
AD Al23 959 PERFORMANCE MODELINO OF MULTPROCESSOR SYSTEMS WIT H
PAD NO U) LNO IS UNIV AT URBANA COORDINATED SCIENCE

LAR A D) GANT DCT AO R-.A2 NOO4-79-C 0424

smmhhhhmmhlm
mhhmmhhhhhhu.
mhhhhhhhhhhhhl

1.25 4 2

4 MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

L t j.

.

SECURmITY CLASSIFICATION OF THIS PAGE (%Onm Dam £nt.,d __________________

REPORT DOCUMENTATION PAGE ___________________FORM

1. RPOR NUME 2. GOVT ACCESSION No 3. RICIPIENT'S CATAL.OG NUMBER

4. TITLE (and 3ubtitle) .Tp&REOTaPNOCVRD

PERFORMANCE MODELING OF MULTIPROCESSOR Technical Panel£SYSTEMS WITH PAGING 4. PERFORMING ORG. REPORT NUMBER

R-892; UIWU-ENG 80-2224
7. AUTHOR(s) S. CONTIPACT OR GRANT NUMMSEAia)

AlanDaleGautN00ol4-79-C-0424

9. PERFORMING ORGANIZATION NAME AND AODRESS I0. PROGRAM ELEMENT. PROJECT, TASK

Coorinaed Siene I~oraoryAREA A WORK UNIT NUMBERS

1I. CONTROLLING OFFICE NAME ANO ADDRESS 12. REPORT DATE

IC. MONITORING AGENCY NAME &AODRESS(il different from Controlling Office) IS. SECURITY CLASS. (a(this report)

UNCIASSIFIED

ISa. OECLASSI FICATION/ DOWNGRADING
SCH EDULE

1S. DISTRIBUTION STATEMENT (of this Repot)

Approved for public release; distribution unli~ted

Ill. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue an reverse oid* if neesaryvand Identify by block number)

F. multiprocessors, memory hierarchy,
paging system, shared secondary memory,V analytic modeling

20. ABSTRACT (C~~ntinue on roves" old& i1 nocsaand identify by block numb.,)

* 2 The rapid advancement in semiconductor technology continues to change the
environment in which computers are designed. As hardware costs decline,
systems with multiple processors become an interesting alternative to
conventional single processor systems. An analytic model has been developed1 to describe the performance of a wide range of multiprocessor system configu-
rations and workloads. This model deals specifically with P tightly-coupled,
identical processors with shared primary and secondary memory. Secondary
memory consists of a paging drum with S sectors. The workload consists of J

DD IJAI 3 1473
SE(CIJj'U lSRfjTO OF 1413 PA42E (N2tn DIAftior,,d)

SECU NITY CLASSIFICATION OF THIS PAGSIK ne DOes Xntemd)A

20. ABSTRACT (continued)\ /

'independent, identically-diptributed jobs whose faulting or I/O behavior is
described by both a mean (X faults/sector-time) and a squared coefficient of
variation(K). In addition, the processing overhead for each 1/0 request is
added to a job's execution time at a processor(C sector-times/fault).

The model developed provides an estimate of system throughput for various
numbers of processors, jobs, and drum sectors, and for various workloads -
Throughput, the average number of processors doing useful work, is given by

_ 1
1mn 1 +1 C . +1 JT - min { 2%

2 X(+C +1)

This model is based on a deterministic scheduling model for the system, and
known models which describe the sub-parts of the system are embedded. The
accuracy of the model is assessed by comparison to a large number of runs of a
simulator using exponential and hyperexponential fault time distributions.
For a wide range of values of the parameters, the formula provides a very
good estimate of throughput (the average relative error for 195 simulation runs -
is only 3.07.). Even though the squared coefficient of the fault distribution
varied from 1 to 16 in the simulation runs, the model fit quite well without 7
using K. This suggests that the mean fault rate is perhaps a sufficient
measure of the faulting process. Further evidence for this conclusion is the
fact that the model's prediction only improves slightly when a drum queue
wait model, isedmp.loyed which includes K.

$->The model can be uq d to examine the behavior of multiprocessor systems,
including the sensitivity of system throughput to each of the system parameters
and parameter trade-offs related to system performance. In particular, in a
system with a fixed alount of memory, the addition of jobs to the system
causes a change in the memory allocation for each job and thus modifies each
job's faulting behavior. The above formula for throughput is useful to
examine the desirability of adding or subtracting jobs in such a system.

•L i !
[

• I

-m UILU-ENG 80-2224

PERFORMANCE MODELING OF MULTIPROCESSOR SYSTEMS WITH PAGING

by

Alan Dale Gant

This work was supported in part by the Joint Services Electronics

Program (U.S. Army, U.S. Navy and U.S. Air Force) under Contract

N00014-79-C-0424.

I

!Reproduction in whole or in part is permitted for any purpose

of the United States Government.

Approved for public release. Distribution unlimited. .bte

[lot

j -., Ii$P ee a

PERFORMANCE MODELING OF MULTIPROCESSOR SYSTNS WITH PAGING

BY

ALAN DALE GANT

B.S., University of Texas, 1974
M.S., University of Illinois, 1977

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1980

II

E Urbana, Illinois

I

iv

4.-

PERFORMANCE MODELING OF MULTIPROCESSOR SYSTES WITH PAGING

Alan Dle Gent, Ph.D.
Department of Electrical Engineering

University of Illinois at Urbana-Champaign, 1980

- - The rapid advancement in semiconductor technology continues to

" change the environment in which computers are designed. As hardware

costs decline, systems with multiple processors become an interesting

alternative to conventional single processor systems. An analytic model

has been developed to describe the performance of a wide range of

multiprocessor system configurations and workloads. This model deals

specifically with P tightly-coupled, identical processors with shared

primary and secondary memory. Secondary memory consists of a paging

drum with S sectors. The workload consists of J independent,

I identically-distributed jobs whose faulting or I/O behavior is described

by both a mean (X faults/sector-time) and a squared coefficient of

variation(K). In addition, the processing overhead for each I/O request

[is added to a job's execution time at a processor(C sector-times/fault).

The model developed provides an estimate of system throughput for

various numbers of processors, jobs, and drum sectors, and for various

[I workloads. Throughput, the average number of processors doing useful

work, is given by

1 +) .1 + +++ 1 +J)2
+C + J-k j(!+C + 1)

LX
T i

, . '.+.4 , :+

v

This model is based on a deterministic scheduling model for the system,

and known models which describe the sub-parts of the system are

embedded. The accuracy of the model is assessed by comparison to a

large number of runs of a simulator using exponential and

hyperexponential fault time distributions. For a wide range of values

of the parameters, the formula provides a very good estimate of

throughput (the average relative error for 195 simulation runs is only

3.0%.). Even though the squared coefficient of the fault distribution

varied from I to 16 in the simulation runs, the model fit quite well

without using K. This suggests that the mean fault rate is perhaps a

sufficient measure of the faulting process. Further evidence for this

conclusion is the fact that the model's prediction only improves

slightly when a drum queue wait model is employed which includes K.

The model can be used to examine the behavior of multiprocessor

* L systems, including the sensitivity of system throughput to each of the

system parameters and parameter trade-offs related to system

performance. In particular, in a system with a fixed amount of memory,

the addition of jobs to the system causes a change in the memory

allocation for each job and thus modifies each job's faulting behavior.

I The above formula for throughput is useful to examine the desirability

of adding or subtracting jobs in such a system.

'!1
I

1.

iii

4-

ACKNOWLEDGMENT

The author wishes to express sincere appreciation and gratitude to

his thesis advisor, Professor Edward S. Davidson, for his considerable

i- -contribution to this work. Dr. Davidson's insight and expertise proved

indispensable. The author is also fortunate to have had an advisor who

also became a friend.

The author would also like to thank many of his colleagues at the

Coordinated Science Laboratory for their contributions to this research:

_William Brew, Timothy Chou, Joel Ener, Daniel Hammerstrom, Ravi Nair,

and David Yen. These people, along with Larry Hanes, B. Kumar, Phil

Yeh, and Professors Jacob Abraham, Richard Flower, B.R. Rau, and

Michael Schlansker provided a congenial and stimulating environment in

which to work.

- I

1.

[

S-

vi

TABLE OF CONTENS

PAGE

1. INTRODUCTION AND BACKGROUYND1I

1.1 Problem Description 1
1.2 System Configuration. * .* . 6 . * * 1
1.3 Analysis Techniques 6
1.4 Processor Models * 9
1.5 Drum Models* 11
1 .6 Program Behavior1 3
1.7 Model Decomposition . 14

2. MODEL DEVELOPMENT 18

2.1 System Simulation19

2.2 System Model21

2.2.1 Deterministic ScheduleModel*21

2.2.2 Application of Deterministic Model 25
2.3 Drum Queue Wait Models. 28

-2.4 Processor Queue Wait Models 40
2.4.1 Queueing Theory Models40
2.4.2 Markov Model 42

2.5 Final System Xodel. 49

3. ANALYSIS OF RESULTS 50

7- 3.1 System Parameter Sensitivity. 51
1 ~ 3.2 J vs. X Trade-offs 63

3.3 Processor Trade-offs. 68

4 .. CONCLUSION 78

4.1 Summary 78
14.2 Future Work. 82

APPENDIX84

IREFERENCES.89

[VITA 91

II

L1

I. INTRODUCTION AND BACKGROUND
4.

1 .1 Problem Description

As technology continues to alter design constraints and reduce

hardware costs of computers, systems with multiple processors become an

increasingly interesting alternative to conventional single processor

systems. In order to evaluate the performance of multiprocessor

systems, an analytic model has been developed which describes the system

performance as a function of page faulting behavior. In particular, the

model deals with systems of P processors with shared memory, a paging

drum (or rotating or electronic equivalent) with S sectors, and a work

load consisting of J independent jobs. The effects of various design

decisions and trade-offs on system throughput have been examined
directly using the analytic model. The accuracy of the model has been

-evaluated with a large number of simulations of the system.

1.2 System Configuration

In order to analyze the performance of multiprocessor computer

systems with paged memory, a specific system configuration was studied

(Figure 1-1). The specification of this paged memory system includes

PROCESSOR
SUBSYSTEM

I. DRUM

I. Figure 1-1. System Configuration.

kt

3

both virtual memory systems with demand paging and systems using

explicit paged I/O.

In particular, the processor subsystem consists of P identical,

independent processors. These processors share a single memory in order

to share one job load. The specifics of the processor-memory

interconnection is not known except that it is assumed that access

conflicts among processors can be neglected, i.e., that their effect on

performance can be accounted for by a simple adjustment of a model

parameter value. This assumption is possible since the model is

concerned with the performance of the system at the level of page

faults, which hopefully occur at intervals of large numbers of memory

accesses. Also, memory organizations have been identifie, which achieve

very low incidences of conflict [BRIG77a, BRIG77b].

As jobs fault, they leave the processor subsystem and travel to

secondary memory to fetch the needed pages. The secondary memory is

assumed to be a sectored drum. This drum may actually be constructed as

a head per track disk or some semiconductor analogue such as bubble or

charge-coupled device (CCD) memory. Drum is inten'ed here to represent

any secondary memory whose behavior may be modeled as a queueing delay

and a rotational latency followed by the transfer of data. Moving head

disks are not modeled since they also require a seek time.

V

I 1I

4

" In addition, each sector of the drum maintains a queue of jobs

awaiting service. Sector queues allow a shortest latency time first (or

SLTF) schedule to be used. Jobs requesting service at a specific sector

are serviced in the order of their arrival, but jobs at the heads of

*different sector queues are serviced in the order that the sectors can

be read.

In a virtual memory demand paging system, some of the page faults

may require a page of memory to be written to the drum before the needed

page can be read into memory. The model used here does not specifically

deal with such writes. However, the model is still valid under the

following conditions. It is possible for the drum controller to buffer

these drum writes separately from the reads. Then the transfer of

needed pages to memory can be given priority over writes. This

operation allows the jobs which have faulted to return to the processor

subsystem as quickly as possible. The lower priority drum writes can be

accomplished whenever a particular drum sector has no pending reads. Of

course, the drum controller must manage the additional bookkeeping of

checking to see if any drum read requests refer to a drum write which

has not been completed. An alternate approach would be to prewrite some

pages which have been changed when the drum is idle. Then there would

be no need to write these pages to the drum when they are replaced by

new pages. If the system model is used to describe general I/0 requests

to a paging drum instead of a virtual memory system, then the occurrence

of a model "page fault" represents a single page read or write. In this

[
I'

. ... I| I ll l II I i i l, - ,

case, the controller can treat reads and writes identically. To

accurately model a virtual memory demand paging system without a

-sophisticated controller capable of prioritizing reads and writes, an

additional parameter would have to be added to describe the occurrences

of writes before reads, and the model would need to place both drum

service requests in drum queues.

As jobs return to the processor subsystem from the drum they enter

a single first in first out, FIFO, queue to await a free processor. The

number of Jobs in the system is assumed to be constant, as shown for P

Iprocessors with an S sector drum in the diagram of Figure 1-1. When a

job finally completes execution and leaves the system it is immediately

replaced by a similar job which is assumed to be waiting outside the

system. Thus the system under study is a closed queueing network.

The system may be described by means of several parameters which

specify the number of elements in the system and their behavior. All

references to time in the system will be in units of a sector-time,

where one sector-time is the time taken for one sector of the drum to

pass by the drum heads. The parameters used for our model are:

. S the number of drum sectors (pages/track),

P the number of processors in the system,

J the number of jobs in the system,

M the number of words of memory,

W the number of words per page,

i C the operating system overhead time per page fault,

[

6i

the mean of the fault rate distribution

(faults/sector-time), and

K the squared coefficient of variation of the

fault rate distribution.

1 .3 Analysis Techniques

Numerous methods are available to study the performance of a

computer system. In this section, some of these are discussed and their

applicability to the problem under study is considered.

An obvious method for determining system performance is the use of

simulation, which allows a precise description of the iperation of the

system components and their interaction. However, the results of a

simulation for a specific configuration of the system and a specific

workload are valid only for the specific case simulated. Thus a single

run of the simulation describes the performance of the system for one

value of each of the system parameters. To perceive overall trends in

performance, each of the system parameters must take on several values

independently of the other parameters. This fact suggests, for example,

that i parameters each taking on j values would require as many as ji

runs of the simulation. Also, since each of the simulation runs yields

only an isolated numerical result, the underlying mechanisms causing

variations in system performance are difficult to determine.

Nevertheless, a collection of simulations may be extremely useful for

_ _ r

7

checking the accuracy of analytic models.

j To reduce the cost of simulation of the system, certain

simplifications of system operation might be made. For instance, the

detailed operation of a subsystem of the system might be replaced by an

approximate model of the subsystem. Of course, the accuracy of the

simulation results would depend on the accuracy of the approximate

model.

Another approach for modeling such a system is a network of queues

and servers, as was shown in Figure 1-1 [JACK63,CHAN77]. The solution

of queueing networks is possible if the servers all have exponential

service time distributions. Solutions are also available for

non-exponential service times if an immediate service discipline is

used, e.g., last come first served (LCFS). Since neither SLTF nor FIFO

fall into the immediate service disciplines and since the drum does not

have exponential service, these models are not directly applicable to

the system under study.

* Some recent work in queueing theory has been directed toward using

various approximation techniques in order to model systems which do not

1'. fall into the category of "well-behaved" systems which can be explicitly

described by conventional queueing theory methods. One method which has

recently been developed is the application of Norton's theorem [CHAT75.

For closed networks consisting only of exponential servers, an analog of

Norton's theorem from electrical circuit theory can be used to replace a

I [!

8

subset of the queues with a single queue. Thus a network can be reduced

in complexity. This technique has been extended to provide an

approximate analysis in cases where servers are non-exponential.

Another approximation technique recently proposed is the division

of distributions into percentiles [LAZ077]. Reducing the precision of

the description of the distributions is a brute force technique designed

to achieve some results under difficult conditions.

In addition, much recent work has been based on the diffusion

approximation EKOBA74, GELE75]. Here, the discrete flow of jobs through

the queues is replaced by a continuous "diffusion" model. This model

most accurately describes systems under a heavy traffic assumption where

servers are very seldom idle.

For all of the approximation techniques of queueing theory there is

no easily computed measure of their accuracy. In order to use them,

their accuracy must be verified by other means, such as simulation of

the system.

Another general method for modeling the system is to devise

analytic models based on appropriate simplifications of system

. operation. Such a heuristic-driven approach, like queueing theory

approximations, normally has unknown accuracy, but can be checked by

simulation. Nevertheless, approximate analytic models may yield

equations which detail the operation and interaction of system

{U

9

components in a concise and informative manner.

In this research, a combination of two of the above methods is

used. Detailed simulations of the system under various workloads and

system configurations are made to provide a precise knowledge of system

operation for these cases. The details of these simulations and the

assumptions made are discussed in section 2.1. Then, analytic models

are derived and adapted from the literature. Since the goal of this

research is to accurately model the paging behavior of the system, any

technique or combination of techniques is potentially useful. In

I particular, queueing theory models, both exact and approximate, are used

for certain subsystems. The system model is developed from a

deterministic scheduling discipline. The accuracy of the models is

checked with the results of the simulations. In this way, a precise

description of system operation is provided by the simulations and the

analytic models provide a concise means of discerning relationships

* between performance and the system parameters and underlying causes of

performance variations.

1 .4 Processor Models

The processor subsystem consists of the P processors and their

* shared input queue(Figure 1-1). Several models already exist which may

be useful for describing a multiple processor subsystem. If an infinite

number of jobs is available to the processors, the departure of jobs to

1.

I
*

I,

o .---

10

the drum after page faults occur is solely dependent on the service

times of the processors. In particular, if exponential service times

are assumed, the flow of jobs leaving P independent processors is the

confluence of the job flows leaving each processor, each of which

constitutes a Poisson process. If the mean fault rate of all the jobs

is the same, X , then the flow of jobs to the drum is a Poisson process

with mean rate P X. This rather simple description may be useful in

determining the "bottleneck" of a system. The service rate of the Irum

is one page, or job, per sector-time. Thus, the service rate of the

drum subsystem, I job/sector-time, may be compared to the mean service

rate of the processor subsystem, P X, to estimate behavior under heavy

Sload.
1. Another simple model of the processor subsystem involves the use of

an M/M/1 queueing model. Here, all P processors are replaced by a

single processor with equivalent throughput. This effect is achieved by

assuming a processor sharing discipline, in which all running jobs share

the P processors equally (often described as timesharing with an

Ii infinitesimal time slice) [COFF73]. The single processor has an

exponential fault distribution. This model also assumes a Poisson

arrival process. In fact, the arrival process to the processor

subsystem is unknown and unlikely to be Poisson.

I
I

II

-- "II . . . lIl -- , ,-

11

The processor subsystem might also be modeled by an M/K/P queue,

which extends the M/4/I model to P parallel servers. However, this

model is extremely complex and even simple measures of performance are

not easily found [COFF73, KLEI75]. This approach is also restricted to

an exponential fault distribution and a Poisson arrival process.

1.5 Drum Models

The drum subsystem consists of the drum and the S sector queues as

in Figure 1-1. A drum, with fixed-length sectors, operating with an

SLTF (shortest latency time first) schedule has been examined

previously, and two models are of interest here.

First, an expression for the the expected waiting time, Qd' for a

paging drum has been derived by Coffman FCOFF69. and by Fuller and

Baskett [FULL75I, under the restriction of Poisson arrivals with mean

rate X d The utilization of the drum, Pd' is the arrival rate divided

by the service rate. Since the service rate of the drum is I

job/sector-time, the utilization is equal to the arrival rate, Xd. The

expression for the expected time spent at the drum (including queue wait

but neglecting service time) is

g Sx d 0ii
d = 2 2(l- X)

The first term in equation 1-1 denotes an average one-half revolution

eIainIIdnte eouinh

12

that a Job waits for its sector to be reached, and the second term

describes the average time spent in the sector queue while waiting for

previously arrived jobs to be serviced. The S coefficient is the

rotation time of the drum, and as Xd approaches the service rate of the

drum, 1, the magnitude of the second term approaches infinity.

Obviously, arrivals to the druim subsystem may not be Poisson.

Adams, Gelenbe, and Vicard have developed a model for the SLTF paging

drum which utilizes the mean of the arrival rate to the drum as well as

its squared coefficient of variation [ADAM79]. In order to deal

effectively with non-Poisson arrivals, they use the diffusion

approximation developed by Gelenbe [GELE75]. Since the diffusion

approximation has unknown accuracy, they compare the results of their

model with data supplied by simulations using two-stage hyperexponential

distributions to provide drum arrivals with variance greater than or

equal to that of an exponential distribution. A two-stage

hyperexponential is sufficient to generate distributions with any mean

and any variance which is greater than the mear. For high values of

drum utilization, the model agrees reasonabl well with their

simulations. The equation for mean time spent , he drum queue with

mean arrival rate Xd and squared coefficient of va ation K d is

(S + Kd -)X
Qd 2(1 X (1-2)

,1.:d

ERIE

13

This formula is similar to that derived by Coffman. It differs in

two ways. First, it includes a correction for Kd not equal to 1 (the

exponential distribution has a K of i) and second, it does not include

an S/2 term for the one-half revolution average wait for the sector in

question to reach the read head. The heavy traffic assumption made in

applying the diffusion approximation implies that the value of equation

1-2 would predominate over S/2, since Xd approaches I as Pd approaches

1. The coefficient, S + Kd - I, denotes an "effective" rotation time

due to the change in variance of the arrivals to the drum.

{ 1 .6 Program Behavior

Along with the processor subsystem and the drum iubsystem, the job

workload determines system performance. The description of how jobs

behave on a computer system is called program behavior. Of particular

interest here is that part of program behavior related to paging.

The paging behavior of a program is dependent on the internal

structure of the program and on the configuration of the machine on

which that program runs. In particular, the page size, W, the size of

memory, M, and the number of jobs, J, combine to dictate the average

allocation of pages that a job receives. The paging policy of the

system also determines whether that allocation is fixed in size or

varies dynamically, such as when using the working set algorithm

[DENN68] or the page fault frequency algorithm [CHU721. Studies of

14

dynamic allocation schemes have shown them to be of widely varying

efficiency [BUDZ77].

Numerous studies have been made of the paging behavior of programs.

The effects of page size and memory allocation on page fault behavior

have been studied by Kuck and Lawrie [KUCK7OJ. They also examined the

effects of the number of jobs in the system for a single processor

system. Terms such as locality and working set have been used to

describe the tendency of programs to reference a particular subset of

their address space over a short section of their execution. For

instance, Ferrari has developed the notion of bounded locality

intervals, which are in effect nested localities of decreasing size

[FERR76]. His work suggests *that there are in actuality several

localities of varying size in existence at any one time. To date,

however, there appears to be no concise quantitative description of

program paging behavior as a function of relevant, measurable system and

program attributes which is representative of programs in general.

1.7 Model Decomposition

The system described in Figure 1-1 , along with the parameters

I. defined in section 1.2, details both the physical organization of the

- computer system and the paging characteristics of the job workload. The

system under study includes P processors, J jobs, S drum sectors, M

I words of memory, and W words per page. C denotes the overhead time

Ieoy e ae

15

required to service a page fault. This unified model of the performance

of the system is symbolized in Figure 1-2a. In order to reduce the

complexity of the model, it may be decomposed into two sub-models

connected in a serial fashion (Figure 1-2b). Here, the characteristics

of a job's faulting behavior are dealt with in a fault model, which

considers the memory configuration, the number of jobs sharing the

memory space, and the paging behavior of the workload. The output of

this first sub-model, a descriptor of program faulting behavior, is then

used as input to the system model. Besides this fault descriptor,

parameters describing the physical configuration of the system, the

number of jobs in the system, and the operating system overhead time per

fault, C, are input to the system model. The performance of the system

is obtained from the system model.

As mentioned in section 1.6, the faulting behavior of programs in

general is not well understood. In fact, no model such as the fault

model of Figure 1-2b has been developed. However, development of the

second sub-model may proceed somewhat independent of the first. If at a

later time an accurate fault model which is different from X and K is

Ii developed, the system model may require adjustment to accept this new

V fault descriptor. In the meantime, results from a system model alone

can be used to develop intuition about system performance as a function

V-of J, P, S, C, and the fault descriptor as well as to help identify the

essential characteristics of a useful fault model.II

L I----

16

I J P S C

J M COMBINED

PERFORMANCE
PROGRAM BEHAVIOR MODEL

PAGING STRATEGY

(a)

J J P S C

M
FAULT SYS TEM

PROGRAM BEHAVIOR MODEL K MODEL PERFORMANCE

PAGING STRATEGY

FAULT
DESCRI PTOR

(b)

I Figure 1-2. Model Decomposition.

I

17

The remainder of this research will deal only with the system

model. The faulting of the job workload will be assumed to be

representable by various probability distributions, and the fault

descriptor will be a function of the first two moments of these

distributions. In particular, the mean, X , and the squared coefficient

of variation, K, will together describe the faulting process. By

including a measure of the variance of the process in addition to the

mean, a wider range of faulting behavior can be studied.

.11

1

II

ii
.18

2. MODEL DEVELOPMENT

The goal of this chapter is to develop an effective model of system

performance. Performance is measured in terms of throughput, T, which

is defined to be the average number of processors in the system doing

useful work. Any time a processor spends in operating system overhead

does not constitute useful work. The approach used involves the use of

existing and new subsystem models, which are then utilized in a single

model for system performance. This system model is evaluated by

comparison to performance data supplied by detailed simulations of the

system.

Analytic models are especially attractive because they provide

insight into the functional dependencies of the system. In particular,

it is possible to discern directly the effects on throughput, T, of any

system parameters, singly or in combination. With this knowledge comes

a better understanding of the underlying mechanisms of system operation,

rather than just the numerical tables provided by simulation alone.

The analytic models derived in this chapter require certain

assumptions about and simplifications of the system. As such, their

accuracy is questionable. In order to check accuracy, a simulator was

written, in SIMULA, to obtain precise values of system performance for a

ALi

19

range of values of the system parameters [BIRT73, CDC75].

Chapter 2 first describes the details of the simulation of the

system and then proceeds to develop the analytic models. In particular,

a model based on deterministic scheduling is derived and augmented with

models of the paging drum subsystem. Finally, models for processor

queue delay are discussed.

2.1 System Simulation

In order to check the accuracy of analytic models of the system and

provide insight into the operation of multiple processor systems, a

simulator was written to provide a large performance data base. A

summary of the data from each simulation run is provided in the

appendix. Written in SIKULA, the simulator accurately describes the

flow of jobs through the system. Jobs are represented by a fault

distribution. The simulator draws fault times from a given interfault

time probability distribution by using a random number generator. The

actual operation of the drum is described. Each sector queue is dealt

with as it rotates by the drum heads. Faulted jobs leaving the

processors are assumed to be uniformly distributed among the drum sector

queues. Thus the simulator uses another random number generator to

assign faulted jobs to sector queues. Inputs to the simulator include

the system parameters S, P, J, and C; fault distribution parameters X

and K; and seeds for the various random number generators. The

t°

20

simulator collects and prints statistics related to the operation of the

system. Measures collected for the processors include processor busy

time, idle time, and overhead time. Busy time refers only to the time a

processor is busy doing useful work. For each queue in the system, the

mean length and the mean time a job spends in the queue are determined.

For the drum, the utilization and total number of faults serviced are

recorded. The flow of jobs from the processors to the drum subsystem is

characterized by its mean and its squared coefficient of variation. In

addition, statistics such as the observed fault rate are taken to check

on the distributions derived from the random number generators.

Numerous configurations of the system were simulated. The number

of processors, P, the number of jobs, J, the number of sectors, S, and

the overhead time per fault were widely varied. The faulting behavior

of the jobs was defined either by an exponential distribution or a

two-stage hyperexponential distribution, so as to cover a wide range of

behavior. The mean fault rate for the fault distributions was also

greatly varied. In all, 195 different simulation runs were completed.

An attempt was made to cover the range of system behavior from lightly

loaded to saturated as each of the parameters was varied. Also, most

simulation runs executed for several thousand faults. The primary

exceptions to this runtime were some two-stage hyperexponential

distributions. The two distributions differed by several orders of

magnitude and the slower of the two only generated around 500 faults,

but the total number of faults generated was over 20,000.

I
I

21

2.2 System Model

2.2.1 Deterministic Schedule Nodel

As a job flows through the system, it visits four sites in the

system: one of the P processors for useful runtime and for fault

overhead (the time spent by the operating system to service a fault),

one of the S sector queues, the drum for actual transport of the page

needed, and the processor queue to wait for a free processor. The time

that a job takes to travel once around the system may be called its trip

time. In general then, the average trip time, t, is given by

t + C +1+ + Q (2-1)

where Qd and Qp are the mean wait times at the drum and processor

queues, respectively. If the restriction is made that the time spent at

each of these sites is constant and equal to the mean time spent at that

site in the idealized probabilistic system, a deterministic schedule may

be applied to determine the system throughput.

In such a deterministic system, there are two regions of operation,

- processor saturated and processor unsaturated. When the processors are

saturated, or continuously occupied, each processor provides a job I/X

* useful runtime followed by C overhead time before starting the next job.

T Thus, the throughput is equal to the percentage of time each processor

I

I
,'; . I I~* III[1ll rlid .. . - "

22

spends doing useful work, (1/X)/((l/X) + C), times the number of

processors, P. Since the maximum throughput of the system occurs when

the processors are saturated, then

T P (2-2)
+ C)

If the processors are unsaturated, then no job returning to the

processor subsystem need wait for a processor to become free. In this

case, Qp, the processor queue wait, will be zero. The trip time, t, is

now given by

-1 t = I k + C + I + Q (2-3

t= + ~ + d (-3)

In one trip time, a single job receives one interfault time of useful

service, I/X. For J jobs in the system with no interference, J/X

useful work is done in each trip time, t, so the throughput of the

system is upper bounded by J/(Xt).

Since each case gives an upper bound, the actual throughput, T, is

then upper bounded by the minimum of the two cases:

P

T1 (2-4)
max(J(T + C), P + C + 1 + Qd)1

To show that the throughput for deterministic scheduling with constant

i.i

23

service and queueing times is exactly equal to equation 2-4, it is only

necessary to show the existence of one schedule which will achieve that

throughput.

A schedule which achieves this maximum throughput is illustrated in

Figure 2-1. First, run all jobs, 1 to J, in succession on P1, the first

processor. As each job completes its (I/X) + C runtime, place it at

the drum for a time of Qd + 1. Then place each job in the processor

queue for Q Note that for a deterministic system, Qp is zero if the

processors are unsaturated. As jobs return to the processor subsystem,

run them in succession on processor P2, followed by the same wait at the

drum and at the processor queue. Continue this procedure on successive

processors through Pp. Then restart the schedule on Pi.
@P

Now, consider the time, Pt, between successive restarts of job I on

processor Pi. This time is P((i/%) + C + 1 d) in the case of

unsaturated processors (Figure 2-1a) and is J((I/X) + C) in the

processor saturated case (Figure 2-1b). The total amount of useful

runtime during the cycle is PJ/% in either case. This analysis results

* in the throughput specified in equation 2-4, so the throughput of the

system is given by

Pa

T w 1 X (2-5)
Max[J(.j+C), P('X + C + 1 +Qd)]

The condition for saturation of the processors is given by

I.

24

1:23 : -J.idle 1,2 3 Jidle 11 2 43 (

1 2 3 J 12 3 12 3
p2 :i; : * e • idle ' " : • - idle "

JP i s idle * a.

1 31 2 3

p -1 : "4 • idle 1 23; J :
9- t ,

p

+ C
X y

I+ Qd P

(a)

Processors Unsaturated

1 :21 3 1 2 3

P2 3 , 0 0 0 1 i 3
P2E

1 2 3 1 1 2 3

0 0•

0 0

1 2 3 J 1
pp I I I0 .o. I 06•0

P a

S I, Sp

1 + Qd + Q Pt

(b)

Processors Saturated

Figure 2-1. Maximum Throughput Schedule.

11. -______ll "

V

25

I P(++C + 1 + Qd) -6

han th (2-6)

The numerator of the right hand side represents-the total available

processor execution time over one trip time. J multiplied by the

denominator of the right hand side is the total processor execution time

needed by the J jobs in one trip time. Thus, if the total time needed

by the J jobs exceeds the total time available from the P processors,

the processors will be saturated.

2.2.2 Application of Deterministic Model

The deterministic model described above is exact for a system in

which all events occur at constant time intervals. But in the system

under study, the operation of the system components is determined

probabilistically. In particular, the service time of a job at a

procensor varies probabilistically. This variation in turn affects the

flow of jobs around the system and thus also affects the time that jobs

spend waiting in the queues. In particular, it is possible to have

non-zero processor queue wait, Q even though the processors are

unsaturated. This phenomenon occurs when the processors are saturated

part of the time but not always. When Qp is included in a job's trip

time, the model throughput becomes

iPJ

T (2-7)
,ax(J(+ C), P(- + C + 1+ + Q)]1-

A'_ _ _ _ _ __ _ _ _ _ _

26

7This version of the model will be referred to as the deterministic model

from here on. The deterministic model is exact for the probabilistic

system if the X , C, Qd, and Q values used are exact averages.

Accurate estimates of Qd and % need to be expressed as functions of the

basic parameters, while X and C are assumed as basic parameters. In

fact, if Q and Qd are accurate, the unsaturated case will always

accurately predict throughput, because % will increase as the system

moves into saturation and cause both terms in the denominator of

equation 2-7 to be equal. The limit imposed by the saturated case is

only necessary to avoid overestimation of throughput by an inaccurate

model for Qp in the unsaturated case.

To evaluate the accuracy of the deterministic model, values were

selected for the parameters of the model and the throughput predicted by

the model was compared to the throughput determined by the simulations

of the system. For the service times, the mean time spent at the server

is used. Thus, the service time at a processor is taken to be the sum

of the mean interfault time and the operating system overhead time,

(1/%) + C. For the drum, the service time is simply 1 job/sector-time.

The values for Qp and Qd are taken from the data collected by the

simulations. In this way, the closeness of the model's prediction of

throughput to the simulation results may be ascertained, under the

assumption that both Q and Qd can be accurately modeled later. All

errors will be expressed as relative errors, i.e., the difference

between the model value and the simulation value, divided by the

I

27

simulation value.

When a comparison is made between the throughput obtained from the

model using Qd and Qp from the simulation and the throughput provided by

the simulator, a very good fit is obtained. In particular, the maximum

percentage error in throughput over the 195 points of data from

simulation runs is 6.5%, and the average error is only 0.98%. Ninety

percent of the cases have an error less than 3.0% (This error will be

referred to as the 90% point error.). This error results primarily from

the accuracy of some of the simulation runs. In particular, when large

interfault times are simulated the cost of each run increases

drastically, and the total number of faults simulated is not as large as

for other cases. For large interfault time cases, the measured

interfault time from the simulation sometimes differs noticeably from

the input value. To check this effect the actual interfault time which

occurred for each simulation run can be used in the model. Because of

the end effect of the simulation, an exact value for interfault cannot

be obtained, but minimum and maximum values can. When each of these is

used in the model, the throughput reported by the simulator falls

between the minimum and maximum throughput predicted in 169 of the 195

cases. For an additional 19 cases the error is only plus or minus 0.01,V
which is the least significant digit reported by the simulation. The

predicted throughput is off by more than 0.01 in only 7 cases, and the

highest error is 0.09 out of 6.99, or a relative error of 1.3%. This

t suggests that the form of the deterministic model is quite accurate at

1~.

28

predicting system throughput. If we accept such an error level, it now

remains to find suitable formulas to predict both Qp and Qd"

-- 2.3 Drum Queue Wait Models

For the paging drum with a queue per sector, two models were

discussed in section 1.5. Coffman obtained an accurate model for the

time spent waiting in the queue when the arrivals to the drum are a

Poisson process. Adams, Gelenbe, and Vicard derived an approximate

model extended for non-Poisson drum arrivals characterized by their mean

and squared coefficient of variation. These models were both examined

as candidates for Qd in the deterministic system model.

Repeating equation 1-1, Coffman's model for drum queue wait, Qd' is

qd 2 + 2(1 - X (2-8)

Although the arrivals to the drum may not be Poisson distributed,

Coffman's model may be a good estimate of Qd" The only unknown in

equation 2-8 is Xd, the mean arrival rate to the drum. If the

throughput, T, of the system were known, however, the mean flow of jobs

from the processor subsystem to the drum could be calculated. Given

that T processors on the average are busy doing useful work and that the

mean flow rate from a usefully busy processor is X, then the mean flow

[rate from the processor subsystem is

L.

b _ _ ._ _ _ _.

29

Xd T X (2-9)

Using this value for Xd gives

STX (2-10)

d 2(1 - TX)

The drum model developed by Adams, Gelenbe, and Vicard, denoted by

AGV, is a source of potential improvement because it considers the first

two moments of the drum arrival process. As mentioned in Chapter 1, the

AGV model does not include the rotational latency term, S/2. Without

this term, the model predicts drum queue wait well only when the wait is

significantly larger than S/2. Since the form of the AGV model closely

follows that of Coffman's model, an S/2 term can be added to improve the

prediction of Qd under lightly loaded conditions. Note that when

Kd - 1, such as for Poisson arrivals, this augmented model reduces to

Coffman's model. A general form for the drum queue wait of both models

is

S (S +K d - I)Tk(211

d 2(1 -T) (2-11)

with Kd set equal to 1 for Coffman's model. Qd from equation 2-11

(using the value of throughput from the simulations) can be compared to

the value of Qd from the simulations. When Kd is set equal to 1

(Coffman's model) the average error over all of the simulation runs is

-- . , .- -... -- ... i M W

30

13.7%. Using Kd derived from the simulations (AGV model), this average

error is reduced to 10.5%. The 90% point error is 33.2% for the Coffman

model and 24.0% for the AGV model. When Qd is small, the error is less

than this average figure. The worst predictions occur for large values

of Qd' and the maximum error is 360% for Coffman's model and 322% for

the AGV model. Note, however, that large values of Qd occur when the

denominator of equation 2-1 1 is small and there is great sensitivity to

changes in T. The estimation of Qd will be improved using the

deterministic model for T, later in this section. Preliminary error

figures are summarized in Table 2-1.

ITo examine the effects of these drum queue models upon the

deterministic model, equation 2-1 1 may be substituted into the

deterministic model (equation 2-7) for Qd' yielding T as a function of

T. This new formula results in a quadratic in T for the unsaturated

case:

Kd- 1 2 1 S +Q +J)T+1 0 (2-12)X(+C + I + .-)T +C+2 p

*The roots of this formula are

* SS KdlI

A+-!+ J + (A+§2+ J) 2 4J(A--T)(3T . 2 , (2-1 3)
Kd-

2X(A- -)

where A - 1/X + C + 1 + Q. But only one of these roots is

interesting. By examining the formula for Qd' equation 2-10, it is

dt!

INE W

31

-Table 2-1.

I Preliminary Drum Queue Model Accuracy

(see equation 2-1 f)

Model Source QdError (in %)

of

IT Maximum Average 90% Point

Coffman simulation 360 13.7 33.2

AGV simulation 322 10.5 24.0

lI

32

obvious that a value of T which is greater than 1/X causes Qd to be

negative. In other words, it creates a situation in which

X d - TX > I, or the arrival rate to the drum exceeds the service rate

of the drum. Careful examination of equation 2-13 reveals that the plus

sign root always yields a value of T greater than 1 /'k , which can be

shown in the following manner. Suppose the plus-sign root of T is not

greater than 1/X and show a contradiction, i.e.,

A+ +J+1 (A+ -+J)2-4J(A-----) £ (2-14)

2%(A- --

where Ainl/k +C+ 1 + Q For the time being, assume that
p

A- (Kd - 1)/2 is positive, so the sense of inequality 2-14 remains

unchanged when multiplying by this factor. If the square root is

isolated on one side of the inequality, then

's 2Kd~l Sdl -
+ A++J)-4J(A--) ' (A---) 2 (2-15)

To reach this step, both sides have been multiplied by A - (Kd 1 I)/2.

Now, squaring both sides and collecting terms yields

K -1
2 (S+Kd - 1) (A - ---) ' 0 (2-16)

Since we assumed that the last factor was positive and since S is always

a positive integer, equation 2-16 is contradicted. If A- (Kd - 1)/2

Jd

33

were assumed to be negative, equations 2-15 and 2-16 would still result,

but with the sense of the inequality reversed and inequality 2-16 would

again yield a contradiction. Thus the positive sign root in equation

2-13 is never of interest. A similar procedure also shows that the

minus-sign root always yields a value of T less than 1/X. Therefore,

the negative sign in equation 2-13 provides the root of interest.

Evidence regarding the accuracy of equation 2-13 under various

assumptions is summarized in Table 2-2. Equation 2-13, with Kd ' 1,

provides an estimate for system throughput using Coffman's model for Qd"

This estimate is compared with the simulation results to check its

accuracy. Since Qp remains as an unknown, the value for Qp is taken

from the simulation results. For the 195 simulation runs, the 90% point

error is 4.0% and the maximum error is 19%, compared to 6.5% when Qd was

also taken from the simulation. Yet, the average error for the runs is

only 1.7%, less than twice the 0.98% error with Qd directly from the

simulation. Note that this average error is the average of the

individual error magnitudes so positive and negative errors do not

offset each other. Even though Coffman's drum model assumes Poisson

arrivals, which is not the case in most of the data, a reasonably close

estimate of system throughput is obtained.

This particular model for T may also be compared under the

assumption that processor queue wait, Qp, is negligible. In this way,

*the model is only a function of the input parameters and no data is

I,

I ~- -*- ----- - -- -'-~ --- ~- i

34

Table 2-2.

Throughput Model Accuracy

(see equation 2-13)

Source Source T Error (-.n %)
of of
Qd Qp Maximum Average 90% Point

simulation simulation 6.5 0.98 3.0

Coffman simulation 19.0 1.7 4.0

Coffman 0 50.1 3.0 6.6

AGV simulation 9.3 1.4 3.2

AGV 0 50.1 2.7 5.8

35

needed from the simulations. When Qp is set to zero, the average error

is 3.0%, the 90% point error is 6.6%, and the maximum disagreement

between this model and the simulation is 50.1%. This maximum error case

is one of only 14 which yield errors greater than 10%. In each of these

cases, there is a significant amount of processor queue wait even with

the processors occupied less than 90% of the time on the average. In

order to have significant processor queue wait without having saturated

processors, there must exist significant periods when the processors are

all occupied and periods when some are idle. This phenomenon occurs

only when the flow of jobs to the processor subsystem is very

bursty(uneven). Of these 14 cases with high error, only one occurred

when the simulation fault distribution was exponential. The remainder

occurred with the much more bursty hyperexponential distribution. Also,

only 3 high error cases occurred when the system had more than one

processor, because the effective fault process is less bursty with

multiple processors. If only the simulation cases with more than one

processor are examined, the maximum error is 22.3%, the 90% error is

3.2%, and the average error is 1.6%. When the same model is used but Q
p

is taken from the simulation, the cases with more than one processor

average a 1.1% error with a maximum error of 8.3% and a 90% point error

of 2.7%. Thus this model is quite accurate for most cases with more

than one processor, even though processor queue wait is assumed to be

negligible. As the number of processors increases, the flow of' jobs

through the system tends to exhibit a more even character, which more

36

accurately fits the model assumption of deterministic flow.

I To examine the accuracy of the AGV model, Kd can be derived from

the simulation data. When this evaluation is done, and also assuming

I that Qp is zero,. the average error for all the simulation runs is 2.7%,

the 90% point error is 5.8%, and the maximum error is 50.1%. The

1 maximum error is the same for Coffman's drum model, while the average

for Coffman's model is 3.0%. Thus, there is a very slight improvement

in overall accuracy. The maximum error remains unchanged because it is

due to the error in processor queue wait. Very few of the cases are

1 inaccurate because of poor drum queue wait estimation. In fact, Qd is

often only a very small part of the trip time, so even a large relative

1 error for Qd does not cause significant error in T. Those cases in

which the AGV model cause improvement occur primarily for

hyperexponential fault distributions, but even then, the improvement is

slight. A few cases exhibit slightly greater error with AGV than with

Coffman's model, but this effect is probably within the tolerance of the

simulation error.

If the AGV model is used along with an accurate figure for

processor queue wait taken from the simulations, the average error is

reduced to 1.4%, the 90% point error is 3.2%, and the maximum error is

9.3%. Using Coffman's model these figures are 1.7%, 4.0%, and 19.0%,

respectively. Again, the average error only improves slightly.

However, the maximum error is halved. It should be noted that only in 5

_ _ _ ~ Wi

37

out of 195 cases does the Coffman model yield an error greater than the

maximum of 9.3% with the AGV model.

The model for Qd in equation 2-11 requires a value for T. Earlier

in this section, the value for T from the simulation was used to look at

the accuracy of this model. After equation 2-11 has been incorporated

into the deterministic model, however, another value for T is available.

If T from the model is not equal to T from the simulation, then the

deterministic model has implicitly used a different value for Qd" Note

that, in the region of interest, Qd increases as T increases. Also,

from equation 2-7, T decreases as Qd increases. The combination of

these two formulas in essence creates a situation of "negative feedback"

which acts to reduce Qd's extreme sensitivity to T described earlier.

In particular, the prediction accuracy of the drum queue models can be

compared to the simulation data when T from the deterministic model is

used to compute Qd* Under these conditions and setting Qp to zero, both

average and maximum errors are reduced. With Coffman's model, the

average error is now only 8.7%, the 90% point error is 28.3%, and the

maximum is 64.4%. The AGV model achieves an average error of 6.4%, a

90% point error of 28.3%, and a maximum of 51.3%. These values are

listed in Table 2-3, along with the earlier data from Table 2-1.

Virtually all of the improvement occurs in cases where Qd is large and

very sensitive to changes in T.

I
!
I

38

Table 2-3.

Drum Queue Model Accuracy

(see equation 2-11)

Model Sore orcd Error (in %)

T Q Maximum Average 90% Point
p

Coffman simulation -360 13.7 33.2

AGV simulation -322 10.5 24.0

4Coffman model* 0 64.4 8.7 28.3

Coffman model* simulation 64.4 8.3 19.0

AGY model* 0 51.3 6.4 28.3

AGV model simulation 51.3 5.8 19.0

see equation 2-1 3.

-0

39

Since Q was set to sero, it is possible that the model for Q

might in fact be overestimating Qd' thus partially covering for setting

Qp to zero. In fact, a comparison between Qd from the simulation and

the drum queue models using T from the model with Qp provided by the

simulation has even lower average error than before. The average error

is nov 8.3% for Coffmanos model and 5.8% for the AGV model. The maximum

and 90% point errors remained unchanged, and these results are also

listed in Table 2-3. Also, in the system under study, it is unlikely

that significant queue wait occurs at both drum and processor queues.

When the system is processor bound, the drum queue wait will be quite

small, and when the system is drum bound the processor wait will be

negligible. Furthermore, when the value for Qp from the simulation is

included in the deterministic model, the model's prediction of

throughput improves, as shown in Table 2-2.

Although the AGV model does provide some improvement in throughput

prediction, it requires an estimate of the squared coefficient of

variation of the drum arrivals. To date, no suitable estimate based on

system parameters and throughput has been found. Therefore, the

deterministic model utilizing Coffman's model for Qd (equation 2-13 with

Kd a1 and using only the minus root) remains the only estimator of

system throughput which is only dependent on the system parameters.

F-

5)

40

2.4 Processor Queue Wait Models

The primary source of error remaining in the analytic model is the

lack of a model for processor queue wait. In this section potential

models for the queue wait at the processors, Qp are presented. In

particular, two models from queueing theory are discussed. For the

entire processor subsystem, a Markov model is derived which does not

require explicit description of queue wait.

2.4.1 Queueing Theory Models

The primary source of error remaining in the analytic model is the

lack of a model for processor queue wait. A simple model which might

yield a useful estimate is the M/M/I queue. This model, however, makes

* three assumptions which are not valid for the system under study:

arrivals to the processor subsystem are assumed to be Poisscn

distributed, the service distributions are assumed to be exponential,

and only one processor is assumed.

The queue waiting time for an M/M/1 queue is given by

Qp P (2-17)

1.
where X is the mean arrival rate to the processor subsystem and iip is

the mean service rate of the processor subsystem. Since jobs are

conserved in the system, the average flow of jobs leaving the processorI

41

Subsystem is equal to the average flow of jobs arriving. Therefor'e,

P X d = T), (2-18)

Now, Ap must be related to the service rate of the processors. The

simplest approach is to equate it to the aggregate service rate of the

processor subsystem:

P (2-19)p + C

Equation 2-19 has effectively replaced P processors with a single

processor P times faster. Under these assumptions, substitution of

equation 2-17 into the deterministic model, along with Coffman's model

for Qd (i.e., equation 2-12 with K = 1 and Qp replaced), yields a

third-order equation in throughput. Comparing the predictions of this

model with the simulation data, a very poor fit is obtained. In

particular, significantly better results occur when Qp is set to zero,

as described in section 2.2.3. The use of an M/M/1 model for processor

queue wait overestimates the actual wait in almost every case. This

overestimate is reasonable because in fact a single processor system of

equivalent processing capability will have larger Qp than a

multiprocessor system. The multiprocessor system has zero processor

queue wait until more than P jobs are in the processor subsystem, while

the uniprocessor system has some queue wait with 2 or more jobs in the

-I

42

subsystem. The best fits with the M/M/i model occur for systems of one

processor, as might be expected.

A reasonable extension of this approach is the use of an M/M/m

model for processor queue wait, thus explicitly dealing with multiple

servers. However, the expression for queue wait in such a system does

not have a simple form [COFF73] and cannot be easily incorporated into

the deterministic model.

2.4.2 Markov Model

In a system utilizing a paging drum, the drum model need only

update its queues at intervals of one sector-time, which is also the

basic unit of time in the modelt Within each of these intervals it is

only necessary to know the number of jobs which have arrived, ignoring

their specific arrival times. Also, the drum can only return jobs to

the processor subsystem at the end of each sector interval. So it is

reasonable to consider modeling the flow of jobs departing the processor

subsystem (and, thus, arriving at the drum) in a quantized fashion,

based on the number of departing jobs per sector-time. In particular,

such a model might be embedded in a simulation of the complete system to

reduce the complexity of the simulator.

In the general case, the description of the processor subsystem at

the start of a sector interval needs to include the number of jobs in

the processor queue waiting fQr a processor, the number of processors,
1'

L
4

43

the number of jobs currently running on processors, a descriptor of the

faulting process, and the time remaining before each running job faults.

A model which keeps track of each running job's time remaining to fault

(which may extend over many sector-times) essentially stores all the

information needed to fully simulate the system. A standard Markov

model would be large and intractable due to its large state space.

If the distribution of faults is restricted to the exponential

distribution (a common assumption) it becomes possible to consider each

sector interval independently. The "memoryless" property of Poisson

processes states that at any arbitrary point in time the time remaining

before a job's next fault is independent of the past history of the job.

Therefore, any job which is running on a processor at the end of the

current sector interval may, in effect, be restarted at the start of the

next interval. Now the model of the processor subsystem must deal only

with the total number of jobs in the subsystem, the number of

processors, and the fault descriptor which is now an exponential

distribution with mean rate X

If the number of jobs in the subsystem were not limited, all

processors would be continuously active and the number of jobs faulting

would be described by a Poisson distribution. Ai, the probability that

i jobs fault in one sector-time would be given by:

Ai g. e -% (2-20)

AI i

44

To find the actual probability distribution of the number of jobs

faulting in one sector-time, it is necessary to consider the restriction

imposed by the finite number of jobs in the subsystem, J . Let pi be

the probability that i jobs finish in one sector-time given Jp jobs in

the processor subsystem at the start of the sector interval. This case

may be related to the infinite job case by considering a subsystem in

which there are an infinite number of jobs, but the first J jobs are
p

real" and all remaining jobs are "imaginary". The pi s may then be

computed using the Poisson distribution in combination with a discrete

time Markov chain. During a sector interval, real jobs are allocated to

processors until every real job has at least been started on some

processor. After this point, imaginary jobs are allocated to

processors. For the cases in which no imaginary jobs have been started

on any processors, only real jobs can fault, so pi = Ai when i is less

than or equal to J - P, since in this case only real jobs have been

started. When i is greater than Jp - P, at least one imaginary job has

been started and the value of Ai may include imaginary jobs. In order

to compute the effects of imaginary jobs, a state diagram is

useful(Figure 2-2). The states are labeled with the number of real jobs

which have faulted. The number of state transitions required to reach a

state along any possible path determines the total number of jobs, real

and imaginary, which have faulted. The arc labels denote the

probabilities of reaching the next state at the next fault. In other

words, at state i the self loop describes the probability that the next

__

..
I I M

45

1 J-P+1
Pp.

P-i

P

2 J-P+2
Pp

P-2

P

3 J-P+3
p

0

P2
P

P g2

iP

- p

1

P

Figure 2-2. Markov Chain For Processor Subsystem.

I
I

"- 2Z i ai rlll Z , , . . . "'"'

46

fault is caused by an imaginary job. The transition arc to a new state

is taken when a real job faults.

In the case of i - J - P + 1, one or more imaginary jobs may haveP

faulted. By examining the state diagram, there are an infinite number

of paths leading to the state J - P + 1. This effect occurs because
P

once imaginary jobs have started any order of f hulting of imaginary and

real jobs is possible. The probability of i real jobs faulting is the

sum of the probabilities of all paths leading to state i each multiplied

by the Poisson probability of k jobs faulting, where k is the number of

state transitions in that path. For i J - P + 1,
p

pi "A, +(I A()AJ - + (2-21)

p p P.

In general, for Jp - p < i <a Jp,

i-(J -P)- i-(JP-P)

P-.- A i , ,+

i-(J -P) i-(J -P)
2 p -2

+ (I) Z (l (j2 AL+ 2)) +
" J

(2-22)

In this manner, values for each of the pi's may be obtained, thus

defining the job fault distribution for one sector-time.

(.

47

For i greater than J p- P, the value of Pi involves an infinite

sum, and no closed form has been found. To find numerical values, it is

necessary to terminate these infinite sums. It is possible to terminate

the sums in such a way as to find both upper and lower bounds on the

I
In order to obtain a lower bound, choose some integer n and define

a new set of probabilities, Ali. Let Al Ai for values of i less than

n. Then, Aln is set equal to the sum of the Ai's for i greater than or

equal to n, and the Ali's for all i greater than n are set to 0. The

use of the Ali's will result in a distribution for a set of pli s whose

cumulative distribution is never below the cumulative distribution of

1.the original pi's. The distribution of pli s thus overestimates the

number of jobs faulting. As n is chosen larger, the bound becomes

tighter.

An upper bound may be achieved in a similar manner. Define a set

of Au/s such that Au. = Ai, for i between 0 and n. The Aui s for i

greater than n are set to 0. Using equation 2-22 yields values for a
U u

set of p i's. This assigrnent will effectively reduce the pUi s for

J - P < i < J p In order for the pUi s to sum to one, set
p p

Ti J -I
up

P 1- . (2-23)

Thus, the probability of all Jp jobs faulting is increased and the

__. . -= _ ; _ , -T - ' .' / ; .=. - - : ° i - = -' - - ":'p

1 48

probability of from Jp - p + I through J - 1 jobs faulting is

decreased. This assignment yields a cumulative distribution which is

always less than or equal to the cumulative distribution for the pi s,

so it provides an overestimate, or upper bound, on the number of

faulting jobs.I
Unfortunately, there are several drawbacks to the use of this

model. Since no closed form has been found, it would be necessary to

calculate both the upper and lower bounds in order to verify the

results. In addition, the model is less useful to describe the

processor subsystem in a simulator than simply using random number

sequences to generate the actual fault times of the individual jobs. To

use the subsystem model in a simulator, tables of the pi's would need to

be generated and stored for all possible values of J from I to J.

Alternately, a single distribution of the pi's could be calculated at

each sector-time, but this would be very inefficient. Also, this

subsystem model is valid only for exponentially distributed faults,

while the use of a random number generator allows any distribution which

can be derived from a uniform distribution to be used. For these

reasons, the processor subsystem Markov model was not utilized in the

I simulator of the system. However, this model does provide a different

perspective of the operation of the processor subsystem in the presence

of exponential faults.

I

I

i 49

12.5 Final System Model
J The deterministic model developed in section 2.2 is the basis of

the final model. In particular, that deterministic model with Coffman's

model for the drum subsystem is used in Chapter 3 to examine the

performance of multiprocessor systems. The throughput of a system is

given by

1C- c+ +.J /(+C +1 + 1 J)' -4J (1 +C+ 1)
T X 2 min j (2-24)

2X(+C + 1) +C

The first case is derived from equation 2-13 with Kd I (Coffman's

model), Q = 0 (no satisfactory processor queue delay model), and the

negative sign selected. The second case directly corresponds to the

processor saturated case of equation 2-7.

4,M

.50
I
I
1 3. ANALYSIS OF RESULTS

IGiven the model developed in Chapter 2, one can easily examine the
performance of multiple processor systems as a function of the system

configuration and workload. In this chapter, the analytic model of

throughput presented in equation 2-24 is used to look at several aspects

of system performance. Where applicable, data from the simulations is

provided for comparison.

First, the performance of the system as a function of each of the

system parameters (P, S, J, C, and X), individually, is discussed.

Next, three interesting trade-offs are examined. The relationship

between the number of jobs, J, and the fault rate, X , is a factor in

systems in which the jobs in the system must share a fixed amount of

primary memory. Other trade-offs discussed involve the number of

processors in the system. For instance, a system with many processors

is compared to more conventional single processor systems. Finally,

using P processors to achieve a P-fold performance improvement over a

I

I

. II I II T-.. . . . ---- I.

51

S3.1 System Parameter Sensitivity

I In this section, the graphical data presented describes a

particular range of systems. The "base system" for this data is a

system with 16 processors, a 32 sector drum, 32 jobs, an interfault time

1 of 32 sectors (one drum revolution), and negligible processing overhead

per fault. As each parameter is examined, the remainder of the

parameters wili. usually remain fixed at their initial value, but some of

the other parameters may take on multiple values to better illustrate

system behavior. For instance, interfault time often takes on several

values in order to show the range of system behavior from drum bound to

processor bound.

First, the dependence on the number of jobs in the system is

examined. Figure 3-1 shows some typical values of throughput for a wide

range of J for esveral values of 1/% , the interfault time. It is

generally desirable to operate a system with just enough jobs to keep

the system at or near saturation. This crossover point is defined by

equation 2-6. The system for the data in Figure 3-1 has 16 processors,

32 drum sectors, and negligible processing overhead per fault (C - 0).

r The interfault time, 1A , ranges from 8 sector-times (one-fourth of a
fdrum revolution) to 128 (4 revolutions). For high interfault times,

I such as 1/X - 128, the system is very nearly saturated with as few as

one job/processor (J - 16). This phenomenon occurs for interfault times

Iequal to 4 drum revolutions or greater. With moderate interfault times,

I
I

52

u II

In

0
II,

41

4 0
0

C4'-z

en 0

Ntd

00 "4
GoJ

n 0
-qTlL

53

such as 1/X 32, the system exhibits a nearly linear increase in

j throughput until around J - 32, or two jobs/processor. As interfault

times continue to decrease the performance of the system begins to be

limited by the drum. For instance, with 1/% - 16, it would take an

infinite number of jobs to saturate the processors. This occurs because

the service rate of the drum is 1 job/sector-time and the 16 processors

request drum service at a mean rate of 1 job/sector-time only when fully

utilized for this interfault time. For interfault times less than 16

the system is drum limited such that full processor utilization is not

i possible. Here, the system throughput is bounded by the service rate of

the drum (also the arrival rate to the processor subsystem). The rates

J of job flow from the processor subsystem to the drum and from the drum

to the processor subsystem must be equal. In general, throughput in the

drum-limited case approaches an asymptotic value which is derived by

setting the maximum flow rate of jobs leaving the processor subsystem

equal to the drum service rate, or

P
(3-1)

For example, with an interfault time of 8, a drum service rate of 1, and

C - 0, the processor subsystem can deliver up to 1 job/sector-time with

8 processors. So drum throughput limits the throughput of this system

to T 8.

1.

54

Also in Figure 3-1, the behavior of the system for fewer than 1

I job/processor is shown. In this region the model is highly accurate,

since the assumption of no waiting time in the processor queue is always

true. Several discrete data points from the simulations are presented,

and they agree with the model's prediction of performance quite closely

I (The "+" points correspond to exponential fault distributions and the

"*" points to two-stage hyperexponential distributions with K - 16.).

Even such a large change in K from I to 16 has little effect on system

performance, suggesting that information about the second moment of the

fault distribution may not be necessary.1
The variation of T with changing interfault time, 1/k , is depicted

I in Figure 3-2. Again, this graph depicts P - 16, S - 32, and C = 0.

I/% ranges from I sector-time to 128 (4 drum revolutions). Separate

curves are drawn for 1, 2, and 3 jobs/processor (16, 32, and 48 jobs,

respectively). With one job/processor, the throughput follows the

interfault time in a smooth curve. Since there are no "extra" jobs in

the system, there is no processor queue wait and any time a job spends

at the drum causes one of the processors to be idle. Thus, as the ratio

of processor service time, I/X , increases with respect to drum service

time, each job spends an increasing percentage of its time executing on

a processor. This behavior continues in cases with more jobs in the

system, except that now the "extra" jobs allow the processors to be

occupied even when some of the jobs are being serviced by the drum.

From Figure 3-2, as few as two jobs/processor allows the processors to

55

t 4.

0J

wI

II

w n,
in-

m~~~ 0 Oz

F7F
56

be fully utilized when the interfault time is about 36, or slightly over

one drum revolution. Additional jobs, such as three/processor, provide

notably enhanced performance only in the range of interfault times of

T one-half to one revolution. The value of J which causes the processors

to saturate is given in equation 2-6.

In Figure 3-3, the relationship between throughput and the number

of processors, P, is shown. The solid lines correspond to systems with

16 jobs and dotted lines denote 32 job systems. In each case, two

different interfault times are plotted. The diagonal line in the graph

represents the processor saturated case, where T - P. Upon examination

of equation 2-24, P only explicitly appears in the term for the

T processor-saturated case. In the processor-unsaturated term, the number

of processors does not appear because Qp, the processor queue wait time,

is not specified in the model. For fixed J and 1/X , as P increases the

throughput increases until the system is no longer processor bound. At

this point, the system becomes bound by the number of jobs in the

system, so the throughput is incapable of utilizing any additional

processors and the curve is a straight horizontal line. If either J or

- 1/X is increased, the processor# saturated region is extended to a

V larger number of processors. To achieve high processor utilization, it

is undesirable to operate too far to the right of the processor bound

"diagonal line" in Figure 3-3. This intersection point between

saturation and unsaturation may be obtained by resolving equation 2-6

I for P. The processors are saturated whenI

'- - -

57

*1 I

'.4J

* II

IU
4w

Ln 0

58

P ' 1 +C) (3-2)
+1 +Qd

The variation of throughput with a changing number of drum sectors,

3, is depicted in Figure 3-4. For this graph, both 1/X and C are

expressed in sector-times so as S changes they remain unchanged.

However, the revolution time of the drum changes linearly with S so

processor execution will not remain constant with respect to the

revolution time of the drum. As might be expected, the throughput tends

to decrease with increasing S, because of the additional rotational

delay for each service. The potential decrease in drum queue- delay

brought about by spreading the arriving jobs among more queues is

negated by the fact that drum rotation time also increases linearly with

S. As S tends to infinity, the throughput approaches zero, since the

drum becomes the bottleneck of the system and Qd goes asymptotically to

3/2. The top curve in Figure 3-4 remains at T = 16 only because the

particular values of J and 1/X require S > 128 before throughput begins

to degrade. The crossing of the two curves occurs because in one case

(1b. 32) the throughput is more dependent on drum performance whereas

the case with a much larger interfault time (128) is mostly limited by

its number of jobs.

When both l/ and C are expressed as constant multiples of a drum

revolution time, S, the performance of the system with changing S is

shown in Figure 3-5. Here, a change in S represents a change in density

rerset

I,

Go 59
II4

(n ' 00
I, 'C0

' /

/ Ci

/ k

/ I
k b

S. 60

IT V3

IOU D %0 C4

'.9 0

a 4

r.

0
CD U

w >

. c

IN,

0in.

61

on the drum without affecting the rotational speed. As S increases, the

queueing delay caused by waiting for jobs which arrived previously

decreases because the jobs are spread over a larger number of sector

queues. Now, however, the average of one-half rotation of the drum

remains constant. This effect accounts for the general flattening of

the curves for large S. In addition, the service time at the drum

decreases with increasing S since S sectors can be read each revolution.

This benefit is most pronounced when the system is more drum-bound, as

in the curves for 1/X = S/4. When S is very small, both the service

time at the drum and the queueing delay caused by other jobs increases.

A The queueing delay increase is also most noticeable with a large number

I of jobs.

The effects of non-zero processing overhead per fault, C, are

illustrated in Figure 3-6. Increases in C can only reduce system

performance. "rhen the interfault time is low (I/X = 8) the system is

bound by the drum and changes in processor execution times have very

-little effect on throughput, even when the processors are spending much

greater time in overhead than in doing useful work (C >> In/c For

larger 1/ , though, perfomance can suffer considerably as J increases.

IFor I/X - 32 and J - 32, throughput is cut by almost half when C is

equal to I/X . When the interfault time is increased to 128 the

throughput appears to suffer less as C increases, and this phenomenon is

simply due to the fact that for the data shown C is only one-fourth of

I/ , at the most. Since the system is more processor limited as

I
,-]________________

62

-4 n V-4 en

II

I /n

I I 0 I

I in

/ I

63

interfault time increases, the percentage degradation in performance for

a given ratio of C to I/ X increases with increasing I/ X.

Subsequent sections of this chapter deal with trade-offs in system

performance.

3.2 J vs. X Trade-offs

In this section, the relationship between the number of jobs in the

system, J, and the fault rate of each job, X , is examined. This

relationship is especially useful when discussing the effects of memory

size and memory allocation per job. As mentioned in Chapter 1, the

dependence of fault rate upon memory size and allocation is specified by

an as yet undetermined fault model. Since this research only deals with
I

the system model, the details and effects of memory allocation and size

are not known. Even with this restriction, it is possible to describe

some meaningful dependencies related to memory. In particular, the

trade-off between interfault time, I/X , and jobs, J, can be shown for

constant values of throughput, T. Thus, in order to maintain constant T

when either J or X is changed, the necessary change in the other

parameter can be ascertained. For a given system, the values of P, S,

C, and M (memory size) may be already chosen. Increasing the number of

jobs in the system will decrease the memory allocation assigned to each

job.

1i
__ __ _

97

64

1 In the processor-unsaturated region, equation 2-12 with -p 0 and

Kd 1 may be rearranged for X , yielding

(C)2X 2 c(Ton--orderTheroo -T 0 (3-3)

This second-order equation in X has two roots, but as before, one root

- implies that Qd is negative. The remaining root is

S(C + I)T

Now, equation 3-4 may be graphed for several values of T while varying

J. Figure 3-7 shows this relationship in a system with P = 16 and

S - 32. Two values of C are used: 0 (solid lines) and 32 (dashed

lines). For the case of non-zero overhead per fault, C 3 32, it is

possible for the processors to become saturated. The point at which

this relationship occurs was defined in equation 2-6. For values of J

greater than this saturation point, it is impossible to achieve the

specified value of T with a smaller value of interfault time. Thus, the

dashed curves in Figure 3-7 become horizontal lines to the right of the

point of saturation.

For both C - 0 and C = 32, there are two general regions in Figure

3-7. When the number of jobs in the system is small, the addition of

even a single job greatly reduces the interfault time which achieves the

same value of T. In this region, then, system throughput will generally

1.
...4

N %O N65

N 0 11 N

0 In

MN.

In

I
>

/ I
I-'

a n

LnU

66

increase when jobs are added to the system, unless interfault time

decreases even faster than shown in the graph. When the number of jobs

is large, interfault time must only decrease slightly as jobs are added,

if the value of system throughput is to be maintained. Between these

two regions, the system undergoes a transition from one region to ther
other, in which system throughput is sensitive to changes in either

parameter.

Although the relationship between memory allocation and fault rate

is not known, an example of the performance trade-off with an assumed

relationship might prove informative. For simplicity, assume that the

fault rate of a job is linearly related to its memory allocation. In

other words, if a job's allocation is doubled, its fault rate wrill

halve. low interfault time can be expressed as a function of the number

of jobs in the system, assuming that the jobs share a fixed memory space

equally. If J doubles, the fault rate of each job, 'k , will double.

Using equation 2-24, fault rate k is now set to nJ, where n is a

constant. Figure 3-8 shows the dependence of throughput on J for three

values of n (0.00391, 0.000977, and 0.000244) and for two values of C (0

S". and 32). It is obvious that under the current assumptions, there is

*-often an optimum value for J. When C -0 (solid lines) the processors

are not saturated until T - 16, and for two values of n this value of T
I.
* may be obtained. However, when n is large, corresponding to a higher

fault rate for a given J, the system throughput is bounded by the

operation of the drum and T decreases for increasing J greater than 15.

1.
Ii

67

I I I

I C I

Oi

00

00

in0

elw

x : uII

Y[

68

When C - 32 (dashed lines) and n is large the same drum bounded effect

occurs but at a lower value of T, since some processor time is now spent

doing overhead. For somewhat lower values of n, though, processor

saturation becomes the limiting factor. When the processors become

saturated, adding jobs does cannot make the processor more busy, and

each job's fault rate increases since it has a smaller memory

allocation. It is this increase in fault rate which causes T to

decrease.

The above example uses a simple linear relationship between J and

X. Although the actual relationship is probably much more complex, the

maximum attainable throughput for a system with fixed memory size can beT
ascertained in a similar fashion.

3.3. Processor Trade-offs

In considering the processor section of a multiprocessor system,

questions arise concerning the performance of multiprocessor systems

relative to a conventional single processor system. First, how might

the throughput of a P-processor system compare to the same system with

just one processor which is P times faster than each of the multiple

processors? Second, how does the performance of P independent single

processor systems relate to one combined P-processor system?

9,

69

The first question, which deals with the replacement of a single

fast processor by many slower processors, may be viewed as replacing a

conventional large computer's processor with P tightly coupled mini- or

I micro-processors. The speed of a processor is reflected in the

execution time of a job running on that processor. If a job running on

I a processor executes for a period of I/X + C, then it will execute for

-- a period of P(i/ X + C) on a processor which is a factor of P slower.

Throughput, as defined in Chapter 1, is expressed as the average number

of processors doing useful work. When comparing systems whose

processors have different speeds, this definition of throughput is not

meaningful. A measure of system performance which is independent of

processor speed is the flow rate of jobs leaving the processor

subsystem, expressed in jobs per drum sector-time. For a given system,

this flow rate is obtained by multiplying the throughput, T, by the

fault rate of a job, .

Examination of the model for throughput in equation 2-24 reveals an

interesting point: the number of processors in the system is only

explicitly included in the processor saturated case. Here, the

* replacement of a single fast processor with P slow ones has no effect,

because as the number of processors increases by a factor of P the fault

rate of each processor decreases by a factor of P. Thus the maximum

L achievable flow rate is the same in both systems. When the processors

are not saturated, the model assumes that throughput is limited by the

number of jobs in the system and not by the number of processors.

I

I

70

However, the throughput in this region is directly affected by the speed

of the processors. For instance, if a processor is half as fast as

before, the execution time of a job on this processor must double. The

interfault time becomes 2/ X and the overhead time becomes 2C.

Figure 3-9 depicts the relative flow rate for various numbers of

processors. Relative flow rate is defined as the flow rate of a

P-processor system divided by the flow rate of a uniprocessor system

with equivalent total processor capacity. Note that this relative flow

rate never exceeds one, so the uniprocessor system always outperforms

I the multiprocessor version. When the systems are lightly loaded, at any

point in time the jobs are partitioned between the processor subsystem

and the drum subsystem. At any point in time, the number of jobs in the

processor subsystem dictates the number of busy processors. For the

uniprocessor system, only one job needs to be in the processor subsystem

to keep it totally busy. On the other hand, with P processors at least

P jobs must be in the processor subsystem for full utilization. This

I. effect accounts for the lower performance of the multiple processor

systems. A similar observation is also mentioned in a paper discussing

one and two processor systems by Sauer and Chandy [SAUE79]. The solid

f. lines in Figure 3-9 correspond to a system with only one job and with a

range of interfault times. Here, the multiprocessor systems are at a

I. severe disadvantage because at most one processor can be busy at any

1 time. Note that the actual performance levels for these curves is quite

low. The dashed lines describe the same range of interfault times with

L

U, 71

IAi

I I

occ

oen

II I II

III 'C // /,.. ."/ I

/ /1
00

I in
Id

/ / cu

r4

71 -/ -

I

I.
*1.

72

16 jobs in the system. An interesting phenomenon occurs here.

Generally, as interfault times increase the relative performance of the

multiprocessor systems degrades. This effect occurs because the

J performance of both systems is more dependent on the processor subsystem

as the interfault time increases. However, when the interfault time is

large enough to cause both systems to become processor saturated, the

relative flow rate is one, as depicted by the top line in the graph. As

the number of processors increases to the point where the multiprocessor

system comes out of saturation, its performance relative to the

uniprocessor system shrinks rapidly, crossing the lines for lower

interfault rates. Remember that these curves are only relative

performance levels, and the crossing of different curves does not imply

that the actual levels of performance, are the same. The range of 1!k

used here is lower than that used in previous sections because if 1/ X

is larger or if J/P is larger the one processor systems stays saturated

and the relative performance is just a function of the multiprocessor

system. In general, then, the multiprocessor approach is closest in

performance to the uniprocessor system when the number of jobs is large

and the system is operating at or near processor saturation.

The second trade-off discussed in this section is the comparison of

P independent single processor systems with one P-processor system. In

this case the total available processor capacity is the same, but one

tightly-coupled multiproces, r system is contrasted with many

independent uniprocessor systems. Such conglomerations of systems often

V

73

exist at computer centers which need greater performance than can be

obtained by a single large uniprocessor system. Assume that each

uniprocessor system has a drum with S sectors, J jobs, and each job has

an interfault time of 1/?, and overhead time of C. For the combined

system there will be PJ jobs. However, the choice of the drum subsystem

for the combined system affects the interfault time and the overhead

time as well as the number of sectors, because the unit of time in the

model is one sector-time.

There are three candidates for the drum subsystem of the combined

system. The most obvious choice is P drums identical to each drum in

the uniprocessor systems. Unfortunately, the model from Chapter 2 only

describes systems with a single drum. A close approximation of the P

drums may be made by using a single drum with P times as many sectors

but a rotation time the same as each individual drum. In this way,

every drum rotation time PS sectors can be read and transferred, as with

the P independent systems. An alternative interpretation of this system

is a single drum with a P-fold increase in density which can actually

support PS sectors. With this drum model, it is now possible to choose

values for interfault time and overhead time. The drum revolution time

is now PS sector-times. A job which executed for one revolution in one

of the individual systems should still run for one revolution in the new

system. Thus, the interfault time in the new system should be P times

greater than that for a uniprocessor system, or P/X . Similarly,

overhead time should be scaled to PC. With these values it is possible

74

to compare the throughput of the P uniprocessor systems with the new

-. system, using equation 2-24. When this comparison is done for up to 46

systems and wide ranges of the other parameters, the throughput is

virtually identical. The combined system does achieve as much as a 5%

improvement, simply due to slightly lower drum queue wait.

Unfortunately, the model does not include a term for processor

queue wait, and the primary benefit of the P-processor system is the

ability to share the total job load in a single processor queue. This

effect would be most pronounced when the systems are near saturation and

jthere is significant processor queue wait. When the systems are either

lightly loaded or saturated the combined system should perform

I essentially the same as the aggregate of the independent systems.

I Another choice for the drum subsystem is the use of a single drum

identical to one in a uniprocessor system. Since the combined system

now has fewer resources (i.e., only one drum instead of P), it should

-not perform as well as the P independent systems, particularly when

* throughput is limited by the drum. The relative throughput, computed as

Sthe throughput of the combined system divided by P times the throughput

of a uniprocessor system, is shown in Figure 3-10. The solid lines

correspond to one job per processor and the dashed lines to two, for

various values of fault rates. As the job load (J/P) increases, the

combined system degrades further because the drum subsystem is becoming

the limiting factor.

..... . .. m " i i*
'

- -- - _ .- - -T

C 75

! II I
/ I

II cnO ' C4J
a N U/ /i o .

. I //

ca uII -Aa

/ 11

// 0

/ >

/ !
/

0

'.
- .- l

// oI

CD co

T,

676

T
A third drum subsystem for the combined system is a single drum

jwhich is capable of rotating P times faster than a uniprocessor's drum.

If these two drums have the same number of sectors, then the mAximum

transfer rate of one fast drum and P slow ones is identical. However,

the delay that a single job sees is quite different. Since P times as

many jobs share the same number of sectors, the drum queue delay may

increase. On the other hand, the rotational latency that each job

confronts is now only 1/P times that of the original drum. The relative

throughput of these systems is graphed in Figure 3-1 1 for the same range

of parameters used in the previous graph. Here the combined system is

always superior to the independent systems, and it compares most

favorably under light loads as before. As the system load increases and

the processors approach saturation, the throughput becomes dependent

upon processing power, which is identical.

When comparing independent uniprocessor systems to a single

multiple processor system with equivalent processing power, a choice of

drum configuration must be made. The relative performance of the

combined multiprocessor system depends heavily on this choice. If the

drum of the combined system is either significantly faster or slower

than the total of the drums in the independent systems, the combined

system will perform either better or worse, respectively. It is

d.'ficult to comment when the drums are essentially the same, because

the relative performance depends primarily upon processor queue wait,

which is not explicitly included in the model.

__ __..__ __ __. .

77

0 0

II4

0.n Uu U

MWJ<--H> -X ODUX.ZIJ

'-

78

4. CONCLUSION

4.1 Summary

This research has been concerned with performance modeling of

multiprocessor computer systems utilizing a shared drum secondary

memory. Interest in such systems is increasing because of the

advancement of integrated circuit technology. Large-scale and

very-large-scale integration have very high cost performance ratios, but

have not been able to achieve high performance. In order to benefit

from these high cost performance ratios more complex architectures are

needed to increase the performance level of integrated circuits.

The system under study contains a fixed number of jobs. The P

identical processors share a single job queue, and any job may be

started on any processor. A job executes on a processor until it faults

(or makes an I/O request). It then continues to execute on that

* processor for the amount of time necessary for the operating system to

handle the fault. The job then travels to the drum subsystem. This

subsystem consists of a paging drum with one queue per sector in order

to employ shortest latency time first (SLTF) scheduling. After the

job's page request has been satisfied, the job returns to the processor

I

I

79

queue to await an available processor.

The combined system model was serially decomposed into two models:

a fault model and a system model. The falting behavior of the jobs is

described by a fault model. This model utilizes a program's paging

behavior and the configuration of the memory to produce a fault

descriptor. The system model uses this fault descriptor and the

configuration of the physical system to predict system performance.

Decomposition in this manner allows an examination of system performance

without knowing the details of program paging behavior. The remainder

of the research dealt with this system performance model.

The primary result of this research is the development of an

analytic model for system throughput. Utilizing both deterministic

2 scheduling and previously known queueing models, the system model

expresses throughput as a simple formula based on six parameters: the

number of processors, P; the number of jobs, J; the number of drum

sectors, S; the operating system overhead per fault, C; the mean of

the interfault time distribution, 1/% ; and the squared coefficient of

1 the interfault time distribution, K. Throughput, T, is the average

number of processors in the system doing useful work. Although this

deterministic model makes several simplifying assumptions about system

[operation, it agrees quite closely with an extensive number of

simulations which cover a wide range of values for the parameters. In

V particular, the average relative error of the model when compared to all

I..
[

80

195 simulations is only 3.0%. The model's error is just 1.6% when only

j the cases with more than one processor are considered. Other such

simple models have been found to work very well, as in the Tailor model

II developed by Blake [BLAK79].

The accuracy of the model would indicate that perhaps only the mean

of the interfault distribution is needed. The accuracies cited were

achieved with a model using only the mean of the interfault

distribution. When a sub-model for the drum system was examined which

utilized the second moment of job flow in the system, only very slight

improvements were obtained (an average relative error of 2.7%). All of

these error figures include simulation runs whose squared coefficient of

variation of the fault distribution ranged from I (exponential

distribution) to 16 (two-stage hyperexponential).

The analytic system model was used to examine aspects of system

performance. First, the dependence of system throughput upon each of

the parameters individually was presented. In this way, the effects of

variations in any one of the parameters can be predicted.

The relationship between the number of jobs and each job's fault

rate was discussed, because when the jobs share a fixed amount of memory

the allocation per job must change as the number of jobs changes. In

particular,. the trade-off between J and X was detailed for constant

values of throughput. By using these curves of constant performance,

the decision to add or subtract jobs in an existing system can beIi

A _ _

I
!

81

reduced to a simple binary choice. For instance, if the fault rate of

the real system increases with the addition of a job more than the

increase in fault rate specified on the appropriate constant performance

curve, then the addition of that job will reduce system performance.

J Several trade-offs dealing with the number of processors in the

system were examined. These trade-offs specifically dealt with

comparisons between various multiprocessor systems and conventional

uniprocessor systems. First, a system with P processors was compared to

the same system with a single processor which executes P times faster

than one of the multiple processors. Although the potential throughput

of both systems is identical, it was found that when the systems are not

saturated, or constantly busy, the single processor system exceeds the

performance of the multiprocessor system.

Another trade-off compared the performance of a P-processor system

against P independent uniprocessor systems. For this situation, three

different choices were made for the drum subsystem of the multiprocessor

system. When the drum most closely resembled the P drums of the

independent systems, the throughput of the multiprocessor system was

essentially equivalent to the total throughput of the independent

systems. In the two other choices, the relative throughput was better

or worse depending on the capability of the drum subsystem chosen. In

effect, then, the multiprocessor system had significantly higher

performance only when its drum subsystem was superior.

44-

82

In all of the relationships examined, the deterministic model

provided a simple and clean way to ascertain the effects of various

changes to the system.

-.2 Future Work

There are many areas for future work. Extensions and improvements

to the deterministic model could be made. Specifically, an

approximation for processor queue wait, Qp, could cause the greatest

improvement in model accuracy. Also, it would allow detailed

examination of the operation of the system for the important case when

it is approaching processor saturation, but not fully saturated.

Furthermore, it would allow better analytic evaluation of the processor

trade-offs. Another area for improvement is the inclusion of a term

dealing with K, the squared coefficient of variation of the fault

process. Although the model is quite accurate even without a value for

Y, this improvement would improve the accuracy for single processor

systems and for abnormally bursty fault distributions.

Examination of the expression for a job's trip time could provide a

reasonable measure of average turnaround. It is suspected that multiple

processor systems might provide lower average turnaround than one

processor systems.

83

The system model might also be adapted to describe other system

configurations. For instance, systems involving more than one drum or

even moving head disks might be modeled. The explicit description of

drum writes of overwritten pages could be included. Also, the effects

of non-shared memory could be investigated. This situation requires a

job queue for each processor and jobs would probably return to the

processor on which they had started execution.

In addition to improvements in the system model, the fault model

needs to be developed. The results of the system model seem to indicate

that an extremely detailed description of the faulting process is not

necessary, since even using the mean of the fault distribution yields a

reasonably good prediction of system performance. A simple model which

relates the fault process to program behavior, memory size and page

size, and job allocation strategy could, in combination with the system

model developed here, allow a designer to examine many of the trade-offs

inherent in computer system design in a quick and convenient manner.

Also, the model might be compared against the operation of dynamic

memory allocation schemes, with job preemption and restart, and revised

if necessary.

[,

,~
I I .. I1 I-I1 _1 1_...__ _ _ _ _I _ -_ _1 --. _ ,-, - : . .. i '-

I
84I

I
I APPENDIX

J This appendix lists the results from the simulation runs. The

input parameters are:

P number of processors,

S number of drum sectors,

J number of jobs,

C operating system overhead time per fault,

1/X interfault time, and

K squared coefficient of variation of the

fault process.

The outputs of the simulation are:

IA Sim the minimum and maximum possible

values of 1A from the simulation,

4 p mean wait time in the processor queue,

Qd mean wait time in a drum queue, and

" Tsim throughput of the system expressed in

mean number of usefully busy processors.

In addition, the throughput predicted by the deterministic model,

[Tmodel, is also included for reference.

I

I
85

P S J C I/X K I/x Sim QP Qd Tsim Tmodel

16 32 16 0 8.000 1 8.022- 8.029 0.0 27.6 3.51 3.45

16 32 20 0 8.000 1 8.024- 9.029 0.0 31.3 3.98 3.94
16 32 32 0 8.000 1 8.025- 8.032 0.0 41.5 5.06 4.98
16 32 100 0 8.000 1 8.024- 8.039 0.5 103.8 6.99 6.82
16 32 16 0 32.000 1 31.633- 31.793 0.0 22.2 9.23 9.23
16 32 20 0 32.000 1 31.544- 31.763 0.0 23.9 11.19 11.13
16 32 32 0 32.000 1 31.489- 31.786 4.3 29.3 15.29 15.83
16 32 100 0 32.000 1 31.492- 31.789 132.8 31.1 16.00 16.00
16 32 16 0 128.000 1 123.684- 127.684 0.0 18.3 13.90 13.94
16 32 20 0 128.000 1 123.437- 127.725 14.3 17.6 15.91 16.00
16 32 32 0 128.000 1 123.080- 127.661 108.4 17.0 16.00 16.00
16 32 100 0 128.000 1 123.080- 127.661 588.3 17.0 16.00 16.00
16 8 16 0 8.000 1 8.023- 8.032 0.0 13.1 5.80 5.65
16 8 20 0 8.000 1 8.023- 8.036 0.0 16.5 6.28 6.13
16 8 32 0 8.000 1 8.022- 8.038 0.0 27.5 7.02 6.87
16 8 100 0 8.000 1 8.022- 8.039 0.6 91.4 7.87 7.66
16 8 16 0 32.000 1 31.505- 31.783 0.0 6.6 12.92 12.90
16 8 20 0 32.000 1 31.490- 31.787 1.6 7.5 15.19 15.67
16 8 32 0 32.000 1 31.492- 31.789 22.4 8.3 16.00 16.00
16 8 100 0 32.000 1 31.492- 31.789 153.7 8.3 16.00 16.00
16 8 16 0 128.000 1 123.186- 127.772 0.0 4.5 15.34 15.34
16 8 20 0 128.000 1 123.076- 127.657 26.4 4.6 16.00 16.00
16 8 32 0 128.000 1 123.080- 127.661 120.0 4.5 16.00 16.00
16 8 100 0 128.000 1 123.080- 127.661 595.5 4.5 16.00 16.00
1 32 16 0 0.500 1 0.509- 0.509 0.1 30.8 0.25 0.24
1 32 20 0 0.500 1 0.510- 0.510 0.1 34.6 0.28 0.27
1 32 100 0 0.500 1 0.507- 0.507 0.4 111.8 0.44 0.43
1 32 16 0 2.000 1 2.011- 2.011 5.2 28.5 0.87 0.95
1 32 20 0 2.000 1 2.011- 2.011 9.1, 30.2 0.95 1.00
1 32 32 0 2.0D. 3 1 2.011- 2.011 29.9 31.5 1.00 1.00
1 32 100 0 2.000 1 2.011- 2.011 166.0 31.6 1.00 1.00
1 32 16 0 8.000 1 7.873- 7.873 98.7 18.0 1.00 1.00
1 32 20 0 8.000 1 7.873- 7.873 129.9 18.0 1.00 1.00
1 32 32 0 8.000 1 7.873- 7.873 223.1 18.0 1.00 1.00
1 32 16 0 0.125 1 0.127- 0.127 0.0 31.0 0.06 0.06
1 32 20 0 0.125 1 0.127- 0.127 0.0 34.9 0.07 0.17
1 32 32 0 0.125 1 0.127- 0.127 0.0 46.6 0.09 0.08
1 32 100 0 0.125 1 0.127- 0.127 0.1 112.2 0.11 0.11
1 8 16 0 0.500 1 0.504- 0.504 0.1 18.1 0.41 0.39
1 8 20 0 0.500 1 0.504- 0.504 0.1 21.9 0.43 0.41
1 8 32 0 0.500 1 0.504- 0.504 0.2 33.8 0.45 0.44
1 8 100 0 0.500 1 0.504- 0.504 0.7 98.4 0.50 0.48
1 8 16 0 2.000 1 2.011- 2.011 21.2 8.0 1.00 1.00
1 8 20 0 2.000 1 2.011- 2.011 29.2 8.0 1.00 1.00
1 8 16 0 8.000 1 7.873- 7.873 112.1 4.5 1.00 1.00
1 8 16 0 0.125 1 0.127- 0.127 0.0 18.6 0.10 0.10
4 32 4 0 8.000 1 8.024- 8.026 0.0 18.1 1.18 1.16
4 32 5 0 8.000 1 8.025- 8.026 0.0 19.0 1.43 1.41
4 32 8 0 8.000 1 8.023- 8.027 0.2 21.0 2.12 2.09

-.---- :. -- r ,: o , : I f" i -- "- li l 2/

86

P s J c I A K ASir QP Tsjj1 Tmode

4 32 32 0 8.000 1 8.024- 8.028 23.1 32.1 3.99 4.00
4 32 4 0 32.000 1 31.828- 31.868 0.0 17.3 2.54 2.54
4 32 5 0 32.000 1 31.842- 31.863 1.3 17.1 3.11 3.15
4 32 8 0 32.000 1 31.799- 31.859 14.2 18.8 3.87 4.00
4 32 32 0 32.000 1 31.795- 31.856 202.1 18.1 4.00 4.00
4 32 4 0 128.000 1 126.487- 127.118 0.0 16.9 3.50 3.52
4 32 5 0 128.000 1 126.558- 127.504 18.8 17.0 3.88 4.00
4 32 8 0 128.000 1 126.496- 127.442 108.8 17.4 4.00 4.00
4 32 32 0 128.000 1 126.503- 127.450 842.5 17.1 4.00 4.00
4 8 8 0 8.000 1 8.024- 8.028 2.0 7.0 3.57 3.84
4 8 32 0 8.000 1 8.024- 8.027 46.9 8.1 4.00 4.00
4 8 8 0 32.000 1 31.795- 31.856 26.2 4.7 4.00 4.00
4 8 32 0 32.000 1 31.795- 31.856 215.4 4.4 4.00 4.00
4 8 8 0 128.000 1 126.503- 127.450 122.0 4.1 4.00 4.00
4 8 32 0 128.000 1 126.503- 127.450 854.6 4.1 4.00 4.00
1 32 8 0 2.000 1 2.011- 2.011 1.5 22.2 0.60 0.61
1 32 32 0 2.000 1 2.011- 2.011 29.9 31.5 1.00 1.00
1 32 4 0 8.000 1 7.873- 7.873 9.4 17.7 0.88 1.00
1 32 8 0 8.000 1 7.873- 7.873 35.8 18.5 1.00 1.00
1 32 4 0 32.000 1 31.902- 31.902 78.6 16.9 1.00 1.00

16 16 20 0 8.000 1 8.023- 8.031 0.0 21.5 5.26 5.12
16 16 32 0 8.000 1 8.023- 8.032 0.0 32.3 6.20 6.07
16 16 20 0 32.000 1 31.495- 31.772 0.3 13.8 13.56 13.63K 16 16 32 0 32.000 1 31.491- 31.788 14.5 16.3 15.99 16.00
16 16 20 0 128.000 1 123.' 19- 127.681 21.8 9.3 15.99 16.00
16 16 32 0 128.000 1 12' >0- 127.661 115.3 9.7 16.00 16.00
4 16 8 0 8.000 1 b.023- 8.027 0.7 11.9 2.97 2.95
4 16 32 0 8.000 1 8.024- 9.027 39.1 16.0 4.00 4.00
4 16 8 0 32.)00 1 31.795- 31.855 22.0 9.1 3.99 4.00
4 16 32 0 32.000 1 31.795- 31.856 210.5 9.4 4.00 4.00
4 16 8 0 128.000 1 126.503- 127.450 117.8 8.3 4.00 4.00
4 16 32 0 128.000 1 126.503- 127.450 850.6 8.3 4.00 4.00
1 16 16 0 0.500 1 0.508- 0.508 0.1 22.3 0.34 0.33
1 16 20 0 0.500 1 0.508- 0.508 0.1 26.3 0.36 0.35
1 16 16 0 2.000 1 2.011- 2.011 13.8 15.6 0.99 1.00
1 16 16 0 8.000 1 7.873- 7.873 107.5 9.1 1.00 1.00

16 32 16 8 8.000 1 8.023- 8.030 0.0 25.1 3.05 3.00
16 32 20 8 8.000 1 8.024- 8.028 0.0 28.2 3.55 3.51
16 32 32 8 8.000 1 8.025- 8.032 0.0 37.9 4.67 4.64
16 32 100 8 8.000 1 8.022- 8.033 1.9 97.2 6.84 6.74
16 32 16 8 32.000 1 31.602- 31.782 0.0 21.2 8.20 8.19
16 32 20 8 32.000 1 31.598- 31.817 0.1 23.2 9.91 9.96
16 32 32 8 32.000 1 31.503- 31.761 13.1 25.9 12.74 12.80
16 32 100 8 32.000 1 31.509- 31.767 179.2 25.9 12.78 12.80
16 32 16 8 128.000 1 123.785- 127.788 0.0 17.8 13.22 13.23
16 32 20 8 128.000 1 123.502- 127.792 15.7 18.2 14.99 15.06
16 32 32 8 128.000 1 123.588- 127.882 115.9 18.1 15.06 15.06
16 32 100 8 128.000 1 123.588- 127.882 628.2 18.1 15.06 15.06
16 8 16 8 8.000 1 8.023- 8.031 0.0 9.4 4.87 4.76

Sr,...

87

P S J 1/X K I/% Sim QP Qd Tsim Tmodel

16 8 20 8 8.000 1 8.024- 8.031 0.0 11.9 5.55 5.43
16 8 32 8 8.000 1 8.022- 8.034 0.2 21.2 6.68 6.55
16 8 100 8 8.000 1 8.024- 8.036 8.5 77.1 7.77 7.64
16 8 16 8 32.000 1 31.560- 31.798 0.0 6.0 10.87 10.88
16 8 20 8 32.000 1 31.502- 31.760 3.3 6.5 12.58 12.80
16 8 32 8 32.000 1 31.509- 31.767 32.0 6.7 12.78 12.80
16 8 100 8 32.000 1 31.509- 31.767 196.4 6.7 12.78 12.80
16 8 16 8 128.000 1 123.877- 127.883 0.0 4.4 14.49 14.47
16 8 20 8 128.000 1 123.588- 127.882 28.6 4.5 15.06 15.06
16 8 32 8 128.000 1 123.588- 127.882 128.5 4.5 15.06 15.06
16 8 100 8 128.000 1 123.588- 127.882 636.1 4.5 15.06 15.06
16 32 16 0 8.000 16 7.924- 7.924 0.0 27.6 3.47 3.45
16 32 20 0 8.000 16 7.906- 7.906 0.0 31.4 3.92 3.94
16 32 32 0 8.000 16 7.860- 7.882 0.0 42.0 4.94 4.98
16 32 100 0 8.000 16 7.830- 7.862 0.0 104.0 6.87 6.82
16 32 16 0 32.000 16 29.584- 30.372 0.0 22.7 8.99 9.23
16 32 20 0 32.000 16 29.251- 30.313 0.1 24.7 10.81 11.13
16 32 32 0 32.000 16 9.320- 30.385 5.7 32.3 13.97 15.83
16 32 100 0 32.000 16 29.282- 30.345 108.0 47.7 15.93 16.00
16 32 16 0 127.996 16 117.022- 121.269 0.0 18.0 13.84 13.94
16 32 20 0 127.996 16 119.962- 122.871 14.7 19.8 15.51 16.00
16 32 32 0 127.996 16 100.206- 110.631 87.4 23.3 15.85 16.00
16 32 100 0 127.996 16 100.296- 110.731 531.6 27.4 16.00 16.00
16 8 16 0 8.000 16 7.835- 7.867 0.0 13.2 5.69 5.65
16 8 20 0 8.000 16 7.830- 7.863 0.0 16.7 6.15 6.13
16 8 32 0 8.000 16 7.825- 7.858 0.0 27.6 6.88 6.87
16 8 100 0 8.000 16 7.813- 7.856 0.0 91.9 7.71 7.66
16 8 16 0 32.000 16 30.084- 30.813 0.0 6.9 12.72 12.90
16 8 20 0 32.000 16 30.00C- 30.737 2.0 8.8 14.45 15.67
16 8 32 0 32.000 16 29.973- 30.700 16.2 14.9 15.59 16.00
16 8 100 0 32.000 16 29.944- 30.670 138.6 19.9 15.97 16.00
16 8 16 0 127.996 16 117.299- 121.557 0.0 4.9 15.26 15.34
16 8 20 0 127.996 16 100.217- 110.643 21.3 6.6 15.84 16.00
16 8 32 0 127.996 16 100.229- 110.657 101.7 7.8 15.93 16.00
16 8 100 0 127.996 16 100.305- 110.741 547.2 10.9 16.00 16.00
1 32 16 0 0.500 16 0.486- 0.486 0.9 30.6 0.24 0.24
1 32 20 0 0.500 16 0.486- 0.486 1.1 34.5 0.26 0.27
1 32 32 0 0.500 16 0.486- 0.486 1.5 45.9 0.32 0.33
1 32 100 0 0.500 16 0.486- 0.486 2.6 110.2 0.42 0.43
1 32 16 0 2.000 16 1.921- 1.921 14.7 27.5 0.68 0.95
1 32 20 0 2.000 16 1.921- 1.921 18.7 30.1 0.74 1.00
1 32 32 0 2.000 16 1.961- 1.961 32.4 35.8 0.88 1.00
1 32 100 0 2.000 16 1.961- 1.961 146.5 44.7 1.00 1.00
1 32 16 0 8.000 16 7.681- 7.681 96.8 24.4 0.95 1.00
1 32 20 0 8.000 16 7.681- 7.681 124.3 25.4 0.97 1.00
1 32 32 0 8.000 16 7.681- 7.681 210.7 26.9 0.99 1.00
1 8 16 0 0.500 16 0.486- 0.486 1.7 17.4 0.38 0.39
1 8 20 0 0.500 16 0.486- 0.486 1.9 21.1 0.40 0.41
1 8 32 0 0.500 16 0.486- 0.486 2.3 32.4 0.43 0.44

£I --- _T ' =,, , e', , T ' "...

7AD-A16 959 PERFORMANCE MODELING OF MULT IPROCESSOR SY STEMS WITH

LAB A D GANT OCT 80IR 8q .9 14O 79- C_0424

UNCLASSIFIED F/S 9/2 NL

1'1

r4

IAm

'II1'--

1.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-I963-A

F.- 4._ , _

p

Ip s j c 1/x K I/ 5 A Sim T3Qd "sx moe

*1 8 100 0 0.500 16 0.486- 0.486 3.2 97.1 0.47 0.48
1 8 16 0 2.000 16 1.921- 1.921 20.3 13.3 0.84 1.00
1 8 20 0 2.000 16 1.921- 1.921 25.7 15.1 0.88 1.00
1 8 32 0 2.000 16 1.961- 1.961 44.4 18.3 0.95 1.00
1 8 100 0 2.000 16 1.961- 1.961 167.9 22.5 1.00 1.00
1 8 16 0 8.000 16 7.681- 7.681 105.7 10.9 0.98 1.00
1 8 20 0 8.000 16 7.681- 7.681 134.9 11.6 0.99 1.00

1 4 32 4 0 8.000 16 8.007- 8.007 0.0 18.3 1.17 1.16
* 4 32 5 0 8.000 16 7.995- 7.995 0.1 19.0 1.43 1.41

4 32 8 0 8.000 16 7.963- 7.963 0.8 21.5 2.04 2.09
4 32 32 0 8.000 16 7.846- 7.878 24.3 35.9 3.64 4.00T. 4 32 4 0 32.000 16 31.256- 31.408 0.0 17.0 2.54 2.54
4 32 5 0 32.000 16 31.197- 31.349 2.7 17.7 2.97 3.15
4 32 8 0 32.000 16 31.188- 31.339 18.1 19.9 3.56 4.00
4 32 32 0 32.000 16 31.165- 31.317 191.0 25.8 4.00 4.00
4 32 4 0 127.996 16 116.295- 116.951 0.0 16.4 3.48 3.52
4 32 5 0 127.996 16 118.494- 119.426 21.8 16.9 3.75 4.00
4 32 8 0 127.996 16 119.187- 120.076 103.2 18.6 3.95 4.00
4 32 32 0 127.996 16 121.262- 122.154 822.2 20.1 4.00 4.00
4 8 8 0 8.000 16 7.874- 7.885 3.2 8.0 3.14 3.84
4 8 32 0 8.000 16 7.839- 7.872 37.8 18.0 3.89 4.00
4 8 8 0 32.000 16 31.173- 31.324 25.1 6.8 3.90 4.00
4 8 32 0 32.000 16 31.168- 31.319 206.9 9.6 4.00 4.00
4 8 8 0 127.996 16 121.264- 122.155 115.6 5.3 4.00 4.00
4 8 32 0 127.996 16 120.410- 121.300 833.2 5.3 4.00 4.00
1 32 8 0 2.000 16 1.957- 1.957 6.8 22.0 0.49 0.61
1 32 32 0 2.000 16 1.957- 1.957 32.2 36.0 0.88 1.00
1 32 4 0 8.000 16 7.681- 7.681 18.6 18.8 0.67 1.00
1 32 8 0 8.000 16 7.843- 7.843 44.6 21.3 0.84 1.00
1 32 4 0 32.000 16 29.844- 29.844 83.0 18.4 0.90 1.00

16 16 20 0 8.000 16 7.430- 7.610 0.0 21.5 5.05 5.12
16 16 32 0 8.000 16 7.419- 7.617 0.0 31.8 6.00 6.07
16 16 20 0 32.000 16 30.030- 30.758 0.7 14.3 13.16 13.63
16 16 32 0 32.000 16 29.994- 30.722 11.9 20.7 15.24 16.00
16 16 20 0 127.996 16 117.218- 121.473 20.1 11.1 15.80 16.00
16 16 32 0 127.996 16 117.127- 121.378 107.5 12.1 15.96 16.00
16 32 32 8 8.000 16 7.435- 7.615 0.0 37.3 4.50 4.64
16 32 100 8 8.000 16 7.427- 7.606 3.0 94.7 6.55 6.74
16 32 32 8 32.000 16 29.298- 30.290 11.9 28.5 12.16 12.80
16 32 100 8 32.000 16 29.323- 30.316 164.9 32.2 12.66 12.80
16 32 32 8 127.996 16 117.267- 121.523 107.9 20.0 14.99 15.06
16 32 100 8 127.996 16 117.267- 121.523 643.1 20.0 15.01 15.06
16 8 32 8 8.000 16 7.431- 7.611 0.3 21.1 6.40 6.55
16 8 100 8 8.000 16 7.426- 7.606 .15.1 71.9 7.27 7.64
16 8 32 8 32.000 16 29.323- 30.316 29.6 7.8 12.63 12.80
16 8 100 8 32.000 16 29.323- 30.316 188.4 8.2 12.66 12.80
16 8 32 8 127.996 16 117.267- 121.523 122.3 5.1 15.01 15.06
16 8 100 8 127.996 16 117.267- 121.523 657.8 5.0 15.01 15.06

Ii

L 89

L

f REFERENCES

1 EADAM79] Adams, C., E. Gelenbe, and J. Vicard. "An Experiaentally
Validated Model of the Paging Drum," Acta Informatica, 1979,
pp.103-117.

[BIRT73] Birtwistle, Graham M., Ole-Johan Dahl, Bjorn ?yhrhaug, and
Kristen Nygaard. Simula Begin, Van Nostrand Reinhold, 1973.

[BLAK79] Blake, Russ. "Tailor: A Simple Model That Works," 1979
Conference on Simulation, Measurement and Modeling of Computer
Systems, August, 1979, pp. 1-12.

[BRIG77a] Briggs, Faye Alaye. "Memory Organizations and Their
Effectiveness for Multiprocessing Computers," Coordinated
Science Laboratory Report R-768, University of Illinois, 1977.

T' [BRIG77b] Briggs, P.A., and E.S. Davidson. "Organization of
Semiconductor Memories for Parallel-Pipelined Processors,"
IEEE Transactions on Computers, February, 1977, pp. 162-169.

IBROW73] Brown, J.C., K.M. Chandy, J. Hogarth, and C.C.-A. Lee.
"The Effect on Throughput of Multiprocessing in a
Multiprogramming Environment," IEEE Transactions on Computers,

August, 1973, pp. 728-735.

* [BUDZ77] Budzinski, Robert Lucius. "Dynamic Memory Allocation for a
Virtual Memory Computer," Coordinated Science Laboratory

" Report R-754, University of Illinois, 1977.

[CDC75] Control Data Corporation. Simula Version I Reference Manual,
Control Data, 1975. -

[CHAN75] Chandy, K.M., U. Herog, and L. Woo. "Approximate Analysis
of General Queueing Networks," IBM Journal of Research
Development, January, 1975, pp. 4349.

1 [CHAN77] Chandy, K. Mani, John H. Howard, Jr., and Donald P.
Townley. "Product Form and Local Balance in Queueing
Networks," Journal of the ACM, April, 1977, pp. 250-263.

i0

90

I [CHU721 Chu, W.W., and H. Opderbeck. "The Page Fault Frequency

Replacement Algorithm," Proceedings FJCC 1972 1972, pp.
597-609.

[COOF69] Coffman, E.G., Jr. "Analysis of a Drum Input/Output Queue
Under Scheduled Operation in a Paged Computer System," Journal
of the ACM, January, 1969, pp. 73-90.

S[COFF73] Coffman, E.G., Jr., and P.J. Denning. Operating Systems

I Theor, Prentice-Hall, 1973.

[DENN68] Denning, P.J. "The Working Set Model for Program Behavior,"
i Communications of the ACM, May, 1968, pp.323-333.

[FERR76] Ferrari, Domenico. "The improvement of Program Behavior,"
Computer, November, 1976, pp. 39-47.

[FULL75] Fuller, Samuel H., and Forest Baskett. "An Analysis of Drum
Storage Units," Journal of the ACM, January, 1975, pp.
83-i 05.

[GELE75] Gelenbe, Erol. "On Approximate Computer System Models,"
Journal of the ACM, April, 1975, pp. 261-269.

[JACK63] Jackson, J.R. "Job-shop Like Queueing Systems," Management
Science, 1963, pp. 131-142.

[KLEI75] Kleinrock, Leonard. Queueing Systems, Volume I: Theory, John
Wiley and Sons, 1975.

[KOBA74] Kobayashi, Hisashi. "Application of the Diffusion

Approximation to Queueing Networks I: Equilibrium Queue

Distributions," Journal of the ACM, April, 1974, pp.316-328.

[KUco70] Kuck, D.J., and D.H. Lawrie. "The Use and Performance of
~Memory Hierarchies: A Survey," Software Engineering, Vol. 1,

J.T. Tou, ed., Academic Press, 97, pp. 45-77.

[LAZO77] Lazovska, Edward D. "The Use of Percentiles in Characterizing
Service Time Distributions," Proceedings 1977 International
Symposium on Computer Performance Modeling, Measurement, and
Evaluation, August, 1977.

[SAUE79] Sauer, Charles H., and K. Mani Chandy. "The Impact of
Distributions and Disciplines on Multiple Processor Systems,"

I. Communications of the ACM, January, 1979, pp. 25-34.

!, II

£

91

I

I VITA

1Alan Dale Gant was born in Wichita Falls, Texas on January 17,

1951 He received the B.S. degree in Electrical Engineering with

highest honors from the University of Texas in 1974, and the M.S.

degree in Electrical Engineering from the University of Illinois in

1977. He held engineering positions with IBM in Austin, Texas and

Wostek in Carrollton, Texas. While at the University of Illinois, he

held a University Fellouship in 1974 and was a research assistant at the

Coordinated Science Laboratory from 1975 to 1980."

t.I

I
I.

