and Levinson [5) and Hoppensteadt
tember 20. 1971. Paper recommended by L. Silverman, Chair- [6] in the Appendix.
man of the IEEE S-CS Linear Systems Committee. This work was This paper is organized as follow. After preliminary
4 supported in part by the U.S. Air Force under Grant AF0SR1-

3.79C, in pert by the Joint Services Electronics Program under notation and definitions the main result is presented in
Contract I)AAB-07-67-C-0199, and in part. by the National Science Theorem 1. This result is then extended to the infinite
Foundation tnder Grant GK-3893.

P. V. Kokotovi6 is with the Coordinated Science Laboratory, time interval (if = =) problem. Theorem 2. It should beJ Universitv of Illinois, Urbana, IlL noted that in Theorem 2 the existence and uniqueness of
It. A. Yackel is with the Department of Electrical Engineering, te fl tin iestablihe ian t y and

University of Illinois, Urbana, Ill. the full solution is established via controllability -md
IFor example, if T is a small time constant and ,Mf is a small observabilitv test for the reduced system, thus avoiding

mas, then we can write T caiX and en t., where a, and a, are
'ppropriate coefficients, the difficulty with the unboundedness of matrices .J and

Iwo
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as X --* 0. Singular perturbation of linear regulators was reduces to a system of one differential and two algebraic
first considered in [7 ]. This result now appears as a special equations, called the degenerate system,
case of Corollary 2. dKi

- - Ki(Ai - SK') - (A, - SKI')'Ki
PRELIMINARY DEFrINTONS d

In the regulator problem (1), (2) the following usual + KASK. - K2A3 - As'Kl'
conditions are set for t E [to, t] and X E [0, X0 . + KASKI' - Qi, Kt(t,) - II, (11a)

1) JA2, J J, i , B2, A,, and C are continuous in I and o - KI(SIK. - A.) - K.A, - As'Ks
x.

2) R and D are positive definite and continuous in t + K.SK& - Qi (UIb)
and X. 0 - -K&A4 - A4'K3 + KvS.K3 - Q (le)

3) P is time invariant, positive semidefinite, and
continuous in X. where the absence of a tilde above a matrix denotes the

evaluation of that matrix at X - 0.
It is well known [81 that under these conditions and Note that as X - 0 in (9) the derivatives dX,/dt and

for X > 0 and t finite the optimum control is dLR'dt may tend to infinity since, in general, K, - III

u - -R-B'!Y (5) and K3 = II do not satisfy (11b) and (lIc) and thus the
right-hand sides of (9b) and (9c) are not zero at X - 0

where/ is the solution of and t I If. Hence, in an interval about If the solution (9)

dK differs markedly from a solution of (11) and, since dl2/dt

d - _ 1_ , + -/BR-B', and dt~s/dt are large, R, and Ka rapidly change in this
interval. This interval is called the boundary layer

-- CTC, R(tf) - C' C (6) because of an analogy with problems in fluid dynamics
[9]. To analyze this boundary layer phenomenon theand the optimum regulator system is

ad tfollowing boundary layer system is introduced:
dX
-- . (11 - BA- 12R)X (7) d 1.() _ L( .[ ,j

( d - L(r)[SCt)Ls(t) - A4 (t)1 + [K.(t)S(t)
A dr

Partitioning 9, 2 -C C, and fti - 'PC into n by n, - A,'()}L.(r) - K(t)A,(t) - Q,(t) (12a)
n by m, and m by m arrays, 

-L-(-1

d -1 -L(r)A4(t) - 44'(t)La(r)

+ La(r)S:(t)Ls(r) - Q3(t) (12b)

L X fl , (8) where the independent variable is r. and I is considered as a

and denoting 9, = A1 A-'A,', S. A2 R.-', and $ = fixed parameter, t (= [1, 1f]. The variable r is often referred

we rewrite (6) as to as "fast time" since (12) can be viewed as being ob-
tained from (9) by the use of the "stretching" trans-

I.S- - &,, - + AIIA, formation t = Xr + If and allowing X - 0, see [3. p.
dt 254]. Using (12b) we now introduce two important

definitions.
+ K9-Z2' -+ RI2'K + K2,SIZ' - Q1 (9a) 1) The system (1) is called boundary layer controllable

S - , - ,I, - xAX'. - A'R, + R , if for each fixed I E [to, IfI

dt rank [B,, A 4B,, -.. , A-tB21 = m. (13)

+ M.SR, + XR / 'I ' + l'AK, . - 0, (9b) 2) The system (1) is called boundary layer observable
X if for each fixed t ( [to, If]

dt rank [C2', A 4'C',..., (A')-C2'] = m. (14) .

+ X R '9, + X2' S1 + X19' 2' Next note that a solution of the degenerate system

+ R.S2R. - (2. (9c) (11) is not unique, since (lc) has several roots. It %ill be
shown in Lemma I that a unique positive definite root ,

with the end condition Ks of (lc) exists such that [A4 - ,K3j has an inverse
for all t E [to, tf]. Then the root K2 of (lib) is uniquely r

Kt(t) If't, K2(t,) - fli, g,(t) - fl. (10) defined
The preceding form of K makes the Riccati system (9) K, - (K.SK, - Kt.4, - A'K, - Q)

suitable for singular perturbation analysis. This system is r
called the full system. If X is zero. the full system formally .(A4 - SK3)-' (15a) ]
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The stability of the root is discussed in Lemma 2. Given of the solution to the reduced system (16). Finally,
Ks, the root K, in a linear function of K, Lemma 4 guarantees that the asymptotic stability of the

K, - K1 E1 - E 1 5b)% boundary layer system (12) is uniform with respect to t
which is the essential condition for the application of

where Theorem L in the Appendix.

E l - (SK, - A )(A 4 - StK )- l L I

Et - (A'K, + Q)(A 4 - S,%K,)-'. (15c) Let conditions 1)-5) be satisfied. Then for each fixed

Substituting Kt into (Ila) gives t G [to, 1f], first, there exists a unique positive definite

root Kl(t) of (Ilc); second, this root is an asymptotically
- - -KiA - A'Kt + KaR--B'K - stable equilibrium of (12b) as r - - m; third, I belongs
di to the domain of attraction' of this root; and fourth,

K(t) - 1i (16) (t) - A4(t) - S(t)Ks(t) (20)

where is a stable matrix.'

A - At + EiA3 + SEt' + E1 , 1E2' (17a) Proof: The lemma follows directly from well-known
results of the output regulator theory for completely

a - B, + EIB, (17b) controllable and observable plants [81, [101 since for each

= -- EAs - A,'E 2' - Et,8E,' + Q,. (17c) fixed t E [to, ifI conditions 1)-5) insure tht

The system (16), along with K2 and K: defined pre- d. . A4(t)z(.) + B,(t)u(r) (21a)
viously, is called the reduced system. The dimensionality dr
of the reduced system (16) is n by n, while the dimen- p.
sionality of the full system (9) is n + m by n + m. The J - I [z'()Q()z(?) + u'(r)R(i)u(,)] d? (21b)
existence and uniqueness of the solution of (16) will be
established later in Lemma 3. is a well-defined regulator problem.

MArn TH wRM Lemma *

Theorem 1 If conditions 1)-5) are satisfied then the root of (lib)
attI - tf

Let conditions 1)-3) be satisfied and assume that the
system (1) is Kt(tf) - [11S(t)K,(tf) - IIAI(if) - A((l)K:(tf)

4) boundary layer controllable; - Qt(t)]"-J(tf) (22)
5) boundary layer observable, is an asymptotically stable equilibrium of (12a) as r -

Then for t E [to, Lf] and X E [0. X01 the unique solution -

R(t, X) of (9) with I(t I , X) = fI exists on the interval Proof: Rewrite (1a) as
[to, L,] and dL,(t)

[to,~~~ -fIad L() LI(r)[a~t ) + 0(,r, If)] + -t(r, if) (23)

lim R,(t, X) Ki(t), t E [to, t,] (18) dr-

where
lirn R2(t, X) = K2(t), t (to, Il) (19a)
A-0 0(r, if) - S(t,)[Ks(t) - L,(r)] (24a)
lim R,3(i, X) K,(t), I [to, tf) (19b) y(r, t) - -nt[A(if) S(tt)L(r)j - ASL(tt)Ls(r)

where K(L) is the unique positive definite root of (lIc), - Qt(tf). (24b)
KI(t) is defined by (15) and Kt(L) is the unique solution In view of known results for the stability of linear systems,
of the reduced system (10). The limit (1S) is uniform in t see [12, p. 70, theorem 91, it follows that if a) 0(r, tjl -
on the interval [to, IL] and the limits (19) are uniform in 1 0 as r - - -. and b) L2(r) - 0 is an asymptotically
on any interval [to, il], where t, is arbitrarily close to if, stable equilibrium of
Li < if.

The proof of this theorem is carried out in four lemmas. dL,(r) (25)

In lemma 1 it is shown that boundary layer control- dr
lability and observability (13), (14) insure that thesoluionL (~oftho ounarylayr oqatin (2b~illthen K2.(e,) is an asymptotically stable equilibrium of

* solution L3(r) of the boundary layer equation (12bl %% ill (16). Condition a) is satisfied by (24a). To prove b) let
be attracted to the asymptotically stable positive definite
root Ks(t) of (lIle) for each fixed t E [to, Lf]. Lemma 2
gives a similar result for (12a) and (1ib) at t - L,. In hFollowing Hahn [t1I a matrix is calledstable if all its eigenvalueshave negative real parts. The domain of attraction is also defined in
Lemma 3 these facts assure the existence and uniqueness II1.
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1,() be the ith row of L, and consider (25) r(X) - (x) rn) (32)

dl , -[A 4(tt) - QtK.(H], i 1 1, 2, ... s where

(26) r,,,(x) - -, (K,, K,, K3, t, X), i, j - 2, 3. (33)
aib,

Since by Lemma 1 [A 4(,) - S,(tf)K3(t,) Iis a stable matrix,
the null solution of (26) is an asymptotically stable Let r(0) denote r0) evaluated along the reduced solution

equilibrium as r - -- .KI(t), K2(t), Ks(t).
With Lemmas 1 and 2 we satisfy condition L2 in the mma 4

Appendix. To satisfy the condition L3 we establish
the existence and uniqueness of the solution Kj(t) of the If conditions 1)-5) are satisfied then all the eigenvalues
reduced system (23). of I(0) have positive real parts for t E [to, tf].

Proof: Since rp(0) = 0 the eigenvalues of r(O) consist of

Lemma 3 the eigenvalues of rn(0) and those of rs(). Note that
rn(o) and rn(0) can be expressed in terms of Kronecker

If conditions 1)-5) are satisfied, then 0 is positive products [13],
semidefinite and therefore the solution KI(t) of the
reduced system (16) exists and is unique on the interval r=(0) = -(A, - SK,)' X I, (34a)
[to, t]. r,(o) = -I, X (A4 - SKa)' - (A4 - S, K' x I.,

Proof: It follows from [8] that if R is symmetric positive
definite, and 0 and Xi are symmetric positive semidefinite; (34b)
then the solution Kt exists and is unique on the interval where IN and Im are n X n and m X m identity matrices.
[to, if]. To show that Q is symmetric positive semidefinite Therefore, the mm eigenvalues of r(o) are js + gj,
we apply a matrix identity from (Ile) to (17c) to obtain i, j I, , m, and the nm eigenvalues of rn(o) are

2 - (Qt + A3'Ka)(A 4'Ka + Q,)-IQ,(A 4'K + Q3)'-' , i = 1, , m, each one of which is of multiplicity n,
where IA, i = 1, ... , m are the eigenvalues of -(A 4 -

•(Q2 + A3'Ka)' - Q2(A 4'Ks + Qs)'-'(Q,' S2K3 ), see [14]. Since by Lemma 1 all the eigenvalues
+ K3Aa) - (Q2' + K 3 ,)'(A4'K, + Q3)-IQ.' A, i 1, • • , n, have positive real parts, all the eigen-

values of r have positive real parts.
+ Q1. (27) With Lemmas 1-4 we satisfy all the conditions of

Theorem L in the Appendix. This completes the proof of
For an arbitrary vector 9 let Theorem 1.
S= 9 and w = - (A4 'K3 + Q)'-1 (Q2 + A,'K,)'9. (28) When A4(t) is a staple matrix, Theorem 1 can be ex-

tended to systems which are not boundary layer control-
Since by condition 2) Q is positive semidefinite, lable or observable. Corollaries I and 2 deal with two

t'08 - v'Qlv + v'Q, w + w'QA'v + 'Q w > 0. (29) extreme situations.

Thus '2 is positive semidefinite. Since condition 3) implies Corollary I
the positive semidefiniteness of i, and R is positive Let conditions 1)-3) be satisfied and instead of condi-
definite by assumption, all the conditions of [8] for the tions 4) and 5) assume that for all fixed t E [to, tf]
existence and uniqueness of KI(t) are satisfied.

Finally we show in Lemma 4 that the Jacobian of the 6) A4(t) is stable;

system (9b) and (9c) evaluated along the reduced solution 7) B2(t) m 0.
is a stable matrix as required by the condition IA in the Then the results of Theorem I still hold.
Appendix. Map the matrices Ri, 92, and R' into nn, Proof: Lemma I holds since (12b) is an asymptotically
nm, and mm-vectors K1, K2, and K3, respectively, and stable Lyapunov equation, and Lemmas 2, 3, and 4 hold
rewrite (9) in vector form since S(t) m 0 and a(t) - A(t) - S2(t)Ks(t) - A(t) is a

dKt stable matrix for all fixed t E [to, ti].
-L =f, (K,, , , X) (30)dt Corollary 2 .

XdK- Let conditions 1)-3) be satisfied and instead of condi-d- f,(K, K2 , K,, t, X) (31i) tions 4) and 5) assume that for all fixed t E Ito, tfA

dK &, K(3b) 7) A,(t) is stable;
d- jK, K,, t, 8). ) Q3(t) M 0.Then using the root Ks(t) - 0 of (lc) the results of

The Jacobian r(x) of [f'f,'j' is then given by Theorem I still hold.
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Proof: The result of Lemma I for the unique positive since it is finite and then show that the hypotheses of a
definite root K3(i) of (lie) now applies to the isolated' root theorem by Hoppensteadt (Theorem H in the Appendix)
K3(t) = 0 of (1lc0 with Q,(t) f 0. This result for the are satisfied on the second interval.

T Riccati equation (12b) with QW) 0 is known from [15], If conditions 1")-3") and 4) and 5) are satisfied then
[161. Since a(t) - A.(t) - S2(t)K3() = A4(t) is a stable by Theorem I there exists a * > 0 and a t* < tfsuch that 4

matrix for all fixed t e [to, tf], Lemmas 2-4 still hold. !!.K(t*, X*) - K(t*)i < e for an e which satisfies the e
A special case of Corollary 2, when A4 (t) is negative closeness requirement of Theorem H. Furthermore, (9)

definite and 1I: - 0 was considered in [7]. has the unique solution *(t, X*) on [t,] satisfying the
As a further extension it may be shown that Theorem 1 end condition E(t,, X ) - 0 and (t, X) - K() as X --p 0

will still hold if conditions 4) and 5) are violated, but on [t*, ti] where t* < tL < it.
uncontrollable or unobservable modes of (21a) are asymp- Hypotheses Hi, 2, 4, 5 of Theorem H are evidently
totically stable. satisfied by the form of (9) and conditions 1)-3). From

the results of the linear regulator theory, conditions
TIME-INVARIANT PROBLEM 1")-3") and 9) and 10) insure the existence and asymptotic

* An important class of regulator problems occurs when stability of the solution Kt(t) of (16) on (- , tl], as

if and the system (1) and C, D, and R in (2) are required by H3 and H6. The crucial hypothesis 117 is that

time invariant. For the finite time interval problem the the solution of the boundary layer equation (12) be

existence of the solution of the full system (9) is assured asymptotically stable uniformly in initial conditions

by the conditions 1)-3) which are easily checked. The and the parameters t and Kt for t E (- c, (*] and K,

existence problem for (9) when tf = - is harder since the positive definite. By 1) and 3*) the system (12) does not

controllability and observability of ., B, and C must be depend on t, nor does (12b) contain K1. Hence by Lemma 1

checked for all X E [0, X0]. This is particularly difficult the solution L3 of (12b) satisfies H7. By Lemma 2 the

for X very small, since .1 and B contain terms A3,/X, solution L2 of (12a) is asymptotically stable uniformly in

A 4/!, and B,/X. This difficulty is avoided in Theorem 2 K1. This completes the proof of Theorem 2. Extensions

where controllability and observability conditions of the similar to Corollaries 1 and 2 are immediate.

reduced system guarantee the existence and uniqueness
of the 'F.lution of the full problem for X sufficiently small. Two-STAoz DESIG

A second result of Theorem 2 is that the reduced solution Using the results of Theorems 1 and 2, the linear
approximates the full solution for x sufficiently small. regulator design can be decomposed into a two-stage

For the time-invariant problem, conditions 1)-3) are procedure. At the first stage the algebraic system (1le)
modified as follows: is solved for Ks(t). At the second stage the differential

I*) 1 , . , .1, .4 , A,, A, and C are time invariant system (16) is solved for K,(t), and K2(t) is evaluated
and continuous in X for , e [0, X]; using the explicit formula (115).

2) A and n are symmetric positive definite, time This decomposition and reduction of dimensionalitv is

invariant, and continuous in \ for X E [0, O I; particularly efficient in finite time interval problems with

3*) Fm0. time-invariant systems. In this case the accurate design
requires solution of the full 1/2(n + m + 1)(n + in)-

Theorem 2 dimensional differential system (6), and the whole regula-

Let conditions 1)-3*) and 4) and 5) be satisfied. Also tor matrix R(t, X) is time-varying, while in the two-stage

assume that the matrices of the reduced system (17) design the reduced differential system (16) is 1/2 (n + 1)n

satisfy dimensional. The time-invariant K, is easily obtained by an
algebraic method and is less expensive to implement than

9) rank ' , '  n where is a ,(t, x).
solution of Ot'C ; A familiar speed control problem for a small dc motor is

10) rank [A,A, ... , (A)M-1] 7n. used to demonstrate the two-stage regulator design.

Then for sufficiently small X the asymptotically stable The motor state equation is
equilibrium K(X) of the full system (9) exists. Moreover, - - (D/G)i (36a)

lir ( ) K,', i - 1, 2, 3 (35) dt

where K,' is the asymptotically stable equilibrium of the XL- . _ C - R.i + v (36b)
reduced system (11).

Proof: The structure of the proof is to divide the time where w, i, and v are speed, current, and voltage deviations
interval into two parts t* < t < tf and - cc < < t*. from their respective nominal values 400 rad/s, 0.25 A,
We apply the result of Theorem I to the first interval 11.8 V. The motor constants are R, - 7,9l, L = 0.0136 H,

'That K,(M - 0 is not a multiple root follows from the non- 4The norm of a matrix is taken to be the sum of the absolute
singularity of the Jacohian r- in Lemma 4. values of ite elements.
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Fig. 1. Optimal and reduced Riecati gains R and K1.

C 0.0246 V. s/rad, G - 1.32 X 10- 4 kg. ml. In (36) the 1-3. The solid curves represent the full solution 91(t, X),
armature inductance, being a small parameter, is multiplied 11(1, X), and Xs(t, X) for different values of X. From the
by a factor X. Let the performance index be family of curves in Fig. 1 it is apparent that the limiting

0.1 process - 1(t, X) - K,(t) is uniform on the whole interval.

2 + 0 (W2 + 4600ij + 30v)di. (37) The families of curves in Figs. 2 and 3 show that the
limiting process for R,(t, X) and k(, X) takes place for

Even in this extremely simple problem the full systemn t < t, - 10 ms. The convergence is not uniforrm on the

whole interval due to the boundary layer phenomenon
• _t , 3 .6 -9 2 + 18 0 2  - - , . , ) - 0 .0 1 (3 8 a ) n ea r .-d-

dt A shortcoming of the two-stage design method pre-

X -, 18,54R + 58E,+ sented here is that it does not give an estimate of a range
di X E=O1, X111 in which the reduced solution can be used as a

"good" approximation of the full solution. Although the-
d4 - X37308R + 1162Z + 1801V - 4600 (38c) oretically important, this shortcoming does not seem to bedi

critical in regulator design practice. Recall that even
with R, and 93 zero at t - if, must be solved on a corn- when the accurate K is designed several trials for weighting
puter. Note that, at t - t, dK,/df - -4600,1X, and hence matrices R and (Q are made, and the resulting system is
for X - I the change of -s is 4600 times faster than the tested before an acceptable control is found. Thus no
change of R1, so that (38) can be considered a stiff system. loss of system performance will occur when these trials
In the degenerate system are carried out with the reduced solution K,, K2, and Ks.
dK, The two-stage design has been introduced using full and

- . 3.6K2 + 180K,- - 1, K(if) - 0.01 (39a) reduced Riceati equations. This procedure can now be
interpreted by an analysis of the fuU and reduced state

0 - -18654K + 581K2 + 1.SK, + 180 KK. (39b) equations of the resulting regulator system. In an imple-

0 - 1162K + 180K31 - 46mentation of the control law (5), Ki, Kt, and K, are used
0(39) instead of K,, 2, and Rs

the positive definite root of (39c) is K, = 2.77. Solving
(39b) for K, - 17.3 KI - 0.0046, and substituting it in u - - R-[(Ei'Ki + A'K2')x + (XL'K2
(39a) we obtain the reduced system + L'Ks)z] (41)
dK1
d- . 33K, + 5368K,' - 1.013, KI(t) - 0.01 (40) and the full state equation of the regulator system be-

comes

which can be solved analytically. The reduced solution ( 1 - ,K - SK,')x + (12 - 9K, - XgK,)z
Kt(t), Kt(t), and K, is shown as dashed curves in Figs. (41a)
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Fig. 2. Optimal and reduced Riccati gains ks and K,.

4.

3.

0 1 3 4 5 6 7 8 9 10
Time 1-1

j ~Fig. 3. Otmland reduced Riccati gains R1 and Ks.

-(,Is- S'Kt &K2')x + (14 - Uz- X'Kt)z. can be uniquely solved for z. The state equation (41)
satisfies all the hypotheses of Theorem L in the Appendix,(4b 3P

(b) and therefore the full solution will tend to the reduced
The edued tateequtio is niqe .~ (A - K~~ solution as X - 0 +. Note that z exhibits a boundarylaye nearce dat eqato and thatu thise laye is cotrlldyh[ xssadlyrna oadta hslyri otoldb h

solution of the regulator problem (21) in Lemma 1. Thus
0 me (As S'K1 SsK2')x + (A4 - SI,)x (42) the first stage of the two-stage design procedure is used to
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design a boundary layer regulator for the r-dimensional r, 11,7 - i(t)ll < r, 0 X X to _5 t _ if where r >
state z. To interpret the second stage the root of (42) is 1,7 - j(1o) - 0.
substituted into (41a) with X - 0 and, using the notation
(15b) and (17a), (17b), the reduced state equation can be Theorem L [41
written in compact form Let the following conditions be satisfied.

=t - Ax + ha (43) Ll: f, df/&a, af/o, g, / ayg/ot are of class C0 in

where Q, t,, t, x) E 6t.
L2: The solution u(r) of (50) exists on r E [0, co), is

(44) unique, and is asymptotically stable with respect

It is apparent from (16), (43), and (44) that in the second to the root p(to, ED) of (48).

stage the reduced regulator system (43) is optimized with W: The solution ( ) of the reduced system (47')

respect to the performance index defined by R and t ].
LA: The real parts of the eigenvalues of the Jacobian

CONCLUsION 
matrix

Notions of boundary layer controllability and ob- ag/a(t, , i, 0) (50)

servabilitv have been introduced to establish sufficient are negative on [to, t,], for q - (tP, ).
conditions for the solution of a higher order linear regulator Then for sufficiently small , the full system (45), (46)
problem to tend to the solution of a lower order problem has a unique solution t(t, ), (t, ) on t E [to, tf] satisfying
as a parameter X tends to zero. For X sufficiently small a h anique coltion E(1, ) ) o I -[4, Fustsyn
two-stage procedure greatly simplifies the design of a linear te,
regulator. The results of this paper are also applicable to r

other problems involving matrix Riccati equations such lim t(t, X) - (t) on [to, if] (51)
as filtering, estimation, and nonlinear trajectory optimiza- X-0

tion via second variation techniques. lim 7(t, X) - j(t) on (4, if (52)

APPENDIX where the limit (51) is uniform in i on [t, if] and the limit

Consider the initial value problem (52) is uniform in t on any interval [ti, if], where to <

t1 < if.
di - f(t, E, 17, X), (o) = to (45) Theorem H [5]

Let tf - - in the definition of 61, and denote by (1 its
\- (t, t, 1, X), 7(to) = 1o (46) (n + 1)-dimensional subspace in t and t. Let the following

di conditions be satisfied.

where A is a small positive parameter and j and j are n- HI: f, g, afi'lk, af/8, ag/at., g/a, ag/ are of class
and m-dimensional vectors, respectively. Formally setting Ct for all (I, , t, A) E 0.
X = 0 in the full system (45) and (46) gives the degenerate C2: There exists a bounded function X) = (, t) of

system class C2 which is an isolated root of g(t, t, p(t, t),
_f 0) - 0 for all (,t) E .
d f(t, , 1, 0), H(t&) - (47) 13: The solution (t) of the reduced system (47'),

corresponding to the isolated root j(f) exists on
0 - g(t, , , 0). (48) [to, o).

Since (48) may have several roots, suppose that a H4: The function f is of class CO at ,,(t) - i(t), X - 0
particular 8ot m - P(I, E is of interest and substitute it in uniformly in (U, ) E Q and f(t, Z, i(t), 0) and
patcua root sofiter ndttee i af/(e, J, i(t), 0) are bounded in fa.
(47). The n-dimensional system 15: The function g is of class CO at A - 0 uniformly in

fi (t, t, j) E L1 and g, ag/t, 8g/it, 41/ai at A - 0
d- fi .i , i(, ), 0], (to) - e0 (47')are bounded on 6t.

is a reduced system of (45), (46). H6: The solution of the reduced system is uniformly
u sasymptotically stable.

Introducing a new time variable r (46) is rewritten in H7: The solution of the boundary layer system is
the form of a boundary layer system, uniformly asymptotically stable uniformly in the

g(a. 0. all 0). 1(0) - 170 (49) parameters (a, ) e . I
dr If the e closeness requirement Iitm - 'Roo, wo)I < -is

where a - to and -o are fixed parameters. In the space satisfied for a sufficiently small e, then for a sufficiently
of variables t, 1, we define a region 61: Ile - &(t)ll < small X the solution of the full system exists for to _5 1 < oo.

, ,
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However the separation in (51 wus not complete sinc the slow regulator
* Furthermore, the limits (51) and (52) hold uniformly on design depended on dhe fag feedback gain matri.

all closed subsets of to < t < This short paper presents a ow procedure for a compilte separaton
of slow and fast regulator designs. Furthermoret the performanice

RZFIMNESachieved by the compositon of a slow and a fasg regulator Proposed here
R~VERNCEis a second-order approximation of the optimal performance. It is

[11 C. W. Gear, "The numerical integration of stiff differential signfcnt that, in contrast to previous designs, this er-optimal regla-
equations," Dep. Comput. Sci., Univ. Illinois, Urbana, Rep. tot does not require the knowledge of the singular perturbation parame-
21 Jan. 1967. tr1.Hm hsrgltri plcbet ytm hr &rpeet(21 R. Vackel and P. Kokotovi6, "Singular perturbation theory of s & ec hsrgltri plcbet ytm hr &rpeet

linear state regulators, asymptti exasin, to be pblished. small uncertain parameters. In addition to the presentation of thes new
[31 W. It. Wasow A8 pltic Expans ons for Ordinary Differential reults, another purpose of this short paper is to give a self-contained

* Equations. q.;ew irk: Interscience, 1965.deeomnoftetotescl ab aednagurprub&
[41 A. B. Vasileva, "Asymptotic behavior of solutions to certain deepsatothtwti-clemhdbsdonigurpetr-

problems involving nonlinear differential equations containing a tions (SH 101. The paper assumes only the knowledge of standard facts
small parameter multiplying the highest derivatives," Russ. of linear control theory. No familiarity with the singular perturbation
Math., vol. 18 no 3, pp. 13-81, 1963. literature is required.

[51 J. Levin and W. Levinsn, "Singular perturbation of nonlinear
systems of differential equations and an associated boundar
layer equation," Jr. Ratimial 31ech. Anal., vol. 3, pp. 247-270, 11. S~ow AirD FAsT Suneysivus

[61 F. C. Hopp rnset "iglr perbtin on the infinite We consider a singularly perturbed. linear time-anvariant system
inevl"-rn.Ae. ah o. o.13 no. 2, pp. 521-
535 1966 ,-AIi,+A2z+ u, xo)X6I)

[71 P. ~Ann~ut and P. Kokotovik, "Near-optimum desig of linear il iZ2 a s().zeIa
systems by a singular perturbation method," rEEE Trans. #LiAsaz +A~ 2 :82s x 2 (0) - x39 b)
.4utomat. Contr., vol. AC-14, pp. 15-22, Feb. 1969.

[81 R. E. Kalman, "Contributions to the theory of optimal con- Y-CIX1 +C 2 X2  (c
to"Bo.Soc. Math., p .102-119, 1960.

[91 M. VanDyke, Pertur urn Methods in Fluid Mechanic8, where p is asmall positive scalar. the state xis formed by the a, and n2
New York: Academic Press, 1904. vectors X1, x2, the control u is an me vector and the output y a k vector.

[101 B. D. 0. Anderson and J. B. Moore, Linear Optimal Control. As shown in [IlI, system (1) posesses a two-ime-ecale property, that is,
Englewood Cliffs, N. J.: Prentice-Hail, 1971.ithsnsml gevleofantue0)adn2aregw le f

(IlI W. Hahn, Stability of Motion. New York: Springer, 1967. th ,salignausomaiud(x)ndf areigvausf
(121 W. A. Coppel, Stability and Asymptotic Behavior of Differential magnitude 0(1/p). Preliminary to a separation of slow and fast diesigns,

Equations. Boston, Mass.: Heath, 1965. system (1) is approximately decomposed into a slow subsystem with ni
[13] T. R. Blackburn, "Solution of the algebraic matrix Riccati small eigenvalues and a fast subsystem with a2 large sigenvalues. In an
* equation via Newton-Raphson iteration," 1968 Joint Auto- asymptotically stable system the fast modes corresponding to the large

matic ConrSol Caqs., Preprints, pp 940.-945.
(141 R. Belliman, Introduction to M atriz Analysis. New York: igenvalues; are importanat only during a short initial period. After that

McGraw-Hill, 1960. period they arn negligible and the behavior of the system can be
(151 W. A. Porter, "On the matrix Riccti equation," IEEE Trans. described by its slow modes. Neglecting the fast modes is equivalent to

Automat. Contr. (Short Papers), vol. AC-12, pp. 746-749, Dec. asuming that they are infinitely fast, that is letting #&-wo in (1). Without
1967. ofsed"ies '.,i+,i-.,J ,0.x 0 (a(101 R. E. Kalman, Y. C. Ho, and K. S. Narendra, "Control- the fast mode the system (1) reduce to

Differenti al ins eo.1 w York: Wiley, 1961. iAjF A29 Bi, 1 ()mx 2)

0 A 2 1 -i,+Ai 2+ 22i(2b

J7-Cl"I +CAi (20)
A Decompoeltl.. of Near-Optimum Regulators for whome a bar indicates that jit - . Assuming that A n is ndilsingular. we

Systems with Slow and Fat Modes express 2 as

J. H. CHOW. smesta. Mons, AND P. V. KOKOTOVIC Z2- -Af'ii(A 21i3 + 82i)(3

and, substituting it into (2), we define the slow subsystem of (1) as
Abost-Fer I~ wt slew Bad Ism aseheyuema a asw-ep

sta Ifg Is e mpesei of two 1u 3 .a, Coades for i- A0X, + 5u,, x,(0) Xae (4a)
eupiets pre. of sbw eBai st sa despse feofe. A , -c +(b

seesmed ' 6 aexide of te epdoi 1ef e 11 asde1eo-voxedD (b

dohe the ewledge of the snl dm p erbUe pamssr. where

* i I.1. rraooucnow A0 -A 1 -A 242 j'A21 , B0-5 1 j--. 2Ajj'32  4

Linear time-invariant models of may physica systems contain slo Con C, - C2Aj'A 2 j, Do- -2 4A', 2.
and fast modes. Control problem for such models are often ill-condi- m1us il x-&~- ia-iu, and .i2 are the slow parts of the corresponding
tioned and have motivated several model-eamplificationiaio~s v~lsa()
Simplified models obtained via aggeation I II and domiant modes (21t To derive the fast subsystem, we assume that the slow variables are
(31 approaches neglect fast modes and some of the poorly controllable constant during fast transients, that is, X42-0 and ii-x -constnt.
and observable slow mode. In the singular perturbation method (41 1S From (lb) and (3), we then obtain

* both slow and fast modes are retained, but analysis and design problems
are solved in two staes, first for the fast and then for the slow modes. , (i 2 - X'2 )- A n(x 2 - 2 ) + 2 (v- L. (5)

M40690" uswyedawuy 7.1916 mad My X 1971L.PsprW debyP. Letting xf wx2 -.F3, u -u - u, yfy -y,. the fast subsystem of (1) is
R. leimw. Charms of iii Elh s-aS opiml Ssm Cb~um. This war was defined as
mipewd to pan by, eh Nsnel Sniag Foadatga sader Ow* RNO 74-MMOI. ta

pan y tMftwaRann MWDm'gigpwao Adiimwsus wader CAOMMs U.S. # nf+Bu f0-n Z )(a
RR S45-16)-20MMA ind Pon pby dhe U.. Airm w Ade GUNs APOSA MZ-270. . A 5 +DMab x()- -i()E)

The siatwa an wie s Dinpartse at Eaeal smoms Med ihe Caardiws" (
3"sse Laheesiy. U.ewusi, at tUKi. UA., IL. easel.nC2P6b
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Suppose now that &; = Gos, and Al,- Gaxf are designed such that x, continuous perturbations of the matrices in (13)H(16) are incorporatedl in
and xf meet somer specifications. In view of the (pj) terms in (17). If in addition As+ 5*Ge is also stable, (17) holds

for all tefo, atc). Then (12) follows directly from (17) (4). and (6)
2 -n -Aj'(A21 + 2G0 )X, (7) Lemma I stuets that Go and G2 be separately designed according to

the slow and fast mode performance spescifications, and implemented as
which follows from (3). the "composite control" the coposite control defined by (11). This idea bs been applied to the

&+VfmG0c, + 2X pole placement design (121. A similar separation of designs is now
developed for the optimal howea regulator problem.

can be rewritten as
.,u-[(I+. G2AE1%)G,. G2 .A 2 , 111II. Suasnum RmoLATO* Posiis

+Ga[~'(as+5~c).+z,. ~ In this section we decompose the optimum stats regulator problem for
+G2[Aj1(~j+BG0)x+Xf] (9) the System (1) and the perormance index

The following lemma establishes properties of the feedback system (1)
with a compoeite control of the form (9). but with x I replacing; xnd x, J fJ(Yy+R x Rt >0 (IS)

replaing 2+zpinto two subsystem regulator problems. Our approach is to extract frose
Lammu I/ two quadratic performanc indices, one for the variables of the slow

it he ontolssubsystem (4). and the other for the variables of the fant subsystem (6)
If th cotirolsWe formulate and analyze two separate regulator problems, denoted by s

U- Gox (Wea) for the slow, and/ffor the fast subsystems. From the subsystem optimal
controls ui and Uf. we then form a composite control u, - v,+ ii, which is

mf 62Xf (l0b) to be implemented on the original system (1). Its performance is

u - [ (I+ GA iI 2 ) Go + GIA 'A 2 1IX I +G 2X2 (11) analyzed in the next section.

ae applied to systems (4), (6) and (I). respectively, and if A 22 +B2G2 is 'robir S
stable then Find u, to minimze-

Xjt-,1+()(12s) i1s f (YY, + ;,R )d. X>0 (19)

x 2 (tin A~'( 2I45 2G~x,()+x(:).0(p) (2b) for the slow subsystem (4).

ii)U()+ft+() (12c) In term of x, and ui, (19) becomes

YW-Y(1)Y/0 +00 (1d) . -f fX Co., .4D;Cox, + usRrAd 120
(12d2 I 20

hold for all finite t >0. If A0,ft 0G0 is also stable, then (12&a-(2d) hold4 where R 0 - AR+ DD 0. From [ 13Lj 141, we kntow that if the Riccati equa-
for an I C- 0. o) lion

Proof.: The feedback system (1), (11) is 0- -Ks(A a- B 0 -'D0 C0 )-(A 0 - BoAj"1D;Co)'K,

riilAI+Bi(I+ G2Aji' 2 )GO+5IGAij'A 2 1  A,2+BG2  I~, +KtVBK-61D 'jC (21)
i (A~j+B 2G2 )Aj(A21+B2Go)/;& (An+582G2 )/ iX 2Ilxiii has a positive semidefinite stabilizing solution K1, then the optimal

(13) control for (4) and (19) is

Following [IlI]. we construct a transformation u,- VR I (D6Co+ B;X,)x,. (22)

-*H I'L 12 Lff (14) Asufficient condition for the existence and uniqueness of K, is given in
1,l 1 (14)H the following theorem.

whre11ad 2 r n, ,an i n niymtie.rspciey2h~i

wher Id~ and If ahe tripl itJ0C6 and ntbiabedtxtbe thieetnmtcs esetvl. ,c,
andi' AZ + candN 1 a) (2 ) i a . i fe s ti le so Aidefin is tabil z ablol ete bK , t e

L.A~~~j'G42,wf. Fro 52G0)+,N Ia) (1hsaunqepitiv heaeie stabilizing solution k ,.t i h til
JV-(A2+B2G2)'Ajj'A21+ BG,)(A+ B0Proof:% From fl3Itj1DC ,(!L the stabilizing soltionbl whessi te -ipl

H-(A ,2. 52G2 ) '(A2  + 1G ' 0  )A 4 5 G ) (15c) -(A 5R- 'DC tO. e thtC 0  -D V I ,B) is stabilizabled etal, w r e if0. and(

H..(, 245,GZG~z+ 5G 2 Y'0( A).only Yf(450B) is stabilizable. From the well known' identity I-

Neglecting the 0(#&') terms, we obtain DWA.IDC I -(I1+ D0RD;) - > 0 which holds when A > 0, it follows that
theme exists a nonsingular Qo such that Q;Q0 -1I - DOW %D~ Henc

Te -'I' 1(16) (A0 - B0R 'DC 0 QC0) is detectable it and only if (A,CO) is detect-
0 d2 able. This proves that the stabilizability-detectability of the triple (A0 -

where d? is the system matixs of (13). e&,-(A 0 .5@G0)-p(A, 2l. 5RfDC.OC)i quvln oCniina
5,G 1)N. and t1in(Azi+B52 )-4s(A,2+,G). If A22+5201 is sta- Pbe

ble. the solution of (13) is approximated for all finite ui;PO by Find ufto minimize1
x,(e).exp1(A0 + 80GO)flz,(0) .0( IL) (17a) if f yy 1 ~ + M Rf)d (23)

x2 (:)- - Aji' (All + B2G, )expl(A*+ 10G.)flx,(0) forJY the fatsbytmI)

4-el I(A .. 52G2):/Ddzf(0)+0(#j) (17b) fothfatsbyem6)

where x(O). xf(O) ame given by (4e),(6e). Note that the effects of the 'S O APS(5 p 1so-191l.



SWOOS PAPUS

It ;s well known that the optimal control for (6). (23) is Mm 2

f- -R jx (24) if the Conditions a and b are satisfied, then the positivii semidefits
stabilizing solution K- K( p) of (30) poses as powe Seriesepaso

where A is the positive semidefinita stabilizing solution of the RiccatW at IL0. that is,
equation -

0- - 4wz- Aj2Kf +X 2R - I 2 K- C2C2. (25) K _[K 1141+i _ I! I (31) s~

Ccvddtidcn b: This solution exists and is unique if the triple (A 3 ,Cz) Furthermore, the matrices JK, r, satisfy the identitis
is Isbll-dtcal.

The cmuts v, &M i, dilie b'y ( an~d (24) wre only subsystem K - g. K . K3- K (32)
optimal. It is much easier to compute u, and inaf than the optimal control
for the complete system MI. Lemm I Indicated bow a composte control whem re 4 p and K. ame defne by (21). (25. and (29). reepectively.

wu+fcan be obtained in term of x, a&d x2. It is of interest to Awoe The substitution of (31) into (30) yields at js-0 theeqais
investigat the performance of the system (1) controlled by ii, With
G-- RC'(DjCc+ 5A) and G 2 - -'020 the compoeste feed. 0i- -K 1 (All -S 2 Xj)-(AII - SI2Kj)YX 1+KSI,

~ control(ll~us -K 2 A21 _AAK+ K2S2Ki- CIC, (330

L M.~CJ-RI5K,. 2 i' 2 )RI(oC..a64)O-K 2 (S 2K 1-An)-KA 1 2 -AiX 2 +KStaKsCtCI (33b)

+ R - &jKp42214I ]x, - R - I52 jC1C2. (26) 0o- - XsA n- Aj2K2 + K3S2K- CiCz (33c)

The complete separation property of the composte control (26) Lies in where S, - 31RA - IS,. S2 - 51 R lBi and S, 2 -BR - 15 Under Codi
the fact that the Conditions a and b are mutually independentL Mj tion b. (25) and (33c) imply that K, - K,. Hence (33b) can be solved for
contrasts the conditions in (5)411 where the existen=e of die solution fo K2 and substituted into (33a). This results in the Ric cadi equation
the slow regulator problem depended on Kf.

Another practcally Important property of the control law (26) i that 0--K,- 'K + K1 5R -''X 1 -C&6 (34)
it doen not explicitly depend on pIL It is now shown that even without th e r
knowledge of P4 the control (26) reults in an 0(gal) approximation of the
optima performance index. A- - ,'DjCe (35a)

TV. Nui-aOvnaiuryw or n Comwoem COimvtot iR '3'- DeR. '5 (35b)

For a comparison with the exact optimal control. we express is, in a C 4C ~C(I- DoRo7IDj)C. (350)
more convenient form. Since A2 - B2R - 'BjK1 is nonsingular. manapu-

latin o th exresson o uing(25 yieds he denityThe derivation of (34). (35) involves simple but lengthy calculations
* which are found in 16). Under Condition a. (21) and (34) inmply that

Q- R-I~jf~jIB2)4-'K, - K, Hence from (29) and (33b), K - 4. The existence of the series
(31) then follows from the implicit function theorem (II.

.lr iI ~ .I ~ lWhen the lineair singularly perturbed regulator problem was treated.i
Jt -I llBi(,2-B)t-Bi~f'-'KB~j-1] 27)(SJ411. the fast regulator (33c) was designed firstand only then the slow
R1 I+ ,~Au ,R5K,,K5,j regulator (33a). We point out that in (51411it was unclear whether the

and hence (26) can be retten as sabilizability-ietetability of the triple (A. AC) depended on r.,since,
there, A. 3, and c appeared as explicit functions of K, Tis question is

-- R - '(SK,x, + Br- + BjKfx1 ) now answered by Theorem 2. which results in the separation of designs

1 of K, and K.
x '3t,'M~x (28) Theorem 2 establishes that the composte feedback control ui in (26).i

p IK, 0()A) close to UO~ This implies that J, the value of the performance
index J of system (1) with u., is at least (jg) close to the value of the

where B'-15jBj1. '(tX, and optimal performance index JPI The following analysis of 4, and J,,j

reveal& that uI, in fact yields an 0(A approximation of Jp
K.-[,(,,Jt-'B~f -,2)(AiKl+C;C)](A - B -'j~f_'- Since I, - llKicxoand J,- 1 xPxc. where P, is the positive definite

solution of the Lyapunov equation

(29) Pe A -SM ) +(A -SM )'Pm- Mc SM - C'C (36)
on the other hand the exact optimal control for the complete problem the following theorem holds.
(1). (1)is u.,-A-R ' x. h o K sthe stabilzing olution of the
Riccad equation Theorems I

0- - X4-A'K+ KSK- C'C (30) The first two trms of the powerieesof and 4.Wat F-0Oare the

withC-(CClt - BR andsasm that is,

* All A12 Iand hence the composite feedback control (26) is an O~p near-optimal
A I A2 -A, solution to the complete regulator problem ()1)

1. It J Poel: Adding (30) to (36) and rearranging. we obtain a Lyapunow

The expression (30) definesan implicit dependenceKous) of K onl dequtofr~KW
paramete p. Our objective is to analyze the relationship between K(p) W(A -SM,)+(A-SM,)'W+(K- A,)S(K-M,)in0 (38)
and M, in (28) for p small and positive. For this purpose we construct a

puaseries expanision of K( p). by an application of the Implicit function theorem to (36) we can show
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that P, possesss a power seieo at isO. Thus W can also be expanded VIA ,2 + V2A n + ,A 1 Vj + (K,.- K,)S2Kf -0 (49b)
as follows: V 3 A2+AV 3 +KfS 2X 1 -0 (49c)

- _0 w! #W " where

From (28). (31). and (32) we have (K- M')S(K- Me)-0(p 2) and, since XI -A,1 - S1K, - S,"X, (5(1)
the manices AO- SRo - '(DCo+ B;1,) and A2,- 82A ' 5 K are stable,
the substitution of (39) into (38) yields W°)-0 and W')-0,j- 1.2,3. A 21 -A2 - S;x, - S2K. (3ob)
Hence W-O(p2). which proves (37).

We have therefore shown that the composite control (26). even though Since An is stable, there exists a unique positive semdefinite solution

it does not contain 1, explicitly. guarantees an 0(lsz) approximation of V3 of (49c). Expressing V2 in terms of V, and V3 and substituting into

the opW performance. Thus this design eliminates the need to know (49a), we obtain from (49c)
p. required in previous designs [5L[81 for a second-order approximation.
As bdors ewould be needed fora higher order approximation which is V, (,4,- A12Aij'A2)+(A,,- AIIAL'121)'V,
not considered bre.

V. R"nueanCowmoL -- (K K, iIAii'Kf)S(K.mX-iIAii'Kf)'. (51)

Now we consider the approximation achieved by optimuing only the Rearrangement of (45) yields
slow subsystem.

If " -G 2x is designed such that A22 + 82G2 is stable, from (11), the K,,- K -, 2 .A 2 'Kf-0 (52)
control optmingn the slow subeystm is

and hence the right-hand side of (51) is identically zero. Furthermore
H--[(I+, 4j2','a )," O+ BA6Co+ ,)- G2Ai2 'A2]JX+G 2X2. A,, 2Aj'A- Ao- BoRO-'(D6Co++ BK,). which is stable. Thus the

(40) solution (51) is V1-0 implying V-O(p) and (43).
Comparing Theorem 4 to Theorem 3. it is obvious that the major

In particular, if An is stable and G2 -O then (40) becomes the -reduced portion of J is contributed by the slow subsystem, while the contribution
control of the fast subsystem is O(A ). Another inference from Theorem 4 is the

insensitivity of the slow subsystem to chang in the fast subsystem
, - - (Dprovided that A0. Bo, Co. and Do remiain unchanged. Frequently only the

The value J, of the performance indexj with % in (41) as the feedback is slow subsystem is modeled. For changes in the fast subsystem that do

,- 1' ,o,. where P, is the positive definite solution of the Lyapunov not affect A0. BO CO, and Do, the feedback control (41) remains nea-op-
equation tinud.

P,(A - BF)+(A - Ff'P,- F'R -IF- C'C. (42) V. DESIGN PROCEDuRIe AND ExAmPL i

Even thug i. in (41) is no O(p6) close to u.., its performance J, doen Summarizing the preceding sections. we proos the following design

approximate J., 
to O(p) order. procedure.

For an i(A 2) near-optimum regulator solve (21) for K, and (25) for K.
T/ emem 4 The composite control to be implemented is given by (26).

If is stable, then the constant terms of the power series of J, and For an 0(p) near-optimum regulator when Au is stable solve (21) for

if" at A e0 equal, that is K, and implement the reduced control given by (41).
As an illustration we consider a system with fast and slow modes in

J, - + 0( it) (43) the form (1).

adhnethe feedback control u, in (41) is an Of p) nwa-optimalAl-0 .412[35 ]
solutin to the complete regulator problem (1).(18). 0 0. 0

P-., Using (25) and (27), u, in (41) can be expressed as A2 " 0 -0.524] Au[- 0.46 5  0.262 (53a)

_,,K, 0]x._ 0 11,-1

*where C1[. 0] C2l 0153c

(4+[KSi-Ai)Aii'K,1[IeS2 (A.-Si)'-)]. (45) Let the performance index be

Hence (42) can be rewritten as I t )(43-.1' (y'y + 'u) d. (54)

P,(A-SM,) +(A -SM,)'P,--MSM,-C'C (46) 2 .1

and P, possesses a power series in A. Adding (30) to (46) and rerranS- Conditions a and b are satisfied. Solving problems s and/. the composite

inll we obain a Lyapunov equation for P, - K- V: control (26) is

V(A -SM,)+(A -SM,)'V+ (K-M,)S(K-M,)-0. (47) u,-[-I -0.86123 1x,+[-0.18036 -0.046187Ix2 (55)

Substituting the power sri whereas the reduced control (41) is t

V.[ , v I+ A,[ V1 AV (48) u,-. [-0.87122 -0.57325x,. (56)

V- iV2  AV + J P i psVt" PVYJ' For #-0.1. the optimal feedback solution is

into (47) Ad evaluating atp $'0 yields UOee -. -. 0.89202]x, +1-0.24396 -0.0619961x,. (57)

VA I+A,'tV,+ViAsi+AiV2 +(K,,-K,)S(K-K,)',O (49a) For the initial condition x;.(I,0. 1,0), the values of the performance



SHORT PAPM5 conditions are given I such that when A - 0 then

RI -Kit W (£to, ,] (5a)
indext arR - K, R3 - K,, vet 0 t (5b)

joas 4.2 iS&.. where t2 a: i is arbitrarily close to t.. The limits I. Kz, and KC3 arei

I J,~4.423obtained from a system of one differeintiall and two algebraic equations,

/i ,--4.2506. (IO it -(KA, +4 A1,K, +4 A',K, + KA, +4 Q1) + NR-'N'.

Hence the ,*,,ffr .. nc. loss with i. i lii than 0.012 percent an" with a., K1 (t1 ) - fl, (6a)

ICUs than 0.: -rel~s. 0-a -(XZA, + K1A2 + A'3K, + Q,) + SR- tVK, (6b)

0 ar -(K 3A, +4 A'4Kl +4 Q31) + K 3 51R-'B K3 (6c)
11 CONCLUSIONo where N as K,51 + K2B2, and K3 is the positive definite root of (6c).

Tepr.-'pw.aed teduced anu composite feedback cuntrols ar inepn Under the same conditions, when A - 0. then

det of js and vet achievd. respectively, OW~a anti 0f wL approximations - X - (N'x + 2 K,Z), Vt a (to. tJl (7)
ofoptimal pert. rinance. I he new existence Conditions a and b ac-

mutually indepi.daiet .,nJ usa ir E ;. s complete ep~Arata in of slow and In the approach 1 it is essential that the limiting process A - 0 * is performed

Jfast regulator designs. The~ implemit..tiion of the regulators ii.'olves in the Riccai equation for K. The Purpose Of this corresponldnce11C is to
solving low~ order mutt..i.!-, independent Riccati equations. rb .se re- analyze the relaioihp between the limits J% and VT). and the solilion
sults make the -te.%agr !linear regulators for singularly ptorturlsed sys- of the ,reduced" problem
temsconsiderably alirpicr hanl in (51.181 and applicable to bystirms with = 4. ~+8f, ~ -(8a)

small unmasurable p.tranit ies. 0-Al+A!+BA(b

-t~~ntE 1t'(t,)l-.lt) + [z Q a Q2~l + Q'Qd. (9)

III M. Aoki. 'Conori ofi lar! -.-wale dyng.... v~itm,. by allipaapsaio.n.- ILEA: rh,
.4rA., C~n.. voli. AIL., . pp ! 2$]. Junie 191.4. This problem is obtained by formally neglecting A. in the original prohl, m

121 E. J Deviaee. 'A nul' 1- i.npifying linear dinsa; systems," IEE Tram' (1). 2) and thus reducing; dimensionality of the st space from A + Ini "C n.
(31mSuuV. RaoWdi. rul tuai onrlttlnei s iasmlfe Under the conditions sae'ndif A:' exists, the "reduced" poblirm

aboiels of Cbidainbars.'/ Irabu. Ekee. Emil.. voli. 121. pp. $74 882.1i914. (8), (9) becomes
141 P. V. Xoalavi R. ft. O1441ky, Jr. and P. Samuti. "singular perturb..i~onn and

order rducii cbttibnheor-As ,ervnw." Arsawoa. il. .pp. 123-032. iAl + ad, Afto) - (010)
Mai. 111711.

(31. V. Kaburtsr red Rt. A. Yacki. "Singular reattfbawn of hiear ocifulai.rn.
Bsntslsen"IEEE ram. .4iuaa~. Cons'. vol. AC-i7. pp. 29 3?. Feb. 1972. J=jt 1 )flAf) +~ fE4 i +4 i2A) 'Q1C2] dt ti )

(61 J. H. Chow. Irwo nia dmsign of singularly petrbed iosa regulatin." in P,- 2r1
13th ,au Alieat Coni Cliewst and System' llwtvy. Univ. of tllinoi,. Ou. 1975, pp t

1 71 s-Spraion ait a,. seeks in hnar tie-invartant system, M S hss where
Coordiad So. La .. -4 11a.. i rbana. It., Rep. RailS.!st. 1913. 1 -A. A -B 2  D

III) A. Yackal and b. V. K,,.noeic. "A hitundary layet nwtk..it te 4 atia aA AA B a ;tB
Rieai equala,111 7on- Asas. Caner. iAo AC. 1. pp. 17 24. F~eb. 193iS-ISA (z;AY A A)'3;A

191 P Seasn.. and P V. kokutiovic. "Near opimumii desn 4. linear bysien by a = 42 ;A QA'i 3 '.~(~A) 3 ~A
singular peurbsation aitbd." IEEE Coteau. .4.uo~ Cwudr.. vol. AC-14. pp 02as - (A-'A)Q A as R + C'Q3C. (12)

1101 R. I- 'la4lity. Jr., -snuarirtlaim (s th.- time irat.,.i liea Tstoltoaothierblmi
reglatve ivi in" , Dff.E~w. -. 1, p I I 11s, Jul. t972.Thsouinftispblms

1I1l P. V. Kokolovii and A. If Hladdad. "cooirtlablity and ume-opiimai ;oentrol ti

lyaffnwwihslow and fast mides." IFE Thizng. Aaa...nu, Cons,'.. ai. AC*2U. pp. it (i 1A'(R - 4 2c(711 A - t (13)

1121 1. If. Chow and Ps V. k.'.okutm "Eigeniae plactimeni in i.*'-imitwale ys- where it is obtained from the ni x If Riccati equation
ceiin.- in that II'AC Svwn. £.wpt-v.Siia S.,i-. 1976. pp 321 326.

ai D. .0. Andirraim and J B. Moore. fInns, (penad Control. linglivuoJ (ltiffs. -ot, + k1Z, +~ O'il + lRV'R'. lZ(t 1 ) as nl. (141
N)1 - ticHafll I'll.

1141 V. Kutaea. "A contribution t4' ini quadrai e quatib. tALl.I....,. .4w,,wsnet
Coorp.. vol. AC-i?. pp. 346 3.17. June 1972. where x. :, and u are it-, in-. and ,'.dimensional vectors. y se [x . and

I15 Ii .LS.disch.3.swheannc lotnma i..,Iona ai a nral~. Newe Y-k is a small positive parameter. For i > 0 the optimal control is'

0l . -R-1 B. 1B.]R 1Z 3)

where

Note on Singular Perturbation of ~R R'
Linear State Regulators Liz. 7 1

Abweirt-bhls coffraspoedesae exandge the relh$.usImIp beftween the is the solution of an In +. nix ii n +4 in matrix Riccati equation. Sufficient

result obealmed when fth iheemisealty of.a rewulator proble. Is reduced
la the stateseea of the proMen sei when thds reduedo.e Is madille. the Rieceti
quaed.. for the aiggedgicd proe.
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EQUwvALmNC OF RtCCAT1 GAIN3 EQUIVALENCE OF CONTROLS
The following result establishes a relationship between the solutions of We now establish the control i defined by (7) and the control 9 defined

(14) and (6). by (13) are identical on the open interval (to, tf).

Ltmma I: Under the conditions stated' and if A- ' exists, then Lmnma 2: Under the conditions stated' and if A- I exists, then

it - K,. Vte to, t. (15) ii - 9, Vte(I,,tj] (26)
Proof: From (6b) we have where r, > to is arbitrarily close to to.

K2 - (NR" 'ffZK - K,A 2 - A K 3 - QI)A ;', (16) Proof: Substitute i for u in (I) and note that A4 - BzR ' K3 is a
stable matrix for all t (to. t]. Therefore. by a theorem.2 when ,i -0' 0

which when substituted in (6a) results in then

A -(KA+ 'A'K, + Q, - Q2 A;'A 3 -(Q 2 A'A 3 y] + PR'P "  
z -A - B R-8AK,)-(A, - B2R-'N')x, te [tnIt ] (27)

+ (AZ, tAjY(K.A + A 4K, - KBR-' 2 KJ]A- 'A3 (17) and hence

where -- m - R-'[N' - B'rK,(A, - B2R-'' 2 K3)-'(A3 - 8 2R 'N')]x
P - N - (A;'A)'Ks3 a , K- B, + KIB - (AtZ)A3YKBz. (18) & -Tx, Vte[,, tz]. (28)

This expression for v is now shown to be identical to the expression (13)
'P. V Kokotovi and R. A. Yackui. "inguiar pertu'batsoe theory of lin siate for A. We have from (28) the equality chain

rAU .m ,aIR P-. Of* K Al&wrt COv4. CWcwI O System Theo,,y. Oct. 1970.

T- R-'N' + r'K3A1'(1 - BR-l'irKA;-a 2 R-N
•

The substitution oft6c) in the last term of(17) and the substitution of(16) - B',K3A;, ' - BR- 'BK 3 A ')- 'A,

in (18) yield, respectively. . R-N "+ B'2K3CMR-'N' - RMR- B'KA 'A,3
KC - -KgA + K, + -+ PR'FP (19) - tR-I(I + ffjK 3CMR-')N' - MR-'ff2 K3 A;'A 3

P - K,1 . NR-' 2 K3C - Q2C - {R-(RM - 
'. ' 2KC)MR-'N' - MR-'B'2 K3A;'A}

-(A'AO)(A'K3 + K, 6 )A4 ?'Bl. (20) - MR-'(N - ff 2K3A;'A3) = MR-'F MR-M'' - A'"'., 129)

The use of (6c) to replace the last term of (20) reduces P to the followingS expression which is identical to (13) and proves the lemma.
P - Kgh - z PR'8 2'X 3 C- - PR' B'2 K3 C. (21)
P,-( 

J. Len, and N. Leviesno. Sinpular perturbation of nonlinear sysema or difterentsal
which implies equatons and an a.ocatd boundary layer equation." J. Ratieoal Mech. Anal., vol. 3.1954. pp. 247-270.

P - (I - R-'fK 1 K 3LCfi A P7M. (22)

The expression for M can be reduced further as follows with the use of CONCLUDING RgmARKS

i ;I so that In practical design the dimensionality of the state regulator problem (0),

V- ! - R- '(KA; i)Bz] (2) can be reduced by neglecting 1 either in (1) and (2). or in the Riccati
equation for . It is shown in this correspondence that both approaches

- I - R-' 2 A;-(K.R-jrB KAZ' - QA4' - K 3)82  result in the same Riccati gain K and that the corresponding contrcls ii
R-'IR + C,30 + R-CK3B2(! - R-JrIK3C) and Q are identical on the open interval (to, tf). A question that needs

further clarification is under what conditions will the application of either
SR 'A 4- R-C'KBM-, (23) ii or i result in the saute limiting behavior of the system (1) as A - 0'.

which yields A. H. HADD o

M , R-R(I - RIC'K3 2 ) P. V. KOKOTovtu

R (24) Dep. Elec. Eng.
Coordinated Sci. Lab.

and finally Univ. Illinois

MR-M" - A"'. (25) Urbana, Ill.

Consequently (25). (22). and (19) yield the same equation for K, as (14).

which proves the lemma.

7
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Lower Order Control for Systems

with Fast and Slow Modes*
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Alstract-Given a stabilizing control for a linear system with We assume that we have a control as a feedback function
fast and slow subsystems. a lower order contiol as a function of x t and x2 which we will apply to equation Il. This control
of slow states alone is designed to give a first-order approxi- is
mation of the original quadratic performance index, which is
not necessarily minimized by the given stabilizing full-ordzr u -G .-Gx 2 . (21
control. It is necessary that this control results in a stable system

when applied to equation 11). G, and G, which result in a
stable feedback system are not guaranteed to exist. However.

I. Introduction (Chow and Kokotovic, 1976) gives conditions under which
SINGULAR perturbation theory for linear regulators is well they can be designed from fast and slow subsystems perfor-
known tKokotovic. O'Malley and Sannuti, 1976; Haddad and mance specifications. In this paper we assume that G, and G,
Kokotovic. 1971: Chow and Kokotovic. 1976: Kokotovic and are given. Substituting equation 12) into equation 11). we find
Haddad. 1975). However, in all cases the objective has been the slow subsystem by neglecting the fast modes of equation
to design a suboptimal control to approximate some charac- I L that is letting u -0 in equation 0). This gives, assuming
teristic of the system due to an optimal control. This paper 42 + B2G, is nonsingular,
extends the linear regulator theory to the case of designing a
control with partial state feedback to approximate the perfor- X2  -[.4 2 2 +8 2G 2]-[A21 +B 2GJi (3)
mance cost of a given lull state feedback control. The given* control need not be optimal as was the case in (Chow and where the bar indicates that u=O. If equation 13) is sub-
Kokotovic, 19761 and the reduced control is based on both stituted into cquation I la) we get the slow subsystem
fast and slow subsystems which is not the case with the
reduced control in (Chow and Kokotovic. 1976). Reduced i.=Aox,; x,(0)=.x0 (41
order controls do not necessarily lead to well-posed for- where
mulations (Gardner and Cruz. 1978) so that the study of the
asymptotic behavior of reduced controls is important. 4 o =A it + B, G, - [4 + Bi G,[A22 + B,G2] - '[A21 + B , G ].

To find the fast subsystem of equation it) we assume that
2. Slow and fast subsystems the slow variables are constant during the fast transients, that

Consider a singularly perturbed linear time-invariant is. i-,=O and i =x,=constant. Then from equations Ilbi and
system (3) we have

i = ,41lxl +.4,2x2 II ui; x, (0) -xt (la) 04(2 - X2}=(A2 + BGz 02 -Xl). 051

-422x--B 2 U; x2(0=x 2 0 lib) Letting xf-- 2, the fast subsystem of equation 1 is

where A is a small positive scalar. x, and x. and n, and n, =[.4,±B.]x1 ; x(0O)=5xo-i,(0. 161
dimension vectors respectively and u is an m dimension
sector. The matrices have appropriate dimension. It has been The slow and fast modes of equation II1) when equation (21
shown iKokotovic and Haddad, 1975) that system equation is applied are approximated by equation (4) and equation 161
il) has n, slow eigenvalues and n, fast eigenvalues of order respectively.
011l and I I.ju respectively. The usual approach to the appro-
ximate design of a control is to decompose the system 3. Approximate control /ormulation
equation il into 'fast' and 'slow' subsystems. The fast sub- It is desired to find a control as a function of v, only which
system approximately models the behavior of the fast modes yields a close approximation of the performance of that of the
of equation Il) and the slow subsystem approximately models control as a function of x, and x, equation 121 when applied
the slow modes. This decomposition is well known iChow to system equation (I). To compare the performance of the
and Kokotovic. 19761 and it is outlined below, two controls we select the quadratic performance index

J = 1 i" [-.'Qx + u'Ru] dt ( 7

*Received June 12 1978: revised April 25 1979: revised where S

September 4 1979. The original version of this paper was not EQ, Q21 Qx
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Then, if the feedback control equation (2) is applied to P.,P can be found from equation i13bp and substituted into
equation (1) for performance index equation (7) a cost results equation I13a) to give
which we denote by .

J - 4%oP%. I$)
where . is some known matrix. Thus. if ,4 is stable equation

where P is the positive semidefinite solution of the Lyapunov (L41 possesses a unique solution. Higher order terms follow in
equation a similar manner. Thus. Theorem I is proved.

B ,GI] We now desire to approximate the control equation (2) by
P' .4+B[ G,.]),+;A+B[G, G,] 'P+Q+ 6,],' G21 a control which is a function of x, only. To do this we

=0 substitute equation (3) for x2 in equation 2)1 to give our

reduced control

The system and performance index: equations (1). (7) are of a,- Gj -G[4, 2 +B 2G,-'[A2 +B 2 G.]:x, (15)
interest only if the control of equation (2) is stabilizing. That - Sx,.
is. if the feedback matrix when equation (2) is applied to
equation tI) is not stable, then the cost is infinite and is of no For p sufficiently small, the eigenvalues of the system using
interest. Hence. we assume that equation (2) is stabilizing, in this reduced control are close to the eigenvalues of .4o and
which case A+B(G1 :G 2] is stable. Moreover, .42, [4]. If equation (15) is applied to equation (I) for the

performance index in equation (7) the resulting cost is

Thus, there exists a unique positive semidefinite solution to where r satisfies
equation 19). Note, however that since A and B contain .L
equation 9) is numerically 'stiff'. r[S'B0] r0.

Theorem 1. If the fast state feedback matrix A4,2 + B,. G.J I" , B(S 0]: + + B[s 0]:,! + Q [ I .
and the slow state feedback matrix .40 are stable, then P 117)
possesses a power series expansion at p=0. that is

If 4 + B(S:0] is stable then equation 1171 possesses a unique

Pip+" 10)' (10 positive semiedefinite solution. If 40, .4 ,. and . 2.,-BG, are

LP ] U3 j! UP P/JiJ" stable, then for sufficiently small g. A - (S0] is stable.

Prooj: The proof consists of showing that each term in the Theorem 2. If .42. and .4o are stable, then r possesses a
series expansion of P exists and is unique. Then. clearly, there power series expansion at p -0. that is
is a u*>0 small enough to guarantee convergence of the
series for all 0<,u<p*. _f|r, +j V r p'p

The substitution of equation 410) into equation 49) at p = 0 "(p)=L pr j r
yields -J '

Proof The proof is similar to the proof of Theorem I and
0-P, [A,, +B,Gi]+P.[AB,, ] B2G]+[,4,, +B1G,]'P, is omitted for brevity.

+ (4, +BzG I'P'+ Q, +GRG, (la) We now desire to compare the performance costs that

0= P, CA, 2 + B, G,] + P[A 2 ' + B,G, result when the original control, equation 12) and the reduced
. . .. [ +control, equation (151 are applied to equation Ii. By sub-

t BG]'P +Q, +G RG2  (Ib tracting equation 19) from equation 117) and letting
0 = P,[A12  BG 2] + C.4 z + BGJ'P, + Q3 - GRG, Id l

Wi--P 119)
If [A-,+BG,] is stable equation 'lo possesses a unique
positive ;emidefinite solution. Solving for P, from equation we get a new Lyapunov equation in Wgiven by
(1 lb) and substituting into equation 0 la gives

W:.4 B.GE G,]', -:A + BIG,"2]! 1W

O=P,.40 +.A;P, -r..,Bs-G, -G.]-[S--G .]'B'F- g.L R[S0]

[' Qj-.4,.+B.G,]-'[4.,+B,G,l - I]RGG.] .G201

+[G; ~('42 i-IB 2 GJ4['4[ +B.G,:4'6=
"1 4124 Since r qnd P possess power series expansions at p O it is

easy to show that W also possesses a power series expansion
G, 1 at P-0.

RG 2 [A22 +BG _[.42 .G •Theorem 3. If 4 .4.. and [4.4- B2G] arc stable, then
the constant terms of the power series are f and P are equal. j

If 4., is stable, equation 112) possesses a unique solution, that is
To find the second term in the expansion we substitute

equation (10) into equation 491 and take the first partial with J =J -04 )21
respect to y at p=t). This gives

Praoo Substituting the power series

, - '22
,-l"1 +BGt BIG, 3a), W 8,G2]

[AILW 1;% ,,- B,~w:' G iw .A.' B P, j

into equation 4201 and evaluating at 14-0 yields
0 = Pj" 41, + 82621 - [A2 -G2 P,

-A,,+8, G 'P. +P('.4,, + B,]. 413c) 0- W,[.4,, .B , ,,-. , +4.--G] + (4,, .,-G,]14,
-[.42, +BIG.]'W; .r, (S-G,)Fr,_B[s- G,]

If [.4,2 - B,G,] is stable equation 113c1 has a unique solution. +-(S-G,]B, r, +(S- G]'B[-3.r. + $'RS-G'RG, 1231

4-



0= IV, .411 +SIG,] + W.[4~ 4-B2G,] +(.42, + BzG1]'W5T-rBG,-r G4(-~Br, -;RG 2t (24)

0- =W.4A + BGj +E4 2 +q-B.G43  - rBG,
-Q8~r -GRG2 . (25)

To show that equation (21) is true we must demonstrate chat
W1 =0. If f.4-+ 82G,] is stable, we may solve for IK,
uniquely in equation 24. When this is substituted into A Two-Ste Desig of I 'na Feedback Control
equation 123) we get

R. 0. PHILUPSI ~ 0- W1..1 + .44W, - CA,, I-G,]'ICA,, -8, G2 -')
x(.412 D,G5J,] + W3[.4,5 + 8Gs Aborert-A two~bi duip bs hImd ma am isqilddy bvade MsdL
-BG,- G-.BT:(A,. , B2G 2] A21 -iB 2G1 ] dilimilf triiermism. rille. si peI~ s resll appa
.GRG{[4,. sB 2G,] '[All + B2GI1

+(Ali + -B2G1)')I.4 2 sB,G,] - 1''RG, a speli ces of ti~s approeL
..- RS-d RG,. (26)

bNRmOmU~nom
Substitution for S from equation (15) and then using equation
125) yields In this paper we decomoise the feedbecli desip of the n-dimensioAes

40- W.AO+A;Wt. (27) sse

If .4,, is stable then the unique solution of equation 127) is i[A.i A, , ~ 1
W, =0. (28)

into two reduced-ceder subsystem dedgee. In (1) the control v is anm
This implies that W-01,u) and so Theorem 3 is proved. ni-wecmo and A,, are (n, Xn,) mastrices. i- 1.2, x, +n -n. In U004i

Notice that for the original control in equation (2). it Is appficiuioms a duired effect of feedbacki is to move the uismvalues
assumed that G, and G, are chosen so that .4,,+ B2G, and fateletithco lepan.wchaoicrasth m ind.
.40 are stable. In order to use the reduced control in equation twea dsg udrehe 1 asnau.whh
(15). we further assume that A., is stable. I h rpsdtoltaedm .poeuetwn pvhiwic

were laWe in the open-loop sysete (I). also becomsi the 'ni larger
4. Conclusions agignvalussm of the deamped closed-loop system. In other words. the

We have shown that given any linear stabilizing control requiremt
which is a function of fast and slow states that it is possible

to design a lower order control as a function of slow states 1A4I>1A 1i. - l-.Atn; Jinn,+1... (2)
alon whch ive anOlp aproxmaton o te qadrtic is satisfied at each design stalls. Simtilar two-stage designs can be w-s"

performance cost. However, it should be noted that the state onaylusrmtn.Tiaw oofheW
trajectories will not be close except outside the usual initialanblk-sgaln tsaoahO Teminolofhel'

bonaylayer after the fast transients have died out. proposed he is an eitplicitly invsntibl.e transforniation. Its properties sit
Knowledge of the value of the small parameter. As. is not reee frsL.Then the damip procedure is premanted. Fnally. we show
necessary to achieve the results derived in this paper. that earlier proposed- decompositions such as [I11-(3L. applicable to singu-

larl parturbed systems. are specame of this procedure when eigm-
value separation (2) is sufficiently lairg.
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Note that JX(Fj A> jX(F)I as required by (2) assures that Ml is uniquely itrtos an*~ tyial suff sin ual etubdsseste
determined by (6).I lis also useful to not that L-O0 when A 21 =-0 and taloIteiPaiYsficnt

M-0 when A12 -0. Rapidly convergetnt iterative methods are available Tjhis property a~ illustrated by a power system, control problems (61
[41 for omputing L and M. Note also that. in general, a permutation o( whose system mansces ar
states in (1) is necessary to isolate fast and slow states. An algorithm, to

acopihti sOe n1 -5 0 0 0 4.75 0 0
0 -2 0 0 0 -2 0

accmpis thisTA isgiven -0.06 -0.11 -3.99 -0.93 0 -0.07 10
Am 0 0 132 -139 0 0 0

For clarity we assume that complete controllability of (1), wich A- 0 0 0 0 -0.2 0 0
implies the samsfor the subeystmin(7M.that is. for the pais (F,,01) 0.17 0 0 0 0 -0.17 0

aid (F2. G1 ) and consider the pole placement problem for (1) u sing a 0 0 0.2 0 0 0 -0.5

state feedback control a-x L om 0.01 - 0.06 0.12 0 0.01 0

In the first stage we desigo an mkx1 feedback matrix H, to place the (19)

eignv~usoF~.GH~ttedeied~lomton.T05b5tIti Br. T~ 0 0 10 0 0 0 0 01 (20)

uUt 1 H1OjY+u1  (10) L 0 0 0 0 4 0 0 0

into (3) yields~ with open-loop eigenivalue of

F F+GH, 1Xoi -i-435 As., - -0. 13±t.21jI

Now we apply to (11) the transformation (3) and enote it by In~ (11) 1 -. 0 ? -- 2

the block -i, is zro; hence, ;lmo and only X4 - -139

L(F, +GiH,)-Fzi+G2H, -0 The minimum open-loop separtibon ratio is about 1:5 for IX, j:11 4J, that
is ih n, -n2 -4 After two iteratios L is approximated, by

Wesds to besovdfor f rthetransformiationz-Tyyields[0 0 0 0 1
0t'~ 0 0 0(1

Gl ]z ~0.02 0.0 001 0.091)
1 FUP~~Li (12) [-0.001 -0.001 0.o48 -0.001

Aain we note that the pair (F, G2 + 0,) is completely controllable and Ml by$ ad we proceed to the second stage in which we desin an mxn 2 r1

feedback muhH2 to place the sissvaluee ofF2 +( 2 +LG,)H2at the 0.969 0 0 0
daurd n locdon. Sbstiutig th fedbak cotro M. -0.006 -0.012 2.359 -196(U

M1 -fO0 HAJZ (13) 0.006 0.032 2.48 -1.6251

into (10) results in rstigi

U 0 J + 0 M ft x( 1 )5 0 0 0 1
ia([l1OI+( H12)x (4)F,- [0.068 -2 0 0 (23)

PSxpresaing T and f according to (4) we obtain the rind form ot the 106 -0.033 -4323 -136311

feedback matrix Kin u- Kx:0 . 12 -- 63

o - 3.958 0.54 0.025 -0.0241(4
K- +H(-i)I-L:-,.4 1 (+M~.(15) '1 10 0 9.123 .0.9811 (24

For desired eugenvalues
Although this two-stae desig is presented in term of a funi state
feedback, it also can be used in output feedback desin '\ 1. 2(d"s) -S3±2j

X,(des) - -4.

The form (14) of the final result is valid for any transformations T and
T block ditalinn (1) and (I1) respectively. However, the usefulness A feedback pin H, is obtained as
of this approach depends on the computational effort needed to obtain r-0.615 - 20.865 0 0 1 (5

*these transformatons and their inverses. The advantages of (3) are, rus. a 0.009 -0.016 -0.777 -1. (25)
its exPlict inVerSe (4) and, second the rectusve determination of L and
M[1Fiust To desiona feedbackHmifor the pair(F2, G: +LG,), werust tindi-

Lk. I -(A nLk + LiA 12L,,-A 21)A r' (16) -0020 6.178

4v--Ajj 0.007 -0.033 n5 0.12 (26) .L.

L 0OD -0.00 " 0057 0.1352
and then Al from0 

.M 001 003

M&., IAil M&(An +IA, 2) +Ailj'A.241J4 -Ar'AU (17) resulting in

F2 -02 0 0 0 1 27

similar recursion is used for L. Convegece Mate of these iterations - 0.003 -0.006 -0.17 -0.4319
is known [41 to be 0f order t* where t is the "sepmration ratio" .0 .2 017 -. 6

SUP14FN 0.330.045 -0.001 0.002 (28)
spM )l(18) 0 0 0.083 0.031

For desired eigenvaluas of



Xq.s(ds) 2±tli where

A7(des)- - I Ell - -A, 2AsAj'lA,.

At(des)m -0.5O The feedback H, is deignd for the pair (A.. 5. -L(BI/eD. TMe

a feedback, pis H2 is obtained: reulting closed-loop esgunvalueu corresposnding to this subrmem wil be

~ ~ 0 0of the to,.a A(d.) +O~t). Substituiont of (31). (32) and (35) into (15)
mlm- .61 -4.152 -026 -3. ] (29) va the composite feedback matrix

The actual cosed-loop sissavaue using the comjpoite fedack (14) am H iAi'u i~ 0i.(7

AIj(CL)- 7.99±t I.9j A.,(CL)m -2t lj This parMie thu reults of [11) whet HI and H2 were the results of

A,(.)--609 ~ (~ -two reduceid-order linear opia regulator problems,
\,(C)- 6.0 \7CL) - .03In [21 and O(a) independence of the two stage was accomplished

A4(CL)m 3.93 xs(CLp -0. using a patcular form of the control u 2 in the desip of H2. namely,

and anreclms to the~ eire locations, the woo.t erw being U2 (1+H,Ail'B)o (38)

(-\7(L)--\(dU) = 3 ercenseuwltang in the control matrix of (36):

X7(des) (23 +t5,Aij'lA2 B,)(I.HIAj 1,) (I 9

AJ9UcAlllhtso Snui PummJ'ATwoam I .H1,(A,, IEH)5)JH,~',+(2

The1 approach Preeentd here offers a simpler, way to obtain sm Usig a kaown matrix Identity, it can be shown that the matrix

known molts for SiartPeturbed yeee=IM[14 muplying eftin (39) is 1.and hce the subsystumpair forth sacod
Consider the system stage is (A*,+0(c. B.O()). Since it is independent of HI up to 0(c)

r A, A, 2 ~ rtrns. the need for taking H, Into account in the second stage has been

All *Aa X+ e3 (30) eliminaed The composite feedback matrix of (IS) now becomes

if in this can L and Maar tiilal by i[,,A~Az+z(+,,E)

L--cA2 1Ajll (31) which panilel the meulti of [2) a"d P1

Mm-Aj-j 'Al 2  (32) CONaLUSsosa

j then the transformed sste An explicitly inveirtible transformation enables a reduced-order enz-
value placement problem to be solved in two stages, The only requ

[All +cA1 2 A2jAj-l -tA 2A2 1Aj 21AI 2  1y met on the open-loop system is that the spectrum be disjoint EAi
6' 2A*A33Ail tAO-c 2A*A2 Ai1  

'decompositions applicable to singularly perturbed systems appear as
L I A33 special case of this tw-tg procedure when the eigenvalue separaitmo

1[,.jA...(3 was sufficiently larg. A similar deepg procedure for diticrete-tme

J~ U 33 sstem is developed in (7M Finally, the decomposition is applicablc to,
A deepg criteria other than eahenvaltie locations and output feedback

is 0(c) loe to the block diagonal form (7) where prolemis.

Ae-AanA3Aj'lAU Be2 -A 2 ,Ai-j'D,.

H, Ca ow bedesignd toplacethe eigvalueeof A, .e,H, at A.. IIl OL . Y~ ma P. v. K~ Ab~i% -A INDI~f &y 1111101for tb MUUu ir
locations. The resulting cloeed-loop eigevalues will be of the for OqUIdOW" IES D7o. A*~. Caw'. vet. AC-IS. pp. 17-2L Feb 1972.

* 
7

(.,+0(C))/C. The partially doeed-oop system of (33) is now given as M1 J. H. Maw am P. V. Koko - I I. "wm'1U6 PiOMOMto a I O-IM0anal. SyBUiin
ka Phe. IFAC s..,. Las. Swk J'm.. UdtIaL It*ll. M 321326.

M--. 'A donupuidam of aar4*p rqpau for sy wak ,tw amfas

All .,HI, +eE,, -tA 2 AZ1 A;-2IAll rnodf ISBN tiw. ANAMM. ewa. vol. AC-2i. pp. 701-705. Oat. 19Xt

.11,H+t2A*A2IAjlI eAe - 2AOA 2 IAj21AI2 j qmf 141alo for Awmsf.inrdvapm o h a uh .abu0 m ~aa
IS) P.V. be - ta pub i frbI*4VWWdG o 0aoaib

+r[6, +A~j'A, 2, 1 yteef IEEE D1it. Ama. Cam'. vol. AC-AO pp. 812-814. Da.. 1975.

jl(34) 4 cCwi -Y ie eet="o P--srs. ILEe

where Uw oe fa a.R3.F 9

S ~Manuanip muivd May 14. 197W. Tbu wait woe eappatad a Von by On. U.

Nx.approximating Li by Depuamnt o a Sw.. SehUis Nainr Sylsm Dhhimn nadi Camma EX-76.C4t.
20@ iied in pan by the Jaja m~ Soouneet.i Progrm.a (U&S Aimy. UAS Navy. and
U.S. Air Pore) nadi CaOMI DAA049.7j-4103t.

L-5oH,(A, e5,Hno sOdi) (3a whh the adios m oa m Laeu orsta Caoed3.aed Sol awa
tary. Umi~ of tl3.ai. Urbana IL 61801.

andl using y-. (34) becomes

[All --5 SI, +cEA +O(c2) 9112  }
46 0(42)CAe+0(ti)

F[ z "c~ r I(36)



IRU TRAKUCTIONS ON AUTOMATIC CONTROL, voL. Ac-22, No. 6. Doecuum 1977

A Singular Perturbation Analysis of High-Gain
Feedback Systems

KAR-KEUNG D. YOUNG, STUDENT MMBER, IEEE, PETAR V. KOKOTOVIC, sENolt MSEiME, IIEE AND

VADIM 1. UTKIN

AM n - imper a sluAw pt adrmcq m k used to mwy [16] that a dynamic loop whose gain tends to infinity
a di of chinki mere @ r - Mgbi* 1 1 i-d to Aa" causes change in the system order, characteristic of singu-

ruahinr e wt, m u ,amuim ss a . lar perturbation. In fact, all singularly perturbed systems
auiul pebhlwn, =i sidig Oa ia dl Mucewe systtem. A 1W

e s da decopsto of 111181110 1 can be represented as high-gain systems and all high-gain
r ierr un we p i systems can be analyzed as singularly perturbed systems.

The class of linear time-invariant high-gain systems dealt

INIMoDucrxoN with in this paper and in [13], [14] is of the form

H IGH-GAIN feedback has been a classical tool for -A x 0+ Bou

reduction of effects of disturbances, parameter var- U - gCoX0  (2)
iations, and distortions. Although limited to single in-pat-osnd isortion Although sysiemted ty ingetin- where g is the large scalar gain factor. the state x is an
put-single output feedback systems, the early investiga-
tions of structures permitting high gains [!], the rules for n-vector, and the control u is an m-vector. The relation-
root locus asymptotes [21 and the results on sensitivity and ship between the system (1), (2) and a standard singularly
return difference [3], [4 had greatly deepened the intuition perturbed linear time-invariant system,
of control engineers in the 1950's. Recent developments in i- F z + F,2 y (3)
the multivariable system theory have revived the interest
in high-gain systems. First, in the works on disturbance -Y - F21z + F2y (4)
rejection [5], parameter uncertainty [6], and decoupling of where A is a small scalar parameter will be established by
large scale systems [7], high-gain coefficients are either considering that
purposely introduced in the problem statement or they
implicitly appear in the resulting feedback structures. Sec- - -, g-...o, U.-0. (5)
ond, in a class of so called variable structure systems [81, g
[9], the sliding mode which occurs on switching surfaces In this paper we demonstrate how the singular perturba-
can be analyzed using high-gain methodologies. Third, tion methodology can unify and simplify known facts
feedback implementations of optimal controls when only about high-gain systems and give new interpretations of
small penalities are made on control variables (the their properties. A new pole placement method and a
"cheap" control problem) result in loops with high gain decomposition of near optimal high-gain regulator prob-
[10], [Ii]. Fourth. various recent studies of multivariable lems are presented. Furthermore, connections among ap-
system transmission zeros [12H 14] and root locus asymp- parently unrelated notions such as transmission zeros,
totes [151 also exploit a high-gain analogy, cheap controls, and sliding modes in variable structure

A fundamental property of high-gain systems, which systems are clarified.
brings us to the subject of this paper, is their relationship
with singularly perturbed systems. It has been observed in

FAST AND SLOW MODES AND TRASMISSION ZEROS
Manuscript received March 4, 1977: revised Aupist 5. 1977. Paper
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and if the nonzero eigenvalues of BoC o have negative real 0 . L P'. (17)
parts then (6) is equivalent to the block triangular systemn

Re,\(BOO) 0, ,- i F[ -L,,- LO A) + F1 217 (18)
then the motion of (6) consists of a fast transient to a 0(t)
neighborhood of COx 0 -O, followed by a slow motion in
this neighborhood. When assumption (7) is not satisfied, and, hence, its eigenvalues are
the limiting phenomena as g--.oo. that is, u-.O, are more
involved and will not be analyzed here. Assumption (8) A/-I- ] i-I,....m (20)

assures the asymptotic stability of the fast transient. To (
A

convert the system (6) into the standard singularly per- -"(F, I)+0(I) j- I,- ,n-m. (21)
turbed form (3), (4) let i - Tx o where

Moreover, for sufficiently high gain, that is for pu
sufficiently small, the fast subsystem (19) is asymptotically

T" .1m 3wr(9) stable.
The proof follows from (10)-(16) and the existence of G

and M is a product of elementary row transformations on established in Appendix B. The asymptotic stability of

B0 such that (19) follows from assumption (8) and from the fact that
the nonzero eigenvalues of BoC o are the eigenvalues of

MB0- r-O-], CoM--[C, C21. (10) C0B0 ,

B
2 i k(CoBo)-,(BoCo), , i-I....m. (22)

We note that m x m matrices B2 and C2 are nonsingular The two time scale property of high-gain system (6) is
because of CoBo- C2B2 and assumption (7). It is shown in exemplified by the presence 3f 0( l/u) large eigenvalues \-f
Appendix A that the meaning of T is that it decomposes and the eigenvalues As/ which are 0(l). The fast variableq
the original state space of x0 into the null space of decays exponentially in the "stretched" time scale t/pu and
Co. D(Co0)andtherangespaceof B0, I (B.).Thenx 0 can for t>t, it is 0(e - I',) where X-ImaxRe,(CoBo). In-
be written as tegrating (18) by parts. the slow variable can be appro - i

xo -Nz+B 0(CoBo)'y (11) mated by

where CON-0. Also z(t)'eFI'z(O)+O(p)" (23)
Hence, the decomposition (II) of the original state space

y- Coxo (12) corresponds to the separation of time scales and x0(t) is

and z-Mlx o where M1B0 -0. Such decompositions also approximated by
appear in MacFarlane, Kouvaritakis, and Shaked xo(t)'Ne,,(O)+ B(Co8o)_eCoaI/,,(O)+0( p). (24)
[3H15]. The system (6) is thus transformed into

i-Fjjz+F12y (13) which proves that, in the limit, the fast transient occurs in
6A(B 0) and the slow motion is confined to A)(Co). For

ty'p/Hiz+(CoBo+.H 2 )y. (14) t> t,,

The block triangularization [17], (18], which is simpler y(t) - ILoz(1)+ 0(). (25)
than Jordan transformations used in [13H15], is now
applied to (13), (14) to exhibit the two time scale property If, in an output regulator problem, y- Coxo is defined as
of high-gain feedback systems. We introduce the "fast" the output of (I) to be forced to zero ("zeroing the
variable output" [241). then from (25). we see that y(i) is reduced

to an 0( p 2) quantity after t > t,.
I -y + /LZ (15) Another interpretation of Theorem I is that it encom-

where passes and extends results on root locus asymptotes and
transmission zeroes of multivariable systems [ 121-[15]. As

L -(CoBo+ p 2 )'H+ G-L,+ pG. (16) g--+oo. g-4. the eigenvalues A/ in (20) tend to infinity
along the asymptotes defined by the directions of

A recursive formula for calculating G and an upper bound ,(CoBO), which are the root locus asymptotes obtained in
it for p (that is, a lower bound g, for g) are given in [15]. For large but finite values of gain g, the eigenvalues
Appendix B. The resultin7 separation of slow and fast A, can now be computed from (19), or more simply
modes is now summarizec. the following theorem. approximated by neglecting the 0(pA2) terms in (19).

Theorem i: If the ain system (6) satisfies Wang and Davison [12] and Kouvaritakis and
assumptions (7) and (8) MacFarlane [13] have shown that the finite limits of the
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eigenvalues of the high-gain feedback system (6) as gain -m and all the uncontrollable but stable eigenvalues of
g-.oo are the transmission zeros of the open loop system A are eigenvalues of A I,. Hence, (A ,,A ,2) is stabilizable.
(1) with the output y - Coxo. Therefore, the limits ,j(F,,) Theorem 2: Let (Ao, Bo) be a controllable pair, and let
of the eigenvalues )! are the transmission zeros. Theorem the (n - m) x m matrix K, and the m X m matrix K be
I and Appendix A provide the following procedure for such that
calculation of transmission zeros. Find the matrix M - I
[Mr  Mnr in (10) and its inverse M-'-[SI Sj, where X1(A,-A, 2K,)".q j'l,.,n-m (32)
M r and S2 are n X m matrices. This is easy since M is a \-(B2Kf)-p, Rep,<0, i-!, ,m (33) .
product of elementary row transformations. Then form
CoM-' -[C, C21 as in (10), find Cj', and compute the where q and &p, are the prescribed locations of the slow
eigenvalues of and fast eigenvalues, respectively. Then the use of the

F,, I MIAo(St -s 2 ZCC) (26) high-gain feedback

which are the transmission zeros of (1), (12). The deriva- umgKxg KfKx, + Kx2] (34)

tion of (26) is given in Appendix A where it is shown that places the eigenvalues of the system (28), (29) to %+
the last matrix in (26) and the matrix N in (11) have the 0(l/g) and g[p+0(l/g)].
same range: Proof: Substitution of (34) into (28), (29), and the

transformation z - x, y - KK,14x! + Kx 2 yieldO..(N ) - 6A(S.,I - ,52C2"-IC I ) (27)trn

Therefore, our matrix FI coincides with the "zero-matrix" i -(A II - A ,1K,)z +A 12Kf- (35)
in [61, [13H]-1 for the specific choice of the basis for
9t(C0). The calculation of transmission zeros from ILKf[ KAII-A2K,-4A 1 2 K,+A 1 2]Z

matrices of the form (26), such as in [ 13H15], (19], avoid
the ill-conditioning due to the large gain factor present in + KfB 2[1+ tB"(K,+ AuK-' ) ]y. (36)
[12], (201.

Noting that \(KfB 2) - (B 2K), the proof follows from
POLE PLACEMENT Lemma I and Theorem I.

A procedure for completely separated placement of the
For the remainder of the text the matrix Co in (2) is slow and fast modes is to design K to place the eigenval-

considered free to be chosen in the state feedback design ues of A, I- A 12K, and design Kf to place the eigenvalues
To stress this fact this state feedback matrix is denoted by of B2K. The n-dimensional eigenvalue placement problem
K. We first develop a design method in which the two is thus decomposed into lower dimensional problems. The
ime scale property of high-gain systems is exploited to preceding design is an improvement over the technique in

separately place fast and slow eigenvalues. To simplify the [211. The fast eigenvalues can now be placed arbitrarily in
notation we will deal with the system the open left half complex plane while in (211 they are

restricted to lie orrthe negative real axis. The placement of
x1 -A,,x,+A, 2x2  (28) slow eigenvalues is performed by solving a standard pole

i2m A2 1 x! +A22x 2 + B~u (29) placement problem of lower dimension while in [21], it is
done by solving n-m linear equations det[K(qJ-

which is obtained from (I) using x-[x xJ-Mxo Ao)'Bo]-O,j- 1,..--.n-m. for the mxn elements of K.
where M is as in (10). The m x m matrix B2 is nonsingular

by assumption (7) and, hence, the pair (Au, B2) is control- HIGH-GAtN REGULATORS AND CHEAP CONTROLS
lable for any A 22.

Lemma 1: If the pa:, (A0, 
8 ) in (1) is controllable High-gain feedback systems can also result from the

(stabilizable), then the pair (A, ,A,2) is controllable optimization of system (I) with respect to a quadratic
(stabilizable). performance index having small penalty on u:

Proof: The controllability of (A0, BO) implies

rank of-A A 1 2 ] (3 J 0 f [xrQoxo + u ru]dt (37)

where Q0O>0 and R >0 are symmetric and /t is a small
and, since rank B2 -m. scalar parameter. Such "cheap control" problems have

rank al-A,, A, 2 ] -n-m (31) been studied by O'Malley and Jameson [101, [22],
Kwakernaak and Sivan [Ill, [231, Wonham [24], and

for all complex a, that is. (A 1,,A 12) is controllable. When others. Detailed results exist [101 for the case when
(A0, Bo) is only stabilizable, consider u-v -B"Af 1x,.
Since (AU,B) is controllable. rank[ ol-A,, A,2 J<n BorQ0 Bo>0. (38)
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Under this condition the resulting high-gain system satis- A composite control u, is now made of the controls u,
fies our assumption (7). The analysis of the preceding and uf in the form of the control law (34):
sections is applicable and reveals the two time scale prop.
erties of the optimal state regulators developed in [101. u,- g(GI.G,X + Gfx 2), (49)
Without loss of generality, we deal again with the system
(28), (29) instead of with (1). where the feedback gain matrices are operating on the

T From the fast-slow separation of the pc cement actual state variables x, and x2 of the system (28), (29)
design, it can be expected that a similar decumta^aition is rather than on x, and x. The feedback system (28), (29),
feasible in the near optimum high-gain regulator design. (49) satisfies Theorem 2 with G, and Gf playing the roles
This is done by the method of [25]. Instead of the problem of K, and K, respectively. Hence, J, and 4f are the
(1), (37), the following two reduced order regulator prob- performance specifications for the slow and fast modes.
lems are solved. Theorem 3: Under the conditions of Lemma 2, the

Problem "s". Optimize system (39) with respect to the control u, is near optimal in the sense that the perfor-
performance index (40). mance J of the feedback system (28), (29), (49) is 0( j 2 )

close to its optimum performance.
!,-A, x,+A, 2u, (39) Proof: A power series expansion of the optimal

I rRiccati solution has been derived in [101. Since our equa-
Y"- i 2 0 (xQ IIx , +2xTQI 2U, + uTQ22u)d. (40) tions (45) and (48) coincide with (4.11) and (4.9) of [101,the leading terms K, 0 and K2"o of the optimal expansion

Problem " t" Optimize system (41) with respect to the are identical to our P, and P, respectively. From the
performance index (42). identity, analogous to (4.10) in [101,

= - Uf (41) PA,2 + Q12 K, ,SP (50)

f 1 fr(xTQ2xf + u/Ruf)dt. (42) it follows that u, and x of the system (28), (29), (49) are
2 ~0 0(it) close to the control and the state of the optimal

- In (39), (41), matrices AI,, A,2 , and B2 are as in (28), (29), system, and in view of [25] the performance of (1), (49) is

and x, is an (n - m)-vector, x, u, u, are m-vectors, and Q O(JL2) near optimal.
are the submatrices of Q-(M -')rQoM - where M is as The results of cheap control [101 are thus recast in teT',-
in (0). Mof two separate problems providing a 0(j 2) near optimali m 2: solution. It is observed from Lemma 2 that the standard

Lemma 2. If the pair (Ao,Bo)is stabilizable and detectability assumption on system (I) is replaced by
(A,,, D) is detectable, (43) detectability assumptions (43) and (38) for the slow and

fast subsystems. The stabilizability assumption. however,
where remains the same. Thus the meaning of Hypothesis (H) in

[101 is to assume that the slow eigenvalues have negative
DTD-Q,I-Q 2Q2Q, (44) real parts.

and if (38) is satisfied, then there exists a unique stabiliz- To regulate the output y - Cox0 we use Q - CrCO. If
ing solution P, of the Riccati equation rankC0 -m, then a 0(L 2 ) near optimal control can be

found by the preceding decomposition procedure, in-
0--P$(AI,-A, 2 Q tQ12)-(AIt 2,22 2Tp troducing y1- C2xf and y, - Cx, as fast and slow output

variables in (42) and (40), respectively, where CI, C2 are as
+ P,A,42Q2 'A rP2 - D TD (45) in (10). Since Q,I - CTC, Q2 - CrC2 and C2 is nonsingu-

and the optimal control for Problem slar, then D-0 in (44) and (43) is replaced by

U _ - (T+,Px,_G,. (4)ReA(A I I - A 12C2- 'Cl ) < 0. (1

Prof." Q22' exists since 8oQBo>O implies BIQ22B2 The solution of (45) is P, - 0. that is, the slow eigenvalues

>0. By Lemma I, the pair (A,,,A, 2 ) is stabilizable and. are not influenced by high-gain feedback. From Theorem

hence, (A,, -A,,Q 2 IQIT.AI2) is stabilizable. This I it follows that X(AII - A 2 C2 'C,) are the transmission
guarantees the existence and uniqueness of P, [26]. zeros of the system (28), (29) with output y - C0x0 . TheSThe optimal control for Problem f" is readily obtained meaning of the condition (51) is that they have to be in

as the open left half complex plane. This form is analogous
to the condition on transmission zeros in [I l].

u- - R - BPfx- Gx, (47) A related problem is considered in [6] where a feedback
w e igain matrix is obtained by solving a standard linearwhere, in terms of S B2R -'8[. quadratic state regulator problem, but no performance

/ index is being minimized by the high-gain feedback con-
"S-I/Z($1/2QS'i'/2 S - 1/2>O. (48) trol.

St , -
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SUDING MODE j, = (A 1 - A 12 C2 'C)x I  (59)

A class of systems with discontinuous feedback control, and A , - A ,C2- 7'C - FI by Appendix A. Therefore, (59)
called variable structure systems, has been developed in coincides with (18) as g--.oo, p-.0.
USSR in the last 15 years and surveyed in [8], [271, [28]. Thus, the slow motions of high-gain systems as g---oo
The salient feature of these systems is that the so-called are the same as sliding motions in variable structure
sliding mode occurs on a switching surface s(x 0)-O. system. It follows that the slow motions enjoy the same
While in the sliding mode, the system remains insensitive robustness properties of sliding motions. From our results
to parameter variations and disturbances, similar to a in the previous sections and Lemma 3 it is clear that the
high-gain system. eigenvalues of the equivalent control system (53), (54) are

Suppose that the switching surface s(x0 ) -Cx0 -0 is the transmission zeros of the system (1) with the "output"
chosen and assumption (7) is satisfied. In sliding mode, s. Furthermore, the switching surfaces can be synthesized
that is, when s(x)-0, system (I) with a discontinuous by either placing the slow eigenvalues or solving problem
feedback control, componentwise, "s" in the last section, a lower order state regulator

U!(X0) u(X0)' (Xo)>0 (52) problem.

I ui- (X0), s(X 0) < 0 Example

is governed by As a simple illustration consider a system in the form of

io -Aoxo+ Bou, (53) (28), (29),
[31 1 r0 01

where uq is the "equivalent control" -6 1 01 x+ 0 01u.

u- -(CoBo)'Co 0Ax 0  (54) 0 0 3J [0 i

obtained by requiring that First, suppose that a high-gain feedback control is to be
found to place the slow eigenvalue near XI - -3 and the

- CoAoXo+CoBou-O. (55) fast eigenvalues near ,2.3 -g(- I ±j). We solve the two

The existence and uniqueness of u, is guaranteed by lower order pole placement problems (32), (33) and obtain
assumption (7). In [91, it is proved that the feedback

system (1), (54) is robust with respect to small time con- K-[61, Kf-[ (61)
stants neglected in the model, nonideal switching such as
relay hysteresis, in the sense that its trajectory remains The high-gain feedback (34) is
close to the trajectory of the equivalent control system
(53), (54). It is of practical importance to exploit the r" 0 0 / ]
results of [9] to examine the robustness properties of - 12 -2 0(62)
high-gain systems. As a step in this direction we establish
the following relationship between high-gain feedback sys- Second, consider the high-gain feedback system (60), (62)
ten (I), (2) and the equivalent control system (53). (54). with (62) written as u-gCox and apply Theorem 1. The

Lemma 3: The motion of equivalent control system closed loop eigenvalues are computed approximately by
(53), (54) is identical to the motion of the slow subsystem neglecting the #2 terms in (18). (19). that is.
(18) of the high-gain feedback system as g-.oo.

Proof. Using the transformation x-,Mxo, we deal A,- -(FI- tF,2 Lo)-M-3+301)- - 3 + 30  (63)
with system (28), (29) instead of (1). In terms of x the
equivalent control (54) is \23 IX( CoBo + AH2)

uq- - (C2 2)-'[ (CA + C2A2,)x, +(C,A 12 + C2A)x 2]

where C,,C 2 are as in (10). Noting that I +5,2jl+6-4p) (64)

s-Cx+C x2  (57)

the equivalent control system becomes The upper bound in (17) is p,-0.0074 corresponding to
g- 135.6. The exact eigenvalues are computed for com-

xi, Ax, +A, 2x 2  (28) parison purposes. Denoting the error between the ap-

j-0. (58) proximate and exact eigenvalues as c., and between the
specified and exact eigenvalues as c., the results are

Since in sliding mode s-0. we solve it for x 2 and sub- summarized in Table I.
stitute into (28). This yields From (63), (64) it is observed that as g--,. '\.2.3 tend to
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TABLE I

Gain S Exact Approximate Slpwdied c.0 pm t 9W pemt

to- 2.69324752 - 2.7 - 3.0 < .5 <110<0.05 < 14

- 95.1533625 -95
±ji07.955057 ±j 107.684725 - i00±j100

-2.96991225 -2.97 -3.0
1000 <0.003 ai

-995.01504 -99S
+j1007.99596 -j007.96627 - 1000±j1000

the specified values. For design purposes gain g does not with CI, C2 as in (10). The system
have to be high, since with g- 100 the accuracy of 14

percent in eigenvalue location is often acceptable. R- rMAoM - 'r- ,i + rMBou (A5)

CONCL~USlON by (A2) and (A4) and R-[x yjr is (13), (14) with

Several classes of seemingly unrelated problems are F,- A,,-AI 2Cj-'CI (A6)
shown to result in or are equivalent to high-gain feedback
systems. A singular perturbation analysis reveals the two F2-A 12 C2 (A7)
time scale properties of these systems and allows a sim-
plified determination of eigenvalues, root locus asymp- H, - CA + C 2A 2 1 - H2 C, (A8)

totes, and transmission zeros. A separation of slow and
fast state feedback designs is also presented for both H2 s(CA, 2 +C 2A2)C2'. (A9)
pole-placement and linear regulator problems. For sim- Denote
plicity of comparison the results of this paper are re-
stricted to the class of high-gain feedback systems char- M]MS SA
acterized by (7). It is recognized that this structural M2 S' S2  (A 1)

assumption has excluded some systems of practical inter-

est. For example, in single input systems, (7) means that where M,, S[ are (n-m) X n and M2, S2 are m x n
the number of zeros v of the transfer function is n - 1. matrices, then
However. classical results, such as [1], exist for P < n -
and show that for v-n-2 the system is oscillatory and SMI+S 2M 2 1. (All)

for P< n -2 it is unstable. The recent study of multivari- From (10),
able root locus asymptotes [15] also shows that for more
general structures of B0 and Co instability of the closed C,-CS,, C2 -CS 2  (A 12)
loop system can result from high-gain feedback.

2,'.MB, O-MIB. (AI3)

APPENDIX A In terms of (A10), A,, in (A2) becomes

Consider the transformation 1 - Tx0 as two successive A I I MiAoS,. (A.,)
transformations, that is, Substituting into (A6) yields (26). Using the expressions

xinMx, x. (Al) (AII)-(A13), xo mM-| is (Ai

xA0 - r ,, A,2 - IDenote xos(St-S2Cj-"Cj)z + B(CoBo)-|'y. (A 15)

MAoM-'s[
A
2,: A 22 1,  

(A2) From (A12)
A 2C ( SI - S2Ci_"CI )0 (AI16)

then the system and by defining

i - MAoM x + MBou (AM) N - SI - S 2C"'C, (A17)

by (A2) and (10) is (28). (29). From (9), (AI 5) is (11). By (10) and (AI0), i r Mxo becomes

S C ( (CM M 2 )xo s[ x° (AIg)Ci 'I C2Y (CMI +C2M2CO!
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APPENDIX B 191 -. "Equations of sliding mode in discontinuous systems, 1. fl,"
AUt~ma. Remoe Cons., no. 12, pp. 1897-1907. 1971; no. 2Z pp.

For the system (13), (14), by Lemma I in [18). if 1101 A.1Jm-so an R97 . E.( aleJ,-Capcnrlote
assumption (7) is satisfied and if ji satisfies thie-ifvariaiit regulator," Appl. ath. Opt.. vol. 1. no. 4. pp.

(1(b+pacd (BI 111l H. Kwakernasak and R. Sivan. "Mhe maximally achievable ac-
3rns Autott.Comu, ol. AC1. pp. 79-86, Feb. 1972.

where a -II(COBO)f 111, b - 11F, 1 11. C -11 F 211, and d- 11H1 1, (121 E. J. Davison and S. H. Wang. "Properties and calculations of
thenL of(16 exits.L- L 0-lpG weretransmission zeos or linear inultivaniable system" Automarica,
thenL of( 16 exits.L - o + &G werevol. 10, no. 6, pp. 643-658, 1974.

(131 B. Kouvanitakis and A. G. J. MacFarlane, "Geometric approach to
(B) analysis and synthesis of system zeros (Part I): Square Systems,"L0_C0B+AH )_ 1. B2) Int. J. Comm,. vol. 23, no. 2, pp. 149-166. 1976.

[141 B. Kouvaritaki. "A geometric approach to the inversion of multi-
From (BI), p., in (17) is obtained, variable system." Int. J. CommUr, vol. 24. no. 5, pp. 609-626. 1976.

[151 U. Shaked and B. V )uvanitakis, "Asymptotic behavior of root-
locus of linear multi%.riable systems." Int. J. Cons,.. vol. 23, no. 3,

(b'+ cd)'- ;p 29-340,1976.
- ad(B3) 1161 .V. Kokotovii and P. Sannuti, "Singular perturbation method for4acd reducing the model order in optimal control design." IEEE Trots.

Autontat. Coir, vol. AC-I3. p 377-384, Au 19458.
By application of the implicit function theorem to [171 P. V. Kokotovic and A. H. = "CotrailiXan im-p

timal control of systems with slow and fast modes, IEEE Trans.
A utoniat. Comm, vol. AC-20, pp. I1II14f13. Feb. 1975.

1181 P. V. Kokotovic "A Riccati equation for block-iagonalization of(COB+ AH )G pGF1 +A'GF24+L2LO12Gill-conditioned system," IEEE Trans. Automat. Cowr., vol. AC-20.
+ p3GFj 2G_ - ~ - p.L0Fj2Lo (114) ji, .8 12-814. Dec. 1975."A gvauchrtei-

[19 ri. Kwatny and K. C. Kai itsky,"negnau hrceia
tion and computational algorith for mutivariable sstem zeros,

we can show that G possesses a power series at p = 0, that IEEE Trans. Automtat. Conmm.. vol. AC-22, pp. 259-262. Apr. 1977.
is. 1201 G. S. Axelby and E. J. Davison. "On the computation of transmis-

Sion zeros of linear multivaniable systems," Aus omatica. vol. 12, no.
k 5, pp. 533-S34 1976.

(B5 [211 U. Shaked, "Design techniques for Igh feedback gain stability."
G- Gj±L'+O(A*). (B) Ins..Cn,,vL2. o .pp 3- 1976.

i-O 221 . E.0'Ma1ey.an A. Jameson, "Singlar perturbations and(21singular arcs I," IEEE Trans. Automnat. Conr., vol. AC-rn, pp.
4A recursive formula for calculating G., is obtained by 2184226, Apr. 1975.

(231 H. Kwakem'aak, "Asymptotic root loci of multivariable linearsubstituting (115) into (114) and equating coefficients of otimal reguiators," IEEE Trams. Autat. Comm, vol. AC-ZI. pp.
powers of A. 378382, June 1976.

[241 W. M. Wonham, Linear Midswaable Control: A Geometn Ap-
proach (Lectusre Notes in Ecomnmic and Mathematical Sysem). vol.

G0-(0B0p112'L0 1 F11 (B6 Berlin. Germany: Sringer-Verlas 1974.
GO - COBO+ AH2) -'oH, F (11) 10 otovic -A decomposition of niear-p-

mum regulators for systems with slow and fast modes," IEEEE
Gs(oopfY[GF 1 LF 2 0  (B7) 121Trans. Automiat. Cont,.. vol. AC-21. pp. 701-705, Oct. 1976.GI -(Co~ + 1Hz) oF1,- L1261O B. D. 0. Anderson and J. B. Moore Linear Optimal Control.

1 liased in English by Mir, Moscow. 1977.

- GFI2Gk.. 1 3  for k >2with = -O. (B8)
j-0 jj-0
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NEAR-OPTIMAL FEEDBACK STABILIZATION OF A CLASS OF

NONLINEAR SINGULARLY PERTURBED SYSTEMS*

j 10E H. CHOWt AND PETAR V KOKOTOVIC*

Absaet. A new sries expansion method is developed for a class of nonlinear singularly perturbed
optimal regulator problems. The resulting feedback control is near-optimal and can stabilize essentially
nonlinear systems when linearized models provide no stability information. The stability domain is shown to
include large initial conditions of the fast variables. The control law is implemented in two-time-scales, withthe feedback from the fast state variables depending on slow state variables as parameters. The coefficients of

the formal expansions of the optimal value function are obtained from equations involving only the slow~variables.

1. Introducdom. Compared with the rich literature on linear regulator theory,
publications dealing with feedback design of nonlinear systems are a small minority.
Realistic approaches to the difficult nonlinear feedback control problem usually
exploit properties of special classes of systems to develop approximate methods [1].
[2]. The approach in this paper exploits multiple time scale properties of a class of
nonlinear singularly perturbed systems [3], [4] to achieve stabilization and near-
optimality. The stabilization results obtained are essentially nonlinear in the sense that
they also apply to the critical case when linearized models provide no stability
information. Due to a separation of time scales, the proposed design procedure is
applicable to higher order systems.

The problem considered is to optimally control the nonlinear system

(Ia) i=aa(x)+A(x)z -8x)u. x(0)-x.

(Ib) L.i - a2(x)+Az(x)z -B 2 (x)u, z(O) - zo,

with respect to the performance index

(2) Jf = [p(x)+s'(x)z+z'Q(x)z+u'R(x)u] d,

where IA > 0 is the small singular perturbation parameter, x. z are n -, r-dimensional
states, respectively, u is an r-dimensional control and the prime denotes a transpose.
It is assumed that there exists a domain D c R" containing the origin such that for ail
x e D and z e R'" the problem satisfies the following assumptions:

1. The functions at, az, At, A2, Bt, B2, p. s, q and R are differentiable with
respect to x a sufficient number of times and a,, a2 , p and s are all zero only
at x -0.

[I. The matrices Q(x) and R(x) are positive definite, that is. Q(x)> 0. R(x)>0.
Furthermore, the scalar function p -sz + -Oz of x and z is positive definite
in both x and :.

III. For every fixed x e D
(3) rank (8 2, A::, ., A2'-'B 2 1 m
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and hence A2(x) is assumed to be nonsingular. (If not, then using u - ; +
K(x)z such that A 2 + B2K is nonsingular we redefine the problem.)

Assumptions I and II establish that the origin is the desired equilibrium of (1).
Assumption III and Q(x)> 0 simplify the derivations. Alternatively a less restrictive
stabilizability-detectability condition can be used.

Finite time trajectory optimization problems for the same class of systems have
been treated in [3], [4] via singularly perturbed two point boundary value problems
originating from necessary optimality conditions. The resulting controls are open-loop
and require boundary layer correction terms at both ends of the interval. For the
-infinite time regulator problem considered here the Hamilton-Jacobi-Bellman
sufficiency condition is more suitable since it readily incorporates stability require-
ments and leads to feedback solutions. Using this condition we obtain near-optimal

stabilizing controls in feedback form and avoid explicit treatment of boundary layer
phenomena.

Our procedure is based on a nested power series expansion of the optimal value
function in z and jA. An advantage of this procedure is that it uses lower order
equations involving only the slow variable x. In applications truncated series are of
interest. Stabilizing properties of various truncated designs are discussed and an
explicit estimate of the stability domain is given. It is of practical importance that this
domain encompasses large initial disturbances of :(0). Furthermore, near-optimality
of these truncated designs is established in terms of O(M), O(j 2), etc. A particularly
useful result is that an O(g) near optimal feedback control can be implemented 4

witlout knowing the value of the small parameter g.
The paper is organized as follows. In § 2 a reduced order problem is formulated

for the slow variable x. The crucial assumption is that the properties of its solution are 1
known. Using a truncated expansion of the optimal value function the so-called
composite control is introduced in § 3. Since the leading term in the series is the
optimal value function of the reduced problem, the original problem is well posed. In
§ 4 it is shown that the composite control guarantees a finite domain of stability for the
resulting feedback system. In § 5, a formal expansion of the optimal value function is
proposed and near-optimality results are discussed. An example is discussed in § 6.

2. The reduced control. In singular perturbation techniques [5], a problem for
the full order system (1) where u >0 is interpreted as a perturbation of a reduced
problem

(4a) t-=a1(x)A 1 (x)z B8(x)u, x(0)=xo

(4b) 0 - a(x) A z(x)z - B2(x)u,

in which 1A - 0. Due to assumption 11. : can be solved from (4b) and eliminated from
(4a) and (2). Then the reduced problem is to optimally control the system
(5) i ao(x) + Bo(x)u. x (0) - zo

with respect to

(6) Jo= po(x) " 2u (x)u + u'Ro(x)u dt.

where ao ffi a I- A IA ,- a , B )2a 1- A IA 2.'18 :
(7) po, p -s'A 'a a,. .,A 'QAta:! , so -S',A?'(QA-a-s),

R, R 8'A',-'QA ,

L "..
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The origin x - 0 is the desired equilibrium of the optimally controlled reduced system
(5) for all x e D. since, in view of assumption 1I, ao(O) - 0 and

(8) po(x) + 2s; (x)u + u'Ro(x)u

is positive definite in x and u.
The reduced problem (5), (6) is considerably simpler than the original problem

(1), (2) because of the elimination of the fast variables and the reduction of the system
order. One of the tasks of the singular perturbation analysis is to establish whether the
full problem is well-posed in the sense that its solution tends to the solution of the
reduced problems as ML - 0. If so, then the next task is to deduce the properties of the
original problem from the properties of the reduced problem. Finally these properties
are to serve as a basis for a simplified design procedure.

To formulate our basic assumption about the properties of the solution of the
reduced problem we use the optimality principle

(9) 0 - min (po(x) + 2s;(x)u + u'jo(x)u - L.(ao(x) +Bo(x)u)],
where L is the optimal value function and L, is its partial derivative with respect to x.
This yields the minimizing control

(10) uo - -RV (so + .BoL' )

whose elimination from (9) results in the Hamilton-Jacobi equation

S(1) 0(po-s>Ro so)LL.(ao-BoRo So)-4L.BoRoIB;L, L(O)-O.

Note that, due to (8), po -s;Ro'so is positive definite in D. Our crucial assumption is
then stated as follows.

IV. The unique positive definite solution L(x) of (11) exists in D and is differen-
tiable with respect to x a sufficient number of times. Furthermore the level
surface L - co - constant is taken to be the boundary of the set D.

. In the special case considered in [I], where the linearization of (5) at x 0 is
stabilizable and its states are observable in the quadratic approximation of jo, our

-* assumption IV is automatically satisfied for all x near the origin. It follows from
assumption IV that Uo is the unique optimal feedback control for the reduced problem
and L is a Lyapunov function of the optimally controlled reduced system
(12) xa-BR) '''(1)i o = a~ (so + iBoL,) = czo(x),

*establishing that the origin is asymptotically stable and the set D belongs to its domain
of attraction.

3. te composite control. The optimal value function V(x. z. I) of the full
problem 1), (2) satisfies the equation

Omin [p+s'z.+z'Qz:-u'Ru ' V,(al +Atz -Btu)

(13)

r 4 -V,(a2-A,z +B:u)J.
"A

where V,, V, denote the partial derivatives of V with respect to the variables x, Z.j respectively. The minimizing control of (13) is

1-I t 1
2 u= - ILA 8v- '.V'
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and its substitution into (13) yields the Hamilton-Jacobi equati n

(15)A

p _'( 4.z'z +- V(A1 R -'(B, +-B V,~~ ), VO0.$) .

(4S) A

Since system (1) is linear in z and I is quadratic in z, and since , is mtLiplied by
AL. we seek a solution of (15).in the form

V(x. , JA) 9 0(X) + x)A9 (x)z -,z'I:(x)z jsq(x. . A)

- (X, z', 1)- q(x. Z. I&), 91(o)-o

where

(17) aq/ax - 0(l), aq/az -, O(IA).

We shall investigate the expansion of q in a later section. The partial derivatives oi V
with respect to x, z are

V, 90. "," O(J.),
V - A 1t 2jz'9:+0(g.').

Substituting (18) into (15) and neglecting the /A-dependent terms, we obtain the
equation

0 -=p +9o, + Ir/ta2-41(f/o, + 9 B,)R -'(Bt 9',, + .lt)

(19) + [s'+ 2a; IT", o (A, - B1 R -'B, 92)+ C' (Az B'R " Bf'z)]z

+ z'(Q+ V :A ..-,A' T72 - :-zR-'B, z)z.

In order to satisfy (19) identically for all z, we require that

(20) 0 =-p + f'o~a , + 9"La,- ,( To B j + 1 'B , R -(B , 9 0', + B ' /), f/(0) = 0 '

(21) 0 - s' + 2aj , + V/,)(A , - BtR-'B'z 9)"-  f", (A 2 -B 2R-IB " f/).

(22) 0 - 0 + n ,.A + z i =- -,B2RtB'z.

At each fixed value of x. (22) is an algebraic Riccati equation for (:*. In view of (3) and
Q(x) > 0. the unique positive definite solution 92 exists such that for all x 6 D. the real
parts of the eigenvalues of Az -A,-B:R -B" -', denoted by Re (A(,42)1, are less
than a negative constant. Thus , is nonsingular and 9t can be expressed in terms of
9o and 92 as

(23) 9, [s'+ 2a2 92 + 17,, (A, -BIR -tB2 v)]A - .

It is of crucial importance that the elimination of 171 from (21) results in an equation
involving only 17. For the well-posedness of the full problem it is necessary that the ..
leading term 9o of (16) be identical to the solution L of the reduced problem.

LEMMA 1. If assumptions III and IV are satisfied, then the unique positive definite
solution /o (x) of (20)-(22) exists in D and is identical to the solution L(.x) of the reduced
problem (5). (6).

Proof. It is shown in the appendix that eliminating V1I from (20). we obtain the
Hamilton-Jacobi equation (11) with V. in place of L., and hence tZ'(x)l L(x) with
properties as in assumption IV. [

tI
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By virtue of Lemma 1, 1o and 9T' are solved independently from (11) and (22).
This is the separation of time scales in the design of nonlinear regulators, analogous to
the linear time-invariant design in (7].

Using V. we derive the control1+

(24) -jR -- [IBi 9o. * B2 (9B,+ 2 9.,z)j* O(g)
m + O(00,

whose main part u is defined as the composite control Eliminating 1 from (24) using
(23) and following the derivation in (71, we can write u, as

S-R '(so + .B' 9o.) - R -'B" '.zz + A -' (a7 -BoR V(sao + 4. DI(25)
= UO -R -' 9(Z +-Ai '4),

where

(26a) A2(X) - A2 -B,.R -'B',. 9,.,
(26b) d2(x) = az-B 2 R-'(B l f/. +VB' "9), d :(0)= 0.

Hence the composite control u, consists of a slow control uo which optimizes the
reduced system (5) and a fast control -R-B 4(z ,'dI) which optimizes the fast
part (z +A- 1 ) of z in the sense that 9: satisfies (22). Note that when z is not
penalized in (2). that is when Q(x)-0. but Re {A(Az)}< 0, then 92 is identically zero
and u, reduces to us of (10). Stabilizing properties of the composite control u, are
established in the next section.

4. Stabilizing properties. System (1) controled by u, is

i -,at+ Alz +Btut J(x)+A(x)z, x(O)inxo,(27)
IA. = a: +A 4 B2uM dmW(x) .(X)Z, z(O) - Zo,

where

, =a I- .B1R-'(Bt 96 + B' ,), dt(0) -0.
(28) = A,- B R-'B"'V.

With the change of variables

(29) 77 :+42V42

exhibiting 7 as the fast part of z, system (27) becomes
•""(30a) -t - 40o A 07, X (0) -X ,

(30b)
=)Af(x ) + (.47(X ) .+ F(x )] , 71(0)- Zo'(xo 3 d(xo).

Since the right-hand side of (30b) is an O(MA) perturbation of A42(x )77 and Re (A (A,:.) <
0 in D we expect that 77 will rapidly decay to an O(I.) quantity. This motivates the
introduction of

(31 ) U(X, 7:. i + IIi7 1 :(x n.

L
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as a tentative Lyapunov function for (30). Here I is a small -3sitive scalar to be
determined. From assumptions III and IV, 9o(x) is positive detnit. ,d 9 2(x) >0 in
.D. Hence C is positive definite for all xeD and i7 .R'. Furt, more, since
9o(X) - Co > k for all x on the boundary of 0, the surface

(32) S(X. 1; 9)- {X, 7:U(x, n; ')- Coi

is closed in the (n + m )-dimensional domain x E 0. 77 e R '. We define Si. to be the
domain in the interior of S.

Let D, be a set strictly in the interior of D, that is, the boundary of D 'oes not
intersect the boundary of , and let E be a bounded set in R '. The presence t.-f 7 in U
extends S to encompass (x, z) for all xE D, and for z in any prescribed set E. This
crucial result is stated as follows.

LEMMA 2. If assumption III and IV are satisfied, then there exists an 9 > 0 such
that the domain Si. contains all x e Di, 77 e E.

Proof. At each point: i eD 1 , the projection S onto the ?I subspace is the ellipsoic

(33) 77 PT(j) -(CO- 970(1))/.

implying that 77 extends to O(1/v). Hence for every , there exists an i)
suffciently small such that the ellipsoid (33) includes all 7 r E. (Note that we must
exclude the boundary of D because from (33) the projection of S at any point on the
boundary of D is a single point n - 0.) Hence if we choose i* to be the smallest of such
1(1), the domain S1. contains all x e Dt, n g-E for any i e (0, 9*].

By virtue of Lemma 2, the initial condition 17(0) of (30b), and hence z(0) of (27).
can be as far away from zero as O(1-44) and still be enclosed by S. We now examine
the relationship between V and g.

Using (11), (22) and rearranging, we obtain the time derivative of U with respect
to (30) as

(34) ."=-g(X, W., g)--f'Q(x)f -- 7',W(X, 17, it,97

where

g -- y'Q y, g, = po-S Ro'So '? 0oB 0R'B"",

(35) y -At29. +21'VTf, f-77- - Q y,

M 2+ 9 R'B2R B'B 92 + t ) )- JA ,'2.

Since 9zFz.9: and C/2 are bounded for all x, 7 in S , and since Q(x)>0 in D. it
follows that there exists a A' >0 such that ,l4>0 for all x. 7 in Si. and for ; e (0. Sf]. -'

Thus the last two terms in U are positive definite. To ensure that g(x. if, j) is positive ,
definite, we assume that the reduced problem also satisfies

V. The limit

(36) lim k - <

exists for all fixed i >O. i

I



JOE H. CHOW AND PETAR V. KOKOTOVIC

Note that k r.0 because y'Q-'y is positive semidefinite and g, is positive definite. The
limit (36) implies that there exists a domain L5 about x - 0 such that
(37) y,Q- y ai(1 + 081x,

that is. such that for 1 < 27/(1 + k), g is positive definite in LI; see (35). Let E(F) > 0 be

the minimum value of g, on the boundary of . Hence in the domain

(38) L)I(x)- (x: gt(x)< k-

g is positive definite. On the other hand, since D is bounded, there exists a k (V)>0
such that y'Q-y < k, for all x s D, that is. such thatg is positive definite when x is not in
the domain

(39) 6(x) - {x: g(x)< k,/21}

about the origin. But for 1 < 26/k, D,= D, implying that g is positive definite in D.
Thus & is negative definite for all x, n contained in $,.. We now conclude that U is a
Lyapunov function for (30) guaranteeing that x - 0, 7 - 0 is asymptotically stable for
all ex D, 7 E and for j se (0, I*], where

(40) .'min(-l-,

Returning from the'7 variable to the z variable via z -q t- , we obtain for
all x e DI. -q s E a corresponding bounded domain E for z. We summarize the above
discussions on the asymptotic stabilizing property of u: in (24) as follows.

THiOREIM 1. rf assumptions I-V are satsfied, then there exists a Is* > 0 such that for
a 1 s • (0, jA*& and for all x e Dt and z in any prescribed bounded set Et, the origin x - 0,
z - 0 of the feedback system (1) controlled by the composite control u, is asymptotcally

I stable.

Theorem I can be applied in two different directions. As outlined above, for any
given D, and E,, we first find if* such that S. of (32) contains all x E DI, z e El. Then
we find A* from (40). This direction is suitable when A. is a parameter at the designer's
disposal. such as a gain factor [9]. In the other direction, if / represents some given
physical parameters, such as time constants, we use its value to determine the smallest
F such that U of (34) is negative definite, that is we find the largest DL and EL.

As a special case of assumption V, consider that the origin x - 0 of the reduced
system (12) is exponentially stable. Then near the origin. Po-ss o So, P0 grow as IxI2,
and V0 j., !dol grow as Izx, and we can find positive constants k, • •, ke and 5 such. that

thatkjlxlZ;Spo-s A'oR ;fik3lxj '.  k.lx I' ai 9o;kslx I'
(41) kslxI1'ojklxl, kaixI1IIojkxI

for all xj<. It follows from (41) that there exists a fixed k1 (r)>0 such that

(42) y'Q'y S k oix1'

and the limit (36) is bounded by
(43)limL Slim kto;x!2 k ,,

l i "-T---

satisfying assumption V.
In this case a claim stronger than Theorem 1 can be made.

[
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COROLLARY 1. If assumptions 1-IV are satisfied and the origin x -0 of the
reduced system is exponentially stable, then the conclusion of Theorem 1 holds and
moreover the origin x -0, z -0 of (27) is exponentially stable.

Proof. The first part of the corollary follows from Theorem 1. The second part
follows from the linearization of (27) at the origin

ar,(o) F 
'

[S4i 8-40 1 -,(0

The system matrix of (44) has one group of nsmall eigenvalues O(A) close to those
of (a .!x)-AtA1 (84d/ax)..o and another group of m large eigenvalues 0(1)
close to those of (1/1A)A.(0) [8). But d1-A ,A.;'t-JuZ and (adu/ax)A,..-
(od,/ax)-A, ij'( 2 /ax)A..o as 52(0)=O. Thus the real parts of the eigenvalues of
the system matr,: of (44) are all negative and x - 0, z - 0 is exponentially stable.

If the origin x- 0 of the reduced system is only asymptotically stable but not
exponentially stable, then in general g need not be positive definite for all x e D. This
situation includes the critical case when the linearized model does not provide any
stability information as clarified by the example in § 6. For this situation the system is
now shown (o possess a weaker stability property, that is. its trajectories tend to a
small sphere around the origin. Define the domain in R'

(45) P(X) = {x: ,(x; t, 1A) S 01,

which is contained in the domain 5 of (39). Due to the presence of )A in (34). U may
be positive only if x ep(x) and 77 - O(I.). Otherwise, U is negative. If we define the
surface

(46) n'(x, z)=-(x, z: :x eo(x; A.), z = -AjL(x)d:.(x)J
about the origin in R " ", u, defined by (24) is a stabilizing control in the following

sense.
THtEOREZM 2. If assumptions I-IV are satisfied. then there exists a A * > 0 such that

for all u e (0, 1 *], the feedback control (24) steers all x e D1, as EL of the full system
O() close to the surface ir(x, z).

Proof. Since U>0 and U<0 except for xep(x) and i 0(jA), x converges to
p(x) and 1 decays to an O(14) quantity. Thus in the x, : variables, (x. z) converges to
an O(1A) neighborhood of the surface ir(x, z).

In the case where the fast transients of z in (1) are exponentially stable. that is.
A2 (x) is stable for all x a D. and we are only concerned with the optimality of the
reduced system (5), then the z-independent reduced control uo of (10) stabilizes the
full system (1) with essentially the same stabilizing properties as u, of (24). We shall
not repeat the argument.

An atractive feature of the controls u, and uo is that they do not require the
knowledge of the actual value of A& provided that it is sufficiently small. When
appropriately implemented, these controls stabilize the full system (1) and achieve
optimality of the reduced system, and in the case of u, also optimality of the fast part
of :. The above results also answer the question of well-posedness by giving the
conditions under which the same optimal reduced order system is obtained when jA is
set equal to zero either when system (1) is uncontrolled or when it is controlled by u.
or uo. In contrast to many other singular perturbation results which require AL to be i

I
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sufficiently small, this section provides a method to compute an estimate of allowable
values of A given a stability domain or vice versa.

S. A forna expansion and near-opdmaolty. The equation (16) only satisfies the
Hamilton-Jacobi equation (15) to O(g) order. We now propose to solve (15) by
expanding V formally as a nested infinite power series. If this power series is con-
vergent, then the optimal solution V of (15) exists. For x, z near the origin, it has been
shown in [11 that the optimal solution exists and possesses a power series expansion
when system (1) after linearization at the origin is stabilizable and the state in the
quadratic approximation of I is observable. Here we are interested in a power series
of V which satisfies (15) to any order of IA.

Since system (1) is linear in z and I is quadratic in z, the optimal value funct..n
can be expanded as a power series in the components of z [2]. In addition, since z is
the fast variable, the z terms in the optimal value function are multiplied by appro-
priate powers of g [5]. In view of these two characteristics, we seek a solution of (15)
in the form

iIi-i k-1

i-I k-1 4-1

vM(0. i ) 0 .

where V,,...,, is the (j,, .. ., ji) element of the completely symmetric generalized
matrix' V, of dimension m' and z, is the ith component of z. The summation signs in
(47) and in other equations in the paper will be omitted when there is no confusion as
to which indices jtios , j are being summed. The partial derivatives
V., V.,,..., V, expressed in terms of the vector x and the scalars z I, z, are

(48a) V. - Vo + V.. *AV:.ikz,zk ...

(48b) V, -1, Vi. + 2 1A V2,z, -1 3A 2 V3,, zzk + " ', i = 1,2.•• , m.

where the summation signs over j, k are omitted.
For the series (47) to satisfy (15) as an identity, we first rewrite (15) in terms of

the vector x and the scalars z, z,,

0 - p +szi + Ojz~z, + V.(at +A t,)+ - V, (a2. ,- +A ,,z,)
(49) JA

where si, a2, are the ith components of the vectors s. a2, respectively, Ali is the ith
column of the matrix A,, B2 , is the ith row of B2, Q,,, A2 , are the (i, j) elements of Q,
A2 , respectively, and the summation signs over the indices i. / are omitted. Then. upon
substituting (48) into (49) and equating the coefficients of the like powers of z,, we

* 'The (0,. i. • .)elements of V, are identical for all permutations of the indices i,. •2 . ii [61.

* .
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obtain

o50a +p V ,a V ,az4 -i( Vo.B, + V,B 2,)R'(Bt Vo. +BV ),

(S0a) Vo(0. A) =0,
0 -ms + Vo.Ali + uV.4 + V-AI 2V i -IVoBA + Vuij)

(5 b R -'(g ; V ,, +-2B v 210). i = 1. 2....- , ,,

0- O, +-& V2ma + &(Vu.A j), 2(VAAz), 3jA+ 3 k Vaz

jr0t= Vt.8, +2ZV2AB,t)JR"(AB , -2BikV:k,),

i 1.2," ,m.

0- AV3,j a +s(Vzn4A, j&), + V3,,,.,, . ,,),

(50d)' - j( V ,B - V B2.)R '(M B' Vq, 4A 28!, )

-4((A&VIt.B 4 2 V2B 2,)R-'(mB't V, -,3AB* V3,r)).
iik - , 2,. , ,

where the right-hand sides of (50a), (5Ob), (50c), (50d), are the coefficients of the
z-independent terms and of the z,, zz zzz,.,.*., terms, respectively. Because of
symmetry, there are m(m + 1)/2 equations in (50c), m(m + l)(m +2)/6 equations in
(50d) and in general, ('TL-o (m + k))/a! equations when the coefficients of xjzII*,. •,- ,
)i.," • ii2 " . , m. are equated.

For a simplified treatment of these equations we now exploit the presence of the
small singular perturbation parameter AL. We expand each coefficient of (47) as a
power series in AL:
(51) V(Z, A)- i Vt. v(X), , - 0, 1, 2.. .

where the boundary condition of V' is V0 (0) - 0. / 0, 1, 2, . The expressions
(5 1) substituted into equations (50) are to satisfy them as identities in IA. Equating the
coefficients of the like powers in ), we generate sets of equations for V', ij =
0, 1, 2, • • •. The first set of equations obtained by equating the J -independent parts in
(50a), (50b), (50c), are precisely equations (20), (21). (22). respectively. Hence from
the uniqueness of solutions to (20). (21), (22), conclude that

(52) V - L -9oV 7,, V0 - 9,
and 9 thus consists of the leading terms of V.

The second set of equations in matrix form

(53a) 0- , , + V142, Va(0) -0,

(53b) 0

(53c) 0- V2J 1 ,+(V'. A ,A Vt)+ V1,2+A,4 v' + 3(vd.).

The subscript s denotes the symmetnzation operat-on of generalized matrices [6). For example.
( VzA lau), U .( V., 1.4 =, * V2,,A :k, )

(V,.0A , U(V1,.A .,- Vio.A: V,, 20 2. - V,# - - m).

. .. . = ...... .... ', ..... . :o .. .... ... . -.,, -.- ...: . . -... ..i[ "
.. ._ .,. , :.. - . . ... . : -
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(53d) 0- 3(V03A2), +(0.Aj

obtained by equating the g terms in (50a), (50b), (50c), (50d), respectively, involve
only the unknown terms Vol, V1, VZ and V03. In (53) the multiplication of an
n, xn xn3 matrix by an n3Xn, matrix results in an n, xn.xn, matrix. For con-
venience we suppress the last dimension of the m x m x I matrices (VOzd,) and (V1/d.)
and regard them as m x m matrices. Since 1,2 is stable, (53d) and (53c) can be solved
sequentially for V03 and Vz, respectively. Then V, can be solved from (53b) and its
substitution into (53a) results in the partial differential equation
(54 ) 0 -V o. j 0o , (d I T d ,V l) 11 , V o(0 ) -0 .

In general, in equating the js' terms we obtain the (i - )t set of equations
involving the unknown terms Vo., V1, V'Z, V3 V... The terms V,.,,
V!....., V'' are solved for sequentially and then V%7' is to be solved from an
equation similar to (41).

The main accomplishment of the nested expansions is that the first set of equa-
tions (20)-(22) can be solved independently for the first three zeroth order terms Vo.

VOL, and V2. Similarly, (53) and the subsequent sets of equations can be solved
independently for Vo, 0,.., V,2. These equations are dependent only on x and
not on x or ;A. A further simplifying property is that at the first stage the equations
(11), (22) for Vo and V'2 are decoupled.

The approximation obtained by expanding V of (47), (5 1) to the ith set of
equations is stated in the following theorem..

THEOREM 3. Suppose that the solutions to the i-th set of equations of V exist and let
V' be the truncated series of (47), (51) including all the terms V, up to the i-th set. Then
die confroi

IR- (55) u, B!= -1IB. V1

is near-optimal in the sense that V' satisfies the Hamilton-Jacobi equation (15) to an
0G') error.

Proof. Substituting the V! terms into (15) and using the first i set of equations of
V. the coefficients of A terms, k < i, in the resulting equation vanish, implying O(A')
near-optimality.

Thus Theorem 3 implies that u, of (24) is an O(jA) near-optimal control because
it is an O(jA) approximation of is1 which achieves O(As) near-optimality. In general.
retaining only the IA' terms, k <i. in ui, the resulting control also is O(/A') near-
optimal in the sense of Theorem 3.

Repeating the derivation in § 4, we can show that u, stabilizes the full system (1)
with similar stabilizing properties as u, of (24). We first introduce the x, 77 -: Z,+'t4
variables and consider U in (31) as a tentative Lyapunov function. The analysis is

* - more cumbersome but results similar to Theorems I and 2 and Corollary I can be
established.

6. Discussion and example. The computational advantage of the proposed pro-
*cedure is that all the terms of V in (47), (5 1) are obtained from equations involving

the slow variable x only. Moreover V"0 and V2 are solved for independently. Explicit
consideration of the initial boundary layer is avoided and it is optimally stabilized by
the z variable feedback. Furthermore using the x. ,7 variables an estimate of the
domain of stability is easily obtained. Alternatively, for a stability domain to encom-
pass a prescribed bounded set 1 e E = R'" a bound for A can be determined.

. . . .. .- -=. . . . -_ _ . ; = :: . . . ' .... . .... -. .-. .:...-
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NEAR OPTIMAL FEEDBACK STABILIZATION

Several aspects of the design procedure and the stability properties of the resul-
ting feedback system are now illustrated by considering the optimal control problem
of the second order system

(56) = xz. , .- z + U.

with respect to the performance index

(57) j= I (x4+z +iu2) t.

Solving the reduced problem we obtain L - Vo- x2 and uo - -xI. The optimally
controlled reduced system (12) is t - -x 3 and its unique asymptotically stable equili-
brium is x - 0. Note that the linearization of the reduced system fails to provide any
stability information at x = 0. Let D be the interval - 1. 11, that is. L - co - 1 at
x * *1 by assumption IV.

The pair (A , B 2)= (- 1. 1) satisfies (3) and we can solve (22) for V!, - J(v',2- 1)
such that A2 = - '.2. Then the substitution of V, - L - x2 and V! into (23) yields the
following expressions for (24) and (16):

(58) u (2l.+(, 2 - 1)z).
(59) X! -;+ IA,1-x'z +, j(,/! - I)z-. ,

The resulting feedback system is

(60) itz - j, A

This result is essentially nonlinear since the linearization of (60) at x - U, : - U
does not provide any stability information. After the change of variables 77 - z - x,
system (60) becomes

(61) xu-x +x7, I7 - -2;AX _ ( 2 -2j x'),.

Since we require 1xi 1, A& is restricted to be less than 1!/ 2. The tentative Lyapunov
function (31) is

(62) U(x, 7: if) - ' X (2- + )9f7.

If we require that the initial conditions of (61) be in jxi .8, It/i fi 5. then we must set if
to be less than .0695 in order for the ellipse

(63) S(X, 7; 9)- (Z. n : U = x + (-2- Of,?" - 1
to enclose these initial conditions. Plots of S in the x. i/ oordinates and the x, z
coordinates for if - .06 are shown in Fig. 1. The time derivative of U with respect to
(61) is

(64) ,n

where

(65) 1 2 A6 - - X( v- -
I

ZA iv -- , y, ,V=i-

Since lim-.,, y2/g, 2. assumption V is satisfied. For all x. 77 in the interior of S and [
I
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~ x. ,7 coordinatus
..------ x. coordinates

olo-

FIG. 1. Pfoef S in (63).

if =.06, U is negative definite for all L c (0..031. Hence x 0 0, z - 0 is asymptotically

stable for all xt .8, 1z +x~j S 5 and g e (0_ .031. Furthermore, f, satisfies the Hamil-

ton-Jacobi equation (15) with an error of iA 2,_Zx Y.
If we are only interested in the optimality of the reduced problem and consider

the z-part as due to "system parasitics," we can apply the reduced control uo to (56) as

A 2 - - I is stable. System (56) controlled 17y uo is

(66) i - xz, 1zX= -_ X _ Z.

- Transforming z to 71 - z +x, system (66) becomes

(67) x -x4-x, .- 2M xZ-(1 - 2AxZ).

We use U in (62) as a Lyapunov function for (67) and the time derivative of U with

respect to (67) is

-rn[2( ~ 1)'2-1 x)-jx'--! 24.. 7 ~ 1 1- W 2
(68)

.2 7



NEAR OPTIMAL FEEDBACK STABILIZATION

Thus for all x, 7 enclosed in S and f - .06, U is negative definite for all A e (0, .021.
Hence x-0, z-0 of (66) is asymptotically stable for all jxj 9.8, Iz +x 1Is5. A e
(0, .021.

To obtain an 0(s 2) approximation of V in the sense of Theorem 3, we solve (5 3)
for higher order terms of V! and obtain

(69) u2 -,, -s2Xz,

(70)

System (56) controlled by u2 becomes
(1) 1 -Zz, g - -,-z (42 + JA2x')z,

or, in the x, n -z+x 2 variables,

(72) m1 -X3 .-x , " /

which is globally asymptotically stable for all IA >0. Furthermore, V2 satisfies (15)
with an error of 1(8x'z 2 + 2z 2 3 ).

7. Caodulos. A nested power series expansion method has been proposed for
solving the optimal control problem of a class of nonlinear singularly perturbed
systems. The terms in the expansion V are obtained from equations involving only the
slow variable x. In addition, V~o and Vo are solved for independently. Explicit
consideration of the initial boundary layer is avoided and it is optimized by the z
variable feedback. Sufficient conditions are obtained such that feedback controls using
truncated series stabilize the nonlinear systems and the stability domain can cncom-
pass large initial conditions of z. These truncated controls can achieve near-optimality
of 0(;&), 0(; 2 ), etc. In particular, an 0,u) near-optimal feed-back control can be
implemented without knowing the value of the small parameter IA. The results apply
to essentially nonlinear problems.

Appeudix. Substituting (23) into (20) and rearranging yields

0 - X, + V0 X:2 - 1 V0 X3 Vo'o,
where

X, - p - (s'+ 2a2 V2 )A'a 2 - (s' + a'Vz)A tB 2R'B '(4s 4 Vza 2 ,

X2- + AoR -'2AT-'ds + V2a2), X,=#oR'A,

do-ai-(At-BjR-'B'2 V2)Aa 2, .o-Bj-(A1 -BjR-B' 2 Vz)A2B 2 ,

A, - A2 - B2 R-' B2 V 2 ,

and the surrscript 0 in Voo, and V02 has been dropped. Let . - I + R-'B2 V2A'B 2 .
Then H_ -- R-B_ V.A2'B 2 and H''RH-'-=R+B'A'-'QAj 2- Ro. Thus
9o BtH-AAj'B2-BoH. Hence X 3 -B.oRO1 B'o. Also,

X 2 - ao + BoR3 [(R + B'A'°'QA 'B 2 )RB 'ti 1 +B ' V]a

+4BoR;oB" A'2-1 s

"ao+BoR' B.A' (A2Vz +QAiBzR-'B'V: VA - VVB2R -B .'B V:). "  1

BoR-'BA,-s S

" ao - BoRJ so.

I
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Furthermore. ,IB:R'B;'- A.B fR- 1H'B'A ' = A LB2 R - 'BA' and
I~uteroeA 82R B,. A - .t, - 2' 0,i-

+ -- A ,--' , A 'B 2R 'B V 2  , ,T , ¢B ,R - VV"471

A.;'- ,.,V 2zt0a-tB2A'7 LO -'- A;B.R- B,A;7 V,.II
Thus X, becomes

X s'A -'a 2 + s'A -'B 2RotB2A;-jQA~' -s'A.'B 2 1RVB'BA'-'sxI; I, -, -0 , 4 -,
+a;VAZVBjRo B.Az V2 a2 -a;(V291' ,4 A' V2)a2 .

But

V2,42-' +.A V, - VzA7'- A2'V,+ VzA RJ- B 1-,.A- t- -

+A'Z QA B.Ro B2Ai' Vz

+2 V 2 A-'BzR' A'- V,

and

V that is,

A-1 VBR 1 B 2VzA -1 -A - Vz -t Qz)Aj 1 B 2 R 2

v,,,-2 2 '',A-(A-+V), xo;,.

(V 2 +A ;-'Q)AB 2 R -'B A 2..

implying Xt - po - s;R-so. Hence elimination of V, from (20) yields the Hamilton-
Jacobi equahion (11) of the reduced problem.
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A TWO STAGE LYAPUIOV-BELLKKAN FlZDAACX DESIGN

OF A CLASS OF NONLINEAR STSTZMS*

Joe H. Chow Petar V. Kokotovic
Electric Utility System Coordinated Science Laboratory and

Engineering Department Department of Electrical Engineering
General Electric Company University of Illinois
Schenectady, New York 12345 Urbana, Illinois 61801

First, it is not directly applicable if the linear
ABSTRACT part is not dominant, second, calculation of

expansions increases the dimensionality
The composite control proposed in an narlier paper difficulties, and, third, ill-conditioning due to
for a class of singlularly perturbed nonlinear fast and slow phenomena remains.

systems is now shown to possess properties essential

for near-optimal feedback design. It asymptotically The two-time-scale approach presented in this
stabilizes the desired equilibrium and produces a paper avoids linearization and directly addresses
finite cost which tends to the optimal cost for a the dimensionality and ill-conditioning
slow problem as the singular perturbation parameter difficulties. Its philosophy can simply be stated
tends to zero. Thus the well-poSedness of the full as follows: "Design the slow subsystem first, by
regulator problem is established. The stability assuming that the fast subsystem has already reached
results are also applicable to two-time scale its steady state. Then design the fast subsystem
systems which are not singularly perturbed, and the for a set of constant values of the states of the
paper does not assume the knowledge of singular slow subsystem. Combine the two designs by
perturbation techniques. guaranteeing stability and near-optimality

properties of the resulting system." The method
1. INTRODUCTION proposed in (3) and developed here implements this

design philosophy on the systems nonlinear in slow
A conceptually appealing framework for variables and linear in fast variables and control.

simultaneous stabilization and optimization of
feedback systmg consists in requiring that the The class of systemW considered is assumed to
Bellman's optimal value function be in the same time be in the standard singular perturbation form
a Lyapunov function. This has been elegantly exhibiting explicitly a parameter u, which can be
achieved in Kalman's linear regulator theory as a interpreted as the order of magnitude of the ratio
culmination of earlier efforts by Lur'e, Krasovski, of the slow and fast state speeds. Although this
Bellman, and many others. However, in dealing with form simplifies the definition of the subsystems,
nonlinear problems, the Lyapunov-ellman concept has the paper does not require any familiarity with
serious drawbacks. One of them, the notorious singular perturbation techniques. The slow and fast
"curse of dimensionality," is frustrating to subsystems can be considered as postulates whose
practitioners. Another one, the question of validity is subsequently demonstrated by the
existence and differentiability of the optimal value properties of the actual system controlled by the
function, disturbs the analytically minded. Similar proposed composite control. Since the proofs of
difficulties appear on the Lyspunov side because of these properties are elementary and make use of only
the lack of general methods for constructing Bellman's principle of optimality and Lyapunov-type
Lyapunov functions. Nevertheless, the optimum arguments, the paper can be read with no more than a
stabilization continues to be one of the fertile basic background in control theory. The steps of
concepts stimulating the development of numerical the design procedure are presented on a simple
and analytical methods for nonlinear regulator example. The method of this paper iS radically
design (4-7]. Most analytical methods assume that differtnt from the finite interval trajectory
the linear part of the system is dominant and design optimization results of [8,93 because of the
a linear regulator as a first approximation, to be stability and boundedness requirements fundamental
subsequently corrected by series expansions (5,73. in infinite time problem, which require feedback
This approach is applicable to many nonlinear solutions.
systems, but it also has important limitations.

2. FULL PROBLEM

SThe work of P.V. Kokotovic was supported In part The problem considered is to optimally control

by the U.S. Air Force under Grant AOSR-78-3633, in the nonlinear system

part by the Joint Services Electronics Program (U.S.
Army, U.S. Navy, and U.S. Air Force) under Contract i a a1(x) A (x)z * 31(x)u, x(O) a x (2.1a)
N0001-79-C-024, and in part by the National

Science Foundation under Grant SCS-79-19396. Part
of this work was performed when J.H. Chow was a a a 2(x) + A2(x)z + U2(x)u, z(O) a z (2.1b)
Research Associate at the Coordinated Science 2

Laboratory, University of Illinois. with respect to the cost function

I



.j a J.p(x).s (x )s*a 'Q(x)x.u o(x)u]dt (2.2) 3 S SROLEI

a Because of the presence of m, system (2.1)
where pQ is the singular perturbation parameter, x, exhibits a boundary layer, that is, a fast
1 are n-, a-diuensional states, respectively, u is transient in the variable a, after whose decay both
an r-dimensional control and the prime denotes a x and z vary slowly with time. Setting IN 0 the
transpose. Regulator problem for syatmsa linear in fast transient is neglected, that is,
the control and nonlinear in the state have been
considered earlier (63. Here the system is also a I (x) A 1(xa)z a U(xa)Uso as (0) x (3.la)
linear in the fast state variable a, as is for 1
example, the case with models of do motors and
synchronous machines (2]. We make an asmmption 0 a a2 (x s) 3 A2(xs)zs 52 (xa)us, (3.1b)

which in addition to differentiability and
positivity properties of terms in (2.1), (2.2) also and, since A is assumed to exist,
guarantees that the origin Is the desired
equilibrium. z(x) -A2"1(2 + Bu )  (3.2)

4am w 1onI: There exists a domain D gn,
conta~flZ O.UrVigin as an interior point, sich is eliminated from (3.1a) and (2.2). Then the slow
that for all xCD functions a1 , a2, A,, A2 , subproblem is to optimally control the slow subsystem

A-1 5, B R, and Q are differenti-
aXl wth Aespect to X; a1 , a2 , p, and a are i a ao(x s ) 3 0(xa)U, xs(0) a x°
zero only at xu0; Q and R are positive definite ma- s (.3)
trices for all xCD; the scalar p+s'zxz'Qz is a with respect to
positive definite function of its arguments x and z,
that is, it is Positive except for xzo, z:0 where it i
is zero. .s a J po(Xs)#28,(x 5 )u5  u'Ho(X)ujdt (3.)

0

An approach to the full problem (2.1), (2.2)
would be to assume that a differentiable optimal where

value function V(x,z,U) exists satisfying Bellman's -1
principle of optimality a0  a 1 - A1 A2  a2

02 5&n(P*3'Z+Z'Q4'Ru+V X a1+i+i)%B I - A 1A 21*V •,( -'.Az' .,. -l. " s -l -"l

V za 2 2zB 2 u) ]  (2.3) Po a p - 'A"1 a. + aA"QA2 a
2 * 2 22 2 2

where Vx, Vz  denote the partial derivatives of
V. Since the control minimizing (2.3) is 3 *0'(Ajl -l "1 a 1 3)

2 2 2

2 - U l ( * +(2.1) o " R A QA2  B2. (3.5)

the Problem would consist in solving the We note that x. a 0 is the desired equilibrium of
amilton-Jacobi equation the slow subsystem (3.3) for all xCD, since, in

view of Assumption I, as(0) x 0 and the integrand

px'zzz'Qz. x(a 1A Z) V 2(a +A z) in (3.4) is positive definite in x• and us, that
1 4 is3

44 xl1 uz2 lxu zP p(X) 23(x )u uRx >0
0 3 0 3 5 u50o(X5)U3 > O,

V(0,0,w) 2 0 (2.5)
x s S 0, u ; 0 (3.6)

This would be a difficult task even for well behaved •

nonlinear systems. Due to the presence of 1 terms in Our crucial Assumption II concerns the existence of
(5 the optimal value function L(x5 ) for the slow

(2.5), the difficulties with singularly perturbed subproblem satisfying the optimality principle
systems (2.1) increase. The method of this paper
avoids these difficulties. in Contrast we take
advantage of the fact that as MOO the slow and the 0 2 umin[po(xs) + 2s'(x s)u#u'R o(xs)us
fast phenomena in (2.1) separate. We do not deal 0

with the problem (2.1), (2.5) directly. Instead we
define two separate lower dimensional subproblema, * I.(ae(X3 )4o(X )u 3) (3.7)
slow and fast. The assumption about existence and
differentiability of the optimal value function is where L, denotes the derivative of L with respect
then made only for the slow subproblem, while the to its argument x.. The elimination of the
assumption for the fast subproblem is similar to minimizing control
those made for linear quadratic problems. The
solutions of the two subproblems are combined into a u a .R-1(3 + 1 BILI) (3.8)
composite control whose stabilizing and near optimal 0 2 o x
properties are the main subject of the paper. from (3.7) results in the Halton-Jacobi equation

-f M.T results in -he H equn- . .



' -1 (ooo-1 -
0 (p-a 03) *L(-R a S) J " (ZQ(x) + uR(x)u )dt"  (,3)

00 0 1 00 0f f t f ff
0

Z LXBo o 3L', L(O) - 0, (3.9) Now (4.2) and (4.3) oonstitute our fast subproblem
-1 for each fixed x C. It haa the familiar linear

where, due to (3.6), Po-•o o a0 is positive definite quadratic form.

in D. Assumption III: For every fixed xD

Assumption II: For all xscD equation (3-9) has a a-1
unique differentiable positive definite solution r , ,. (.4) "
:(xs) with the property that positive ocastants r 2 ' A2 32 ,...A 2  92 3 a .l
kl, k2, k3 , k4 exist such that

Alternatively a less demnding stabilizability
LxL' S-xa kLLx (.assnumption can be made. Recalling also that

1 x I x 0 2 X x (3R(x) )0, Q(x)O (se Assumption 1), we obtain, for
emob x4D, the optimal solution of the faut subproblem

k P'. I -Lx; -id k' (311
3o x o ( uf(zfx) .2 -1 (x)Bi(X)K(x)zf (4.5)

Assumption Il allows L(xs ) to be used as a
Lyapunov function guaranteeing the asymptotic where K(z) is the positive definite solution of the
stability of x3 8 0 for the slow subsystem (3.3) x-dependent RLocati equation
controlled by (3.8), that is for the feedback system

l(s 1 0 (X)( 0 -*;K - 2K * Q. (4.6)
S -BR 0 + 2 (312)

The control (4.5) is stabilizing in the sense that
It also guarantees that 'D belongs to the region of the fast feedback system
attraction of x. Z 0. For convenience we will
take a level surface L(x,) 2 co  to be the 1- R.I(
boundary of D. It is pointed out that Assumption 1I f a 2 2 2- f 2 (x)zf (4.Ta)

does not guarantee the exponential stability. This
would be unnecessarily restrictive and would exclude has the property that

some common slow subsystems such as a -x3 ReA[I (x)] < O, VxeD. (4.7b)

Conditions (3.10). (3.11) characterize the slow
sub~problem solution L by boundingl the rte L s L J o  5. THE COMPOSITE COMOL

at which t decays to zero along the trajectories of Compared to the full problem (2.1) - (2.5), the

(3.12). These bounds encompass a larger class of subproblems are easier to solve due to the fact that
nonlinear systems than do m ore common the fast subproblem, although parameter dependent,
conditions based on exponential stability of is a linear regulator problem and the slow
linearized Models (5,7]. When the solution L of the subproblem, although nonlinear, is of a lower order
slow subproblem is known, enditions (3.10), (3.11) than the full problem. However, the Controls us
are readily verifiable. This is how they are used and uf are applicable to the slow and the fast
in our two stage design. We first solve the slow subsystems, respectively, which do not exist in
subproblem by one of the existing methods, taking reality. Our goal is to use us  and uf to
advantage of the fact that its dimensionality is control the actual full system (2.1). To accomplish
lower than that of the full problem. At the end of this we now form a 'composite' control uc •
this stage L is known and (3.10), (3.11) are us.uf, in which x9 is replaced by x, and Zf
checked. If they are satisfied, we proceed to the l
second stage, that is we solve the fast subproblem. by z+A2  (a 2 +B2U3(x)). Thus the composite control is

4. FAST SUBPROBLEM -1 -l
u (x,z) a us(x)- D(* 2 a-lsx)

To motivate the formulation of the fast c a - A BIC(z*A2 (a2-B2U3(x)))

subproblem we observe that x being predominantly -1
slow means that only an O(u) error is made by a -Rl(so  B'3L') - R-lB2K(z-i ) (5.1)
replacing x with x., or vie versa. Thus, when we 0 2
subtract (3.1b) from (2.1b) we obtain the system where

U(i-s) a A2(x) (z-zs) + B2 (x)(u-us) " (4.l) ; (x) •a - B R- (- l + -V (0) - 0
5 2 2 2 ~2 ( L.BY) a2(0

which can be further simplifed by neglecting the

r.h.s. 0(u) term -mis. Defining zfxz-Sw and u f u-ui -1

the system (4.1) becomes X 2 x12

If 2 A2 (x)zf # B2(x)uf, zY(O) 3 zo-z5 (0). (11.2) 1  A - B-1 Bjl. . 1
following a similar reasoning we define Note that u. is independent of U. which simplifies

the design procedure when is is a mall but unknown
parameter.

E
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For uo to be a meaningtul feedback ontrol of * y a I'L' * 2OsrJK
the system (2.1), it Mat first of all be a 1 a

stabilsizig control. Furthermore for u' to be a (6.7)

candidate tor the optimization a (2.2), the full a -

system (2.1) coatrolled by uo  mst result in a

bounded coat (2.2). As WiO, the ,ull cost should
approach the cast ot the slow subproblem. TMs M a Q/2 15R'R 3'K - 1(9'r'K)
would imply that uc is a aear-optimal control and
that the regulator problem is well-posed. The Using the tact that x-dependent quantities in g
boundedness and near-optimality results in the are bounded tor xCD, that is,
ubsequent seotions are new, while the stability

result is essentially the sam as (3], but in a new I C6o4FQIIA
simpler form. I< ks ,  I1 1

1KrII k6 ,  S1I Q'I" 1  
I k 7 ,

6. STABILITY (6.8)

The full system (2.1) controlled by the and recalling that kiL ,' S -L,;o, k o°  xo-Lj.,

composite control (3.1) is see (3.10), (3.11), we obtain

a. a 1  AIZB1• c I. • (x) - l (x)z, x(0) xo  y'Q"ly S (k 5 + 3al )L,' + (30W6 7 );0;o

au A ~ x s(0) *Z S -aLa (6.9)
a2 - a ;2(x) 12(x), (

(6.1) where
where

a -1,, ( 0) a k (k5 + 30&k6) + k 3"(3a 6 * k7 ) .
a1 * a1 " - 51R (B L * 3 2V ), a (0) * 0, (6.2)

1 21 lx 21 1 (6.10)

and has the following stability property. It tollows from (6.9) that

Theorem 6.1: It Assumptions I - III are satistied, S > *Lx.o/2) (6.11)
there exists a 031o such that the equilibrium x 2 0,
zO ot system (6.1) is asymptotically stable for and hence, to make g positive detinite, it is
all IAC(0,Ie]. sufficient to choose a"/2. A convenient choice Js
ZCL:Inroucngto take 4 to be the value of when GWl. Since a

.: Intrducing is a monotonically increasing function of UiJW, this.
-1 choice implies that

r "a a 2 , Z(0) a zo+12 (xo) 2 (xo ) 2 zfo (6.3) 1 0 1 (6..g 2 - 2 L a ' u ( 0, .V6 ..

d - To complete the proof we need to show that M is also
and 7(x) (2 a)x 2 we rewrite (6.1) as positive definite. Noting that the first two terms

(.a of H are positive definite we now establish th t

io (6.14a) they dominate the last two terms, which are sma;I
for U sufficiently small. Using the bounds (6.6)

a-and

' " F (X ) o * (A 2  * I f(x ) 1 ) z t " ( 6 .4b )
2 1 + 11 ftIl [zl(.3

Observing that (6.4a) has the form of the slow * I I S X ItK 11 I 1z I (6.13)

subsystem (3.12) with the additional forcing term
we conclude that there exist positive constants P1

Ilt and that (6.14b) is an 0(u) perturbation of the and ke such that
fast subsystem (14.2) controlled by the fast control
uf (4.5), that is of (4.7a), we use the sum of the M a16 (Q 4' KB29-1Bl1K) (6.Y'!
slow and the fast Lyspunov functions 4

holds for all xcD, all zf. such that ilz'rl Ska,
u(xszfo,) a L(x) + aumfK(x)zf (6-5) and all IWc0, 1 ]. Thus for all

as a tentative Lyapunov function for (6.4) where a uc (0,V91, a min (1 u1) (6.15)
is a positive scalar to be chosen. Since L(x)P0 and
K(x)'>O in D, v is positive definite for all xcD, the derivative ; or v in (6.5) for System (6.1),

zf CIA and I>O. The proof consists in or, equivalently, for system (6.4), is negative
showing that the time derivative V of V with definite and hence the equilibrium xsO, z*O, is
respect to (6.4) is negative definite. After asymptotically stable.
completing the squares v can be put in the foerm

From this proof we can readily obtain an
estimate of the region of attraction of xzO, z2O. A

;.-g(x,u) oC QE"Q(x)C-em M(xzf'u)z (6.6) well known estimate is the set of points x, z
2 f encompassed by the largest closed urfoace

where v(x,,U)scO for which V is nogative definite.

a -Lxi 0 - y'Qly/2*



To each fixed A(O,0D] there oOrresnMds OGe muh (t 0*) oy Jo and integrating (7.3) from to
set denoted by SU. all 3U sets ontain all V@, to W we obtain
but differ in the magnitudes of a, because, as it

can be inferred free the above proof, the larger M is + q(O,O)-q(xso)] £ 0 (7.4)
is, the maller or is allowed. Twu the et
corresponding to the largest Value Of' W that is Which in view of q(O,O)uO and the fact that QUO,
to US, is the largest set and Is denoted by SO

.  
so) Is finite, prove$ that Jo is bounded.

Since this set is the Intersection of all S sets.
it can serve as a comaon estimate for the regions of To apply this lIsm we substitute (5.1) and
attraction for all values of vMO,ti]. A proof of (6.3) for u. and s, respectively into
this fact consists of the calculations analogous to
those leading to (6.6) through (6.15), but this time - m

for V with 0 fixed at oif, that is for N(zsSV), * I (p.,ZZ'Qzu.-t)dt % fo(xz)dt
rather than for (x, z, m). omitting these 0 o o c
calculations we state the result in the form useful
for our subsequent analysis. (7.5)

and rewrite the integrand as
Corollary 6.2: Under the assumptions of Theorem 6.1

there exist positive Constants mD and 00 Such that
the set f xz) a -LJ o - , z j. KB2(Q -. U ) zf

S (x,z) 2 (x,z: V(x,zmP) <a 0 (6.16) a f(x,zf) (7.6)

belongs to the region of attraction of xnO, z=O for where
all W(O,0S], that is all trajectories of (6.1)
originating in Se at taO remain in St for all t>O -1

and converge to xxO, Z=O, as t-f
.  

sI 1 a + 1Sx 2 ?1 )

7. OUNDED ESS OF J -1+2(Q ID itR1i I) 12 a2 (7.7)

Asymptotic stability of an equilibrium at the 2 2

origin is not sufficient to guarantee that an It is important to note that the dependence on zf
integral of the type (2.2) will be finite along the in (7.6) is indicated explicitly, that is, the term
trajectories asypttically Converging to this Lxi o is independent of zf. Furthermore, f(x, -zf)>O
equilibrium. For example, when the control o

uB-x 2 -x 5 
is applied to the system ; x

2
4, then the because f(x,zf) > 0 for all xC) and zfdt, xjo, zYO.

. f
equilibrium xaO of x a -x 5 is asymptotically stable.Howve te oltinsforx() x 20 r*Theorem T.2: Under Assumptions I - TII, the
Hoever the solutions for x(O) • • 0 are composite control uc produces a Cost J, which is

bounded from above by 4v for all ue(O,Ge].
-4i -1/4i

X(t) a 31gn(x0 ) (t + (x - (7.1) Proof: From (6.12) and (6.15) we obtain

and hence the Cost

f(xzf) S. _ -f(x, -zf) 1 0. (7.8)
J ( 1/2 u)dt (7.2) From Theorem 6.1 we know that 4V is a Lyapunov

0function for system (6.4) and we use it as q in

is infinite. Thus it is not sufficient that our Lerma 7.1, which in view of (7.1) completes the
Composite control be only a stabilizing control. To proof.

qualify as a candidate for near-optimality uc must

also produce a bounded J. To show that this is the 8. NEAR OPTMALITY
case we use the following leas from (1], which is
implicit in [4,6]. The question can now be posed whether uc,

being a stabilizing control which produces a bounded
Lema 7.: Suppose that system (2.1) controlled by cost, is also near optimal in the sense that as V*O
u(x,z) has xtO, zxO as its asymptotically stable the cost Jc tends to the optimal cost for usO,

equilibrium for all xo,zoC0 . Let this fact be that is the optimal cost L(x) of the reduced
established by a positive definite Lyapunov function problem. This question Is answered by expressing

q(x,s), whose derivative q(x,z) is negative definite J. as

in S. If there exists a ball 0 centered at xzO, z:O
such that for all x,z-, J (x,z,mz) a L(x) + mAVY(x)z * P&'K(x)s + uJ,(xz,u)

p * s': + z'Qz +u'Nu * ' O, (7.3)
where the first two -terms are suggested by the

then the cost (2.2) is finite along s a the linear-quadratic form of the fast subproblem. If we
trajectories which originate in S and is bounded poeta 1.rmisbudda O hswl

from above by q. prove that J4 remains bounded as *O, this will
guarantee that Jc(x,z,m)*L(x).

Proof: Let t be the instant when a trajectory T T
.tro x 0 ,z 0 CS enters the ball B cheor e 8. t o Un d e s os t ( - whi, J4

through xg, !j for the last time and stays in composite control produces cost (8.1) in which

thereafter. The part of the cost along T over the remains bounded as mi).
finite interval [O,tg] is obviously finite. Proof: Cost Jc(xs.,) of system (2.1) controlled I
Denoting the remaining part of the cost over by u. satisfies partial differential equation

I



p a's *s'QMu0 u% + (J) ( .- u ) )t' (a a Mr (9.10)

* J)(a2 .Ai *3 2u 0 )Iu a 0, (8.2) 2 ( 4 U2)t(.1
a a 2 , d

0

Sa(,O,u) 0 O. is i this case independent of x and its solution is

We have showm in (3] that the substitution of (8.1) .I
into (8.2) and the use of (3.9), (14.6), and (5.2), a 2 (9.12)

reduce (8.2) to Stop 4: Tbe design is completed by forming the
composite control

uo 1 -x3 - z (9.13)

-(Vl* z x*I)x(il + lz), J(O,O,U) a 0. (8.3) and applying it to the full system (9.1). The final

This expression, and the fact following from Thorem fback system (6.1) is

7.1 that M,1 is bounded, are used in the Appendix 4 x3 +.z
to complete the proof. I - x(

In addition to the near optimality of the
composite control, Theorem 8.1 also shows that the I _ -3-_ 2. (9.15)
full regulator problem is well posed In the sense
that the same cost results from neglecting M in the It should be noted that this system could not have
system model and then applying the control u to been designed by methods based on linearization,
(3.3), or first applying the control u. to ?2.1) since Its linearized model at xsO, srO has a zero
and then neglecting IA. eigenvalue. However, Theorem 6.1 guarantees that

the equilibrium xvO, zuO is asymptotically stable
9. IO STAGE DESIGN for u sufficiently snll.

The steps of the proposed two stage design will Stja : With the help of Theorem 6.1 and Corollary
be presented on a simple example of the system 6.2 we can further analyze stability properties of

the designed system (9.14). (9.15) which is first

3- + .z (9.1a) transformed by z a Z + 6 z3 into (6.4), that is into

44 f 2•-s + u (9.1b) 4 •- x f (

and the cost functional
Vifa -p ! x' - (2 - M J X2 )3f. (9.17)

1' a0 ( 6 .2 4 u- dt. (9.2) The Lyapunov function (6.5) is
0

Step 1: The slow subproblem 4 * I z2 (9.18)

Sa " x3 
* u (9.3) and to analyze its derivative (6.6) we evaluate the

S bounds (6.8),

is 6 , u2 )dt (9.4)
0 eqato 3C 4 , k~1j

Consists in solving the Hamilton-Jacobi equation

Ld . x3 L'(O) •0 (9.5) k 4 (9-19)

which yields They are to be used to find an a guaranteeing that g
in (6.7) is positive definite for all x4D. In this

S1 3 (9.6example the choice of D is free, since the slow
L usx (9.6) subsystem Is asymptotically stable In the large.

Step 2: Testing the conditions (3.10), (3.11) Suppose that we are interested in

Then 6k a , 4 ;- and a is obtained from (6.10)
klx6 I I x6 S k2xa, (9.7)

as 000(), that is
-1 xs ,4k4: (9.8) 2 ga

•.-4 (9.20)
we see that they are satisfied by

With this a it can be easily verified that

ki = k2 k 3 a k . (9.9) 1 1 ) >0 (9.21)

3&*0 3: The fast subproblem



Zi ( 33t( i llz))Xf(A6)

is bounded from above byL

-E( + a 03)/k(1 + (ac1 *02)/k 3 3L2t (2..c,)zjzx, (AT)

and from below by

-(( . / 0)12 (a 1c1 .c 2 )/Ic43Ljc + (2.c 4)zj~z (AS)

where

a2 Z 2 - 82 a x1 2K)o
WA)

-1
0 3 a I ?131 - N3 a Y2l Pik

4 1 it 2 x * 2KF)1 1, '(1,1 . 2' K)I.
21. 2 1i

From (6.13) we know that Iand hence a W remain
bounded s WOO. Purthermore, rewriting f(x, zr "0

In (7.6) as

and using the fact that the right hand side quantity
is positive definite for all x1Q, zft we

obtain by substituting 1 2 )z for 9

Ile 12  io + Iiz,)I I S-(l 2cl 5/k 3)Lji0  2c6zi,( All)

where

0 5 ?. Iwo a 11(1 )*(Q+KB 11 B1)l 2

0)6 uIliI . UAl2)

Combining (A6V and (All) we conclude that there T oT e -e eF eb * D sp o l n oexists Y'O such that fl is bounded by TwoTie-Sal Feedbac beyno aCaso
Lofts 7.1, proves that1  TI hcb Noninea System

in JOE H. CHOW AND PETAR V. KOKOTOVIC
j J tdt (A13)

0 Abiange-For a dm of somks. Abdm.tY P 1twbed syuhs, feed.
Is bounded. balk NWh we maupod weiem -nn uafto me ae

kwer ceardwye 1 3-e twe-dwmiicab proper'un -d sepy the
WAR) -wli zd *he .eabmur er duip. TwoPe Ilcr amee

exomphe (a de mu. wil a 3ache n -- ge.usr) IMufefm the poped
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I. hNRmoDoTrcuo that iss

Until recently, sistalrS perturbation techniques 111 have primarily f
focused on sams feedback desep of biear regulators (51 and, toc a.G() 2 , +J()u (6b)
smaller cZmI. C o n-moop trs~ctorie of a class of nonlinear system

[6L71 dvati~ ofthee tcimque, schas order reduaction and where e tip is the fast tim scale.

separation of time scales, e eitpected to haves aor dramatic effect on Under the coniditions speoiWe later, the respons of system (1) can be
feedback desig of noinewar systems. First highly encouraging results in approiinaed by

this direction (SLI91 15] ae rted to feedback desep of stablizaing and

z-f(x) + P(X)z + B, (X)U, z(O) - XO (Ia) '('1i z-()0 4 (7b)

p-g~x)+ G(x)z + I(x)u, z(O)-so (Ib) Thus04 the Properties Of system (1) can be investigated by "Ammanng the
subsystems (4).(6).5 wher .d/*, xfeR. r,geR cuR', F.G, Bl, 2emmatrices o

appropriate dimenions. and p is the small siWngua perturbation parame. I.Arcm~ oEurrt ~mmM m
tsr. A particularly promising novelty of the results of 181191 is that they I.AY~A~PT ~~RCLMCIIM~L
aply to asessmi*ll nonlinear cases of (1): that is. wboM the linearized That systems of the type (1) wre common in application will now be
syssot yields no stability information. shown by two well-knowo models of electical machines. In thos mod-

In this short POWe, we clarify the reslt of [51.1 7U" Thesut a ls smallness; of some time constants serves as a starting for the decom-
represent nonlinear generalization of the results in (4J Since the details postton of the oVgWa systems nto slow and fast subsystems.
af most of the proofs ame either in 181491 or ae similar to thoue in [5I, In electi-drive system higher speeds w ae usually achieved by the
they are omitted here Instead te stres is On the meaning and appkic- so-caned ed weaketing. In such a regime the dc motor is controlled by
bility of the theorems. Although the analytical iMults ba bul 'UP its field voltage v, while its armature voltage v. is constant. The field,
those Of 14191. for appicao purpose this short Paper can be read th anau an th toqu equations of the dc motor are
without referring to (81[91. However, an understanding of 151 is helpful.

The outline of this short paper is as follows, we begin by a Procedure i
for separation of slow and fast subsystem of (I). Then we justify both L,.-S - -R 1 + V1  (Sa)

the modeling in the form of (1) and the proposed twa-time-scale proce- a
ice: a third-order dc motor model and a fifth-order synchronous genera- i
tor model. This justification is both inspiring and necessary, siace the o(0
two-tme-eals propertie arn dictated by physical laws and deduced 7 1 dC~(c

* from experience, rather than inserted into models for analytical or whr , A I i, 4 L, me th uret, resilances. and inuctanr"
numerical convenience. The analytical results ane then presented in three of the field circuit and the armature, respetively, J is the rotor inert'

* puts dealing with stability, stabilizability, and near-optimal feedback and cl, c2, and c, are the back ead, the viscous damping, and the torquc
control. The short paper ends with an cuample demonsrating how constants. respectively. The field, armature, and mechanical time con-
simply a near-optimal nonlinear feedback-control law can be designed stn are T1- LyIR, r.,- L/R. anld T. - J/C 2+ C1C31?Z/LJ, respec-
forea field-controlled de motor. tively, where If is the nominal value of i.Since in practice T2T. T,T,

we identify as the slow variable and i., as the fast variables, and set is
IL. Sw AN FAsr Suasvrrims as the ratio of a small and a large time constant; that is. it T.1/Tf'

We rant formulate a procedure to decompose (1) into tw oe ore LRedfnn x z/ . .,zz- *Ru-V- f.wom.,i*
subsystem. Because of the presence of p. system (1) exhibits a w*, Vf ae the desired eqilibrium of system (5). we obtain system (5) in
boundary-layer phenomenon in the fast variable z. If the boundary layer th for of (1) with
decays, then the dynamics of x and z will vary slowly. Formally letting
p-n0, that is, neglectng the boundary layer, (1)becomes i-[-. .81-0

i-f(-)+ F()!+Bi(i)i, g(0)inxo (2a)

0-g(x-)+G(xi)i+E 2 (x-) (2b) [ c~i1 G ,ix)1

where the bar above the variable denotes its slow part. Assuming G(x-) TA Tf rA B-0 (9

to be nonsingular, we obtain from (2b) Oi M -AX I.) - C
!- -G'(+~i (3) where a T.1/TIA Then the slow and fat subsystem of (9) are

ad its elimination from (2a) yields the slow subsystem or the reduced k- 1+1;L (10)

* ~ ~ -i(f- FG 11) +(B - FG-'R2i)l I(0)inXO (+I

To derive the fast subsystemt or the boundary-layer system we assume 01 I I O c l(i) oCZ
that the slow variables em constant in the boundary layer;, that is, 1=0 repcily
And X-i-coMstAn. Subtracting (2b) from (Ib) at t-0O, we obtain As a second example, we consider a well-known fifth-order model of a

-XVsynchronous machine [10). Neglecting the damper winding and satura-
JA0 1)-(-XZ-)+B(X(5) t, the equations for the direct and quadrature ams voltages v, and v,

Redefining zf-rz-i1 and t - u -i. wie formulate the fast subsystem of an the ild-4Iux linkage 41 an

94,s (i., - M 4) d 'r ± 4 1 2 ( 2
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ve Lose (LLf-M4j)Oi4  M#Ctf
r~ '~ * L 1  + (13) Id~ t +2a

wher i ,,. 4 ,, L, ase the current and reactances of the I and q axes, Th fas subsystem is
respecuvel, r. is the armsare resistance. ty 4i, r. are the field voltage,
reactance and resistance. respectively. AV is the mutual reactance -

betwee the I axs and field circuit. 0 is the instantanesous per unit d i +-(2a

Angular velocity of the rotor, and r is the per unit time The swing ,- d+ .(2a
equation is 'Ylq- (Li4-M )il i, 2b

;: QO, y-Av(15) 3;7 ai.LY 012
where f~ - vp and the tilde denotes the fast varibles. It is crucial that

2,ifl . r. (16) in (24) the slow part 0 is regarded as a constant.
-r L Te slow subsystem 122) is analogous to Kianbark's third-order model

wher 0 th roor inge, o te nminl vlueof w th raed (Ill. Instead of neglecting dldr. &V,/dr as it was in (I IL we san p-0G to
wreunc i h raiO4ase, H the mtut os tant andM Of . the inat obtain the slow subsystem. We also obtain the fast subsystem (24)
frquenc Nt tatin/eod.teinlacntnad the toqe(w-L 4L~Adet ainputh governing the transient behavior of o, and i, Since this order reduction is

been neglected in (16): 7Te reao for this would be more apparent in a c~used app mt pftetrtye frm % 0 to -0,i4 wei~i analet
model including the &Mel circuit on the quadratic ai of the rotor. us ,Pfx~ain f h yeyf A wpi l+7 n

Fromt experience it is known that the mechanical and field circuit iMi~q

transients primarily descrbed by (14), (16) are much slower than the
transients in the d and q axes (12), (13). To exii hi*w-im-cl IV. STABILIT PROPRuTIES
behavior we introduce a slow timie variable In this section we establish somse stability properties of the full system

-~l r i-f(x)+F(x)z (25a)
gar;Pi- g(X) +G (X)z (25b)

normalized with respect to the d-axis open-circuit time constant T;i, from an analysis of the lower order slo and fast subsystems, which aie
Delliag the singular Perturbation parameter P as the ratio of a sall") 2
and a lmarem constant X-a! 2a

* '~,~vL~ A4)(IS) respectively. System (25) can be considered as the feedback-ontrolled!
~"1 system of (I). It is assumed that system (25), (26) satisfy the following

we rewrite(12) (13) in the slow timscale as conditions for all x,ieDAwhere Dis aclosed set inRA.
1) The vectors f~g and matrices F, G are bounded and differniabl

!d _ id *Y LGi, with respect to x, and there exists a unique x*E D such that f(x*)-0
-i,-A7+c4'W+ -(19) and g(x*)-O.

2) The eigenvalues of Gsatisfy Re{A,(G)) 4 1 for afixed@I <O. Thus
___ d (44Mj~a 4  MG Gis nonsingular.

red, . (20) 3) There exists a Lyapunov function vj(x) for (26.) of the
Krasovskii's type (10t, [11, p. 381; that is.

where

MW ~ (21) vaZa()~~~)(27b)
(LS.r-M) (v~t~i)where the matrix P(R-)>O0 is differentiable with respect to 9,

Similarly, we rewrite (14H(16) in the slow time scale. The resultinga
system has the form (1) in which the slow variables ae -, 8, and #,, snd N(iW)-Pa.+a.P+ 7. P ca<o (28) -

the fast variables i, and iv whose derivatives are multiplied by p, appear J-1 .
lierlyinm thsl subt sys f1 )i the subscript x denotes partial differentiation and x,, are the jthLettng th slw sbsytemof 12)(15 iscomponents of the vectors x~a, respectively. Without loss of generality,

4 we let D be the set whose boundary is given by vi(x) -co for a fixed
(2__) c0>O.

dr' ,,U-o~)Condition 2) guarantees that the fast subsystem (26b) is asymptotically

stable for all R C-D and condition 3) guarantees that x* of the slow
dG. TvQ (22b M-A sbsytem (26a) is asymptotically stable with D as its domain of attrac-

Theorem I
dr f wi (22c0 Let Dbe aclosed set in the interior of Dand Ebe abounded set in [

R^. If conditions 1)-3) are satiskaed, then there exists aI*> >0 such that
for all x GD,, z eE the equillibrium x xx, z -0 of system (25) is

where the slow parts of i, and s. satisfy the algebraic system asymptotically stable for ail p6(0101



SHORT PAMM3

Thoe W spoved in (Mj and is an essentially nonlinaem result. For dimension. System (1) controlled by (34) b1 s.
theslw abjesm i R(A~.(*)) C 3 ora ixe <0.thn e ani -f+ 5 1 (I+HMG )h + 5,RG - +(F+ 2,i)z (35s)

C ons de the rst-order " " em~ 
(35b)

X.-Z ~(29) Lotng $-, the slow subsystemeof (35) is
whose linearization at Z-0 provids no asymptotic stability information. -- S+BMWit P 1/0,N- -2/3, a Lyapanov function for (29) of th far .~(+ BHG '5 i) -(F+ 5iHXG+ UN)(+ iG )
WZihs16 +(B, - (F+ B1H )(G+ 32 il) 52)Q+ JIG -'32)h

clde aclssofessentially nonlinear system whs isrsusat the 2
eqiirummyldto gumause asymptotic tbliyG Alen 3

If onlyr the stability of the equlibrium a fitrs, ecnru I conditions 1-)-31) are satisfied, then there exists a I& >0 such that
condition 3) to the following condition.fo l G jsjxDz Ztheqibrux-*z0ofyin.(1

4) ihere coists a Lyapunovw funton oai) for (Ask) guaraneig thoalti(,ai D,£E h eulbimx-z z- fsse I
x* is asymptotically stable.*Furthuinoare, let c2 be difan l wit controlled by (34) is asymptotically stable. It only conditions 1'),2')
respect to Z and v2.Ai)-cO>O for all 1 on the boundary of D. and 4') ane satisfied, then there exists a p* >0 such that the control (34)

snall x6eD,, zEE of (1) to a sphere centered at x-xO, x-0, whose
Thearem 2 radius is 0(p).

if ondtios I, 2, ad 4 ar saisfedthe thre xiss a~ > ~ Thus we have designed a composite conirol for the full system (1)
based on separate lower order detips of the slow and fast subystmma.that for all Ar=(,0 the states xr=D1 , seE of (25) coniverge to a Inth spe icsewe niion issa tisfed et -0 i(34) an

sphere centered at the equilibrium z-x*, z-0. whose radius is O(p). oba the reduced control
The proof of Theorem 2 is givent in (81 In contrast to the result of

Theorem 1. tis theoremn states that z,z can only converge to a sphere 1t(W-44x) (37)
around the equilibrium. In the neighborhood of the equilibrium, the
small parameter p be-comesiugnificant and the behavior of x~z cantbe Then the conclusions of Theorem 3 hold for system (1) controlled by
predicted by conditions 2) and 4 However, as j-.0, the equilibrium is (37).

asyptoicalystable which as the same result as in [141 It is important
to notw dhat Theorem I includes general nonlinear slow subeystem as VI. NAB-OI1MAI. Copersot.
indicatd by condition 4). A similar decomposition method as now developed for the optimal

control of the full system (1) with res pect to the performance index

V. SyTAnML o CoNTIOu I. f*[,p(x) + 1(X): + ZQ (x)z+ I'AR (X)ula*. (38)
Using the results in the previous section. the desip of astblin

f eedback control for the full system can be decomposed into sarte Trhe problem (I), (38) satisfies the following condition for all x eD:
dsj of feedback acrl for the subsystems. lbe syte (1 (4), (6) 1') In addition to I', the scalar P, the vector SEc-At, and the matrices
ane assumed to satisfy the following conditions for all x,. e D.Q,R are differetibl with respect to x, p(z)-0, (xO)-0Q(x)>0,

1') In Addition to condition M) the matsice B, an B2 me bone AR(x) >0. and for x-o x*, z vi-0
and differentiable with respect to x. (9

') G is nosigular and P + S:+ ZQr >. (9

* ma~i~G~. .~-'B]-M.(31) Thus the optimal control should steer xiz to the desied equilibrium
rank[ G4.-X-X*, Z-0.)

3T) Thr xssavco ~- 'wt ~*- uhta h ytm We now extract from I two performance indices, one for the slow
Ther exits vecor ~i)!R' ith ~z~0 sytem subsystem (4) and the other for the fast subsystem (4) and formulate two

a() + B ()h() (32) separate regulator problem denoted by s for the slow and f for the fast
subsystems. From the subsystem optimal controls i and s,i, we then form

satisfies condition 3). a composite control ia, to be implemented to the full system (1).
* 4') System (32) satisfies condition 4

Condition 2') guarantees the existence of a fast control uFibz1)S
H(x)f with H an ,X m matrix And ftepA(G. BzH)) -4 * for a fixed Find i to minimnize

a) < 0 such that the feedback subsystem (5)

* is stable. Condition 4') guarantes a stabilizing control u- A(i') for the for the slow subsystem (4).
slow subsystem, and condition 3') provides a stabilizing control i- h(x-) Using (3) to eliminate i from (40) we obtain
such that the slow subsystem possesses a Lyapunov function of the form
(27). a m~~)2'i7tRRuat(41)

control where

s,~x~~inI+H~)G 'x) 2(x)hx)jF-p - s'G -# '+C'G- 'QG -1

for the ful system (1) whereI i s the identity mauix of appropriate + R+5'G'lQG l5I2 .



From condition M") it follows that for 100. i-0 UMo- +Ws' + 'o(I-aR -5V G - 'aivf'] I

j(1)+2?Z~i+17,~iV>06 43)+ pe Vs (53)

Applying do -- I fotmlt opolmw bansatisfes the Hamilton-Jacobi equation for the fui problem (1). (35), to

@dd tth ailn1cbeqtiis Psp- n15,ad its

VII. Nua.Opiixu.L Coerreo or DC Moroet

( 2 x)We now consider the optimal-,control prole of the de mowo model

whose elimination from (44) rsults in the Hmu4cheuto ihrsett

0m.(ji'i s) +(e-. W() Poi'iu3  ~(x+ [Z 1 Q[ z] + XM t(54)

Now problems sa assumed to satisfy the floigcosiditimn where the scalan s P>0, A >0 and, the murii Q >0 as x-indspandains
5) The unique solution I(1)>0. Zi,'z, and v(x)w0 of (46) exists cmaat

said is differend"bl with respect to X for all ZGD. Furthermore Sic Ji-0 there is5no control in the fast subsystem (I1), and hen=e
*(i-)-c 0 >0 is taken to be the boundary of D. we only consider problem s for the slow subsystem (10). Eliminating 1

Then it follows from condition 5) that 1io is the unique optimal

feedback control for problem s, and v a a Lyapunov function of the c(;+) '

X-a-0R-'(J!+4 91o. (47)1

attraction.. dZt2  -

Find u, to iiimnze

If-f(qf(?(-).- +.f i (x).f) (4) Mi~i(55)

0 from (40) we obtain
for the fast subsystem (6)4f

Letting i be a constant vector paaeethe otmlcontrol fr() -f(, '.)Mx)0 Vd.(6

(45 is%,(~ Z, it - v ( i5 () V ( )aj (49) The optim al control for problem (10 ) ( 56) is

where V(x-) is the positve-definmte stabliztig solution of the Usdpen- ( (P+MQM)
dent Riceati equation aa~ )v~k 1+ ~ ) (57)

0- - V ()G ()- G'(-) V(x-) Although subsystem (10) is linear, I of (56) is not strictly quadratic
+ V(x)i 2 ()R-'(!i)()V(xi)-Q(i(). (50) which results in the nonlinear feedback control go, and the nonlinear

If conditions I) and 2r) are sautied. then the required smtabsn feedback slow subsystem
solution VQi) of (50) ernso.

From the solutions to problem Y and J, we formulate the composite +(P+ MQM) (
control (34) for thefuMlproblem (I),(39) a X T, Mf (8

u,(x.z)m -(I-AR-'BjVG-1B).i''(ii+ I BID) Since af-0, from (51)

and x -0, :-0 of system (9) controlled by se, is asymptotically stable as
The stabilizing properties of aa, then follow from conditions 2') and 5) (S8) satiss condition 3) and Re(G(0)) <0.-
anid Theoremn 3. Implementing aa, to the full system we have the
following result yin. COwcwsowSI
Thesewm 4 A systematic procedure is pvsn for the order reduction and the

If conditions I ). 2') and 5) are satiid, then U, is an O( ') nwpi separation of time scales in a class of nonlinear singularly perturbed
ma oto ntesmeta system First, the full system is decomposed into two separate slow andfast subsystes Second. the stability properties are investigated and3

1A- B1a - u. + ai U.,+000 (52) feedback stabilizing and near-optimal controls for the full system (1) arm
deindb nalyidag the lower order subsystem. Thus thi procedure is

applicabl to larg-scale systems. A dc motor sad a synchronous genea.
where tor are used to illustrate the modeling aspect and the design procedure. 5
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Asymptotic Stability of a Class of

I Non-linear Singularly Perturbed
Systemst

by ow HomO aw
Coorw Science Laboraw ry and Depanwnt of Elcvca Engineeg
Unveniy of linois, Ubana, Minois 61801

A3r3Acr. Suffcimu conditions ame obtained to guaraname the asyniptec stabikiy of a
chas of non-linw singulary pmmumbed systems. A pocdure for convucting a Lyapunee
functi o for such a dass of system a Olen, and a cleary defined domain of aneactio of
uiw qwuibm is obesined. A nsabling feedback contol for such system is alo

L iaaoedeut

Stability properties of the non-linea system
I=4p (4~x X, W)#A! , (t,Z#A) t. ) (1)

where 1& is a small positive parameter, x, ( eR m and z, *e R", have been
investigated extensively (1-4, 8). In this paper we analyze a special class of
system (1) in the form

t-x= f(x)+F(x)z, g&-g(x)+G(x)z (2)

which is non-linear in x and linear in z. We flst consider stability properties of
the reduced system

I -f(x)- F(x)G-(x)g(x) - a(x) (3)
"" :=--' (z)g(x)

- obtained from (2) by formally setting p - 0 and assuming G(x) to be non-
singular, and the boundary layer system

d , !uG(a)z+g(a) (4)

where x - a - constant and s - (t- )/I& with to the initial time. Then based on
the ssumptions for (3), (4), we deduce stability conditions for (2).

" This work was supported in part by the Energy Research and Development
Administration under Contract U.S ERDA E(49-18;.2099 and in pert by the U.S. Air
Force under Grant AFOSR 73-2570.
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In Sections 11 and III conditions on systems 0) and (4) are formulated which
guarantee the equilibrium of (2) to be asymptotically stable in a domain in
R'- for g sufciently small. Since system (2) is simpler in structure than
system (1), we relax the condition used in Refs. (1, 3) that the linearized
reduced system (3) be asymptotically stable. The conditions obtained here are
also easier to apply to system (2) than those given in Refs. (3, 4, 8). An
example is given in Section IV and a stabilizing control for system (2) is
proposed in Section V.

IL Preliminaries

System Eqs. (2)-(4) are assumed to satisfy the following conditions for all
x e D where D is a closed set in R':

(I) The vectors fg and matrices F.G are bounded and differentiable with
respect to x and there exists a unique x* e D such that f(x*) - 0 and g(x*) = 0.

(I1) The real parts of the eigenvalues of 0 are strictly negative, that is, there
exists a fixed o',< 0 such that Re{A(G)}jo,. Thus G is non-singular.

(IMl) There exists a matrix Q(x)>0 satisfying the x-dependent aigebraic
Lyapunov function

Q(x)a.(x)+a'(x)Q(x) - -C(x) (5) 4,
for some differentiable C(x) > 0, where the subscript x denotes partial differca-
tiation with respect to x and the prime denotes the transpose. Let the matrices
M(x) and N(x) be

M(x) =2Q(x)a,(x K(x) (6a)

where K is a matrix whose ith column is (Qa) and x,, ai are the ith
components of the vectors x, a. respectively. It is assumed that M is bounded
and Re (A(N(x))}So'2 for a fixed a2<0.

Note that in condition I1, Q is differentiable with respect to x. except
possibly at x* where it can be unbounded. However, Q(x)a,(x) and
Q,,(x)a(x), j-1, 2,..., P, are required to be bounded in the limit as x
approaches r*. For example consider

a(x) - -x 3 . (7)

Setting C(x) -!, we obtain'Q - I/(4x'), M - -i and N - -I, and ,ca.-.ition Ill
is satisfied for all x e R, although 0 is unbounded at x - 0.

The meaning of condition Ill is that the reduced system (3) possesses a
Lyapunov function v(x) of Krasovskii's type [(5). (6, p. 38)], that is.

v(x)-a'(x)Q(x)a(x)>O. vx* . 0 (8)

such that v.(x) a'(x)M(x) and

Ox) - a'(x)N(x'akx)<0. 6(x*) - 0. (9) j
;owM l rhe F 2ni rtbd iftte

7_
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TThus the equilibrium x" of (3) is asymptotically stable. Without loss of
generality, D is chosen such that v(x)-c for a fixed c>0 and all x on the
boundary of D. Hence D belongs to the domain of attraction of x*.

[f Re {A(a,(x*))}So 3 for a fixed a3<0, then the required Q(x) always
exists, while the converse is not true. Consider the system

ji _-_X 3  (10)
whose linearization at x 0 yields Re {A(a. (0))} -0 and does not guarantee
that x* -0 is asymptotically stable. However, a Lyapunov function (8) for1system (10)

v= ,O -6 (ii)

4
implies that x* 0 is asymptotically stable. Hence condition III guarantees the
asymptotic stability of essentially nonlinear systems whose linearizations at x*
fail to provide stability information.

11L. Main Result

Theorc,n I

Let D, be closed and in the interior of D, and E be a bounded set in R'. If
conditions I-TI are satisfied, then there exists a 4* > 0 such that for all x E DL
anA z E & the equilibrium x - x*, z - 0 of system (2) is asymptotically stable
for E e (0, &*].

Proof: By condition II, there exists a matrix P(x)>0 satisfying the x-
dependent algebraic Lyapunov equation

P(x)G(x) + G'(x)P(x) =- I (12)

where I is the n x n identity matrix. Consider the function

L(x, z,; u + (z+ G-g - "p'(v.,o)')'P(z G vg -> 0
0 (13)

L(x*, 0, ji-0

with v as given by (8). Then there exists a JL*' sufficiently small such that for
every g s (0,, Lx], VAz. ) - c is a closed surface S in R - enclosing all
x LeD,, zeE. Note that for all x, z enclosed in S, Jxl is 0(1) and Izi can be at
most 0(1/4A). The time derivative of L with respect to (2) is

L - u + 1&(z + G-Ig- Ta)'P( + R) +J.(z + 'g - Ta)'(z + G-'g - Ta)
(14)

where T(x)a(x) - P-'( vFG-')', R(x) - G[-g- P-'(uFG-1 )']. and U(x. z -

F- g. '. P,x,. Substituting (2) for i and and earranging, (14) becomes

L a'Ala G(: - -'g)'A_2 (z + G-g)-(z + G-'g- Ya)'(Z + G-'g- A Ya)

(15)

Va..30. V .S.fy 19"11t
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where

A, - N- (rPR + R'n+ ,TrUT+; 2 Y'Y (16a)
A2 - -+2gU+2g(PRF+ FR'P) (16b)

Y - (PRF U)'T- PR. (16c)

Then there exists a IL -> 0 such that for 1A e (0, IA4J, AI <0 and A2 <0 since the
matrices T, P, R, F are independent of ;& and the elements of U are at most
0 (1/l/g) for all x, z enclosed in S, implying that L <0 and L(x*, 0,ta)-0.
Thus choosing p, - min (j4, pAr), L is a Lyapunov function for (2) and x - x*,
z - 0 is asymptotically stable for all IA e (0, IA] with its domain of attraction of
attraction enclosed by S.

The accomplishment of Theorem I is threefold. First, condition LII replaces
the more restrictive condition Re {A(a,)}o9 a- proposed in Refs. (1, 3) for the
general system (1). Second. Theorem I formulates a procedure to construct a
Lyapunov function for (2) and provides an estimate of I*. Third, the domain
of attraction of the equilibrium x - x*, z - 0 is clearly defined. A similar result
can be obtained for system (2) where f, g, F, and G are also functions of r.

IV. Ewapm

Co sider the second order system

X~X-X+z, p.=-x-z (17)

whose reduced system is

r-X
3, z - -X (18)

which is the same system as (10). Using (11), we construct (13) to be

L =x"+.(z -x + 2x') (19)

whose time derivative with respect to (17) is

L I (-1 + '6x2) + IA' J(l + 6x2)2)x'

+,(-1+2p(1 +6x2 ))(z + x) 2 - z " x +3yx'(1 '6x')). (20)

Note that v - x' is also a Lyapunov function guaranteeing that x - 0 of (18) is
asymptotically stable. However, if it were used in L instead of (11). L would
not have been a complete square form. In the region lxi sv12, p. =0.01 is
sufficient to guarantee that L < 0, and hence L is a Lyapunov function for (17)
for 1A e(0, 0.01]. The closed contours generated by L -1 for ;. -0.01 and
p. =0.005 are shown in Fig. 1, where the domain of attraction is larger for
p. = 0.005 as indicated in the proof of Theorem I.

JournWi of Th. PtmajdiM letwe
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PrFo. 1. Contours of L I forM 1&0.01 and A& 0.005.

V. Applicaion to Control Systems

Theorem I is now applied to the design of a stabilizing control u a R' for the
ss = f(x) + F(x)z + B(x) u

IA4z = g(x) + O(x)z + B2(x)u.

Formally letting . - 0, the reduced system of (21) is
i - (f- FG-g) + (B -FGB.)u "a - Bu. (22)

Systems (21) and (22) are assumed to satisfy the following conditions for
xeD:

(I') In addition to conditivn I, the matrices B, and B2 are bounded and
differentiable with respect to x.

(II') G is n,-n -singular and

rank [B2, GB . . G'B 2 ] -M. (23)l

'17
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(UI.l There exists a vector h(x) g R' with h(x*) -0 such that condition III is
satisfied with a(x)+ B(x)h(x) replacing a(x).

By condition HI', there exists a stabilizing feedback control u(x) h(x) for
the reduced system (22) such that the feedback controlled system

x. - a + Bh (24)

possesses a Lyapunov function of the form (8) guaranteeing that x x*, z - 0
is asymptotically stable. Again we assume that D is the closed domain of
attraction. From the reduced control, we formulate a stabilizing feedback
control for (21).

Corollary 1

If conditions ['-I' are satisfied, then there exists a 1L*>O such that for all
x e D, z ErE, and 1Le (0, u*], the equilibrium x - x*, Z- 0 of the system (21)
controlled by

u(x, z) - (I+ H(x)G-L(x)B 2(x))h(x)+ H(x)G'(x)g(x) + H(x)z (25)

where Re {A(G 4 B2H1Is a-, for a fixed o, < 0, is asymptotically stable.
Proof: Since condition Ir is satisfied, we can find H(x) such that

Re {,k(G+B 2 H)%o',<O. Thus system (21) controlled by (25) becomes

i.-f+B, (l+ HG-B 2 )h +BHG-g-(F+Bj1 -)z

I- g +B-B (I+HG-LB)h B2 'G-Ig(G + B2 H)z. (26)

Letting & = 0, the reduced system of (26) is

x - (f+ BIHG-Ig)- (F+ B, H)(G + BH)- (g.; B.HG-Ig)

+ (BI - (F+ B IH)(G + B21")-t 13)(I + HG' 2 )h (27)

= a + Bh

by using a simple algebraic manipulation. Hence from condition 111', (27)
possesses a Lyapunov function of the form (8) and by Theorem I. the
equilibrium x = x*, z - 0 is asymptotically stable.

Corollary I outlines a low order design where the reduced system and the
boundary layer system are considered separately. In addition, the parameter 1A
is not required to be known exactly provided that it is sufficiently small. The
result here is a generalization of the design obtained for linear time-invariant
singularly perturbed systems (').

VL Concluion

In this paper we have presented sufficient conditions to guarantee the
asymptotic stability of a class of nonlinear singularly perturbed systems. For
such a class of systems, we have given a procedure for constructing a Lyapunov
function, and a clearly defined domain of attrction of the equilibrium is j
obtained. We have also proposed a stabilizing !ecdback control for such
systems.

37 T
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Optimal Open- and Closed-Loop Control of
Singularly Perturbed Linear Systems

ROBERT R. WILDE, nczBR, izze, AND PETAR V. KOKOTOVIC

Abstract--A simple method is given to obtain either an approzi- approximation. This approximation is valid over the
mate open- or closed-loop control or an approximate solution to the entire time interval including both initial and terminal
linear quadratic fixed and free endpoint optimal control problems. times, or with further computational reduction, only on
This approximation is valid over the entire time interval, or with
further computational reduction, only on the open intratA L the open interval. While there is no easy test to determine
is placed on use of control-oriented hypotheses, practical aspects of the bound on )s so that one knows in advance if it is
implementing the approximate controls, and interpretation of these sufficiently small, the smallness criterion can be checked
controls. The approximating design procedure given is illustrated by other means. This can be done by using techniques such
through examples which clarify and demonstrate it.

as utilizing physical intuition of the original system, test-
IMTtODUCTION ing the approximate control in the original system to

determine if the predicted approximate results are ob-
INGULAR perturbation theory can often be applied in tained, or checking to determine if a Lyapunov functionS solving linear quadratic fixed and free endpoint such as in (131 satisfies required properties for stability.

optimal control problems. First, however, it is necessary Once it has been determined that IA is sufficiently small,
for the control engineer to decide if his particular system the approximation could be utilized, for example, to save
equations are of the singularly perturbed form. If small computer memory and computation time by using low
coefficients multiplying derivative terms in the system order approximate equations in place of the high order
equations such as those representing capacitances, in- original system equations. For a system required to be
ductances, time constants, or other small parasitic param- solved in real time on a minicomputer, the reduction in
eters are present or if such coefficients within the system order of the system could mean the difference between
are separated by at least an order of magnitude, then it is feasibility and impossibility of implementation.
highly probable that singular perturbation theory can be Although higher order approximating expansions, for
applied. It remains only to verify that the hypotheses of which the theory developed here applies but which are not
such theorems are satisfied, formally presented in this paper, are often given for the

The small derivative coefficients, expressible as the control or solution to such problems, they appear more of
product of a small positive scalar js and an appropriate an interest from a theoretical development than in applica-
constant, are responsible for creating a "stiff" system of tion. It is felt that problems requiring expansions greater
differential equations which is difficult to solve using than second order are better suited for solution by other
existing methods. An additional complication of singularly techniques. It is noted that increasing the number of
perturbed systems considered here is that both widely expansion terms in no way implies that the constant p, the
varying decay transients and widely varying growth value of which is defined for a physical system, will be
transients are present as compared with only the decay small enough to apply singular perturbation theory if it
transients implied by the stiffness of the system. was not originally, even though this possibility exists.

Use of singular perturbation theory provides the This paper presents a thorough treatment of the sin-
engineer with a simple means to obtain either an approxi- gularly perturbed fixed and free endpoint optimal control
mate open- or closed-loop control or an approximate problems with linear quadratic performance indices by
solution to the original system. The approximation ob- considering both open- and closed-loop controls, require-
tained results from the solution of a lower order system ments for the implementation of these controls, and inter-
than the original. Not only is the system order reduced, pretation of the form of the controls. Emphasis is placed
but the stiffness behavior is also eliminated. If the given A on the development of a new theory: one that is applicable
is sufficiently small, the approximate solution or control to the solution of the fixed and free endpoint problems.
wvill be close to the actual. The smaller AL is, the closer the regardless if an open- or closed-loop control is desired, and

Manuscript received November 10, 1972. Paper recommended by one of great significance because interpretation of the
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Program under Contract DAAB-0-67-C-0190. transformation to separate the original optimal problem

R.R. Wilde was with the Air Force Weapons Laboratory, Kirtland into two free endpoint problems where the latter prob-
Air Force Base, N. Mex. 87117. fie is now with the VELA Seismu-
loical Center. Alexandria, Va. 22314. lcts, unlike the original, can be solved.using initial value
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and then to the controlled plant. The transformation can noted by S. It is then seen that x(t,A), x(t,js) must satisfy
also be seen as a method to separate a two point boundary -
value problem into two initial value problems. The r "- A -s JxiJ (5)
dichotomy transformation is used in the feedback form of
the free endpoint problem to show that when the approxi- and boundary conditions (3) and (4). Similarly, the control
mate feedback control is inserted in the higher order u is given by
system, a solution close to the original solution results
and is valid over the entire time interval [to,T]-the degree u = R-B'. (6)
of closeness depending on the smallness of p. This is When 1 is set equal to zero in (5), its order reduces from
neither done nor is possible using the approach given in 2(n, + Ql) to 2n,. Thus (3)-(.5) constitute a "singularly
[41,[15], which substantially extended the theory given in perturbed" two point boundary value problem. The
[9]. To make the theory most useful to control engineers, reduced problim is
control-oriented hypotheses are given. Use of a different An 31 An -A-]:
theory for solution of the singularly perturbed fr-e end- L - A- - Apoint problem is presented in [8], but the result and - i1 -
corresponding hypotheses are strictly mathematically X A -AnJ - - '1'U ,1 (7)
oriented and applied only for the optimal open-loop con- L 0, -An - On' -

trol. Other papers in the general area include [31, [7], [121, subject to (3) if the indicated inverse exists. The remaining
[16]. To clarify and demonstrate the theory, a simple
design procedure with illustrative example is given. The variables t2 and X2 are algebraically related to ti and R, by

reader interested in applying the theory nseeds only to ! A2- - -I' ]['tj(]

read the theorems and associated discussions since the LA!] - - -A JL.Q, -A.'_J( (S)
theorems contain the design procedure.

and, in general, 92 does not satisfy (4). The corresponding
PROBLZM STATUMUNT reduced control is then

Consider a control system -- . -'A . (9)

A tj)Aiz(tA)][x + [Bi(tM) ] (1 Equations (7)-(9) could also have been de~".!olwd from theL = LA2,(,) A(t,) JLxJ LB(t,)J (1) reduced optimal problem defined by (1)-(3) where & is
where xi, xi, and u are n-, n2-, and m-vectors, respectively, first set equal to zero.
where z and is a rllpositve scar. or retvy, 1)isre Of particular interest is when the reduced solution Jt(t),
and is a small positive scalar. For brevity, (1) is re- () car approximate the actual solution z(t,M), X(t,) on an
written as follows: Xt

open interval of [to,T] for is sufficiently small. Since t(t)
r,+ A 0l can violate (4), large discrepancies or "boundary layers"

It - Ax + Bu, 1, -a" 0 /912 (1) are anticipated at the ends of the interval. Layer correction
terms must thus be added to the reduced solution for the

where 1, and 12 are nt X n, and n. X n? identities. Also, approximation to be valid over the entire interval. Since
arguments of functions are dropped when no confusion the boundary layers result from the fast transients of
results, and a bar is used to indicate that ,s - 0. Thus All x(t,&), ,(t,M), it is important that the correction terms be
denotes Au(tjs), and A u - ,A[Q) denotes A1 Q,0). obtained separately from 1(t), K(t) in a "stretched" time

The first problem to be studied is the minimization of scale. The crucial hypothesis of the time scale separation
r method used here is that system (1) be boundary layer

J - J [z'Q + u'Ru] di (2) controllable and boundary layer observable.'

with z - X(,p) specified at both to and T as Hypothesis 2: For all tE (,T],

rank [A1, 12A1,...,(A,)"- 1AB2 - n2
z,(t,p) - , X1(,I, rank C .T-,(A1 2) 1 . -()

x,(to,,%) - x?0,  x,(T,p,) - X, (4) where C2 satisfies C'VC - O.

In the second problem, z(T,I) is frj. and a terminal cost Here Hypothesis 2 guarantees the existence of the inverse
is added to (2). in (7) and (S) and also will allow the systems from which

Given a ;* > 0, the following hypothesis is made: the boundary layer terms are obtained to be stabilized.
Hypothesis 1: For all tE[to,T] and sE[0,j*], the ele-

ments of A, B, Q, and R are twice continuously differ- A less restrictive stabilizability condition can be assumed but
entiable functions of t and 1A. R is symmetric positive adds unwanted complexity to the subsequent proofs. It is readily
definite, and Q is symmetric positive semidefinite. apparent from the proof of the subsequent theorem that the theorem

In the standard necessary optimality conditions, the applies to the problem J - if 0 ul di, ;Lt, - z, + u, and x.0, z,r
specified. Here Hypothesis 2 is not satisfied. See 15) for a further

adjoint variable X is replaced by IX,, and BR-IB' is de- =iion on stbili.abiity.

I, ________ __________ _.ssion- on__t__bii___ b___ ty.
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FuNDAN.ENTAL RauLT ponentially decaying function of r. In t-scale, the decay is

The time scale separation method is based on a theorem very rapid since its time constant is 0(p). The same is true

which defines an O(A) approximation' of the exact solution about the decay of dR(t-) in (T - t)-scale. Therefore, (12)

z(t.p&), X(t,g). The formulation of the theorem is done in and (14) are in agreement with (18). Equation (10)

such a way to provide the steps of a design procedure to be possesses a unique symmetric positive definite solution

discussed in the next section. The rigorous proof is post- P2 , and (A2n - SOP) is a stable matrix for each IE [to,T]

poned until a later section. as is evident from the solution to problem (22) where to is
Theorem: replaced by I in (22). A solution to problem (22) is guaran-

1) Assume that Hypotheses 1 and 2 hold and that t(t), teed to exist as a consequence of Hypotheses 1 and 2

,(t) exists and is the uniquely defined reduced solution [1, p. 7851. A similar result holds for the negative definite

satisfying (7) with boundary condition (3). case using (141. Also, within an 0(j) approximation,

2) Let P.- and 272 be the positive and negative definite PuQ (.(r) can be replaced by P 2(t).Z(,) and .V,(t)61(a)

symmetric roots, respectively, of the algebraic equation by Xu(T)6(u); that is, a simplified form of (20) is

K2 A. + A 2 'K2 -- Kn&SK + On - 0 (10) X(t,P) - KI(t) + P0(07).() + S,(T) (Ft() + 0(p). (20')

for all tE to, T. Similar simplifications based on a rapid decay of .C(r) and

3) Let Z(r) and R(c) be the solutions of the two mu- R(a) are made throughout the text. Also it is noted that

tually independent time invariant initial value problems assumption 1) of the theorem is sufficient for guaranteeing
the existence, of a solution to the problem (3)-(5) for

dr = [An(t) - Sn(4)Pno)](r) (11) ,SE(0,tA*], which in turn implies its optimality.

£(0) = - 1(40) (12) DiscussioN

and In applications of the theorem, the two major jobs are
first, to solve the reduced problem and second, to obtain

_ad the layer correction terms. The time scales for these two

d( . [A=(T) - .%2(T)S? 2(T)]C(o) (13) operations can be selected to be independent. For the
reduced problem, a standard two point boundary value( (R(0) = ,- (T). (14) technique is used. The advantage over the original problem

4) Let 'U,.(r) and Ua.(a) be the "left" and "right" boun- is that the order is lower, and the fast phenomena due to p
dary terms defined by are eliminated.

The x: boundary layer correction terms X and aI are
94t(r) - -- '(to)B2'(to)P((t)r) (15) interpreted as the solutions of two time invariant regulator
'i(u) = -/.-.(T) TA2 (T) 2 (T)1(u,). (16) problems in stretched time scale. The Z problem is

Then there exists I* > 0 such that for all tE[to,T], J f ' (V'o(t)- + I 'CA(t),U) d,
iE=(O,uA*]

XI(t,JA) t(t) + 0(JA) (17) U~+1) = An(to) + B 2 (t)%t, (0) = X20 - 22 0o), (22)

2 (t) + R(r) + (R(d) + 00") (18) dr

, (t) + 0(p) (19) and the (I problem is

X,(,) X2(t) + Pn(t)e(T) + '722(t6(O) + O(J) (20) - r ' +)J (Wo~r),R+ IW'R(T)t) do,
and

U0.0 - t6(t) + 'UL(?) + 'Un(a) + 0(m) (21) dR
-= .A,(T)R + B 2 (T)rtt, G1(0) - z 2T - 22 (T) (23)

where r - ( - to)/Mu and a = (t - T)/,u which define the da
"stretched" time scales.Remark: Hypotheses 1 and 2 guarantee that A 2 and where the minimizing controls are (15) and (16), respec-

R.,eark: Hypothesst and 2gare eane that ,n - tively. Hence, the original optimal control problem (1)-(4)
.%P:.,) and - (.2). - s.V.) are stable matrices for each has been divided into three optimal control problems for

E[t0 ,T]. Hence the norm of 2C(r) is bounded by an ex- X2: UL., (15), forces x2 to rapidly approach I in the initial
boundary layer; 4, (9), results in X2 being close to t except

2 A scalar, vector, or a matrix function fltj) (in an interval [*,7' at the ends of the interval; and URt, (16), forces x to rapidly
is I)(M if there exist positive constants a and " such that the norm separate from Z., to attain its terminal condition in the finalof f.-tisfies fl <5 as for all aa,[,P *.bo n ayl y r Onyiis ed df rth x v i be.C -

A table matrix is one in which the real parts of all its eigenvalues bounr layer. Only a is needed for the xt variable. Con-are les tha a fixed negative number, trol 'U,, stabilizes the left boundary layer even if unstable

I-~
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modes are present in A(lo); i.e., eigenvalues with positive - X2

real parts. Likewise, a similar statement holds for cuit. X2

In actual application, the desired results will not always
be obtained if the approximate control given by (21) with - Xz
O(u) equal to zero is inserted into the original system (1), 1AX - (9 - -P) 1 t- M (E5)
as also observed by Dr. P. Sannuti. Undesirable results
occur when unstable modes are present in An. It is well subject to (E3), (E4). When s is set equal to zero, the
known that the stability of a system is not affected by an reduced problem is
open-loop control. A perturbed initial condition in x, from, -

for example, a disturbance or noise will result in an error.
This error increases with time and gets worse as i gets X, - ft (E7)
smaller: e.g., the solution corresponding to a perturbation subject to (E3). Its solution t(t), X1Q) is easily found using
in the initial condition of ;a - z, z(o) - 0 is 6s - e Isiu. the eigenvalues to ( M and JI l i -* of the system matrix

Now assume such disturbances and noise can be disre- in (E7). To complete the first part of the procedure, t and

garded. Contrary to expectation, it frequently is the case in are evaluated from

that the closer the approximation, the further one is from

the optimal response. Possibilities existing for the solution 1 X., X I _ _8
of (1) due to the approximate open-loop controller are: 9 9
closeness to the optimal solution everywhere, closeness In the second part, the Riccati equation is
except in the boundary layer, or divergence from it as ;
becomes smaller. These problems can be circumvented by 2K.t - Kn2 + (9 - 0t) - 0 (ElO)
using a combination open- and closed-loop controller of the
form u - Mxt + v where M is chosen such that the result- and its roots are

ing coefficient matrix (An + B2M) of Xt in the tat equation P,(Q) t + 3, SO(q) t - 3.
of (1) be stable. Hypothesis 2 guarantees the existence of
such an M. Having determined M and the approximate z2 The use of A(1) - 4 in (11) yields
and u solutions given by'(18) and (21), respectively, v can de
then be found from the combination controller equation. - - -3; (Ell)
Requiring also that the boundary layer solution (22) be
optimal for each fixed 7E [t,T], where to has been replaced hence,
by 1, requires M be equal to (-A-B:'Pn). Hence, the £ = [xo - tt(1)]e-3 tl)/M. -
combination open- and closed-loop controller is given by

- ~l 2~~ ~ 2) Similarly, when .(2) - -I is substituted in (13), -U - -R -B 'P22X2 + V. (24)

Details of the time scale separation design procedure - E 3t
and the development of the approximate control in the

case of unstable modes are illustrated through example. (= [X'
2' - X2(2) le3" -

The first example illustrates steps (1)-(20) of the pro- The approximation (17)-(20) can now be formed. Con-
cedure. The system, the performance index, and the sider only its x part:
boundary conditions are

( cie - 13 + c4'13 + 0(A) (E17)

ZI,J) - Cie9 1 3 + c4et/3 + CiS-3(9l)/A + C~e3(1' 2 )/*

t2 1- I + U (El)4 + O() (E18)

J = f [Xz + (9 - tl)x22 + U21 dt (E2) where cl,.,c4 are known constants. Note that (ElS) has
four modes whose time constants are *3, *±/3. The layer

xl(1,A) - xi, xt(2,A) - x r  (E3) correction modes are 9/; times faster than those of the
reduced solution, and for p - 0.01, the ratio of the time

xl(1,p) - x. , xt(2 ,A) - x2 (E4) constants is 900. Does the exact solution possess this

Since A2 -t, B - 1, and Q 9 - t2, Hypothesis 2 "two-time-scale" property? Fortunately, the explicit
<3. The exact optimal solution must solution of the time varying system (E5) is readily avail-

holds fo 0able for comparison. Its x.r solution is
satisfy

.r2(t,p) M atel" + ale"' + a&"' + a~e
For convenience, equation numbers are kept the same as in the

main text, and "E" refers to "example." where constants a, •,a4 may depend on #, and .,
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Fig. 1. Fixed endpoint problem.

are the roots of the charactvristic equation as is decreases! By selecting the combination open- and

"4 - (IS + 9)82 + 1 -"0.closed-loop controller

It can easily be shown that u=2x,+v (28)
- 3 defined by (24), plant (25) no longer possesses an unstable

*- - ± + 0(); 83,84 - - + OCU). mode in An upon substitution of this control there. The

theorem can now be applied in a straightforward manner
Hence, the time constants of the modes in (EIS) indeed to find the open-loop optimal control v in the form of (21).
represent an 0(,u) approximation of the time constants The dot-dash-dot curve in Fig. 3 shows the resulting z
of the exact modes. solution. Observe how close the approximation is.The second example

t - '-S.5. PRooF OF THzoRUM

•- - -l.Sxi + 0.5z, - u(25)
In the proof, the two point boundary value problem for

J - ' (2x1l + x2l + Jul) dt (26) (5) is transformed into two initial value problems. The
Jo transformation involvs positive and negative definite

x1
0 - 4, zX2 - 3, zX1 - 0.5, X2 " - -1.3 (27) solutions of a Riccati equation whose properties are now

rvee.Let
is used to demonstrate the closeness and composition of the
approximate x2 as defined in (18) with 0(j&) set to zero as K11 [Ku,
well as to illustrate the results using both an open- and K 'LKKu Kn] (29)
closed-loop approximating control in (25). In Fig. 1,

-- 0.1, and the way in which the approximate solution is and note that, in view of (5), K satisfies the singularly
formed from both the reduced solution and the layer perturbed Riccati equation
corrections is apparent. Without layer correction 2(r), - -K 1A - A'KF + K 'SK - Q. (30)
the error at t - 0 would be as large as 9.6, while with

£(r), the maximum error is 1.5 and occurs at i - 0.2. It is well known that Hypothesis 1 guarantees the exis-
For = 0.01, the approximate and the exact solutions tence and uniqueness of a solution to (30) for tE [t,T] and
.hown in Fig. 2 are virtually identical, and their behavior U > 0 if K(T,I) - U'" where II is symmetric positive
a at t - 0 and t - I is a pictorial justification for the term semidefinite for all [ and 11' is defined by (29)
"boundary layer." The dotted curve in Fig. 3 illustrates where I, replaces K,I. Furthermore, I,.K(t,p) is sym-

r - the divergence characteristic which results when the con- metric positive definite except possibly at t - T where it
trol given by (21) with 0(,u) equal to zero is inserted in can be semidefinite if ]'4WI is. For u - 0, the (n, + Pi) X
original plant (25) which possesses an unstable mode: (n, + nt) differential equation (30) reduces to one ni X n
i.e., the eigenvalue of An- 0.5. The divergence increases differential equation and two algebraic equations

LII___1. __I l'
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2 0.01 X(tlj) 0.1
2.

R L ( J*a) 7---2 (t) L (T) R () S6.2@t.1 - ,()1 - - " :(t."open) A
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X-2 X
2 --- -1 - "

' xz-2

-3 r.
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.6 ~-6J .7

- __________________________________________-T I' II I
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TIME TIME

Fig. 2. Fixed endpoint problem. Fig. 3. Fixed endpoint problem.

K1,= --Ki(A l - S 1 K12') - (Au - StK 2 ')Kl (tOw) are symmetric positive semidefinite matrices for s

K12A!l - 42,'Kn' + KuSlKII sufficiently small. Hence, P, and -N,, i = 1,2 are
symmetric positive semidefinite. Then there exists is* > 0

+ KnSr.K12' - Qll (31) such that the reduced Riccati solutions P and N"- approxi-

0 = -K 1 (A - S 2K) - Ku~A + KI 1SUK mate the exact Riccati solutions over the entire interval;

SA2,1 K~ - On (32) that is,
P,(t,,)= PAj(t) + O(jA)

0 - -KA2 - A 'Kn + K .&Kr -On. (33) V, = (t) + O(p) i . 1,2 (37)

Notice that (33) is identical to (10) and independent of
(31) and (32). In [4] it was shown that Hypotheses 1 and for all tG [to,T], MG [O,s*]. This is a special case of [6],[101

2 guarantee the existence of a unique A, solution to when boundary layers are "erased" due to the matching of

(31)-(.33) subject both to P 1(T) - All. where All is an end conditions as accomplished by (35) and (36).

arbitrary n, X ni symmetric positive semidefinite matrix, Matrices P' and N' are now used to introduce the trans-

and to P= being the unique symmetric positive definite formation

solution of (33). For this case, P11(t) is a symmetric positive x - t + r (.38)
definite solution except possibly at t - T where it can be
semidefinite if All is. Similarly, with the additional use of = Pfi (1,.,)t + NM(e.M)r. (39)
[14], it also follows that there exists a unique .Sq solution The nonsingularity of the coefficient matrix of the trans-
to (31)-(33) upon selection of the unique symmetric nega- formation for t@ [to,T], se [0,;*] is now shown by proving
tive definite solution .V= of (33) and subject to -.Vi(to) = the determinant of this matrix is nonsingular. Rewriting
r11, where ril is an arbitrary n1 X ni symmetric negative this transformation in the form (x,x 1 ,x.,1 .2]' - TR[fl,r,
semidefinite matrix. Here .u() is the unique symmetric t.2,r2J', the determinant of TR can be written as
negative definite solution except possibly at t = to where I, _.

it can be semidefinite if r 1 is. Let det • det

O L P11 IAP12 'IV t.N, - ] (34) -1 1','P, N11
1  P,2  N,. (0 =

LP~± PI' N12' N=~ -A i 0 2]Il" 11 0 0 ] (40.
be the twosolutions of (.30) subject to upon application ot the expression in [2. p. 461 to find the,

F'AI AP1(T)' 1determinant of a block partitioned matrix. The first de-
P(T.,) - LP'(T) Pz2 (T)J terminant is nonzero since it is equal to the determinant of

AI (t.)' (Nn - Pi1), a symmetric negative definite matrix. Semi- I
-IrI(. (36) definiteness is not possible since P,, i - 1,2, can be singular

"L. S(o N )J only at t - T and N,, i - 1,2 only at t - to. Thus from
These Riccati solutions exist since [P(T,M) and -I.N" (37), the determinant of TR becomes I

a, - -____• ____________

- - . . . .; ... -....
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B.

• det(Nu - Pt) .det(N.- - P-) + 0() (41) follows after the substitution of (19) and (20) into (6) and

* for p sufficiently small which thus is clearly nonzero. Sub- the use of identities (9), (15), and (16).
stitution of (38) and (39) into (5) "dichotomizes" this two It will now be proven that the existence of the reduced

- point boundary value problem into an initial value prob- solution , is sufficient for proving the existence of a
solution x(t,s), (t,j) for MG(O,p*]. This is equivalent to,lem starting at f -= to,l t gshowing there exist t() and rTO&) uniquely expressible in

It - (A - SP')t, t(tg,p) - N() (42) terms of x0 , z r . Expressing t(t,p) and r(t,p), using funda-
r mental matrices, by

and an initial value problem in reverse time starting at
t,- T, t(t,#) - *(t,to,M) (J), rtp) , ,(t,T, )rT (j) (50)

I - (A - SN")r, r(Tu) - rTrp) (43) results in the initial value singularly perturbed matrix
differential equations

* providing there exist fta') and rT(p) uniquely expressible 1, - (A - SPO) , . O(to,tp) - 1 (51)
in terms of x0 and z r . If these boundary conditions do
exist, (42) and (43) can be analyzed as singularly per- i4 = (A - SN')*k, *1(T,T,p) = I. (52)
turbed initial value problems. Note that (42) corresponds
to the solution of a free endpoint optimal problem in Since the associated differential equations with each

forward time while (43) corresponds to the solution of a column of 4', * are identical in form with (42) and (43),

free endpoint optimal problem in reverse time. Since there respectively, the latter of which were stated as satisfying

are no boundary layer jumps in PO and N*, the right hand an initial value singular perturbation theorem, the follow-

sides of these equations are continuous in I. Furthermore, ing relation holds:

since their associated boundary layer systems (11) and F 11(t,,) 'Pi(t,T,A)'1
(13) are asymptotically stable uniformly in parameters to .Oj(t,to,p) 4 J(tT,p)J
and T, in view of a theorem on singular perturbations of - + 1 +
initial value problems.' there exists * > 0 such that for AI - [ .. + [ (,.) J.(,)] + 0( ) (53)
tE, t[to,T], pE(O,p*] the solutions of (42) and (43) are 5 21 L'1 -

approximated by for j = 1,2, and tG[to,T], AE(0,s*]. Here ol(r) - 0 as

r'4() - = and #( ) --o 0 as , - - co. Reduced solutions of
((tj,) = Let) + £ (i.)J + 0) (44) (51), (52) are [j - = [0 01 for i = 1,2. Relating

S +the boundary conditions using (3), (4), (38), (50), and (53)

ht ,) i+ 0( an) (45) yields

ivny0 ) 11(t) 01
where t(t), f(t) are the reduced solutions of (42) and (43) It deer) i + o ( T) o)1
formed by s ett ini cndin them and given by e a a rsLton 0 t r2

tes of v e athrmo rel t (4)

wil It uces to now prof that theo efmint mwai asm-
(A[ - SP) r, fl(T) - ri(0) (47) ing the bounda conditions is nonsingular. Clearly this is

0 + 8 true if the coefficient matrix is nonsingular neglecting 0( ).
and X(r), (R(,) are the layer terms of (42) and (43) given Its determinant is the determinant of I - (T)n(to)]
by (11), (13) with initial conditions 4,0(0) - ii(to), r~r(i) - and also results from the transformation relating xt °, xto

u(T), respectively, and, as will be shown, expressible in to tilt(O), rtr(). This last transformation is surely non-
terms of 3 variables as in (12) and (14). Furthermore, it singular for recall equations (4) 49) hold as a conse-
will subsequently be shown that quence of assumption 1) of the Theorem which assumes

the existence of the reduced , b solution and the fact that
2Ti + t (48) transformation (.38), (39) relating x, ,X t o f, r is non-

nai + N-- (49) singular at 1n r 0. The proof is now complete and the
initial conditions t..,0(0) - ?.,(to), r .r(0) - t.,(T) are seen to

Thus t he subst itut ion of (44) and (415))into transformation be equivalent to (12), (14). respectively, using (48), re-
(.38) and (39), in view of (37). (48), and (49). yields the- duced form of (50), and (.74) with O() set to zero. Note

S orem equations (17)-(20). Theorem equation (21) then that the.C(0) and R(0) boundary conditions given by (12)

6 Tis asc teoem s elldoumete inth liertur. eadrsand (14) are directly obtainable from (18) with 0(,%) set
unfamiiar bitheoe singul oertrbtdin may consultue Re,10,adAr to zero. Consider, for example, x2 at t -= to. Upon sub-

m[ill. stitution of (44), (45) into (38) and the subsequent use of

I-
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(48) yields reduce to

X2° = 2 00) + 2(0) + (( - T)/p) + 0(). (55) xi(T,p) - *I(T) + (A) (60)

Thus (12) is satisfied upon noting R((to - T)/1) ap- z 2(T,p) - 12(T) + 6t(0) + 0(0) (61)
r, aches zero as ;& does. A similar argument holds for

E-Lding 61(0). In fact, 2(0) and 6R(0) are uniquely deter- X(T,p) - K2(T) + Au(T)&(0) + 0(m) (62)

mined by this method. and must satisfy (58). The \2 component of (58) is

EXTENSioN XIM(T,'s) - fII'2xg(T,p) + ITU 2 (T,p). (63)

The conditions of the theorem are now modified to Thus M(0), defined by (59), satisfies (60)-(63) when 1
apply to the terminal cost problem; that is, the problem of equals zero. This corollary will be illustrated in the next
optimum control of (1) with the performance index example given.

J = WI, XJzj,..+. + (x'Qx + u'Ru) dt (56) CLoszD-Loop CoNRaoL
where I is symmetric positive semidefinite for all Up to this point, emphasis has been on open- (at least
wEre P and s i it o partially) loop controls. Considered now are approximate
sE [0,p*] and forms of the optimal feedback control of the free endpoint

1"Ji L , fIu (57) problem just treated. The response of the optimally con-
trolled system is given by

In this problem, x is free at t - T, and the boundary con- 19 = (A - SK")x, x(t#,) - x= (64)
ditions for (5) are

where K" = K(t,,u) is the solution of (30) with the end
X(10,A) - e, X(T,p) - Hx(T,A). (58) condition

The only change to be made in the theorem is a different K"(T,p) II". (65)
initial condition for 61(a).Coroilary i: Let Hypotheses 1, 2, and assumptions It was shown in [13], that if the optimal control is re-

2)-4) of the theorem be satisfied except for (14) which is placed by the reduced feedback control

replaced by u - -R-B'Kz (66)

61(0) - [112. - ,7U(T)]-'[X(T) - 1 12 ' (T) - 1I 222(T)J. where K is the solution of (31)-(33) with - 11(T,t) - IIu
(59) and Kv is the unique symmetric positive definite solution

of (33), the plant response would be close to that of theThen the theorem applies to the solution x(t,p), X(t,p) of optimal one of the open interval (to, T) providing p was
the two point boundary value problem (5) subject to (58). sufficiently small. It was further shown there that by

Remarks: Assumption 1) of the theorem is more strin- appending the right layer correction term YZ(a) of K' to K'
gent than required here. Hypotheses 1 ari 2 are sufli- in (66) where Xu(a) 0 and Jen(a), x.(a) satisfy
cient to guarantee the existence and uniqueness of the
reduced solution (t), X(t) as shown in [4, Lemm 3]. d3C-2 S (T)E(T)]

It readily follows upon replacing all of the variables by d = -x A(T) -
their 0(p) approximations that the performance index J, - [A2'(T) - K1 1 (T)SM(T) - Kt2(T)S..(T)]x.
given by (2) for the fixed endpoint problem and by (5)
for the free endpoint problem, can be expressed by J = + JCUS.(T)Cft (67)
J + 0(s). Here J is defined as J where all variables have d3Ce
been replaced by their reduced solutions. The absence of - = _ Xn[u[,,(T) - Sn(T)E..(T)]
boundary layer terms in J is a consequence of the neg-

ligible area associated with such terms under the per- - [A22 - S2(T)R.(T) ]' C n + X .Sr(T)Xn (68)
formance integral for small p.

The proof of this corollary follows the proof of the and initial conditions
theorem. As before, (48) and (49) can be shown to hold. 3C,(0) = flu - Rv(T), X.(O) - lt, - K= .(T) (69)
This used in conjunction with (37)-(39), (44), and (45)
yields (17)-(20). Using fundamental matrices, it follows the feedback control
as in the theorem that the coefficient matrix relating the u = -R-IB'(K" + JC(o))x (70)
tO(o), rr(u) to the x. boundary condition is nonsingular for
p sufficiently small. Here it will only be shown that 61(0) would yield a plant response close to the optimal one on
as defined by 59) satisfies (38) and (39). At t = T, they the partially closed interval [t0,) but did not predict the
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Fig. 4. Free endpoint problem.

behavior of the plant at the terminal intervali. Here approximating control (70). Although not shown, the two
solutions are nearly identical for is - 0.01. For this ex-
ample, the approximating feedback gains k given by (71)

for all iE [to,T], sE (0,i*], and X3,() - 0 as a -, - m. with O(IA) equal to zero are
Equations (67)-(69) can easily be derived from (30) and 9 - 4e3('- 1)
(58) by replacing Kq(t, ) in them by [Ri(t) + ,t(a)] KII(t,p) = 3 + 2e5 " )  (75)

for i - 1,2, where 3Cn(&) is understood to be zero, and
then setting A equal to zero. These same equations are -u,(,) 3 - & 5(- 1) + 5f - 2e (76)
related to the 21, 2, boundary layer equations in [4],[15] 3 + 2es('- ')  1 + 2e "  7

by the relation =e (Kn,(t,p,) = 2 (77)3

2(T) - fn(t) + 3ca(a), i - 1,2 (1 1 + 2es  7

where there it was shown the ., solutions exist. This then Fig. 4 also illustrates the closeness of the approximation

implies the existence of the XO(e) solutions. His technique for ', using Corollary 1.

of analyzing plant (1) controlled by (70) using initial value Corollary 2: Let Hypotheses I and 2 be satisfied. Then

singular perturbation theory could not be applied when the solution of

including the terminal time since the right hand side of (1) 4± = [A - S(K" + X(u)) Ix, x(to,s) - x (78)
was not continuous at u - 0 as required by such theory.
Use of the dichotomy transformation avoids this problem, is within O(p) of the optimal solution (64) for all IE [tT],
and hence, Corollary 2 proves the response of (1) to control 1E(O,s* ]. Furthermore, if the definitions (11) and (12) of

(70) is close to that using the optimal feedback control. £(r) in assumption 3) of the theorem are retained but the

The smaller u is, the better the approximation. Before definitions (13) and (14) of t(a) are replaced by

.- proving Corollary 2, a numerical example is given to 6t(") = [R=(T) - K-(T) - 3C,(o')] - I
illustrate this. X [e'(0t(T) + 3C(a,)2(T) ] (79)y Example 3 uses the same plant used in example 2 but
with the performance index and assumptions 2) and 4) are added, then the theorem

applies to the solution z(t,p) of the free endpoint problem

J , 1--i(T) + (2X12 + X22 + Jul) dt (73) (56), (58).
Jo To prove this corollary, start with

S and initial conditions
r = (NO - K")-(K - P")t (SO)

I - 4, x? = 3. (74) which follows from (29), (38), and (39). The optimal solu-

See Fig. 4 for a comparison of the response of (25) using tion to the free endpoint problem (56), (58) is expressed in
the optimal feedback control with the response using the x, t variables, after substitution of (80) into (38) and re-

I
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writing the t differential equation (42), by tations. A simple design procedure and corresponding
example have provided clarification of this theory.

x -[I +" (NM - K M) -1 (K - P5 ) ]t (81) Numerical examples have illustrated the corollaries.

Ij- (A - SP")e, t(to,I,) - tG,). (82)

The existence of the optimal solution, and hence (81), (82), ACKNOWLEDGMENT
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CONCLUSaONS

The control engineer, through the use of singular per-
turbation theory, has been provided with a simple means
to obtain either an approximate open- or closed-loop
control or an approximate solution to his original system,
where the closeness of the approximation is determined by
the smallness of g. Requirements for implementation of
these controls and interpretations of the control form have
also been presented. The basis of the new theory developed
has been using a dichotomy transformation to separate a
two point boundary value problem into two initial value
problems. Throughout this paper, the theory has been
presented with eontrol-oriented hypotheses and interpre-

_____________________________ _______________________________ --
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0 A Class of Singularly Perturbed, Nonlinear,
Fixed-Endpoint Control Problems '

J. H. CHOW
3

Communicated by L. D. Berkovitz

Ababct. Singular perturbation techniques are applied to a class of
nonlinear, fixed-endpoint control problems to decompose the full-order
problem into three lower-order problems, namely, the reduced problem
and the left and right boundary-layer problems. The boundary-layer
problems are linear-quadratic and, contrary to previous singular

-"perturbation works, the reduced problem has a simple formulation. The
solutions of these lower-order problems are combined to yield an
approximate solution to the full nonlinear problem. Based on the
properties of the lower-order problems, the full problem is shown to
possess an asymptotic series solution.

I. N Key Words. Optimal control problems, singularly perturbed
-. nonlinear systems, time scale decomposition, asymptotic expansion,

fixed-endpoint problems.

1. Introduction
t" is th soltionof optimal control problems. For systems having slow and

High dimensionality and nonlinearity are among the factors complicat-

fast parts, the full optimal control problem can be decomposed into separate
Slower-order problems, whose solutions are combined to yield a near-

optimal control for the full problem. For linear-quadratic problems, this was
demonstrated in Ref. 1. Here, we consider the fixed-endpoint problem of
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minimizing the performance index

J-f [V1 (x, t, A)+ V2 (x, t, is)z +z'Vs(x, t, 1 )z +u'R(x, 4,)u] dt
T

uf (V(x, z:, t, L)+ u'R(x, t, p)u], ()

subject to the class of nonlinear systems

dx/dt - a1 (x, t, is) + A i(x, t, p)z +B(x, t, 1&)u, (2-1)

x(0, A) - Xo(A), x(T, P) - Xr(/A), (2-2)

;(dz/ dt) - a2(x, t, ;&) + A2(x, t, u)z + B2(X, t, 1A)u, (2-3)

z(0, s) - Zo(A), Z (,A) -ZT(A), (2-4)

where the states are x e R" and z e R', the control is u e R'" A is a small
parameter, and the primes denote transposition. We assume that the
matrices V3 and R are positive definite in x and that V is a positive definite
function of x and z. Furthermore, we assume that a4, A, B1 Xo, xT, zo, zT, V,

R have asymptotic power series expansions as 1 - 0 with infinitely differen- 1
tiable coefficients. In addition, A 2 is assumed to be nonsingular. The
Hamiltonian for problem (1)-(2) is

H(x, z, u, p, q, t, 1&) - V + u'Ru + p'(aI + Ajz + Bu) + q'(a2 + A 2z +B 2u),

(3)

where the costate variables p and 1Aq satisfy the equations

dp/dt - -VH(x, z, u, p, q, t, 1), (4-1)

A (dq/dt) - -VH(x, z, u, p, q, t, As). (4-2)

The control which solves

aH/u 2Ru + Blip + Bq = 0 (5)

is the minimizing controlu - kR'(Bip+Bq). 
(6)

The substitution of the control (6) into systems (2) and (4) yields a nonlinear,
two-point boundary-valued (TPBV) problem

dx/dt-a,+Alz-iBR-'(B'lp+Bq)-gl(x,p,z,q,t, ,), (7-1)

dp/dt - -V 1 H(x, z, -JR°'(Bp +B~q), p, q, 1, As)

-92(X. p, z. q, t, u), (7-2)

Ili.
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I(dzldt)-a 2 +A 2z-JB2 R-'(B'lp+Bq)mg3(x,p., q,t , ), (7-3)

A (dq/dt) .- -2 V3z - A'Ip - A2'q -g4(x, p, z, q, t, Is), (7-4)

where the boundary conditions are

x(O, &) - Xo(), X(T, A) - Xr(M), (7-5)

z(O, 9) - Zo(A), z(T, A) -z r(;&). (7-6)

Optimal control problems of the type (l)-(2) with free endpoints are
treated in Refs. 2-4, while more general free-endpoint problems are
considered in Refs. 5-7. The fixed-endpoint problem has been treated in
Ref. 8, where the performance index (1) is in quadratic form and the system
(2) is linear. For the nonlinear fixed-endpoint problem, our approach is to
decompose the full problem (1)-(2) into three separate lower-order prob-
lems, an n -dimensional, nonlinear reducedproblem and two m -dimensional,
linear-quadratic boundary-layer problems. Thus, the technique in Ref. 8 for
linear-quadratic problems is now extended to nonlinear problems. A
further result is that our formulation of the reduced problem is particularly
simple. Then, similarly to the results of Refs. 2, 3, 4, 7, a solution x, z, p, q, u
to the full TPBV problem (7) is shown to possess an asymptotic seriesI expansion in ;L and is approximated to O(1&) by combining the solutions of
the reduced problem and the boundary-layer problems. For practical

- implementation, we propose a partially closed-loop control to achieve
stability of the fast variable z.

The organization of the paper is as follows. First, we formulate the
lower-order problems in Section 2 and propose an O(%) approximate design
(Theorem 3.1). For readers who are interested only in applying the theory, it
is sufficient to read Sections 2 and 3 and the example in Section 4 illustrating
the design procedure. The series expansions of x, z, p, q, u are dealt with in
Section 6 and the Appendix.

2. Lower-Order Problems

Due to the presence of g, the system (2) possesses a two-time-scale
property, that is, the variable x varies slowly, while the variable z has a
rapidly varying part. Letting ;' - 0 in system (2). which is equivalent to
neglecting the fast part in z, we obtain

d /dt= 41 + A,! + 11, (0) -Xo(0) 9(T) -xr(O), (8-1)

0 =42 +. "+ a. (8-2)

I,

Ii
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Here and in the following, an overbar indicates that I - 0. Assuming that A 2
is nonsingular, the slow part I of z is solved from Eq. (8-2) as

I - -A' (a + A2a). (9)

Eliminating Z from Eq. (8-1) and the performance index (1) evaluated at
-0, we define the reduced problem as follows.

Reduced Problem. The reduced problem is to minimize the per-

formance index

I -1 [L(.i, t) +2L 2(2, t)a + a'L(9, t)i] dt, (10)

subject to

d/di - 4(2, t) +fl(i, t)a, 9(0) - xo(O), ;7(T) -xr(O), (11)

where
- - VA2'2 +4,A 1 SA 21 2,

L2 - 2,eA2 as2  9-22),

L3 -A+ A2V-,'Aj 2 , (12)

A - At -A ,A 2 ,.

The Hamiltonian of the reduced problem is

17(9, p, a, 0 -L, + 2La + a'L3a +p,( + Ba), (13)
where the costate variable p satisfies

dp/dt - -vpA'(2, p, a, t). (14)

The control which solves

aRllaa - 2L2 + 24 3a + B'P -o 0 (15)

is the minimizing control

ia - -JL3 1(2L2-A') (16)
Substitution of the control (16) into the systems (11) and (14) results in the
reduced TPBV problem

df/dt - a - L2 - I'VAP -t(1, p 0, (0) - xo(0),
f(T) - xT(0), (71

dp/dt - -V,R0(. p, -jL'(2L+B'p), 0 f2(f, P. 0. (17-2)

The following hypothesis is crucial.

I
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Hypothesis (HI). The reduced TPBV problem (17) has a unique
solution 9*(t), P*(, a*(t) for all t e [0, T].

Linearizing the system (17) along I*, p*, we obtain the variational
equation as follows:

(d/dLfJ flelL8 2  -c 1  -c J (18)
OPJ lf f2Pi OsP i-C3  -C 1 i 80

where
CZ, A 'A'.

The system (18) is assumed to satisfy the following hypothesis.

Hypothesis (H2). C 3 is positive semidefinite along f*, p*.
Hypothesis (H2) rules out the occurrence of conjugate points (Ref. 9)

and guarantees that f *, #* yield a local minimum. This hypothesis is alsoIcrucial for finding higher-order terms in the asymptotic series expansions for
the solution of the TPBV problem (6)-(7).

Since Z* of Eq. (9) in general does not satisfy the end conditions (2-2),
T we assume that the variable z contains an initial (left) boundary layer A (r)

and an end (right) boundary layer p(o-) such that

z(t) -1*(t) +A (r) + p(o), (19)

where

r - t/L and o, - (t- T)A

are the stretched time scales. Substituting Eq. (19) into the system (2-2) and
equating the layer terms, we obtain the boundary layer systems as

dA (')/dr - A 2(0)A (T) + B2 (0)uA (7), A (0) - zo(O) - 1*(0), (20)

dp(a')/da 'A2(T)p(o,)+lG 2(T)u9 (o), p(O) zT(O)-2*(T), (21)

where u is also decomposed into

u(t) - a*(t)+uda')+U.(o,). (22)

Substituting Eqs. (19) and (22) into the performance index (1) and retaining
only the quadratic terms in A. p, u,, u,, we define the bound-ry layer
problems as follows.

Boundary-Layer Problems. The left boundary-layer prnblem
(LBLP) is to minimize

JA [A'V 3(0)A + uA(0)uA] a-, (23)

1.
I-
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subject to the system (20). The right boundary-layer problem (RBLP) is to

minimize
0

",-J [p' V3(T)p + A(T)u.,] dp, (24)

subject to the system (21).
We now make the following hypothesis.

Hypothesis (H3). For all t E [0, T] and along the trajectory *,

rank[B 2, A 2B 2, .. , A'B 2 -M,

rank[, A&,.. . .- A f M,

where R2 satisfies 9'2 2 - f 3.
Hypothesis (H3) is equivalent to assuming that the pair [A2(), B 2()] is

completely controllable and the pair [A2(t), R2(t)] is completely observable
for all t e [0, T]. Under Hypothesis (H3), the solutions to LBLP and RBLP
exist and are given by

u(1.) - -,'(0)A'(0)K (0)A (r), (25)

u, (o) - - -(T)' (T)K. (T)p(o), (26)

where KA(0) is the positive-definite solution and K.(T) is the negative-

definite solution of the Riccati equation

K,2 +,X 2K - K 2J-'B'K + f/3 = 0 (27)

a t - 0 and t - T, respectively. Due to the presence of boundary layer terms
in u, Eqs. (6) and (22) show that there are also boundary layers in the costate
variable q, which is explored in the following section.

3. Mash Theorem

The decomposition of the full problem (1)-(2) into the reduced problem
and two boundary-layer problems is justified in the following theorem.

Theorem 3.1. If Hypotheses (H1)-(H3) hold, then there exists a
"> 0 such that, for all u e (0, g *], an asymptotic series solution x0, z0, p*,

q* u* to the TPBV problem (6)-(7) exists and is approximated to O(;L) by [

[I

'p"
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S- the solutions of the reduced problem and the boundary-layer problems as
follows:

X*(4, AL) = *(t) + 06A, 2-I

z *(t ) (28-2)

p*(t, j )-P*(t)+ 0(), (28-3)

q*(t, A) -2 - ' (V'2 + 2 93,* + AIP*) + 2K(0)A (i)

+ 2K.(T)p(o') +- O(1), (28-4)

u *(t, JA) i a*(I) + u, (,T) + 1J, (f-) + 0(;&).(8-)

The meaning of this theorem is that we can obtain an O(1A) approximate
solution to the full TPBV problem (7) by solving for the reduced problem,
the LBLP, and the RBLP. The reduced problem is of lower order and does
not involve the small parameter u. Thus, we can use large stepsizes in the
numerical computation of the reduced problem. The LBLP and the RBLP
are linear-quadratic problems, and their computation requires a small
fraction of the time required to compute nonlinear problems of the same
dimension. Thus, solving for the lower-dimension problems results in
considerable savings of computation time.

In the actual implementation of the control (22) for the physical system
(2), undesirable behavior will occur if A 2 is unstable. Since the control (22) is
open loop, it does not affect the stability of the system (2). Hence, if A 2 is
unstable, the higher-order A terms in the approximation (28) which are not
compensated will grow as O(exp( 1/ 1)). Furthermore, the error increases as
14 decreases. An example illustrating this behavior in linear, time-varying
systems is given in Ref. 8. This problem can be avoided by using a partially

* closed-loop controlIU . uM(X(t), t)z + v, (29)

such that A2 +B 2M is stable along the trajectory RO. Hypothesis (H3)

guarantees that such an M exists and can be computed as

M = -R-A K(t), (30)

where K(t) is the positive-definite solution to Eq. (27) for t e (0, T]. Then,

the open-loop control v is computed as

v u-Mz. (31)

% I _ _ _-__ _ _ _
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4. Exampl

We consider the optimal control of the system

x-xz, x(O)- 1//2d, x(1)-0.5,
(32)

z- -z+sL, z(O)-O, Z(1)-0,
with respect to the performance function

i 4 +x4 + z2+kU2) d. (33)

The Hamiltonian for problem (32)-(33) is

Hu=x4+Iz2 +iu'+p(xz)+q(-z + u), (34)

and the minimizing control is.
u ,,-q,(35)

as
lHlau -u +q - 0.

Thus, the TPBV problem is

xz -- z -,

AI -- z-q, (36)

A - -aH/x - -4x 3 -pz ,

g4 - -3H/8z - -px - z + q.

We now apply the decomposition procedure to obtain O(I) approximations
of x, z, p, q, u.

The reduced problem corresponding to the full problem (32)-(33) is to
optimally control the reduced system

g" a, 9() - 1/,/2, v() - 0 5, (37)

with respect to

f (g+ 42) dt. (38)

The Hamiltonian for this reduced problem is .

Ij" aj2 + pa, (39)

and the reduced control a satisfies 1

o//aa= 2i +i =9 0, (40)

I
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that is,

a - -R/2. (41)

The reduced TPBV problem becomes

=-- 2p/2, (0) - 1/,r2, (1)-0.5,

18 -/- -40 3 pa - -493 + 2/2.

The unique solution to system (42) is found analytically to be

*(t) +[2(+ )],

p*(t) 29*(t) - 1/[2/(t + 1)],
"7*(t) Z-*2() -1/[2(t + 1)],
1*(t) a *(t).

Linearization of system (42) along 9*, * reveals that

C3 -S/(t+ 1);
hence, Hypothesis (H2) is satisfied.

The LBLP is to optimally control

dA/dr -- A +u%, A(0)=0-(-1/2)- 1/2, 't/M., (44)

with respect to

JiJ(A'+u~ Ar (45)

The optimal control is

UA (r) - -kA (') - -(,2 -1)A , (46)

where kA is the positive-definite solution to the Riccati equation

O-2k+ k-1. (47)
Thus, the optimally controlled LBL system is3 dA/dr - -42-A, (48)
yielding

U A (r) -A (0) exp(- %1 r), 0 sc r < 00. (49)

Similarly, the RBLP is to optimally control

dp/do -P+u, p(O)00-(-1/4)s 1/4, o'=(t-)/, (50)

I

liI i. ...
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with respect to
0

S (p2 _ U2 +2)di. (51)

The optimal control is

u, - -kp(T) -(1 + /2)p(r), (52)

where k. is the negative-definite solution to the Riccati equation (47),
resulting in the feedback system

dp do. - 1p, (53)
such that

p(a) -p(O)exp(,2 a), -oo< es0. (54)

Thus, an O(js) approximation to the solution of the full-order problem
(36) is

2(t) - I1/42(t+ 1)1,

(:) =-1/[2(t + 1)] +[exp( - /2 t/I,)]/2 + (exp(-i2 (t - 1)/A])/4,

P(t) 42/(t + 1)],
(55)

4(t) 1/[2(t + 1)] + (,2 - 1)(exp(- vit/)]/2
-(1 + v-)(exp['2(t - 1)/1& ])/4,

a(t) - - (t), .

7
t ., .
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For L - 0.1, the trajectories are shown as dashed lines in Figs. 1-5. The
Newton-Raphson algorithm in Ref. 10 is modified for fixed-endpoint
problems by using the dichotomy transformation in Ref. 11 and is used to
compute an optimal solution of the TPBV problem (36). Using the approx-
imate trajectory (55) as the initial guess, the computation converges in four
iterations, and the optimal trajectories x*, z*, p *, q*, u* are shown as solid
lines in Figs. 1-5. Note the presence of boundary layers in z*, q*, u*. The
closeness of the trajectory (55) to the optimal trajectory is obvious.

5. Asymptotic Expansos

We now proceed to obtain asymptotic series expansions of x, z, p, q, u in
As. Then, Theorem 3.1 follows from the fact that approximation (28) consists
of the leading terms in the expansions.

Lemma 5.1. Under Hypotheses (H1)-(H3), the TPBV problem (7)
possesses a solution of the form

x(t, IL) - XV (t, JA) + Lm 's, ) +n(, s )+,MsNxN ()+ J A ).

p(t, L) -PN (t, A) + AIm f (r, js) + ;n ( , A) +, LN p (t, A), (56)

z (t, 1&) QN(1 A)+m3N(, I)+nv(o, ;)+NzN(t, IA),
l ~q(t, Al) - Q (tc IA) + m4(r, sL) + n m(o, A.) + glivq' (g k).

1.

1.

I +i 1.
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for all N z 0, where

j0 i.0

(57)
J N N

i-0 i-0

constitute the outer expansion,

N-IC AM js), k -1, 2, M= N ~i(, ) ,4
i-0 -0

(58)

N 
1

ni iZ0 iAni-- & -1 ,0 EAnu a L, k-34

are the left and the right boundary-layer expansions, respectively, and
x , pN , qv are O(A) uniformly in the interval t e (0, TI for A sufficiently
small.

Proof. Outer Expanson. The outer expansion is obtained by substi-
tuting (XN, PN ZN, QN) into the TPBV problem (7) anid equating the
coefficients of like power of 1A', 0 s i N. At i =0, (Xo, Po, Zo, Qo) is the
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solution to

dXoldt - 4, + Zo- f,14 9o- §o, Xo(0) - Xo(O), Xo(T) xr(0),
(59-1)

dPo/ dt - -V.H(Xo, Zo. - JR(ABPo +BQo), Po, Qo, t, 0), (59-2)

0 - 42 +. 2Zo- 19'Po - 1-920o, (59-3)

0 - - 92- 2 93Zo -A,Po - A 0 o, (59-4)

where a1, a2, At, A 2, B1 , B 2,

S B 1 , 91  2 - 2 Bf2, f- A AB2,

" 1 V2, P3 are evaluated at (Xo, Po, Zo, Qo) and g -0. In general, for
I S i N, (X, P, Z., Q) is the solution to

dXddt-gt.(t)X -J.g (t)P+At(t)Z-S(t)Q+ai(t), (60-1)

* I dPdt- g2.(t)X +g2,(:)P +g 2.lt)Z, +g 24 (t)Qi +a2(t), (60-2)

0- g3.(t)X - '(t)P +A 2(t)Z,-t 2 (t)Q, +a,.(t), (60-3)

0- g4 (t)X -,. (t)Pi -2 V3(t)Z, -AZ(t)Q, +a 4 t), (60-4)

where the matrix coefficients of (X,, P, Z,, Q) are evaluated at

(X0, Po, Zo, Qo) and g -0, and acrk(t), k - 1, 2, 3, 4, are known functions of

[



JOTA: VOL 29. NO. 2. OCTOBER 1919

0.50 . ... -

C.25. -

u -0.25" -

-0.50

-0.75---------------------

-1 .0 ~
0 012 0.4 0.6 0.8 1.0
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(X,. P.. Z, Q,) for rz i - 1. From Hypothesis (H3), it follows that

L-293T'(t) -A2(t)J(6

is nonsingular (Ref. 8). Hence, Z,, Q, can be solved uniquely from Eqs.
(60-3) and (60-4) and eliminated from the equations for dX/dt, dP,/dt. For
i - 0, it is shown in the Appendix that the elimination of Zo, Qo from Eqs.
(59-1) and (59-2) yields the reduced TPBV problem (17), with Xo, Po
replacing C, p. Hence, from Hypothesis (Hi), the uniqueness of solution
gives

X0o- *, Po= ,  (62)

and Zo, Qo are given in Eq. (92) of the Appendix.
It then follows immediately that, for I s i s N, the elimination of Z, Q,

from Eqs. (60-i) and (60-2) yields

dXj/dt - C1(t)X - C2(t)P, +i 1 (t), (63)

dP,/dt -=- C3(t)X - C1 (t)P + d21(),

where Ct, C2, C3 are given in Eq. (18). The boundary conditions for the
system (63) are

X,(0) - a' and X (T) = b',

where a', b' will be specified later. Since C3 is positive semidefinite and L3 is
positive definite, the solution K,(t) to

K =-KC, -C'K + KC 2K -C3, (64)

• I
I

I.!
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with end conditionII K(T)uv, (65)

is positive definite in t e [0, T) for any ir, positive semidefinite, and the
solution K.,(t) to Eq. (64), with end condition

K (0)w 2  (66)

is negative definite in t e (0, T] for any 112 negative semidefinite (Ref. 11).
Introducing the dichotomy transformation (Ref. 11)

and substituting into Eq. (63), we obtain the equations for y, w, as follows:

dyi/dt - (C - C2Kp)yi + a,,; (68-1)

dwi/dt - (C1 - C2K,) wi + a,; (68-2)

hence, 
ai I 1( 

9aw11Kp Kll62J

and I is the n x n identity matrix. Lot 01, 02 be the state transition matrices
of the system (68-1) and (68-2), respectively. Then, the solution to Eq. (68)
is

To determine yi(O), wi(T), we evaluate the expression (70) at t- =0 and
I-T - and, due to Hypotheses (H4I) and (H2), the end conditions are

dctcrmined uniquely (Ref. 8) as

Fyi(0)1 1 02(A T]1Fa - 10 0(0, s)a. (s) dsl (1
LwT)JL0(T, 0) 1 J b' -J;0 (r (, s)a,i s) dsJ 7)

Thus. given a'b', the unique solutions yi, w, to Eq. (68), and hence the
unique solutions X, P, to Eq. (63), can be computed.

Proof. Boundary-Layer Expansions. Since Z(0, 1A) does not in
gcneral satisfy the initial condition zo(A), it is necessary to account for this
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boundary layer by m (-, jA), k - 1, 2, 3, 4, which satisfy at t -0 the equa-
tions

(din 41dT] - [(ldt - dKN/dt,-., [dm2N/dT] - [dpldt - dPN/d..,,,
(72)

(dmi4/dr] - [dz/dt- dz Ndr],..,, [dm dT] - [dq/dt - dQ (dt7,.2

to O(I&N). Hence, we have

dmkN/dTr- j(m', m2, m3 m4 $L)

gk (X"(') + ILm r('), P (,'r) +M ,m2('),

ZN(IA)+mN(7), QN(tLr)+m 2 '(2'), IAM. )
-gA(XN(; 7 ), pN(MI"), ZN(M-), QN(M"), r, A), k - 1, 2,3, 4.

(73)

Substituting Eq. (72) into Eq. (73) and equating the coefficients of like
power of L', 0 s i 5 N, we obtain a system of equations for the left boundary
layer. At i - 0, the zeroth-order terms of m k satisfy

dm joJdT - A ,(0)m3o -j9(I)m4o,

dm 2o/dT = g2(Xo(0), PO(0), ZO(0) + m30(7), 0 (0) + m 40(7), 0, 0)

-g2(Xo(O), Po(O), Zo(O), 0 0 (0), O, 0), (74)

dm3o/dT - A2 (0)m 30 - 1S2(0)m4o,

dmo/dr - -2 V 3(0)m 30o- A(0)m40 ,

where the initial condition for M3 0 is

M o(0) ZO(O)-Z(O).

Furthermore, mio(r) tends to zero as r tends to infinity. Letting

m4o(r) - 2K (O)m 3o("), (75)

where K (0) is the positive-definite solution of Eq. (27) at t - 0, we obtain

dm3o/d-r - (h2 - 92KA ]t-Om 3o, m 3 0(0) M zo(0) - Zo(0). (76)

Thus, A2-92KA is stable; and m 3 o(r), and hence m40(r), decay exponen-

tially to zero. Now, comparing the system (76) to the system (20) controlled
by u, we obtain

m3 o(T)-A(T). (77) jl

[
% -
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Furthermore, m1o(-), m2o() are given by

m ,o() - [(A, - K. )(A, - g2 )-'],.omjo(r), (78)

m20(T) - [1M2 o(S)/dr] ds.

Then, the initial condition a' of X, in the system (63) is given by

a'= X(0) - [(a/D,)Xo(i&)]..o- mio(O)

- [(a/a/M)xo(M))].o-[(A, - §K,)(A 2 - s 2KA)-'],-o(Zo(0)- Zo(0)). (79)

In general mi,(r) satisfies the equations

dm ,jdr - A,(0)mv - 0()m, + M,"(r). (80-1)

dm 2Jd-r - g2.(Xo(O), Po(0), Zo(0)+m 30 ("), Q0 (0)

+ m400 '), 0, 0)mV + g2 (Xo(0), Po(O), ZO(O)

+ m 30(r). 0(0) + m4o0(), 0, O)m4 , + M2 (i), (80-2)

dm3,/dr - A(0)m3i - 0 2(0)m, + M3 () (80-3)

dm4. d = -2 V3(0)m 3, - A2(O)m, + M 4, r), (80-4)

where the exponentially decaying terms Mi(-r), k - 1, 2, 3, 4, are known
successively. We solve for the systems (80-3) and (80-4) by letting

m. (r-) - 2KA (0)m3i (r") +/ , (r"), (81 )

where j, satisfies the linear system

d,o,/dr -[A 2 - -92KA N,-O - 2KA (O)M3, (r) + M 4 (r). (82)

In Ref. 4, it is shown that there exists a unique exponentially decaying
solution 6, to system (82). Then, m3"(r) is given by

dm3 ,/dr - [A 2 - KA,]1-om 3 - &z(0),(')+ M,31(r), (83)

with initial condition

M (0) - [a'Zo(A)/181] -o -Z(0).

Hence, the solutions m&,(r), k = 1, 2, 3, 4, to the system (80) are exponen-
tially decaying. The initial condition a' of X, in system (63) is given by

a,- X,(0) - ['Xo(,)/8p'],,-o -mz,(0). (84)

In a similar manner, the right boundary layer correction terms n '(o-,/)
satisfy the equations

Ii
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dniddo -ik(n, n2, n3. n4 , IV, A)

-g (X(1W ) + &n 1(9.). P(Aw ) + 1MP2(Q), Z(90)+ ' (8)5)

Q(Aw) + n4(), ;W. /)

- gk(X(UU), P( ,w, Z(,w), Q(Aa), w.o, IL), k - 1, 2, 3,4.

We shall not give the procedure of solving nkJ. which is exactly the same as
that of solving for mm, except that we are now solving in inverse time, that is,
from a - 0 to o" - -o. We only examine the equations for n3o, n4o, which
are

dn 3o/do - A 2(T)n3o - 2 (T)nRo, n 3o(T) - zr(O) -Zo(T),

dn.o/d" - -2 9 3(T)n3o-A2(T)n4 o. (86)
Let no(o) - 2K,(T)n3o(or), 

(87)

where K,(T) is the negative-definite solution to Eq. (27) at t - T. Since
-,A2 -92K]., r is stable,

dn3o/d" - [-A2 -,§ 2K.],- rn3o (88)

is stable in negative time and decays to zero as o- - -o. Comparing the
system (88) to the system (21) controlled by u,. we obtain

n3o(o') - p(o.). (89)

The end conditions for n31(T), X(T) are
n31 (T) - [ a' ZT(,L ) / )Al '] -o - Z(,( .

(90)
X,(T) - [8'xr( )/aA'],.o- nhi(T) - b'.

It remains to be shown that xN, pN zN qM are O(Mu). However, this
asymptotic property has been shown in detail in Ref. 3 for the free-endpoint
problem, and can be translated for the fixed-endpoint problem without
major changes. Thus, we shall omit this part of the proof.

From Lemma 5.1, we obtain the approximation (28) of Theorem 3.1 by
observing that Eqs. (28-1) and (28-3) follow from Eq. (62); Eq. (28-2)
follows from Eqs. (92). (77), (89); Eq. (28-4) follows from Eqs. (92), (75),
(87); and finally Eq. (28-5) follows from Eqs. (91) and (6).

6. Conduions

A singularly perturbed, nonlinear, fixed-endpoint problem is de-
composed into three lower-order problems, namely, the reduced problem
and the left and the right boundary-layer problems. Two special features are
that the reduced problem does not involve the singular perturbation

[
I
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parameter and the boundary-layer problems are linear-quadratic. Combin-
ing the solutions to these lower-order problems, we obtain an O(%) approx-
imation (28) of a solution to the full TPBV problem corresponding to
problem (1)-(2). Based on the properties of the lower-order problems, we
obtain an asymptotic expansion for this solution of the full TPBV problem.I An example illustrates the design procedure and the computation of a
locally optimal solution using a Newton-Raphson algorithm and the O(%)
approximate solution as the initial guess. Finally, it is emphasized that, if theIfast variable z in system (2) is unstable, the partially closed-loop control (29)
which stabilizes the fast variable should be applied to the system (2).

7. Appendix: Equivalence of ij and X*, Pe

Let

U0 - A'( 'P 0+ '2Q0 ). (91)

~I From Eq. (59-2), we have

Z, -A2-(42 +62U.3)
- -(A2 + LAT' 9)

1 (4 + ,.'A- , - B2R-B'Po), (92-1)

o-A( 2 +2V' 30 A)' -9 ;4(-2
A -kA 2 + .2 -j V)-'[( IP-2 2,A',2 ) + (A' + f13A'.S)Po]. (29-2)

Therefore,

U. - -R'A 2-A (A2 + -fA;'- Y'(A'

* (A2  ,A-' V)''(A, + 93,A; 'PL,-

( 2 + A'LxA2 + -' 73 ' 3'-( -2 l.3A -,,)
-I ~'(A + 2A' -142

- L'A ,-' ( 92 - 2 9 3A '42)

-L3 (L2 + JPo). (93)

Ii
[

_______________________

.. . .. .. ..- -I
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Substituting Eq. (93) into Eq. (59-1) yields

dXo/dt .(41 -AIA 2  2)+(Bt -AIA, 2)U-d +fiU0 , (94)

dPo/ad -- [9. +zo'f 2. +Z0 '.Zo+ U;.Uo

+ P(, 1+At.ZO+ fB1 .Uo)0+ Q, (2+ A2Zo+ A2.Uo)

- - 4d2 2  ' 2. + 4A2  '3.Ai
-(2 - 22A'-)A 1 a-A 2.A'2 )

+ P'(41. +A1IA2( -a 2-L2U0 ) +015U0
-A 1, A' (d2. -A 25  (42 + B2 Uo

+ L u))) + u , (- A .'A- 92 + 2A,; -2 V3,A"a 2

+ f2;A;-T 3A '(d2 + A 2.4 2) - RAA- (92 - 2 91A~ 2)

- A A 2.A' 1 (V2 -2 '3 A2
1 )) + U() (A,. +9 2AZ 13.A 2

+ 2 A - ' ¢ - ( -/21 A2xA" + #2. )) Uo]'
"-[Lt, +2M2Ur.. + .3.Uo+P'o(J +,16 Uo)]'

- -7 ,f(X o P , U 0, t). (95)"

In Eq. (95), the partial derivative of an ni X n2 matrix G with respect to x
results in an n Ix nz x n matrix G. and its premultiplication and postmulti-
plication by an ni-vector h, and an n2-vector h2 is defined as

h G~h2 = G . h 1h21G,. (96)
t-I -Il

where hi is the ith component of hl, h2, is the ith component of h2, and G,, is
the (, j)th element of G. Thus, the equations for Xo, Po, Uo are identical to
the equations for 2, p, a. Hence, from the uniqueness Hypothesis (HI),

Xo ,, Po=P*, U0 a*. (97)
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SECTION 7

LINEAR STOCHASTIC CONTROL



SHORT PAP=N

stochastic control of linear singularly perturbed systems with quadratic
performance ides and Gaussian now.. Some of the results of the
filtering problem (91 and the regulator problem (31 carry over to the

F combe Linsr-QusdMUtC-ananian (L.Q-G) control problesm, but
there sam important differences. The msajor difference from the determin-
istic control problem is the presence of the white noise which can result
in an ill-defined quadratic performance index in the limiting procedure
Similarly, the stochastic control problem differ% from the estimation
problem in tha in the estimation problem one may be required toI minimize the error variances of the fast and slow states (which have
different orders of magnitudes); these variances appear separately and
not in a single sum. In the control problem the quadratic functional to
be minimzed may contain a sum of terms involving such covariances
and one of these term may dominate. Therefore, the singularly per-

tuarbed stochastic control problem considered here contains new aspect
not present in the earlier results.

The system to be controlled is assumed to have been transformed by a
nonsingular transformation [101 into the block diagonal form

i anA.x+ B.u+ Gin (

pise A 2z + 2u + Gw

with observations

Y -Csx+ C2z + (3)

where X, z, y and m are x-, in-. q- and '-dimensional vectors, and w and v
are uncorrelated white-Gaussian noise vectors with covartances

E fw~iW'(r)) - Q Ws (t -- )

BE(v(O'(r) - A(Will(I - .). (4)

The paramete js > 0 represents small time constants and similar physi-
~1 cal quantities maiking; (2) the fast subsystem since as p-O, then i-st cci.

Theres is no lows in generality in considering systems of the form (1), (2)
which have been used in the filtering (91 and the time-optimal (61

I problem to simplify the derivations. For A2 nonsingular every singu-
I larly perturbed linear system can be transformed into the form (1), (2)

and, theriefore, all the results and derivations hold. In appltications.
4 ~however, there is no need to actually perform the transfomation

1 The problem is to determine the control ad(') a a functional of past5observations ( y(,r), I. -C r e) to minimnie the performance index J
Stochasti Contro of Linea Singulary

Perturbe Systemf r ,r 2 i x~

IA. H.HADDAD. 3E~tO ma B& IM uinAND 2 0174 or, -
P. . OKOOVC smo Kn w u +1 12]X]+ W (r96 (5I clil , aet for thie - Quiti-e Z.,ir (L-Q-G) rlk

fo syllead wd the l peefee den& Mw lik e I f *a@em Motivated by previous results for the regulator 131 andl filtering [9)
epie ,.,c b ~xalWb 0 ne o = a. w" is problems. the objective of this paper is to decompose the optimal
coae se a& combiehlaa of a sdow c a - a'si afw ,OfdI stochastic control problem into two separate problems for slow and fast

septease subsystems, and to investigate the near optimality and limiting behavior1of the solutions.
* h~oDU(IONDepending on the stability of the matrix A 2(t), one of the two

L 1. INTOUTO following assumptions is fundamental.
The singular perturbation Approach III to the linear regulator and Auumpnten 1: For every fixed t eft, ifj, the eagenvalues of A g ) have

filtering hasl decomposed the problem into two lower order problem negative real parts, ReX (A2(t)) -c8 <0.
* treated separately in different time scales for fast and stow subs1ystems Aasumpuion 2. For every fixed I ri, Ifl the matrix A 2(rI) is nonsingu.

1 2H91. As a continuation, this paper presents the results for the lar, the pair (A2(t),C 2(t)I is detectable. and the pair fA2(0.52(rlI is
stabilizable.

In addition, it is assumed that all the matrices appearing in (l)-{5) areI Nassnesrit renteved December 5. 1976; rewoed March 4.1i9". PW byseene continuously differentiable functions of t.
Y. 3er-Salons, Chairman of the Swtesc Control Comnmfittee. Thus work wsi supported
a pans by the U. S. Army Rieanth office wider Coet DAAO29-te04154. in part
by the Zgmersi' fmc andt Devetopmsni Adanistralson i dler Contract U.S & RDA
2(#0618).2W5 ains in part by the U. S. Air Forc under Grant AFOSR-V3-2570. 'As it is cusisomsny in L.Q-G analysis the differeial equsaic forme is retained to

The authen are with the Coordsniawd Science Laboratory AWd thes Departmnt Of imply an Ito Stochastic differeintial eqution. Due to ihe linearity of the problem no
* kW Ieg aspneena, Unweruty of flhnoLa Urbana,. IL 61801. difficulties art"e from this standa" petw*e
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I if in-io+io(P)+o(t/2). 0-(U-t )1 (16)

r~wr... .------ .. Pz'P'F+Pi,(#)+O(At) (17)

SWF: tct , r where 1 is the solution of the algebraic Riccati equation for every fixed

0- A2P2 + P2Aj + G2QG - P2C;
R 'C 2P (18)

Ft. 1. Th deutmin o i, , ando, for the fast SS. and i'(6) (which Is not a covanance matrix!l satisfies the boundary
layer equation at t

In the next section. a fast control problem will be considered fir.l

Then the complete system solution will be discussed and a reduced-order >--0

problem will formally be defined. Finally, the study of the limiting
behavior of the complete system solution will be made by using both the (0)- ov(*(t)) P2 (:0) (19)
reduced and the fast problems.

,C42-#C'iR IC,]. (20)
II. A FAST CONTMOL PROBLUaE

Since A2 is a stable matrix. it can be shown that the solution of the
We first formulate a fast control problem as having the system state unforced Riccati equation (19) tends to zero exponentially fast in 0, even

and observation equations though Pi(O) may be negative semidefinte.

Mi - A2z + B2u + G2w (6) The estimate i, is the output of a filter

Y -CIZ+ V (7) li -A,(t,)ito+,F2(t,)Ci (tI)R -/C24o] +82u, 4 (0)- (0)

for which we are to determine the control u as a (unctiona of past (21)
observations Y. minimizing the performance index J, which is stationary in a time scale - (tt - )/I& stretching every small

It,.. + fixed subinterval ft,.,, +eC(',.,f). The matrices in (21) are all constant
J/ E fz s,,. ( with respect to -r and depend on I E[O1. t as a fixed parameter.

The boundary layer term 4o(9) satisfies
The optimal control ai is obtained in a straightforward manner by using

the separation principle, so that d -.(9) ', )i ()4 P2 (9)C : )R '[Yr- Cz , 4(0) 0

S -'BiKlif (9) (22)

where K2 satisfies the Riccati equation which may be considered as the output of a stable time-invariant system
(system matrix A2) driven by white noise (whose covariance is Of I/ ) in

pi -AjKX + K2A, + L-] + K,$ 2S -'i5K 2. K(tf)-r. (10) the #-variable) which is multiplied by an exponentially decaying gain
P2(0). Consequently, the covariance equation of io(9) may be derived.

Here if denotes the optimal estimate of z(t) given the past observe- and it then can be shown to be bounded by
tions. which for any given u(t) is the output of the filter

I - 0- . (23)
, -A 2 if+ P2CiR 'y, -C2 1,] + 2 u.!/(f.- E (:(t.)) (11) -ix{(3

where P(t)/p is the error covariance of if satisfying It is thus shown in (91 that

p -AsP 2+ PA' 2 + G2 QGi -P2CiR -'CZP 2.P2 ()i cov (z()) "f.. z 0 (24)
(12) P() P2 . +(X A) (25)

which does not depend on u(t). The resulting minimum value J, of J/is
for t[:t',t] where t" > tr.

, f-ttr, [}Lz+K2P2CiR -1 -1.' n o.nrpi~i1'The limiting behavior of the optimal control is obtained when the
pk ft L2 ~ +K i-C I 2)Le+; r[ ,'f'2l expression for K2 is used in conjunction with the filter. The behavior of

(13) K2 has been analyzed in 131 and under Assumptions I or 2 it may be
written as

If a control uf satisfying K, 2 +K2 + (o) + 0( A). e-(r,-)/P. (26)

S+ Ua - S '5jx 2i + U, (14) The gain k, is the solution of the algebraic Riccati equation

is applied to both the system and filter in (6) and (11) as shown in Fig. I,
then the value J7 of J1 can be expressed by 0- AK2, + k2A2 +"- k-85 -18A (27)

J'R Jf . + f IE (uSu) dt. (15) and the boundary layer term /Km) at t, satisfies

dK,(e)-Ai(t,lK2+KZ.,(tf.-KB, l,,)S 'el (,,)K2. o00

These results are now used to establish the limiting behavior of the ..

optimal control and the performance index for the fast system (6). K2 (0)- "2 - K2 (:) (28)
The properties of if and P2 as p-.O+ have already been considered in 1.

(9 and ar briefly summarized here. If either Assumption I or 2 hold, A,4 2.4 2 -BS '8B1k. (29)
then the estimate of i and the covanance P2/I of the error (z-if) forany iven U ame The boundary layer term K2 may be bounded by



liii ~ 10 2 p- (:- 0) Consequently, it in addition, the terminal coet r, is smail, r2 - st, r2,
M2 -P ~~(30) thenl*,-0(es), and (41) is stillvalid. It sould be noted that while in

both cases the relative increments in the performance uadga resultig
where M2 as of the order of r, - fk1 Q,). Hence. for t eji wheret' < if from neglecting the boundary layers are (pts) the absolute increments;
we may write are 0(l) in the firnt cane and O(ps) in the second. The importance of the

latter case is also evident from the fact that i.0(pf)so that am"e the
K2  2+(ji.(31) system is stable no control is really necessary due to L20() (Note

that f. - 0(l) stems from the covariance of the tast states which behave
In this way the optimal control is approximated by lik white noise as #&-.*0+). In the case of finite L2. in order to achieve

Vf- + LM+ lp~f +0( rek.If] (32) an absolute 0(p1) approximation to J,,. the near optimal control should
a~-i,+y()+ia,(.+0(p/'). :e~ts 11include the sum of iif and the two layer correction term.

when These results are summarized in the following.
Thgenn, 1: Let Assumption 2 hold, then the limit as p-.O+ of the

i;, - 'il.(33) solution of the fast optimal control problem (6H-8) satisfies (32). Fur-
thermore the limits of the performance index when uf or ij7 are used are

and i and up1 are the layer correction terms given by (40) and (4 1). If instead. Assumption I is satisfied and 1.2 - pL,
r, -JAI /2f,, then (42) holds.IP S IIIi.) *() B ,()i. (4 . Tim Couptwr CoNnot. Paoet~am

If these terms are ignored, the approximation We nc'.. return to the stochastic control problem for the complete

Uf - 1 + /2)P (35) system (1)-S). The solution when #>O is

is valid on a subinterval 1 t'1 2 C 11.,tfI. Id*_S_ -'{B.Kt+5iK;21-+I,4,K 2+BX 2Ii.) (43)
In analyzing the effect of replacing uf by its approximations (32) of where the pins satisfy the Riccati system

(35). several case are of interest. It is easy to verify that

£ 0euv K, (if) -r, (44)

j so that if ZKQ) 0( 1 ). then sXK- -(KI 2A 2 +pMA; K 2 + L12) +( K, B.+ KI 2 B2 )S -(p.Ki 2 + Bj K2)

2 ls f~ -~,Oj2) (37) K12(t,)-r 2 (45)

Simlaly jk 2-(AK,+X 2A2+L 2 )+4(K2B2+sKI12B)S 't.KX 2+BK 2).

I pt~-j)K 2 (if) -r 2. (46)
A A4uj -t M8s-'~ 2 j 3 )cp-(8 Similarly, the optimal estimates i. and i. are obtained from the linear

whereM3 h!s is E (i( 1 i:),and hence M3 is finite. Consequently. if filters which for any given control u are

..mI E (i4SuSi) di=0(IL4I). (39) gA 2i+( 1 P1 2C0 + P )R v+Bu(48)

The parameters i and j in (37) and (39) are included to account forwhmPtishenovin
several possible cases of behavior of the weighting matrices L2 and r, as VMf-y(e) - C.;*(I) - C,(,). (49)
IA-.O+ as discussed below.

To see the effect of replacing the optimal control is, by the control The error covariances satisfy
aaj-'iap we use (14). (I5) with i-A.PI + PA;+GQG,- (PIC+ P1C)R (C.P + CPAW

which. when combined with (37), (39) result3 in the performance index Jf 1 2 M.,2 P1A G.QGj -(PIC;+ P12CO)R 1'( 1 CPI + 4.

of JA, J,,, and 4,. It can easily be seen from (13) that, in general.
4-0010gs which is due to the white-noise behavior of the fast variales PZ(t.friicov~z(t.)I. (52)
in the limit as p-4O+. If now L3q& 0 as It-.0+, then from (27), (3n).andT
(39 Jirm0Ml) I-0l), so that the relative error in performance is To investigate the limiting behavior of the optimal control, we analyze
expressed by the limiting behavior of the filter (47) (48) and of the linear regulator

(43). We first note that expressions analogous to (14) and (1S) are valid
4.in.(1'0(gs)+0( i),~ -~±~ 41)for J* obtained with is' and J. obtained with u. The dominant contribu-
JI -J~b I OW]+ 0(0- f. -0 is41)tion toj 1. s due to the fast subsystem since it contains a 0(l / p) term.

Therefore. if the slow subsystem is of interest. any approximation or the
If nowL12 - jL3, then from (27) K2 -0( p) provided A is stable, other- Wrniting behavior should include both the 0(l /#A) and 0(l) terms. Under

.1 wil tend to a nonzero limit. In this case if (28) is also used, the conditions of Theorem 1, the contributions of the fast subsystem
may be reduced to 0(1), comparable to the contribution of the slow

j4.m0(t), jq - ( It). 4,-0(1r 2 ll2). (42) subsystem.
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The first step in a singular perturbation analysis is to define a reduced where
problem. The reduced problem is formally obtained from (I)-(5) by
setting S ,0. We point out that this is not a valid limiting operation. If jpt" A 2  + P2CAR (i)-B2S-'8K ip (66)

A 2 is stable, it is valid for the purpose of substituting z in a slow system The term with . in (65) is only needed insofar as its effect on the slow
(Theorem I in [9D. However. it is not valid, in general. for the purpose of system is concerned, and its relative contribution to the variance of j. is
substituting z into (5). The substitution of N- C2A 21 B2, D - - O(A). The second term if is clearly the state of a fast system with white
C,A-G 2 and noise input P(t). The substitution of (65) in (43) results after derivations

z, A'[ 2 u + G~w] (53)similar to [I1) in the expression

in (1). (3), and (5) results in u, - S;' ( -L 2 A 1 'B2 )'".-S-'BjK2if+O( j'/2)

i, - Ax, + Bu + Gw (54) -- (KB,- L1Af BI )'i,.- S- 'BjK2if4.( 1l2)

y- Cx,+ Niu+ Dw+v (55) u,+ uf+ 0(
1 2 ). (67)

{ , I ~ , } The definition of 'q in (67) together with it in (66) imply that uf ad if
J-E xL'x,-2xL 4 Bu+u'S.U]di+ xx, ,,+J, ar the same as those discussed in Section 11 if we lety-(y- C..,). it is

seen that the optimal control of the complete system is given approxi-
(56) mately as a sum of the reduced control obtained formaly, and the fast

S.- S+ - 'L2 Aj* 1112. (57) control. which is performed in a stretched tume scale and is composed of
a stationary term and two boundary layers.

Here J, contains terms not influenced by the control, some of which.
such as the integral of the variance of the white noise w. are ill-defined. IV. NeAa OPTIMUM PERmoituAwcE
Therefore. only the terms which may be affected by the optimization are
given in (56). The optimal control u, which minimizes (56) for the system The effect of using u, or u, + ii! in the singularly perturbed system (I),
(54). (55) is called the reduced control and is given by (2) on the performance index will now be considered. Again, it is

sufficient to use (14). (15). and (32). The effect of using only the reduced
u,-- So[KBo - L,2 j*'B ]', (58) control u, is

where the reduced filter for any given u satisfies •J-Jo+Jn+J,,+-Lftr[R -a , (68)

x, I A .1, + [P .C .+ GO D'jR . y - C .1, - ,IV.)+ BO..

where V21g/ is the unconditional covariance of z. It is seen, therefore

Ro-(R+DQD'). (59) that the error (J,- J.) is 0(I/1) unless the fast system is stable and
L=- is. In such a case, neglecting the fast control causes an error of

The gain K. and error covariance P. satisfy the usual RE's 0(0). If. in addition. r 2- s"2
/ 2 . that is the fast varables are stable and

are of little interest, then avoiding the use of the fast control results in
K,--(KoA,+A.K.+ LI) 0()L) approximation to the optimal performance. On the other hand, if

the fast subsystem is unstable or if it is of sufficient interest, then using a
+ ( KB o - LA" 2 )S -'(KoB. - L12 A- 'B2)' (60) sum of the reduced control and the fast control results in O(Is) approxi.

2mation to the optimal performance.
P - A.Po

+ 
P.4+BQBo-(P.C.+ GQD')R- I(C.P+DQG.). These results for the case when the fast subsystem is asymptotically

(61) stable are summarized as follows.
Theorem 2: Let Assumption I hold and let L2 -0(/I) and r,-

The asymptotic validity of the reduced problem is established in two O(f
12
), then the solution to the optimal control problem (l)-(5) as

steps. First, the limiting behavior of the filters (47), (48) is investigated s-,0+ is approximated by
for any given u. It follows from Theorem 2 of [9] that under Assump-
tions I or 2 for t r(t', f], t'> t, that U.-U, +000/2). telt'.t C[to, f]

io- i,+O( ' I 2 ) where q, is the optimal control of the reduced problem. If u, is applied to
the system (I), (2), the resultng performance index J, is near optimal in

P, " P. +0( P). P2 m P2 +O(iP). (62) the sense that

Similarly, using [31, [11 for te[t,t"], t" < tf. we have J,-Jo+0( 1s). (69)

K, - K + 0( K, 0) A more general case is summarized in the following theorem.
Theorem 3. If Assumption 2 holds, then the optimal control u. for the

K2- -(L, 2 - KoBoS - BK 2 )4 ' +00) k12+( ). (63) system (I)-(5) as IA-O+ is approximated by

U.-U, + u ,+O(A/')-u,,+ ,+ u ,+O( )
'/
2
)

Now all that we need to obtain the behavior of u. as p-O+ is to
substitute u. into f48) and then find the limiting behavior of !4. The N U* +0( A,"2 ). (70)
substitution of (43) into (48) yields If u° is applied to the system (I), (2) the resulting performance index J*
so + P2C2R - '(t) - BS - ( B o Ko + B'z),. -0( i/l). () is near optimal in the sense that

2i. J+ - o )+0 A0. (71)

The use of the basic result in singular perturbation theory (see [9D allows We note that in this case J. may be 0( I / 1s).
,. to be written as a sum of two terms The significance of Theorem 3 is that the separation into a two time

scales solution is valid for both the filter and the controller, as was the r
18,S' (BOK,.+BjKi 2 ).i',i,+O( i /") (65) case for each separately. The result may be illustrated in Fig. 2. While

7
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TABLEI 1 101

TiM OPTIMAL PUZFOWMC IMMe JO AS A FummcoN or p
i for a 2- - J. for a2 -+3-

0.01 1.8245 2 713. 80

0.02 1.8421 139L.74

0.04 7.11 7L4. 98

0.7 . 386 421.42 w O J

0.19972 302.87 J J)o

0.2 2.93163.71L

0.4 2.6206 93.875

0.7 3.3045 65.14 10-1 io' .1oo

Me. 7. The ofa~ dr t h pmfwma soise (., -4)1. aind (J- -4)14

2 iz: KO for dI9&
K, 

16

- K12  X1 1 -

L.5 10-'o'

1,0- R2  Pis. 5. The ruimuve iaaiseab of l.pa~omAim e. ,~ -J)/I, emd (J* - J)/4*

05 -K, 8 for the stable and unstable case, respectively. These results demon-
strata the general behavior of both the con"ro and the performance

0 2 index discussed in the paper. It is seen that as expected. the relative
0 02 0 0 6 0 a 1'0 increments in performance decrease when the boundary layer term are

added, but the decrease is more sigificant in absolute ter for the
~~~~ie~~~~~~~e.ntal can me.riei n s~~eeeipi o ~Since i.is qite large for small is illustrating the (1lp

The choice of L2 - js explains the fact that in both cases, the reduced
t.-% t ~-l1. Q-2, A-l1, i(O)-3. i(0)-2 cot J, isvey close tothe optial cost J.adotmuch iprovemt a

obtained by adding the fast dynamics. However, a different choice, my
P1 (0) - 2 P12 (0) - 1.-5, P2 (0) - L 2-ap where a is A lrge conIstat (e.g. 10) May resut in a more

Is Significant contribution of the fast dynamics, so that .P will be sup&
r-, -,-ls 1.3~ L12, L- L2- s-1. cantly closer to J. than J,. It should be noted that Since Osrepsets the -

relative ratio of the fast time constants to the slow tim constant, values
For the stable case a3 - - 3 and for the unstable case a, + 3. The of,% 0>.1 need no longer conform to the asymptotic results for small p. .

reduced and fast filter gains and coveriancee can be calculated analyti. For example for p -0.2 the ratio of these time constants is 1: 6 so that
cally for this case, while a computer had to be used for the exact the fast subsystem is really not so fast anymore Furthermore for go .3
solution.In Fig. 3.the exact covarainces fortdiestable canefor p-0.1 the interval (% IIis equal to tonfast time constans. so that for any largr
are compared to their approximate values with and without the layer % we are getting an overlap of the boundary layrs, and, therefore the
corrections. Similarly, Fig. 4 comperes the exact gains to the approxi- asymptotic results are no longer valid. Thes obeervations explain the
mate gan for the stable case And p-0.1. Figs 5 and 6 display thes behavior in Fig. 7 of the near optimal performance for p>02 The
resuts for the unstable ase The performance index J4 was computed approximate values of the gains and the covarisaceis for p-0.1 appear to
for severa value of As and is Shown in Table 1. The incremental relative be a very good approximation to the set value. especially after the
ermo in the performance idex when only the reduced control as used boundary layer corrections are made. The O(p) differenc in the steadly.
mod whea the boundary layer terms are added, are showns in Figs. 7 and state values is mootly imnoticeable except for P12 in Fig. 3.
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PARAMETER SCALING AND WELL-POSEDNESS OF STOCHASTIC
SINGULARLY PERTURBED CONTROL SYSTEKS*
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Michigan Scate University University of Illinois University of Maryland
East Lansing, Michigan 48824 Urbana. Illinois 61801 Coll*e Park, Maryland 20742

Abstract equation

In stochastic singularly perturbed control - A2 (t)(t) + 2(t)(t) (1)

systems the meaning of the fast variable is not where w(t) is white noise with covartance matrix W
always clear due to the idealized white-noise and u > 0 is a small parameter representing the
model. In this paper the linear quadratic sto- small time constants in the system. If the matrix
chastic control problem for a singularly perturbed A 2 (c) is a stable matrix (eignevalues for every t
system is reformulated by using appropriate pars- have negative real parts), then as Lk - 0+ the
mater scalings which are fractional powers Of the process z(t) tends to a white noise vector, with
perturbation parameter. The regions of these pars- Infinite variance parameter. More precisely, since
meters are determined so that the variables in the limic does noc exist in the usual sense, the
both time-scales are well-defined, resulting in a limit is to be Interpreted as follows
meaningful two tim-scale nosy-optimal solution.

€1 11

I z(t)dt -A- I G"2 dU(t) + 0(jk ). 
c  c t 0 > 0.

t. Introduction 0 2 (2)

where U(t) is the Wiener-Levy process defined asThe usefsulness of the si.ngular perturbation the Integral of w(c). Wea have used the not:ation

approach for the analysis and control of detormin-
Lsctic dynamical systems with fast and slow modes f(t) - O(2) to mean that there exist constants c
is evident from the results surveyed in Nl]. O" and such that Eilt(t)lI21< 2

" for E (0,.k*].
of the problems encountered in extending the The results Implied by (' mean that z(t), while
deterministic linear regulator results for singu- not representing a meaningful physical fast vari-larly perturbed systems to filtering I2 or smooth- able in its own right (having infinite variance).

in$ L3] of linear stochastic systems stems from the does have a finite contribution as an input to a
Idealized behavior of the white noise used In the slow system. This contribution to a slow sub-
models. Past state variables may themselves be system may be found for small enough 4 by replac-
asymptotic to white noise as in 41. in which case ing z with its white noise limit. In order to
they are of no Interest for estimation purposes. allow z to represent a fast stochastic variable

* Alternately, they may be included via the usual with finite variance, one may use the following
formulation of singularly perturbed systems; how- formulation
ever, in this case they have a negligible effect
on the slow subsystem. The extension to the sto- - Az + U C2w (3)
chastic control problem is even more problemacic In this case, z has a well-defined meaningful
[5,6 , as the finite-time problem becomes an limit In the fast time-scale - c/u. so that
infinite-time one for the fast states. Past
attempts to include control of the East state d .- - (4)
variables have eiher permitted a divergent per- di' 2 2

* formance index, or used separate performance where
indices for the fast and slow subsystems. An i( ) * z(ur) (5a)
alternative approach to circumvent such diffi- ( .(.) (Sb)
culties is to allow colored noise only (as in [7])
which, in a sense, limits the significana of the It should be noted that ;(-r) is a valid white noise
fast subsystem. process in the stretched time-scale -r, such that

The problams arising in the standard singu- ECw( I );'(-r 2 )] ' * (rl - r 2 ) "  
(6)

larly perturbed formulaction of linear systems with
white noise input may be Llluscrated as follows. However the contribution of z as 4n input to
Suppose a fast scate z satisfies the following a slow system becomes negligible In this case,

since
*his work was supported by the U. S. Department of z(c)dc - %(k , c a 0 

> 
0. (7)
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Energy, Electric Energy Systems Division, under 0
Concract EX-76-0l-2088 and In part by the U. S.
Amy Research Office under Grant DAAG-27-76-G-0154.
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The objective of this paper is to explore the The parameters 6, , v, 6 are chosen to represent
possibilities of Introducing appropriate weighting the various limiting conditions as discussed in
parameters as powers of a into the system formula- Section 1. They represent the relative size of
tion of a linear stochastic control problem, so the small parameters within tho system, relative

that the resulting two-time scale near-optimal to the small time constants of the fast subsystem.
solution is meaningful. The formulacion should Any given system may be partitioned into several
allow the two extreme cases discussed above in fast substates with different parameters, even

addition to other intermediate cases. The role- though we only scudy a system with one such sot of

tiona among the parameters that result in a wel.- parameters. The inclusion of a separate observa-
posed problem will be explored. The ctrm well- tion channel y2 for the fast subsystem is essen-
posedness is used here to imply that either one or tial in this case, since for a > 0, the fast

both variables may represent physical variables variables cannot be estimated in a meaninlful
(finite variances), that the control problems in manner from the slow observation channel (signal-
e ach time-scale are meaningful, and that the per- to-noise ratio tends to zero). Note that for the
formance index does not become infinite In the previously considered case 153, oa 0 y 0, y2

* limit. The discussion is limited to the case of may be combined with y In that case 6 - in
a stable uatrtx A (the fundamental mastrix of the order to yield a finiti performance index, so that

subsystem). simplicity the heuristic the fast variable was of no interest as far as the
ntation of differential equations is used through- control is concerned, and served only as a model
out, since the systems are linear; however, s5t- for a wide-band disturbance to the slow variables.
chasic differential calculus with 'Wiener-LAvy The objective of this study is to Investigate the
processes my be employed to derive the results limiting behavior of the optim stochastic con-
with minor changes. trol problem (8)-(13) as - 0 . In particular a

near optimal two time-scales solution is desired,
In the next section the problem Is formulated. such that the problem is well-posed in both time-

The optimal exact solution and its limiting be- scales. Finally, the regions of the values of the
havior are provided in Sections III and IV. parameters a, S. v, 5 are to be docornond so chat
Finally, discussion and analysis of the results are the resulting problem is well-posed and has a
given. meaningful solution.

The . Problem Formlation aFrom (9) it can be shown that cov(x1 ,x2) -

The singularly perturbed system to be con- O(w.a), a - nLn(a,3); hence, in order to insure

sidertd is modeled by the following linear state that the primary contribution to the state x is
oquacions due to the fast variable we shall use the coA*

. A1 + A x +straint 5 a c. Relaxing this costraint should
I' L 1 12 x 2 

+
1u Gw. xl(t 0 ) x1 ( cause no difficulties and nay be treated in a

*9 2 similar manner. Similarly from (9) and (1L) it is

12 21 + 22 2 , o 2 (t 0 ) - x2 o (9) easily seen that if y > o, the East variable will
obrved i + Ax + 32u+20 be observed noiselessly in the limit o - 0,

observed In additive white Gaussian noise as hence the restriction 0 5 v 5 cr is imposed.
Sfollows Finally, if a > k, the problem becomes determin-.- v (LO) istic in the Limit as u - 0*, and cousequentLy we

CI 1s"shall consider the region 0 < or S 4z only. These

€ ( constraints may be written asYZ * 6vLx 0 C22X2 + 11 V2 (11) 0 !5 " !5 ar S A -S (14,)

ere the state vector x - x .x2 ' is partitioned s U S a c b x (1, )
1tsince if s l o the couplng betseen x and X may

ito its slow (x1) and fast (12) substa~es with be neglected as being of order less than 
0
(tu). It

corresponding observation vectors yl and y2 -The can also be observed from (9) that the covariance

parameter 4 is as defined in Section E, and the of x2 iS 0(u
2
a

" I), a fact which will be utilized
processes V, v1L v2 are assumed to be Independent in the filtering covariances. Next the solution

white Gaussian with covariances W, V and V2  of the stochastic control problem and its Limits

respeacively, with positive definite V1 and Vwill be considered.

The* Initial conditions xi are assumed co be I1I. Opcimal Solution
Caussian with zero-means L2n; covariances 21, withThee- e ntrv arible ris The separation principle may be used to ob-
cov(xto,x 2 0 ) P ax1 2 . The conrol variable t is esin che optimal control solution of the problem

common co both subsystems and is to be chosen as a posed by (S)-(13). The control gain matrix K and
functional of past observations in order to mini- the filter error covariance macrix P may be
mis the performance index: partitioned as follows:C- a om '

log( .r Iti + -t'xQ += 'ud (12)K, X2where K. I P (12

_r Ll21 rL L. 1i I [
* -~l '12 ~ a~ 2a-LI

i 72 u 2 4 LiL2  The optimal control u* and the filtering equations

I



I willter r nbyI ,46L2A;A2l: 0(

u* -l 'L[ I;. I+ I )Rl (B 2 qlI Z2) 2
]

(16) Noite that for the stable case consi ered here

" .Al~ L22a4u* PLC+ 'PL2 ]VLv() ( 7 -2 " 
0 ( 2

6 
)
. The gains K0 and 2represent the

I 1S 2 2 1 1 L 2 O ( )gi nO soluctons for h o redu cted-ord r sl o- ontrol

respectively [5]. Similarly, the Riccati equations
(1t) for the filter covariances may be written aswhere te innovations process y(t) is defined by

y (t) 1 C I wAIPIPi" 2P2"?2i4I~

-Y ) - -(?.c+ 'I2 Ci)v'¢ CI+ c + "C2 12 ). p1(CO)*x1

,(t) - cc b-.C2  . (19) 12,z" ,2 ' 1 2 P 2 UIZA F 1, . 21 1 VC

Note that (19) is also used to define y. C1, and -(PiCi* 'YP12CV lCeP *2+2YC ).
Cd2f and he mitria V is d f ned by -25b)

merV . s [ 21 0 2 2 2 2 2 (A 1 rv P12 (co)""12  (2b21 2 2 ++2" 2?2
- Y (0) (11. P . +

It should be emphsazed Chat v() is a standard "(1P 2 iC -YP 2 C)V"(-2 C 1P 2 i,& C2P2 ),
innovations process in the slow time scale (white
with finite covariance). Furthermore, the filter- P2 (t0). 1- 2  (25c)
i.ng equationt for has th same for as the

tnqat esu rm asth The limiting behavior of the resulting covariances
original scate as far as the 2 caria multiplyti may be found by duality to the control case,
the white input v(;t) is concerned. The gain
matric s satisfy the usual Riccac equations. P* I" P- O(,) (26a)

+j P *P + P()s (h,) (26b).11*K 1A1I+ KIA 2 14YIk .4 hjKi2 +L 12 12 12(L+ '& X- 1
(r , 232+ KI I) 'L c( i . .N ) , KL(t ) C I ,  (2', ) P2 , 06h z~ ) ( - (26c )

"'2i I2 A a Here again the boundary layerterms PL 1and Pz

" ' 't ':z P ' I '+ will +' n,. .ot be giv,,.,, whil the rema nin variables.,
.(Xu2B2zts) 't(12i1 4 2 ), Ktz(tf). r12  are

"*'t2 *K2A2 +AiY2+% Kj2Ai2+ iA2 '" 2  28 L 2  (21b) 0O-A 0 P Oa (PO ';; O0'6 (;)vO (C tP040 G )X1  ('4 20 .

.(K232 +U Xi)'' (3jIC2 a.,JiKI . 1(tf)* r 2 (21c) (tnv) 0 ).x I (27a)

It can be shown that as - 0+ the Limiting A2P2  2A2A.?G 2Wr- 72T) C 22 (7b)

behavior of the gains become o. OP4... a u-p.-

*L a K0 + 0(sk) (22a) 0- Lh A +1 O ic

4G wi (0-Y) r '1 F C) 1 i(2c

K2K1 2 + KI2 () + OW), 9- (22b) 12 II 01Oc+l 122P 22
K i +( where the system matrices are defined by

where X( ) and i(,) represent boundary layer 0 " ". '  ' " . ( 2)

terms and will not be given here due to space 1 2A G2, V0 , V + D(
itti/ons. The other terms in (22) are Alain, it is observed that P0 and P2 are the

-i KO(AOoeO W;LO) -AO-I c;'NLo),KO covariances of the filtering problems defined by
the reduced-order slow system aid the quasisteady-

+ - - u-1uo . KQ t - ( state fast system, respectively.+- ; 5 -KO - L. (ear-OocimaL Limitint SoLution

o.K.- -. C2+ " LjL2 - 2 2 R 1 SjK2  (23b) In order to transform the filter and hence
- 2. 24uaA -h 'LL ()R- 1  the control into its slow and fast components, the

O=KoAL2 1 2
+  1 Y-2 L(XOBI'0 2 Bfollowing transformations to (17)-(18) are Lntro-

(23c) duced after first substitut.ng (16):

where a~ I-V
Ae MA 3 A N0- I I " M(TxI 4 2)

-1 30*51-AA 2
1

22 2 I + i 2 (29)

I
I

.... - - II



where T and M satisfy the differential equations of y by multiplying Y2 by L1, consequently Chis

F 2 F2T - FZI - mT(F - FLIT)  term does not diverge even for v o 0. It should be

- T + + (30) noted that the slow filter ts driven by che slow

F 21 ' '21 -BIRV. Discussion and Analysis
F2 *A 2 2R + ( ( +uFiK2 2 (31) In this section ve analyze Cth relationships

between the scaling parateor exponents and their
I10 'YA1 2 "(PlCi+ C 'OY412TlIC2 effect on the various variables in the system.

1 1222 First, the performance index will be finite if the

82* 2 ['(A' 2 Ci "rY,2 c '4.g ,r(P Ic. expression 2 cov(x 2 ) is finite. Rence, in view of
+ -Yp 12 CP)V'I C 2  (32) (15), vs should require chat 8 sacisfy

The resulting equations for the new variables I11 8 a (h - C) (41)

and q2 become after lengthy manipulations: Note, that this Implies full weighting to the feat

-L (F .FI2 BIRt*I( + variable only when a - h. Rowever, as discussed
11 1)~~i 1 3 1C L2 l1z~lz above, the case a - k is the only one for which the

3- Ifast variable is a well-defined process in the fast-
+* R'Nf2  (B21+ $.1 2) time scale. If at Y then from (27b) as &-

Si2 "the covariance of the error of the fast variable
.e(PCi+ U Ol 2PCV- 14O- 1 , C +61.C1- tends to Cho covariance of the variable itself,

12 12 implying that the fast variable is not observed due

+ 1-a) ,i 0- -jfl'I to the noisy observations, lance, for a meaningful
1 12 (33) problem we should require c - Y, even though c > Y, . -. " , ,, rr causes no difficulties except for Che disappearance

2 * 2 12 L a ' B2' l'12' " 1 1 2 ~ of the observations terms in (39), as u - 0
+
. For

+ r C ,-Y l, the case o - Y, the fast filter (39) formulation is
*b I u(1AP 2 Cj u YPC2 + T(F1CI' quite simplified as L& - 0+4, since only the fast

+ -YP2C,)]V-' (34) observation channel y2 remains, namely

where V0is defined by" 1  A i f +6 u f +P Ci ( 2

(t t) C)f C -1 ,s .
OM Y -(C ,4 6 )1I+6 M2 (35) v7"Cy 2 'C22  CJ* C2L" ' 22"2 A2J*- 2 A 2 B 2u.1

The near-optimal two time-scale limiting solution
is obtained by manipulating the matrices in (33)- where the neglected term ay be larger than 0( 4

)

but is negligible with respect to the variance of
(5 n e ch () f Finally, as for the parameter 8, the restric-

After several detailed manipulations which are V
S omiecd here, the resulting approximate filters- tion Imposed in (14) does not result in any dif-
controllers are given by ficulties, however, when 3 > . then the effect of

+ (A the slow system on the fast is negligible as LL-O+,
s )  

eve though its contribution is still larger than
12 " if + 64 001 ).

where u* - u0  O( ) (36) V. Summary

a -1 A singularly perturbed stochastic linear
0 a u 4u . o 1(N'L.o lo)x, * - 37) control problem is formulated where weighting

a 0f 00 parameters as powers of the perturbetion parameter
The slow and fast filters are given by are used. It is seen that if these parameters are

restricted to certain regions, the resulting con-

-,, (38) trol problem is well-posed. The most significant
parameter value is o which for a a 0 yirIds the pre-

2 a-YviousLy considered case and for 7 - 1 yields a well-
x fWA1f+uf+u1 defined fast variable. these two extreme values

(39) represent the extremes of parasitic fast variables
where I and finite variance meaningful fast variables.

t *" (40) Other values of o may be used to represent other
K~ -CA2 ~2(40) cases in beateen.

Note that the slow filter and control are the sam

as those obtained by solving the roeduced-orderprobem.by ormaly ettng 1 0 n te Lft-The formulation may be extended to multiple
p ee ntime-scales problems with more than one perturbation

hand side of (9). The terms 4 multiplying E parameter as in C81. Furthermore any problem in-
and C 2 in (38)-(39) sam from our definition volving several partitioned blocks of variables
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with different 7, S. V. i for each subsystem, 5. A. H. Haddad and P. V. Kokocovic, "Stochastic
may be solved in the same manner. This paper Control of Linear Singularly Perturbed
considered only a single fast subsystem for Systema," ZIZ Trans. on Automatic Control,
simplicity. AC-22, pp. 85-821, Oct. L977.
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Brief Paper

Control of Linear Singularly Perturbed Systems
with Colored Noise Disturbance*

HASSAN K. KHALILt

Key Word Iilex-Optimal control; order reduction; singular perturbations: stochastic control.

Summary-This paper considers the stochastic control of linear- with observation equation
quadratic problems for singularly perturbed systems when the C(O(1l+ C(1f (1)+W(t) (3)
input noise is colored. A near optimal linear output feedbackcontrol is obtained by optimizing a slow subsystem only. and performance index;

SINGULAR perturbation methods are physically motivated tools JET

for order reduction, separation of time scales and other T, 2 AT I

simplifications in control system analysis and design(l]. I \
Recently Haddad and Kokotovic have applied the singular +;i ,/[& "'(. )(")+.'Rudt (4)
perturbation theory to the stochastic control for Linear- 2 L 2 Z X2

Quadratic-Gaussian problems for systems with fast and slow
modes[2. In their approach both the input noise and obser- where dimensions of x, . u. y and v, are n, m. r, I and s
vation noise processes are modeled as white noise. For the same respectively. u is a sufficiently small positive scalar, and vtr) is
problem. Teneketzis and Sandell have developed a hierarchical colored noise modeled by
control design method to reduce the on-line computations( 3].
However, singularly perturbed systems incorporate fast dy- ,5(tl'Ht(V 1 (t+w 1 (t), '))to)=V~o (5)
namics; so if the correlation time of the system disturbances is not
short compared to the small times of interest of the fast modes. w, il and w2(tI are zero mean white Gaussian noise processes
modeling input noise as white is not appropriate, and does not that need not be uncorrelated. The covariance matrix of wit)
take advantage of singular perturbation techniques. As an (wi it. W't) is
illustration consider a circuit with parasitic capacitors. If we
model the input noise as white noise, these capacitors are not E1w21)w'sl =li( 't)* lt-s. (6)
negligible regardless of how small their time constants are. Thus xv) (. V1 (EI /

whenever the correlation time of the input noise is not short
compared to times of fast modes of the system, it should be Also. xo. x2 o and vl0 are Gaussian random vectors with mean
modeled as col : td noise. Hence in this paper we consider the values o o and 't respectively. There may be. in general.
case when the input noise is colored. Since colored noise is correlation between them, but each of them is uncorrelated with
modeled as the output of a system driven by white noise[4], our !w t. t g to:. The assumed form of the terminal cost in (41 is usual
problem is a special case o112] when the fast modes equations are in the treatment of singularly perturbed linear quadratic
noise free. We will keep the assumption that observation noise is problems(6]. A more general case, when p 2,/ T". are replaced
modeled as white noise. The derivation of a control algorithm by T', "2 respectively, has been treated in [7]. It results in
will show that this assumption does not degrade the results, singularly perturbed problems with infinitely large boundary

The assumption of colored input noise, or equivalently white conditions.
input noise with noise free fast dynamics equations. will enable us The problem is to determine the control mut) as a function of
to give a clearer presentation of the problem. We avoid past observation yls). to g s <t! which minimizes (4) under the
complications of the more general problem, such as ill-defined following conditions for r e [to,. t]:
quadratic performance indices in the limiting procedure(2]. (I1) All the matrices are continuous, bounded and have
Moreover we get an explicit result (Theorem 1) which cannot be bounded first derivatives.
obtained as a special case of the corresponding result of [2]. Tne (21 1a 0, RIt ) > 0. V t) > 0.
methodology here is simpler than that in previous treatments of (31 4 2 .(ti is a stable matrix lRe,.lA2 2 1): < -r for some
linear-quadratic singularly perturbed systems. We approximate a >0).
a performance index directly, thus avoiding consideration of Combining (5) with (1). (2. (3). and 14). and putting x'- (x,. v,)
boundary layers. Moreover the solution is analogous to the and z - x2. we obtain the augmented system
compact form of the deterministic case(5].

2. Problem statement *IE}=.4A (r(x(E)+A, 2 t z(E(
Consider the singularly perturbed linear system +.BzitNull+G'll~wlt), x1to)=xo 1

I IIu t) - A z (tlxlt )+.422(i Zlt)+ B21t lUll 1. zltol=Z (8)

'U t |,.,l~tit.])tXzt -) Czt~taC it~t ~ t 191

-I..-A,(ftnt..-~.((flt. x2(to=5 20  12) with performance index

*R.ceived 14 March. 1977; revised 6 September. 1977. The
original version of this paper was not presented at any IFAC j,, ' T' iT .

meeting. This paper was recommended for publication in revised I2 z iT T, '\a/i,.,
form by associate editor H. Kwakernaak.
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Brief Paper

We define the reduced problem. formally obtained by setting Lemma i. As an input to slow linear systems, p(r) can be
p-0 in (7)-01, by approximated to 0(p) by

Solt IAolt)x, (t)+Boltb(t+Gtdt)w1 tt). .o)Xo (11) "A 2
1

t)B(t
l

tt "

y(t),Cotr)x,t)+Doltlt+w(t) (12) for all e[to, ti), that is

with performance index f, p(tldt "- 4- (t (B2. (t)]dt. O .

J, -E x;ltf)T.,T,,,)4Jo [x;CoCo x, + 2a DoCox, , ie to .. tf] (30)

+'(R+D Do)]dt} (13) for some fixed e>0.

where Proof. From (25) and Lemma 2 of (9], we have

.40 -A 1 1 -4j. 2 'A 2 1, 8 0-B, -As,A.2 B2

C0 -C, -C, A 2-A 2 1. Do CIAAj,1 B2. Pt~x[~~o(.)P

3. Near optimal linear output feed back control / -\7
A trandormation due to Chang[8, which separates the fast +-f oexp A 2 (u)

and slow modes, is A I

(P)-l'-uML -'u~ x)(14 Itcanbe howx [B2 (ur)ml)+paG2()w 1 ()]dv+O(Ma). (31)

() ( L !2 It can be shown, by reversing the order of integration, that

where M~z | and L( ) matrices satisfy j,p4r)dr -,O exp A22to)(Go ) _l-lA 2,lto),o"

SLarbAt aL- A ;-;LA r,- A 12L -15 )
P*-- .(A22+,uLAj;)+A,,j+j(Ajj -1,zL)M. (161 4-j f, Cxpl A.z267)(- 9- [t-

Since the initial conditions for Lit) and M(t) are arbitrary. we x A22(alG2(a)wj (ogdoe
choose them to be

M(tol-At,(to)A22lto). (18) . I (AA 2

Applying the usual singular perturbation iechniques[l], we

obtain for all t e (to, tf]
for all t e[t +&.t1 3. 132)L~t). A 12A It M)+0(14) (19)

M(t)-A 12 (tOA 2-4)+Obu). (201 Lemma 2.

J t Js+PO(, ) (331

Then (7), (8) and (9) becomes where

0t) - (Atit) + Op~t) + (130(t) +0(ju))ut) Js C19, '(tf)Ttf I + 1 P,, Cj'C; Coli

*1G1 (t+OO())Wj(t), p(to)=po (21) +2u'DoCoq+u'(R + D Do )dt:. (34)

Proof' It follows from (29) and (30). that for an oipI

+ G 2 (t)w1 (t), q(to)-iqo (22) approximation of J the quantity

y(t)-(Co~t)+O(JU))P1)+ (C2(t)+O0U))V(t)+ W2(t). (23) -2'1t)A21(( 4110-.di21t)Bo utt) (35)

Letting 1(t) and p~t) satisfy the equations can be used instead of a in (10). Then. using t28) and (35). (10)
reduces to I

4(t) Ao(t)N(t)+ Bolt)wut) + G, (t)wl (t), J-Js+0(p).

'Vo) -No -Po (24) We define

uo(rl, A1(t p(t+ B(t w(tl+ gG(t)wj t), V tI-C(1tI OI11tI+,I. 16
POgO -- qo (25) Lemma 3. As an input to slow linear systems yit i can be I

it can be easily shown that approximated to (m) by y
1
(t) for all tec(to. t], that is

lt) a.Ol1) (26) ,ylt)dt -),y 1 (t~dt+Oqpi t ([to +..t . i37

pt-q(t+.O( U). (27) for some fixed P,>0. 1

Since .4, (t j is a stable matrix for all te [to. if]. using Lemma 2 of Proni: From (23). we have
(9] it follows that pin has bounded covariance as p-0. Then
from (14k (26) and 127) we have 'y~t t [ Co t +Or# ))plt)

%It)-qjt)+O!#d) 128) .fCt Ol)qt+z)dt.

l)- - .4zA!2 t)Aj tWt)*plt) +O(). (29) -f:t'[C5 (tpU( +C2 (t)qlt)+w2 (t)]dt O(I (38)
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since pt) and q(t) have bounded covariances as p-0. Using (26L -

(27) and Lemma 1. (38) becomes

fyttdt-f,'(1Co(0q(t)+ Do(r0u~t)+w 2(t~jdt+0(jd '(' * +V12

Theorem 1. The solution of the stochastic linear quadratic
problem for the singularly perturbed system defined in (7)-I 0.
can be replaced to an o(ji) approximation in J. by the solution of
the stochastic linear quadratic problem for the reduced problem
defined in (I IH 13).

Prooj' From Lemma 2Z we know that, to an o(pu) error, the -~.- '~ ~Yi
minimization of J reduces to the minimization of Js with respect (-63) ln
to (24). Assuming that yi(t) is available for measurement. (24L,~£_______
(36) and (34) define a stochastic linear quadratic problem for the LdI ~ ~slow variable q'(t), whose solution is given in (43. Since in that fVL Na
solution y1 I(C) is used as an input to a slow filter, from Lemma 3.
y I t) can be replaced by y(t) giving an olpi) error in the estimateH
0)(. An o(w error in 4(t) gives an 0 (M) error in J. When yi(t) is
replaced by y~r), the solution of this problem is identical to the Fir. 1.
solution of the reduced problem defined in (I1I H 13). This can be
seen by comparing 111). (12) and (13) to (24). (36) and (34)
respectively with x, replaced by V.

Remark 1. Theorem 1, besides establishing the main result for Then the near optimal linear control is given by
systems with colored noise inputs, is also true for systems with
white noise inputs when the noise does not appear in the =R + 56o) -[(bC,+ 8;J)i + 06t, +,§N,)
equations of the fast variables, that is when the system equations
takes the form of the augmented system defined in (7).whr Ianiregvnbtefles

Thus from Theorem I and [4], we obtain the near optimal whr ad regvnbtefies
linear output feedback control

-i a~~~- -(R+D D)-(DC.+-5N*. teto,tf) (39) 1 t)i 0  4(

where N(i) is the solution of the matrix Riccati equation

1-(C;Co -C;Do(R+ D D0 )D;C.) (0 5. Example

I A familiar example in singular perturbation literature is the
4with terminal condition N):f)- Ti. andf, is the optimal observer speed control of a dc motor. We suppose that the motor is

given by disturbed by a stochastically varying torque operating on its
A - shaft. For a typcai dc motor characteristics [10. pp. 12-14] the

*X k.AoltA,+B0 (t~u(t( state equations are

-i-K)e)(yu(-C0 (tr(*.(e(- Dsr)a(ii), te~ts.tff (41) i,- (K, J~x 2 -t-(1, J*w (47)

with initial condition Ji,Ito(-E~x(to)3-ko, where uz -CR.x-IT)2(R.u (8

KII=A~tC,(f+ G (t) 1 2 t)]; 'U, t~to~rJ 42) where x,. x2. and u are speed, current, and voltage deviations

and %It 1 is the solution of the matrix Riccati equation from their respective nominal values '712rad,s, 0.75 A. 27 V. and
w, is the disturbing torque. The motor constants are R - 16(C. C

A = A( - I , IV C)A AI G -G IVt V 1 o)'-0.02 V.Sirad. J - 10'6 Kg -in'. The small parametery - T, T.,2 where

- AC' V- CO + , V1G, G1 t IVT, '1 Gi (3)7 -electrical time constant - L;R

with nitil conitio and T, -mechanical time constant -JR.'CK.

4. Realization of tie control algorithm Scaling the time in 147) and 148) so that its unit is ins. our
A realization of the near optimal control algorithm is given in stochastic problem is gi'.en by

terms of the matrices of the original system defined in (1)-(5).
Let i, -20x 2+ 10' Vt, 149)

.V 'V V2) A _~(A, A.,) pi2 -- 3 l2Sx 10-5x, -25 101 x.,+.5625x 10-3uSO(

~O~ IV222 Co
1 

-C, -CA..2.421, 1
- C A2-2 0. 9 -J=- lim - EJP'(x2,+6400x2+2u)dt:

A,- C2, 2+ A. , - -Aj 2
1 t A34-,I, ~((2



Brief Paper

TABLE I algorithm is applicable to systems where ju represents small
uncertain parameters. The approach in this paper differs from [2]

Aj in that it represents a direct generalization of the deterministic
S J0" AJ.J-JJ OP Jo-X 100 problem [5 and preserves its form. It is important to notice that

_ Theorem I cannot be obtained as a special case of Theorem 2 of

10-1 19.48375 0.432824 2.22146 [2] unless an additional assumption is made that the fast
10-1 14.58385 0.02166 0.14852 variables are of little interest, that is
10- 1 13.5648 0.0017 0.01226 e o - ) and t, - l . "
10-4 13.787885 0.000119 0.00086

Another advantage of this approach is that no familiarity with
the singular perturbation literature is required. Only the
standard facts of the Linear-Quadratic-Gaussian problems are

where w, and w2 are uncorreated zero mena white Gaussian needed.

noise processes with Acknowledgments-The author wishes to express his gratitude to

0 Professors P. V. Kokotovic and A. H. Haddad for their
V 1 410" ' _[49  01 suggestions, guidance and fruitful discussion in the course of this

410 0.36 work. This work was supported in part by the Energy Research
and Development Administration, Electric Energy Systems

This is a realistic example of the special case of Remark 1. and is Division, under Contract U.S. ERDA EX-76-C-01-2088 and in
used to illustrate Theorem 1. We compare the performance index part by the U.S. Air Force under Grant AFOSR-75-2570.
J resulting from applying Theorem I with the optimal
performance index J resulting from applying the exact control References
for different values of#. The results are shown in Table 1. [11 P. V. KOKOTOVIC, R. E. O'MALLEY, JR. and P. SANNUTI:

Singular perturbations and order reduction in control
6. Conclusions theory-an overview. Automatica 12. 123-132 (19761.

We have applied the singular perturbation theory to the [2] A. H. HADDADand P. V. KOKOTOVIC: Stochastic control of
stochastic control for Linear-Quadratic-Gaussian problems for linear singularly perturbed systems. IEEE Trans. .4t,.
systems with fast and slow modes. The input noise has been Control AC-22 (5) (1977).
modeled as colored noise and the observation noise as white (3] D. TENEKETZIS and N. R. SANDELL JR.: Linear regulator
noise. Our treatment incorporates another important problem in design for stochastic systems by multiple time-scale
which the input noise is white but the fast dynamic equations are method. IEEE Trans. Aut. Control AC-22 14)119771.
noise free. In the resulting control algorithm, the output (4] H. K. KWAKERNAAK and R. SIVAN: Linear Optimal Control
measurement y(t) is used as an input to a slow filter only. No SYstems. John Wiley. New York (1972).
filtering of fast variables is required. This permitted the modeling (5] J. H. CHow and P. V. KOKOTOVIC: A decomposition of
of the observation noise as white noise. As an illustration, in near-optimum regulators for systems with slow and fast
determining the required speed of response of the measunng modes. IEEE Trans. Aut. Control AC-2 15( 701-70511976).
instruments only slow variables are of impottance. With respect (6] P. V. KOKOTOvic and R. A. YACKEL: Singular perturbation
to such low pass instruments, it is justified to model the of linear regulators: basic theorems. IEEE Trans. Aut.
observation noise as white noise. The assumption of colored Control AC-17 (1) 29-37 (1972).
input noise and white observation noise is thus consistent with (7) V. JA. GLIZER and M. G. DMrraIEV: Singular perturbations
the separation of time scales in singularly perturbed systems. in linear optimal control problem with quadratic func-

The main result of this paper (Theorem 1) is that the optimal tional. Soviet Math. Dokl. 16 16) 1555-1558 (1975.
solution of the stochastic control problem can be approximated (8] K. W. CHANG: Singular perturbation ofa general boundary
by the optimal solution of the reduced problem. This leads to value problem. SIAM J. math .4nal'sis 3 13) 11972).
saving in both on-line and off-line computations. Moreover, the (9] A. H. HADDAD: Linear filt-ring of singularly perturbed
Riccati equations that are solved are better conditioned than the systems. IEEE Trans. Aut. Control AC-21 141 515- 519
equations of the original problem. It is significant that the (1976).
approximate control does not require the knowledge of the value [10] J. G. TRUXAL Ed.:. Control Engineer's Handbook.
of the singular perturbation parameter u. Hence this control McGraw-Hill, New York (19581.

__ ___



SECTION 8

MULTIMODELING OF LARGE SCALE SYSTEMS



111t11 ThAMACrION ONt AUOKATIC COMflRL VOL. AC-23, NO. 2. AMMR IM7

Coto taeisfr eiinM kr sn

Cbonola I M Srtg ie for D anm aecion sytmak dfersn Uors iffn

dw~pd ut Mmo pe of th su s se ea dwd~i of decison makers. Present power system practice suggests
IUP4 W ~m.7W ~ ~ ~* ~ that even if the decision makers were given a complete

-iunm we depd a m d I W"r isu anou 11
sdla im. Ciniimm ter lb. va., of diN apehn model of the system. they would still use different sim-

ld~p uefa~ir olwd n i Wakmdb a pewar 1yi ecauml. plified models to match their individual needs.
In this paper singular perturbations [l1, [21 are em-

1. lrmownoNployed to capture the multimodel nature of intercon-
I. INhODUrIONnected systems with slow and fast dynamics. We consider

TT IS COMMON in systems with several decision systems strongly coupled through their slow pauts and
Lmakers that the decision makers assume different Sim- weakly coupled through their fast parts. In [31 such sys-

plified models of the same system. As a consequence, even tem have been treated from a periodic coordination point
if decision makers have the same overall goal, thieir ini of view. For this class of systems a new multiparameter
Vidual objective functionals may have different anltia perturbation method is developed and used in the design
expressions. Thus, large scale system problems should, in of regulators and Pareto, strategies. It is illustrated by a

* general, be characterized by multiple decision makcers load-frequency control problem for a two-area power
having different models, different information sets, and system.
different objective functionals.

This multimodel situation is illustrated by a multi-area 11. A MuLmqoosi. REPRwS&-rrAinoN
* power system T'he decision maker in an area employs a
*detailed model of his area only and a "dynamic equiv - A linear system consisting of strongly coupled slow

alent" of the remainder of the system. Other decision subsystems and weakly coupled fast subsystems is mod-
makers behave similarly in their own areas. Thus, the eled by

N N
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where dimx-no, dimzj-n, dimu-m, i-I,...,N. The We point out that this "kth model simplification" is
small singular perturbation parameters &, >0, one per achieved by the "kth parameter perturbation," that is,
subsystem, represent time constants, inertias, masses etc., when the only parameter assumed to be different from
while the small regular perturbation parameters 9,, i-0j, zero is St. In our power system example the first per.
represent weak coupling between the subsystems. The turbation (k - I) means that the decision maker of the
states z, are "fast" since their derivatives i1 are of order Area I neglects the small time constants of the Area 2,
I/S, which am large. and the second perturbation (k-2) means that the deci-

Linearized models of many real systems appear in this sion maker of the Area 2 neglects the small time constants
form. A well documented case is the load-frequency con- of the Area I. If there were interactions among the fast
trol of a two-area power system in which each area is subsystems, they would have been neglected by both
represented by one steam plant. A model of such a system decision makers.
based on [4, [51 is given in Appendix A. It is apparent
from this model that the time constants of the speed III. Tin DESIGN PRoBlM
governor and the turbine are much smaller than the time
constants of the system inertia and the integral control. In the above presentation we have viewed the model (6)
Hence, we select the ratios of small versus large time as a result of an intentional model simplification, that is
constants as the singular perturbation parameters 9, and as if the original model (1) had been available to all

decision makers. We now make a more realistic assump-
tion thatmax( Tai, T11)

' . (2) each decision maker knows only his

We then substitute ToG and T, in terms of $, and identify smlified model (6).

The earlier interpretation remains valid as a description of
x'-(0,V2,1f ,Af 2,1Ap 2 ) (3a) the relationship between the original model (1) and its

as the slow states, and simplifications (6), but need not imply the decision
maker's knowledge of the original model.

z;- (Ape , 4), i- 1,2 (3b) The main purpose of this paper is to analyze the impact
of such multimodel assumptions on the design of control

as the fast states. Then, taking into account that the strategies. We consider that the kth decision maker will
contro act upon speed changers, st-&,, we obtain the base the design of his control strategy on the kth model
model in the form of (1), where the subsystems are uncou- (6) to meet his set of design specifications. To be specific
pled, G-Y0. let the design specifications of the kth decision maker be

Let us now assume that the decision maker of the kth expressed in terms of a cost functional Jk-Jk(x,zk,u,).
subsystem neglects the weak coupling parameters and the The cost functional 1, of the ith decision maker is known
fast dynamics of all other subsystems, but retains the to the kth decision maker in the form J,(x,u) since the z,
exact model of his own subsystem. In the model (i) this variable does not appear in his model (6). For the well.
simplification is equivalent to the assumption that Sj-mO, eedness of this design problem it is assumed that
j,0k, and S,-0, that is to J,(x,u%) is consistent with J,(x,z,,u,) in the sense that it

N I can be obtained from J using (5). The kth decision maker
ik -AoXk + I Aozj + I Bo uj  (4a) problem is characterized by (6) and the cost functionals

j-I J-I

&kk,,Akxk+AAzkt+Buk (4b) - Jk (xzkuk), J -J,(xU%), iok,i l, ,N.
(8)

O-Ai, x, + A~z + B, i' k, i- !,'. . ,N. It will be viewed as a perturbation of an original problem

characterized by (1) and the cost functionalsNow, if A,, are nonsinglar, the substitution of
z, -.- AT 1(A,,xt + Bju), b~kji-l,..,N (5) A Jk !(x. z,,,u,), k - 1,'" -, N. (9) .

This original problem will be helpful in the analysis of theinto (4) results in the kth simplified model impact of the multimodel situation on the design of Pareto
optimal strategies.

X& ,-A~.rx,+A.~z ,, u,+ .B (6a) Motivated by the single-parameter singular perturba-
Sk' Axk + Aakz*+ Btkut () tion approach, we propose that each decision maker will

(6b) use the two-time-scale design method [1]. He would then

where have to solve two separate subproblems for the fast and
slow subsystems of (6).

A,,-A. - I AVA;'A,., Bk-BV - A, A'By. In the fast time scale ,- t/$k he would have to design
jA- . a fast control u5 for the fast subsystem



IOAL AND KOKOOVIC: CONTROL St ATIOUM FOR DCMo wAIMS

Akzk+Etuk (10) A.+ {E.1(+G,4,'BM)G,

subject to the initial condition +BG ,,47'A,} x+. (A+, G¢), (15a)
'A,.),()) I(+ (All)r~j(1a

4zAV(O) - zu + A'(Akx,. +Bkkukb(O)). (11)1 '-

Since the fast subsystem (10) is completely uncoupled Sz11-(A11+ B,Gf )Aj(A 1 .+ BtG 1 )x
from other states and controls, the design of u can be
approached by each decision maker as a separate 3rote
regulator problem. S212 (A22+ B2G2,)Aj'(Au. + BrG2,)x

In the slow time scale, the slow subproblem of the kth +S4A21Z1+(An+BnG2/)Z 2 (15)
decision maker is obtained by setting Sk -0 in (6) and
using (5) to eliminate z, from (6) and from the cost where, without loss of generality we consider the case of
functional Jk. The relationship between the simplified only two decision makers (k-i, 2) and denote $12-S 3,
model (6) and the original model (1) is such that setting -64. In t system there are four perturbation
S, -0 in (6) is equivalent to neglecting all the perturba- parameters which are now ordered as components of a
ton parameters in (I). Together with the assumption that vector & in a set H of R 4. The coupling parameters S,
J(x,u%) is consistent with J,(x,z,,%), this implies the ex- 64 can be positive, negative or zero, while the singular
istence of a common slow problem for all decision perturbation parameters &,, S. are strictly positive. Sys-
makers. tems of the type (15) have been investigated in (6] under

The reduced order model for the slow state x,, the additional assumption that in the limit, as the norm
N 11 II--0, we have either &I/S2-O or $2/6;1 O. Since,

., -A,x,+ J Bkuk,, x.(0)-x. (12) under this assumption, one of the fast subsystems is much
k-1 faster than the other, this problem is treated by two nested

single parameter perturbations and is referred to as the
where multitime scale problem. Therefore, if it is known that

N &'& 2 or &2"S then the existing multi-time scale re-
A,.A. - AA, A 'A,, Bk, - Ba - AkA- 'Bk suits can be used to analyze (15). We now consider the

-i new problem when 9, and &2 are of the same order of
involves all the slow controls uku and thus the slow prob- magnitude, that is when their ratio is bounded by some
lem has to be solved as a problem with multiple decision positive constants m and M,
makers. To summarize, the design problem is approxi- .(16)
mately decomposed into N fast subsystem regulator prob- m , .'. < M.
lems and a slow game type problem. Thus, the set H to which we restrict the possible values ofLet us assume for the moment that all these subprob- & is a cylinder in R' whose base is a conical sectr in R2.

lems have been solved and that as a result we know the I cnrasRh ebaseisacscale e call thisfeedback matrices in In contrast t the multitime scale problem we call this
case the multiparameter problem. Our power system ex-

uk-G,x, u1-Gkfzk k-I,- -,N. (13) ample is an illustration of this new problem since the
small parameters of Area I are of the same order as those

According to the two-time scale method [I] the control of Area 2. In many other situations the subsystems have
law of the kth decision maker using the feedback matrices similar speeds and do not allow the multitime scale
Gk, G, will be composed as follows assumption.

u i )IIA uM A x .() We are now interested in predicting the behavior of the
kk actual system (IS) for all small values of & in H. We base

At this point, this control law is an ad hoc transplant of this prediction on our knowledge of the slow response
an earlier state regulator result into the new multimodel x,(t) and the fast response zif(t/&), z (t/& 2) of the
environment. Our task is now to study the properties of subproblems in the preceding section.
the actual system (1) controlled by the control law (14). Theorem 1: If u1 1- Gifz,] and uuf- G2fzv are designed
For this purpose we analyze the relationship between the to stabilize the fast subsystems (10), that is if
response x(t), zk(t) of the actual system and the response ReA(Akk + BM Gkf) <0, k- 1,2; (17)
x,(), zkI(t) of the designed subsystems.

then, for every finite T > 0, there exists a positive scalar a
such that

IV. MULTIPAU. M I PERITURBATIONS x(t)Wx,()+0(0$ I1) (18a)

When the proposed control law (14) is applied to the z1(t)"-Af(Ao+B11 G13 )x,(:)+z 1 (f/ S
1 ) + (II$II)

actual system (1) the resulting feedback system is (18b)



mRANLAcnw cmAuflMAU cOoTmno vu.. Ac-23, N& ., Am 1978

Z( m -A) '(A 2 , + BUGZ,)x, + zV(tl 6) +0(116 II) P3 0,M 1E + 2 M2L2 (A., + BGv) -(A., + B., GV)
(18c) - 1 E. M I + 64 M2 421 -0 (220)

hold for all 0<t4T and all Sell 0<11911.o. If in P4uM 2E2+,ML, (Ao2+B.2G21 )-(A.,+5. 2GO,)
addition u, -G,,x and u -G2,x, stabilize the slow sub-
system (12), that is if -SE°M2+S3MnAI2-O. (22d)

2 When bounded L,, L2, M,, M2 exist the transformation
ReX A, +. G.) <0 (19) (21) is obviously nonsingular for all 9 in a sphm around

k-I ) -0. The existence and differentiability of LI, L2, M,,

then (18) hold for all t (0,oo). M2 with respect to is established as follomFrst note

Remak In other words this theorem claims that on the that in view of (17) the unique solution of (22) at 6 -0 is

respective interval of t the expressions (18) provide a 4(0)-A -'(A,.+ BkGb), k-1,2 (23.)
uniform approximation of x(t), zj(t). and z2(t) as 6 -,
ai , ny trqertoy in . M(0)-(A.+B.O.)(AA*+BkO0,) k-1.

mof.. We first transform (15) into the separate slow (23b)
and fast parts

Then consider the operator P(LI,LJM,M2,S) whose
.y- E.y (20a) components am PI, P2-P3, P4. This operator is analytic in

9,t6,..Envn+[ 3A12 +1L,(A. 2 + B.2G )]v2 (20b) all of its arguments. At 9 -0 its partial derivatives, with
respect to LI, M, and L2. M2 are (An+BuGV) and

$2I2-[ ;4A21n9 2L2(A.I+B.,GI)]V,+Eo2 (20c) (A2+ B2G,,), respectively. They are invertible because of
(17). Thus, by the implicit function theorem, LI, I, MI,

where and M2 are analytic in 9 at 6; -0. Using this result the
matices and the initial conditions of the transformed

E .-A.+ I (.(+G .m)O system (20) are uniformly approximated by the matrice
and initial conditions of the subproblems (10), (12) in the

+ 'A,.-(A.+ B,) , preceding section. that is,
y - [A, + B,G,,, + B2,G2 +0(II6; lol],,

Ek (A kk +B kk Gf) + k L' (A t+ B t G q) , k -= 12 . y(0) -x. + 0(115 11) (2,a)

The transformation used is 61'6,- [(All + B1 o1V)+0(I1 II)]v, +0(116 II)vt,

. ,, .tIIi)-z, +A(A,. B..+ III )]lol (4b

K] L, 11 0 
j, 

v,(0)-z2,+Aii'(.+B22G,)xo+0(115 II). (24c)2 L- 2 0 1 2 j 2

(21) The uniform convergence y(t)--x,() as 1161-*0 im-
mediately follows from the continuous dependence of

where o, I,, and 12 are the identity matrices of the (24a) on its right hand side and the initial conditions. To
apppriate dimensions and L,, L2, M,, and M2 satisfy the prove the convergence of the fast variables we introduce a
matrix algebraic equations joint fast time scale r- t/V' t and obtain

P2m(A..+ B 26,)L 2-(A + EBG. ,)A i.'(A 2,+ B2G 2.) d 6 2,

-$,LEo+ 4A2 L,-0 (22b) *, 0

(A ll + B ,,G l) 01115 II) 0(116 11) 16, (r')
• (25)

0(016; 11) (A22 + B22G+) +0(11I; 11) I52() (5

LLI J L I

Few,-+
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where v,(L )-. ,(A O , 2(t)"02(r. The limit 11X11--0 ex- . X+ChZk. (30)

pands every finite t-interval to infinity in the r-scale, a
characteristic of the "stretched" time scales in most singp- A Pareto solution is a pair ul, %2 which inimizes

lar perturbation problems [6]. For infinite intervals re JnYJI+3'J, O<Yk<1, yI+32= 1  (31)
(0,o) the stability property (17) and the bounds (16) on

&[/&2. &2/&l. guarantee the uniform convergence 61,r) for some y, and y2. The optimal state regulator is a special
-0o(r), ()--t o(r), where 6310(r ), 620(r) are the solu- case of this problem when the decision makers agree on a
tions of choice of y| and y2 as weighting factors.

The specific form of the subproblems of Section III is

RIO J2 as follows. The slow subprob/em is characterized by (12)

dr I(All+ B11G 16 0(r), and the cost functional
,, - 1'1, + Y2, (32)

1o(O)-zlo+,A1'(A1,+ABllG,)x,, (26a) where

- ~ J. ~G 1 O~r) ~' f "(x~ ,CC~x, + 2u JD,JC&x, + uLbuj,) dt,
V 4,K C A*A '4A ,, -Di - CkAi.'B,,

60)-z2, + A, '(A2, + B,)x.. (26b) Rk - R, + D4Db. (33)

Its solution is
Now the nonsingular rescaling of i" into r, and "2

-u 
t - - RA '( DL C ,+ I B /K, )X, 

(34)

'tIin 12 "r, 'r2 "1 7

1 V72 ~ where K, is the positive semidefinite stabilizing solution of

the Riccati equation
and the comparison with (10) and (11) shows that

16o(- Z,/(,,), (27a) KA,+A K,+ , K

0200r) -Z2/('r2). (27b,)4m + y. +,c (- Dj, ,-'D,)C, -0 (35)

Using the inverse transformation of (21)

[xl I IMI "2M Y where
z I -LI 1,-SILIM, -& 2L|M2  VI 2
2 - L2  -$,L 2MI 12- 2L2 M2 j) 2  A,-A,- i tR;'DC,.

i-l

(28) Denoting B,-(B,, B2,) and C-(C, C;,), a necessary

proves (18). and sufficient condition [1] for the existence and unique.
As a simple application of Theorem I consider the ness of K, is that

pole-placement design of the load-frequency control in
Appendix B. Each area designs its controller matrix Gk, to (A,, B,, C, ) is stabilizable-detectable. (36)
place the fast eigenvalues. The slow eigenvalues are placed This condition does not depend on the weighting factors
by the centralized design of G,,, G,. ', 7Y.

The fast subprobem (k) is characterized by (10) and the
V. PA.iro OrrmAL STRATIOY cost functional

We consider the situation in which decision makers J -. 2Jo(zt/f CA*zkf + u/RKu)drk" (37)
decide on their strategies through mutual cooperation. 2
The solution of such problems is found in the class of Its solution is
Pareto optimal strategies [71, the essence of which is that
no variation from a Pareto optimal strategy can decrease M-k - R' B/ Kkfzk (38)
the costs of both decision makers. Let each decision
maker have a quadratic cost functional where Kq4 is the positive semidefinite stabilizing solution

of the Riccati equation
Jk f *Y4 +U J1 R,>0 (9

-+ u"R~u,)d. R>0 (29) A +A' Kv+ C~tCk - KklBkR;'B " KA-0, (39)

* .i ~ . ,
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which, as is well known, exists iff In this form all the coefficients in (44) have well defined

the triples (AmBC) are stabilizable-detectable. (4) limits as S-0 along any trajectory in H. In particular let
a¢ -im(c;/ ;), i,j- I, 2, then the limiting process in (44)

The specific form of the control law (14) is now with (16) results in

1 - & - 'B, KIAI B. ),R,,; (D;.C. + -LBIK, ) K-.,(O)A*- +K.,1 (0)A 1.+ 2 ()A2,,-+-A;K 1 (0)
Y + A '.o ,(0)+A' K.2(0) +y,C;,C°,

+ R "B, KktA,. ]x- R"B1,Ktyz,, k-1,2. (41) +?CzzI .(Oo,.(O

When u, and U2 are applied to the actual system (1), we I K. (O)S.2K. (0)- IK.. (O)S.,K. (0)
know from Theorem I that for sufficiently small $ the 72  Y1
resulting response will be close to the predicted one. In an
optimization problem it is of interest to check whether the - -- K.2(0)02K'()- SK".(O)S,-,(O)
resulting values of the cost functionals will be near their Y2 Y

optimal values. The optimal values J' and J2 are obtained I K, (O)S K. 1() -I K.K (0)9K(O)
with the strategies ut', u2 which optimize the costs for the Y1 72
actual system (1).

Theorem 2: Under conditions (36) and (40), the ap- IK. (0)S~K,(0)-0 (46a)
plication of u, and u2 of (41) to system (i) results in J, Y2
and J2 satisfying the relations

lim (Jk-J)- 0, k- 1,2 (42)
6-.0 + A2.K2(O) + ?f€.C,

where $-*0 is taken along any trajectory in H. IK.(0)S.K,, (0)- IK., (O)S,,K,, (0)
Proof. The optimal strategy for the actual system (1) ?Y I

and (31) is
(43) s -! (K. (0)A2 + K.2 (0)S22)K;2(o) -o (46b)

where K is the stabilizing solution of the Riccati equation K.(0)A.2+K. 2 (0)A+ I A~oK n (0)

KA+A'K+Q-KSK-0 (44) + A .K22 (0)+ y2C.2C22

and - .Y31 (K. (O)9, + K,, (O)s 1 )K,2(O)

A, A., A,2  Bo1 Bo2 1

A,* Al, 63A12  B0 - I K. (0)972K. (0)0?2

A- ~B,- B,
A2, SAA, An - 7 K.2 (0)S,,n (0)-0 (46c)

7 2 J L J L K 1 ( O ) A , + A 4 K , , ( 0 ) + ? , C , ,C - I K ,,I ( O ) S , K ,, ( 0 )

Q-InQ,+2Q2 , S-"LS,+S 2 
+  

12  YIY1 Y2Vi 72- -K 2(0)S2K12(O)-0 (46d)[ ;cc,1  c ,c. 0 c;c= 72Q-c;1c,, c;1c1  01Q 2  0 0 0 JV*21
010 0 j 2C. 0 Ci2C2 Yj , I()IIK 0

Sk -B, R-B, and R"'-(x' z' z).k I VaI-- K,2 ()S2K(0)mO (46e)
To avoid unboundedness as & --*0 the solution K of (44) is 72

sought in the form - Ka21
K2 (0)A + A' K2 (0) + ?%CCn - K2 (O)S, ,K (0)rK., &,K*1  &2K.2  1V

K S,K;, s,K,, VX K. (45) -±K2(0)S2,K,(0)"O (46f)[ Y2
S2K. 2 V&6; K;2 2K22 where
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S -*-'B., . R- 'B, S* - B,- Bj,. with

The unique positive semidefinite solution of (46d), (46.), 2

(46f) is
i-I Yi

K,,(0)0)yKj 1  K(O-0, K P(0)-.y2 K2 1 . (47) To evaluate the actual ct Jk we express u, andu2 of(41)

Then (46b) and (46c) yield as

K.,(0)-K.(0)-, k (48) K. 0, , 0

where um- 'Bk GIK0

4 - ( 9M K k - A )(A k - SJk ,, ' I V -t U (56)

i4 - (A .Kk; + C C**)(A,4*- Sk)Kk' (56)

and the substitution into (46a) results (after lengthy where
calculations) in Kk- KE, - "tE, -Kk, (0)

K. (0)A, +i;K. (0)
2[ K When u, and U2 are applied to (1), they result in+ , I- ~ (O)R,R;'B;K.(O)

jA. - -1.N ., k-l,2 (57)I2
+ 7yC (i- DI,RJ'D,) C, -0. (49) where N (k) satisfies the Lyapunov equation

This equation in K,,(0) is identical to (35) in K, for the N(k)(A-SL)+(A-$L)'N(k)+Qk+IL'$tL-O. (58)
slow subproblem. The uniqueness of the positive semidefi- NS(
nite stabilizing solution implies that 7k

K. (0) -K,.  (50) To calculate the loss of performance (J - Jk) we subtract
(52) from (58) and obtain the equation for N(k) - M(k)

-

Since the above solution of (46) does not depend on a,2 W(k)

a21, the limits K(O) of KA are uniquely defined as
; --.0 along any trajectory in H. We now use this result to W(k)(A - SL) + (A - SL)' W(k) + - L'SkL

evaluate the limit of Jk as --.0 in H. 7k,

1 .M(k)., k- (51) -IKSIK+M( S(K-L)+(K-L)'SM(k)-O. (59)

Where M(k) satisfies the Lyapunov equation We again assume the form (45) for W(k). This allows the
M(k)(A - SK)+(A_- SK),M(k)+Qk+I-LKskK0." limit & -,0 to be taken in (19) along any trajectory in H.

Yk Knowing the stability of A, (Al,-SK) and (A22-

(52) S22K ,) it can be shown that

Assuming for M") and M(I) the form (45), we obtain, by lim W-0, $ H (60)
an analogous argument, the limits

which proves Theorem 2.
Mfl 1(O)-K, Mil"(0)-0, M )(0)-0, An interpretation of the proposed design is that a

MAjI(O)-MW(0)E, - ,, M.'j(0)-MW(O)E2 (53) Pareto game played on the full system is replaced by a
Pareto game played on the slow part of the system and

M1 (0)2-0. MI (0)-0. MO)(0) - K2 , two regulator problems for the fast subsystems. The slow

M4)(0) - M.2 (0),t, M.0)(0) _ M.'(0)P2 - £ (54) Pareto game has the same weighting factors as the original
game. The two regulator problems do not depend on the

where M.*)(0) satisfies the Lyapunov equation weighting factors. This means that each decision maker
optimizes his own fast dynamics independently from the

.1I ; M )(0) + other decision maker. They need to apree only on the
(, (0) +C,(- D D,), optimization of the slow dynamics.

(55) A Pareto game problem for our power system example
-k )is solved in Appendix C.

_ 4~ m ,
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VI. CONCLUSION deviation from their steady state values, the disturbance
inputs can be omitted from the equations. According to

A characteristic of large scale systems with multiple (2) we choose 9; -92 -0.2/20-0.01, that is T,-l106k,
decision makers is that the decimon makers use different 7 -20Sk. Then
simplified models of the same system. Each decision
maker models his own subsystem in detail and assumes a
certain "equivalent" reduced order model of the rest of 0 0 4.5 0 1

the system. In this Ippe an attempt is iade to interpret 0 0 4.5 - I

this practical multimode situation as a perturbation prob- A0 - 0 0 -0.05 0 -0.1

lem. In present formulation the two basic assumptions are 0 0 0 -0.05 0.

that the fast subystems are weakly coupled and that the 0 32.7 -32.7 0

model of the slow subsystem is common for all decision
makers. The latter assumption is less realistic, but has
xeatly simplified the treatment. Our multiparameter per-
turbation analysis establishes sufficient conditions for the A0, 0.1 ] A0m[0 3
multimodel response to be close to the actual system 0 0 0.1 0
responW This analysis serves as a basis for a decomposed

A-o.0 0 0 0 01 A2.r 0  0 0 0 01

0 -0.4 0 0 0 0 -0.4 0

design approach, as illustrated by a power system exam-pi.-kk 0.05 0.05 ] Bok.0, Bk, 0.1 1.
pi.A,- 0 - 0.1 0

APPxmix A 0 0 4.5 0 1

We consider a power system consisting of two intercon- 0 0 0 4.5 - I
A, 0 00 -. 45 0 -0.1

nected identical areas. Following [4], [5] the model of each 1.0 0 0 -0.45 0.1
area consists of the governor equation (A-1), the non-re- 0 0 32.7 -32.7 0
heat steam turbine equation (A-2), and the power balance
equation (A-3). 00

00
TGd -&a+,P,- Af A-)BI.- 0.1 B2, o

T4.60 - 1AG +&a (A-2) 10
TAi-- - Af+ I (&p, - Apd- A1pt,). (A-3)

Taking 4P,,--AP,,, the tie-line equation is APmPENDx B

AP,,- T,, (M -Ah). (A-4) In pole-placement design of the power system definedin Appendix A, we solve three subproblems, one for the
To fulfill all design requirements [41 the integral of the slow subsystem and one for each fast subsystem. For the
area control error (ACE) is incorporated into the state slow subsystem the eigenvalues are placed at
vector fA )-0.2±j.1, -0.25±2.5, -0.2 (B-I)

(A-5) with the feedback gins

The system variables entering (A-I)-(A-5) are: Aa- Gi,-[-0.2486 0.1375 -2.5 3.0 -0.9268] (B-2) *
turbine valve --.Ation variation; 4PG-turbine output G-[-0.0556 -0.0556 0 0.5 -0.9924]. (B-3) -

variation; Af- frequency variation; AP,-speed changer
variation; &P12-tie-line power flow variation. Typical For convenience we assume that the desired eigenvalues
numerical values of the system parameters are r-speed of the two fast subproblems are the same. The kth fast
regulation-0.25; TG-governor time constant-0.1; T- subsystem eigenvalues are placed at
turbine time coustant-0.2; T-system inertia time con- -
stant-20; T,2 -synchronizing power flow coefficient- -8,-12 (1-4)
32.7; D-0.5, b,-4.5. All quantities are in per unit and with the feedback gain
time is in seconds. Assuming a constant load disturbance
AP, and redefining the state and control variables to be Gf - -0.42 0.5]. (1-5)
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Therefore, from (14), the feedback control is If this Pareto problem had been solved for the actual
ul - 0.473 .264- 848 .76 1.8 ]x .system (1), the optimal solution would have been

ai1-[ -. 4773 0.264 -8.48 5.76 -l.78]x

+[-0.42 -0.5)zI (B-6) uj'-[-0.3162 0 -4.5806 1.8694 0.053]x

u2 -[0.1067 - 0.1067 0 - 2.72 .-1.91 ]x+ [-0.1079 -0.0759]z, + [0.0378 0.0176]z 2 (C-12)

+[-0.42 -0.5]z 2. (B-7) u2i'[0 -0.3162 1.8694 -4.5806 -0.053]x

When u, and u2 are applied to actual system (1) the [0.0378 .0176]i4-0.l079 -0.0759]z 2  (C-13)

resulting eigenvalues are resulting in the average values

- 12.964, - 12.577, -7.05, -6.37, E (Jr) - E (J ) - I1.7x 10-4. (C-14)
-0.252±j2.634, -0.21 ±j.099, -0.2095, (B-8) Thus, from (C-I1) and (C-14), we find that each cost

which are close to their desired locations, functional has a loss of nine percent, that is

(-12, -12, -8, -8, -0.25±j2.5, -0.2"±j., -02). E(J E-E(Jz}) EEJ2 }-E(J2) -0.09. (C-15)

E(J-) E(J2)

APPENI'x C In a more general case, when the two control areas are
different, the application of the control law (41) may

Let the cost functionals J1, ., of the area decision result in one of the decision makers benefiting instead of
makers in the power system of Appendix A be defined by having a loss.

Q, -diag(1,1, 1, 1, 1, 1,0,0) (C-I) AcxNowLEomnrr

. Q2-di*i, 1, 1,1,1,0,0,1,1) (C-2)
The authors thank Professors J. B. Cruz, Jr., W. R.

RI-R 2 -20. (C-3) Perkins, and J. V. Medanic who played an active part in

Suppose that they agree on a Pareto game with weight- the development of multinmodeling concept presented
ing factors here, and Professor G. Blankenship who helped in revising

this paper.
T' M '2-0.5. (C4)

The solution of the slow subsystem Pareto problem is R 4

ua,-[-0.3015 0 -4.079 1.8219 -0.0478]x, (C-5) ['1 J.H.Chowandp.V.Kokotoa'Ad apti of r-Eimum reuatr for stms with slow and fast mod Es.
Trm AUWUL Cavr. vol. AC-21, pp. 701-7, Oct. 1976.

ub-[0 -0.3015 1.8219 -4.079 -0.0478]x. (C-6) (21 P.V. Kokoroic R. .F T. and P. suti.-Sinu
per turbations and order reduction in control thwy -An overview,"

The kth fast subsystem is optimized by AitanwiseA , voL 1Zpp. 123-132. Mar. 1976.
[31 C Y. h and .Athans, "0C the periodic cordinton of

iam stochastic systems." Aummutia, vol. 12. pp. 321-335, July
uA,- [ -0.01 62 -0.0326]zt,. (C-7) 1976.

(41 M. CAloc "Dynac state-space models of electric Power ns-
Then, according to (41), the control law is te." Dept. of Electrical Ens, Univ. of linois. Urbans. 1971.

151 0. Elpd.EkfW E Spas. Theeey: An Introtdweon. NewYork: Mtcnw-Hili, 1971.

ul-[-03162 0 -4.473 1.911 -0.05]x 161 F. Hopp eadt -Propetie of solutions dia diff tialedatow with Suanl Cowpm. Pwr AWLt Mob,. vol
OfV, p. 30 7 ,10 , 1 ;a1.

+[-0.0162 -0.0326]z, (C-8) 171 .W. Fn .d Y.. on" 4 ur.aindffmtial pine." J.Optii. Thmy AAW/, vol 3. no. 3. pp. 184-206, 199.
u2-[0 -0.3162 1.911 -4.473 0.05]x

+[-0.0162 -0.0326]z 2. (C-9)

To evaluate the cost functionals using (57), we assume
that the initial conditions are zero mean independent
random vector with covariance matrix

This choice is typical, given the physical meaning of the
state variables 141. Then the average value of the cost

.* functionab are

E(J,) E(J 2 -12.75 X10-4 . (C-I l)

7:
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D-STABILITY AND MULTI-PARAMETER SINGULAR PERTURBATION

HASSAN K. KHALILt Aro PETAR V. KOKOTOVIC+

Abeo'eL A new multi-parameter singular perturbation problem is formulated. Suficent conditions
for uniform asymptotic stability are derived, and asymptotic behavior of solution is investigated.

1. Inaoduction. Single parameter singular perturbations have been extensively
used in analysis and control of dynamic systems (1]. Even if they possess several small
parameters, electrical networks with parasitics and control systems with small time
constants, masses. etc.. are modeled as single parameter problems. This is done by
expressing small parameters as known multiples of a particular parameter AL, such as
m - a,, T - a, where m is a small mass and T is a small time constant. A
characteristic of this approach is that its results depend on the scaling coefficients ,-
which are assumed to be known. In many cases of practical interest such an assump-
tion cannot be justified. In multi-controller problems and diffcreztial game problems
small parameters may rcp;esent different independent ways in which individual
control agents simplify the model of the overall system, and therefore the relation
between the small parameters must remain arbitrary [21. It may be argued that a more
realistic study of parasitics should also allow for the ignorance of the ratios of small
parameters.

The purpose of this paper is to examine the vector singular perturbation problem
when all the small parameters are of the same order of magnitude, but can have
arbitrary bounded ratios. This problem is different from the multiple time scale
hproblem y3m, [4 o when the parameters are of different orders of magnitude. We treat

the uniform asymptotic stability and initial value problems for multi-parameter
singular perturbations. In contrast to the boundary layer system stability requirement
of the single parameter case [1], we employ a generalization of D-stability. Several
tests are given delineating important classes of systems satisfying this condition.

2. Multiperameter perturbadons. Linear systems with N singular perturbationparameters eI, • N have the general form

aM

(la) t Ao(t)x+ +_ Aoi(t)z,, x(ro) - Xo,

(ib) Vei, Ajo(t)x +" A q (t)zj, zi (to) - zi,.
'I

where x a RO, :, e R, that is the system dimension is n no , n,. The small
positive scalars S,". eV represent time constants, inertias, masses and similar
physical parameters [I]. They are ordered as components of a vector s e R N. System
(1) satisfies

Assumpton 1. For all r to, all the matrices on the right hand side of (1) are
continuous, bounded and have bounded first derivatives.

A characteristic of singularly perturbed systems is that the variables -, are fast
since their derivatives are 1,s, large. Under the additional assumption that e,-1/ei.- 0

* Received by the editors November 10. 1977. T1 his work was supported in part by the Department of
Energy. Electric Energy Systems Division, tnder Contract U.S. ERDA EX-76-C-01-2088. and in part by
the National Science Founaaton under Grant NSF ENG-74-20091.

Decision and Control Laboratory. Coordinated Science Laboratory and Department of Electrical
Enginering. University of Illinois. Urbana. IL 6Qb01.
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as e, -. 0. the system (1) exhibits N time scales, that is z,., is fast relative to z,. In [3J,
[4] such multi-time scale systems are treated by nested single parameter pertur-
bations. However, in many real systems the parameters are of the same order and do
not allow the multi-time scale assumption. We therefore assume that the ratios of
# i. ,N are bounded by some positive constants A* and A,

(2) rE f, i, I t,. . IV,

that is the possible values of a are restricted to a cone H c RN. In contrast to the
multi-time scale systems, in our case all zi's are in the same time scale. We call this
case the multi-parameter problem. A fundamental requirement for every multi-
parameter perturbation result is to hold for all sufficiently small e a H, that is as e - 0
along any arbitrary path in H.

System (1) is rewritten in a form resembling a single parameter perturbation
problem

(3a) x Ao(t)x +Ao()z, x(to) = xo,

(3b) A! DAfo(tjx + DA,(t)z, z (to) = zo.

However, it is not a single parameter problem because both

(4) 1sm(a " )

and

(5) D - Block diag [.1",..., .- IN]

depend on all e,'s. The above form is convenient since, in view of (2), the matrix D is
bounded for all e e H,

(6) m isM

where m, M depend on AE, Ri. The matrices Aof, Afo and Af are formed of the
submatrices A0 j, Ao and Aj, i,i= ,..., N, respectively, and :' [zL,"., z'. A
reduced system is now formally obtained by setting e - 0 in (3),

(77a) I-="Ao(t),9+Aof(t)1, 'a g (to) m zo,

(7b) 0 - Ao(t)f + Af(t)f. )

Assuming that det Af(t) a k > 0 for all t i to. (7) can be rewritten as

(8) -=[Ao(t) - Aof(t)A71 (t)Afo(t)]i & A,(t)4f .,(to) - Xo.

We also define a boundary layer system

(9) di - DAf(to)!(r), i(0) - - !(to),

where r - (t - to)/g is the "stretched- time scale.
We are concerned with two problems. First, we seek conditions for the uniform

asymptotic stability of (1) for all sufficiently small g e H. Second. we want to approx-
imate the solution-of the initial value problem (1) in terms of the solution of the
reduced problem (8) and the boundary layer problem (9). r

I

S . . . . . . . . . . . . . l . . . . . . . . . . . . . , = 
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For the first problem we make the following
Assumption [I. The reduced system (8) is uniformly asymptotically stable.

3. Main results. Our crucial assumption is a generalization of the so called
D-stabiliy property of the boundary layer system.

Assumption III. For all t A to, the matrix A,(t) has the property that

(10) Re A {DAf(t) 6 -2o" < 0

where o is a fixed scalar independent of I, possibly depending on the bounds m and
M.

The main results of this paper are summarized in the following
THEORaM 1. Under Assumptions I, II and III there exists a positive scalar v such

that for all e I H, 0 < Il 11 A &, system (1) is uniformly asymptotically stable.
THrOREM 2. If Assumptions I and III are satisied then for every finite > to there

existy a positive scalar i, such that for all t re [to, T] and all e e H, 0 < J16 1i J, the solution
of the initial value problem (1) is approximated by the solution of the reduced problem
(8) and the boundary layer problem (9), that i.

(11 a) x(t) 9 2(t)-'- 0(el)

(11b) z(t)i- -A '(t)Afokt)(t) + -(r) + O(ll l1).

Moreover, for all t e (it, T, to < t1 < T
: (12a) x(t) - 1f(t) + O001811)

(12b) z(t) - -A + 0(t)Amo(t), (t) Osia).

rf in addition Assumption II is satisfied then (11) and (12) hold for all T E (to, M).
Our Assumption III has a general form, but it is not verifiable by an algorithm

with a finite number of steps. It is satisfied in special cases such as when Af(t) is block
diagonal or block triangular with the on-diagonal matrices satisfying the condition

(13)' ReA{A,,(t)j i-c,, for all t ro, i=I,..,N

Another special case is when Af is constant and the z,'s are scalars. Then Assumption
III means that Af is D-stable, that is DAf is a stable matrix for all diagonal matrices D
with positive elements. Several D-stability conditions have been investigated in the
economic literature [5]. Recently this concept has been used in large scale system
analysis (6], (7].

Our Assumption III can be considered as an extension of the notion of D-
stability to matrices depending on t and to vector rather than scalar subsystems, that is
when n,> 1. In this more general framework we now examine several conditions
allowing us to test Assumption [f1. The first condition is the following:

(i) There exists a block diagonal positive definite matrix P(t).

(14) P(t) - Block diag [PL(t), • , P,v(t)

satisfying

(15) c2lx1t l2 x'P(t)x % c31lx for all x .R , t to,

such that Q(t) given by

(16) P(t)Af(t)-A"(t)P(t) -Q(t)

!n this section c, c,. are used to denote various Axed positive constant scalars.
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is bounded from below by

(17) x'Q(t)xac,IxjI', forallxeRs ' , tato.

This condition implies (10) since the Lyapunov function v(x) x'P(t)D'x for the
system dx/d=-DA,(t)x has the negative definite derivative dv/ds--x'Q(t)x.
Although this condition does not require the knowledge of D, it is still not finitely
verifiable. However, it can be used to generate classes of matrices satisfying (10). An
example is the case when At(t) is symmetric with A {Af(t)}fi -cs for all t i to. Then
condition (i) is satisfied by P- f. while c2 - c3 - 1, c, - 2cs satisfy (15), (17).

The next condition involves two different conditions introduced in (81, [9] as
sufficient conditions for stability of matrices with dominating diagonal blocks.

(ii) The matrices A 1(t) are symmetric with

(18) A{Aj(t)}-c6 for all tito, i=1."'.N,

and either

(19) Y ,(tIA <c6 for all t i to, i1,...,.

or

(20)f Z IAU'(t)Aj*(tj< 1 forallteto, i- ,...,N.
110f

If Af(t) satisfies (18) with (19) or (20) then DA,(t) satisfies the same condition with c6
replaced by mc6 where m is the lower bound in (6).

The last two conditions are due to Siljak [6) and Michel [7j who derived them
using the decomposition aggregation method to test the stability of interconnected
systems when the isolated subsystems are stable. In these conditions the matrices
A,,(t) satisfy (13) and symmetric positive definite Pj(t), Q,(t) are such that

(2)Pi(t)Aij(t)+A'j(t)P,(t) = -Qi(t), i - 1," •, N.

Then there exist positive constants f, irI, ril, TO and ',,, satisfying

(22) IA&41(tAI ifq, for all t to,

(23) mr,,ixH 2sx'P.(:)x irixl, for all x rzR, t a to,

(24) 1riltoti2 i x'Q,(t)x : irxllz for all x e R', t ito.

In both Siljak's and Michel's condition an N x N aggregation is formed and tested for
the stability of Ar(t). The elements of Siljak's aggregation matrix S are

(25) =lf ,, /

where

W1,3 'Fr,21

and those of Michel's matrix T are

(26) f -d#I-L -(26)t, d,w42 +. + d,m,: ,,, i s,

The matrix norm in 20) is defined is - (A,,.tAA')]1/. 2

lU
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for some positive numbers dt, • • •. de.
The Siijak condition is the following:
(iii) The matrices Aj,(t) satisfy (13) and the principal minors .M14 of S have

alternating signs, that is

(27) Mk -(-1 detL J>0, k - 1,. M

To show that his condition implies Assumption III we consider the Lyapunov
function

N gs
(28) s .vi,(x,),,. ,

with.f29)~~ V, (Xi) _ (X ;, (~ '

where 81 >0. i -a I ...... N. are yet unspecified numbers. By derivation similar to that
in [61 it can be shown that the derivative of v with respect to the system

dX
(30)-- ftx

satisfies the inequality

dv N N
(31) V a, So,.

It is shown in [6] that when inequalities (27) are satisfied there .ist numbers 6i > 0
f (i I,". N) and 7r>0such that

dv
(32) 8,v,.

Hence

(33) dv(33) -Y rlV .k -ciu.

ds

The last condition is that of Michel:
(iv) The matrices Ai,(t) satisfy (13) and there exist numbers di, i 1. - . N. such

that the matrix T is negative definite.
To show that this condition implies Assumption III we consider the Lyapunov

function (28) with 8, replaced by di and v,(x,) given by
(34) u, (x,) - X P. (t)x,.

In a way similar to [7] it can be shown that its derivative with respect to (30) satisfies the
inequality

(35) dv I: .,x ,.ilhx, l

Since T is negative definite, let A - A,,,,(T)< 0; thus

(36) dv 2 -A-~- , A ,xI.
d,$s
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Using (22) and (36) we obtain
d -Am

(37) -s max, d, max, 1rir

Michel's condition is not finitely verifiable since it:requires the existence of positive
numbers di,'", di. However. a more. conservative, finitely verifiable, condition
implying Mii'iel's condition can be obtained [71 by writing the matrix T as

(38) T= +

where
(39) L3 - diag [dt,. dm i, d> 0,

and W is given by

(40) i #.

Then, if the principal minors of W have alternating signs, that is, satisfy (27), there
exists matrix D such that T is negative definite.

It is important to notice that Siljak's and Michel's conditions are not equivalent.
In fact examples can be constructed for matrices which satisfy one of them and do not
satisfy the other, and vice versa [9]. These two conditions are particularly important
since they are applicable to large scale systems. They are also applicable to nonlinear
systems. Grujic [111 has used the decomposition-aggregation method to test the
stability of a class of nonlinear singularity perturbed systems. The motive to took at
these two conditions and study their implication to our Assumption Ill was that the
aggregation matrices S and T which satisfy the respective condition are D-stable.
However, as we have shown, the proof that Siljak's or Michel's condition implies
Assumption III does not rely upon the D-stability of S or T, because we have chosen the
Lyapunov function in either case in such a way that we obtain the aggregation matrix
independent of D.

The above discussion of Assumption III shows that the class of matrices A4(t)
satisfying Assumption !If contains important subclasses. However a complete charac-
terization of that class is yet to be made by further studies.

4. Proof. We follow (12] to separate the fast and slow modes of (3). Using

L j~DL -A, J_]rJ

Lv L

the system (3) is transformed into

(42a) (Ao(t)- Aof(t)L(t))y,

(42b) IAt 0 (DA f(t) - gL (t)A of(,*))v,..

where .(t) and M(t) satisfy

(43) AL =DAfL -DAfo - uLAo "ILAofL.

(44) Ma.MD-1 = -MA,-,,' -fD'LAo.A 0 MD -hAufLMD. "



4HASSAN K. IKHALIL AND PETAR V. KOKOTOVIC

with the initial conditions

(45) L(to) - A7'(ro)Afo(to),
,46, M (to) - A of(to)A 7 (io).

We first observe that the fast subsystem (42b) is of the form

(47) a - (DA,(t) + r(t, &))z

whose properties we examine in Lammas I and 2. Then in Lemmas 3 and 4 we
establish the existence and convergence of solutions L(t) and M(t) of (43) and (44).
Lemmas 1, 2, 3 and 4 are stated under the Assumptions I and 111.

LEMMA I. There exist positive scalars v, K, and -/ such that for all e a H,
0 < 1icsI= v and t 4 s, the state trasition matrx v(t, s) of the system (47) with r - 0 has
the property that

(48) Io(t. s NIS K, exp [ (t - S )

Proof. By Assumption I and (6) we have !DAf,(tI NJ K2 , for all t i to and e e H.
Using (10) and Lemma 4 of (13, p. 1161 we get for all 9 a:0, ee H

(49) lexp .IDAf(t)]1I-K3 eXP

where K 3 depends only on o- and K1. Also there exists >0 such that IDAQz)
DAf(tjJ);6jt2 -t, ti, t2 ?.to. Then by Theorem 12 of [13,p. 117] there exists jL*>0

such that for all A <1A*, pI(t, s) satisfies (48) with K, - K3 and Yt <a0; and g' can be
chosen to be the radius of the largest ball centered at the origin with A. < j&*.

LEMMA 2. If Int, sNJ a K,, for all t ; to, e e H, then there exist positive scalars s,,
Y2 < If:, such that for all s e H, 0 < 1rsj l v and t a s, the state transition matrix iP(t, s) of
(47) satisfies

S(50) jlp2(ts NlISK, exp -(t- s).

Moreover, there exists Y > 0, K5 > 0 such that for all e e H. 0 < ile JiS P. t i to, the matrix
p3(t. to) - pz(t, to) - exp (DAf(toX(t - to)I,' )] satisfies

~~~~~(51t) i,,t o ~l

Proof. Inequality (50) follows from Lemma 1 and Theorem 9 of (13, p. 70). To
. prove (5 1) we notice that wi(t, to) satisfies the equation

9 ,p3 (t, to) - (DA(t)+AsP(t, )1 3(t, to)

"-[DAf(t)-DAf(to)+,rf(t. a)] exp DAf(to)(t-t) .
AL

Noting that v3(to, t,) , 0. we obtain

0(t, t3) - J 2(t, r) I [DA(-)- DA,(t,) 4.r, z)I exp JDA,(to)! to) dr.
A JI

i1
-. _ r- _2, " "' -'- _ .... ............
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Using Lemma 1. (50). and the fact that :IDA((t)-DAf(eojIS,3(t-to), we obtain

It bll s K, e(~/~ -(,r - to) + il&K4J e-',g (0) dr

K2

ft~(.r-:)+--to)d

M

Next we establish the existence of solutions of (43) and (44). Let us irst remark
that the state transition matrix of the system ii - Ao(t)?7 satishes

(52) !l~po(tsAll SK 6 exp (-,31t -sf1, for all t. sitr

for some positive constants K6, -Y3, (see [(14, p. 287]1).
LEMMA 3. There exists a positive scalar v such that for all es , 0 < !I uj9 , t ir to,

there exists a continuously differentiable bounded solution L(t) of (43) and (45),
satifying

(53) L(t) - A7' (t)Af,(t)+ Cale !f).
5' Proof.3 Every solution of the integral equation L(t) - SL(t), where

(54) ~ SL (t) o I (t. to)A7' (to)Afo(to)(;o(to, t)

is a solution of (43) with initial condition (45). Hence it is sufficient to prove the
existence of a solution of this integral equation. Using the identity

(55) LAfL-fA 0 ,C- (L-f)AoL+fAof(L-f)

and expressions (48) and (52) we obtain

(56) IlSL(0-S'C(tilI; Kja I - ClI IIAofIl(IILII -'- ll),

and

(57) Y Y

K K 1 jA 7' (to Nl 1Aroil exp [ Y-- 3)t-o]

IIn this proof L. belongs to the space of bounded continuous i, n, i, matixs functions on the interval
[ro..V) with the norm IL -sup,,,.IL(NI where the matrix norm cnn be any norm. This space is a Banach

space.

WW
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Letting

(58) p - + IIIA( IIA )
iwe choose jA > 0 so small that

(59) JA*Y3 5 -'and . l K AojPj .

If JILllp. i11Sp. then for 0< & I M,* we get

(60) lISL - SLIIS bIL - AU

and

(61) llSL(tylli.

By the contraction principle the solution Lkt) exists and is unique in ,IL ' p. To prove
(53) we let
(62) L() -f A (t)Afo(t) ,%U(t) "A Lo(t)-t" IL(t).

We note that 4L(to) - 0 and that ,.L(t) satisfies

(63) AL -'(DAf + ALoAo)aL - ILA, +ALAofAL + R1,

where Rt -LoAofLo-LoAo-Lo. Let ¢,t,s) and p4(ts) be the state transitionp matrices of equation (8) and 4 -(DA,(t)+ .A7'(t)Afo(t)Aof(t))f, respectively. The
norm of 0,(t, s) satisfies an inequality similar to (52) with constants K7 and -,. By
Lemma 2, the norm of o,(t, s) satisfies an inequality similar to (50) with constants K,
and -ys < -yl. Then from the form of the solution of (63)

(64) AL(t) (P4(t. s)(AL(s)Aof(s)AL(s)+ R L(s)]e,(s, r) ds,

it follows that

KIK 7i4{IAr(t~i Si -K1A, (IoI{ II2ll + 'IR td)
vs -/,~

K1K,
(65) S aK(A oAI 1 (L, .II)2 iIR dIl) AKs

Ys

for some positive constant K4 , which proves (53), and v can be chosen in a way similar
to that in Lemma 1.

LEMMA 4. There exists a positive scalar P such that for all e =- H. 0 <Ier V. t t to;
here exists a continuously differentiable bounded solution M(t) of (44) and (46),

satisfying

(66) I(e) - Ao,(t)A (t) O(Is I).

The proof of this lemma is similar to that of Lemma 3. Based on Lemmas 3 and 4
the matrices of the transformed system (4.) can be written as OCIsJ) perturbations of

I.
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A,(0,. DAf(f). that is (42) becomes

(67a) - (A,(t) + 0 ale 11))y, y (o) - xe +4 0 (Ilul)

(67b) pe-(DA, (t) + 0(lle il))v, v (to) - zo + Lo(to)xo + 0 (lie 1).

Proof of T"heorem 1. Since the transformation (41) is nonsingular for all
sufficiently smail It H and L(t), M(t) are bounded for all t to, it is sufficient to show
that each subsystem (67a) and (67b) is uniformly asymptotically stable. This immedi-
ately follows from Lemma 2 and Theorem 9 of ( 13. p. 701.

Proof of Theorem 2. The uniform convergence y (t) - 1(1) as Ileul - 0 follows from
the continuous dependence of the solution of (67a) on the right-hand side and the

F~f. sig heinverse trnfrainof (41), we obtain

fruitful discussions during the course of this work.
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Control of Linear Systems with Multiparameter
Singular Perturbations*

HASSAN K. KHALILt and PETAR V. KOKOTOVIC:+

7he boundary layer stability of multiparameter singularly perturbed systems is the
major problem in the design of a near optimal control which disregards the
perturbation parameters.

Key Wed lade-Perturbation techniques; approximation theory, system order reduction; stability;
optimal control; differential games.

Abstct--The singlar perturbation theory is extended to In Khalil and Kokotovic (1979) we have for-
systems with several small parameters which can change the mulated the multiparameter singular perturbation
system order. Difficulties arising in testing the boundary layer

stability in multiparameter linear problems are discussed. The problem and stressed its difference from the mul-
theory is applied to linear quadratic optimal control and titime scale problem (Hoppensteadt, 1969). We
Nash game problems. have shown that the block D-stability property of

matrices is a sufficient condition for the asymp-

I. INTRODUCTION totic stability of the boundary layer system.

WHEN several small singular perturbation para- Several block D-stability conditions have been

meters of the same order of magnitude are pre- derived.

sent in the dynamic model of a physical system, In this paper we discuss the difficulties in-

the analysis and control problems surveyed in volved in testing the stability of the boundary

Kokotovic, O'Malley and Sannuti (1976) are layer system in the multiparameter linear prob-

usually approached as single parameter pertur- lem. We investigate the block D-stability pro-

bation problems. This is done by expressing perty of matrices and establish its relationship

small parameters as known multiples of a parti- with the stability criteria for the multitime scale

cular parameter A, such as m tp, T-fi2p, problem. We also show how the decomposition-

where m is a small mass and T is a small time aggregation stability tests can be used as block

constant. A limitation of that approach is that D-stability tests. Electrical networks are given as
the scaling coefficients fi are assumed to be examples of physical systems having the block D-
known. Thus, it is not applicable to a large class stability property. Since for many problems of

of problems where the parameters represent small interest the block D-stability is restrictive, an

unknown parasitics whose values are not known alternative way to verify the boundary layer

exactly, although they are limited to lie within a stability is proposed. We then proceed to the
certain set. Such a situation arises also in multi- multiparameter singularly perturbed linear op-
,controller design problems when small para- timal control problem. discuss its well-posedness

r meters represent different independent ways to. and design a near optimal control which does

simplify the model of the overall system by' not depend on the values of the small para-

individual control agents (Khalil and Kokotovic, meters. Hence this control is applicable to sys-
1978). tems where the parameters are unknown. Finally.
97.we discuss the asymptotic behavior of a closed-

Received May 1 1978; revised September 15 1978. The loop Nash solution of infinite-time linear-
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tact Pergamon Press Limited. Headington Hill Hall, Oxford.
OX3 OBW, England. This paper was recommended for publi. We consider the linear time-invariant singu-
cation in revised form by associated editor G. Guardabassi.
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where xeR " . :ieR .The small positive scalars In a truly muitiparnicter problem the per.

&, ..... &, are ordered as components of a vector turbations of the vector e are not limited to a

ceRN. A reduced order system is formally ob- particular ray. Convergence results are sought as

tained by setting -0 in (2), IfrlI--0 in H, which guarantees that they hold for
all sufficiently small seH. We start by rewriting

x=Ao, +Aof2, A(0)=xo (3) system (M), (2) in a form resembling a single
parameter system

0- Afo9+ Af i, (4)

)t=A0 x+A 0oz, x(0) = xo (8)

where the matrices Aof, Af0 and Af are formed
of the submatrices A0 , A1o and A, i, j1 .... (s)tu=D(c)Afox+Afz], z(O)f:o 9)
N, respectively, and z'=(z, . z..). Assuming
that A. is nonsingular, (4) has a unique root but which differs from a single parameter prob-

lem because both

= -A 'A fg ())( 8 . ) N (10)

whose substitution into (3) yields the reduced
system D=D(e)=block-diag[-1 1 .  (I11)

.i =(Ao -AofA7 1A1o).fA,.i .'{0)fixe. (6)
depend on all &j. It is crucial that in view of (7)

The task of singular perturbation is to find under the elements of D are bounded
what c,.nditions can the properties of the so-

lution of iie original system (1), (2) be deduced m<51 <Mj, VeeH, i=L.N (12)
from the properties of the solution of the re- -
duced system (6). Under the additional assump-
tion that &,+,'&,-0 as 111--.0, the system (1). (2) where mi, M, depend on wiij and .ft in (7).
exhibits N fast time scales, that is : , is fast From single parameter problems we know that
relative to :. Such multitime scale systems are we need a boundary layer system to correct the
treated by nested single parameter perturbations effect of the discrepancy between 5(0) and the
(Hopensteadt, 1969). In this paper we treat sys- initial value :o of :. In the multiparameter prob-
tems in which the parameters are of the same lem we define the boundary layer system as
order and do not allow the multitime scale
assumption. We therefore assume that the ratios d,

of & ...... t, are bounded by some positive d- De&)Af(r). (O) =o- (O) (13)

constants ,fi, ARi,
where r - t/p is a 'stretched' time scale. The right

,N {7) hand side of (13) depends on t through D i:"7) whose elements are bounded by (12) but other-
wise arbitrary. In contrast to the multitime scale

that is the possible values of c are restricted to a problem, in this case the fast modes of all :*s are
cone H c RN. Previously, singularly perturbed in the same time scale. As in the single parameter
control problems with several small parameters problem here also we need to guarantee the
of the same order have been treated (Kokotovic, asymptotic stability of the fast modes for all
O'Malley and Sannuti, 1976) by reformulating sufficiently small eeH. that is
the problem as a single parameter problem. This

is done by expressing the small parameters C., C,. Rei( D(z)Af)<0. e H. (141
... 9s, as known multiples of a single parameter
, es-13. The main limitation of such scalari- However, in the single parameter problem De

ration is that the results depend on the scaling =I and only one test of ;..L4f) is needed. The
coefficients , which are often unknown. The main difficulty of the multiparameter problem is
validity of the result is restricted to a ray in the that (14) must be tested for every teH which
space of r ..... E, defined by a particular set of requires solving infinite number of eigenvalue
values fl, .... P., Even if the solution of the full problems. Our approach is to find classes of

problem (1), (2) converges to the solution of the matrices A for which (14) is satisfied for all
reduced problem (6) as &--0 along every ray in diagonal matrices D of the type (IL (12). In I
the cone H. this is not sufficient for convergence Khalil and Kokotovic (1979) we have identified
as s -0 along any arbitrary path in H. block D-stable matrices as an important class g

- ______________________ ---- -- -.--.---.--..--
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satisfying 14) for arbitrary bounds m1>0, M, A i.k .... ak. ..
<c. A matrix Af is said to be block D-stable if E~k (20)
Re(DAf)<O for all D-block-diag (2, 11 . A A
2,IlN] with arbitrary positive scalars 2. Further A.,+ ... A
discussion of this notion and an alternative char- E'3k=(Aj+ .kAk+zk....A4.1). (21)
acterization of a class of matrices satisfying (14)
is given in Section 4. To clarify the fact that Ej can be nonsingular for

In the following theorem we establish stability one ordering and singular for another ordering we
properties of the original system (I), (2) from the consider for example the case N =2, n, =n2 = I with
stability of the reduced system (6) and the appro- All -0, A1 2 .l, A2 1 - -1, A2 2 - -I. When s8z,
ximation of the original solution x, z by the --0 the system (1), (2) possesses two fast time
reduced solution ., 1 scales. In contrast the limit e/82--1.0 does not

Theorem 1: If (14) is satisfied, then for every result in two fast time scales since z, cannot be
finite T>0 there exists a positive scalar v such eliminated from the equations when a, =0.

that, for all teCO, T] and all seH, 0<fieiIV, With the assumed ordering, ReA(A,)<O and

x(t)==.(t)-0(I) (15) Re .(Ek)<0, k= 1....N (22)

:()- -Af 1Aio9(t)+ ()+0(11911), (16) form a set of sufficient conditions for asymptotic

that is the solution of the original problem (1), stability of (1), (2). The following theorem gives a
(2) is approximated by the solution of the re- relation between block D-stability and condition
duced problem (6) and the boundary layer prob- (22).

lem (13). If, in addition, Re(A,)<0 then (15), Theorem 2. If Af is block D-stable, then

(16) hold for all T>0, and the original system is condition (22) holds for every block permutation
asymptotically stable. of A/for which Re,(E ) 0, k -1.... N.

A proof of this result is given in Khalil and Proof. We first recall an eigenvalue property of
Kokotovic (1979). the single parameter singularly perturbed system

with a small scalar parameter v

3. BLOCK D-STABILITY AND MULTITIME SCALES .l =F jYj +F 1 2 Y 2  (23)

A block D-stable matrix Af satisfies (14) for Vh=Fz21' +F 2 y2  " (24)
arbitrary bounds m,, Mi. Hence, we can extend
the set H to the cone e,>0 by letting m 0-*0 and Lemma: If ReA(F,1 - F,, F2 ' F 21 ) - 0.
M,1 -- c, while still having asymptotically stable ReA(F 2 2),-0 then there exists v*>0 such that for
boundary layer system 113). Since the set &i>0 all ve(0, v*] the eigenvalues of (23),.(24) have
covers the regions of multitime scale pertur-" negative real parts if and only Lf
bations, one would think of block D-stability as a
more restrictive condition than the boundary Re .(F,1 -F 2 F,,'F21 )<O, . Re.(F 22)<0. (25)
layer stability in a multitime scale problem. Let
us examine this relationship. To prove Theorem 2 we first consider the two-

To state the sufficient conditions for asymp- parameter case N=2. Block D-stability implies
totic stability of the multitime scale problem that
derived in Hoppensteadt (1969), we assume that
the parameters c,, N in (1), (2) are ordered Al 1
such that e,+liej-0 as I1Ill-0. that is EN is the R& 0 A26 1smallest parameter. This ordering shows which 1 .,, -A 2 .

1

matrices must be nonsingular to eliminate the '2 L , 1

variables :j as the parameters Ej are successively
set equal to zero. For the adopted ordering e, holds for sufficiently small 62/Ah. When At
F.V- ..... e the nonsingularity is required for the -A 2 A 2

1 A2 1 ), A22 have no eigenvalues with
matrices zero real parts, it follows from the lemma that

Ek=Akk-ElkE-E 3h, k=l ..... V-I (17) Re(A -A 2 A2 2 A2 l)<0, Re,;.(A 2 2)<0, (27)

Ey w=Ayy (18) which proves Theorem 2 for N=2. For N>2, we

where can show that block D-stability implies (22) by
nested application of the lemma. Noticing that if

Elk(Ak.&- Ak.,....A4..v), (19) Af is block D-stable so is P'Af P for all block

- m]'.---
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permutation matrices P of comparable block the problem. For the rest of this section we
dimensions, it follows that (22) must be satisfied discuss these two approaches and illustrate them
for each ordering, provided ReA(E,):# 0, k - I ..... by electrical network examples.
N. The block D-stability property of matrices is

Remark 1: Asymptotic stability of the multipa- an extension of the concept of D-stability. If Af is
rameter problem with arbitrary bounds m, >0. partitioned in scalar blocks, that is if n, 1, then
M, < x implies asymptotic stability of the mul- the block D-stability is merely D-stability.
titime scale problem for all possible orderings of Economists have studied this notion for several
the smallness of the parameters. years and have formulated several sufficient con-

Remark 2. Condition (22) is a necessary con- ditions which are surveyed in Johnson (1974). In
dition for block D-stability. That (22) is not Khalil and Kokotovic (1979) we examined
sufficient is clear from Siljak's (Siljak, 1977) and Michel's (Michel and

Miller, 1977) interconnected asymptotically stable
- 0 -27 subsystems. Here we show that their

A 1 -1 0], n1 =n2 =n 3 =1. decomposition-aggregation method can be used

to test block D-stability and generate sufficient
conditions which encompass as special cases the

The matrix A1 satisfies (22) but it is unstable. two tests reported in Khalil and Kokotovic,

Remark 3. If for some ordering some of the (1979). The matrix A1 is viewed as an intercon-

matrices Ek have zero real part eigenvalues, then nection of the isolated subsystem matrices A,

(22) is no longer necessary. Consider again through the interconnections Aij, i j. When
Re(A,,)<0 one may construct a sufficient con-

0 1 dition for ReA(A,)<0 by limiting in some sense
A4= 1 ' N-2. , - nz2 the interconnections A,,. In large scale system

literature, Lyapunov methods have been used to
construct such conditions. Let vi be a Lyapunov

in which A- is D-stable, while (22) is not satisfied. function for the i-th subsystem. Siljak's approach
is to form a vector Lyapunov function whose

'f4 components are v. Michel's approach is to use a
4. CONDITIONS FOR BOUNDARY LAYER STABILITY weighted sum of v, ... , v, as a new scalar

The most difficult part in the multiparameter Lyapunov function. We are going to show that if

problem is verifying that A satisfies (14) for a matrix Af with Re,.(A1,)<0, i=1 ... , N, can be

some given bounds m , M, in (12). Since Block D- shown to be stable using either Siljak's or

stable matrices satisfy (14) with arbitrary mr>0, Michel's approach, then Af is also block D-

Mi < :, one may start by testing whether A1  stable.

satisfies some block D-stability condition. If A1 is Suppose that the time derivative of v, along the

block D-stable. then the problem is solved, trajectory of the interconnected system can be

However, when Af does not satisfy the necessary majored by the inequality

condition for block D-stability given in Section 3, I
or if it satisfies the necessary condition but does 0,5 E svi, s, < 0, sJJ _0 (28)
not satisfy any of the known sufficient conditions, J-
this does not mean that A, does not satisfy (14)
for the given bounds. In fact, in most multipara- for some scalars si,. Introducing the vector
meter problems of interest the small parameters Lyapunov function v we rewrite (28) as OCSv.

..., a, are of the same order of magnitude. Then using the comparison principle (Siljak,
Hence the bounds m,, M, are close to one. In this 1977) it follows that a sufficient condition for
case the class of block D-stable matrices is a very Re{Af <0 is that S be an M-matrix. Now
conservative subclass of the class of matrices suppose that A1 is multiplied by D-block-
satisfying (14) for the bounds given in the diag[ a,1  ... , z'Il]. Choosing the same v as

problem. above we get that v gDSv where D=diag[a ... ,
Our task in studying conditions for boundary x. Since multiplying an M-matrix by a diagonal

layer stability is two-fold. On one hand we need matrix with positive entries does not change its
sufficient conditions for block D-stability. The status (Siljak, 1977), it follows that DS is an M-
more we know about block D-stability. the more matrix, hence DAf is stable. Alternatively, let the
readily we can employ it to verify the boundary new scalar Lyapunov function be r==z i ,

layer stability of A1 . On the other hand when where P,>0. Suppose there exist numbers fli such
block D-stability tests fail we need conditions that the time derivative of v is negative definite,
that make use of the particular bounds given in than Re,'Af1}<0. Now multiply A1 by D.

..... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ It I ... "......"J-. 
. -... ~ Imm 

".... .
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Choosing c -_f ju/;)v 1 as a Lyapunov func- turbations. Are all the passive networks D-stable?
tion, we find that the time derivative is the same If so do they satisfy the known sufficiency
as before. Hence, ReA{DAF11<0 for any oac>0. conditions?
Subsequently Af is block D-stable. We consider first the case when Ay is the

When the bounds m,, M, in (12) are given finite matrix of a passive RLC network without coup-
numbers, the class of matrices Af satisfying (14) ling between inductors. We are going to show
is less conservative than the class of block D- that if the network is asymptotically stable, that
stable matrices. However, the search for sufficient is if ReA(Af)<0 then A1 is D-stable. Let us
conditions may be more difficult. Our problem is assume that the network has n, inductors and nc
to fmd sufficient conditions for aymptotic stabi- =.n -n, capacitors. A standard choice of the
lity of a family of linear systems 9,=DAy where state variables is
D is function of the parameter vector a= (a, . ., xj -current through i-th inductor, when i - 1,
IN). The set A of allowable a is a convex polyhedron nt

x, - voltage through j-th capacitor, when j n,
A - (a: & a e R t}  (29)+......n,.

where , l are constant vectors depending on mi, Then the state space equation takes the form
M,, i= 1 ..... N, and the inequality is understood (Kalman, 1963)
to be component-wise. We denote by oi" oez.
... the 2N vertices of A, and the corresponding D Tx =Ax (32)
matrix by D(" =block-diag (a 1 .... xl). We where
notice that the elements of DAf are linear func-
tions of r. For this stability problem it has been .L 1 =[A1  -5'
established in (Horisberger and Belanger, 1976) T=LO A, .
that a sufficient condition for DAf to be stable
for all a eA is the existence of a symmetric Here L is a diagonal matrix whose positivepositive definite matrix P such that diagonal element Lij is the value of the i-th

inductor, and C is a diagonal matrix with CQi
PD"l)Af+A 1DP<O, i 1,2,.... 2

. (30) being the value of the j-th capacitor. The matrix

A does not depend on the values of the inductors
This condition requires that the same P satisfies or the capacitors. It depends only on the network
(30) for all vertices and in its present form is not configuration and the values of the passive re-
finitely verifiable, that is there is no algorithm sistors. The matrices A, and A2 are symmetric
with a finite number of steps to verify the exis- negative semidefinite.
tence of P. However, the situation is greatly Let us assume that this network is asymptoti-
helped by the following result (Horisberger and cally stable and recall that this property does not
Belanger, 1976), which reduces the test of (30) to depend on particular values of L and C, but
a convex minimax problem with linear con- solely on the presence of the resistors as dissi-
straints. pative elements. In other words if a network is

Lemma. Assume that at least one of the D"1Af asymptotically stable for one set of L, C values, it
is known to be stable, then there exists a P = P' will remain asymptotically stable for any set of
>0 such that (30) is satisfied if and only if physically meaningful values of L and C. From

mn (the form of the system (32), we observe that
main { max..(P)} <0 (31) changing values of L and C is equivalent to

II,.multiplying the system matrix from the left by a

where )(P)-A.,4PDY'1Af+A D" P) for all real diagonal matrix. The preservation of asymptotic
symmetric matrices. stability under this operation is the D-stability.

Thus the network matrix A1 = T-'A is D-stable
S. ELECTRICAL NETWORK EXAMPLES and therefore block D-stable. However it is easy

to show that such a network does not have to
TAll the above conditions attempt to delineate satisfy any of the sufficient conditions of D-

classes of systems for which no physically mean- stability given in Johnson (1974) or Khalil and
ingful combination of parameter perturbations Kokotovic (1979). An example is the network in

will exist causing instability. As a well known Fig. I whose A, and .42 are negative semidefinite
example of such systems consider passive electri- and whose matrix .4, is D-stable. but for which
cal networks which remain stable for all positive the known sufficienc. tests fail.
values of R. L. C-parameters and therefore cause Another interesting observation is that it the
no difficuic,% % ith multiparamctcr singular per- network contains mutual coupling between in-

[t
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ductors, then A1 is not necessarily D-stable. For FIlL /T-i-11
example the network in Fig. 2 has Ai "[ 0  1 I I

"#[6 -3 -2 has ReA.(Af )<0 for I/2<LIC< 

A2 ] (33)
2-1 x1

which is not D-stable. The reason is that for the
case of mutual coupling the matrix L becomes a _+

positive definite symmetric matrix instead of be- r -

ing diagonal as in the case without mutual
coupling. Multiplying A1 by a diagonal matrix,
which is equivalent to multiplying L by a dia- Fi. 3.
gonal matrix, results now in a nonsymmetric
matrix and hence cannot be interpreted as chan- 6. APPLICATION TO CONTROL AND GAME
ging the values of inductors and capacitors. A PROBLEMS
special case is when mutual inductive coupling
exists within each subnetwork, but there is no The problem to optimally control the system
inductive coupling between different subnetworks.

N

+=Aox+ E Aosz 1 +Bou, x(O)-xo (36)

j.1I
1 N

4-1 st 'zfA1ox+ T- A1Sz+Blu, z,(0)=-Z1 o (37)

x 2  Xl x .. 1
1with respect to the performance index

Jf 0(y'y+u'Ru)dt, R>O (38)
where

. y=Cox+ Y Cszi.  (39)

3/2!Xl 2!1X2  2is interpreted as a perturbation of a reduced

problem

Fi. 2. i =A0x+A 0 z+B 0 u (40)

0- Afo x + As z+ Bfu (41)

The matrix Tof such a network takes the form yf COx + C: (42)

T=block-diag[T ..... TN], (34) in which z=0 and the matrices Bf, C1 are
where formed of the submatrices Bi, Ci, i -i,. N,

respectively. Assuming that A1 is nonsingular : is
T -solved from (41) and eliminated from (40), (42)

" 0(35) and (38). Then the reduced problem is to op-
timally control the system

Multiplying A1 by a diagonal matrix of the form
D-block-diag[m I ...... ,1,] is equivalent to i Ax + B,u (43)

multiplying 4, C, by a,, which is merely scaling with respect to
of the L and C elements of the i-th subsystem by
%,. Thus the matrix representation of such a J,-IJ,'(x'CC,x+2u'E;Cx+u'Ru)dt (44) J
network is block D-stable. wh,

Finally, if the network is not passive then A1 is where
no longer block D-stable if Rei(A) <0 for some I
values of Land C. However, A1 may still satisfy AfAo-Ao 1 A7'A 1 o, BfBo-Ao1 A7'B,.
the boundary layer stability condition for some C,-Co-CA -'B, E,--CfA-Bf,
finite bounds. Consider for example the active ' B
network in Fig. 3, whose matrix R, R + EE,. (45) £
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The reduced problem (43), (44) is considerably Kt(c)-K,+0(IfrII) (52)
simpler than the original problem (36)-(38) be-
cause of the elimination of the fast variables and K2 (Z)-K,(a)+0(jaII) (53)
the reduction of the system order. One of the
tasks of the singular perturbation analysis is to K3 (8)-Kf()+O(IIII) (54)
establish whether the full problem is well-posed
in the sense that its solution tends to the solution where K, is the positive semidefinite solution of
of the reduced problem as a-0 in H. If so, then (47),
the next task is to use the solution of the reduced
problem as a basis for a simplified design K, =[K,(BoR - 'B, D(c)K(e) - Ao)
procedure.

If the triple (A, B. C,) is stabilizable- -(A',°D(e)K(e)+C°C,)]
detectable, then the optimal control for the re- [D(e)Af - D(c)BrR -B' 1D(e)Kr(e)] (55)
duced problem is (Chow and Kokotovic, 1976)

and K (e) is the positive semidefinite solution of
u- R, (EC, + B;K,)x (46) the Riccati equation

where K, is the unique positive semidefinite so- K1 (e)D(&)Af + A .D(e)K 1 (a)
lution of the Riccati equation + C Cf -Kf ()D()B R - B D()K ()

K,(A,-B,R; 'E;C,)+(A,-B,A- EC,)K, =0. (56)

-K,.B,R'B B, + C,(I - E,R,- 1E,)C, = 0. (47) The proof is given in Appendix A. We notice
that since for every seH the matrix D(c)Af is

On the other hand, the optimal control for the stable, the Riccati equation (56) has a unique
original problem is positive semidefinite stabilizing solution K,(e).

Thus the matrix D(eXAf-BfR-'B D(e)Kf(e)) is
u= [stable and its inverse in (55) is well-defined.

ufi-R-BKZ (48) When e is scalar the limiting values of K2 , K 3
are not dependent on s (Chow and Kokotovic,

where K is the stabilizing solution of the Riccati 1976). In contrast, we see from (53), (54) that in
equation the multiparameter problem the limiting behavior

of K 2 and K3 depends on F, and hence on the
KA+A'K+C'C-KSK-=0 (49) particular path along which &-0. However, it is

seen from (51) that both K 2 and K3 are multi-
and plied by pu(e) which tends to zero as --0.

Therefore, the part of K that is crucial as &--.0 is
A0  Ao , only KI(e) which tends to the solution of the

A = 1 1 reduced problem K, as a-.0 along any arbitraryL -D(a)A 1 o -DgA jpath in H. In other words. the optimal value

B0  function of the full problem Jo,=j[x 0 1:o]'
-K[xo/zo] tends to the optimal value function ofB= 1D(S)Bf the reduced problem J,,1, -Jx >Ko as c-0 in H.

Thus, the optimal solution of the full problem is

C=Co Cf), S=BR- B'. (50) well-posed. The next theorem utilizes this well-
posedness property.

To avoid unboundedness, the solution of (49) is Theorem 4. If Af satisfies (14) and (A,, B,. C,)
sought in the form is stabilizable-detectable, then the use of the re-

duced control

K -K([)- K1 () Lz()1) (51) u,,=-R 1 (EC,+B'K,)x (57)
LO(8Ki(e) AWsK 3(e)J

results in J satisfying
The asymptotic behavior of K as E-0 is given in

* the following theorem. J J., +0(118II), V86H. (58)

Theorem 3. If Af satisfies (14) and (A,, B, C,) is Theorem 4 is proved in Appendix B.
stabilizable-detectable, then for all sufficiently Remark 4. The reduced control (57) does not
small aeH require knowing the values of the parameters el,.

-- S: . : ,.+ - - _.. . . .. - : S - - - : = - ' -
-"

' . ... .i I I. .
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., Thus it is suitable for cases when e,, . . ., where (K1, K2 ) is a solution of the coupled
sN are small uncertain parameters taking values algebraic Riccati equations
in H.

Remark 5. In the single parameter optimal O=KA +A'K,+Q -KBjRi-'BKi
control problem (Chow and Kokotovic, 1976) it -KBR.
is possible to achieve 0(&2) approximation of the -KB ,R- 'B;K,

optimal value of the performance index without -K ,B,R,, 'RR,, 'B;K,.
knowing the value of e. This is done by adding to
the reduced control (57) another term which i=i. .i=1.2. 164)
accounts for the optimization of the fast modes.
An analogous possibility does not exist in the such that Re.(A-BR-I1 B'1K1 -B 2R2IB' K2)<0.
multiparameter problem because such a term The matrix A is as in (50), 8 = (B;
would involve Kf(c), which requires the know- (I/g(s))B',D(s)) and K=Ki(e) is sought in the
ledge of a. Even if the value of a, say so, is known form (51).
and Kf is evaluated at so, the matrix [D(&)Af Closed-loop solutions of singularly perturbed
-D(E)BfR-IB'.D(E)Kf(eo)] is not necessarily Nash games when s is scalar have been in-
stable for all eH. This means that including Kf vestigated in (Gardner and Cruz, 1978). It turns
in the control, limits its validity to small out that setting E=0 at two different stages leads
variations of E around so. to different solutions. This means that setting E

Remark 6. The intuitive result of Theorem 4 =0 in the original problem to obtain a reduced
should not be surprising to people familiar with problem and solve it is in general different from
the regulator problem. However, it should be solving the original problem first and then setting
noticed that this result is a consequence of the E=0. The reason of this phenomenon has been
well-posedness of the optimal control problem discussed in Khalil (1978) and we briefly sum-
and it is no longer true for ill-posed problems. marize it here. The necessary conditions for a
We illustrate this by discussing Nash games. Nash solution (Starr and Ho, 1969) depend on

In the design of multi-input control problems, the partial derivatives ujiix. Cu/':. Therefore
the objectives in the optimal policy may be met the Nash game unlike the optimal control prob-
by formulating the control problem as a differen- lem has different open-loop and closed-loop
tial game. In a game where cooperation among solutions. When the Nash game is singularly
the players cannot be guaranteed, a solution is perturbed the difference in the solutions obtained
the Nash equilibrium strategy. For the multipara- by setting Ef=i0 at two different stages is due to
meter singularly perturbed system the partial derivative au1/bz. Setting E=0 to ob-

tain a reduced problem, one eliminates z. Hence

.x=Aox+Aof:+BoIuI +Bo2u,, x(0)=xo (59) automatically Ou1/O: is set equal to zero. When
the original problem is solved first and then F is

14(c)2=D(e)(Afox+Afz+Bflu1 +Bf 2 u2. z(0)==, set equal to zero it is not necessarily true that

(60) Ou.az is zero. Thus one should not expect the
closed-loop solution of the full problem to tend

the i-th player chooses his strategy u, to minimize to the closed-loop solution of the reduced prob-
his performance index lem as ": - 0.

In the multiparameter Nash problem (when :

O,=1 Fx,Fx ] 1 , uRu is a vector) the situation is richer. We first give

J i 11_ 'I_ + uR1 ,u1 + dt, some examples and then discuss the asymptotic
behavior of K1, K 2 as E-*0 in H.

R,>0, Q2_0, is 1,2. (61) Example 1. Consider the system

A Nash equilibrium solution of this game is a
pair (u, u) such that

Ji(ur,u7)gJi(u, u), i~j, i=1,2 (62) g1t 1.Z=-:+u,+2u 2  (66)

We discuss here the closed-loop linear solution of
the two player game (59H61) which is given by
(Starr and Ho, 1969)

and the performance indices

u= -RjjB~ im~g~] 1~,2 (63) J=S( 2z+~t : (68)[X1JI 11OX,+ z 2 + Ili Mr. (68)
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We solve the associated coupled algebraic Riccati and Cruz, 1978). Finally, Example 3 shows a
equation (64) where Ki takes the form well-posed special case where the closed.loop

reduced solution may be used to approximate the

K r Kit Ki 12  closed-loop full solution as in the optimal control
K LKi2  K1 3 J "  problem. Notice that in the three examples Af is

D-stable. Hence control problems for these sys-
We let &-*0 along different paths. For simplicity tems would be well-posed.
we take the paths to be the rays 62/61 - 0.25, c2/et

4. The limiting values of K 11, K2 , are shown in
Table 1, where it is obvious that the limiting 6. CONCLUSIONS
behaviour of K,,, K2 1 depends on the particular The basic difficulty in extending the single
path along which a40. parameter singular perturbation techniques to the

multi-parameter case is in testing the stability of
the boundary layer system. Although block D-

£2/C1 0.25 1 4 stability is a sufficient condition for the boundary
layer stability, there are two limitations on using

K11  0.0785 0.0827 0.084 it. First, we still do not have a complete characte-

___ 0.3873_ 0.3725_0.3595 _rization of the class of block D-stable matrices.
2 1  0Second, for most problems of interest block D-

stability is a conservative condition and more
work is needed to develop conditions different

Example 2. Consider the system from block D-stability to check the boundary
layer stability.

,=-x+z +z2  (69)
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APPENDIX A AK, + AK 2DA + AJ0 DAK3- AKSDAK3 -KSDAK3

Proof of Th.oFIN 3. The substitution of (5 1) into (49) yields - AK, ,DKJ - AK DS ,DAK, - K2 DSDK,
the equain -K.DS3DAK3+O(jjeI)M0 (A16)

K IA0 +44.,I +KIDAfo + A' 1 DK + C6C-K ISK I,3Dj SD,, Df-DAJK
-KS,DK -KDS K, -KIDS1 DK, -0 (AI) K[A-SDKJ[D 1 DSKJ',

- AK3DS3DAK, +(1eh)=0. (A17)
Kj~o +KD~f+)A K2+A DK,+ CCf AKIIKFrom (A17) we got that AK, =O(fjej), Then from (A16) we

-KIS2DK3 - MK2DS;K. -K 2DS3DK3 -0 (A2) have

uK2 Ao 1 +,A,K2 +K3DA + A^3K,+C Cf AK2=AK 1E,+O(I1I). (A!,-)

-IU2'ISKI-K SDKIAK3SA2K3D3DK -0(M) Substituting (A1S) into (AlS) it can be shown that AKI
(A) satisfies the equation

where AK I(A, - BR;EC, - 'B'K,) +(A, - B, ; C,

S, =BoR-'V, S,-B 0 R'BJ~ and S3 =BfR-B,. -BR.'B;K,)AK, -AK,BR'B,AK, +O(IMPI)=. (A19)

Let KI,., and K,3 satisfy the equations Since (A, -BR 'E;C, - BR,' K,) is stable it follows that
AKI =O(1e1I) henc AK2 O(110II)

K, A + A, +KDA,,, +AfODIC2+ C0C0

-KISIK1 -KS2DK, -KDS.K,-IDS3DK', =0 (A4)

KQKAADK+CC 1 KIDS(A5) APPENDIX B

K,3DAJ. .- 14Dk, +C C1 -KDSDK3-0. (A6) Proof of Theorem 4. Let

We first consider the solution of (A4H-A6), then we establish H=I+R -BDKf(Af-S3DK1f'-Bf (11t0
the relation between K, and K9, Under assumption (14), I a eesiysonta
equations (56) and (AM) imply that K,(t)-K,e). Hence Itcnbeaiysonht
solving (AS) for K2 We get H-1=I-R-B,WDKAy 'Bf (B2)

K, =[K ,(SDK - Aof) -(C;C + A ,0 DKf~)][DAf R; '-HR-'H' (113)
-PS3DKr'

91~E,-Ez. (A7) BH-a-B-EDBf (84)

4Substituting IA7) into (M4) results in the Riccati equation A 'BH-(Af -S3DKF'B1 (B5)

9 'A + AT, + -K, R-'OK, = 0 (AS) H R -'B',D=-R 'B D[ + K, Af -S 3 DK) 'S3D]. (M6)

where Using (8B)HB6) we rewrite (57) in a more convenient form

Ai-A, +E,DAf, +S,DE 2 +EIDS3DE iAM) u.[HR 'H'B' A'C',(Co -CfA'Af0)- HR 'H'B;K,]x
=[HR - 'B}(Ar - S DKf I '-'(C'Co .. (KfDA + Af~

A- B0+EIDB, (A10) -KfDS3DKf)Af'Afo)

-C,,C. - E ,DAfo - A,0DE', - E,DS,DE',. (All) - HR - ' (Bo + E, DB1 )'K,)x

Algebraic manipulation using (56) yields + f [HR f 'fA 1 -SDJ)- ('C KDA)

4 -. 4, -84-'EC, A 12) -R ' BK,A -'A 10 ~ (,- ,K,)SK

OR 'B' BR-'B (A3) - HR - '8,DEjK,)x

(1 -iR'K~x - HR 'BD(K..+ KfAf IS*K,
Q1;( - E,,R;'E;)C, (A14) -KfAf 'Afo3x

Under the assumption that (.A, B, C,) is stabilizable- Kf-'BS,xA)-'B;D1-,A-,K)',]K
detectable 147) and iAS) imply that K, -K, Hence 9, is notf
dependent on &. From (55) and (A%) K2 =K, . ,.~ K 1] R -Lx] WSubtracting IA4). (AS), and (A6) from (Al), IA2) and iAnn, R- uK;
respectively. and using that the elements of D are bounded for
ce H, we ind that AK, wK, -K1, AK2 -K2-K, AK3 -K3
-K3 satisfy the equations where

AK ,+.;K + AK DA ro '-ADAK, -AKS,A6K, K,[. (., A 0( ', + DS3JA - S3DKf)' 'K,]

-AK,S,DAK -AK,DS',AK, -&K,DS,DAK, 88

-AK, S, K, -K,S, AK, - AK, S,DK When ui, is used, the value of the performance index is I
-KDS,AK -K,S2DAK 1 -MK,DS 2 K, j1~1,fo 89)

AK ,DS,DK -K..DS3D&K'z 0 (A151 Lj oJL' oJ L
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where W is the positive semidefinite solution of the Lyapunov r4(A-SK,-S2DK',)+(A 0-SK,-SDK)'P PID(A,0
equation - S X, -S3DK,) .- (Afo - S'K, -S 3DK,)'DV

W(A - SL) + (A - SL)'W4- L'RL+ Q - 0. (B10) +s(K. -K,)DS 3D(K,. - K,)' -=0

On the other hand the optimal value is PAof +, DAf i-1AI 0 - S K,- S3DK;)'DP3 +(K.

J.I--j:1 xK (Bit) -K,)DSDKfO -0 (Bg
zo LoJPDf+ A DP3 +Kf DS 3DKf -0. (Big)

where K is the stabilizng solution of (49). Subtracting (49) We first evaluate P, V2,, and P3. Since Af satisfies (14). there
from (910) we find that V- W-K satisfies the Lyapunov exists a unique positive semidelinite solution P3 of (819).
equation Expressing Pz in terms of V, and Ps, substituting in (B17) and

V(A -L)+(ASLYV+K -L)S(K -)-O. B12) using (B19) to eliminate P, eoti

W se k V int(A f r -S 9 (A SL ) V ( tha i )s ( - L - . 9 2) 1 'A 0- A of A f 'A fo)+ (A a - A 0 A f 'A ,0)'V j

We sek in te frm 51),tha is+(K.-K,-AOA,- 'KfJDSDK.-K,-AOA'9f'KI-0

(80) here(B20)

Substituting (B13) into (B12) yields the equations A0  A0 -S,K, -S^D Af, A,0 -S' 2K, - SDK,.j2

V(A-S,K,-S 2DK,)+(A 0 -S,K,-S 2 DK,)'V, +V 2D(Afo From (B8) we have

- S K. - S3DK,) -NA,,, - S'jK.- S3DK,)'DVI KDS3 -[(K. + (KS - A'1 0)A,. 'K,.]DS,(A,, - S,DKfY -A

+ (KI -K,)SI(Kt -K,) + K, -K,)S2D(Kz -K,)' KDSJAJ' =[(K. .i-K,S2, - A 0 )A7 KrjDS,(A4, - S,DX,)'- -'

4-(K2 -K,)DS',(K, -K,) +i (K2 -K,)DS3D(K2 -K,Y =0o (822)

(914) Thus

VA,, + V2DA 14-,u(A,- S,K - S2DK;)'% K, - K. +(A1,, - SK,)'A'7 'Kf +KDS3 AT WK,

+ (A1, - S2K,- S3DK ,)'D V, +Mu(K, -K,)SIK, + (Kt-K,)S2DK3 =,K-' 0 7' 1  B3

+,u(K K,)DS'2 K + (K2 -Kv)DS3DK3 -0 ('915) wurhich re is0 stbe Thus Af 'o -, - 5,RI'(EC, +BK,)
whic isstabe. husthe solution of (B20) is P, =0.

Substracting (920) from (314) and using Theorem 3 we

uVjAof 4- MA V2 + VDAr -+ A', DV3 , ~K2SK2 obtain that Vim= P, + O(IFI). Hence

+AsK2S2DK3 .4-4,DS',K2 +KDS3DK3 -0. (916) 14 -O(Ije). zeiH (824)

Let P, P, and P3 satisfy the equations implying (58).

.... ....
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Well-Posedness of Singularly
Perturbed Nash Gamest

by .t ADR. R and aj. & CRU. J.

Decision and Control Laboratory, Coordinated Science Laboratory and
Depanment of Electrical Engineering, University of Illinois, Urbana, IL 61801

A cr. This pa discuses linear-quadratic infire-rime nonzer o-sum losed-loop
Nash gmes for sysmn with fast and stow modes. [ is shown via example that the usual
order reducuin processes utlizing contai ideas of smplar perturbation analysis leads to
an ill-posed reduced order prob m. A modification of the performance indices is presented
which Leads to a well-posed problem. when the usual order reduction method is used.
FInally, a hierarchical reducnon procedure is proposed which leads to well-posed fast and
slow game problems even when the pertormance indices are not modified.

L Introducdt

In a general multi-input system there may be many decision makers or
players each trying to minimize his own performance index. The system is
described by a vector differential equation and the performance indices are

I functions of control input vectors and state vectors over some period of time.i We consider the cme where the system equation is linear and the performance
indices are quadratic functions of state and control vectors. A particular

Istrategy, or rationale for choosing controls, is the Nash strategy which is
appropriate when cooperation among the players cannot be guaranteed. It has
the advantage that if one player deviates unilaterally from the Nash strategy his

4 performance index will not improve. When the sum of the performance indices
is zero the game is called zero-sum, otherwise the game is called nonzero-sum.
An easly paper on Nash strategy is given by (1) and necessary conditions for

j open- and closed-loop Nash strategies have been presented in (2) and (3)
respectively.

When the system has slow and fast modes, the control problem is ill-
conditioned, that is it is numerically "stiff". To alleviate this ill-conditioning
and to reduce the amount of computation, singular perturbation techniques
have been developed, some of which are presented in (4. 5).

In this paper we investigate the well-posedness of closed-loop Nash
strategies with respect to singular perturbation. There are two principal ,easons
for singular perturbation. First the model can only be an approximation of the
actual system and we must insure that the control is robust with respect to
neglected fast dynamics. A second major reason is computational simplification

t This work was supported in part by the Division of Electrc Energy Systems. U.S.
Department of Energy under Contract EX-76-C-01-2088, in part by the National
Science Foundation under Grant ENG 74-20091. and in part by the Joint Services
Electronics Program under Contract DAAG-29-78-C.0016.
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B. F Gardner. Jr. and J. B. C=uz Jr.

when an original full order game is approximately decomposed into fast and
slow subgames.

We give an example of a nonzero-sum Nash game whereby the natural
singular pemrbation leads to a strategy which results m limiting values of
performance indices different from the limiting values of those corresponding
to the full order Nash strategy. En contrast we have shown elsewhere (6) that
the corresponding performance indices have the same limiting values when the
game is zero-sum.

We then show that a physically justified modification of the performance
indices consistent with inadequate modeling of fast dynamics results in a
well-posed singularly perturbed nonzero-sum Nash game problem when the
natural perturbation method is applied. With this modification, computational
saving can be gained and a close approximation to the optimal performance
indices obtained by order reduction of the Riccati equations.

Finally, we present a hierarchical reduction procedure which leads to a
well-posed singularly perturbed modified slow game. This reduced order slow
game differs from the natural one in that it contains information about the low
order fast game. The problem is well-posed with respect to the original
performance index for the full order game. Computational savings and a close
approximation of the performance indices are achieved.

IL lil-Posedneu of Noero -um Nash Games with Respect to SinguLar

Perrba ,"m

Consider a singularly perturbed time-invariant system

-i A l lxl+A 12x2 +Btul+B%,u7; x.(o)xto (1a)

,2 =A 2 x +Ax 2 +B 1 ul +B. u-2; . 1(t0 ) = xo (Ib)

and performance criteria

.r, l ,,]j uIRfu Jd; 4ij1,2.ildj (2)

where A is a small positive scalar. x, and x2 are n , and n2 dimensional
components of the state vector, ul and u, are ml and m, dimensional control
vectors to be chosen by Players I and 2 respectively in accordance with the
Nash solution concept, and the control strategies are restricted to be linear
feedback functions of the state. Denote

x -rx'], A _ A1  A 12 AB Bl4  and o
x2 i LA21/i. A,_J i' B2 J And Q2 Q 13

The usual definiteness assumptions are made on Q and R, t. I = 1, 2.
The optimal closed-loop Nash strategy for Player i for (2) subject to (1) is

well known (3) and given by

ormA o The Fno kim hlanam
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where X is a stabilizing solution of the coupled Riccai equations given by

0 = -kQ, +I+A + A'IQ)+ IKBR-'jBI- +K B,.R-'BKi + I4BRVBI'l
-KBfRTj'PR'j'B K1 , for 4-1,2; i j. (4)

Notice that since A and B, are functions of the small parameter p, K, is a, o a
function of . In general even for low order problems the presence of . causes
numerical "stiftness" in (4). For this reason and for computational reduction
the problem (1), (2) in the one Player. Le. control, case is generally approxi-
mated by a lower order problem by formally setting IA - 0. This produces a
control which when applied to the ful order plant gives a close approximation
to the optimal cost. In this section we examine the standard reduction method.

The standard approach to obtaining a reduced order model is to set 4 - 0 in
(ib), solve for z2, assuming A= is non-singular, and substitute in (la) to obtain

+ (B2- A12A2-2B22)i!, 11(t0) -z~o (5)

where the bar indicates that A -0. Rewriting (5) we get the "slow" (since
setting u. - 0 is equivalent to saying that the fast states are infinitely fast)
subsystem

j , Ao, + Boiui, + Bou ,, x,(rO)xzto (6)

where
~-1

7 A0 - All - A12A= A 2 1t
BO( B1 ,- A12A ni B2, i = 1, 2.

The corresponding "slow" performance criteria found by substituting z2 when
. = 0 into (2) is

-- to

2u , !, u .j d t , = 2 i ~ i (7 )

where

6.1 01 - Q,2 A~.2 -2A A 2A1)'(2 2 (A 22tA 21) 3 A i- 21 ,
-i gAj 2 )'Q.,AZI'- QI2A;4

A , , +B.,(A2) f.A B:,

61 B-'1(AIZ'YQ 4 3A -1B,.
Solving for the reduced order closed-loop Nash strategies, we have

!CB -AB;Kx, + I& X + d1U-,z1 (8a)
(8b)

VoL. 30. S. J.N wubsr 1918
Soglmw" Iufi
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where 4 is a stabilizing solution of

0 - -(0,, + A . + KkAn) + M~j.AA, - Mj. , A . t4K.B., .,2B2 ,]M.
+M9IB&, B(K2*.]J, for i.jm1,2, i j. (9)

Using the gain matrix Mu from (8b), we implement the control

=, - M(10)

and apply it to the system in (1). The resulting value of the suboptimal
performance criteria in (2) can be expressed as

A. = W4 v0 () (n)~ro

where V,. satisfies the Lyapunov equation
Vi.{A - B, [.% : 01 - B, [.N : OD + JA - B, (Mu : 0]- B,f V 0]'V..

The matrix V. depends on ;L since A and B, contain 1L. Hence the reduced
cost is dependent on I.

If the optimal Nash controls given by (3) are applied to (1). the values of the
optimal performance criteria are given by

A x'(to)X(ro) (13)

where 14 satisfies (4). We wish to examine the nature of the optimal criteria J,
as I t-0. 1 particular we wish to verify if J approaches J.. as 14 approaches
zero. We wiU say that the reduced order game is we l-posed if A approaches
A.. as --'0. Otherwise, we say that it is ill-posed. We perform this compari-
son on a specific numerical example.

Consider the second order system

~ 1~'+ L1 [2M]U2 (14)
S-./JiLx 2 JL

X[ (0) 1 - r, 1
x2(0) J L2"J

with performance criteria

[_tr,[2 ]xj +2u-}dt (15a)

J2 '{' [ 2 1 ]x 2u2 u2 dt. (15b)

For this example, the resulting K, and I4 from (9) and (8) are

KL. K2. = V = 0.6804 (16)

juniM of Il Fu alMu Cmum II
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and
MI - Mu - 0.4082. (17)

Calculation of the resulting values of J, for several values of 11 are given in
Table 1. Because of symmetry, J, - 2- J.

TAAL I

0.5 0.2 0.1 0.01 0.005 0.001 0

j 1.3012 0.73245 0.5425 0.3724 0.3630 0.3630 0.3536
J,, 1.84127 0.86558 0.59083 0.36420 0.35217 0.34259 0.3402

It is seen that the limit of J, as A -0 is different from the corresponding limit
of J,... This discrepancy between the J's in the neighborhood of & - 0 indicates
that the reduced order Nash strategy obtained by the standard method is
ill-posed.

.LM Rqueaizauion of the Cst Funcriona Consistent with Inadequate Model-
ing of For Dynamics

The manner in which the singular perturbation approach could be modified
so that we have a well-posed problem depends on the reason for the appear-
ance of the singular perturbation parameter in the system model. In this section
we discuss the first of two reasons considered in this paper. Let us suppose that
we have a Nash strategy using a model represented by (la) and

0 - A 21 XI + A 22 + B-21 , + B u2. (18)

We wish to examine the robustness of the Nash strategies when the actual
system is represented by (1b) instead of (18). The performance index in (2)
leads to an ill-posed problem as we demonstrated.

If indeed the original model used for design is based an (Ia) and (18). then
for consistency it is appropriate to assume that the vector x. that appears in (2)
is constrained by (18). That is, from (18) we have

z2 = -A2[A .x, + B:puj + B.. (19)
Substituting (19) into (la) we obtain (5) and substituting (19) into (2) we obtain

i~ - f,{x~Oxz~42x~~~2 B21 i B~u) + A
!" A.u fl , 4+2ujO,3 u} d:. (20)

The modified performance index in (20) for 41- 1, 2. i A j, reflects the model
constraint of (18). In this case, the variable x2 in (2) is not a component vector
of the state x. but it is simply a function of xj, u, and u. as given in 119). For
example, in a d.c. motor model, we may be interested in penalizing the

VOL 3W~.$40. J. s %ow MS.I
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armature current. However if our model neglects armature inductance then the
mature current is expressed as a function of the speed and the voltage. On

the other hand, in 6ur earlier ill-posed example, Y. in (2) is not constrained to
satisy (19) but instead, it is part of the state as given in (1b). Thus in this
reformulated problem, we are interested in comparing the Nash strategy that is
obtained from (la), (18) and (20), which is the same as (6) and (7), with the
Nash strategy that is obtained from (1a), (1b) and (20) as / -,0. We show that
this is a well-posed problem with respect to singular perturbation so that the
Nash strategy is robust against inaccuracies caused by neglecting fast dynamic,
provided that these are stable (i.e. A., is stable).

For the full order problem (1) and (20), the optimal closed-loop Nash
solution is given by

&4 -A-,'{BUf2, 0]x +[BIII B4hIA1.1x + 613L} (21a)
M -Tx (21b)

where i is a stabilizing solution of

--[2]BA--AEf(IBI,[Ot 0]+IMAfjtj -R~k . (22)

The optimal cost for (20) subject to (1) is given by

ff.. - x'(to)9x(to). (23)

ff the control

u", = -- KX (24)

where M,, is from (8) is applied to (1) for performance indices (20) a
suboptimal performance cost results which can be written as

V. - ix'(r0)Pi'(t0) (25)

where P, is the positive semidefnite solution of the Lyapunov equation

Pj,{A -B,[.Mu O]-B,[A .':O]}+{A-B[V ]- B,[ iO]}' +[ 0=

(26)
and

d. - 011" + B, 1Mf I- (B11 + B,- N4 f~M

+ M~IA + 403Vf MtI(OMf3I.

We shall compare the optimal Nash performance cost (23) to the suboptimal
performance cost (25). In order to perform this comparison we need some
relationship between the optimal Riccati gain 1 and P,. A relationship is
found by first giving conditions under which i? possesses a power series
expansion at A -0 and then giving conditions under which P,, possesses a power

J.agla of The FPmnkln Ihuama
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series expansion. Finally, we form a new Lyapwiov equation by substracting
(26) from (22) and show that there is in fact a relationship between the optimal
performance cost and the suboptimal performance cost.

Represent IZ, the solution of (22), as

rZ (W ~ (M) i= ();41, 2. (27)

o 1 -ki4oAI A'11Ktl'?,KjA 2,+ A'21R9"0)
4 RjOBI + 91% +6 2 B21AJ - 413AV0 13F1

'I[]%(A - 043AVOW f2 '(;,j&. + B2j)+ 8102
SSN~A, -O r1A~l A1 -' 1 A

- s(A, 3 r'&A 4, O- '1
3J-'SI 1 (2 8)

R~o)-~AI 2 + K1,'A 22 + A'1 K0o -&j)j + K 2 821 + aBII

xTI 3A - P- ~
- ;f 1 -39V 33A'! 3 tB.&'- d1AB'k -

x RfLAf - V6A1 1 3f~,~ ' ~itAff'B;JR OO

o II -A 3AUj,~ 3 21 71-0 J

1?~l -A
LAI itB" '-d3A-'BIB&fO3c (29

0 - 13 A;12&,JLAg'03'[A-OfA')3-
B4 13 0j3AjB,-21 ) 031B2 1 - KB3±,Atj

= 21 BO93) - kj - &t A- (31

-CoIto aB4)- -B

[~: :i(33)
wheorine lrwhr

IfIB,12-BjO-B1jlO-O3A ('0,+Bk' ~90j(1

andri i t 1

VoL i31,2 k-12.3 S- ,2 No~b (32)
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and

-oAp[B ,(f 2 + s - .,M. ]+ BIo & -'Aa z,

where

is the Kronecker product operator.

Theorem I
If
(1) A= from (1) is stable;
(2) The slow game (6), (7) has a unique stabilizing closedloo1p ash strategy

pair;
(3) ICo] -0 is the unique positive semidefinite solution of .30);

and
(4) Condition a is satisfied;

then the solution k, -It () of (22) possesse a power series expansion at
A -0, that is,

')T (34)

where

/ ' I , o " i- 1.2 ; k - 1,2,3 . (35)

Furthermore, the matrices 4'), 91T and K"osatisfy the identities
0) /(36a)

,2 -I4A1 2A (36b)
&13, o (36c)

Proof: The proof is given in Appendix A.
A relationship between the suboptirnal control (24) and the optimal control

(21) is found by substituting (34) into (21) and letting ; = 0. Comparison of the
resulting equation and (24) using the identities (36) yields

U1 4= +(0), i- 1,2. (37)

The result in (37) is analogous to the "composite" control formulation in (5).
Even though there is no x,- present in (24), the result in (37) is not unexpected i
since the fast parn of I for A -0 is zero. Thus we really have a "composite-
control but the fast part of that composite control is zero.

Since the reduced control (24) is close to the optimal control (21) we expect
that the reduced cost (25) is close to the optimal cost (23). We state the
following results.

Jawmi oil TMe FnkmM mcif L
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Theorem 1I

solution to the slow game (6). (7), then P,, i - 1,2. in (25), (26) possesses a
power series expansion at g -0 . that is,

P, .(W t (38)

j where

i-1,2, k-1,2.3.

Proof: See Appendix B.
Applying the reduced control (24) to the system (1) and comparing the

resulting cost to the optimal cost gives the following theorem.

Theorem I'
The first terms of the power series expansion at g - 0 of JT, in (23) and V,,

in (25) are the same, that is,
Y, - A.. +O(0L), i=-1, 2. (39)

Thus the reduced order slow game in (6) and (7) is well-posed with respect to
the full order game in (1) and (20).

Proof: See Appendix C.
It should be noted that in (20) x2 does not appear explicitly and that there

are cross terms of x, with u, and ul and also cross terms of u, and u-2. Using a
linear transformation among x , ul and 2, a performance criterion without
cross terms could be obtained. However, in this case, the transformation would
induce an additional structural constraint on the control, and the Nash solution
might be different. Thus, no such transformation is used in this section. A
second point to note is that although z2 does not appear in (20), the "slow"
part of x as given by (19) does appear, since (19) was substituted into (2) to
obtain (20).

IV. HierarchicaL Reduction Scheme which Transfers Fast Game Information to
a .Modified Slow Game

In Section I we demonstrated that if the system model for control design
contains only slow modes and we wish to determine the robustness of the
nonzero-sum Nash strategy to the presence of fast modes in the actual system,
then the performance indices should not include the fast modes of the system.
That is, if we have a system with fast and slow modes, then in order to have a
well-posed reduced problem under the usual singular perturbation reduction
method, the fast modes of the system should not be penalized in the perfor-
mance indices. On the other hand. if the system is assumed to be adequately

VOL X&. .e ebu £91
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modeled and the fast modes appear in both the state equations and perfor-
mance indices, and it is desired to reduce the amount of computation and
alleviate the numerical stiffness of the closed-loop Nash control problem, we
have seen via the example in Section II that the usual order reduction method
of singularly perturbed optimal control problems does not lead to a well-posed
Nash game.

In the method of Section II it is implicitly assumed that the fast modes and
slow modes can be completely decoupied. However, we have shown that if we
directly penalize the fast modes, the fast and slow modes cannot be completely
decoupled. Taking this into account we propose to first solve a fast low order
game and then implement the fast feedback control in the system and perfor-
mance indices before obtaining a reduced order slow game. Thus we are
proposing a block triangular or hierarchical rather than the usual block
diagonal decomposition.

To derive the fast subsystem, we assume that the slow variables are constant
during fast transients. Denoting the fast variables by the subscript f we have
the fast subsystem and performance indices

Lf A , -2 2 u f+ - B. 2u2f; xf(ro) = -x 2o-R 2 (ro) (40)

[ V ( uXR'uQ1.A W+u .Auef]dt; /i,/1.2; i*i, (41)

where xf - x2 -x 2 ,. The closed-loop Nash controls for (4 1) subject to (40) are

Af- =-R-jiB ,'2Kf i-1.i,2 (42)

where 4f is a stabilizing solution of

0 =-0,3 - KA22 - + 'B2IR,'BI4 + 4B2:R-BIK?,

+-f 4BR;,B12I4 - K.B,2 R-'R-'B ., i. /j-1,2, i /. (43)

Next we make use of the fast control and substitute the following for t. in
our original system (1) and performance indices (2). Let

u, i-t Y, x,- - 44 (44)

be our modified control. This gives a new system and performance indices
given by

= .4 1 x 1 ~-A 1x2 -B11 1 - 12i~,; L~za - 45a)

-i2A 21x1 4A 22X2 4-,B2 C4L - B,2 L!2 ; X2(c,,)-X2 (45b)
and

J X, Oi {x 12 x--X ~B,-2xfB~-R g,1C

+aIR. .+aFj dt i,j= 12. i/, (.t6)

I'
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where

A 12 = A12 - BI1R 1 B4.IKtf - Bl 2R;3 B!KI

A2- A-2- B2IR -IB,21Kt - 137R2B-2' 1

403- -13 + jB 2 ,R;'Bj 4I +. K~B 2 I 1 R -LB'jlf

To get our "modified slow" subsystem we formally set A, -0 in (45b) and
solve for x2. This gives

9- -A-(A 2X2 +3a + B t~ a ' - (47)

Substitution of (47) into (45a) and (46) gives us the "modified slow" subsystem
and performance indices

~Aoxu~o~u ,,,; ,,,,(),X0 (48)

and

+ u ,RuA,. + ul .. ]dt.; j-1,2, ii, ( 49)
where

A0-AI 1-A 2A=-A21
4-, B1, -At 2AI__B%4

Io - A,-Q 4 AA 2 -(AA 2 )Q'

,. -Q(A-tA,)'O,3A-tB +(A- A z ) YAI -
0'12 2 -2 - 22 2-2 V 22. , -

S,1 , 2,'B(A ,)',3A 2  -B,7R 1  2 2).

We will show in this section that the reduction process we have described
leads to a well-posed reduced game. Note that the modified slow subsystem
and performance indices are of the same form as in the slow problem
considered in Section II. However, the system matrices and performance
coefficients contain information about the fast low order Same. Examining
(44) we see that we still have a control composed of fast and slow parts.
However, since we substitute the explicit form for the fast part into the state
equation and performance indices before the slow state equation and perfor-
mance indices are formed, the slow modes are dependent on the fast modes. In
Sections II and 1lu the fast mode3 dnd slow modes were completely separated.

The closed-loop Nash strategy for (49) subject to (48) is given by

t.- -R'Z,,m. f51)
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where Kt., K2,.. satisfy the coupled Riccati equations

0 = -o - A;K, + (K..o, + 0,2]R. 21;fBZJ=. + ('.1

-Ik A 1ji, 2; i j. (52)

Of courSe (51) and (42) are only subsystem optimal. That is, as they stand we
cannot apply them to the original system (1). Fo~lowing the methodology of (5)
we form a "composite" control involving both fast and slow control coeffi-
cients. The form for the composite control is suggested by (44). Forming

u,. -Mx -R jR'B2',jKw (53a)

R7, f K,. 0 x (53b)

=- R t B M,x (53c)
where

K -,, {-Q, -A2,vf - K,1 .A 12 +(XJ 0 +, f2, - (K 0 , + OjR'O,1 3 )

- - (54)

We note that the coefficient of x, involves both fast and slow Riccati gains
while the coefcient of z2 involves only fast Riccati gains.

If the composite control (53) is applied to (I) for performance indices (2) a
suboptimal performance cost results which can be written as

4A Ji~=x&Pxo (55)

where

o - Ptj BRrBM - BfR;7'BfMjjC ( - BR B!(,,.(A1 R -Bj 19BMK d -B -B!W P+ Q+ MB,Ri-'B'fwM ' fBR77tR-'B!.M. (56)
To compare the optimai performance cost (13) and the composite performance

cost :55) we need the folowing conditions:

Conditions b

[14-3 - V,.t z (57)
is non-singular where

a= I® A 2+ , 2®8

and

C, B 1R-' B,,K - BB;RK4R., f.

Condition c

168)
)Oz~mD oE The PinkAzLr, tm.azm -.
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is non-singular where

and

A - Jo-A0  - a0A + N, 1 BE2 Rj7'

,r - B 1 I. + B, Ki[ . - A A +R(B.1K - P8R1 'B,,K]A
x-A2, + B" + " -A

Nit - Ao,(R-% 1B!I4f - R71 RffR-jB.IK,wA 2LT -j

2x2R B, I -,'-j~ R.R =FAIR -zYf A221B2N --- •12A BR - -11 1-

xT I ,R , fB - R- RR;'B2, f]A V1}T7'

Tj- 1'- B-z1CR-B~,X4 - RR~R77B 1 KfJA1B2,i f 2 -- I- t 2 22-

x (R;'BlzKlf - R;Rj7'Bjf]

If these conditions hold we have the folowing theorem.

Theorem .rv

If
(1) the fast game (40), (41) has a unique stabilizing closed-loop Nash

solution;
(2) the modified slow game (48), (49) has a unique stabilizing closed-loop

Nash solution;
(3) Condition b is satisfied;

and

(4) Condition c is satisfied;
then K, the solution of (4), possesses a power series expansion at gi. 0, that is,

K - 6) L(59)

where

a )  i-1,2; k-1,2,3. (60)

Furthermore, the matrices KT, K1,2 and Kro, satisfy the identities

K..
I° - !4f.
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Proof: The proof is similar to the proof of Theorem I and is omitted for
brevity.

An immediate result of Theorem IV is that

k -L4 +0L) (61)

where &4 is the optimal Nash control for (1), (2). This can be shown easily by
substituting (59) into (3) and letting L - 0. The identities found in Theorem rV
yield (61). Furthermore we have the following results.

Theorem V
If the fast game (40), (41) has a unique stabilizing ciosed-loop Nash solution

and the modified slow game (48), (49) has a unique stabilizing closed-loop
Nash solution, then P,, possesses a power series expansion at A - 0, that is,

P .J .P1 (62)

Proof: The proof is similar to the proof of Theorem I2 and is omitted for
brevity.

As a result of 14 and P, possessing power series expansions at A = 0 it is
easy to show that their difference also has a power series expansion at - 0.
Comparison of the optimal Nash performance with the composite performance
costs gives the following theorem.

Theorem Vi'

The first terms of the power series expansion at A, = 0 of Y, and P,, are the
same, that is,

, f + 0(A.). (63)

Proof: The proof is similar to the proof of Theorem IMl and is omitted for
brevity!

Thus far we have not changed the structure of the controller for the full
order system (1). That is, the composite controls are a function of both x, and
x2 as are the optimal Nash closed-loop controls. If it is desired to implement
the control as a function of x. only to achieve an O(g) approximation of the
optimal cost we use the following procedure. Substitute the composite control
(53) into (lb) and let . =0. This gives as an approximation of xz

.2 =- -, IA 2 1 - B2 Afj - B221,, Ix,. (64)

If (64) is substituted for x, in the composite control we have a 'lower order"

Thus the modified slow game is well-posed with respect to the modified reduction
procedure. Furthermore. it can be shown that t, satisfies an Asymptotic Nash property
in the Sense that J(u,J,, t4,) 4J)uq, ,.)+O(;.), i. 1. 2. i* /. The reduced order control
satisfies a similiar inequality.

JoWUraM 01 "ro Puaklia [sme@

Pftapm Pfeu LW.

I
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control as a function of x, only. This lower order control is

u., --1 I -R-U7B 2 jA-(A21 -B 2 M1 . -B22Rujxi (65a)

- -R;'BfMhMx (65b)

where

and

If (65) is applied to the full order system (I) for performance indices (2) a
cost results which can be written as

fit = paxo (66)

where P is the positive semidefinite solution of the Lyapunov equation
0 - Pa[A - BR; Bf, - Bf.R'BjMf,] + A -SiR-' B[V4j - BjR-'B;jI. jPj

+ +, +MqBI R~'B[, + M'B,R; R1,R;' M. (67)

Following the method used earlier in this paper we have the following theorem.

Theorem VI
If A2 is stable and the modified slow game (48), (49) has a unique stabilizing

closed-loop Nash solution, then P, possesses a power series expansion at L = 0,
that is.

P. - i Y (68)

Proof: The proof is similar to the proof of Theorem II and is omitted for
brevity.

Since Pj and P, possess power series expansions at A = 0 it can be shown
that their difference also has a power series expansion at A = 0. Comparison of
the composite performance costs and the lower order performance costs gives
the following theorem.

Theorem VIII
The first terms of the power series expansion at :.L = 0 of Pj and P, are the

same, that is

(I, - A. +0). (69)

Proof: The proof is similar to the proof of Theorem 1II and is omitted for
brevity.

As a result of Theorem VMI. it can be seen that the costs at . = 0 for the full
order optimal Nash game, the full order game with composite control applied.

Voi. 306-40. o. .Yreuv 1978
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and the full order game with the lower order control applied are the same.
Thus we have shown that the modified slow game which leads to the composite
control u,, in (53) and to the reduced control u% in (65) is a well-posed reduced
order closed loop Nash game, without having to modify the original quadratic
cost functions in (2).

V. COmc/siMs

We have shown via example that the usual order reduction procedure for
singularly perturbed optimal control systems does not lead to a well-posed
problem when extended directly to the linear-quadratic nonzero-sum closed-
loop Nash game. If the fast dynamics are not known exactly then only the slow
part of the fast states should be incorporated into the performance indices. We
have shown that in this case the usual order reduction procedure for singularly
perturbed optimal control systems leads to a well-posed problem.

On the other hand, if it is assumed that the fast dynamics are known and are
incorporated in both the state equation and performance indices, we have
shown that by using a hierarchical reduction procedure developed in Section
IV the resulting modified slow game is well-posed. This hierarchical reduction
procedure differs from the normal singular perturbation order reduction proce-
dure in that it is a block triangular or sequential process rather than a parallel
decomposition. In this sense it is analogous to the reduction method of
Kokotovic and Yackel (7) for singularly perturbed optimal control problems
where they had the slow Riccati equation dependent on the fast Riccati gain. In
our hierarchical decomposition the fast subsystem may be found independently
of the slow subsystem but the converse is not true. Also, a choice is provided
for implementing the approximate control as either a function of fast and slow
states or as a function of slow states only. As in the optimal control case,
knowledge of the value of the small parameter, p&, is not necessary to obtain an
O(g) feedback control design.

In contrast, for zero-sum Nash games (6), although the performance indices
contain fast modes, the natural order reduction used in optimal control
formulations leads to well-posed problems. That is, in zero-sum games it does
not matter whether the order reduction is due to ignorance of inadequately
modeled fast dynamics or due to computational simplification only.
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Appuuices

Appendix A: Proof of Theorem I

The approach to the proof of Theorem I Ls to represent r as given by (27). When
this form is substituted into (22) we will show that, under the conditions of Theorem 1.
each term in the series expansion of t about ;k - 0 exists and is unique. Then, clearly,
there is a k* >0 small enough to guarantee convergence of the series for all Os A <,L

The substitution of (27) into (22) at A&-0 yields Eqns. (28)-(31); 4j- 1,2; i*j. If
10 - 1, 2 (AA)

is the unique positive semidefinite solution to (30), then (A.1) may be substituted into
(29) to uniquely yield

- ,', A - (A.2)

Substitution of (A.2) and (A.1) into (23) and manipulating gives

0 - (, + k. *,A , 0 , 1  -B -(,,B,.B BI

where

,i 2. i . (AA4ii Comparison of (A.3) and (9) show that the two equations are identical with &
appearing in (9) where ,' appears in (A.3). Thus, if K., i- -. 2. is the unique
stabilizing solution to (9)

l~K, in 1,2. (."

Substitution of (A.5) into (A.2) gives

I o- -- KtA 2A2, i - 1.2. (A.6)
Thus, we have shown that the drst term of the series exists and is unique.

To see if the second term of the series exists we substitute 127) into (22) and take the
first partiai with respect to 1 at IL - 0. This gives. with some manipulation.

0- A4"A'KW -(At 2A2.a)' A,2 At2  'A 2 A22',] i-1.2. (A.7)

If A?. is stable (A.7) possesses a unique solution. If we now assume that &'is known

Vol. 306. Ift. J. ,, ber !97
primud t Nafm1 Irosad

I_



B. F. Gardner, Jr. and J. B. Cruz, Jr.

from (A.7), 42" can be found to be
,, , L t=,- LA ,i-1,2 (A.8)

where A is some known matrix.
Substitution of (A.8) into the equation for K'V gives

where
A4 -A0 ,-Bg€z, + = ;'O6J [S j, -A.b , J-S ' M. (A.1O)

A1 -- B~;'t~Or+B4, ~(A. 11)

To find conditions for I.' and &' to exist and be unique we apply the Kronecker

product operator to (A.9) to give the vetor form

Ak13k-,r (A-13)
ik, +A*k1 I, nr2 . (A. 14)

Then if

is non-singular KX and exist and are unique.
The existence of higher derivatives follows tn an analogous manner and existence and

uniqueness are guaranteed by A,2 and (A.15) non-singular. Instead of giving a specific
manner in which a unique solution exists to (A.9) we could just specify that if there
exists a unique solution to (A.9) then the power series exists and is unique.

Appendix B: Proof of Theorem 1I

Represent P. as

L., P,,(&) ;A.PZ(tL) J" B.1)

Then denote

- /*! i-I. , ~ , 1- .. k-=2.3.I P . . - .)

Substituting of (B.1) into (26) at . -0 gives

0i T[Ali _ B -B1 t _ BI, , :A1 BPA , - oM.J

+[A,. - B,,M. - 8,,K 7P~' 1)+ [~A21 -B2 1 - B 1,,',] = . (B.2a)

o POA,2 + P,:A 12 -(A 2 , - B-1,% - B2 4A ]'P,' (B.2b)

0 P °Au + A;,P,. tB.2c)

If A,= is stable then

P40)= 0 (B.3)

loaai of TM Pmas Lni, m

pffme P"M LW.
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is the unique solution to (B.2c). Substitution of this into (B.2b) gives

- .(B.4)

Finally, substitution of (B.4) into (B.2a) gives

o-P, A,,-B].-B M..-B,%4-BoyP, 4j= 1,2; i~j. (B.5)
Since (Ao - BK - BwM1] is stable if the slow Same possesses a unique stabilizing pair
K,, K2. (B.5) has a unique solution. Hence the first term in (B.1) exists and is unique.

We ne examme the existence and uniqueness of the second term in (B. 1). Substitute
(3.1) into (26) and take the partial with respect to & at #4 -0. This gives

0 - P 2
11JA + 810%,. - B,-t 4]+ P!'A, - B2,,%4 - 8:.K I

+ Al- B11M. - Btio QPJ'P * [-All - BzM. - B.A 4J'P2T (B.6s)

o ljIA + 12  + (Al - B1.) - B21K JPI1
i-.(All- B,,,VL - B ,,K T' (B.6b)

o-l 4
'

-
A = + A ' ,2 (P3' +rP A,2 -A *J2I,1, 4i- 1,2; i#j. (B.6c)

Since M02 are known from the calculations for the first term in the expansion. if Az is
stable (B.6c) possesses a unique solution. Then P, may be found as

whet s is a known max. Substitution of (B.7) into (B.6a) gives

0 - TA 0- 4 A B J-A-BNo-..4 - (B.8)
where % is a known matrix. If LA -B4--BOW . ] is stable then (B.8) possesses a
unique solution. Hence the second tem in the series exists and is unique. Higher order
term follow easily and have the same requirements for existence and uniqueness. Since
each term of the series exists, dearly, there is a 1*>0 small enough to guarantee
convergence of the series for all 0sIA<A*

Appendix C: Proof of 'Teorem W
* . Subtracting (22) from (26), we obtain a Lyapunov equation for W P-, -,

~~.. . .. . . . . . o~ .....o.. o. ........ ..... . . . . . . . .. ..

(A2 - B"IM - A,, 1  B1  . - 1  0

J 0I B, 1 4 -B 1 4 0 4(Bj+0j . 0 C1

possesses a power series expansion about o -0 since P, and K possess a power
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series at j. 0. * can be expanded as

Wi 't ! ,P? [ "" "" , P i ,, 1. 2. (C.2)

If , and the power series expansion for It are substituted into (C.1) we get at ;L -0

W12,- 1A - , -I,,, -B"(A 2, -B.,M. 0 (C.3)

W,'A 2 + A6 W,3' - 0 (C.4)

and

I,'A,2 4I, 'A= +(A 21 - B2.,VL - -0 Mvj'W °  0. (C.5)

Since A2 is stable (C.4.) implies that

,'-0 . (C.6)

Substitution of (C.6) into (C.5) gives

WIT- 14?A,.A-2'-(C.7)

Fnaly, substitution of (C.7) into (C.3) gives

0- WJA0 - B01MI. - BOLWu] +(A0 -o - Bo 2M 2 I. ' ,. (C.8)

The matrix (Ao- BoMt, - B*A4.] is the feedback matrix of the slow subsystem (6)
which is stable. Hence

Will -o, i - .2, (C.9)

which implies that

WIT - 0, i - 1, 2. (C.10)

Thus we have proven Theorem IMI.

)I
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Feedback and Well-Posedness of Singularly
Perturbed Nash Games

HASSAN K. KHALIL AND PETAR V. KOKOTOVIC, SENIOR MEMMDI, EE

Abmst-1115Ma ecssesllni-ile*scrt NO w.iibl ftr sys 11. SLOW AND FAST SUBPROBLEMS
Nash~ pm m .f ndo tal =W by a pm phked am a redoxei order We consider a singularly perturbed linear time-in-
sea" IU wqe.,mis 4( daiun selluisa uI sI I to doft arat yse

38"e1,a . sumism uIs codidered. Am sieutaUi reledisvrinssse
bstiessi *a kedahuemisio use sd tMid eoftlAs imA,,x+A, 2z+Bju+B 12U2 , x(O)mxo (la)

Visib tosed i and t -4ue aspecial cmiie wisen te dis
i 3'e mdessilsepdselsteaIsweui.Lee. gA 2 1X +A 2z +B 2 1 U I+ B2u2, z(0)-zo (lb)

where dimix- n,, dimz -n 2 , dimtu1 - m, The small singu-
I. INRODUTIONlar perturbation parameter is > 0 represents small time

TN TIS ape weconidera to-paye liearconstants, ine-tias, masses, etc. The vector z is "fast" since

I quadratic Nash game for systems with slow and fast its derivative 1 is of order 111A& which is large. The ith

modes. Linear time-invariant models of many physical player chooses his strategy u, to minimize his performance
systems contain slow and fast modes. Control problemscrtio
for such models are rnl-conditioned and have motivated I'.+1 MI+u~u)t v. 2
several model simplification approaches (11, (21 which - 01Yj neglect fast modes. In the singular perturbation method
[3) both sic 4 and fast modes are retained, but analysis where R, > 0, RU > 0, and
and design problems are solved in two stages, first for the(3
fast and then for the slow. We define two subganms one Yi CiiX + Ci2Z- 3
for the slow modes and one for the fast modes, and obtain
their open-loop and linear memtoryless closed-loop Nash A Nash equilibrium solution of this game is a pair (u, u2')

solutions. Then we analyze the asymptotic behavior of the such that
Nash solution of the original game for different asup Ju*, u) -4 J,(u,u), ij , 4
tions of the feedback information available to the players. i iji-, (4

In particular, we show that, for a first-order approxima- for all admissible %1. A slow subsystem is formed by
tion, the open-loop Nash solution of the original game neglecting the fast modes, which is equivalent to letting
reduces to the sum of the open-loop solutions of the slow j,.0oin (1),
and fast games. For a linear memoryless partially closed-
loop Nash solution (closed-loop in slow variables only), it i, =A I x, +A 12Z, + Bju,,+ B, 2uz, x,(0) -xo (5a)
is shown that, for a first-order approximation, the solution 0- A 21Xs + A nz, + B21u11, + B2u (5b)
of the original game reduces to the sum of the linear
mewoyless closed-loop Nash solution of the slow game Y"5 - C, I X + C12Z,.- (6)
aniA the open-loop Nash solution of the fast game. Finally, Asmn htA snniglr'w xrs ,a
in %'4w of this analysis and of the work of Gardner and Asmn htA2 snniglr'w xrs ,a

Cruz [4) on the closed-loop Nash solution, we discuss the z - - '(A, 1 x,+ B2I U,, + 822 U2 )(7
* well-posednesa of Nash games in general and illustrate the

impact of the feedback information available to players and, substituting it into (5) and (6), we define the slow
* on the well-posedness of the game. subsystem of (1), (3) as

Manuscript received March 31, 1978, revised January 2Z. 1979 and ()x (8
March 30, 1979. Paper recommended by D. D. 9isjk. Chairman 0of the y,- Cmx + Dilu1 + D-22(9Large scale S~es Differential Games Committee. This work wasYi ts iII ,2 ,()

0, u. Contract EX Systems. US. where
H.K. aWi is with the Department of Electrical Engineering and

Sy.es Science, Michipa State University, Bast Lansing, MI 48824.
PV. Kokoovisawiththe Coordinated Science Laboratory andthe 'If A12 ssigulr, the variable inthe null spaeo r not fast

Depertuseat of Electrical Engineering. Decision and Control Laboratory. vaible. A reformulation of the problem which incudes . variables
University of ilino*s Urbanas. IL 61801. in the x-vector will lead to nonsingular A22.
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Ao0 A 1 -A 2A-'A2 j, BOu-Bj-Aj2 A, B such that x,(t)--O as t-*oo and
C'o-C-CaI'AZ 1 , DV--Ca, 'B 7,, ij-l,2. f(x,(t) <o (16)

(10) . x <

where x,(t) is the solution of
A fast subsystem is derived by assuming that the slow
variables are constant during fast transients, that is. , -0 .i, - Ax, + Bou,(t) + B02u%,(t).

and x, - a constant. Letting xf - z - z,, u- u, - u,,, YjYi The admisble closed-loop strategies are defined similarly
-yk, the fast subsystem of (1). (3) is defined as Ile at closed-loop stratees restied toilhl

except that z~ 4~,.With strategies restricted to this

d Azf+ B2-u+B22uV, zX().-(0) - z,(0) admissible class, the finite-time necessary conditions can

-" be extended and used for infinite-time problems, as it is

(1) done in this paper.
An open-loop Nash solution (uOL(t),qZL(t)) of the slow

y - Cazf (12) game must satisfy

where -r- t/p is a stretched time scale. Folowing the i. Ax, + Bou, + Bo2u2, x,(O) - x, x,(t)-.O as t-.oo

treatment of the optimal regulator problem [5], our ap- (17)
proach is to extract from J, two quadratic performance
criteria, one for the variables of the slow subsystem (8) ( + DD '  

O i 8'VX O L 0

and the other for the variables of the fast subsystem (11). i*j (18)
We formulate two subgames. O. 4 ,LL + Ci, OL + c4D1 uOL + D L,-.. ..o.. - Co( + YUO ),
Slow Nash Game VL(,)-. as t-+00. (19)

Find a Nash equilibrium solution (ufjpu) of Assuming that the matrix
2~ f° C°m +2 C(Du+ Du )[]

[R - R+DD DD (20)

+ u DD.uD DV R2 + D 2D2
+2u DD~uu+ u,(Rj, + DDi,)u,D

+ u;(R + D D)u, ] dt, i , is- 1, 2 (13) is nonsingular, (17), (18), and (19) can be rewritten as

for the slow subsystem (8). The expression for J, is [IxL I °L

obtained by formally substituting (7) into (2). d. \OL V \OL

Fast Nash Game [X2OL ANOL]

Find a Nash equilibrium solution (u*,u /) of We assume the following.
Amsoution 1: There exists a unique pair (uOLQ) , uOL(t))

Q (C z .. . . satisfying (17), (18), and (19).
2 0 - (zC12CZf+ uq'Rli ut+ u/fRt Uu) d 'Vij Asswnpion 2: The matrix V has no eigenvalues with

(14) zero real part. that is,

for the fast subsystem (11). IReA( V)l >0. (22)

Necessary conditions for Nash solutions have been A closed-loop Nash solution (ucjL(t,x,), u '(t,x,)) of the
derived in [61, [7] using variational techniques. Unlike the slow game must satisfy (17), (18), and
optimal control problem (case of one player), the Nash
equilibrium strategy for two or more players has different - $,CL AgL+ CC~xF.
open-loop and closed-loop solutions. Thus, the closed-
loop Nash solution cannot be obtained by solving the + C,'o(D,,+u+,, )

open-loop Nash game for every initial point, which is
valid in the optimal control problem. The conditions of . [Ri +D D)UL+D,;DiuiC
[6], [7] would be directly applicable if the problems (13) . * , LJ , Ut3

and (14) were for a finite-time interval. Since (13), (14) are + Di; CX C L + Bj'L i
infinite-time problems, the admissible strategies are
limited to those for which the state vector converges to ibj, A L(t)-O as t --*o. (23)
zero as t-,¢ For example, the admissible open-loop I1
strategies for the slow Nash game are square integrable, The solution of (17), (18), and (23), if it exists, is in general
i.e., not unique [8). To avoid this nonuniqueness problem we

restrict ourselves to a class of solutions in which I
-o j01;(U,(t),& < 00 (15) A5 '-(tXf) =K.X.c'(t) + gj(t) (24) !
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where K, is an n, x n, symmetric matrix. Subsequently, Assumption 3: There exists a unique solution
CL takes the form (uOL(), UOL()) of (34), (35), and (36).

CL(tXCL) _ F,,XCL(l) + h(). (25) Assumption 6. The matrix

Substituting (24), (25) into (17), (18). and (23), and sep- A22  - B21R, 'B1 , - B22R 'Bj

arating the variables we find that K,., F. satisfy the D [.. C1zC -A 2 0 (37)
algebraic equations - C 0 -A;

0o-(R, + D.t,,) F. + D),, DiF , + Di, c,+ B&, n 22

i'#j (26) has no eigenvalues with zero real part.

0- K..o+ i lC,+ CoCO+ K(B ,F.+ B oF) We now want to investigate the relation between the
Nash equilibrium solution of the original game (u,*,u2)

+ C o(DF. + DjF,)+ F;[ (R, + D Dj)Fs, and the Nash equilibrium solutions of the slow and fast
+ D'D, F,, + Do CJ+ B jK,.], i j (27) games defined above. To see what we want from such an

investigation let us recall a similar optimal control prob-
while g(t), h,(t) satisfy the equations lem. It has been shown in f5] that the optimal control

u*(t,l) satisfies the relation u*(t,p)-u,*(t)+u(r)+O(L)
0, -(Ri, + D,;Dj,)h,(t)+ DjDh,(t)+ B&g.(t), for all i > 0, where 4(t) and uf*(") are the unique stabiliz-

i 3#j (28) ing solutions of slow and fast subproblems defined in a
way similar to our slow and fast subgames. This means

-*, - Ag,(t) + KB(Boh,(t) + Boihj' ( t)) that for sufficiently small IL one can replace the optimal

+ Co(Dh,(t) + Dijhj,(t)) control by the sum of the slow and fast controls, thus
+ F;[(,Rj+ DoDs)hs(t)+ Di D hj,(t )  solving two lower order, well-conditioned problems in-

stead of solving the original ill-conditioned problem.
+ B/g(t)], i#j, g,(t)--* as t-_*oo. (29) Other advantages of this near optimal design, like allow-

ing the ignorance of the value of g and achieving 0(IL2)
Using (28) to eliminate hu(t) from (29) we find that g,(t), approximation in the value of the performance criterion.
g2 (t) satisfy a homogeneous equation are discussed in [5]. Moreover, for all t >0, lim,...0u(t. A±)

F-u,(t), thtis, for all t xet t -0, the solution of the
W[ g f " g,,(t)--., as t-+o. (30) original control problem tends to the solution of the slow

il 92, problem as A0. Thus, neglecting 1L either in modeling
We assume the following, the system or in the exact solution leads to the same lower

Assumption 3: There exists a unique solution order solution. A problem which has this property is said

(K,,.K2, F,F,) of (26) and (27) such that to be well-posed, since the design algorithm is not too
sensitive to modeling errors, a property which a practical

Re {(A(A 0+ B01F, + B2F2,)) <0. (31) engineer intuitively requires.
The Nash solution does not always have this property.

Assumption 4: Gardner and Cruz [4] have shown by a counterexample

Re {\( W)} <0. (32) that the closed-loop solution of a Nash game does not
tend to the closed-loop solution of the slow subgame as

Assumptions 3 and 4 guarantee that in the class of linear I--0. It is important to understand why the closed-loop
memoryless closed-loop solutions of the form (25) there solution of the Nash game fails to possess the desiredei lsts cloiqedopair lut"ivn byhr
exists a unique pair (u2L, uc L) given by well-posedness property. The answer is to be sought in the

ucL(x,, t)- F, xt). (33) difference between open-loop and closed-loop solutions of
a Nash game. When analyzing asymptotic behavior of

An open-loop Nash solution (u L(r),u2/,r)) the fast solutions one should be careful not to confuse solutions
game must satisfy corresponding to different feedback information. For ex-

ample, if we are looking at the open-loop solution of the
dz, original game, we should not compare its limit to the
_L1= -A 22 z + B21u,1f+B 22u2f, z -z 0 AO). closed-loop solution of the slow game. In other words.

zf(')---0 as "---o (34) both the original and slow games should be solved under
the same assumption about the feedback information

OL . I , O L ,r
if (35) available to the players. One obvious case is the open-

loop. If we solve the open-loop )riginal game. then we
dA' = ,2.OL + L t).0sexpect its solution to tend to the open-loop solution of the
d-i A I Ci 2C,2 4)L. L(li).0 asr--*oc. slow game as ju-..0. This open-loop problem is investi-

(36) gated in Section Il. Now let us assume that the slow
game has been solved under the assumption that x, is

We assume the following. fedback, that is we have the closed-loop slow solution. We

- -. __ _ _
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want to identify a solution of the original game, which, in Player I benefit by deviating from u,°^'? The answer is
the limit as p-4O, has the same feedback information as given in Theorem 2 which establishes the "asymptotic
the closed-loop slow solution. Since we usually require the Nash" property of the approximate strategy (u ° L, uOL).
closeness of x and x, for sufficiently small /u we expect Theorem 2:
that such a solution should assume that x is fedback.
What about the feedback of z? If we assume that z also is j,(u!0,L'UAOL) <j(,, AOL) + O()&) (45)

fedback, that is, seeking a closed-loop solution of the for all admissible u ,j¢ai, ij-1,2.
original game, then we would have changed the feedback In words, the theorem states that neither player can
information assumption between the slow and original benefit by more than 0(pt) if he unilaterally deviates from
games because a feedback from z contains information the approximate open-loop strategy. In the limit as A-00,
about the fast dynamics of the system, something which is the approximate strategy has the Nash property, i.e., it
not available in the slow game. This means that the satisfies an equality similar to (4).
original problem which has the same feedback informa-
tion as the closed-loop6 slow problem is a partially closed- Proof. Using (43) it is straightforward to show that
loop game in which only x is fedback. This partially AOL U OL)MJ(ULuOL)+o(#), i- 1,2 (46)
closed-loop Nash solution is investigated in Section IV. 4(111 -2 A + )(ji(ui'.A0+ (47)

III. OPEN-LooP SoLrLmoN
for all admissible u,,j i, i,j- 1,2.

An open-loop Nash equilibrium solution of the original Consider
game (1) and (2) must satisfy J(U0L UAIL) J(Ui.U ) +Ji(uLAOL)

1A,x+A1  1z + B ,1 u1 + B, ,u2, x(0) x - xO (t)-e0 - (U UA L) + j.( . uOL) j. UOLAO)

as t--oo (38)

Id-A1x+A2,z+B2 1 u, +B2u 2 , z(O)'zo, z(t)-,O for any admissible u. From (4) we get

as :-*oo (39) J,(,AOL UAOL) AO(J UAOL) + j(UAOL UAOL) _ Oj(L ujOL)
0- A,,u, + B',\ + B~p, (40)+J, ,u")-,(,.° .

s +t-O Using (46) and (47) proves (45).

10, - A A+ A , + C,C,,x + C,c,2, pl()-o
IV. PARTIALLY CLOSED-Loop SOLUTIONas t-.,o (42)

The relation between the solution of the two-point When only x is available for measurement we seek a

boundary value problem (38)-(42) and the open-loop partially closed.loop Nash equilibrium solution of the

solutions of the slow and fast games is established in the original game (1), (2). It is assumed that each player has

following theorem. access to the current value of x(t) with no recall of past

Theorem 1: Under Assumptions 1,2,5, and 6 there ex. values, a memoryless partially closed-loop information
structure. To complete our definition of the information

istsqe>0 such that for everytion(0,/ ', (38)-(42) posess structure we need to state which part of the initial condi-

tions xo,,z o will be known to the players. Let us recall that
xOL(t),ZOL(t),u'OL(t),, OL(t), pL(t) in open-loop solutions the players know the initial condi-

tions x0,zo , while in memoryless closed-loop solutions they
such that do not. In partially closed-loop solutions the players

should be provided with open-loop information concern- .4
uOL(1) - UOL(t) + %OL(1 .) + 0( p) Vt > 0. (43) ing z. Such information includes not only z0 but also x0,

This theorem, which is proved in Appendix A, suggests because the initial conditions z(0) of the fast subsystem 1

that depend on both x0 and z0 as it can be seen from (11). In
summary, U!CL - u( t. x(t), xo, zo).

+O L(j) + ufL(r), ' 1.2 (44) The partially closed-loop solution must satisfy (38),
(39), (40), and (42) as in the open-loop case, while (41) is

may be used as an approximation of the exact open-loop replaced by
equilibrium strategy (uOL(t),uOL(t)), although it is not a
Nash strategy. To justify its use as an approximation of a - '"AA + A'zp + C,'Cax+ C,1C,2z
Nash strategy we suppose that Player 2. for example, uses
the approximate strategy u-OL(,) and pose the following + R-B , .. + B.u2 ] -#j. (48)
question. Does there exist a strategy u,(t)'/*urOL(t) such (
that J,(u,, ,2OL) <j,(u,OL, uAOL)? Or, in other words, can The difference between (48) and (41) is in the presence of
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the term au/8x which allows for the possible dependence Theorem 4:
of u, on x. We restrict ourselves to a solution in which A1, Ji(U ,u /C) <J,( " UAPC) + 0( ) (58)
p, take the form

i(t,pxXo,xzo)-K( )x(t,)+g,(t,,xozo) (49a) for all admissible u,,i, ij 1,2.
Proof.. Let XA(O,ZA(t) be the trajectory resulting~~pi(,,x,xozo)- Pi(I)x(t,iL) + q(t,pXozo). (49b) from appling ^ • Satisfy

from applying UA,..U to (I), then X",ZA
Equation (40) shows that ui takes the form

,(tA,x,xogzO)- Fi( g)x(t,g)+ h(t,,xozo) (50) t- A11 + Z BiF, XA(1) +A 2ZA(

where F and hi are functions of K, P, &, and q,. Equa- 2
tions (38), (39), (40), (42), and (48) can now be replaced by + , B1iufL(r), xA(O) X0 (59a)J 3) (9,(0)2 4) 2 2 -

(Al+ ,,Fi x+A, 2Z+ .Bh,, x(O)-x, A + )A(- i,,Ii-, (' -"A21
+  BliF, xA +A 22ZA(t)

x(t)--0 as t--*oo (51) 2
S2+ B2,uif'L(r), z'(O)'zo. (59b)

jd -(A 2 . + B2,F)X+A22z+ B~ih,, z(O) - zo, ~

t- t- (2) Using standard singular perturbation techniques [51 it canbe shown that for all t > 0
0- (R F, + B,K+ B iP,)x+ R15h, + B 1g, + BSqi (53)

S•= ... xA(t)'X,(t)+O(t) (60a)- (K,.x + gi) -(A, Ik, +A lP,)x +At, I&+ A2,qi

4.+CICx+ C,|Cz Z A(t)"_ ZCL(t) + Z L(.)+O(p). (6h)

; F[ (AjF + B'Ki + B P,)x Hence,
+ Rih + B l' S, + ],q &,(t)--O as t --oo XA() _X C~ )+(( L 6 a

(54) zA (t) _ z CL(t)+0(t) (61 b)-11( Pii + 4,) -. (A i2K + A j2P,)x + A 12 9i A 2qj uzC( --U(~)+O ) 61b)

+ C, 1 x + C,'C,2z. q,( t)--O as t.-*oo. (55) Now it is straightforward to show chat

Investigation of (51)-(55), which is carried out in Appen-

dix B, leads to the following theorem. Ji(u, uAPC) J,(u, U PCL)+O(;&),

Theorem 3: Under the assumptions of Lemmas BI and
B2 there exists A * >0 such that for every 1A r (0. *], (51)- Using a similar argument it can be shown that
(55) possess a solution x L(t),ZPCL(t),uCL(tXPCL) such
that for all t>0 j(uuAPc)-u(u,u CL)+o( ) (63)

x PCL(t, A) _ xCL(t) + 0( f,) (56a) for all admissible u,,j#i, ij- 1,2. The rest of the proof is

Sz PCL(t,. ~:CL(t) + zL(r)'+L .) (56b) similar to the proof of Theorem 2, and is omitted.

L(1,L) + u (.In many engineering applications only feedback strate-
gies are allowed. For such applications the approximate

Theorem 3 establishes the existence of a partially closed- strategy (57) is not satisfactory because it contains an
loop solution. We cannot claim the uniqueness because open-loop term uiL(r). However, in an important special
the information available to each player includes the case this term can be neglected.
initial conditions xO, zo allowing each player to generate Lemma: If the assumptions of Lemmas B I and B2 are
x(t) in the open-loop term h, of (50). Thus, the separation satisfied and if
of variables technique used in Appendix B is one but not Re {A(A 22)) <0,necessarily the only way to construct the solution [8]. R hA2 ,(4

Theorem 3 suggests that then the application of the reduced strategy

IiAPCm F:xuL(.) i-l.2 (57) ui, -Fx, i 1.2(65)

- may be used as an approximation of the constructed to the actual system (I) results in
partially closed-loop solution. The validity of such ap-
proximation is established in Theorem 4 which shows that 4(Ul,, U2,)-J 1 (U'L "U2 L)+O( ), i- 1,2. (66)

the approximate strategy (u^PC,u2 c ) has the "asymptotic Moreover, the reduced strategy has the "asymptotic
Nash" property. Nash" property

,, : _ • • .. ... .. .. - .: ',.- .. ..... -..... L' '... - . .
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J,(u,,u,) <J,(u,,u,) +00) (67) J' - fo ( Z2+ u2)dt(73)

for all admissible u,j,',i, i,j- 1,2.
Proof: Let x,(t),z,(t) be the trajectory resulting from J2.! (z2+u)d. (74)

applying ul,, u2, to (1), then x,,z, satisfy 2

(A 2 We investigate the well-posedness of open-loop, closed-
(A,, + B JF' xr(t) + A.,z,(t), x,(O) - x. loop, and partially closed-loop Nash solutions of the two-

(68a) player game (72) to (74). The open-loop solution is given
by

( 2
/i, + i 1 F. x,(t)+ A z,(t), z,(0)-zo. OL(t) -U041) , - 1

(6 8 b ) 
V 3( 5Using standard singular perturbation techniques [3] it can •expt

be shown that for all t > 0 I /A

X,(t)_ x'CL(t)+0( t) (69a) For sufficiently imall u, (71) can be expressed as

z,(t) _ z'CL(t) + exp [A2T] zAO) + O(J). (69b) uOL(t) uL(t)

Hence,= - (V3 - 1)[ - e-/ + 2e- +' +(A).

X,(t)Xl L(t)+0() (70a) (76)

Z,(0t)zIL(t) + exp [ A.zO) + ZOL(.) + 0(A) On the other hand, if the slow and fast dynam.cs of the
system (72) are considered separately, slow and fast games

(70b) can be defined as in Section I. The open-loop Nash

u,,(t) - U!L(t) - UoL(r) + 0(/1). (70c) solution of the slow game is

Lemmas BI and B2 and (64) guarantee that uIL(t)m uL(t) V 3 - 1)e' / v' (77)

fojCexp[An22 dt0( i) (71a) while the open-loop Nash solution of the fast game is

u(1/,)- U L(t/,)-- --(V -3 - I)e- v-3'/"- (78)
fo" Z°OL( dt"_0( t,) (71b) f

Z 4  Equations (76), (77), and (78) show that

fo"u°~L(-')dtO( ) (71c) fL(t), ,L(t)4 uL(t/p)+0( A). Vt> 0, i 1.2.

(79)
for any fixed t, >0, which implies (66). The rest of the In particular, we get that for all >0, UPL(,)_u L(,) as
proof is similar to that of Theorem 4. p-. 0 . Hence, the open-loop Nash strategy is robust

This lemma says that if A h is a stable matrix, a designer against the inaccuracies caused by neglecting higher order
can neglect the fast modes of the system, Ave a closed- dynamics. For this reason the open-loop Nash solution is
loop Nash game for the slow part, and apply a reduced said to be well-posed. As a consequence of this well-
strategy (65) to the actual system (1). Doing this he will be posedness the sum of the open-loop Nash solutions of the
sure that in the limit as p--O he is approaching a Nash slow and fast gr Tes can be used as an approximation of
equilibrium point, however, in the space of linear mem- the open-loop Nash solution of the full game in the sense
oryless partially closed-loop strategies rather than in the of Theorem 2.
space of linear memoryless closed-loop strategies. The linear closed-loop Nash solution of the game (72),

(73) and (74) is given by
V. EXAMPLE

Consider the second-order system l 2 3

.x Z. x(0) - V3 (72a) and the corresponding values cf the performance criteria
are

- --x--z+u I +u2 , z(0) I (72b)

with performance criteria JCL. JL .)

. . . . . .... . . . . . . . . . . . . . ....... - - - _ 7 -_ / - - 7
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A slow game defined as in Section I would have the linear Section IV we should not expect Cu. to be the limit of u;M
closed-loop Nash solution since we have shown that it is the limit of &?'c. However,

I there are special cases when usa " tends to &cL as p..
,1CL- CL --. (3- 2 ) x, Gardner and Cruz [4] have reported two cases. The first
Is case is the zero sum game, and the second one is the case

with when C2-0. Khalil [91 has reported a third case in which
the fast vector z has been partitioned into two weakly-

Is .- F4 (3 V2 - 2). coupled subvectors with each player controlling only his
subvector. An obvious fourth special case is the identical

It is seen that the limit of jiL as A--.O is different from the goal game, since it reduces to an optimal control problem.

value of JcL at It - 0. This discrepancy between the J's in The existence of such special cases raises a question about

the neighborhood of It-0 indicates that the closed-loop aditional conditions which guarantee that FL tends to

Nash strategy yields a performance criterion which is not ut'L as It-*O. Since uFa " is the limit of u c t then if u cL

robust. tends to uc L, it should be true that in the limit as 1&-.0 the
F y tclosed-loop solution and the partial closed-loop solutionFinally, the linear partially closed-loop Nash solution of are equivalent. In other words, the fast game should havethe full game (72) to (74) can be expressed as the same Nash cost under both open-loop and closed-loop

uPCL .uPCL memoryless information structures. All the four cases

1 U2  reported above have this property. We make a conjecture

-[- 1 ( 3 -  - )+(it+-( )e - 3,/ + 0( It ) that whenever the fast game (!1), (14) has the property
7 that its Nash cost is the same under both open-loop and

with closed-loop memoryless information structures, the linear
memoryless closed-loop solution of the original game
tends to the linear memoryless closed-loop solution of the

tI*mJ jL ._(32 -2), 14,2 slow game as It-.0.

showing that the partially closed-loop Nash solution of A A
the full game tends to the closed-loop Nash solution of

the slow game as p&-.0. Proof of Theorem 1: Using (40) to eliminate u, we write
(38) to (42) as

VI. DiscuSSION

We have pointed out that a study of the well-posedness xx-A []+B [ 1. x(O)-x o, x(t)-.0,
of Nash equilibrium solutions should take into considera-
tion the feedback information available to the players in

both the original and slow games. We have identified two andk(t)--*0ast--*oo (Al)
cases where the players of the original game and those of
the slow game have the same information. The first case is r x1 rz
when both games are played under open-loop assump- [ z -I 1
tions. The second case is when the slow game is solved JL ii -C , Pt , z()zo z(tDPO,

under closed-loop memoryless assumption, while the [2 L L P2
original game is solved under partial closed-loop memory-
less assumption, closed-loop in x. In both cases it has and pA()-.0as t--oo (Al)
been demonstrated that the Nash equilibrium solution is where
well-posed. This leads to the conclusion that Nash
equilibrium solutions are well-posed as long as the origi- [ All - B 1 -1 'B, -B 12 R22'BI2
nal game and the slow game are solved under the same A- -C;C,, -A;, 0 1
assumption of feedback information available to the [ ,
players. .C1C21 0 - A I

In their investigation of the closed-loop solution of the A 1
original game [41, Gardner and Cruz have shown that the A12  -BtR1 T B 1  -B1 2R 'B
linear memoryless closed-loop solution of the original B - CC 2  - A21  0game (UlCL. UCtL) satisfies uc L -  + 'II' -CI2

g)s + uuL where UL is the -CA1C 0-A
linear memoryless closed-loop solution of the fast game.
However. u, is not. in general. the closed-loop solution of A2  - B21R1T'B, - BnR 2iIB1
the slow game defined in this paper. It is the linear c, -c~2 C1, -A0 I'

the modified slow game 14]. In fact, in view of the result of 221
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and D is given in (37). We transform (AI), (A2) into the A - DD-'C- V, (A13)
separate slow and fast parts vo- xo+0A), (A14) .

t1 .(A-BTr) it (A3) Now we establish the existence of the solution of (AI0)

[2 1 A2 . based on Assumptions I and 2. Assumption I implies the
r 1 existence of a unique 2n, X n, matrix E such that (21) and

x, (O)-xo, (A',(0),X.(0)) -xE' have an exponentially de-
(D +#TB) .(A4) caying solution. By Assumption 2 the eigenvalue structureJ2 72 of A -BD -C+O(L) is the same as that of A -BD-C.

Thus, there exists a unique matrix E-E+0(%) such that
The transformation used is (A 10) and v(0) - vo, (V,(0), J'2(0)) - vE' have an exponen-

tially decaying solution. This establishes the existence of a

x I Ptunique solution of (A 10). Moreover, (A14) implies that
f 1 v(t)- XOL(t)+0(4(A16)

&()AL1)O1) V1 1 . (A17

,w, I1 + J (A6) By a similar argument we can show that there exists a
712 '\2 P2 unique solution of (A ll) which satisfies

where T and S satisfy the algebraic equations w(,r) _ zfOL(r) + 0( 1,) (A18)

0 - DT- C- LT(A - BT) (A7) 71(T) - kfoL(T) + 0( A), Vr > 0. (A19)

0- - S(D +puTB) + B + ,t(A - BT)S. (A8) Using the inverse transformation of (AS), (A6)

Assumption 6 guarantees that for sufficiently small p r l °1 [
there exist unique T and S satisfying (A7) and (AB). A, - (A20)
Furthermore, [X2 1- j 1 +[I W2

T-D DC+(). (A9) P i ( ) l (A21)

Thus, we end up with two problems:

6 v 0 ( ) -.o . completes the proof.
[h l j.(A-BD-C40 (p (O)v o, APPENiX B

and &(t)-.O as t-.oo (AIO) We investigate the necessary conditions of partially

1 closed-loop solutions,(Sl-S)
[1 j -(D , w(0)=.w O, w(t)-.0, In its present form we cannot separate from (51)-(55) a

42 12 set of algebraic equations that should be satisfied by
X I,P, F. The reason is the dependency of z on x. To

and 71,(t)-.*0 as t--oO. (Al 1) overcome this difficulty we introduce the following trans-
formation:

Using the matrix identityt

B' 0 1; " L ! ..1X

0 R, B: where L and M satisfy the algebraic equations -

X'j 2 *L

I- C:6D 1 R'B 1  Aj2- C:6D22R 'B: 5 (2

D j+D;,D RDD 0jA' 0_12
Di[ R,, + 1 , DD 2 J 0' B6A 2 -- M'A4-.'2'+Aj2+AAl+ 2 BF-AlLM.

(A12) (s:i *
(B3)

it can be shown, after straightforward calculation, that Now we can separate the variables by equating the coef-

. - -.. ,
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ficients of 6 to zero. Doing this we find that A.,P,,F,, and differential of r at (K(O),0) with increment a8 we get the
L must satisfy (B2) and following set of linear equations in 8K, F,:

0- ,+ ;,A.+a , (34) ,, - ( R, + DD,4)jF + D,Dj8FJ + B&SK,, i j

( A+ ) (B15)

0 K(F- A )+I% - 6Y(Ao+ .e +,,5Fj) + (A0 + BoFj,)'8KJ + C,',C,, - C,;CL + (CD,, + K, Do, + F;DDI)8F,
+ ,(&j +5GK,+5P,). . + [CoDu + 4Boj + F;(Rj + D,'jDJ) ]AF

O-IP, All+ B,,F-A 2 L +A2K,+A,P +8F'[(u+ D, DIj) F,
c; c,.- C,'C,,L. (86) + Dj, D,,Fu + D,; C,0o (Bl6)

On the other hand, &., q,, and h, are obtained by solving where %, and % are some known quantities. The incre-
the equations ments P,, AL are obtained as linear functions of K,, OF,.

If (B15), (B16) have a unique solution (8Kj,K 2,8F,,AF2),
2 then using the implicit function theorem we get the follow-

AW - (A n + LA 12)V + , (a +pL.S,)h, ing result.

S( Lempm BI: If Assumption 3 is satisfied, and if (B15),
S(0)- Lx 0 + zo, (:)--.O as :--oo (B7) (316) have a unique solution, then there exists p* >0 such

0-Rh,+B;&+B qj (38) that for every pteE(0,p*, (32) and (B4)-(B6) possess a

2* unique solution such that

-j-K Biah,+M(A22+pLA12)11 "4+Op, Fum,+(,., Y. - K,, + 0( # ) - ,", + 0(g ,),

+ A(AIK,+A IP,+CCj)Mo PP 1(0)+0( p), L- L(O)+0( p). (B17)

+ A, I + A j q + C' C 2(J- pLM) 0 One way to check the existence of a unique solution of the

+F'[ A(,RiF+ B K + B P) MOP matrix equation (115), (316) is to rewrite it in lexico-

+Rhj+Bg&+ B q.] ,  &(t)-4 as t-o graphic notation as a vector equation, using the

Kronecker product, and check that the corresponding
(39) matrix is nonsingular.

r 2 . Now we turn to investigating the equations for g. qj,
l Bhi + M(An + 

9 12)VJ and h, (B7)-(B 10). Using (B8) we eliminate h, to obtain a
homogeneous two-point boundary value problem. We use

+ #(A 2K + A j2P, + C,'C,)MO a transformation similar to (AS). (A6) to separate the slow

+A1 29,+A.2q, + CjC 2(I- PLM), '  and fast parts. Based on Assumption 6 we get that the
slow variables satisfy

q()--*0 as t-,boo. (B10)

Let us investigate first the set of algebraic equations (B2) 6 I(W+ ( [ 14) as--.oo.
and (B4)-(B6). 6 - ( ,

Setting/p-0. it can be easily shown that k,(0) and F,(0) (318)
satisfy equations (26). (27) replacing K, and F,, respec-

f tively. Then Assumption 3 implies that while the fast variables satisfy the equation

A, (0)-K, F,(0) - F,. (B11) f 1[~
We also obtain that pA ' -(D+O(p 'I , (0)-qo. q(f)-.O.

, ( o ) - - A ; ' [ A ;2 K j .+ C , 'C o + C , ,(D , .F .+ D, , )] , I . * ( 3 9

Po ij (BI12) and, +jt)-*0as r-*oo. (11I9)

L(0)~~i'( 21 +X F) Assumption 4 implies that, for sufficiently small pu. the
2 (B(3) unique solution of (BI) is

Equation (B2) and (B4)-(B6) can be interpreted as ,(00. V, (20)

(K, I)-0 (314) while Assumptions 5 and 6 imply that. for sufficiently
small p&. there exists a unique exponentially decaying

where K.(K,,K2,P 1.P 2.F,F 2,L). Evaluating the Frechet solution of (B19) which satisfies

4L L Il I I _" . . . = "



120 TRANSACTIONS ON AUTOMATIC COTRL VOL AC-X4 NO. .oom I,7

( ,, (,0) + 0( Vt>o (1321).
,,()XPL(,) +o0( k). Vt> o. (822)

Using the inverse transformation completes the proof of
the following lemma.

Lemma 82: Under Assumptions 4-6 there exists 10 >0
such that for every 1A (0, 10, (B7)-(B 10) possess a unique
exponentially decaying solution. Moreover, for all t > 0

&W)-00) (323)
r0(,). /oL(r) +0(#) (324)

,(,) -A (r.) + (A). (325)

Using Lemmas B I and B2 we obtain Theorem 3 whose
proof is straightforward using the inverse of transforma-
tion (BI).
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I. INtRODUOtJCand

Staekelberg strategies have been defined for sequential decivin-(5
making problem in which one decision maker, called the leader, '
announces his strategy before the second decison maker. called th Cloud-loop Stackelbeti strategies for linear quadratic raIm have
follower. select is own strategy. The Weader anIIcipates, an optun been studied in 143. In that paper U, and U3 are restricted! to contain
reaction on the pan of the follower and determines his own optimal linear feedback struates of the form
Stackelberg strategy by solving a nonclassical control problem that takes 1
into account the reaction of the follower. Consideration of Stackelberg uj(y~t) -Ljy(t), w2(y,1)-n- L~yQ) (6)
solutions of differential gares [11H31 has led to three different tye whroft-zQ,').I ssow htotmlpn 1 adL r
Stackelberg strategies: 1) open ioop strategies, 2) closed-loop stratevis. bN')(~~).I sson htotmlgisL n 2a
and 3) equilibrium strategies. Coeed-loop strategies for linear quarti dependent on the initial stat of the system y. To eliminae this
pans are studied in (4t It is shown there that if the initial conditions of dependence on ye, the initial state is considered to be randomly distrib.
the stawe are randomised and the performance crhtrm ane averaged over uted, so that
the inda conditions, then there is an optimal pair of Stackelberg 5(yo)-O. '0'.,)- VO. (7)
strategies that are linear in the state and necessary conditions cliar-
actrtig thus strategies are derived. The matrix V0 is a desig parameter whtich may be used by the leader if

In this paper we consider closed-loop Stackelberg strategies for lina he has a pied knowledge of the intial state statstics If no such
quadratic games when the system in singularly perturbed. that is, when information is available. the choice
the system contains slow and fait modes. Investigation of singular ~-
perturbations of differential games have heen initiated in (51461 for Nash V I(dniy

F ~~~~equilibrium strategies. it has been found that the problem of determining hsbe ugse n ilb sdi hsppr ihti iwon
cloeed-loop Nash strategies by singular perturbation techniques is goner- the performance crtean is modifd as
ally ili-poeed. fll-poeedness results from the dependence of the solution cie i

on the available feedback stricture, which is in particular exhibited !,(L,.L)- E(J1 (L1 ,L2)). i- 1,2. (9)
through the fact that -Joeed-loop solutions are generally distinct from
open-loop solutions. Weil-posedness is achieved only with specific feed- The leader optimal gain L2 is obtained by solving the following set of
back structures as discussed in [61. This has motivated the investigation algebraic matrix equations:
of closedloop Stackelberg; strategies in singularly perturbed system
sinc the sequential decision-making problem also exhibits different AM, + MI,+ M1S, 1M1 + LjjRLj+ 1 -0
open-loop and closed-loop solutions. In Section If we formulate the(Ia
problem and show that linear cloeed-loop strategies as defined in (41 areOlk
not appropriate for singularly perturbed systems since for infinitely fant A'M+ MA + M 1 S2M, + L&R,,2L+Q2 0
modes there may be no solution even though a solution exist if the fast (10b)
modes are neglected. In Section III we restrct the cloeed-loop strategy of
the leader by allowing him feedback from the slow variables only, and N, A-AN- S,.MN- N2MS 11+ S21MN2+ N,S21-0
show that in this strategy space the closed-loop solution is well-poed. As (10c)
a result of this weil-posedness the closed-loop strategies are approxi- N2A + AN2+1-0
mated in Section III by near-optial strategies which are esie to
compute and do not require the knowledge of the value of the sall (10d)
singular perturbation parameter. AOL^N + R,,LItf,- B(MINI + MN) -0

while the follower's optimal gain Lis given by

11. PtOIoatza STATVNUNT weeL -,Ri-j'SIM, (11)

*We cosdra singularly perturbed linear time-,nvariant sywhere

;&i-A21x+An~z+B 21u1+Bnu2, z(O) - z (lb) For our problem (l),(2) wehave

wbsg xeRI, zefi, jeR. The scuffsingular perturbation paraie All Au 12 [Rif l c;, Cl ca
ter p> 0 represents small time constants, inerd"as masses, etc. The vector A IA2  Al 5 1 .i
xis "fast" since its derivative i is of order I/it which is large. The ith [LR CAkj ' cl, CA Ca]

player choose his strategy' iffrom admissible strategy set U, to minimize ~ ~ ~
his performance criterion

'~c~ x j~Knowin) ~ n the value of I& one would seek the solution of (14) (11) to

411:Ln1CaCla C."Cal2 I In practice a designer usually neglects some small time-constants,
masses, moments of inertia, and other parameters whoe presene in-

&,>0,.1i.j. (2) creases the order of the system. He therefore bases has design on a

A strategy set (u(',ut) is called a Stackelberg strategy with Player 2 as reduced-order model formed by neglecting the fast modes 171. This is

leader and Payer as follower if for any u :U 2 and ul eUt equvalent to setting p-0 in () and esults in the model

J0104,) e-JAM(uO(ui"u 2  (3) is -A jjx, + A,2z# +J 5jul, + 812 a2 , xf(0) - xO (12a)

Where 0- A,5 ; + Anz, + B2 ul. Bn3u2. (12b)

J1 (?(u),u)-mnj1 u,,,)(4) Assuming that Anis nonsingular, we exprugsz,a u

6:HIOSsa ta uvt'*use o a e nI 'n and substituting it into (12) and (2). we obtain a reduced game. The th
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player now chooses his strategy u& from admissible strategy set Uj. to obviou friom (t1e), is our -si N2 tamb to a aimw a s P-se
minimThe ressoe i that as p-AO xsO-Ls(s) for all s>0 whin 9 le -

comlNOW matri& whil NV2- f?(()Y )d Thus itcmii be so*y1. - if (14).,,2,C(..,Du)2uDDu shw that N2 has ruk a, esj- To Mustto dsfat oo@dw the

sbetto the reduced system11

Ae""n41A25'aa,3~~3g-A2 A~j3~.We s*c the solution of (10) in the form

- ~~~~ ~ ~ h the*D1  ~-w+.~ form of j, is chose& to avoid unboundedness in thes limit as

A dlosed-loop Staklberg strategy of the reduced ganis (14), (15) a p-0., as usual in singularly perturbed Riccati equations [4I Sas- p-o
sought with the restriction that U1, and U20 contain linea feedback in (10) we obtain the limit values
strategies of the form

u11;,:- -a~x(. U.(x.:t)- -LzX,(t (16) 1111"0112('2) * in l( Ii) (l1 ),mtO

and the performance criterion (14) is modified to % -( l) Mv +' 2

In the Appendix we give the equations that must be stifed by the 21(. 2 9211~ 2b
Optimal gams 'L15,Lli Throughout this pape we assumei that thiee
equabtis poleese a unique stabliziong solution. (I +12-012

In this paper we analyze the asymptotic behavior of the solution Ril 493(+1n) 't2 3 M2 XlgI" (W0O
LI(p). L2(1 )of (10), (11) as 0-aO Of particular interest is whether the

..- limit limi6 tr exists. arid if it exists doen it equal toI1 2d
T,-I'trAV,, Uflm,..J- the singularly perturbe dosedloop an=_p Rum-!* "Wd
Stacuiberg problem is said to bewell-poeed sincsassumigp to be 1 I
small And neglecting it altogether results in small error in the design TV- us~ l 2 -I+ o~u
procedure. An example of a well-posedi deepg problem is the optimalniu '
conedo problem (S) while an example of an illposed problem is the wba
closed-loop solutin of the Nasb equilibrium strateg (51 Investigation
of the ill-posednees of Nash gaes (6) shows that the cause of il-posed-_ _ __ _(1

am sem from the difference in the information structures of the 0 +d(1
limiting full problem As 0-0O And the reducedl problem for p-0. Nash +i

games have the properlty that the solution depend On the information Notice frsn from (20d) that N2 is singular. Thi ma that the existence
availabl to the playes (e.g.. they in general have different open-loop) of a solutionl depends on whether (10s) is consistent or not. in this
and dlosed-loop solutions). Allowing the stratel in the original game to Particular example it turns out that there is no solution as we can an by
be a functio, of the funl state means that the solution depend on eliminating n, between the two equations; of (20s) and subetituting (21)
feedback information on the fast modes z of the system. This informsa- for v to get
tico is not available in the reduced game. Thus. the dosed-loop solution
of a Nash gamse does not tend, in general, to the closd-loop solution of (+2)02)
its reduced game. In consistenc with this argument it is shown in 161
that if we solve a full Nash game asuming only x is available for which is satisied only if Il--a-o. On the other hand. the reduced
measurement. the solution as p--*0 tends to the closed-loop solution of problem is given by
th reduced Nash game. In the optimal control prbe it turns ou A 0 -,*o --. C1 Cat c ~ 4-l2 (3
allowing the control in the full solution to also be a function of z a not O -,Dlin1.C =Co , m. 1 2 (3

* crucial for this limiting behavIso& and the rbe iswl-od.Tsisa _ co fesponding equations (AIH-AS) have a unique solution
consequence of the fact that for the optimal contro problem the open-
loop and the closed-loop solutions lead to identical controh lsrctorie L..,.o.29n2 Ml,-.348 MU-0331U4. (24)
and cost functions. The above conclusions concerning the relation be-

* toee th@ information structure and the well-posedooes of singularly Thus. we have a situation in which thes reduced problem has a nique
perurbe problem hold for any problem in which the open-oo and solution while the full problemn has no solution in tbh imit as p-O Thus,

* closed-loop solutions are different. Since Staclkelberg strategies have based on the discussion of the information stuctures and of the pomibil-
r different open-loop and closed-loop solutions [31 we expect that seeking ity of having ill-behaved limits as p-*O, we reach the conclusion that the

a solution of the full game in the form (6) might lead to an ill-posed set of stratlegies defined by (6) is not the appropriate set to obtain
problem. Analy~ng the asymptotic behavior of (10) shows that the closed-loop Stackelberg strategies for singularly perturbed systems.L difficulty with solution of the form (6) a mote serious than having a Our task now is to choose new stratel set U1 and U2 for the solution
limit which is different from ths reduced solution. In fact (10) my hae" of the singularly perturbied Stackolberg game Our chice is go"de by
no solution in the limit a p-s ve if the reduced games has a solution. the utility and simplicity of bar feeidbalck strategies and the above
Tose this notice that when X12-0 for (10) to have a unique solutio it conclusions on the relation of wafilpoessss and, information structure
is aseaythat the matix N, be positive definite (moosingular) as it is To this end we discuss the effect of aling the plaer to know the



current value of .. r we discrismate between islawand teI.NA-VDA 1RIG

followr asaslt ofrb dfe rf umu s *sy hav - i- *A -

follower mere lolve an optma conttrol problem so ifth le ader h elposospo POIty wil so e d t bssana-p
strateg se is well dellned, "h followeir may be allowedl to use the sta"lY (O m* tne Stvl Acksiber g ame which IS6= to ca0s L.
curent value of a witout affectn the wel-poeeduees of the resulting IS 010eo cd a mtama. Notiveiton for this is tha altoug
optmal central poblemTus, t follow statea set U, and not be the constrained Steekeb"r strategy is well behaeved as p-A Solving
modifid and wil continu to be defined by (6). The leader, howeve, (l0aHI(1d) sad (26) may not be easy because of the hig order of the
solves a contral problem which has different open-loop and cee- oap sstam or because of the numeal dfrcutie aris in solvig thew
solus. Tlev. to have the problemn well-poeed we exclude from his Rkccat equadon (10&) when jL is very smaJl Tie reasons motive.

nfration se the knwledge of the current value of:z and his stratelly Wi the reults5 of Section III on the limiting behavior, of the& wgk-
soEl Uwll sow be deinedby SUIO stAS 88 ga-4 allow t cooUarctios of an appropriae

approximate11 str"eg which is asiew to compute than the eact ful d
A -0 L2140i. (25) solution. In this section we posta such an approximate strategy which

take into account the slow and fast modes of the system. We then
Tis choice of th5 U1f guaraintees that the full games soution involves. in elain in what sense this strateg is aearopma
the %Wm as pa-4Q thse miformation available in the reduced problem Suppoe that the player solve the reduced order Stackelberg gaoo
It Will be shown that this choice oveircomes the &Upoeednesa of the (K4) (IS (17) for the slow modes of the system, and their optimal gem
problm and in pertlula overcomes Problem relating to the sinrty are LI,,L... Suppose also that the follow solves the followin optimia-
of N3 smc only the positive definite part of N3 will be used. rica problem for the fast modes of the symt. rnd uv to minlnue

0 (z;C; 2C,2zf. u,1pRI,*,d. (30)
lB. CcrA01IRAII Q.O@in-LOo STA.5A1111 STRAIDOY2

In ths section we analyze the asympoic beakiivo of liea St~ subject to
berg straimgas when the leader as restricted to take feedback from the t
slow variables only, m adrue when L, is restricted to haves the form (31)
4,.(L 2*,0). We will refer to this solution a a constrained Stackelbarg W
straegy Assuming that (A2. 21 IC 1 ) is stabilizable-deteciable. the soluition of

By employing; the matrit nmmum pricipl (91 to derive the necee- this optimnabion problem is
sary conditions for thi problem we rind that the leader optimal gain L21
is obtained by solving (10&)-l1d) togthe with U - RJt- imf (32)

Rti 2LiiNai+RtnLiNa-I5(MII'VII+M2iN2,)-8i(M,,N,ii+ N 2,) where M.1 is the unique positive semidefinite solution of the Riccati
equation

- ,53(M,,/1i 2 . M~n-)- EW(M, 3Nii+ M",Nj2)-O (26) M 1 4+ A6M 1+ Cl2C1 2  MVi',tii'Rj,MV-O. (33)

wher Mi. N, L2 have been partitioned as The follow then composes his approximate strategy as the -m of his

r 1slow strategy at1, -- LI,x, and his fast strategy uVm - R, '5'zMkfr
M, Mi, Nim N, I L2-(L 21  . (7 He replaces , byz -a,, where from (3) z - , - + Aii(A 2 1- 21 Lis

ISA im , Naj . 0.(7 BtL,,; Then, replacing x, by x, he uses the approximate strategy

Without mny Waes of generality the matrices M, are ased to have the Mi. -LI,x-R 'D-, 1̂  z +AjI(A2 1 - 8 2iLt. - DrsLb)xI
for. (27) in order to obtain a set of well define equations in partitioned

form. as pa-0. The relation between (26) and (I0e) becomes evident if we 0arJL
Te rm correspionds to taking the partial derivative of the criterio with ' 12( P

respec to L21 the second with respect to L22. The rust equation for the -d Ky.(34)
cas now consdd when L22-O. reduces to (26), while the second
equation does not appea because LU is constrained to be zero. We note The leader cannes to use his slow strategy replacing only z, by x so
that the follower strategy is still given by (11). that

We now Investigate (l0saHI1d) and (26) as Is-O. Assuming that the
triple (Azpi 2 IC) is stabllikledetctable. it can be shown,2 aftar uiwp- -Lx--(L., 0)y--Fly. (35)
lengty manipulation, that L21(0) MI^() M21(O), N,1(O) and NjI(0)
sati*f (AIH-AS) replacing L, M,,, Mb, NV,,, and NZ, respectively. We now investigat, the effect of using the approximate stratagin u,.
Assuming that (AIH-AS) posess a unique stabilizing solution we get u%, instead Of the exact constrained strategies MI.- y L 1y1. 27
that LIzx. &wne in a Stacklberg strategy the leader ssnuoe is strgagy

first it must be shown that the approximate strategy u, as near optimal
L 2 ()-L2#, MII(0)-M H, M21(O) M, (8 from the leader's point of view. Thu means that if the lader ussuna

N11()- N,, NV1 (0)- b and the followf strateg lies on the reaction curve., i u- I(%)
Sub~aadythen the leadies performance criterion T2(uv2PPb,) te to

beequefltlyJi(ut~kf) as pi-Q. Neot it the leader uses uu. sand the follower uses

HI ba 1 r Mi the approximat stratlegy ulaw then awmust be near optimal from the
0im P-0 11. JIin1  '!i'trm.-4. 1-1. 2. (29) IOlloer' Point of view.' i.e., the followers performance criterion

... dI I D'A i~ji(Uia.ujap.) tends to j,(uj(u20dvhpu as pa-.Q. It is, howeve noted

Tbm te coasma WO~*p oao ofth S~dwgk5 gam that biy using the approximate strategy u,,, the follow devates from
M (26 (% 0) i wa-pod i tb seesedotis ndsto M dsedoop the reaction curve MI - ua?(u,) and. strictly speaking, violates the rule of

sohd. o2 f (9 2 in welAoe in d t ter thate it (1nd to 7 the clpe-oo the game. Such deviation from the reaction curme ie., from the stawc
solution %a the redce6ode StckdWr pmR (14). is) (17)momf aswd WoomA

'AC~.l darme a m ebe Ams in 11t. I*bp em Ia'eGive a *is"a quatswwe uama. I.
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m einition o1 the solutioni. will be tolerated In comnputinlg the approxmate Seeking W, in the formn (43) and subtracting (41) from (46) and (42 from
* soution jut as it is in optimal control roblems (St. or Nash games (47). i can be shown that

(51461 if the reulting effect of the deation on the leader's value
S function from the tree Smakeberg value remains small. In other worda, WV(O)- V(0). i- 1.2. j- 1.2.3 (46)

the use of the approximate stateg III,, by the follower will be tolerated whc rvs(37) &M(33). T proof of (39) is nwsritforward.
if iiAuuW)teds to 40('UW(ui,.uh.) as P0

nesar optimally of the approximate strateg ul u is stab- .CNLS10

heaisi U (l)(A osess a unqu stabilizing solution an i We have shown that allowing the leader to use feedback from z may
f (An. 2 1. C12) is stabibl4tacblO. the result evenulprbe aig oslto frP~iny ml 6a

lit(6 thouog the reduced problem at -0ha a solution. We avoided this
(3ff)cuty by excluding z from the information available to the leader.

This information structure Is reasonable when the state vector x is
Us i~svt~p~f(~(ta,.iwI- (37) available for measurement. Howeveri ay phyical system One has
0- n acor to the state vector xr and can only measure some linear
lin [iumu ,,fau(i,)ua)]MO. (38) co nto f of and:z. For such came alternative ways of oecmn

0-0the ill-posedness of the roblem when output feedback rather than state
Moreverfeedback is available must be explored.

The set of wnesay conditions that the solution of the reduced
P19* When the exact constrained strategies u10 - LI y. ul Stwebeg game (14). (IA) (17) must satisfy are derived by employing

Lly (L2 MY are used the resulting values Of the perforncne th mti numn ripeinii M91 The leader optimal gain Lb, a ob-
criteria are t~~a)~rM, where M, and M. are given by (10a) an tained by solving the following set of Algebraic equations:
(l0b)6 reapectively. Suppose now that the lender uses the approximate

5U~5P "2ap F'i7 and let the follower respond optimally by using M,,A,+AM,,+CIOC,.-COD 1 , -,DI.

weeV, is the stabilizing solution of the Riccati equation +LjD(RIXS D1'2D,3 Rj* 'DhIDIa)L4 M115oRj'IsMk-0 (l

V,(A -S, I V, - 2F2) +(A - S,I V, - B2F2)' VI MhA+ A,MU + C40C30-CjD2IR -DCIO - CaD, ARo-'Dzja C

+ 91 + V1S,, VI + FiRIAFM-. (41) + Ci'Diiatijo'JRR, 'DiC,.( - CGsDn + C pjD:0N-@'DtD,2

J Th resulting values Of the performance cliteria ame fgVu?(Uk.ui.) -CiDaiRteIDIl4CoD RiDIi)L
-w1 tr Vi 1- 1.2. where V, satifes (41) and V2 saife the equation +. Li,( - D6Cx+ DIDsGI2In D; 2D11 j',R2IOrQ IDIICIO

+Dj2D21 R j0 IDIICIO) + Lj,(R 11 -e D;2zD,,RJt -'RzI0r,'D1I.DI2

V2(A - S, I V3 - 2Fz) +(A - S, I V, - 2F3)' V2  - D:6D2iR i' D, ID12 - D1D -0Ij~)L

+ QZ4-V 1S23 V1 4.Fi~RF 2 -0. (42) - (CiOD2 - CIOD1 R1 -'JtlR2 -10;6,M,

We seek V, and V2 in the form -M~,~'DIi-R 1 ~DCc
+ Mx.Bai 1 R-V(DiiDn- XRGVAiD~IDt2)Lb

* NI,5 0 Ri 1'R23OAi, '*AM. -0 (A2)
Substtig (43) in (41), setting #-0, using that the matrix (Ani-
82,Ri- '52,M,1) is stable and that (Al)-(AS) Posse1111 a unique stabilizing N,,4; .AN,, - 5Oi 01 ~'B6,MbN2. - NbMhbOliR- '8j.
solution it can be shown that 81t- (2 3 2Oj0IICOJ2

-VO - 0 R M(D(,C 2, R 2 1 R 'DCicN
Vu()- t,(), ~ml2.3 -NU(CiOD 2 1 - C'1D, 1Rti'Ra2I0)RtiO'E6

Using (44% we ca now prove (36) To do this we substitute (43) in (42). +OR'z. 5,,N
subtra (10b) from (42) set is-0. use (44) and emploty the stability Of
the matrices A, anid (Am-2IaRgj'5BjM,,). It follows that N uoRiRica'6

vi(0) - M310). j-,0.3 (45) - NULi,(Di2DI ,R,-'R 21*- D 6D21)RX '56

which prove (36) It. instead of responding optimally, the follower uses - B5 0 1 (JtRWDII,3- DjDi)L,Nb0 (M)
%be spProxisnat strteg iae - RjI BKly, the values of the perfor- 2A A,2+-(M
mance criteriawill beJ,(u 1 5,u 2.,p)- 11tr W, were W, and W, satisfyNA ANb.0A)
theo equations (,R,0- DzDIIAR,'D 1 D,2 ),VN,

WI(A - SIK1 - 52F,) +(A - SIIX - B2 Fdy W, + Q1 +(R 30+ D; 2DI IR,- IR11 R8jo' DD 13 - Dj2D2I1R-0'D,,D 2

- DI2DIIR, I'D'aDn)L, - D12(I - DI~-'1ICOI

+ K1S1 K + Fi~R 2F2 -0 (46) -(~,. 2 ,, 1 '~C4DD,~'a.~'i~

W2(A -S,,K, - 59t 4(A - S, K,- 2F2)' W2 ''-D 2 2 R ',,),-( -5,9'f, ,)M, 2

4.K,S21K, 4.FJRF 2 -0. (47) - (Da2D,,1Ri 'R210 -DiD 1)Rti '3,Ml,Nb 0 (AS)
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,k -~,AS '5~t~ M,, - Seto'6Ce Jm- JEo',060u~)Lb.

(ME)

Mhe follow opdm1 gai Lt. is Oma by

Thu. -O Lb. the follower need to solv (Al) to be able to ocapsi
bbs optima spa Lu.

The ies= of (AI)-(AS) sein sun osly df the doeed4oop matn
A, ia stale So we anm tha (AI)-(MS) pause a wtaq stabagf
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Well-Posedness of Linear Closed-
i Loop Stackelberg Strategies for

Singularly Perturbed Systemst

by h. A. sAMAm and j. a. cRuz. jr.1Dciwon ad Cov Laboratory, Coodated SCiec L4b*rtry and Depart-
mewn of Electical Engineering, Univenry of illnoi, Urbana.IL 61801

AUNFWAcr 77ds paper Ls oneaned wit a lin. closed-leop SAckelberg swawgy for
*singlarly pemuabed sysuems. A procedure o Obtam a well-posed foruladon of dge
problem wh ere bo& fast nd slow modes am available for measurmens, is gwen.

L Inwductio

The Stackelberg strately (1-3) is the solution concept for a broad class of
decision making problems in which one decision-maker, called the leader,
announces his strategy before the other decision-maker, called the follower,
selects his strategy. There are different types of Stackelberg strategies: (a)
open-loop strategies, (b) closed-loop strateSies, (c) feedback strategies. For
more information about these types the reader is referred to (11, 13). The
closed-loop Stackelberg strategy appears more favorable to the leader than the
other two kinds (4, 5), but the disadvantage it using the closed-loop Stackel-
berg strategy is that it does not satisfy the principle of optimality (4).

When the space of closed-loop Stackelberg strategies is constrained to be a
linear function of the state variables, it was found (6) that such linear strategies
do not exist because some gin matrices depend on the initial conditions. But
by assuming that the initial conditions are randomly distributed and averaging
the performance indices over these initial conditions, linacr closed-loop Stac-
kelberg strategies were obtained.

When the system contains slow and fast modes the control problem is
numerically stiff. To alleviate this numerical stiffness and to decrease computa-
tional manipulation the singular perturbation method has been used (7).

Applying the theory of differential games to singularly perturbed systems
was initiated in (8, 9), in which it was found that the usual formulation using
singular perturbation techniques to &d dosed-loop Nash and Stackelberg
strategies is generally i-posed. In (8) a method was shown to obtain a

" wel-posed formulation for Nash ganes, when both the slow and the fast

t This work was supported in part by the National Science Foundation under Grant
" iNG 74-20091, in part by the Joint Services Electronics Program under Contrac

DAAG-29-73-C-0016 and in part by the U.S. Department of Energy, Electric Energy
Systems Division under Contract EX-76-C-01-2088.
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variables are available for measurements. In (9) a linear closed-loop Stackel-
berg strategy as described in (6), was considered and it was shown that if we
restrict the space of strategies to be taken from the slow variable only, we
obtain a well-posed formulation.

In this paper, we consider the linear closed-loop Stackelberg strategy when
both the slow and the fast variables are available for measurements. This
information structure is difterent from the one in (9). We describe a method by
which we find strategies using reduced order systems such that if we apply
thee strategies to the full order system, the resulting cost functions will have
the same limits as the cost functions for the same full order systems if the full
order optimal strategies are applied.

L Fomulaeido of the Pfo6lm

Let us consider the singularly perturbed system:

x'Atx+A 2z+Bjtut+B2 u 2; x(O)inXo,

A.i±A 2 Iz+A=z+Bzu,+Bi2u.; z(O)mzo,

where x e R', z e R; u, e R"% and ;& is a small positive parimeter. Assume
that the cost function associated with player i is

-,= J {y'Qy + uA1u, + u4Rquf} d]U

where

R., P, are symmetric, positive definite matrices, E(yo) - 0; E(y~y' ) - where I
is the identity matrix.

A strategy set (u*, u is called a Stackelberg strategy with player 2 as a
leader and player I as follower if for any u, e UI, u r : U.

72(U *, U ' 2 S1(TU2, Ul),

where

f1 (Th,, u,&27%j(UI. U7)

and

Closed-loop linear Stackelberg strategy was considered by Medanic (6). In his
paper the controls were assumed to be of the form

u,=-Fly. 142 -- Fy

and F;, the gain of the leader is found by solving the following equations.

AMt + MA,, +WMISI IM R:Fz ' + Ot - 0. (la)

A M:+ M2A. + MNS2p'M4 + F'RJ 2 Q 0. (1b)

JoW.W of Te PNm dkbe Ifsa"e

Fwam PPuM L4.
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INIA'+A.Ni-SIMN2-N2M2St+S 2 1MN 2 +N 2MtS2, =0, (1c)

N2A'+AN 2 4I-, (id)

j: R 12F2N + R&AFN- B2(MIN1 + M2N2 ) -0, (1.)

where

F, - R-IBIMI,

A -A-SM-B 2F2,

2AT A12  'Sl

In general by letting 1& -. 0 in the full order system we change the meaning of
the vector z from a state variable to a variabl which depends on x. So if we so.ve
the. resulting slow optimization problem, we will have a change in
information structure. To avoid this change in information structure, we solve
the problem as an output feedback problem, where we constrain the feedback
to be taken from x and z. This is clearly shown in Section IV.

In the following sections we will show a procedure to get a well-posed
solution of the problem depending on reduced order systems while both x and
z are available for measurements for both players. Let

"law = -L 1x- Lt 2z,

-U -L21X - L=z.

The follower will find L 2 by minimizing the fast part of his optimization
function while the fast part of the system is given and he will find Lit by
minimizing his modified slow optimization function. The leader will find his
gains L 21 and L,. by minimizing his slow part of the optimization function
under the constraints that the follower applies the above procedure and the
slow part of the system is given.

S I- 1. The Fast Optimizaton Problem foe die Follower

The follower can find the gain L 12 by minimizing the fast part of his
* performance index which is

-lf E[4 (Z'Q 3Zf1 * lut+ u'2R 12u2 f) dt]

given that

dfA 22:1 +B. +B22ts,,

VIA. 000. M& 0. MORM 19"5

F-K
[. -w , --o.4 Gls
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and

zsv - nz
aa, ==-L 22 ,

Substituting for u11, 9u, we get

fif" M [iE '((21 '4+L'12RIILL2+L6RI2LZ ~zdt]

-(An - B21Lt2 - B=L.)zf w A=z.

Solving the problem, we get the following necessary conditions

L, 2 - R7,'B" ,tK, (2)

A'=KI + K13A= + K& 3K13 + LjRt2 L= + -03 0, (3)
where

g13 - B2IR7I'BI.

IV. Stow Opimizaton PoWbem for d Folloew,

The follower can find L t by the following procedure. Lettingj --. 0 in the
system considered we obtain

." Al1 x, + A12z, +Bltul, + B, 2&,,,
0 - AUX. + Az2 ; B+t2 ul. +B22%.

and if we constrain the controls to be of the form

ut, - -L 1 1 ; - L,2z,,

U2. = -L/x. -/L=Z,
and substitute for ul, uz, we obtain

z,= - (A=-. B2 L, 2 - B=.)-L(A2, - B21Lt, - B-L 21)x,.

Assuming that (Aj2-B 2 ,Lt2-B=L.) is non-singular and substituting for
ul,, ua. z, in the differential equation, we obtain

, [All -B,,L, -B 12 L 21 -(A 12 -BI 1 L 2 - BtI 2 )(A-2 -B 2 ,Lt 2- B=LZ)-'

- (A2 j - B2jL11 -B=/ X

or

i, AA, ;,(t) 6(4 O)x(O),

where

Ao - A,, - A, 2Aj2 A21,
All inA,1 -B 1 L,1-B12 IL21, A 12 - A12-B 11 IL12 -BI 2 L22 , -

A21 m A: 2 -BLj - B22L., A== A 22- B..L 1.- BnL 22.

ic tI MN fl F mki gaut i

'ii
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Substituting for ul,, u,, Z, in the optimization function of the foUower, we
obtain

- ( ' [j jx{.(r (1 1R t + L,RL 11 +L) R 2 2

x - A;1(A-)(Qt2+ L' 2RLLt+ L~RztL2).+ jj ,(A-)
x(Q21+ L'2RLt2 4. L=A-t,2 O4))x 0 di7I

Applying the same procedure as in the output regulator problem (10). while
using the assumption that E(zxxV -, & weobtain

I,(Lit, L,2) trace '(t, OWit, - O2A-'A= -A.' ""' '
+A~(A_'Y13-,.2j(t 0 Adt(.)

where

O tt +L' 1 R+Lt1 4 Rt2. .

Ou Qt3+Lk2R 1 1L12 4L6,RaL..

Finding .j1j8L 1 and putting it equal to zero we obtain

.R,1L,-,R,LLA A2 . 2,(A-1)'&,-B2,(A-')',A. - ,.
(4)

where
- B, Bz 1 (A-')'(A 

2 Y

and K 1 is the solution of

K,, o+A;KjI+ O11 2 V- 1.A21A2,- A(A.."2""
A2I(A2-) 0OjXAA210. (5)

Substituting for Lt2 obtained from Eqs. (2), (3) in Eqs. (4), (5), we can find Lt 1 .

(1) Finding J1./$L2 and letting it equal to zero will lead to the same
-quations as (4), (5). This is due to the fact that r,(t) is a linear function of

; r.,(t).

(2) f we constrain u,, -L, 1 x, and apply the same procedure, the formula-
tion is ill-posed.

Vol" .o00. 0. %1"* to"
0. 46dwm Wand
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Before describing how the leader can find L21, Lz, it is advantageous to
change the form of Eqs. (4) and (5) by using Eqs. (2) and (3) and by letting L1
to be of the following form

LI, - R7(B'ttK 1 + B21KI,).

Then after some straightforward but lengthy algebra Eq. (4) leads to

K12 - -[0 2+~ 1 tLRt2L+KtA 2 -KISB 1 2L,+ '2,K,3]A 2-2'- (6)
where

A21 - A21 - 91Ki I - 2L1

and Eq. (5) becomes

K11At, +API1 K11 -K 1.911K,1 - KtIB12L-t1 - L'2,B' 2Kl + 4 , - K21K

+ K 2A2  + A,2FK LP-jIR12L21 -0. (7)
By substituting for ul,, u,., z, in the slow part of the leader's optimization
function, we obtain

E .,,(,A-.)'(5:

where +A2,(Aj)A A2 1];(r) di].

(%j1- 02, + L&1RnL,.=+ K1296K1 + K 2K1

+ K11S21KI1 + KII~z2K~t2
402- OnQL,,2  = + 4Kj2$,,K 3 + i-zU
2- 4023t LtR2,L 4+ Ktt K3 ,

2- B11R71'R 2lR7I'B,,1, 2- B11RT7'R 21R B' 21,
S2*- B-2 tR7 jR-7tBIt.

Let

12. E [x'(O)K2x(O)J,
Z(O)

where K2 satisfies

A; 3K +K2Ao+ 01- 022A224 2, - A(A )0 22

+AI2 (A )YO23A-'A 2, -0. (8)

So the leader has to minimize 7. under the following constraints:

A'Ux,+ Kt 3A= + K13 13KI 3 +L' 1R 12L.2 + 1 -20,a0
K, At I + A'I KIt - K, 1, 1Kt I - Kt IB1L,1 - L '21B'2K, + Ot I- Kj29t:K: 2

-+:A=: K1A' +" A "', ""12 + "2."" -0

J m~I E~ PM'kf l II~uI_-~ +|,A 2-0:A-A.,-A2( A,-0| n, Lot

''G,
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j where
Kln -(Q, 2 +L,',R,2Ln. K,1A, 2-K, 1 2L=.AII,K3JA-.

The reader is referred to Appendix A for the derivation of the necessary

conditions for the leader's minimization problem.

MV Full Order a'bileu,

In Eq. (1) we assume

* ~~,z[Mi W&M3] Nr12 N131
Substituting for M, in Eq. (1a) and letting j& -0, we obtain the following

Ae ,1M11(0) *M, ,(0)A.jj 4 A.021M't-40) + M12(O)A. 2, 4- M1,(G)

+ 913M',2(O)) 4- F 1(0)R 12,F21(0) 4-(Q,, 0, (9)
M1I2(0) - - (Q1 2-F'1(O),Rt 2F21(0) +(A2, - ,:N,(0) -B,,F 2 (O))M1 3(O)

+ M1 ,A , ~ .M,() 1 F(0)]A-', (10)
A1.2M,(0) + M13')A, -MI3(0)913M 3 O) -F 2(0)RL2F22(0)+Qt03-0,

where

Act e A t2 - 912Mt3(0) - B12 FZ2(0),

A -l A21 - 912 KM1 (0) - 9131W2(0) - = I()

assuming that A2 is non-singular.
It is noticed that Eqs. (3), (6) and (7) are identical to Eqs. (11), (10) arnd (9)

respectively where M, ,(O), Mj2(0), M13(0), F21(O). Fn(0) replace K,,, K12,

Substituting for M. in Eq. (1ib) and letting o~ --o0, we obtain
M21 (O)A, 4 A.' I M21(0) +' U2(0)A. 21 +A,'2M(0) + 0214- P'21(0)Rt2F 21 (0)

&f~l() 4- M=(0)A.n 4- A.t 1 4- )M 1 ,(0) 1M 3(0) + Mu(0)923MI-(0)

4- F1(O)1R2F22(0) 4-0=-0, (13)
A'.nMf(0) "'- M(0)An *M, 3(0).'hM 3(O) *F'=(O)RnF22(0) 4- -. (14)
From (13) we have

M-- - (A' 2, MfZ(0) M'21(O)Ae1Wt2 M (0)S'-Mi3(0) 4-M,2(o)S23M 3(O)

VOL W~. N.40. %%-a 1919
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Substituting for M=, in (12) and using Eq. (14) we obtain an equation identical
to (8). Where M,61(0), MO, AM12(0)- M1f 3(0)- F,,1(O), F22(0) replace K,,, K1,
Ktz, K13, L21-. L=, respectively.

Decomposing Eq. (1d) and letting 1A - 0, we obtain
A. 11N,,1(0) + N,,1(0)AC1 4 A. 12N6,(0) + N()AC1 2 + 4- 0, (IS)

NIOA1 + N,,,(0)A'C' -0, (16)

From (16), we get Nn,(0) - - N-,1 (0)AC12 1(A.,,f - N,(0) V. From (17), we get
NW,(0) - VN,, 1(0) V'. where

V A.-24,

Substituting for N=, in (15), we obtain

(AcII- A. 12A-; A,,,)N 1 (0) +N,1 (0)(A1 , -4, 2A-' A.21)' 41-0.
which is identical to (A2), where M21 )M1(0), Mn(O), Hu,(Oa), F4O),F220,) replace
P, KtI, K,2, K13. L2,1- L. respectively. Atear decomposing (1c) and letting

-0, we obtain

(A. I I1N,1(0) + A. 12N'12(0) - Vft IM'd0) 4 .912M ,,(0))N,, 1(0) - 91043,(0) N(0)

4 (g.1M1 1(0) 4 =M',,(0))N2i(0) 4Lz,.%ui()NS(O)] 4(N1 1(0)A'. 11
+ N12(0)A. 1,,- N21(0)(M,,d0).I11 ' MW,(0),,) - N,,()M23(0)9,, 4N,(0)

Mil(O)A'c~t+ ( M11(0)2+N 1 4 ) I1(O) )N,A,f(O) 13 N(O)M,,J -0(18)

SN,(OX(MI 1(0)A, 4M 12(0)$:) 4N,,,(0)M1 ,(0)9 -0. (19)
A,,N, 2(0) -+A.n2N,(0) *N,,(0)A'.,, N 3(0)A',,,- T,,,,(0) - NV(0)TI

- N,,(0) -N,(O), -0. (20)

From (19) we obtain
N12(0) -MIOW Nt)V

where

W - A.- n,(T,, + T, V),

T3 913M',,,(0) + '2,M,, 1 (0) - qM ,,(0) - .Afl ,(0),

T. : 13M23,(0) - -4MA13(0)-

Substituting for N12(0), M22(0), N,,,(O) in (18), we get an equation identical to
(Al) where NIL(0), N,,1(0), M,,1(0). M11(0). F21(0)1 F22,(0), 'Wt3~(0)- M12(O)
replace P,. P, K2,, Kii, L21. L=, KU,, K12, repectively.

Substituting for N, 2(0), M,,(0), M2(0) in (20) and using Eq. (14), we get an
equation identical to WA), where N13(0). N110T), MALO) M21(0), M11(O),
P4,,(0), MOM(0, FZL(O), F1.2(0) replace P3, P1, P2,. K2#, Kit, K12, K13. L2,1, L,,2
respectively.
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Decomposing (le) and letting A -0, we have

R 12(F21(O)N 1 (0) + Fn(0)N'11(0)) + R2(F 1 (0)N21(0)
+ F22(0)N&(O)) -- B a(M 2 (O)N1 t(0) + Mt3(0)NM2 (0))

- BO2M21 (O)N2 (O)- B6(M2(O)N2 (O))+M ,(O)N1(O)) -O, (21)

I +(i(R(F)-(O)- BBI;M 2(O)-MB 2 1(0))N-2(O)
+ (R.FI(0)- B'1W2(0)- B6M (0))N.2(0)

+ (RaxV) -B ;2M0 (0))Nu(0) + (R-,Fu 0)- B6M,3(0)3N=,(0) -0. (22).

Substituting for N12(0), N1(0), M=(0) and Nu(0) in Eqs. (21) and (22) and
usig Eq. (14), we get Eq. (21) identical to (M3) and Eq. (2) identical to (A4),
where N"1(0), N.21 (0), M21(0), ,rL[(0), MU3(0) -M(0), F21(0) F2(0) and MUM(0)

replace Pt. P2, K , Kt, Kl:, K13 L2., L and P3 respectively.
To compare the performance indices resulting from solving the full order

problem with the ones resulting from the reduced order solution we need the
following assumptions:

(a) The fast optimization problem of the follower has a unique stabilizing
solution. In other words there eists a unique Z13 which is a solution of Eq. (3)
for each Ln applied such that k.(Am)<0.

(b) The slow optimization problem of the follower has a unique solution
after substituting for Lt 2 from the fast problam, i.e. Eqs. (6) and (7) have a
unique solution for KuI, KI.

(c) The leader optimization problem has a unique stabilizing solution, i.e.
there exists a unique pair L2 , and L2 as a solution of the set of Eqs. (3), (6).
(7), (8) and (AI)-(AS) such that A(A*)<0.

Theorem
U assumptions (a), (b) and (c) are satisfied then:

(1) iim( 1 - u,.)-0, for i=1,2,

0-0

(2) Urm (j, - 4') - 0.

where

" =.-Lix-L,2z, u--F,x-F, 2 z,
.1' is the performance index when ul and u2 are used,
J, is the performance index when u, and w2 are used.

Proof: (1) It was shown that M11(0), M12(0), MUM(0), M21 (0), NI1 (0), N2 (0),
N,(0), Fzt(0), F=(O) replace K,,, Kj 2, K13 , K2, PI, P2, P3, Lt, L. respec-
tively in the equations and if the uniqueness assumptions are satisfied, then we
have unique values of KI, K12, K13, K2, Pt, P2, P 3, L2 1 , L2 and K, = M, (0),
Kt 2 - Mt2(0), K 13 - M 3(0), F2 I(0)- Lzl, F2(0) - L 2 , K2 - M2 ,(0). P,

N(0), P 2 - N 2 t(0), P3 - N1 3 (0).

VOL 000. .40. 0. MMml, 1979
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For the follower: Ulm* _LI~ -it2
Substituting for Lit, Liz, we obtain

a'J.. - -,R1'(R(B1 K1l + B21K Wz -t- 'BiK1 3:.

But the exact control of the follower is:

U- W R7111B It 1Nal) [ M. M 12]I

- R7l[B,,(M11x +gp~ 1 z) + B,21(M'12 X + M13z)]

- (B, IMI I + B'2 1 M,2)x + aB I 1M11z + B 1 Mjjz]

Clearly,

Urn a'-li Urn'..
IL-0 -

For the leader:
uz - -Flx - Fz2z,

u2w- -12x- L22z.

Clealy,

(2) When the exact controls, u,1 = -Fly and u'2 r -F2y are used the resulted
performance index J*,"IyV2Myo where XW is given by Eqs. (la), (Ib). If ut.
and u2. are used, where

U,- -R7IB' 1K~y, K1- Uc ~ 1]
a' 2 . --L 2Y. i

we wil have J as the performance index. where J, - Jy Wyo and Wi, W2
satisfy the following equations:
WL(A -StKt-B2L,+(A -S11 Kt-B 1 L)'W1 +Q(.a.KtSttKL+L,2RIZLI-0, I

(23)
W(A-S1 1K 1 B 2L,)(A S , - B 2L ,)W2 + 2 +KS:KI+L2RL 2 n0.

Subtracting (23) fromn (24) and (1a) from (lb), we find that (4

Pl- Wi-M 1 and P2- W2 -M%2
satisfy
Pd(A-S 11 K, -B 2L2) +(A -S 1 K1 -B 2L"'P1 +NK1 -M)'S11 (K - M)

* M1B2(L2 -F 2)+(L 2 -F 2)'B'-M, #L'-Ri2L, - F'R,2 F: -0. (25)
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P2(A - SIKI - BDL2) + (A -SjtKj - B 2LJPZ+ KKS21K -MS%&Ml

- M 2S,1 (K- M)- (KI - MIYS1 M2 - M 2B2(1.2.- F2)

,-- -0. (26)
Taking[p,.[ll A,,  2

and substituting for P and P2 in Eqs. (25) and (26) respectively and setting
s& --o0, we obtain

PA + ftzA?, + All IA, + Ah,2"2 0. 2/

A tA t2 + P1= + A2013 -= 0 (28)

PA,+A 2 3 - 0. (29)

Since An is stable. P3 -0 is the unique solution of Sq. (29). From (28) we
have

Substituting Pz in (27), we obtain

P(A 1 --AzA-'A 1 )+(A,, -AzA-IA 2 jt M 0

or P Ao+AOPA I -0. Since A0 is stable, P, -0. Thus

Pj-0 for i-1,2, j=i1,2,3.

In the method descrbed in this paper we managed to decrease the amount of
computation and alleviate the numerical stifess which we would have if we
solve the hll order problem. In this method the follower finds his gains in a
way similar to the hierarchical reduction scheme described in (8). That is, the
fast gain is obtained from solving a fast optimization problem independent of
the slow information and the slow gain is obtained from solving a modified
slow optimization problem. The leader finds his gains by minimizing the slow
part of his cost function under the constraint that the follower applies the
above procedure.

It was shown that if we apply the strategies obtained from this method to the
full order system, the resulting cost functions will have the same limits as the
cost functions for the same full order system if the full order optimal strategies
are applied.
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Appendix A

Applying the matrix minimum principle (12) to the leader opimization problem we
get the following set of matrix algebraic equations:

PIA is -PI 1X 1 95, - Pt'jj_1CJ3r - Pjj ... t~jr + P1Klirz

+ P2ICa6 PIjor + P1 IKum 4 PzIC 1~i', +~ PA 2 2 1(9 4-Si,

SPA (A)-t' (K..36+ Kavsw)-P
+ A,1P t -- KPI - - 3K P, - + t'A21P,

4 t'K 2Pz: 4 w'22KP 1PrLaaC' 2Pj 4 tj~a-111C1P
(-(123.K,3+9=K,3)A-U'A,,P2+(irij ,, ).(AZ-2),Ospi,

- (.,r, 4,)(A;)O.(A;')A., -0 , (AD

P2Ao # A , -0, (A2)

- BI2 K, I P - WIL' K 3 P, + i',i P, - B6K'2 P, +, r',A.PI + RL:.P:.
+ W3.14imm i + irs,.x 5 'i + R,.L 2 P, - (RUSL.= 4- 1%X313 )A=' AP2 It

4(a,5,) & p(A)'P: -(B6 + r,.f,)(A -)' ,A ,A'. =P -0, (A3)- ;.",K,.,r,(Ay +';P '. U 21.
- wrP K,,(A )'+ ir;PK ,, (A )' - R.,4aP A , (A 2) -

- WP:A,,(A=)I i.L.,(A:-.) - Bn(A;') ('2 2 P:A:,(A ,)
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- I . (4)
22 A 1322 1~ F+ A11 2Ic212

+[ ,2A=I P±K,3]- 2  AA 1 2 ,,~ 1

-AU-A,,PAK 1 ,~ u ~A 1 1 C2~

A,,, (A (-Y.,,AnP)(~-A 2 3 )'xP 2A-AI L&? A41Alp -2(A

*x(A4' - ,u(A2a)'2.-.,(A' - (A )1 t.At YrOA.P 2 A,. -96K 1 P1A;,A -)

A. (AV,(A')S.K,,(A ) 1PAg4(A)( Y~A)

xA21 ,,, -),P2A,,±A-1 +1 3 (AY,(AvAuP:Ai(A(A- 1)

4P3A;. - A,, P:XiJ=(A2i2)- A,Pz 21L-ub'= -0. (A-5)

where

irn, (-bA 13 4-B12 L22+ UK 3)At-2L

v3 (-R,2L±,2 + B 1K, 3) A 2-

vs Kt B12 +(212 (. *4a~z ~~2-K,,L

4A,2 ,K 3)A-B%].

So in order for the leader to find L2.j, Ln he has to solve Eqs. (3). (6), (7), (8), and
(AiH-A5).




