D

ESD-TR-82-403, Vol. | MTR-82758, Vol |

o TRANSFORM DECODING OF REED-SOLOMON CODES VOLUME [
i) ALGORITHAMAND SIGNAL PROCESSING STRUCTURE

N B\

PN D.O.CARHOUN

. B. L. JOHNSON

\) S 1 MEEHAN

| g NOVEMBER 1982

I—

=

Prepared tor

SOLID STATE SCIENCES DIVISION
ROME AIR DEVELOPMENT CENTER
UNITED STATES AIR FORCE

Hanscom Air Force Base, Massachusetts

DTIC

ELECTE
JANZ 1 1983 © |

B

Project No. 70107170
S Prepared by
| Ao publs e, | THE MITRE CORPORATION
— - ‘ Bediord, Massachusetts
Contract No. F19628-81-C-0001

Do
Q.
O
O
e
=
o
Cod
o

\

:

!

H

3§

i

§

i '

} “Mhen US Govermment diawines, speaitica
S tions, or other data are used o an papose

i " other than o detnmely celatad sosenmment pro

i Ccurement opetation: the sovernment thereby

l Ccurs nopespansibiiiy nar any abligation

i Whittsoever and the facn than the government
Sy hone fonmadated s tooshied o oy wn .

supplicd the sand drawie s speaticanons o
other dara i~ nof to be recanded by nphoation
[R13 l’lh\'l\\l\\', N NN AT AT AR RR A TN] ll\\"l\l“L' |h\'
holder o any other persan o corporation ol !
conmvey the iy e b or permission to nanabag

e

D, uses o sell any patensted mvennon that
oy by acas beorelated therero

i
U Donotretacn thes copy Retan on destion

e oo e e i e

REVIEW AND APPROVAL

This technical report has beenreviewed and is approved for publication.

o Al S ST A

~
Zéi’dq /X&a"cf 3 el g

JERRY STLVERMAN HAROLD ROTH, Director
Project kngineer Solid State Sciences Division

!
!

UNCLASSIFIED

SECURITY C. ASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
1. REPORY NUMBER 2. GOVT ACCESSION ~OZ 3 RECIPIENT'S CATALOG NUMBER
AN TR_R7— . _ 3o
ESD-TR-82-403, Vol. I f\’j} Polo - 49D 5
4 TITLE cand Subutle) S TYYPE OF REPORT & PERIOD COVERED

TRANSFORM DECODING OF REED~SOLOMON CODES
VOLUME T: ALCORITHM AND STGNAL PROCESSING

STRUCTURE 6 PERFORMING OG. REPORT NUMBER
MTR-8278, Vol. 1
7 AUTHOR(S) 8§ CONTRACT OR GRANTY NUMBER's;

Do 0. CARHOUN, B. L. JOHNSON, S. J. MEEHAN
F19628-81-C-0001

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT TASK 1
The MITRE (7nrpuratinn AREA & WORK UNIT NUMBERS

B(l[‘liﬂ}lt(‘ﬂ Road Pl‘ﬂj(’(‘t No, 70]0/7170

Bedford, ¥A 01770

17 CONTROLLING OFFICE NAME AND ADDRESS 12 REPORT DATE

Solid State Sciences Division November 1982

Rome Air Development Center '3 NUMBER OF PAGES
Hanscom AFB, MA 01731 66

14 MONITORING AGENCY NAME & ADORESS(if different from Controlling Ollice) 1S, SECURITY CL ASS. (of this reporst

UNCLASSTFIED

1Sa DECLASSIFICATION DOWNGRADING |
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited. l

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if dilferent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block nuniber)

ERROR LOCATION

REED-SOLOMON ENCODING AND DECODING
STONAL PROCESSING i
TRANSFORM DECODING

20. ABSTRACT (Continue on reverse side {f necessary and identify by block number)

This report discusses in detail a transform decoding algorithm and its
hardware implications, for the Reed-Solomon codes, that offer major simplifi-
cations relative to the conventional BCH decoding algorithm. A fast algorithm
for encoding and syndrome computation is described. Modification of the error
location process to accommodate erasures is also described. Also discussed are
hardware implementation issues with a summary of design features and parameters
to be incorporated in a future set of programmable integrated circuits for
decoding a large number of Reed~Solomon codes.

ORM
DD , an 52 1473 EDITION OF 1 NOV 6515 OBSOLETE UNCLASSTFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

i ramtine— -

UNCLASSIFIED
SECURITY CLASSIFICATIGON OF THIS PAGE(When Dats Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF TH't PAGE(When Data Entered)

PREFACE

the publication of ESD-TR-82-403, Vol. II, Transform Decoding of

other than corrections of typographical errors.

ACKNOWLEDGMENTS

This document has been prepared under Project 7010/7170,

Force Base, Massachusetts,

vy hbasor

The second printing of Volume I of this report coincides with

Reed-Solomon Codes Volume II: Logical Design and Implementation.
The revised printing of the first volume contains no new material

Contract F19628-81~C~0001. The contract is sponsored by the S-1lid
State Sciences Division, Rome Air Development Center, Hanscom Air

Lt Jodnd

TABLE OF CONTENTS

Section Page
LIST OF ILLUSTRATIONS 5
LIST OF TABLES 6
1 INTRODUCTTION 7
1.1 Purpose 7
1.2 Background 8
1.3 Scope 10
11 TRANSFORM APPROACH 12
2.1 Linear Block Codes 12
2.2 Maximum Distance Codes 12 '
2.3 Reed-Solomon Codes 13
III REED-SOLOMON TRANSFORM ENCOI'ING 20
3.1 Reed-Solomon Encoding 20
3.2 Codeword Generation by Discrete Transformation 20
3.3 A Fast Transform Algorithm 24
3.4 Field-Programmability of the Fast 28
Transform Algorithm
3.4.1 Multi-Dimensional Transform 29
Partitioning
v REED~SOLOMON TRANSFORM DECODING ALGORITHM 37
4.1 Syndrome Computation 37
4.2 Error Locator 39
4.2.1 The Berlekamp-Massey Algorithm 40
4.2.2 Modification for Correction of 44
Errors and Erasures
4.2.3 Continued Fraction Algorithm 47
4.3 Message Extraction 51

e S5 sy St - M i ! -

!
1
¥
's

TABLE OF CONTENTS (CUNCLUDED)

Section

\Y HARDWARE DESIGN (SUMMARY)

5.1 Functional Partitioning and Programmability

5.2 Throughput

REFERENCES

Figure

LIST OF ILLUSTRATIONS

Conventional BCH Decoding Algorithm
Transform Decoding Algorithm

Structure for Computing the Transform by
Polynomial Evaluation

Structure for Computing a 31-Point Transform
over GF(25)

Structgre for Computing a 255-Point Transform over
GF(2°) using Two-Dimensional Partitioning

Canonic Ladder For Stieltjes Continued
Fraction Realization (v=3)

Transform Section

Error Locator

23

26

35
49]

53

54

Table

1A%

Vi

LIST OF TABLES

Comparison of Computaticnal Complexity
Transforms over GF(Zm)
Minimal Irreducible Polynomials over GF(ZS)

Minimal Irgeducible Polynomials over GF(27)
and GF(27)

Minimal Irreducible Polynomials over GF(25)
and GF(2%)

Reed-Solomon Codes Acvommodated by the Hardware
Design

Half Rate Reed-Solomon Codes Accomiodated by
the Hardware Design

Decoding Times for Half-Rate Reed-Solomon Codes

33

55

56

59

SECTION I

INTRODUCTION

1.1 Purpose

One of the continuing concerns of the Low Cost Electronics pro-
jecc is the application of new technology to the implementation of
error-correcting codes for reliable data communication. Our interest
stems from the need for low-cost hardware to implement error-correction
codes that exhibit significant coding gain on interference-resistant
communication channels. Previous studies of coding gain led us to
concentrate work on the implementation of the Reed~Solomon class of
generalized BCH codes. This class of codes, although well-suited to
the correction of both isolated random errors and random error bursts
because of its optimum distance properties, continues to be genuinely
in need of efficient decoding algorithms implemented by low-cost hard-
ware.

This report examines a transform decoding algorithm and its hard-
ware implications for the Reed-Solomon codes. This algorithm offers
major simplifications relative to the more conventional BCH decoding
algorithm, resulting from reduced algorithm complexity and from the
opportunity to apply fast computational techniques for implementing
its major portiomns,

While processing functions required for algebraic coding have
been associated conventionally with digital data processing, the
basic functions of the transform decoding method are convolution and
discrete transformation, typical signal processing functions. An
essential difference between the error coding requirements and the
conventional digital signal processing practice is that the former

require the operations to be carried out in a finite algebraic

field or ring. Although this territory may seem unfamiliar to the
digital signal processing community, in actuality many familiar
concepts apply directly, and in some instances implementation may be
simpler (e.g., elimination of carry bits, multiplication by adding
"logarithms'") if the unique properties of the finite structure are
exploited. Although it will become evident that the error coding
functions impose a relatively high degree of complexity on the pro-
cessing circuitry, it is hoped that the analogies with more conven-
tional linear digital signal processing functions will aid in the
development of functional LSI hardware - and perhaps also lead to
the use of finite-field methods where useful and appropriate for
other linear signal processing purposes.
1.2 Background

Previous work on the low-cost electronics project demonstrated
that error correction coding, when used in conjunction with spread-
spectrum modulation, provides an added dimension to the design of
jam-resistant communications svstems. Error correction codes
are useful to correct message errors caused by interference, additive
random noise, and other disturbance present on the channel. They do
so by adding redundant symbols according to a predetermined strategy
(coding) and then extracting the correct message from the noisy
received signal (decoding), aided by prior knowledge of the code.
Given sufficent channel signal-to-noise ratio (measured at the
receiver) it can be shown that this represe.its an effective means
of obtaining low error probability in the decoded message, even
though the energy per transmitted symbol is reduced because of the
added redundar. -y (we assume a fixed energy available per source
message symbol). In other words, the coding strategy produces an

effective gain (at a modest price in bandwidth) that more than com-

pensates for the necessity to spread the available energy over the

combined message and redundancy svmbols. The net result is a coding
gain obtained by computational processing that may range from a few
dB for channels corrupted by additive gaussian noise to some tens of
dB for randomly fading noisv channels. As the tolerance to errors
in the output data is lowered, the arguments for using error coding
are strongthened.

Under this project we previously examined the application of the
BCH decoding algorithm for decoding Reed-Solomon codes with particu-
lar attention to I!: structural implementation. We also exper-
imented with the direct decoding of Reed-Solomon codes having short
block lengths by implementing a code~table search algorithm under
microprocessor control. The work reported here is concerned
with the algorithm and structures for decoding Reed-Solomon codes by
application of a transform method.

If the message svrbols to be encoded by a Reed~Solomon code lie
in the domain of a linear Fourier-like transformaticn from the mes-
sage to the sequence that is transmitted over the communication
channel, then it is possible to eliminate a number of computational
steps in the decoding algorithm. The finite-field linear transforms
involved are directly analogous to tle discrete Fourier *ransform
pair defined over the complex number field, except that in this case
they are defined in the finite algebraic field that contains the
code symhols. The transform algorithm can be summarized by the
following steps?

Encoding

1. Define a sequence in the algebraic domain of the
channel code transform as the message symbols accom-

panied by a sequence of zeros.

*The transform method of decoding Reed-Solomon codes has a historical
precedent in the definition of the codes, but only recently has
there been renewed interest in its application [1], [2], [3].

Cenerate the channel codeword by taking the forward
transtorm of the defined sequence.

(This produces a ron-systematic channel col’e.)
Devvding

1. Take the inverse transform of the roceived seonce.

2. lIsolate the error syndrome from the inverse transform
and use it to determine the error locator polynomial
or equivalently the connection polynomial of a cor-
responding linear feedback shift register (LFSR).

3. Extrapolate the iiverse error-transform sequence using
the unforced response of the synthesired LFSR, and
subtract it fr-m the inverse transform of the received
sequence., The difference is the currected message
sequence,

In comparison with the conventio-~al BCH decoding algorithm as applied
to Reed-Solomon codes, the transform decoding algorithm eliminates
the need to search for roots (¢ the error ‘ocator polynomial. It is
also unnecessarv to calculate the error values in the co-domain of
the channel code, a step that in effect solves a set of simultaneous
linear equations. For a non-systematic channel code, the BCH decoding
algorithm requires polynomial division by the code generator polv-
nomial of the corrected received sequence in order to retrieve the
information symbols. This step is eliminated in the transform
algorithm because the message symbols are defined in the domain that
contains the inverse error transform values.
1.3 Scope

The next section of this report describes in overvicew the Reed-
Solomon codes and the transform decoding algorithm in a convenient
algebraic setting in which the discrete transform and its inverse
are regarded as equivalent to polvnomial evalvation and inter-

polation. 1In Section III a fast algorithm for 1., leme:*ing the

1n

transform and 1ts application for the encoder are discussed.
Section IV presents the major steps of the decoding algorithm, in-
cluding modification of the basic algorithm to accommodate the cor-
rection of both errors and erasures up to the minimum distance limit
of the code.

In Section V we discuss some hardware implementation issues and

present a summary of recommended design features and nrarameters to

be incorporated in a set of integrated circuits to enable decoding
of a large number of Reed-Solomon codes. The second volume of this
report [4)] documents the detailed logical design of circuitry and

the construction of a discrete logic breadboard.

11

SECTION I1

THE TRANSFORM APPROACH

2.1 Linear Block Codes

A linear block code is a linear mapping (homomorphism) from a
k-dimensional vector space to a larger n-dimensional vector space;
the redundancy is n-k. The message space may consist, for example,
of (’?m)k sequences -- or k-tuples -- of m~bit message symbols whiie
the code space consists of (Zm)n code sequences - or n-tuples - of
m=-bit svmbol: conraining (Zm)k code sequences that combine both
message and redundancyv. The mapping increases the distance (or
spacing) between code words corresponding to message sequences, dis-
tance being measured as the number of different symbols between pairs
of such code words. In fact this distance increases exponentially as
the redundancy increases linearly. When random errors occur in the
transmitted code words, the increased spacing permits decoding by a
maximum distance (equivalent to maximum-likelihood) decoding rule.
When the block length of the code becomes sufficiently long, such a
decoding procedure becomes impractical. One may then resort to the
algebraic properties of the code construction to facilitate practical
decoding.

2.2 Maximum Distance Codes

The Reed-Solomon codes in which we are interested are members of
a class of linear block codes called maximum distance separable codes.
These are codes for which the minimum distance between pairs of code
words equals the maximum value
d=n-%k*+1 (1)
admitted by the Hamming volume (or sphere-packing) bound. For such
codve it is posaible to correct a number of symbol errors not exceed-

ing one-half the redundancy of the code. Arguments based on the

12

triangle inequality can be used to show that twice as many erasures

are correctable, an crasure (rather than an error) being defined as

a codeword syi'bol of unknown (rather than incorrect) value occurring
at a lnecwn (rather than unknown) symbol location. In fact, it can
be shown that it is possible to correct any combination of t errors
and s erasures provided that the inequality
2t +s <n-k (2)

is satis{ied for the maximum distance codes.

In order to discuss the structural properties of such codes
and the apparatus for coding and decoding, it is convenient to de-
scribe an n-tuple of m-bit symbols by a polynomial of degree n-1
having coefficients tl'at are members of the finite algebraic field
of 2" elements. Such a polynominal is determined uniquely by its n
coefficients, or equivalently by its values at any n distinct points
of the field. A code word of block length n, for example, may be
specificd either by a set of n values or by the polynomial coeffi-
cients interpolated from those values.

2.3 Reed-Solomon Codes

A maximal distance code of block length n and dimension k can
be generated by a set of k functions {gi(z)} defined over an alge-
braic field F containing at least n elements provided that the func-
tions in the ret are independent and that no linear combination of
them ''as more than k-1 roots in the field. The Reed-Solomon codes
are a special case for which the function set is {1, z, 22; 23,..., zk_l}[Sl.
We are concerned here with codes (and messages) for which the
symbols are binary m~tuples. These are elements of the Galois field
of 2™ elements. The elements of this finite field can be written as
0, b, b%, ..., b2"-1, where b is a primitive element of the field.
For the Reed-Solomon codes, let the message be represented by the
polynomial f(x) = ag + a,z + a z2 + ... + ak_lzk-l where the coeffi-

1 2

cients a; are elements of the field F = GF(Zm) that represent the set

13

of k message symbols. The mapping from the message space to the

code space is accomplished bv evaluating the message polynomial f(x)

at the 2M-1 non-zero points of the field. The transmitted code word

consists of the sequence of n = 2"-1 values
E(b), £(b7),..., £ 1)

resulting from the polvnomial evaluation. To decode the message

after receiving the code sequence, one may form the n equations

- o)] 2 k-1
f(h) = ay + dlb + azb + .. .+ ak-lb
_ 2 2 b4 + ¥ 2k-2
f(b7) = dq + alb + a, c e . ak_lb
. (3)
2" N
f (b) = a, + a a, + . . .+ a_q

where the coefficients a, are the unknown values to be found by
solution of the equation ~et. Anv subset of k of there eqgrations

is linearlv independent and may therefore be used., If one or more

of the code symbols are received in error, then different solutions

mav result from the various k-subsets. The errors may be corrected

bv solving all of the distinct k~subsets and taking a majority vote.
Such an approach, although valid in principle, is generallv not
nractical to implement directly because of the large number of equation
sets to be solved, each implying the inversion of a square matrix of
dimension k.

Combinatorial methods bhased on (n,k,t)-covering svstems have
been devised as a way of trapping the correctable error patterns in
order to reduce systematically the number of equation sets to be
solved. When combined with a minimum distance decoding rule, the
covering method can yield practical results for codes of modest

block length. It can also accommodate shortened cyclic codes.

14

For codes of moderately long block length, one can successfully
apply a concise decoding algorithm based on the algebraic properties
and structure of the code. The well-known BCH decoding algorithm
depends on calculating an error syndrome as a linear transformation
of the received channel symbols and then using the syndrome to
determine an error locator polynomial as the solution of a linear
recursion (the so-called key equation) [6]. The roots of the error-
locator, which may be found by a systematic root-scarch, designate
the locations of the errors (or the multiplicative inverses of the
locations). These values are then used to solve a set of linear
equations for the channel errors, enabling correction of the channel
code and subsequent extraction of the message [7].

The error locator is the key step of the algorithm. It may be
regarded as a means of determining which set of k equaticns drawn
from the full set of equation (3) is sufficient to solve for the message
symbols, since having determined which values f(bi) are in error,
the remaining ones must be hypothesized to be correct. The conven-
tional BCH decoding algorithm is described schematically in Figure 1.

In our work we resort to a transform decoding algorithm for the
Reed-Solomon codes that is a variation of the BCH decoding algorithm
which allows a major reduction in the computational complexity of the
algorithm. The princi;al features of our implementation include:

1. Interpolation of the code word sequence to produce

a coefficient syndrome.

2. Solution of a linear recursion based on the interpolated

coefficients.

3. Extrapolation of a sequence of error coefficients

to extract the message coefficients.
It will be shown that the first step is equivalent to taking an n-
point transform (defined over the finite field GF(2™)) that is

15

WY3ItI0F [y Burpoda(y y)yg [BUOTIUBAUO) - 2iInBT4
QYOM 300D
Q312348400
[‘Gﬂr
GHOM 3002
$$37404YH3 iLvo
S3A
INIW3VdWOD HOHV3S IVIWONAOd NOILYINDI VD
HOHY3 100Y HOLVD01 | IWOBANAS
31VIN2 VD IVIWONA10d HOYY3 ON HOHY3 ayom
3603
W3LSAS WHO4SNVYHL
~— yvan ™ fe—————— W3IISAS HV3INI? — < yvann ™

8¥2 19-v1

16

completely analogous to the discrete Fourier transform defined over
the field of complex numbers. The second step, which determines
the symbol error locations, uses an algorithm (Berlekamp-Massey)
that synthesizes the shortest linear feedback shift register that
generates a prescribed sequence [8]. Each iteration of this algor-~
ithm involves a convolution of the syndrome coefficients with the
shift register tap weights. The third step utilizes the unforced
response of the synthesized LFSR, again involving convolution. A
simple block diagram of the decoding apparatus is shown in Figure 2.
The transform approach to Reed-Solomon codes is evident in their
original exposition [l], the connection between the message symbols
and the channel code being variously regarded as based on the Mattson-
Solomon polynomial [9], the Chinese remainder theorem [10],
LaGrange's interpolation formula [11], and more recently number-
theoretic Fourier-like transforms [2,4,12,13]. The computational
advantages of a transform approach to encoding and decoding relative
to the more or less standard BCH decoding algorithm have been pre-
viously discussed [2,4,12,13] but efficient hardware implementing
these codes is still not commonly available. The principal
computational advantages are (1), the ability to both encode and
compute the error syndrome with fast algorithms that mimic FFT algo-
rithms, and (2), the ability to predict the transform of the
channel error pattern from the error-locator polynomial. The second
advantage avoids a root-search for the error-locations, followed by
generation of the error evaluation polynomial and explicit compu-
tation of the channel error values. 1Instead, to decode one needs
only to: a) compute the transform of the received channel sequence,

the error syndrome constituting a subset of the transform, b) compute

17

wy3tao8[y Buypoday wriojsueir] ‘g 2an314

* STOAWAS

3OVSS3NW HO1v201 «—o_n» WHOISNVHL e — ——73INNVHD
a3aoo3a - HOuY3 ISHIANI ASION

18

the error locator polynomial by an iterative algorithm {Berlekamp-
Massey algorithm or continued-fractions) which operates on the syn-
drome, and ¢) generate the transform of the error sequence as a
linear recursion with the error locator polynomial. The validity of

the third step was proved by Reed, et 2al. {21.

19

SECTION 1II

REFD-SOLOMON TRANSFORM ENCODING

3.1 Reed-Solomon Encoding

Reed-Solomon codes were first described in 1960 [2]. Shortly
atterwards they were generalized and a decoding algorithm based on
their algebraic properties wos suggested [6]. Today these codes
are usually described as the polynomial product of a generator
function g(z) defined over a finite field GF(q) with an information
sequence polvnomial defined over the same field [7]. In algebraic
terminology, the code forms anr ideal in the ring of polynomials
modulo z" - 1 over GF(q) that is generated by g(z). The roots of g(z),
which are contained in GF(q), consist of a consecutive set cf elcments
of the cyclic multiplicative group of GFfq). Since the code ideal
consists of all products of g(z), each member when evaluated at any
of the roots of g(z) becomes congruent to zero. This is the basis
Tor determining the error syndrome of the chanrel sequence which is
required for further decoding. Below we discuss the generation of
codewords from the transform viewpoint.

3.2 Codeword Generation by Discrete Transformation

We have described the function of code generation in Section I1I
as n-point evaluation of a message polynomial defined over a finite
algebraic field. The inverse function is interpolation of the poly-
nomial from its n values. These functions (evaluation and interpol-
ation) are inverse in the sense that their (commutative) product is
the identity function. it has also been shown that these functions
form a "transform” pair analogous to the discrete Fourier transform
pair defined over the complex number field [l4]. 1In our case the

transforms are defined over the finite algebraic field of the code.

Let a a a be distinct elements of a finite

0’ "1’ " " " "n-1

20

algebraic field GF(p") of order p' - 1, having an element b of order

n. The linear transformation

n-1
Aj aib 4)
i=0
is an endomorphic mapping of GF(pm). It is assumed that n divides
pm - 1, the order of the field, and for our purposes n = pm - 1.

th

In that case the field element b is a primitive n root of unity.

It can be shown that for any integer r,

n-l ic n, r 20 mod n
E b = (5)
i=0 0, otherwise

and the property can be used to verify by direct calculation that

the mapping that is inverse to that of equation (4) is the linear

transformation I
n-

A bt (6)

-1
a.=n
1]

1
i=0
where —n—ln = pm - 1. Equations (4) and (6) define a discrete trans-
form pair over GF(pm) and the operations of addition and multipli-
cation are defined in the same field. Addition may be performed as
modulo-p addition of the m-tuples that are the field elements com~
posing the sum. Multiplication may be defined by addition of in-

dices of the field elements

m
bF S < b(r +s)mod p -1 7

The transform pair of equation (4) and equation (6) is analogous

to the discrete Fourier transform pair for which b would be a complex
nth rcot of unity and the arithmetic would be defined in the complex
number field. The conceptual value of the Fourier transform pair

is preserved in the finite field. 1In particular, the cyclic

21

convolution propertv holds. Fast computational algorithms, analogous
to the FFT algorithms, can also be applied.
1f the sequence to be transformed is ¢xpressed as a polynomial

over GF(pm)

a{z) =a +a_, 2z +-a z + . . . +a z .8)
N 1 i n-1

then the transform of the sequence a s Ay, 8y, « . ., a 1 is
2 n-

identical with polynomial evaluation of a(z) at the n distinct
points b“, bl, bz, e e, bn-l and the inverse transform is identical
with interpolation of the polynomial a(z) from its n values.

In order to generate a Reed-Scolomon (n,k) coae, we let the set

a represent the message svmbols, setting a; = 0 for

a,, « « ., a
o’ 1 * Tk-1
i=%, k+1l, ..., n=-1, and evaluate the resulting polvnomial
(by calculating the transform of the message sequence) at the n = p -
non-zero units of the field. The transform, or polvnomial evaluation,
can be expressed as a continued product

abdy =a +bd (a, +. ..+ 0 (a + bla) (9)

o 1 n

or equivalently it can be interpreted as the remoinder of the polv-
nomial division a(z) / (z-bJ) evaluated at bd. The second inter-

pretation mav be represented as the set of polynomial congruences
a(bd) = a(z) mod (z-b¥), 3=0,1, ..., 0 - 1. (10)

A structure for computing the transform is shown in Figure 3. Notice
that the same structure can be used for calculating both the trans-

form and its inverse. The meil.od shown requires n2 separate products
in GF(pm) to be formed by sequencing n svmbols through a set of rep-

isters containing n separate multipliers. Since the hardware

a(z) —»—

©

Figure 3. Structure for Computing the Transform
By Polynomial Evaluation

23

complexity of finite field multiplication is formidable, we should
look for "fast" computational algorithms that reduce the number of
nultiplications in GF(pm). Alternatively, one could use table-loouk-
up multiplication at the sacritfice of speed.

3.3 A Fost Transform Alporithm

A fast transform algorithm -~ one that tends to minimize the
number ot multiplications in GF(pm) -- can be devised to compute the
transform pair ~f equation (4) and equation (6). The set of congru-
caces of equation (10) can be calculated in principle bv dividing
the polvnomial a(2)geparately by rhe first degree polynomials (z-bj),
keoping only the remainders. That is operationally equivalent to
evaluating a(z) at the n nen-zere field points bj. In either case
nl ~uriinlications in Gr(pm\ are implied.

An equive’ent method is to first divi'e a(z) by a smaller set of
palvnominls of higher degree containing distinct factors of the
form (z—bj), and then te evaluate the remainder polynomials at the
appropriate values bi. If this set of divider polvnomials is the set
of minimal polvnomials of the non-zero field elements, then their
coetfficients are elements of the prime field GF(p) so that only scalar
m ltiplication by the elements ~f the prime field is required in the
first step. This is particularly significant when p = 2 and the cor-
responding scale factors are either zero or one. The equivalence of
the two methods is easily seen by examination of the factorization over

CF(pm) of the polynomial PR

p-1

PR R 7—Y (z - bj); b e GF{p™ (11)
=0
which can also be expressed as the product o the minimal polynomials
mi(z) having as roots the value bi and its conjugates (bi)ph. This

factorization is given explicitly by

24

PR R m. (2) 12a)

i=1

wvhere M is the number of irreducible factors of 2" - 1 and
. , . .q
m (2) = ’ ‘ (z-b') (z-b'P)y . .. (z-p'P). (12b)

The minimal polvnomials mi(z) have their coefficients restricted to
the prime field GF(p).

To complete the transform computation, we must evaluate each of
the remainders at the conjugate roots of the associated mininal poly-
nomial divisor. This second step requires multiplications in GF(pm),
but the number is substantially reduced because there is a relatively
small number of remainder polynomials, each of smaller degree than
the degree of field extension.

As an illustration of the fast algorithm, a structure for compu-
tation of a 3l-point transform over GF(ZS) is shown in Figure 4.
Notice that division by the 5th degree minimal polynomial factors
of 231—1 is accomplished in a set of six binary feedback shift reg-
isters of length m = 5. The additional transform point corresponding
to division by the first degrec¢ polynomial factor z-1 is calculated
simply by summing the coefficients of a(z). 1In the structure shown
we use a single multiplier in GF(ZS) sequentially to evaluate the
remainder polynomials. This choice of implementation is used in the
hardware design of our encoder and decoder because of the relative
complexity of such a multiplier and also because it supplies data
at a sufficient rate for the remaining operations. For the example
given, the number of multiplications in GF(ZS) resulting from the

remainder evaluation has been reduced from 930 to 120 by the use of

this algorithm. The corresponding reductions for some other situations

of interest are listed in Table I.

25

0ESIsQ

HU
SI0BNAS
Q3IWHOISNVHL

(¢T) 4y 2on0 wlojsuely,
jutod-1¢ e durindwo)y 10j 84nIdNIIE H 3InBIyg

—L

TOUANOD ML1IWHLIHY u -

-7

]

AN3W3I3
al3ay

|
|
HOLVHINID —
|
|

L

7.-...._
qa__

HOLVINWNIDY

—~

S>>0
Jme!

STOBNAS
LN

HOLVNIVAI INAISIY CELERUIIRN

—— e o o o] - ——

|

|

|

|

i

|

|

|

|

|

|

|

i — |

o At

|

RISk ata ata aomnte

! '

|

|

i

|

|

|

|

|

|

\

B —

(2) Oy £ =4

— HOLYINI VI INQISI

ETATE D

26

A A/ AoNZo L
A 4 AONZU 6
8¢ 012 fﬁmo 91
Z11 7Le AwNZo LT
L 0Ty Aocmu 12
0Z1 0€£6 AmNZo 1€
8€€ 0652 Amcmu 16
¥8¢ 906 °¢ Aoﬁmo €9
LS ontTL Axsmo S8
95¢ 70091 A%;o L21
0TLT 0LL %9 (;7)39 9%/
wuIrojsueaj 3iIsej wiojsued] TeBUOTIUDAUOD N

SuoTeoTITdIITNK PISIJ UOISUDIXY JO Iaquny

uorjeladp 3o pIold

9278 WIOJSUBI]

A31xaTdwo) 1euorleindwo) jo uosyaedwo)d I I[qeElL

27

3.4 Field Programmability of the Fast Transform Algorithm

The hardware for the fast transform algorithm described 1in
section 3.3 can be reconfigured easily to compute transforms of
appropriate lengths in the different Galois fields GF(Zm). In each
field of order 2™ a transform of n points can be defined for every
integer n that divides 2™ -1. Thus in GF(28), transforms of
255, 85, 51, 17, 5 and 3 points and the trivial l-puint (identity)
transform can be defined. Division by the minimal polynomial factors
that split 2" -1 is performed in a set of binary feedback shift reg-~
isters of length m. There are m of these registers identically con-
figured, operating on the m-bit symbols of the input sequence, and
used in association with each of the minimal polynomial factors. As
an example, for a 3l-point transform over GF(ZS), there are six 5th-
degree factors and one first-degree factor that split 231-1. Division
by each polvnomial factor requires 5 binary feedback shift registers
wired with the same connection polynomial, as shown in Figure 4.

We have designed our Reed-Solomon coder and decoder to accommo-
date codes, of both maximum and sub-maximum lengths, having symbol
fields ranging from 4 to 8 bits per symbol. The lengths of the non-
trivial transforms defined in the various fields are tabulated in
Table 11 together with the minimal polynomial factors of 2" -1 for the
different transform lengths n in each field. The minimal polynomials
are given in Table I11-1 through Table III-3. If we provide for a 255~
point transform over GF(28); by reconfiguring the lengths and con-
nection polynomials of the feedback shift registers, all of the other
cases can be accommodated. Of course, the multiplier in GF(Zm) that
is used in evaluating the remainders needs also to be reconfigured.
The design details of the hardware that can be electronically reconfig-
ured to compute the full set of transforms enumerated in Table 1T are
described in Volume II of this report. We have constructed a bread-

board, with medium scale logic, of a transformer used in a Reed-Solomon

28

TABLE 1I

Transforms over GF(Zm)
Field of Transform Length Required Minimal Polynomial
#7Calculation N Divisors
cr(2%) 255 m, (2), m (2), my (2),
m (2), m, SZ), my (z),
mll (Z), m13 \Z)) mlS (Z),
L (z), mgy (z), L (z),
m, 4 (z), m,s (z), m, 5 (z),
ng (Z), m31 (Z), m37 (Z),
myg (2), m3 (z), m, s (2),
m s (z), mey (2), mg3 (),
mg o (z), m59 (z), me (2),
Mes (2), mos (z), Mgy (z),
m.. (2), m - (2), m);. (2),
“‘?119(2)’ “‘?;7(2) H
85 m, (z), m, (z), m, (2),
m? (2), m> (z), m (2),
5 21 27
Mg (2), W, s (z), me) (z),
mey (2), mgy (2), mpy,(2)
*
51 m (z), m (z), m (z),
md. (z), m (z), mi2 (2),
mgg (z), mgg (z) >3
17 my (z), me (z), m, s (z)
*
15 m (z), m (z), m (z),
5 m, (z), mey (2)
3" my (2), mgg (2)
GF(27) 127 m, (z), my (z), m, (z2),
mg (z), m, (z2), mg (z),
m, (2), ma (z), m s (z),
m19 (z)g m21 (Z), m23 (Z),
m27 (Z), ng (2)7 m31 (Z)y
m,q gz;, m, 5 (z), mg s (z),
mey (2

* Cases included in breadboard

29

TABLE IT (Concluded)

Transforms over GF(2™)

Field of Ifransform Length Required Minimal Polynomial
Calculation N Divisors
cr(2%) 63 m. (2), m (2), m, (2),
0 1 3
m. (z), m; (z), m; (z2),
5 7 9
my, (2), m,, (2), m]. (2),
mll (z) m13 (2) mlS (2)
21y T23 TR Ty B
nyp (2
21* (2) (2) (z)
m A m VA m Z
0 * 3 > 9 >
myg (2), myy (2), my, (2)
9 L (2), m, (z), Moy (z)
*
7 mO (z), m9 (2), Lo (z)
*
3 my (2), My (z)
GF(27) 3™ my (2), m (2), my (2),
1 3
m (z), m (2), m., (2),
mS (z) 7 11
15
4 *
GF(2) 15 my (2), m, (z), my (z),
n, (z), m; (2)
5 7
*
5 m, (z), m, (z)
*
3 m, (2), mg (z)

: rses included in breadboard

30

Table III -1

8
Minimal Irreducible Polynomials over GF(27)

3 4 5 6 7 8
+ m32 + mAz + mSZ + m6z + m7z + msz

2

1

mO +m12 +m22

mi(z) =

Mg

M7

Mg

Mg

™

™3

™

1

m

m
(o]

Polynomial

e B I i B B B e i o S]

QOO mi O

Qe rl O N OO~ O

O — YN~ O

- N~ N
— ot ot —t

ek et et o et (O eed et e gt pd

)))))))))))))\/)))))))))))))))))))))
N N NN NNNNNNNDNNNDNNNSNNNNNNDNDNDNNNGN-NNN-NNN
(((((I\(((((((((((((((((((((((((((((
— 0N~

TSN~ NN AN et NN ON - MU P et N e N
NANANNNOMOOMSE TT NN N OO0 0NN m et —
EEEEEEEEEEEEEEEEEETEETEEHE

EEEEBEE

—
EEEEE

31

Table TIIT - 2

Minimal Irreducible Polynomials over GF(27)

mi(z) = mO + mlzl + m222 + m3z3 + m42“ + m525 + méz6 + m7z7
Polynomial "5 m, m, m, m, mg me m7
m, (z) 1 1 0 0 0 0 0 0
m (z) 1 0 0 1 0 0 0 1
m§ (2) 1 1 1 1 0 0 0 1
m5 (z) 1 0 1 1 1 0 0 1
m5 (2) 1 1 1 0 1 1 1 1
mgy (z) 1 1 1 1 1 1 0 1
m (z) 1 0 1 0 1 0 1 1
1 m g (z) 1 1 0 0 0 0 0 1
m15 (2) 1 1 1 1 0 1 1 1
™y (z) 1 1 0 1 0 0 1 1
m21 (2) 1 0 1 0 0 1 1 1
L (z) 1 0 0 0 0 0 1 1 l
M,y (z) 1 1 0 0 1 0 1 1
g (z) 1 1 0 1 0 1 0 1
ma (z) 1 0 0 0 1 1 1 1
m 4 (z 1 1 1 0 0 1 0 1
m47 (z) 1 0 0 1 1 1 0 1
Mg o (z) 1 0 1 1 1 1 1 1
m (z) 1 0 0 0 1 0 0 1
63
j Minimal Irreducible Polynomials over GF(26)
mi(z) = m, + mlzl + mzz2 + m3z3 + qu'* + msz5 + m625
| Polynomial m, m m, my m, m- me
my (z) 1 1 0 0 0 0 0
m (z) 1 1 0 0 0 0 1
m3 (z) 1 1 1 0 1 0 1
m. (z) i 1 1 0 0 1 1
m7 (z) 1 0 0 1 0 0 1
m (z) 1 0 1 1 0 0 0
m’. (z) 1 0 1 1 0 1 1
mg (2) 1 1 0 1 1 0 1
ms (z) 1 0 1 0 1 1 1
my) (z) 1 1 1 o 0 0 0
LS (z) 1 1 0 0 1 1 1
m,y 5 (z) 1 1 0 1 0 0 0
m31 (z) 1 0 0 0 0 1 1

32

Table IIT1 -~ 3

Minimal Irreducible Polynomials over GF(ZS)

.y = + 1 2 3 U 5
mi(") mo mlz + mzz + m3z + m,z + msz
Polynomial ™ my m, my m, mg
m, (z) 1 1 0 0 0 0
my (2) 1 0 1 0 0 1
my (2) 1 0 1 1 1 1
mg () 1 1 1 0 1 1
m5 (z) 1 1 1 1 0 1
my (2) 1 1 0 1 1 1
m g (2) 1 0 0 1 0 1

Minimal Irreducible Polynomials over GF(ZA)
= 1 2 3 L
mi(z) my + m 2 + m,2 + m,z +m,z
Polynomial m0 ml m2 m3 m4
mo(z) 1 1 0 0 0
ml(z) 1 1 0 0 1
m3(z) 1 1 1 1 1
ms(z) 1 1 1 0 0
m7(z) 1 0 0 1 1

33

encoder and decoder. It will compute transforms of up to 51 points
in GF(28) and the transforms in the smaller fields, as indicated

by asterisks in Table II. The hardware implementation of the bread-
board is also described in Volume 11.

3.4.1 Multi-dimensional Transform Partitioning

NS |
It has been shown elscwhere that a transform over GF(27) of n
points can be decomposed into a multi-dimensional transform having

one~dimensional components of transform lengths n D,s «oe My, where

1’
the individual lengths are a complete set of relatively prime factors
of n [15]. 1In that work, the individual one-dimensional transforms were
computed bv means of the Winograd algorithm for fast cvelic convo-
lution. The multi-dimensional transform decomposition can also be
combined with our algorithm for fast polynomial evaluation to produce
a fast transfurm algorithm with attractive hardware implications.

For example, a 255-~point transform over GF(28) could be configured

as a 3-dimensional transform of component lengths of 17, 5 and 3
points respectively. Equivalently it could be configured as a 2-
dimensional transform of 17 and 15 points, or of 85 and 3 points, or
of 51 and 5 points. Consider the last case: the full transform can
be configured as 5 transforms of 51 points each followed by 5] trans-
forms of 5 points each. The 51-point transforms would use identical
(or time-shared) hardware but operate on different input data,
selected as every 5th term of the input sequence appropriatelv

of fset. The 5-point transforms are calculated in succession from

the 5 outputs of the 5l-point transforms. This example is of direct
interest to us in the use of our 5l-point transform breadboard.
Fxpansion to 255 points using this 2-dimensional decomposition merely
requires replication of the 5l-point transferm hardware, followed

by a single 5-point transformer used sequentially. A block diagram
of such a configuration is shown in Figure 5. In practice, a larger
number of S-point transformers would be used {perhaps 5) in order

to maintain throughput.

34

SuTuo13ITIaBd TRUOTSUBWIQ-OML 3ulsp Awmvmc

19AQ WIOJsuBL] 3UTOd-G6GZ B Bulindwo) oy 3ANIdNIIG °¢ aan814

05.-%.-0
| 4IWHO4SNVHL |
N0s1S [Tingepre)
HIWHOISNVYL |
o [)
ysz>150 ¥SZ 10
{iw} {wme}
s1oawas . % | uawwoisnwul | HIWHOASNYHL 8 S108WAS
1ndino 7 INIOd'§ ° wi0dts [Tiezre) 1NdN)
HIWHOASNVHL |
INOSLS [Tee)
| HIWHOISNVHL
INIOd LS {onsre}
i

Comparison of the multi-dimensional approach with a direct method
of transformation, both br:ed on our algorithm for fast polynomial
evaluation, will show that approximately the same amount of hardware
(polynomial dividers, field multipliers, logic gates) is needed in
either case. But in the multi-dimensional case there is greater
opportunity for the use of r-plicated hardware. 1Ia the example zhown
in Figure 5 there are 35 polynomial division registers, but only 8
different tvpes ruather than 33 different types required for the direct
implementation. There are 255 multipliers in GF(2™) required in the
example, but only 56 different types. In general a multi-dimensional

1.
n

transform of length n = , { n, points requires rolynomial eveluation

i=1

i
k

to be performed at only £ = n, di’ferent roots.
i=1

36

i e e L -

SECTION 1V

REED-SOLOMON TRANSFORM DECODING ALGORITHM

Assume that a message represented by the polynomial a(z) is
encoded as a Reed-Solomon codeword by the transform, or polynomial
evaluation, method described in Section II1 and that a number of
errors, within the constraint of equation (2), occurs in trans-
mission. The received code sequence contains these errors. If we
know which symbols are correctlv received, (which is the same as
knowing which symbols are in error) we can choose a correct subset
of k linearly independent equations from the full set of equation
3) and solve them for the message svmbols. An equivalent procedure, l
and the one that is most often used, is to find the error locations
in the received sequence and then to use them directly to solve for
the error values, correcting the received code sequence from which
the message can be decoded. Since there are usually fewer errors
than message symbols, the second method should require less compu-
tational effort. As discussed in Section 11, we will use a transform
version of the algebraic decoding algorithm to streamline the required
operations. But we must first determine the error syndrome from
which the error locator polynomial may be determined.

4,1 Error Syndrome Computation

Let the source message be represented by the polynomial
2 -
a(z) = ap +ajz + azz* + ... F dk~lzk !

having degree n-1 but with the n~k highest-degree coefficients

, which we will regard as

equal to zero. The transmitted codeword is represented by the poly-
nomial A(z) = Ag + Ajz + A’,z2 SIPEPENE An_lzn—l in which the co-
efficient Aj is determined as a(bJ) in accordance with the transform
of equation (4). 1If we were to apply the inverse transform of equa-
tion (6) to the coefficient sequence of A(z), we would obtain the

message a(z).

37

Notice in particular that for any valid A(z) the interpolated message
cuoctiicients a; must equal zero for i>k. This construction is equiv-

X -k -(k+1 - -

alent to choosing the set {b , b (k l), b (k+2),. . ., b n+l} as the
roots of the polvnomial g(z) that generates the code ideal in the
ring of polvnomials modulo 2" -1,

Assume that an crror sequence represented by the polynomial
g
n-1

E(z) = EO + Elz + Ezz' R En_lz has been added to the encoeded
message upon transitission. If the received word is correctable.
then E(z) will have no more than l—1—:‘}i~non--zero coefficients; both
their values and locations will be unknown. The received sequence
is represented by the polvnomial sum R(z) = E(z) + A(z) so its
inverse transform is r(z) = e(z) + a(z), where e(z) is the inverse
transform of E(z) and a(z) is the original message. The de-
coding problem is to determine e(z) in order to e.tract the message
a(z) from the inverse transform r(z) ol the observed scquence R(z).
To compute the error syndrome, we first interpolate the poly-
nomial r(z) from the values of the received sequence R(z) "v taking

its inverse transform,
n-1

- -1 2 ~-ji ,
I‘i =n ij (14)

j=0

which is equivalent to multiplyinngy the constant factor n-1 the
values R(b_;) that result from evaluation of the received sequence
polynomial R(z). Since b.i E bn—i it follows that the iransform
structures described in Section II1 can also be used to calculate
the inverse transform, provided that we index the output values in
reverse order and multiply them by the scale factor n_l. The codes
that concern us here have symbols that are binary m-tuples, and

consequently n = 2"

-1 = 1 mod 2" so that the scale factor is unity,
all of which will be assumed below.
Since A(b—l) Z 0 for i > k because of the method of code con-

struction, we can separate from equation (14) a term valid for

38

i=k, k + 1, . . ., n-1,

s, = R(b™) = Z Ejb—ji; i=k, k +1, . . ., n - 1. (15)
j=0

The sequence {si} of the n-k values calculated from equation (15)
constitutes the error syndrore associated with the channel error
pattern E(z). This error syndrome is, by definition, equal exactly
to the last n~k ‘ralues of the inverse transform of the received
channel sequence, given by equation (14). The values of equation
(14) for i < k are, in general, different from the values that we would
obtain Ly extending the definition of equation (15).

4.2 Error Location

After the vrror syndrome has been calculated, it can be used to
determine the locations of the errors in the channel error paitern l
E{z). Several procedures are available for determiring the error
locations, including a method of continued fractions [16], another
method that applies Euclid's algorithm (5], and an algorithm formu-
lated by Berlekamp and Massey {8]. Common to all of these methods
is the determination of a polynomial whose distinct roots designate
the error locations (or their multiplicative inverses).

In our work, we employ the Berlekamp-Massey algorithm, judging
it to be an available method that is computationally efficient and
conceptually satisfactory from a signal processing viewpoint.

It may be regarded as an algorithm for synthesizing the shortest
linear feedback shift register that generates a prescribed

sequence obtained from the inverse transform (interpolation) of the
received code sequence. The error locator prlynomial is the char-
acteristic polynomial of the LFSR; its coefficients uniquely satisfy

a linear recursion with the first n-k coefficients of the interpolated
sequence. In our use of this algorithm, we include correction for

erasures by initializing the algorithm in accordance with the known

39

erasure locations. The linear recursion satisfied by the LFSR is
simply a convolution between the input sequence and the feedback co-~
efficients.

A competing method, one that may be simpler conceptually although
not as convenient for hardware implementation with linear sequeniial
circuits, is based on a continued-fractinr development of a power
series expansion of the ecror syndrome. The continued fraction can
be used to synthesize directly a canonic ladder realization of an
equivalent rational polynomial transfer function, or its values
can be used to compute 'v iteration the characteristic polynomial ot
the LFSR. Both metheds will be described.

4.2.1 The Berlekamp-Massey Alsorithm

The Berlekamp-Massey algorithm has been discussed thoroughly by
its authors |6, 8]. The discussion presented here, which is taken
in part from a previous project document, is included merely for
the sake of ompleteness and for continuity with the transform
Jecoding method being described.

The channel error sequence E{z) is described by a list of pairs
of “ield elements, Yi (the value of the error) and Xi (an error lo-
cation determined by the index of a field element) for the ith symbol
error (7). The syndrome values may be expressed in terms of these
elements as

v .
Ry = sj=ZYiXij; j=k, k4, . . ., n-l L (16)
i=1
(in accordance with the code construction of Sectirn III) where v is
the 'lemming weight of the error pattern or equivalently the number
of non-zero coefficients of E(z). We assume v<(n-k)/2 so that the
error bound of the code is not exceeded.
The algorithm is concerned with determining the coefficients of

an error-locator polynomial

40

v
o(z) = i ‘ (z-Xi) =0, +to0 _yz+ ov_zz2 + ... +2 Gan
i=1

whose distinct roots are the error locations. The effect of intro-
ducing the error-locator polynomial is to reduce the system of non-
linear equations relating the error values, locations, and syndrome
components to a system of separate sets of linear equations.
In the BCiHl decoding algorithm, a system of egnations is first solved
for the error locations Xi’ which reduces equation (16) to a linear
system relating the syndrome values Sj and error values Yi' The error
locator polynomial provides an intermediate step in the process that
is useful for determining the error locations Yi.

For the transform decoding algorithm, the error locator polyno-
wial has even greater significance. First, a unique linear relation-
ship can be established between the syndrome values and the coefficients

of the error locator polynomial, namely

s. 0 + s

+ .. +
j v j+l v

v-1 © T Sin1%1 T S5y = 0 (18)

which is valid for all k < j < n-l-v. This relationship is established
by multiplying (both sides) of equation (17) by Yixij’ then substi-~
tutirg Xi for z, summing the result over the index 1 < i < v, and sub-
stituting from equation (16). Next, it can be proven that there
exists a polynomial e(z) of degree less than n that satisifies

linear recursion (18) with o(z) for all 1 < j < n, and that e(z)

is uniquely specified by v consecutive values of its transform E(b_j),
(where for example j=k, k + 1, . . ., ktv-1) and E(z) has no more than
V non-zero coefficientsf In that case E(z) is the channel error

pattern, and the calculated values E(bJ) form its inverse transform.

*The proof is given in Appendix A of reference [2].

41

The error locator polynomial can be determined from the error syndrome
and then be used to extrapolate the inverse transform e(z), which

must be subtracted from the inverse transform r(z) of the received
channel sequence to extract the message. The values E(b~j) for 3 > k
exactly balance the syndrome coefficients to produce zeros in those
message positions. There is no need to explicitly find the error
locations in order to solve a set of linear equations for the channel
error values, as is usually done in the BCH decoding algorithm.

The Berlekamp-Massey algorithm provides an iterative method of
synthesizing the canonic linear feedback shift register that has the
characteristic polynomial o(z) which is used to extrapolate the
inverse error transform e(z). The algorithm is in fact a constructive
proof that if the length Lr and connection polynomial O<r)(z) are
known for the minimal length LFSR that generates the sequence

.y Sr) but not the sequence (s S_, 8

(8> Syq1 K Sktl’ ot 00 Spr Spar)
then a valid choice for the connection polynomial to generate the

latter sequence is
o) = T () - aa o™ () (19)
where the next discrepancy dr is defined as

L .
A = Semct D095 Spawes (20)
i=1

and the maximum degree of o(r+1)(z), which is also the minimum length

of the shift register is

- - . 21
Lr+1 max (Lr, r+1 Lr) ; dr 40 (21)

L ;y d_ = 0.
r’ ’

42

The recursion begins with the initial conditions established for

r=0, -1,
L, =0 Ly =0
R (@ - (22)
d_y =1 4o = Sy

The index r corresponds to the rth step in the recursion of
equation (19); it is also the length of the correct seauence generated
by the minimal shift register of lensth Lr when dr=0' The index m is

the index of o(m)

(z), the last connection polvnomial “efore the nrevious
shift register length change. The test 2Lm < m must be met before
n(m)(z) is updated in the recursion. The discrepancy dr is the difference
between the desired next value Sr+k and the actual value computed by

the approximating shift register of Iength Lr having connection poly-
nomial c(r>(z). The recursion must be continued until the minimum-
length shift register that generates the error syndrome sequence

Sp> Sp41?t 02 St Sr+2v has been determined, which requires
processing all n-k syndrome values to ensure proper termination.
The corresponding shift register length is equal to v, which equals
the number of errors that occurred, and the connection polynomial
satisfies equations (20) and (21) uniquely [8].

After the LFSR has been synthesized by this algorithm, it is
necessary only to continue its operation, with zero input, for an
additional k shifts in order to extrapolate the k unknown values of
the inverse error transform e(z) [2]. These values are subtracted
from the corresponding values of r(z) in order to decode the correct
message. This represents a substantial savings in finite-field

computation in comparison with the error-value computation of the

BCH decoding algovithm,

In the BCH decoding algorithm, after the error leocations have
been determined, it is necessary to find the error values in order to
correct the received sequence and decode the message. The conventional
(non-transtorm) application of the BCH decoding algorithm would
require us first to find the error locations by searching for the
roots of the error locator polynomial and then to calculate the error
values by solving a set of linear equations. Alternatively, the
error value calculation can be carried out by evaluating the residues
of a partial fraction expansion in the error location singularities
of an error-svndrome penerating function.

From the transform viewpoint such a procedure is overlv compli-
cated. Instead, the LFSR that is characterized by the ervor locator
polyvnomial is used to extrapolate the inverse transform of the error
sequence that was added to the transmitted codeword sequence. Since
the message polynomial is the inverse transform of the channel code
sequence, we need only to subtract the inverse error transform from
the interpolated received sequence to complete the decoding, as was
shown in Figure 2.

4.2.2 Modification lor Correction Of Errors and FErasures

The decoding al;orithm described above was concerned only with
correcting errors, an error being described as a received symbol
of incorrect (or unknown) value occurring at an unknown location.
An erasure is described as an unknown symbol value occurring at a
known location; it may occur for example by observing the channel
noise, assigning an erasure when the detection decision becomes
suffic’.ntly uncertain. A Reed-Solomon code can correct twice as
manv erasures as errors; in fact it can correct any pattern of t
errors and s erasures provided the inequality of eq. (2) is satis{ied.
A useful Reed-Solomon decoder should be capable of correcting both
errors and erasures, which requires some modificatio~ to che decodirg

al jorithm used for correcting errors only.

44

Forney has described a modified BCH decoding algorithm for

correcting errors and erasures [17]. 1In his method the known error
locations are used to linearly transform the error syndrome values

to a modified syndrome, the latter being used to solve for the

error locations. This can be done, for example, by using the modified
syndrome as input to the Berlekamp-Massey algorithm for determining
the error locator polynomial, followed by a root search. From the
known errata locations, a set of linear equations can be solved to
determine the unknown symbol values.

In our method of correcting for errors and erasures we initial-
ize the error locator algorithm (Berlekamp-Massey) with the connec-
tion polynomial computed from the known erasure locations. Then,
we continue the algorithm normally to synthesize an errata locator
polynomial which is the product of the error locator polynomial and
the erasure locator polvnomial. Once the errata locator polynomial
is synthesized, there is no further distinction between errors and
erasures, and the inverse transform of the errata pattern may be

extrapolated by free-running the synthesized LFSR as before.

The erasure locator pclvnomial y(z) will be defined as

N
(2) H(%) + + 2 +20 @23)
= - = 4 e z
y\z z)i YO Yo—lz Yp—2
i=1
where p erasures have occurred, not exceeding the minimum-distance
Y .
bound of equation (2). The roots Xi designate the erasure locations,
forming a set that is disjoint from the error locations Xi' It is

a
convenient to define an errata locator polynomial o(z) as the product

of the error locator and erasure locator polynomials

p

; |

|

Y@ = y@o = T @i T[= (24) ‘
J=

i=1

45

a rooi of ?(z) designating either an error or an erasure location,
in other words an errata location.

The erasure locator polynomial can be calculated recursively by
the formula

! YO 2y = T - *r+1vr(2), AUERE (25)

Bv comparison of this expression with eq. (19) it is evident that
g the erasure locator polynomial can be calculated by the error locator's
weight calculator if the erasure locations ki are taken in sequence
in place of the next discrepancy values drf This initialization
sets up the erasure locator v(z) as the characteristic polynomial of
the correlation register. During the initialization the first p
syndrome values, equal to the number of erasures, are sequenced into
the correlation register. 1In the absence of erasures, the initial-
ization reverts to the error-locator mode.

After the apparatus has been initialized with the erasure
locator, the algorithm continues in the error locator mode to gener-

ate the errata locator polynomial

sy = (@) - a g ™ (@) (26)
Lr
e a ~o(r) .

! dr = e ¥ z : % Srk-i (27)
| i=1
? with the initiclization at r = ¢ given by
; v(p) ~(m) N (p-1) .
? ¢ 7 (z) = v(z) a2y =0 (z) = v(2) (20)

p

d, = Sou }: ¥ S bt d =d ;=1
i=1

*See Figure 8 of section 5.1.

46

If we write

5P (5 = 0 ()

v(z)o
(29)

O(Q-l) (Z) = 'Y(Z)U(_l) (Z)

and observe that the errata locator recursion begins at r = o, we

can factor the right hand side of eq. (26) to obtain

g(r+1)(z) - v(2) [zr—mo(r)(z) - drdw‘lo(m)(z)] (30)

L}

v(z)o(z)

and observe that the term in brackets is the recursion that calculates
the error-locator tap weights. If the minimum distance bound of the
code has not been exceeded, 2v + ¢ < d - 1, then the remaining

n-k-0 syndrome digits are sufficient to uniquely Jdetermine the error
locator factor, o(z), of the errata locator polynomial. This result,
as in the case of Massey'’s algorithm for the error locator, can be
proved by induction. Extrepolation of the errata transform from

the synthesized errata location chift register implicitly follows

from the error-extrapolation proof in Appendix A of reference [2}.

4.2.3 Continued Fraction Algorithm

Recently a method of continued fractions has been advocated for
use as an equivalent to the Berlekamp-Massey algorithm for decoding
Reed-Solomon codes [16], As part of our work, we examined this
approach, but our analysis indicates slightly reduced compu-
tational complexity of the Berlekamp-Massey algorithm, and its con-
venience of hardware implementation, which we continue to prefer. A
summary of our examination of the continued-fraction method is g¢iven

below.

47

Ir thbe error syndrome is expressed as a power series

-l) = s z_l + s z“2 + . . .+ sn_lzv(n_k) + . (31)

it is possible by successive polynomial division to exactly approx-

imate the series by the finite Stieltjes continued-fraction,

1 (32)

The process of successive division terminates after 2v steps where

v is the weight of the error pattern. The continued-fraction express-
ivn can be used directly to synthesize the canonic ladder realization
of a digital filter network, as shown in Figure 6. The unit sample
response of this Filter generates (periodically) the inverse trans-
form ¢(z) of the channel error sequence E(z), which accomplishes

the same function as free-running the LFSR synthesized by the

Ber lekamp ‘Massey algorithm. In fact, it can be shown that the com-

panicn matrix of the ladder network of Figure 6 and the corresponding

48

T e T =TT

INPUT

/— DELAY

» OUTPUT

+
1
-vg +
Y
+
&
Figure 6. Canonic Ladder for Stieltjes Continued

Fraction Realization (v=3)

49

LFSR have the same characteristic polynomial o(z).

Instead of using the ladder network we could also use the
Stieltjes continued-fraction convergent to form successive approxi-
mations to the error locator polynomial, by the iterative set of
computations

A

o(l)(z) = u,z
0(2)(2) = vlc(l)(z) + 0(0)(2)

0(3)(2) =u 0(2)(2) + o(l)(z) (33)

2

0(2\)) (z) = vvo(zv'_l)(z) + 0(2\)—2)(2) = g(2)

which terminates with the last step of the successive division. The
final iteration produces the connection polynomial of the LFSR
used to extrapolate the inverse error transform.

In comparing the computational complexity of the Berlekamp-Massey
algorithm with the method of continued fractions, observe that both
methods in effect synthesize a recursive filter determined by the
error locator polynomial. Once this filter is synthesized, the same
number of computational steps are required to extrapolate the error
transform, so the relative complexity can be compared for the filter
synthesis step of the decoding algorithm. The complexity of the two
methods, measured by the number of finite-field products computed is
relatively equal, the Berlekamp-Massey algorithm always providing the
slightly lower value. But there is an important difference for hard-
ware implementation. The Berlekamp-Massey algorithm onerates on the
syndrome values sequentially, allowing for serial computation of the

syndrome.

50

The continued-fraction algorithm performs a polynomial division in-
volving the error syndrome values at each step of the recursion, thus
the syndrore computation must be complete before the continued-
fraction algorithm can proceed. An advantage of the continued

fraction method is that the number of recursions never exceeds the

number of errors being corrected. For the hardware design of our
Reed-Solomon decoder we prefer the serial computation <f the syndrome.

4.3 Message Extraction

Following synthesis of the error (or errata) locator polynomial,
the inverse error transform is produced as the unforced response of
the synthesized LFSR and the message is extracted by subtracting the
inverse error transform from the inverse transform of the received
channel sequence. Proof that the error locator polynomial may be
used to generate the inverse error transform may be found in Appendix
A of reference [2]. The proof relies on two lemmas which can be used
to establish the uniqueness of the linear recursion between the in-
verse error transform and the error locator polynomial, and the suf-
ficiency of the error syndrome to uniquely define the error locator.

The reader is referred to the reference for the details of the proof.

SECTION V

HARDWARE DESTGN (SUMMARY)

It has consistently been our goal in this work to produce a
design, suitable for large-scale circuit integration, that accommodates
manv Reed-Solomon code parameters in order to maximize the utility
of the hardware. A number of design-related tradeoff studies were
performed to resolve the issues of hardware programmabilitv, functional
partitioning, speed versus gate complexity, interface and control.

This work successtully culminated in the ccmplete design, at a basic

logic level, of a versatile decoder and in the hardware implementation

of a breadboard, the complete details of which are reported separately
in Volume I[of this report [4]. Salient features of our hardware
design are described below. l

5.1 Functional Partitioning and Programmability

The two principal processing functions used in our Reed-Solomon
decoder, the Transformer, which is used both for code generation and
error svndrome computation, and the Error Locator, which is used both
to compute the error locator polynomial by means of the Berlekamp-
Massey LFSR algorithm and to extrapolate the inverse transform of the
channel error sequence for use in extracting the corrected message
symbols, are described schematically in Figure 7 and Figure 8. They
have both been designed to incorporate programmability to accommodate
a wide range of code parameters. The total range of Reed-Solomon
codes that our design can implement is shown in Table IV. From this
table, t the number of correctable errors is determined as one-half the
redundancy, or (E%E). There are 588 separate codes identified by the
code parameters (n,k,t) that can be decoded. The subset of multiple-

error correcting codes of rate approximately one-~half that can be

decoded 1is shown in Table V; there are 17 of these.

uotl109g wiojsuea] °/ 2indryg

TOHLINOD JILINWHLIHY

R N T
_ _ ;_.z;anL_l - .

F

HOLVH INID _ wp _
INIWII _) SHILSIDY Pl - o
01314 _ ET T T Ty _
rd ¥
— _ ’ |
*® - (®
T _ < _
|t)
! _ | . _ wp SIHv s Pt _ L]
o 1 -
b~ f _ [[aa}
M . I¥el
. | = ST08WAS
-k —4uwoLvinwniovw MS S11g
WHO SNV Y L / _ TINNVHO
ISHIANI

}
_
_
_
|
|
|

i
e

_ HOLYNIVAT INAISIY _ HIXIdNw | MOLYINDVD 3001534 |

S

e - - [. e e - e - L e - T

103e00’] 1021y g 2an314

[T T T T T %ouviawEos Lo
- "
| |
—_—t — _ %
_.| I ~CwiNOD | o _
o _1 H31S1934 LIIHS O IWOHANAS

viva
NOI1I3YHOD

Q

—_—————
|
l
I
l
|

SRR

(IVINONA TOd J11S1431JVHVHII:
H31S193Y »I.U.w?H

|
|
|
|
_ o_uow T T] "
| [2r13wniiuv r— T, -“l - ||_ 3
1
_ _ ® ¢ e ! " _
_ " : m | _
_ _ “ , _
_ A |
L1 |_ . 0.
_ 43151934 ONIQ 10K ! A vé\wh
S3WNSVY3 _ i N . _
L 1
301Is LIg W |
HOLYIND VI L1HOIIM

WHL114097v AISSYW - dWVYN3TH38

-~

e300l (4 ‘¢)
€z (1 ‘s)

o ‘st) i (¢ x¢) 61

Te30l

€ (1 1e) S (ANI™¥A) 1€
‘e)
eIl (1 ‘L)
€01 (A ‘6)
™ ‘1z)

1 ‘¢9) 9 (€ x€x{) €9

1e30]

XA SN C URAAD) L (dn1dd) L21
¢o‘g)
o 's)
s3pod (4 ‘ST)
teIol (4 ‘41)
w0t (1 ‘19)
(1 ‘s8)

1 ‘562) 8 (€ X 6 X (1) §62

821 > j-u w (STOgKRAS)
SAA0D (o ‘u) TOGWAS/S11g HIONAT D018 WOWIXVK

ugrsaQg aaempied a9yl Aq PaILPOWNMOIIY SIPO) UOWOTOS-Pasay

AL d719VL

55

} Table V: Half-Rate Codes Accommodated
by the Hardware Design

(n,k) code Bits/Symbol

(255, 127)
(127, 63)
(85, 42)
(63, 31)
(51, 25)
(31, 15)
(21, 10)
(17, 8)
(15, 7)
9, 4)
(7, 3)
s, 2)
3, 1)

WAL WONUL OO0~
-
£~

. -
o &
-
&

56

1
il

Programmability of the hardware is achieved by stored program
control of electronically reconfigurablg feedback shift registers,
transversal cross-correlators, and finite-field mﬁltipliers. For
the transformer circuit of Figure 7, the field elements required by
the programmable multiplier~accumulator that computes the residues
of the divider outputs is generated by a programmable linear feedback
shift register. The polynomial division registers, which divide the
incoming channel sequence by the minimal polynomials of the field
elements and store the remainders, are also configured as binary
programma:-le linear feodback shift registers, both the feedback con-
nections and lengths being reconfigurable by external program control.
Notice that the division registers shown schematically in the figure
actually represent a set of m identical binary feedback shift registers,
each operating independently on a component of the m-bit input symbol. ,
It is expected that the entire set of logic functions for the transformer
could be fabricated on a single VLSI (or VHSIC) integrated circuit,
the processor complexity requiring about 2000 shift register stages
and about 9000 logic gates. The program control would most likely be
on a separote conlrol chip containing a modest amount of programmable
rea-only merory, easily attainable with today's LSI design rules.
Custom LSI “‘mplementation of the transformer might require several
chips.

The error locator circuit, used also to generate the message
correction symbols, has a transversal structure that can be either
parcitioned or fabricated in identical slices as indicated in the

dashed portion of Figure 8 for the Weight Calculator and Digital -

Correlator sections. The digital correlator section can be thought

of as a programmable transversal filter configured as a cross-correlator
(or convolver), the syndrome digits providing one set of inputs and the
coefficients of the characteristic polynomial providing the other.

The weight calculator performs the successive appro:iimations of the

57

characteristic (error locator) polynomial and is also used to initial-

ize the digital correlator by calculating the erasure polynomial re-

cursively from the known erasure locations. The remaining section
combines partial vector products produced by the digital correlator
section, performs the finite-field residue-class reduction required,
and provides input and control functions for the weight calculator
and digital correlator sections.

The error locator circuit complexity required for a rate one-
half code of block length 255 would require about 4500 shift register
stages and about 1400 logic gates. Because of the slice fabrication,
we would expect this level of complexity to be attainable on a single
VHSIC integrated circuit chip. For custom LSI one might expect to
be able to fabricate a 16-symbol section on one substrate; this would
require 8 sections for the same code, plus an additional LSI chip for
the arithmetic and logic sections. One each of these custom LSI
circuits would accommodate a Reed-Solomon (31,15) code; an additional
small number of custom LSI transformer chips would be required to

complete the decoder.

5.2 Throughput

For the design described, if the error locator uses digital
logic that operates at the conservative (medium-scale logic) clock
rate of 10 MHz; then it takes about 2 psec to correct a message symbol,
or 2Nusec to decode an N-symbol codeword. For rate one-half codes,
there is no output for about one~half the time while the error locator
polynomial is being synthesized. During the remaining half of the
block duration, the symbols are corrected sequentially. This dead-
time could be used effectively with a pair of decoders processing
alternate code blocks. For the conservative 10 MHz example, this would
permit a constant message throughput of 500K symbols {(m-bits) per
second ; decoding times for rate one-half codes are shown in tahle VI.

The higher clock rates expected for LSI and VHSIC technology

58

. . A A s rioi o i Bl S e 1 A e L e e s it

Table VI

Decoding Times for Half-Rate Reed-Solomon Codes

g Code Bits/Symbol Block Mecoding Time*
!
1 (255, 127) 8 1,020 usec
| (127, 63) 7 508 usec
| (85, 42) 8 340 usec
| (63, 31) 6 252 usec
’ (51, 25) 8 204 usec
(31, 15 5 124 usec
(21, 10) 6 84 usec
17, 8 8 68 usec ,
(15, 7) 8, 4 60 usec

*Assuming 10 MHz Logic

59

would permit a proportionately higher throughput. The medium-scale
logic breadboard designed and constructed under this project will

decode a Reed-Solomon (31,15) code completely in 124 yusec with 507
efficiency.

10,

11.

12.

REFERENCES

Reed, I. S. and Solomon, G., "Polynomial Codes over Certain
Finite Fields," J. Soc. Ind. Appl. Math., Vol. 8, pp. 300-304,
June 1960.

Murakami, H., Reed, I.S., and Welch, L. R., "A Transform Decoder
for Reed-Solomon Codes in Multiple-User Communications Systems,"
TEEE Transactions on Information Theory, Vol. 23, pp. 675682,
November 1977.

Blahut, R. E., "Transform Techniques for Error Control Codes,"
IBM J. Res. Development, Vol. 23, No. 3, May 1979.

Carhoun, D. 0., Johnson, B. L., and Meehan, S. J., "Transform
Decoding of Reed-Solomon Codes: Volume IT - Logical Design and
Implementation," ESD-TR-82-403, November 1982. (In process)

Mandelbaum, D., "Construction of Error Correcting Codes by Inter-
polation," IEEE Trans. Info. Theory, Vol. I, pp. 27-35, January
1979.

Berlekamp, E. R., Algebraic Coding Theory, McGraw-Hill, New York,
1968.

Peterson, W., and Weldon, N., Error Correcting Codes, 2nd ed.,
The MIT PRess, Cambridge, MA, 1972,

Massey, J. L., "Shift-Register Synthesis and BCH Decoding,'" IEEE
Trans. Info. Theory, IT-15, No. 1, pp. 122-127, January 1969.

Mattson, H. F., and Solomon, G., "A Treatment of Bose-Chaudhuri
Codes," J. Soc. Ind. Appl. Math., Vol. 9, pp. 654-669, December
1961.

Stone, J. J., "Multiple-Burst Error Correction with the Chinese
Remainder Theorem," J. Soc. Ind. Appl. Math., Vol. II, No. 1,
March 1963.

Tzeng, K. K. and Zimmermann, K. P., "LaGrange's Interpolation
Formula and Generalized Goppa Codes," presented at IEEE Internat-
ional Symposium on Information Theory, Ronneby, Sweden, June 1976.

Gore, W., "Transmitting Binary Symbols with Reed~Solomon Codes,"
Johns Hopkins E. E. Report, No. 73-75, Baltimore, MD, April 1973.

61

13.

14.

15.

16.

17.

Michelson, A., "A Fast Transform in Galois Fields and an Appli-
cation to Decoding Reed-Solomon Codes," presented at IEEE Inter-

national Symposium on Information Theory, Ronneby, Sweden, June
1976.

Pollard, J. M., "The Fast Fourier Transform in a Finite Field,"
Math. Comput., Vol. 25, pp. 365-374, April 1971.

Reed, I. S., Truong, T. K., Miller, R. L., and Huang, J. P.,
"Fast Transforms for Decoding Reed-Solomon Codes," Proc. IEEE,
1980 (to be published).

Reed, I. S., Scholtz, R, A., Truong, T. K., and Welch, L. R.,
"The Fast Decoding of Reed-Solomon Codes Using Fermat Theoretic
Transforms and Continued Fractions,'" IEEE Trans. on Info. Theory,
IT-24, pp. 100-106, 1978.

Forney, G. D., Jr., Concatenated Codes, MIT Press, Cambridge, MA,
1966.

62

