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The rapid advancement in semiconductor technology continues to
chang; the enviromment in which computers are designed. As hardware
costs decline, systems with multiple processors become an interesting
alternative to conventional single processor systems. An analytic model
has been developed to describe the performance of a wide range of
multiprocessor system configurations and workloads. This model deals
specifically with P tightly-coupled, identical processors with shared
primary and secondary memory. Secondary memory consists of a paging
drum with S sectors. The workload consists of J independent,
identically-distributed jobs whose faulting or I/O behavior is described
by both a mean ( )\ faults/sector-time) and a squared coefficient of
variation(K). In addition, the processing overhead for each I/0 request

is added to a job”s execution time at a processor(C sector-times/fault).

The model developed provides an estimate of system throughput for
various numbers of processors, Jjobs, and drum sectors, and for various
workloads. Throughput, the average number of processors doing useful

work, is given by
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This model is based on a deterministic scheduling model for the system,

and known models which describe the sub-parts of the system are
embedded. The accuracy of the model is assessed by comparison to a
large number of runs of a simulator wusing exponential and
hyperexponential fault time distributions. For a wide range of values
of the parameters, the formula provides a very good estimate of
throughput (the average relative error for 195 simulation runs is only
3.090.). Even though the squared coefficient of the fault distribution
varied from 1 to 16 in the simulation runs, the model fit quite well
without using K. This suggests that the mean fault rate is perhaps a
sufficient measure of the faulting process. Further evidence for this
conclusion is the fact that the model”s prediction only improves

slightly when a drum queue wait model is employed which includes K.

The model can be used to examine the behavior of multiprocessor
systems, including the sensitivity of system throughput to each of the
system parameters and parameter trade-offs related . to system
performance. In particular, in a system with a fixed amount of memory,
the addition of Jjobs to the system causes a change in the memory
allocation for each job and thus modifies each job“s faulting behavior.

The above formula for throughput is useful to examine the desirability

of adding or subitracting jobs in such a system.
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1. INTRODUCTION AND BACKGROUND

1.1 Problem Description

As technology continues to alter design constraints and reduce
hardware costs of computers, systems with multiple processors become an
increasingly interesting alternative to conventional single processor
systems. In order to evaluate the performance of multiprocessor
systems, an analytic model has been developed which describes the system
- performance as a function of page faulting behavior. In particular, the

model deals with systems of P processors with shared memory, a paging

drum (or rotating or electronic equivalent) with S sectors, and a work
load consisting of J independent jobs. The effects of various design

decisions and trade-offs on system throughput have been examined

- directly using the analytic model. The accuracy of the model has been
i' evaluated with a large number of simulations of the system.
f 1.2 System Configuration

In order to analyze the performance of multiprocessor computer
systems with paged memory, a specific system configuration was studied

(Pigure 1-1). The specification of this paged memory system includes
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.- both virtual memory systems with demand pagin.g and systems using

explicit paged I/0.

- In particular, the processor subsystem consists of P identical,

independent processors. These processors share a-single memory in order

to share one job 1load. The specifics of the processor-memory
interconnection is not known except that it is assumed that access
conflicts among processors can be neglected, i.e., that their effect on
performance can be accounted for by a simple adjustment of a model
parameter value. This assumption is possible since the model is

concerned with the performance of the system at the level of page

<+

faults, which hopefully occur at intervals of large numbers of memory
T
b accesses. Also, memory organizations have been identifiel which achieve
- very low incidences of conflict [BRIG"N&, BRIG'T'Tb].

. As jobs fault, they leave the processor subsystem and travel to
secondary memory t<'> fetch the needed pages. The secondary memory is
assumed to be a sectored drum. This drum may actually be constructed as
a head per track disk or some semiconductor analogue such as bubbdble or

‘ charge-coupled device (CCD) memory. Drum is inten’ed here to represent

any secondary memory whose behavior may be modeled as a queueing delay

[

and a rotational latency followed by the transfer of data. Moving head

disks are not modeled since they also require a seek time.

—— s
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In addition, each sect;r of the drum maintains a queue of Jjobs
awaiting service. Sector queues allow a shortest latency time first (or
SLTF) schedule to be used. Jobs requesting service at a specific sector
are serviced in the order of their arrival, but jobs at the heads of
different sector queues are serviced in the order that the sectors can

be read.

In a virtual memory demand paging system, some of the page faults
may require a page of memory to be written to the drum before the needed
page can be read into memory. The model used here does not specifically
deal with such writes. However, the model is still valid under the
following conditions. It is possible for the drum controller to buffer
these drum writes separately from the reads. Then the tranafer of
needed pages to memory can be given priority over writes. This
operation allows the jobs which have faulted to return to the processor
subsystem as quickly as possible. The lower priority drum writes can be
accomplished whenever a particular drum sector has no pending reads. Of
course, the drum controller must manage the additional bookkeeping of
checking to see if any drum read requests refer to a drum write which
has not been completed. An alternate approach would be to prewrite some
pages which have been changed when the drum is idle. Then there would
be no need to write these pages to the drum when they are replaced by
new pages. If the system model is used to describe general I/0 requests
to a paging drum instead of a virtual memory system, then the occurrence

of a model "page fault" represents a single page read or write. In this




case, ;he controller can treat reais and writes identically. To
accurately model a virtual memory demand paging system without a

sophisticated controller capable of prioritizing reads and writes, an
. additional parameter would have to be added to describe the occurrences

of writes before reads, and the model would need to place both drum

service requests in drum queues.

As jobs return to the processor subsystem from the drum they enter
a single first in first out, FIFO, queue to await a free processor. The

number of jobs in the system is assumed to be constant, as shown for P

} } processors with an S sector drum in the diagram of PFigure 1-1. When a
.a' 1 job finally completes execution and leaves the system it is immediately
'? ‘ replaced by a similar job which is assumed to be waiting outside the
3 M syastem. Thus the system under study is a closed queueing network.
i o
f The system may be described by means of several parameters which
specify the number of elements in the system and their behavior. All
references to time in the system will be in units of a sector-time,
.- where one sector-time is the time taken for one sector of the drum to
§~ pass by the drum heads. The parameters used for our model are:
; S the number of drum sectors (pages/track),
. P the number of processors in the system,
i J the number of jobs in the system,
! M the number of words of memory,
) w the number of words per page, )

—y
Q

the operating system overhead time per page fault,




A the mean of the fault rate distribution
(faults/sector-time), and
K the squared coefficient of variation of the

fault rate distribution.

1.3 Analysis Techniques

Numerous methods are available to study the performance of a
computer system. In this section, some of these are discussed and their

applicability to the problem under study is considered.

An obvious method for determining system performance is the use of
simulation, which allows a precise description of the »peration of the
system components and their interaction. However, the results of a
simulation for a specific configuration of the system and a specific
workload are valid only for the specific case simulated. Thus a single
run of the simulation describes the performance of the system for one
value of each of the system parameters. To perceive overall trends in
performance, each of the system parameters must take on several values
independently of the other parameters. This fact suggests, for example,
that i parameters each taking on j values would require as many as Ji
runs of the simulation. Also, since each of the simulation runs yields
only an isolated numerical result, the underlying mechanisms causing
variations in system performance are difficult to determine.

Nevertheless, a collection of simulations may be extremely useful for




Rt TN ";a%‘

checking the accuracy of analytic models.

To reduce the cost of simulation of the aystem, certain
simplifications of system operation might be made. For instance, the
detailed operation of a subsystem of the system might be replaced by an
approximate model of the subsystem. Of course, the accuracy of the

simulation results would depend on the accuracy of the approximate

model.

Another approach for modeling such a system is a network of queues
and servers, as was shown in Figure 1-1 [JACKGB,CHANW]. The solution
of queueing networks is possible if the servers all have exponential
service time distributions. Solutions are also availab;e for
non-exponential service times if an immediate service discipline 1is
used, e.g., last come first served (LCFS). Since neither SLTF nor FIFO
fall into the immediate service disciplines and since the drum does not
have exponential service, these models are not directly applicable to

the system under study.

Some recent work in queueing theory has been directed toward using
various approximation techniques in order to model systems which do not
fall into the category of "well-behaved" systems which can be explicitly
described by conventional queueing theory methods. One method which has
recently been developed is the application of Norton“s theorem [CHAN?S].
For closed networks consisting only of exponential servers, an analog of

Norton“s theorem from electrical circuit theory can be used to replace a




subset of the queues with a single queue. Thus a network can be reduced
in complexity. This technique has been extended to provide an

approximate analysis in cases where servers are non-exponential.

Another approximation technique recently proposed is the division
of distributions into percentiles [LAZO77]. Reducing the precision of
the description of the distributions is a brute force technique designed

to achieve some results under difficult conditionms.

In addition, much recent work has been based on the diffusion
approximation {KOBA74, GELETS5 ]. Here, the discrete flow of jobs through
the queues is replaced by a continuous "diffusion” model. This model
most accurately describes systems under a heavy traffic assumption where

servers are very seldom idle.

For all of the approximation techniques of queueing theory there is
no easily computed measure of their accuracy. In order to use them,
their accuracy must be verified by other means, such as simulation of

the system.

Another general method for modeling the system is to devise
analytic models based on appropriate simplifications of asystem
operation. Such a heuristic-driven approach, 1like queueing theory
approximations, normally has unknown accuracy, but can be checked by
simulation. Nevertheless, approximate analytic models wmay yield

equations which detail the operation and interaction of system




components in a concise and informative manner.

In this research, a combination of two of the above methods is
used. Detailed simulations of the system under various workloads and
system configurations are made to provide a precise knowledge of system
v operation for these cases. The details of these simulations and the

assumptions made are discussed in section 2.1. Then, analytic models
are derived and adapted from the literature. Since the goal of this
research is to accurately model the paging behavior of the system, any
technique or combination of techniques is potentially useful. In
| particular, queueing theory models, both exact and approximate, are used
I for certain subsystems. The system model 1is developed from a
deterministic scheduling discipline. The accuracy of the models is
¥ ' checked with the results of the simulations. In this way, a precise
description of system operation is provided by the simulations and the
analytic models provide a concise means of discerning relationships
between performance and the system parameters and underlying causes of

L performance variations.

PR

1.4 Processor Models

The processor subsystem consists of the P processors and their
b shared input queue(Figure 1-1). Several models already exist which may
- be useful for describing a multiple processor subsystem. If an infinite

number of jobs is available to the processors, the departure of jobs to

ORI .
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the drum after page faults occur is solely dependent on the service
times of the processors. In particular, if exponential service times
are assumed, the flow of jobs leaving P independent processors is the
confluence of the Jjob flows 1leaving each processor, each of which
constitutes a Poisson process. If the mean fault rate of all the jobs
is the same, A , then the flow of jobs to the drum is a Poisson process
with mean rate P A. This rather simple description may be useful in
determining the "bottleneck"” of a system. The service rate of the irum
is one page, or job, per sector-time. Thus, the service rate of the
drum subsystem, 1 job/sector-time, may be compared to the mean service
rate of the processor subsystem, P A, to estimate behavior under heavy

load.

Another simple model of the processor subsystem involves the use of
an M/M/1 queueing model. Here, all P processors are replaced by a
single processor with equivalent throughput. This effect is achieved by
assuming a processor sharing discipline, in which all running jobs share
the P processors equally (often described as timesharing with an
infinitesimal time slice) [COFF73]. The single processor has an
exponential fault distribution. This model also assumes a Poisson

arrival process. In fact, the arrival process to the processor

subsystem is unknown and unlikely to be Poisson.
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The processor subsystem might also be modeled by an M/M/P queue,
which extends the M/M/! model to P parallel servers. However, this
model is extremely complex and even simple measures of performance are
not easily found [COFF'73, KLEI75]. This approach is also restricted to

an exponential fault distribution and a Poisson arrival process.

1.5 Drum Models

The drum subsystem consists of the drum and the S sector queues as
in Pigure 1-1. A drum, with fixed-length sectors, operating with an
SLTF (shortest latency time first) schedule has been examined

previously, and two models are of interest here.

First, an expression for the the expected waiting time, Qd’ for a
paging drum has been derived by Coffman [COFF69] and by Fuller and
Baskett [FULL?S], under the restriction of Poisson arrivals with mean
rate )\d' The utilization of the drum, Pqr is the arrival rate divided
by the service rate. Since the service rate of the drum is 1
job/sector-time, the utilization is equal to the arrival rate, kd‘ The
expression for the expected time spent at the drum (including queue wait

but neglecting service time) is

._S_+.__Sid—-— (1'1)
W2 Ay -

The first term in equation 1-1 denotes an average one-half revolution
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that a Job waits for its sector to be reached, and the second term
describes the average time spent in the sector queue while waiting for
previously arrived Jobs to be serviced. The S coefficient is the
rotation time of the d~mm, and as )‘d approaches the service rate of the

drum, 1, the magnitude of the second term approaches infinity.

Obviously, arrivals to the drum subsystem may not be Poisson.
Adams, Gelenbe, and Vicard have developed a model for the SLTF paging
drum which utilizes the mean of the arrival rate to the drum as well as
its squared coefficient of variation [ADAM79]. In order to deal
effectively_ with non-Poisson arrivals, <they wuse +the diffusion
approximation developed by Gelenbe [GELETS]. Since the diffusion
approximation has unknown accuracy, they compare the results of their
model with data supplied by simulations using two-stage hyperexponential
distributions to provide drum arrivals with variance greater than or
equal to that of an exponential distribution. A two-stage
hyperexponential is sufficient to generate distributions with any mean
and any variance which is greater than +the mear. For high values of
drum utilization, the model agrees reasonabi well with their
simulations. The equation for mean time spent nf $he drum queue with

mean arrival rate )‘d and squared coefficient of vaAation Ky is

(s +Kd - l)kd

anm (1"2)
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. This formula is similar to that derived by Coffman. It differs in

two ways. First, it includes a correction for Kd not equal to 1 (the
exponential distribution has a K of 1) and second, it does not include
an S/2 term for the one-half revolution average wait for the sector in
question to reach the read head. The heavy traffic assumption made in
applying the diffusion approximation implies that the value of equation
1-2 would predominate over S/2, since A4 approaches 1 as p, approaches

'. The coefficient, S + K, - 1, denotes an "effective" rotation time

due to the change in variance of the arrivals to the drum.

1.6 Program Behavior

Along with the processor subsystem and the drum $ubsystem, the job

workload determines system performance. The description of how jobs

e g . §

behave on a computer system is called program behavior. Of particular

interest here is that part of program behavior related to paging.

The paging behavior of a program is dependent on the internal

structure of the program and on the configuration of the machine on

PR——

which that program runs. In particular, the page size, W, the size of
memory, M, and the number of jobs, J, combine to dictate the average
allocation of pages that a job receives. The paging policy of the
1 system also determines whether that allocation is fixed in size or

varies dynamically, such as when using the working set algorithm

<y

[DENN68] or the page fault frequency algorithm [CHU'?Z]. Studies of
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dynamic allocation schemes have shown them %o be of widely varying

efficiency [BUDZT7].

Numerous studies have been made of the paging behavior of programs.
The effects of page size and memory allocation on page fault behavior
have been studied by Kuck and Lawrie [KUCK?O]. They also examined the
effects of the number of jobs in the system for a single processor
system. Terms such as locality and working set have been used to
describe the tendency of programs to reference a particular subset of
their address space over a short section of their execution. For
instance, PFerrari has developed the notion of bounded 1locality
intervals, which are in effect nested localities of decreasing size
[FERR76]. His work suggests -that there are in actuality several
localities of varying size in existence at any one time. To date,
however, there appears to be no concise quantitative description of
program paging behavior as a function of relevant, measurable system and

program attributes which is representative of programs in general.

1.7 Model Decomposition

The system described in Figure 1-1, along with the parameters
defined in section 1.2, details both the physical organization of the
computer system and the paging characteristics of the job workload. The
system under study includes ? processors, J jobs, S drum sectors, M

words of memory, and W words per page. C denotes the overhead time
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required to service a page fault. This unified model of the performance

of the system is symbolized in Figure 1-2a. In order to reduce the

complexity of the model, it may be decomposed into two sub-models
connected in a serial fashion (Figure 1-2b). Here, the characteristics
of a job”s faulting behavior are dealt with in a fault model, which
considers the memory configuration, the number of Jjobs sharing the
memory space, and the paging behavior of the workload. The output of
this first sub-model, a descriptor of program faulting behavior, is then
used as input to the system model. Besides this fault descriptor,
parameters describing the physical configuration of the system, the
number of jobs in the system, and the operating system overhead time per

fault, C, are input to the system model. The performance of the system

is obtained from the system model.

As mentioned in section 1.6, the faulting behavior of programs in
general is not well understood. In fact, no model such as the fault
model of Figure 1-2b has been developed. However, development of the
second sub-model may proceed somewhat independent of the first. If at a
later time an accurate fault model which is different from A and X is
developed, the system model may require adjustment to accept this new
fault descriptor. In the meantime, results from a system model alone

can be used to develop intuition about system performance as a function

of J, P, S, C, and the fault descriptor as well as to help identify the

essential characteristics of a useful fault model.
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The remainder of this research will deal only with the system
model. The faulting of the job workload will be assumed to be
representable by various probability distributions, and the fault
descriptor will be a function of the first two moments of these
distributions. In particular, the mean, A , and the squared coefficient
of variation, K, will together describe the faulting process. By
including a measure of the variance of the process in addition to the

mean, a wider range of faulting behavior can be studied.




2. MODEL DEVELOPMENT

L ] [ e ¢

The goal of this chapter is to develop an effective model of system
performance. Performance is measured in terms of throughput, T, which
is defined to be the average number of processors in the system doing

useful work. Any time a processor spends in operating system overhead

does not constitute useful work. The approach used involves the use of
existing and new subsystem models, which are then utilized in a single
model for system performance. This system model is evaluated by

comparison to performance data supplied by detailed simulations of the

system.

Analytic models are especially attractive because they provide
ingight into the functional dependencies of the system. In particular,
it is possible to discern directly the effects on throughput, T, of any
system parameters, singly or in combination. With this knowledge comes

P a better understanding of the underlying mechanisms of system operation,

rather than just the numerical tables provided by simulation alone.

The analytic models derived in this chapter require certain
assumptions about and simplifications of the system. As such, their
accuracy is questionable. In order to check accuracy, a simulator was

written, in SIMULA, to obtain precise values of system performance for a

R 1R S IO <+ A A N e TN b R T R
L]




I .

L g i AOSRERE  E R ERATAL Y SRR G 0 I ST 7 o 3 v — .

19
range of values of the system parameters [BIRT?}, CDC?S].

Chapter 2 first describes the details of the simulation of the
system and then proceeds to develop the analytic models. In particular,

a model based on deterministic scheduling is derived and augmented with

models of the paging drum subsystem. Finally, models for processor ;

queue delay are discussed.

2.1 System Simulation

In order to check the accuracy of analytic models of the system and

provide insight into the operation of multiple processor systems, a

simulator was written to provide a large performance data base. A

summary of the data from each simulation run 'is provided in the

- appendix. Written in SIMULA, the simulator accurately describes the
flow of Jjobs through the system. Jobs are represented by a fault

distribution. The simulator draws fault times from a given interfault

time probability distribution by using a random number generator. The

actual operation of the drum is described. FEach sector queue is dealt 1

with as it rotates by the drum heads. TFaulted jobs 1leaving the

processors are assumed to be uniformly distributed among the drum sector
queues. Thus the simulator uses another random number generator to
assign faulted jobs to sector queues. Inputs to the simulator include
the system parameters S, P, J, and C; fault distribution parameters A\ ,

and K; and seeds for the various random number generators. The




20

simulator collects and prints statistics related to the operation of the
system. Measures collected for the processors include processor busy

time, idle time, and overhead time. Busy time refers only to the time a

processor is busy doing useful work. For each queue in the system, the
mean length and the mean time a job spends in the queue are determined.
For the drum, the utilization and total number of faults serviced are
recorded. The flow of jobs from the processors to the drum subsystem is

characterized by its mean and its squared coefficient of variation. 1In

addition, statistics such as the observed fault rate are taken to check

on the distributions derived from the random number generators.

Numerous configurations of the system were simulated. The number
of processors, P, the number of jobs, J, the number of sectors, S, and
the overhead time per fault were widely varied. The faulting behavior
of the jobs was defined either by an exponential distribution or a
two-stage hyperexponential distribution, so as to cover a wide range of
behavior. The mean fault rate for the fault distributions was also
greatly varied. In all, 195 different simulation runs were completed.
An attempt was made to cover the range of system behavior from lightly
loaded to saturated as each of the parameters was varied. Also, most
simulation runs executed for several thousand faults. The primary
exceptions to this runtime were some two-stage hyperexponential
distributions. The two distributions differed by several orders of
magnitude and the slower of the two only generated around 500 faults,

but the total number of faults generated was over 20,000.

8
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2.2 System Model

2.2.1 Deterministic Schedule Model

As a job flows through the system, it visits four sites in the
system: one of the P processors for useful runtime and for fault
overhead (the time spent by the operating system to service a fault),
one of the S sector queues, the drum for actual transport of the page
needed, and the processor queue to wait for a free processor. The time
that a job takes to travel once around the system may be called its trip

time. In general then, the average trip time, t, is given by

1 (2-1)
=< +Q, +
=3 +CH1+Qy+Q,

where Qd and Qp are the mean wait times at the drum and processor
queues, respectively. If the restriction is made that the time spent at
each of these sites is constant and equal %o the mean time spent at that
site in the idealized probabilistic system, a deterministic schedule may

be applied to determine the system throughput.

In such a deterministic system, there are two regions of operation,
processor saturated and processor unsaturated. When the processors are
saturated, or continuously occupied, each processor provides a job 1/\

useful runtime followed by C overhead time before starting the next job.

Thus, the throughput is equal to the percentage of time each processor
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spends doing useful work, (1/1)/((1/X) + C), times the number of

processors, P. Since the maximum throughput of the system occurs when

the processors are saturated, then

P i

T < I (2-2)
k(x + C)

If the processors are unsaturated, them no job returning to the

processor subsystem need wait for a processor to become free. In this

case, Qp, the processor queue wait, will be zero. The trip time, t, is

now given by
t=l+c+1+Q (2-3)
A d - ’

In one trip time, a single job receives one interfault time of useful

service, 1/A. TFor J jobs in the system with no interference, J/ XA I

useful work is done in each trip time, ¢, so the throughput of the

system is upper bounded by J/( \t).

Since each case gives an upper bound, the actual throughput, T, is
then upper bounded by the minimum of the two cases:

BJ |

T - (2-4)
max[J(K +C), P(-): +C+1 +Qd)]

T <

To show that the throughput for deterministic schedulixig with constant
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service and queueing times is exactly equal to equation 2-4, it is only
necessary to show the existence of one schedule which will achieve that

throughput.

A schedule which achieves this maximum throughput is illustrated in
Figure 2-1. PFirst, run all jobs, 1 to J, in succession on P1, the first
processor. As each job completes its (1/\) + C runtime, place it at
the drum for a time of Q; + 1. Then place each job in the processor
queue for Qp. Note that for a deterministic system, Qp is zero if the
processors are unsaturated. As jobs return to the processor subsystem,
run them in succession on processor P

21 followed by the same wait at the

drum and at the processor queue. Continue this procedure on successive

processors through PP‘ Then restart the schedule on P1.

Now, consider the time, Pt, between successive restarts of job 1 on
processor P,. This time is P((1/0) + C +1 + Q) in the case of
unsaturated processors (Figure 2-ta) and is J((1/2) + C) in the
processor saturated case (Figure 2-1b). The total amount of useful
runtime during the cycle is PJ/A in either case. This analysis results
in the throughput specified in equation 2-4, so the throughput of the

system is given by

PJ
.y
T = - 1 . (2-5)
max[J(3+C), P(F +C +1+Qy]

The condition for saturation of the processors is given by

B,
>
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PG +C+1+Q,) )
A d (2-6)
J= - .
K+C

The numerator of the right hand side represents” the total availabhle
processor execution time over one trip time. J multiplied by the
denominator of the right hand side is the total processor ;xecution time
needeé by the J jobs in one trip time. Thus, if the total time needed

by the J jobs exceeds the total time available from the P processors,

the processors will be saturated.

2.2.2 Application of Deterministic Model

The deterministic model described above ié exact for a system in
which all events occur at constant time intervals. But in the system
under study, the operation of the system components is determined
probabilistically. In particular, the service time of a job at a
processor varies probabilistically. This variation in turn affects the
flow of jobs around the system and thus also affects the time that jobs
spend waiting in the queues. In particular, it is possible to have
non-zero processor queue wait, Qp, even though the processors are
unsaturated. This phenomenon occurs when the processors are saturated
part of the time but not always. When Qp is included in a job”s trip

time, the model throughput becomes

)4

A -
T = > _ . (2-7)

max(J( + ), PG +C + 1+Qy +Q)]
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This version of the model will be referred to as the deterministic model
from here on. The deterministic model is exact for the probabilistic
system if the A, C, Q, and Qp values used are exact averages.
Accurate estimates of Q, and Qp need to be expressed as functions of the
basic parameters, while A and C are assumed as basic parameters. In
fact, if Qp and Q; are accurate, the unsaturated case will always
accurately predict throughput, because Qp will increase as the system
moves into saturation and cause both terms in the denominator of
equation 2-7 to be equal. The limit imposed by the saturated case is
only necessary to avoid overestimation of throughput by an inaccurate

model for Qp in the unsaturated case.

To evaluate the accuracy of the deterministic model, values were
gelected for the ;;arameters of the model and the throughput predicted by
the model was compared to the throughput determined by the simulations
of the system. TFor the service timeé; the mean time spent at the server
is used. Thus, the service time at a processor is taken to be the sum
of the mean interfault time and the operating system overhead time,
(#/x) + C. For the drum, the service time is simply 1 job/sector-time.
The values for Qp and Q; are taken from the data collected by the
simulations. 1In this way, the closeneas of the model”s prediction of
throughput <to the simqlation results may be ascertained, under the
assumption that both Qp and Q; can be accurately modeled later. All
errors will be expressed as relative errors, i.e., the differerce

between the model value and the simulation value, divided by the
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simulation value.

When a comparison is made between the throughput obtained from the
model using Qd and Qp from the simulation and the throughput provided by
the simulator, a very good fit is obtained. In particular, the maximum
percentage error in throughput over the 195 points of data from
simulation runs is 6.5%, and the average error is only 0.98%. Ninety
percent of the cases have an error less than 3.0% (This error will be
referred to as the 90% point error.). This error results primarily from
the accuracy of some of the simulation runs. In particular, when large
interfault times are simulated the cost of each run increases
drastically, and the total number of faults simulated is not as large as
for other cases. For 1large interfault time cases, the measured
interfault time from the.simulation sometimes differs noticeabdbly from
the input value. To check this effect the actual interfault time which
occurred for each simulation run can be used in the model. Because of
the end effect of the simulation, an exact value for interfault cannot
be obtained, but minimum and maximum values can. When each of these is
used in the model, the throughput reported by the simulator falls
between the minimum and maximum throughput predicted in 169 of the 195
cases. For an additional 19 cases the error is only plus or minus 0.01,
which is the least significant digit reported by the simulation. The
predicted throughput is off by more than 0.01 in only 7 cases, and the

highest error is 0.09 out of 6.99, or a relative error of 1.3%. This

suggests that the form of the deterministic model is quite accurate at
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predicting system throughput. If we accept such an error level, it now

remains to find suitable formulas to predict both Qp and Qd.

2.3 Drum Queue Wait Models

For the paging drum with a queus per sector, two models were
discussed in section 1.5. Coffman obtained an accurate model for the
time spent waiting in the queue when the arrivals to the drum are a
Poisson process. Adams, Gelenbe, and Vicard derived an approximate
model extended for non-Poisson drum arrivals characterized by their mean
and squared coefficient of variation. These models were both examined

as candidates for Qd in the deterministic system model.

Repeating equation 1-1, Coffman”s model for drum queue wait, Qd, is

X
= -S- d X
Q"7 *3 - ) (2-8)

Although the arrivals to the drum may not be Poisson distributed,
Coffman”s model may be a good estimate of Qd‘ The only unknown in
equation 2-8 is A,, the mean arrival rate to the drum. If the
throughput, T, of the system were known, however, the mean flow of jobs
from ' the processor subsystem to the drum could be calculated. Given
that T processors on the average are busy doing useful work and that the

mean flow rate from a usefully busy processor is A, then the mean flow

rate from the processor subsystem is
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=T - (2-9)

Using this value for )‘d gives

_s STA
QY=2%2a - ™

(2-10)

The drum model developed by Adams, Gelenbe, and Vicard, denoted by
AGV, is a source of potential improvement because it considers the first
two moments of the drum arrival process. As mentioned in Chapter 1, the
AGV model does not include the rotational latency term, S/2. Without
this term, the model —predicts drum queue wait well only when the wait is
significantly larger than S/2. Since the form of the AGV model closely
follows that of Coffman”s model, an S/2 term can be added to improve the
prediction of Q; under 1lightly loaded conditions. Note that when
Kd = 1, such as for Poisson arrivals, this augmented model reduces to

Coffman”s model. A general form for the drum queue wait of both models

is

(s +K4- 1)TA

S — -

with K; set equal to 1 for Coffman”s model. Q; from equation 2-11
(using the value of throughput from the simulations) can be compared to
the value of Q; from the simulations. When K; is set equal to 1

(Coffman”s model) the average error over all of the simulation runs is
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13.7%. Using K4 derived from the simulations (AGV model), this average
error is reduced to 10.5%. The 90% point error is 33.2% for the Coffman
model and 24.0% for the AGV model. When Qd is small, the error is less
than this average figure. The worst predictions occur for large values
of Qd' and the maximum error is 3%60% for Coffman”s model and 322% for
the AGV model. Note, however, that large values of Qd occur when the
denominator of equation 2-11 is small and there is great sensitivity to
changes in T. The estimation of Qd will be improved using the
deterministic model for T, later in this section. Preliminary error

figures are summarized in Table 2-1.

To examine the effects of +these drum gqueue models wupon the
deterministic model, equation 2-11 may be substituted into the
deterministic model (equation 2-7) for Qq» vielding T as a function of
T. This new formula results in a quadratic in T for the unsaturated
case:

R,-1

J
)\(.1.+c+1 +Q -%—)TZ-(%+C+§-+1+QP+J)T+3\' =0 . {2-12)
A P

The roots of this formula are

S V/— S 2 Kd.1
& EX-X 1 -4_]’ A- —
A+S+IEV(A+] ) ( 7 ) (2-13)
T= K,-1 ’

ZX(A-%—)‘

where A =1/%\ +C + 1 + Qp. But only one of these roots is

interesting. By examining the formula for Qd, equation 2-10, it is
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Table 2-1.

Preliminary Drum Queue Model Accuracy

(see equation 2-11)

Model Source Q Error (in %)
of
l 7 Maximum Average 90% Point
I Coffman simulation 360 13.7 33.2
AGV simulation 322 10.5 24.0
I
i
- NI 14
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obvious that a value of T which is greater than 1/A ca.uses Qd to be
negative. In other words, it creates a situation in which
Aq =T\ > 1, or the arrival rate to the drum exceeds the service rate
of the drum. Careful examination of equation 2-13 reveals that the plus

sign root always yields a value of T greater than 1/\ , which can be

shown in the following manner. Suppose the plus-sign root of T is not -

greater than 1/}\ and show a contradiction, i.e.,

R.-1
s / s, .2 4
ardised e 2oy 2—
2 @ra*d-d@-—=m) (2-14)
R,-1 o
4
2 (A= =)

wvhere A =1/ +C + 1 + Qp. For the time bé;i.ﬂg, assume that
A - (Kd - 1)/2 is positive, so the sense of inequality 2-14 remains
unchanged when multiplying by this factor. If the square root is

isolated on one side of the inequality, then

K.-1 K,-1
d d__ S .
+ x/(A+%+J)2—4J(A- 5—) £ 2(A-—5) sA-g T (2-15)

To reach this step, both sides have been multiplied by A - (Kd - 1)/2.

Now, squaring both sides and collecting terms yields

&1 -
2(s+1(d- 1) - —5—) £0 . (2-16)

Since we assumed that the last factor was positive and since S is always

a positive integer, equation 2-16 is contradicted. If A - (Kd - 1)/2

A
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woere assumed to be negative, equations 2-15 and 2-16 would still result,
but with the sense of the inequality reversed and inequality 2-16 would
again yield a contradiction. Thua the positive sign root in equation
2-13 is never of interest. A similar procedure also shows that the
minus-sign root always yields a value of T less than 1/A. Therefore,

the negative sign in equation 2-13 provides the root of interest.

Bvidence regarding the accuracy of equation 2-13 under various
assumptions is sgummarized in Table 2-2. Equation 2-13, with Kd = 1,
provides an estimate for system throughput using Coffman”s model for Qd'
This estimate is compared with the simulation results to check its
accuracy. Since Qp remains as an unknown, the value for Qp is taken
from the simulation results. For the 195 simulation runs, the 90% point
error is 4.0% and the maximum error is 19%, compared to 6.5% when Qd was
also taken from the simulation. Yet, the average error for the runs is
only 1.7%, less than twice the 0.98% error with Qd directly from the
simulation. Note that this average error is the average of the
individual error magnitudes so positive and negative errors do not
offset each other. Even though Coffman”s drum model assumes Poisson
arrivals, which is not the case in most of the data, a reasonably close

eatimate of system throughput is obtained.

This particular model for T may 4dlso be compared under the

assumption that processor queue wait, Qp, is negligible. 1In this way,

the model is only a function of the input parameters and no data is

S RSt L ey s e S R .-
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Coffman

Coffman

AGV

AGV
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Table 2-2.

Throughput Model Accuracy

(see equation 2-13)

Source T Error (in %)

of

Qp Maximum Average 90% Point
simulation 6.5 0.98 3.0
simulation 19.0 1.7 4.0

0 : 50.1 3.0 6.6
simulation 9.3 1.4 3.2

0 50.1 2.7 5.8
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needed from the simulations. When Qp is set to zero, the average error
is 3.08, the 90% point error is 6.6%, and the maximum disagreement
between this model and the simulation is 50.1%. This maximum error case
is one of only 14 which yield errors greater than 10%. In each of these
cases, there is a significant amount of processor queue wait even with
the processors occupied less than 90% of the time on the average. In
order to have significant processor queue wait without having saturated
processors, there must exist significant periods when the processors are
all occupied and periods when some are idle. This phenomenon occurs
only when the flow of jobs to the processor subsystem is very
bursty(uneven). Of these 14 cases with high error, only one occurred
when the simulation fault distribution was exponential. The remainder
occurred with the much more bursty hyperexponential distribution. Also,
only 3 high error cases occurred when the system had more than one
processor, because the effective fault process is less bursty with
multiple processors. If only the simulation cases with more than one
processor are examined, the maximum error is 22.3%, the 90% error is
3.2%, and the average error is 1.6%. When the same model is used but Qp
is taken from the simulation, the cases with more than one processor
average a 1.1% error with a maximum error of 8.3% and a 90% point error
of 2.7%. Thus this model is quife accurate for most cases with more
- than one processor, even though processor queue wait is assumed to be.
negligible. As the number of processors increases, the flow of’ jébs

through the system tends to exhibit a more even character, which more
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accurately fits the model assumption of deterministic flow.

To examine the accuracy of the AGV model, K. can be derived from

d
the simulation data. When this evaluation is done, and also assuming
that Qp is zero,.the average error for all the simulation rumns is 2.7%,
the 90% point error is 5.8%, and the maximum error is 50.1%. The
maximum error is the same for Coffman“s drum model, while the average
for Coffman”s model is 3.0%. Thus, there is a very slight improvement
in overall accuracy. The maximum error remains unchanged because it is
due to the error in processor queue wait. Very few of the cases are
inaccurate because of poor drum queue wait estimation. In fact, Qd is
often only a very small part of the trip time, so even a large relative
error for Qd does not cause significant error in T. Those cases in
which the AGV  model <cause improvement occur primarily for
hyperexponential fault distAributions, but even then, the improvement is
9light. A few cases exhibit salightly greater error with AGV than with

Coffman”s model, but this effect is probably within the tolerance of the

simulation error.

If the AGV model is used along with an accurate figure for
processor queue wait taken from the simulations, the average error is
reduced to 1.4%, the 90% point error is 3.2%, and the maximum error is
9.3%. Using Coffman”s model these figures are 1.7%, 4.0%, and 19.0%,
respectively. Again, the average error only improves slightly.

However, the maximum error is halved. It should be noted that only in 5
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out of 195 cases does the Coffman model yield an error greater than the

maximum of 9.3% with the AGV model.

The model for Qd in equation 2-11 requires a value for T. Earlier
in this section, the value for T from the simulation was used to look at
the accuracy of this model. After equation 2-11 has been incorporated
into the deterministic model, however, another value for T is available.
If T from the model is not equal to T from the simulation, then the
deterministic model has implicitly used a different value for Qd. Note
that, in the region of interest, Qd increases as T increases. Also,
from equation 2-7, T decreases as Qd increases. The combination of
these two formulas in essence creates a situation of "negative feedback"
vhich acts to reduce Qs extreme sensitivity to T described earlier.
In particular, the prediction accuracy of the drum queue models can be
compared to the simulation data when T from the determinisfic model is
used to compute Qd' Under these conditions and setting Qp to zero, both
average and maximum errors are reduced. With Coffman”s model, the
average error is now only 8.7%, the 90% poirt error is 28.3%, and the
maximum is 64.4%. The AGV model achieves an average error of 6.4%, a
90% point error of 28.3%, and a maximum of 51.3%. These values are
listed in Table 2-3, along with the earlier data from Table 2-1.

Virtually all of the improvement occurs in cases where Qd is large and

very sensitive to changes in T.
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I Table 2-7.
Drum Queue Model Accuracy ’
(see equation 2-11) v
Model Source Source : Q Error (in %)
of of
T Qp " Maximum Average 90% Point
Coffman simulation - 360 13.7 33.2
. AGV simulation - 322 10.5 24.0
¥ 1
» |
‘ Coffman model® 0 64.4 8.7 28.3
Coffman model™ simulation 64.4 8.3 19.0
: AGY model” 0 51.3 6.4 28.3
i
, i AGV model®  simulation  51.3 5.8 19.0
- Iv '
. see equation 2-13.
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Since Qp was set to zero, it is possible that the model for Qd
might in fact be overestimating Q,, thus partially covering for setting
QP to zero. In fact, a comparison between Qd from the simulation and
the drum queue models using T from the model with Qp provided by the
simulation has even lower average error than before. The average error
is nov 8.3% for Coffman”s model and 5.8% for the AGV model. The maximum
and 90% point errors remained unchanged, and these results are also
listed in Table 2-3. Also, in the system under study, it is unlikely
that significant queue wait occurs at both drum and processor queues.
When the system is processor bound, the drum queue wait will be quite
small, and when the system is drum bound the processor wait will be
negligible. Furthermore, when the value for Qp from the simulation is
included in the deterministic model, ¢the model”s prediction of

throughput improves, as shown in Table 2-2.

Although the AGV model does provide some improvement in throughput
prediction, it requires an estimate of the squared coefficient of
variation of the drum arrivals. To date, no suitable estimate based on
system parameters and throughput has been found. Therefore, the
deterministic model utilizing Coffman”s model for Q, (equation 2-13 with
Kd = 1 and using only the minua.root) remains the only estimator of

system throughput which is only dependent on the system parameters.




2.4 Processor Queue Wait Models

The primary source of error remaining in the analytic model is the

lack of a model for processor queue wait. In this section potential

models for the queue wait at the processors, Qp are presented. In
particular, two models from queueing theory are discussed. For the 1
entire processor subsystem, a Markov model is derived which does not

require explicit description of queue wait.

2.4.1 Queueing Theory Models

-

The primary source of error remaining in the analytic model is the
') lack of a model for processor queue wait. A simple model which might
. yield a useful estimate is the M/M/4 queue. This model, however, makes

. ’ three assumptions which are not valid for the system under study: ?v
arrivals to the processor subsystem are assumed to be Poisscn

distributed, the service distributions are assumed to be exponential,

and only one processor is assumed.

:1 The queue waiting time for an M/M/1 queue is given by

! Q, =

. T Ay (2-17)
N W)

vhere )‘p is the mean arrival rate to the processor subsystem and u-p is

the mean service rate of <the processor subsystem. Since Jobs are

| e S

conserved in the system, the average flow of jobs leaving the processor
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subsystem is equal to the average flow of jobs arriving. Therefore,
xp =X\ TTA (2-18)
Now, ﬂp must be related to the service rate of the processors. The

simplest approach is to equate it to the aggregate service rate of the

processor subsystem:

o = T ic . (2-19)
A

BEquation 2-19 has effectively replaced P processors with a single
processor P times faster. Under these assumptions, substitution of
equation 2-17 into the deterministic model, along with Coffman”s model
for Q, (i.e., equation 2-12 with Ky =1 and Qp replaced), yields a
third-order equation in throughput. Comparing the predictions of this
model with the simulation data, a very poor fit is obtained. 1In
particular, significantly better results occur when Qp is set to zero,
as described in section 2.2.3. The use of an M/M/1 model for processor
queue wait overestimates the actual wait in almost every case. This
overestimate is reasonable because in fact a single processor system of
equivalent processing capability will have larger Qp than a
multiprocessor system. The multiprocessor system has zero processor
queue wait until more than P jobs are in the processor subsystem, while

the uniprocessor system has some queue wait with 2 or more jobs in the
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subsystem. The best fits with the M/M/1 model occur for systems of one

processor, as might be expected.

A reasonable extension of this approach is the use of an M/M/m
model for processor queue wait, thus explicitly dealing with multiple
servers. However, the expression for queue wait in such a system does
not have a simple form [COFF73] and cannot be easily incorporated into

the deterministic model.

2.4.2 Markov Model

In a system utilizing a paging drum, the drum model need only
update its queues at intervals of one sector-time, which is also the
basic unit of time in the model, Within each of these intervals it is
only necessary to know the number of jobs which have arrived,.ignoring
their specific arrival times. Also, the drum can only return jobs to
the processor subsystem at the end of each sector interval. So it is
reasonable to consider modeling the flow of jobs departing the processor
subsystem (and, thus, arriving at the drum) in a quantized fashion,
based on the number of departing jobs per sector-time. In particular,
such a model might be embedded in a simulation of the complete system to

reduce the complexity of the simulator.

In the general case, the description of the processor subsystem at
the start of a sector interval needs to include the number of jobs in

the processor queue waiting fqr a processor, the number of processors,

Sy m———
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the number of jobs currently running on processors, a descriptor of the
faulting process, and the time remaining before each running jobd faults.
A model which keeps track of each running job”s time remaining to fault
(which may extend over many sector-times) essentially stores all the
information needed to fully simulate the system. A standard Markov

model would be large and intractable due to its large state space.

If the distribution of faults is restricted to the exponential
distribution (a common assumption) it becomes possible to consider each
sector interval independently. The "memoryless" property of Poisson
processes states that at any arbitrary point in time the time rquining
vefore a job”s next fault is independent of the past history of the Job.
Therefore, any job which is running on a processor at the end of the
current sector interval may, in effect, be restarted at the start of the
next interval. ©Now the model of the processor subsystem must deal only
with the total number of Jjobs in the subsystem, the number of
processors, and the fault descriptor which is now an exponential

distribution with mean rate A .

If the number of jobs in the subsystem were not 1limited, all
processors would be continuously active and the number of jobs faulting
would be described by a Poisson distribution. Ai’ the probability that

i jobs fault in one sector-time would be given by:

i
s o= QR AP (2-20)

AP Levlil P A SR A i A Y
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To find the actual probability distribution of the number of jobs
faulting in one sector-time, it is necessary to consider the restriction
imposed by the finite number of jobs in the subsystenm, Jp. Let P be
the probability that i jobs finish in one sector-time given Jp jobs in
the processor subsystem at the start of the sector interval. This case
may be related to the infinite job case by considering a subsystem in
which there are an infinite number of jobs, but the first Jp jobs are
"real" and all remaining jobs are "imaginary”. The pi’s may then be
computed using the Poisson distribution in combination with a discrete
time Markov chain. During a sector interval, real jobs are allocated to
processors until every real job has at least been started on ‘some
processor. After this ©point, imaginary jobs are allocated to
processors. For the cases in which no imaginary jobs have been started
on any processors, gnly real jobs can fault, so p; = Ai when i is less
than or equal to Jp - P, since in this case only real jobs have been
started. When i is greater than Jp - P, at least one imaginary job has
been started and the value of Ai may include imaginary jobs. In order
to compute the effects of imaginary Jjobs, a state diagram is
useful (Figure 2-2). The states are labeled with the number of real jobs
which have faulted. The number of state transitions required to reach a
state along any possible path determines the total number of jobs, real
and imaginary, which have faulted. The ‘arc labels denote the
probabilities of reaching the next state at the next fault. In other

words, at state i the self loop describes the probability that the next
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fault is caused by an imaginary job. The transition arc to a new state

is taken when a real job faults.

In the case of i = Jp - P + 1, one or more imaginary jobs may have

faulted. By examining the state diagram, there are an infinite number
of paths leading to the state Jp - P + 1. This effect occurs because
once imaginary jobs have started any order of faulting of imaginary and
real jobs is possible. The probability of i real jobs faulting is the
sum of the probabilities of all paths leading to state i each multiplied

by the Poisson probability of k jobs faulting, where k is the number of

% ) state transitions in that path. For i = Jp -P+1,
h . 1> 1\
. = =\ = + . . . -
L’:“: Py T Ay - P+1+<P/'AJ - P2 +<P> Ar -3 ’ (2-21)
b : : :
‘}‘ I eral, for J_ - P i <= .
'; n geun ? < i Jp,
’ 1 i~(J_-P)
l‘(J}‘P) L P
‘ Pk [ <1> \
- t X + (= A,
P, { R SRR >_ I1 Aiw
w=L Jlsl

i-(Jp-P) i-(Jp-P)

. "'(%)2 z (34 Z (Gphgep)) + - ]

, 3 = (2-22)
: P iyt I271

In this manner, values for each of the pi’s may be obtained, thus

defining the job fault distribution for one sector-time.
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For i greater than Jp - P, the value of p; involves an infinite

sum, and no closed form has been found. To find numerical values, it is
necessary to terminate these infinite sums. It is possible to terminate
the sums in such a way as to find both upper and lower bounds on the

Pi s.

In order to obtain a lower bound, choose some integer n and define
a new set of probabilities, Al,. Let A', = A, for values of i less than
n. Then, Aln is set equal to the sum of the Ai's for i greater than or
equal to n, and the Ali’s for all i greater than n are set to O. The

use of the Ali's will result in a distribution for a set of pl

i’s vwhose
cumulative distribution is never below the cumulative distribution of
the original P;“s. The distribution of pli’s thus overestimates the

number of jobs faulting. As n is chosen larger, the bound becomes

tighter.

An upper bound may be achieved in a similar manner. Define a set
of Aui’s such that Aui = A;, for i between O and n. The Aui's for i
greater than n are set to 0. Using equation 2-22 yields values for a
set of pui’s. This assigmment will effectively reduce the pui‘s for
Jp -P<ik« JP. In order for the pui's to sum to one, set
JP-I
u u
Py =1~ Zpi : (2-23) -
P =0

Thus, the probability of all Jp jobs faulting is increased and the
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probability of from Jp - P + 1 through Jp -1 Jjobs faulting is
decreased. This assigmment yields a cumulative distribution which is
always less than or equal to the cumulative distribution for the pi’s,

so it provides an overestimate, or upper bound, on the number of

faulting jobs.

Unfortunately, there are several drawbacks to the use of this
model. Since no closed form has been found, it would be necessary to
calculate both the upper and lower bounds in order to verify the
results. In addition, the model is 1less useful to describe the
processor subsystem in a simulator than simply using random number
sequences to generate the actual fault times of the individual jobs. To
use the subsystem model in a simulator, tables of the pi‘s would need to
be generated and stored for all possible values of Jp, from 1 to J.
Alternately, a single distribution of the pi’s could be calculated at
each sector-time, bdbut this would be very inefficient. Also, this
subsystem model is valid only for exponentially d}stributed faults,
while the use of a random number generator allows any distribution which
can be derived from a uniform distribution to be used. TFor these
reasons, the processor subsystem Markov model was not utilized in the
simulator of the system. However, this model does provide a different
perspective of the operation of the processor subsystem in the presence

of exponential faults.
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2.5 Final System Model

The deterministic model developed in section 2.2 is the basis of
the final model. In particular, that deterministic model with Coffman”s
model for the drum subsystem is 'used in Chapter 3 to examine the
performance of multiprocessor systems. The throughput of a system is

given by

1
+C+S+1+J / +c+ +1+J) -4J(-+C+1) Py

) 1 J -24)
-)'\'+C

T = min

2k(x+c+l)
The first case is derived from equation 2-13 with Kd = { (Coffman”s
model), Qp = 0 (no satisfactory processor queue delay model), and the
negative sign selected. The second case directly corresponds to the

processor saturated case of equation 2-7.
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3. ANALYSIS OF RESULTS

Given the model developed in Chapter 2, one can easils' examine the
performance of multiple processor systems as a function of the system
configuration and workloﬁd. In this chapter, the analytic model of
throughput presented in equation 2-24 is used to look at several aspects
of system performance. Where applicable, data from the simulations is

provided for comparison.

First, the performance of the system as a function of each of the
system parameters (P, S, J, C, and A ), individually, is discussed.
Next, three interesting trade-offs are examined. The relationship
between the number of jobs, J, and the fault rate, A , is a factor in
systems in which the Jobs in the system must share a fixed amount of‘
primary memory. Other trade-offs discussed involve the number of
processors in the system. For instance, a system with many processors
is compared to more conventional single processor systems. Finally,

using P processors to achieve a P-fold performance improvement over a

single processor is examined.
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3.1 System Parameter Sensitivity

In +this section, the graphical data presented describes a
particular range of systems. The "base system"” for this data is a
system with ‘16 processors, a 32 sector drum, 32 Jjobs, an interfault time
of 32 sectors (one drum revolution), and negligible processing overhead
per fault. As each parameter is examined, the remainder of the
parameters wil. usually remain fixed at their initial value, but some of
the other parameters may take on multiple values to better illustrate
system behavior. Por instance, interfault time often takes on ‘several
values in order to show the range of system behavior from drum bound to

processor bound.

First, the dependence on the number of jobs in the system is
examined. Figure 3-1 shows some typical values of throughput for a wide
range of J for gaveral values of 1/\, the interfault time. It is
generally desirable to operate a system with just enough jobs to keep
the system at or near saturation. This crossover point is defined by
equation 2-6. The syatem for the data in Figure 3-1 has 16 proceassors,
32 drum sectors, and negligible processing overhead per fault (C = 0).
The interfault time, 1/A , ranges from 8 sector-times (one-fourth of a
drum revolution) to 128 (4 revolutions). For high interfault times,
such as 1/) = 128, the system is very nearly saturated with as few as

one job/processor (J = 16). This phenomencn occurs for interfault times

equal to 4 drum revolutions or greater. With moderate interfault times,
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such as 1/\ = 32, the system exhibits a nearly 1linear increase in
throughput until around J = 32, or two jobs/processor. As interfault
times continue to decrease the performance of the system begins to be
limited by the drum. Fgr instance, with 1/A = 16, it would take an
infinite number of jobs to saturate the processors. This occurs because
the service rate of the drum is 1 job/sector-time and the 16 processors
request drum service at a mean rate of 1 job/sector-time only when fully
utilized for this interfault time. For interfault times less than 16
the system is drum limited such that full processor utilization is not
possible. Here, the system throughput is bounded by the service rate of
the drum (also the arrival rate to the processor subsystem). The rates
of job flow from the processor subsystem to the drum and from the drum
to the processor subsystem must be equal. In general, throughput in the
drum-limited case approaches an asymptotic value which is derived by
getting the maximum flow rate of jobs leaving the processor'subsystem

equal to the drum service rate, or

P
1
X.+C

=1 . (3-1)

For example, with an interfault time of 8, a drum service rate of 1, and
C = 0, the processor subsystem can deliver up to 1 job/sector-time with
8 processors. So drum throughput limits the throughput of this system

to T = 8.

ST 7% wcaner 1y o T8 S ONIREIIS =0 PRI WPV 5 T W
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Also in Figure 3-1, the behavior of the system for fewer than }
job/processor is shown. In this region the model is highly accurate,
since the assumption of no waiting time in the processor queue is always
true. Several discrete data points from the simulations are presented,
and they agree with the model”s prediction of performance quite closely
(The "+" points correspond to exponential fault distributions and the
"#" points to two-stage hyperexponential distributions with K = 16.).
Even such a large change in K from ! to 16 has little effect on system
performance, suggesting that information about the second moment of the

fault distribution may not be necessary.

The variation of T with changing interfault time, 1/\ , is depicted
in Pigure 3-2. Again, this graph depicts P =16, S = 32, and C = 0.
t/\ ranges from ! sector-time to 128 (4 drum revolutions). Separate
curves are drawn for 1, 2, and 3 jobs/processor (16, 32, and 48 jobs,
respectively). With one job/processor, the throughput follows the
interfault time in a smooth curve. Since there are no "extra" jobs in
the system, there is no processor queue wait and any time a job spends
at the drum causes one of the processors to be idle. Thus, as the ratio
of processor service time, 1/A , increases with respect to drum service
time, each job spends an increasing percentage of its time executing on
a processor. This behavior continues in cases with more jobs in the
system, except that now the "extra" jobs allow the processors to be
occupied even when some of the jobs are being serviced by the drum.

From Figure 3-2, as few as two jobs/processor allows the processors to
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be fully utilized when the interfault time is about 36, or slightly over
one drum revolution. Additional jobs, such as three/processor, provide
notably enhanced performance only in the range of interfault times of
one-half to one revolution. The value of J which causes the processors

to saturate is given in equation 2-6.

In Figure 3-3, the relationship between throughput and the number
of processors, P, is shown. The solid lines correspond to systems with
16 jobs and dotted lines denote 32 job systems. In each case, two
different interfault times are plotted. The diagonal line in the graph
represents the processor saturated case, where T = P. Upon examination
of equation 2-24, P only explicitly appears in the term for the
processor-saturated case. In the processor-unsaturated term, the number
of processors does not appear because Qp, the processor gueue wait time,
is not specified in the model. For fixed J and 1/%, as P increases the
throughput increases until the system is no longer processor bound. At
this point, the system becomes bound by the number of Jobs in the
gystem, so the throughput is incapable of utilizing any additional
processors and the curve is a straight horizontal line. If either J or
1/ is increased, the processor' saturated region is extended to a
larger number of processors. To achieve high processor utilization, it
is undesirable to operate too far to the right of the processor bound
"diagonal 1line" in Figure 3-3. This intersection point Dbetween
saturation and unsaturation may be obtained by resolving equation 2-6

for P. The processors are saturated when

e
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The variation of throughput with a changing number of drum sectors,

S, is depictédrin Figure 3-4. For this graph, both 1/A and C are
expresséd in sector-times so0o -as S changes they remain unchanged.
However, the revolution time of the drqm changes linearly with S so
processor execution will not remain constant with respect to the
revolution time of the drum. As might be expected, the throughput tends
to decrease with increasing S,l>because of the additional rotational
delay for edch service. The potential decrgase in drum queué delay
brought about by spreading the arriving jobs among more queues is
negated by the fact that drum rotation time also increases linearly with
3. As'S tends to infinity, the throughput approaches zero, since the
drum becomes the bottleneck of the system and Qd goes asymptotically to
S/2. The top curve in Figure 3-4 remains at T = 16 only because the
particular values of J and 1/A require 3 > 128 before throughput begins
to degrade. The crossing of the two curves occurs because in one case
(1/% = 32) the throughput is more dependent on drum performance whereas
the case with a much larger interfault time (128) is mostly limited by

its number of jobs.

When both 1/)\ and C are expressed as constant multiples of a drum
revolution time, S, the performance of the system with changing S is

shown in Figure 3-5. Here, a change in S represents a change in density
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on the drum without affecting the rotational speed. As S increases, the
queueing delay caused by waiting for jobs which arrived previously
decreases because the jobs are spread over a larger number of sector
queues. Now, however, the average of one-half rotation of the drum
remains constant. This effect ﬁccounts for the general flattening of
the curves for large S. In addition, the service time at the drum
decreases with increasing S since S sectors can be read each revolution.
This benefit is most pronounced when the system is more drum-bound, as
in the curves for 1/A = S/4. When S is very small, both the service
'gime at the drum and the queueing delay caused by other jobs increases.
’fhe queueing delay increase is also most noticeable with a large number

of jobs.

The effects of non-zero processing overhead per fault, C, are
illustrated in Figure 3-6. Increases in C can only reduce system
perfornance. Wien the interfault time is low (1/} = 8) the system is
bound by the drum and changes in processor execution times have very
little effect on throughput, even when the processors are spending much
greater time in overhead than in doing useful work (C > t/\ ). For
larger 1/ A, though, performance can suffer considerably as U increases.
For 1/\ = 32 and J = 32, throughput is cut by almost half when C is
equal to 1/A . When the interfault time is increased to 128 the
throughput appears to suffer less as C increases, and this phenomenon is
simply due to the fact that for the data shown C is only one-fourth of

/A, at the most. Since the system is more processor limited as
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interfault time increases, the percentage degradation in performance for

a given ratio of C to 1/ A increases with increasing 1/ .

Subsequent sections of this chapter deal with trade-offs in system

e performance.

3.2 J vs. A Trade-offs

In this section, the relationship between the number of jobs in the
system, J, and the fault rate of each job, A , is examined. This

relationship is especially useful when discussing the effects of memory

size and memory allocation per job. As mentioned in Chapter 1, the
dependence of fault rate upon memory size and allocation is specified by
an as yet undetermined fault model. Since this research only deals with

the system model, the details and effects of memory allocation and size

Vot Gt W

~} ) are not known. Even with this restriction, it is possible to describe
% some meaningful dependencies related to memory. In particular, the
trade-off between interfault time, 1/A , and jobs, J, can be shown for
§ _ constant values of throughput, T. Thus, in order to maintain constant T
when either J or A is changed, the necessary change in the other
parameter can be ascertained. For a given system, the values of P, S,
C, and M (memory size) may be already chosen. Increasing the number of

! Jobs in the system will decrease the memory allocation assigned to each

job.
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In the processor-unsaturated region, equation 2-12 with Qp = 0 and

K4 = 1 may be rearranged for )\ , ylelding
C+DTZ 4+ (1 - C+E+14NDA+I-T = 0 . (3-3)

This second-order equation in X has two roots, but as before, one root

implies that Q; is negative. The remaining root is

C+§-+1+J-T-,\/(T-(C+%+1+J))2'4(J'T)(C+1) (3-4)

A= 2(C+ )T

Now, equation 3-4 may be graphed for several values of T while varying
Je Figure 3-7 shows this relationship in a system with P = 16 and
S = 32. Two values of C are used: O (solid lines) and 32 (dashed
lines). For the case of non-zero overhead per fault, C = 32, it is
possible for the processors to become saturated. The point at which
this relationship occurs was defined in equation 2-6. For values of J
greater than this saturation point, it is impossible to achieve the
specified value of T with a smaller value of interfault time. Thus, the
dashed curves in Figure 3-7 become horizontal lines to the right of the

roint of saturation.

For both C = 0 and C = 32, there are two general regions in Figure
3-7. VWhen the number of jobs in the system is small, the addition of
even a single job greatly reduces the interfault time which achieves the

same value of T. 1In this region, then, system throughput will generally
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increase when jobs are added to the system, unless interfault time
decreases even faster than shown in the graph. When the number of jobs
is large, interfault time must only decrease slightly as jobs are added,
if the value of system throughput is to be maintained. Between these
two regions, the system undergoes a transition }rom one region to the

other, in which system throughput is sensitive to changes in either

parameter.

Although the relationship between memory allocation and fault rate
is not xnown, an example of the performance trade-off with an assumed
relationship might prove informative. For simplicity, assume that the
fault rate of a job is linearly reléted to its memory allocation. In
other words, if a Jjob”s allocation is doubled, its fault rate will
halve. WNow interfault time can be expressed as a function of the number
of jobs in the system, assuming that the jobs share a fixed memory space
equally. If J doubles, the fault rate of each job, A , will double.
Using equation 2-24, fault rate A\ is now set to nJ, where n is a
constant. Figure 3-8 shows the dependence of throughput on J for three
values of n (0.00391, 0.000977, and 0.000244) and for two values of C (O
and 32). It is obvious that under the current assumptions, there is
often an optimum value for J. When C = O (solid lines) the processors
are not saturated until T = 16, and for two values of n this value of T
may be obtained. However, when n is large, corresponding to a higher
fault rate for a given J, the system throughput is bounded by the

operation of the drum and T decreases for increasing J greater than 15.
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When C = 32 (dashed lines) and n is large the same drum bounded effect
occurs but at a lower value of T, since some processor time is now spent
doing overhead. For somewhat lower values of n, though, processor
saturation becomes the limiting factor. When the processors become
satur;ted, adding jobs does cannot make the processor more busy, and
each job“s fault rate increases since it has a smaller memory

allocation. It is this increase in fault rate which causes T to

decrease.

The above example uses a simple linear relationship between J and
A. Although the actual relationship is probably much more complex, the
maximum attainable throughput for a system with fixed memory size can be

ascertained in a similar fashion.

3.3. Processor Trade-offs

<
In considering the processor section of a multiprocessor system,

questions arise concerning the performance of multiprocessor systems
relative to a conventional single processor system. First, how might
the throughput of a P-processor system compare to the same system with
just one processor which is P times faster than each of the multiple
processors? Second, how does the performance of P independent single

procegsor gsystems relate to one combined P-processor system?
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The first question, which deals with the replacement of a single
fast processor by many slower processors, may be viewed as replacing a
conventional large computer”’s processor with P tightly coupled mini- or
micro-processors. The speed of a processor is reflected in the
execution time of a job running on that processor. If a job running on

a processor executes for a period of 1/A + C, then it will execute for

‘a period of P(1/ X + C) on a processor which is a factor of P slower.

Throughput, as defined in Chapter 1, is expressed as the average number
of processors doing wuseful work. When comparing systems whose
processors have different speeds, this definition of throughput is not
meaningful. A measure of system performance which is independent of
processor speed is the flow rate of jobs leaving the processor
subsystem, expressed in jobs per drum.sector-time. For a given system,
this flow rate is obtained by multiplying the throughéut, T, by the

fault rate of a job, A .

Examination of the model for throughput in equation 2-24 reveals an
interesting point: the number of processors in the system is only
explicitly included in the processor saturated case. Here, the
replacement of a single fast processor with P slow ones has no effect,
because as the number of processors increases by a factor of P the fault
rate of each processor decreases by a factor of P. Thus the maximum
achievable flow rate is the same in both systems. When the processors
are not saturated, the model assumes that throughput is limited by the

number of jobs in the system and not by the number of processors.
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However, the throughput in this region is directly affected by the speed
of the processors. For instance, if a processor is half as fast as
before, the execution time of a job on this processor must double. The

interfault time becomes 2/ A and the overhead time becomes 2C.

Figure 3-9 depicts the relative flow rate for various numbers of

processors. Relative flow rate is defined as the flow rate of a
P-processor system divided by the flow rate of a uniprocessor system
with equivalent total processor capacity. Note that this relative flow
rate never exceeds one, so the uniprocessor system always outperforms
the multiprocessor version. When the systems are lightly loaded, at any
point in time the jobs are partitioned between the processor subsystem
and the drum subsystem. At any point in time, the number of jobs in the
processor subsystem dictates the number of busy processors. For the
uniprocessor system, only one job needs to be in the processor subsystem
to keep it totally busy. On the other hand, with P processors at least
P jobs must be in the processor subsystem for full utilization. This
effect accounts for the lower performance of the multiple processor
systems. A similar observation is also mentioned in a paper discussing
one and two processor systems by Sauer and Chandy [SAUE?Q]. The solid
lines in Figure 3-~9 correspond to a system with only one job and with a
range of interfault times. Here, the multiprocessor systems are at a
severs disadvantage because at most one processor can be busy at any
time. Note that the actual performance levels for these curves is quite

low. The dashed lines describe the same range of interfault times with
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16 Jjobs in the system. An interesting phenomenon occurs here.
Generally, as interfault times increase the relative performance of the
multiprocessor systems degrades. This effect occurs because the
performance of both systems is more dependent on the processor subsystem

as the interfault time increases. However, when the interfault time is

R L Y

large enough to cause both systems to become processor saturated, the
.- relative flow rate is one, as depicted by the top line in the graph. As
the number of processors increases to the point where the multiprocessor

system comes out of saturation, its performance relative to the

| uniprocessor system shrinks rapidly, crossing the lines for lower
interfault rates. Remember that these curves are only relative
performance levels, and the crossing of different curves dces not imply

b . that the actual levels of performance. are the same. The range of 1/x

i o e

ugsed here is lower than that used in previous sections because if 1/ A
is larger or if J/P is larzer the one processor systems stays saturated

and the relative performance is just a function of the multiprocessor

system. In general, then, the multiprocessor approach is closest in

performance to the uniprocessor system when the number of jobs is large

i and the system is operating at or near processor saturation.
i The second trade-off discussed in this section is the comparison of
X i i P independent single processor systems with one P-processor system. In
. g‘ this case the total available processor capacity is the same, but one
.? tightly-coupled multiprocess.r system is contrasted with many
v }. independent uniprocessor systems. Such conglomerations of systems often
r
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exist at computer centers which need greater performance than can be
obtained by a single large uniprocessor system. Assume that each
uniprocessor system has a drum with S sectors, J jobs, and each job has
an interfault time of 1/\ and overhead time of C. For the combined
system there will be PJ jobs. However, the choice of the drum subsystem
for the combined system affects the interfault time and the overhead

time as well as the number of sectors, because the unit of time in the

model is one sector-time.

There are three candidates for the drum subsystem of the combined

system. The most obvious choice is P drums identical to each drum in

the uniprocessor systems. Unfortunately, the model from Chapter 2 only
describes systems with a single drum. A close approximation of the P

drums may be made by using a single drum with P %times as many sectors

but a rotation time the same as each individual drum. In this way,
every drum rotation time PS sectors can be read and transferred, as with
the P independent systems. An alternative interpretation of this system
is a single drum with a P-fold increase in density which can actually i
support PS sectors. With this drum model, it is now possible to choose
values for interfault time and overhead time. The drum revolution time
is now PS sector-times. A job which executed for one revolution in one
of the individual systems should still run for one revolution in the new

system. Thus, the interfault time in the new system should be P times

greater than that for a uniprocessor system, or P/X . Similarly, H

overhead time should be scaled to PC. With these values it is possible
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to compare the throughput of the P uniprocessor systems with the new
-- system, using equation 2-24. When this comparison is done for up to 46
systems and wide ranges of the other parameters, the <*hroughput is
virtually identical. The combined system does achieve as much as a 5%

improvement, simply due to slightly lower drum queue wait.

Unfortunately, the model does not include a term for processor
queue wait, and the primary benefit of the P-processor system is the

ability to share the total job load in a single processor queue. This

’ . effect would be most pronounced when the systems are near saturation and
there is significant processor queue wait. When the systems are either

lightly loaded or saturated the combined system should perform

essentially the same as the aggregate of the independent systems.

Another choice for the drum subsystem is the use of a single drum

o
[ ——. e ] [

identical to one in a uniprocessor system. Since the combined system

LR AT W

now has fewer resources (i.e., only one drum instead of P), it should
not perform as well as the P independent systems, particularly when

throughput is limited by the drum. The relative throughput, zomputed as

{' the throughput of the combined system divided by P times the throughput
B of a uniprocessor system, is shown in Figure 3-10. The sclid lines
correspond to one job per processor and the dashed lines to two, for
various values of fault rates. As the job load (J/P) increases, the

combined system degrades further because the drum subsystem is becoming

the limiting factor.
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A third drum.subsystem for the combined system is a single drum
which is capable of rotating P times faster than a uniprocessor”s drum.
If these two drums have the same number of sectors, then the maximum
transfer rate of one fast drum and P slow ones is identical. However, !

the delay that a single job sees is quite different. Since P times as

Voot G ey oy

many jobs share the same number of sectors, the drum queue delay may
increase. On the other hand, the rotational latency that each job
confronts is now only 1/P times that of the original drum. The relative
throughput of these systems is graphed in Figure 3-11 for the same range
of parameters used in the previous graph. Here the combined system is
always superior to +the independent systems, and it compares most
favorably under light loads as before. As the system load increases and
the processors approach saturation, the throughput becomes dependent

upon processing power, which is identical.

When comparing independent uniprocessor systems to a single
multiple processor system with equivalent processing power, a choice of
drum configuration must be made. The relative performance of the
combined multiprocessor system depends heavily on this choice. If the
drum of the combined system is either significantly faster or slower
i than the total of the drums in the independent systems, the combined
system will perform either better or worse, respectively. It is
di *ficult to comment when the drums are essentially the same, because

the relative performance depends primarily upon processor queue wait,

which is not explicitly included in the model.
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. 4. CONCLUSION

4.1 Summary

This research has been concerned with performance modeling of
multiprocessor computer systems utilizing a shared drum secondary
memory. Interest in such systems is increasing Dbecause of the

advancement of integrated circuit technology. Large-scale and

- very-large-scale integration have very high cost performance ratios, dut

. have not been able to achieve high performance. In order to benefit

_4’.«@.&‘

from these high cost performance ratios more complex architectures are

needed to increase the performance level of integrated circuits.

- - 1rvn~'-v

The system under study contains a fixed number of jobs. The P

identical processors share a single job queue, and any Jjob may be

Lol |

started on any processor. A job executes on a processor until it faults
(or makes an I/0 request). It then continues to execute on that
processor for the amount of time necessary for the operating system to
handle the fault. The job then travels to the drum subsystem. This
subsystem consists of a psging drum with one queue per sector in order
to employ shortest latency time first (SLTF) scheduling. After the

Job”s page request has been satisfied, the job returns to the processor

PN pumg  Gmnd g g |
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queue to await an available processor.

The combined system model was serially decomposed into two models:

a fault model and a system model. The fav.iting behavior of the jobs is

- described by a fault model. This model utilizes a program”s paging
behavior and the configuration of the memory to produce a fault
descriptor. The system model uses this fault descriptor and the
configuration of the physical system to predict system performance.
Decomposition in this manner allows an examination of system performance

without kmowing the details of program paging behavior. The remainder

of the research dealt with this system performance model.

The primary result of this research is the development of an

analytic model for system throughput. Utilizing both deterministic

1 scheduling and previously known queueing models, the system model
- expresses throughput as a simple formula based on six parameters: the
number of processors, P; the number of jobs, J; +the number of drum
; sectors, S; the operating system overhead per fault, C; the mean of
) the interfault time distribution, 1/\ ; and the squared coefficient of
L the interfault time distribution, K. Throughput, T, is the average
- number of processors in the system doing useful work. Although this
"’ deterministic model makes several simplifying assumptions about system
[ operation, it agrees quite closely with an extensive number of

simulations which cover a wide z;ange of values for the parameters. In
[ particular, the average relative error of the model when compared to all
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195 simulations is only 3.0%. The model”s error is just 1.6% when only
the cases with more than one processor are considered. Other such
simple models have been found to work very well, as in the Tailor model
developed by Blake [BLAKT9].

The accuracy of the model would indicate that perhaps only the mean
of the interfault distribution is needed. The accuracies cited were
achieved with a model wusing only the mean of the interfault
distribution. When a sub-model for the drum system was examined which
utilized the second moment of job flow in the system, only very slight
improvements were obtained (an average relative error of 2.7%). All of
these error figures include simulation runs whose squared coefficient of
variation of the fault distribution ranged from 1 (exponential

distribution) to 16 (two-stage hyperexponential).

The analytic system model was used to examine aspects of system
performance. First, the dependence of system throughput upon each of
the parameters individually was presented. In this way, the effects of

variations in any one of the parameters can be predicted.

The relationship between the number of jobs and each job’~s fault
rate was discussed, because when the jobs share a fixed amount of memory
the allocation per job must change as the number of jobs changes. 1In
particular, the trade-off between J and A was detailed for constant
values of throughput. By using these curves of constant performance,

the decision to add or subtract jobs in an existing system can be
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reduced to a simple binary choice. TFor instance, if the fault rate of

the real system increases with the addition of a job more than the

_increase in fault rate specified on the appropriate constant performance

curve, then the addition of that job will reduce system performance.

Several trade-offs dealing with the number of processors in the
system were examined. These trade-offs specifically dealt with
comparisons between varicus multiprocessor systems and conventional
uniprocessor systems. PFirst, a system with P processors was compared to
the same system with a single processor which executes P times faster
than one of the multiple processors. Although the potential throughput

of both systems is identical, it was found that when the systems are not

.saturated, or constantly busy, the single processor system exceeds the

performance of the multiprocessor system.

Another trade-off compared the performance of a P-processor system
against P independent uniprocessor systems. For this situation, three
different choices were made for the drum subsystem of the multiprocessor
system. VWhen the drum most closely resembled the P drums of the
independent systems, the throughput of the multiprocessor system was
essentially equivalent to +the total throughput of the independent
systems. In the two other choices, the relative throughput was better
or worse depending on the capability of the drum subsystem chosen. In
effect, then, the multiprocessor system had significantly higher

performance only when its drum subsystem was superior.

o - AP P s BRI
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In all of the relationships examined, the deterministic model

provided a simple and clean way to ascertain the effects of various

changes to the system.

++2 Future Work

There are many areas for future work. Extensions and improvements
to the deterministic model could be made. Specifically, an
approximation for processor queue wait, Qp, could cause the greatest
improvement in model accuracy. Also, it would allow detailed
examination of the operation of the system for the important case when
iy is approaching processor saturation, but not fully saturated.
Furthermore, it would allow better analytic evaluation of the processor
trade-offs. Another area for improvement is the inclusion of a term
dealing with K, the squared coefficient of variation of the fault
process. Although the model is quite accurate even without a value for
¥, this improvement would improve the accuracy for single processor

systems and for abnormally bursty fault distributions.

Examination of the expression for a job”s trip time could provide a
reasonable measure of average turnaround. It is suspected that multiple
processor systems might provide lower average turnaround than one

processor systems.
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The system model might also be adapted to describe other system
configurations. For instance, systems involving more than one drum or
even moving head disks might be modeled. The explicit description of
drum writes of overwritten pages could be included. Also, the effects
of non-shared memory could be investigated. This situation requires a
job queue for each processor and jobs would probably return %o the

processor on which they had started executiom.

In addition to improvements in the system model, the fault model
needs to be developed. The results of the system model seem to indicate
that an extremely detailed description of the faulting process is not
necessary, since even using the mean of the fault distribution yields a
reasonably good prediction of system performance. A simple model which
relates the fault précess to program behavior, memory size and page
size, and job allocation strategy could, in combination with the system
model developed here, allow a designer to examine many of the trade-offs
inherent in computer system design in a gquick and convenient manner.
Also, the model might be compared against the operation of dynamic

memory allocation schemes, with job preemption and restart, and revised

" if necessary.
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APPENDIX
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This appendix lists the results from the simulation runs. The

input parameters are:

P number of processors,

] number of drum sectors,

J number of jobs,

C operating system overhead time per fault,

[T

1/ interfault time, and

squared coefficient of variation of the

s
=

-

\ fault process.

The outputs of the simulation are:

e QL T

1/A sim the minimum and maximum possible

values of 1/A from the simulation,

b s

3 4p mean wait time in the processor queue,
!- Q mean wait time in a drum queue, and
' l' Tsim throughput of the system expressed in

mean number of usefully busy processors.

In addition, the throughput predicted by the deterministic model,

Tmodelv is also included for reference.
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P S J ¢ 1/A K /2 sim Qp Qd Ts:un Tmode:l.
16 32 16 0 8.000 1 8.022- 8.029 0.0 27.6 3.51 3.45
16 32 20 0 8.m0 1 80024- 8-(29 0-0 3103 30% 3.94
16 32 32 0 8.000 1 8.025- 8.032 0.0 41.5 5.06 4.98
16 32 100 O 8.000 1 8.024- 8.039 0.5 103.8 6.99 6.8
16 32 16 O 32.000 1 31.63%- 31.793 0.0 22.2 9.23 9.23
16 32 20 O 32.000 1 31.544- 31.763 0.0 23.9 11.19 11.13
16 32 32 0 32.000 1 31.489- 31.786 4.3 29.3 15.29 15.83
16 32 100 0 32.000 1 31.492- 31.789 132.8 3.1 16.00 16.00
16 32 16 0 128.000 1 123.684- 127.684 0.0 18.3 13.90 13.%4
16 32 32 0 128.000 1 123.080- 127.661 108.4 17.0 16.00 16.00
16 32 100 0 128.000 1 123.080- 127.661 588.3 17.0 16.00 16.00
16 8 16 0 8.000 1 8.02%3- 8.032 0.0 13.1 5.80 5.65
16 8 20 0O 8.000 8.023- 8.036 0.0 16.5 6.28 6.13
16 8 32 0 8.000 1 8.022- 8.038 0.0 27.5 7.02 6.87
16 8 100 O 8.000 1 B.022- 8.039 0.6 9.4 7.87 T7.66
16 8 16 0 32.000 1 31.505- 31.783 0.0 6.6 12.92 12.9
16 8 20 O 32.000 1 31.490- 31.787 1.6 7.5 15.19 15.67
16 8 32 0 32.000 1 31.492- 31.789 22.4 8.3 16.00 16.00
16 8 100 0O 32.000 1 31.492- 31.789 153.7 8.3 16.00 16.00
16 8 16 0 128.000 1 123.186- 127.772 0.0 4.5 15.34 15.34
16 8 20 0 128.000 1 123.076- 127.657 26.4 4.6 16.00 16.00
16 8 32 0 128.000 1 123.080- 127.661 120.0 4.5 16.00 16.00
16 8 100 0 128.000 1 123.080- 127.661 595.5 4.5 16.00 16.00
1 3 16 0 0.500 1 0.509- 0.509 0.1 30.8 0.25 0.24
1 32 20 0 0.50 1 0.510- 0.510 0.1 34.6 0.28 0.27
t 32 100 0 0.50 1 0.507-  0.507 0.4 111.8 0.4 0.43
1 32 16 0 2.000 1 2.011- 2.011 5.2 28.5 0.87 0.9
1 32 20 0 2.000 1 2.011-  2.011 9.1 30.2 0.9 1.00
1 32 32 0 2.0 1 2.0t1-  2.01 29.9 3.5 1.00 1.00
1 32 100 0 2.000 1 2.011-  2.011 166.0 31.6 1.00 1.00
LI 4 16 0 8.000 1 7.873- 17.873 98.7 18.0 1.0 1.00
1 32 20 0O 8.000 1 7.873- 7.873 129.9 18.0 1.00 1.00
1 32 32 0 8.000 7.873- 7.873 223.1 18.0 1.00 1.00
1t 32 16 0 0.125 1 0.127- 0.127 0.0 31.0 0.06 0.06
1 32 20 0 0.125 1 0.127- 0.127 0.0 34.9 0.07 0.77
1 32 3% 0 0.125 1 0.127- 0.127 0.0 46.6 0.09 0.08
1 32 100 0 0.125 1 0.127- 0.127 0.t 112.2 0.1 0.1
1 8 16 0 0.500 1 0.504- 0.504 0.1 18.1 0. 41 0.39
1 8 20 0 0.5%0 1 0.504- 0.504 0.1 21.9 0.43 O. ¥
1 8 32 0 0.5%0 1 0.504- 0.504 0.2 33.8 0.45 0.4
1 8 100 0 0.500 1 0.504- 0.504 0.7 98.4 0.5 0.48
1 8 16 0 2.000 1 2.011- 2.011 21.2 8.0 1.0 1.00
1 8 20 0 2.000 1 2.011- 2.011 29.2 8.0 1.00 1.00
1 8 16 0 8.000 1 7.873- T.873 112.1 4.5 1.0 1.00
1 8 16 0 0.125 1 0.127- 0.127 0.0 18.6 0.10 0.10
4 32 4 0 8.000 1t 8.024- 8.026 0.0 18.1 1.18  1.16
4 32 5 0 8.000 1t 8.025- 8.026 0.0 19.0 1.43 1.4
4 32 8 0 8.000 1 8.023- 8.027 0.2 21.0 2.12 2.09 1




P S JC 1IN K A i Q, Q% Teim Tuodel
4 32 32 0 8,000 1 8.024- 8.028 23.1 32.1 3.99 4.00
4 32 4 0 32.000 1 31.828- 31.88 0.0 17.3 2.54 2.54
4 32 5 0 32,000 1 31.842- 31,863 1.3 17.1  3.11  3.15
4 32 8 0 32.000 t 31.799- 31.859 14.2 18.8 3.87 4.00
4 32 32 0 32.000 1 31.795- 31.856 202.1 18.1 4.00 4.00
4 32 4 0128.000 1 126.487- 127.118 0.0 16.9 3.50 3.52 3
4 32 5 0 128.000 1 126.558- 127.504 18.8 17.0 3.88 4.00 i
4 32 8 0128.000 t 126.496- 127.442 108.8 17.4 4.00 4.00 i
©4 32 32 0128.000 1 126.503- 127.450 842.5 17.1 4.00 4.00 ! i
4 8 32 0 8- (X)O 1 80 024" 80 027 460 9 80 1 4om 40%
4 8 8 0 32.000 1 31.795- 31.856 26.2 4.7 4.00 4.00
4 8 32 0 32.000 1 31.795- 31.856 215.4 4.4 4.00 4.00
4 8 8 0128.000 1 126.503- 127.450 122.0 4.1 4.00 4.00 :
4 8 32 0128.000 1 126.503- 127.450 854.6 4.1 4.00 4.00 ;
1 32 8 0 2.000 1 2.011- 2.011 1.5 22.2 0.60 0.61 ]
1 32 32 0 2.000 1 2.011- 2.011 29.9 3.5 1.0 1.0
1 32 4 0 8000 1 7.873- 7.873 9.4 17.7 0.8 1.00
1 32 8 0 8000 1 7.873- 7.873 35.8 18.5 1.00 1.00
1 3 4 0 32.000 1 31.902- 31.902 78.6 16.9 1.00 1.00
16 16 20 0 8.000 1 8.023- 8.031 0.0 21.5 5.26 5.12
16 16 32 0 8,000 1t 8.023- 8.032 0.0 32.3 6.20 6.07
16 16 20 O 32.000 1- 31.495- 31.772 0.3 13.8 13.56 13.63
16 16 32 0 32.000 1 31.491- 31.788 14.5 16.3 15.99 16.00
16 16 20 0 128.000 1 123.0139- 127.681 21.8 9.3 15.99 16.00
16 16 32 0 128.000 1 12° ~-0- 127.661 115.3 9.7 16.00 16.00
4 16 8 0 8000 1 5.023- 8.027 0.7 11.9 2.97 2.%
4 16 32 O 8,000 1 8.024- 8.027 39.1 16.0 4.00 4.00
4 16 8 0 32.000 1 31.795- 31.855 22.0 9.1 3.99 4.00
4 16 32 0 32.000 1 31.795- 31.856 210.5 9.4 4.00 4.00
4 16 8 0128.000 1 126.503- 127.450 117.8 8.3 4.00 4.00
4 16 32 0128.000 1 126.503- 127.450 850.6 8.3 4.00 4.00 .
1 16 16 0 0.500 1 0.508- 0.508 0.1 22.3 0.3 0.33 i
1 16 20 0 0.50 1 0.508- 0.508 0.1 26.3 0.3 0.35 ,
1t 16 16 0 2.000 1 2.011- 2.011 13.8 15.6 0.99 1.00
1 16 16 0O 8.000 1 7.873- 7.873 107.5 9.1 1.00 1.00
16 32 16 8 8.000 1 8.023- 8.030 0.0 25.1 3.05 3.00
16 32 20 8 8.000 1 8.024- 8.028 0.0 28.2 3.55 3.51
16 32 32 8 8.000 1 8.025- 8.032 0.0 37.9 4.67 4.64
16 32 100 8 8.000 1 8.022- 8.033 1.9 97.2 6.84 6.74 ,
16 32 16 8 32,000 1 31.602- 31.782 0.0 21.2 8.20 8.19
16 32 20 8 32.000 1 31.598- 31.817 0.1 23.2 9.91 9.%
16 32 32 8 32.000 1 31.503- 31.761 13.1 25.9 12.74 12.80
16 32 100 8 32.000 1 31.509- 31.767 179.2 25.9 12.78 12.80
16 32 16 8 128.000 1 123.785- 127.788 0.0 17.8 13.22 13.23 i
16 32 20 8 128.000 1 123.502- 127.792 15.7 18.2 14.99 15.06
16 32 32 8128.000 1 123,588- 127.882 115.9 18.1 15.06 15.06
16 32 100 8 128.000 1 123,588- 127.882 628.2 18.1 15.06 15.06
16 8 16 8 8.000 1 8.023- 8.031 0.0 9.4 4.87 4.76
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sim W QU Tsim Tmodel

20 8 8.000 1 8.024- 8.031 0.0 11.9 5.55 5.43

32 8 8.000 1 8.022- 8.0%4 0.2 21.2 6.68 6.55

100 8 8.000 1 8.024- 8.03%6 85 T1.1 T.7TT 1.64
16 8 32.000 1 31.560- 31.798 0.0 6.0 10.87 10.88

20 8 32.000 1 31.502- 31.760 3.3 6.5 12.58 12.80

32 8 32.000 1 31.509- 31.767 32.0 6.7 12.78 12.80

100 8 32.000 1 31.509- 31.767 196.4 6.7 12.78 12.80
16 8 128.000 1 123.877- 127.883 0.0 4.4 14.49 14.47

20 8 128.000 1 123.588- 127.882 28.6 4.5 15.06 15.06

32 8 128.000 1 123.588- 127.882 128.5 4.5 15.06 15.06

100 8 128.000 1 123.588- 127.882 636.1 4.5 15.06 15.06
16 0 8.000 16 T7.9R4- T.9R4 0.0 27.6 3.47 3.45

20 0 8.000 16 T7.906- 7.506 0.0 31.4 3.2 3.%

32 0 8.000 16 7.860- 7.882 0.0 42.0 4.9 4.98

100 0 8.000 16 7.8%0- 7.862 0.0 104.0 6.87 6.8
16 0 32.000 16 29.584- 30.372 0.0 22.7 8.99 9.23

20 0 32.000 16 29.251- 30.313 0.1 24.7 10.81 11.13

32 0 32.000 16 79.320- 730.385 5.7 32.3 13.97 15.83

100 0 32.000 16 29.282- 30.345 108.0 47.7 15.93 16.00
16 0 127.996 16 117.022- 121.269 0.0 18.0 13.84 13.%4

20 0 127.996 16 119.962- 122.871 14.7 19.8 15.51 16.00

32 0 127.996 16 100.206- 110.631 87.4 23.3 15.8 16.00

100 0 127.996 16 100.296- 110.731 531.6 2T7.4 16.00 16.00
16 0 8.000 16 7.835- 7.867 0.0 13.2 5.69 5.65

20 0 8.000 16 7.8%0- 7.863 0.0 16.7 6.15 6.13

32 0 8.000 16 17.825- 7.858 0.0 27.6 6.8 6.87

100 0 8.000 16 7.813- 7.856 0.0 9.9 7.1 17.66
16 0 32.000 16 30.084- 30.813 0.0 6.9 12.72 12.90

20 0 32.000 16 30.0C1~- 30.737 2.0 8.8 14.45 15.67

32 0 32,000 16 29.975- 30.700 16.2 14.9 15.59 16.00

100 O 32.000 16 29.944- 30.670 138.6 19.9 15.97 16.00
16 0 127.996 16 117.299- 121.557 0.0 4.9 15.26 15.34

20 0 127.996 16 100.217- 110.643 21.3 6.6 15.84 16.00

32 0 127.996 16 100.229- 110.657 101.7 7.8 15.93 16.00

100 0 127.996 16 100.305- 110.741 547.2 1C.9 16.00 16.00
16 0 0.500 16 0.486- 0.486 0.9 30.6 0.24 0.24

20 0 0.500 16 0.486- 0.486 1.1 3.5 0.26 0.27

32 0 0.500 16 0.486- 0.486 1.5 45.9 0.32 0.33

100 0 0.500 16 0.486- 0.486 2.6 110.2 0.42 0.43
16 0 2.000 16 1.921- 1.®1 14.7 27.5 0.68 0.%

20 0 2.000 16 1.%21- 1.921 18.7 30.1 0.74 1.00

32 0 2.000 16 1.9%1- 1.961 32.4 35.8 O. 1.00

100 0 2.000 16 1.961- 1.961 146.5 44.7 1.00 1.00
16 0 8.000 16 7.681- 7.681 9.8 24.4 0.5 1.00

20 0 8.000 16 7.681- 7.681 124.3 25.4 0.97 1.00

2 0 8.000 16 7.681- 7.681 210.7 26.9 0.99 1.00

16 0 0.500 16 0.486- 0.486 1.7 17.4 0.3 0.39

20 0 0.500 16 0.486- 0.486 1.9 21.1 0.40 0.41

32 0 0.500 16 0.486-  0.486 2.3 32.4 0.43 0.44
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{ I P S J ¢ 1N K 1/x sim Q, Q Toin Tmodel
l 1 8 100 0 0.500 16 0.486- 0.486 3.2 97.1 0.47 0.48
3 1 8 16 0 2.000 16 1.91- 1.921 20.3 13.3 0.4 1.00
. 1 8 20 0 2.000 16 "1.921- 1.%1 25.7 15.1 0.8 1.00
1 8 32 0 2.000 16 1.9%1- 1.961 44.4 18.3 0.% 1.00
i 1 B 16 0 Sowo 16 7-681" 7-681 105.7 1009 0-% 1-w
- 1 8 20 0 8.000 16 7.681- T7.681 134.9 1.6 0.9 1.00
I 4 %2 4 0 B8.000 16 8.007- 8.007 0.0 18.3 1.17 1.16
F T 4 32 32 0 8.000 16 7.846- 7.878 24.3 35.9 3.64 4.00
. 4 32 4 0 32.000 16 31.256- 31.408 0.0 17.0 2.54 2.54
4 32 S 0 32.000 16 31.197- 31.349 2.7 17.7 2.97 3.15
T 4 32 8 0 32.000 16 31.188- 31.339 18.1 19.9 3.56 4.00
| 4 32 32 0 32.000 16 31.165- 31.37 191.0 25.8 4.00 4.00
, T 4 32 4 0 127.996 16 116.295- 116.951 0.0 16.4 3.48 3.52
- .. 4 32 5 0 127.996 16 118.494- 119.426 21.8 16.9 3.75 4.00
{ ! 4 32 8 0127.996 16 119.187- 120.076 103.2 18.6 3.95 4.00
- 4 32 32 0127.996 16 121.262- 122.154 822.2 20.1 4.00 4.00
v 4 8 8 0 8-m0 16 70874- 70%5 3'2 8-0 3014 3-&
j 4 8 32 O 8.000 16 7.839- 7.872 37.8 18.0 3.89 4.00
} | I 4 8 8 0 32.000 16 31.1T3- 31.324 25.1 6.8 3.9 4.00
't . 4 8 32 0 32.000 16 31.168- 31.319 206.9 9.6 4.00 4.00
R - 4 8 8 0127.996 16 121.264- 122.155 115.6 5.3 4.00 4.00
? f 4 8 32 0127.996 16 120.410- 121.300 833.2 5.3 4.00 4.00
i . 1 %2 8 0 2.000 16 1.957- 1.957 6.8 22.0 0.49 0.6t
i .. 1 32 32 0 2.000 16 1.%7- 1.957 32.2 36.0 0.8 1.0
: i 1 32 4 0O 8.000 16 7.681- 7.681 18.6 18.8 0.67 1.00
1 32 4 0 32.000 16 29.844- 29.844 83.0 18.4 0.9 1.00
i 16 16 20 O 8.000 16 7.430- 17.610 0.0 21.5 5.05 5.12
i 16 16 20 O 32.000 16 30.030- 30.758 0.7 14.3 13.16 13.63
16 16 32 0 32.000 16 29.994- 3%0.722 11.9 20.7 15.24 16.00
l 16 16 20 0 127.996 16 117.218- 121.473 20.1 11.1 15.80 16.00
- 16 16 32 0 127.996 16 $117.127- 121.378 107.5 12.1 15.9% 16.00
P 16 32 100 8 8.000 16 T.427- 7.606 3.0 9%4.7 6.55 6.74
. 16 32 32 8 32.000 16 29.298- 3%0.290 11.9 28.5 12.16 12.80
16 32 100 8 32.000 16 29.323- 30.316 164.9 32.2 12.66 12.90
{- 16 32 32 8 127.996 16 117.267- 121.523 107.9 20.0 14.99 15.06
, 16 32 100 8 127.996 16 117.267- 121.523 643.1 20.0 15.01 15.06
' 16 8 100 8 8.000 16 7.426- 7.606 .15.1 TM.9 7T.27 17T.64
{ 16 8 32 8 32.000 16 29.323- 30.316 29.6 7.8 12.63 12.80
g 16 8 100 8 32.000 16 29.323- 30.316 188.4 8.2 12.66 12.80
16 8 32 8127.996 16 117.267- 121.523 122.3 5.1 15.01 15.06
{ 16 8 100 8 127.996 16 117.267- 121.523 657.8 5.0 15.01 15.06
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