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SECTION I

INTRODUCTION

1.1 Purpose

One of the continuing concerns of the Low Cost Electronics pro-

ject is the application of new technology to the implementation of

error-correcting codes for reliable data communication. Our interest

stems from the need for low-cost hardware to implement error-correction

codes that exhibit significant coding gain on interference-resistant

communication channels. Previous studies of coding gain led us to

concentrate work on the implementation of the Reed-Solomon class of

generalized BCH codes. This class of codes, although well-suited to

the correction of both isolated random errors and random error bursts

because of its optimum distance properties, continues to be genuinely

in need of efficient decoding algorithms implemented by low-cost hard-

ware.

This report examines a transform decoding algorithm and its hard-

ware implications for the Reed-Solomon codes. This algorithm offers

major simplifications relative to the more conventional BCH decoding

algorithm, resulting from reduced algorithm complexity and from the

opportunity to apply fast computational techniques for implementing

its major portions.

While processing functions required for algebraic coding have

been associated conventionally with digital data processing, the

basic functions of the transform decoding method are convolution and

discrete transformation, typical signal processing functions. An

essential difference between the error coding requirements and the

conventional digital signal processing practice is that the former

require the operations to be carried out in a finite algebraic

7



field or ring. Although this territory may seem unfamiliar to the

digital signal processing community, in actuality many familiar

concepts apply directly, and in some instances implementation may be

simpler (e.g., elimination of carry bits, multiplication by adding

"logarithms") if the unique properties of the finite structure are

exploited. Although it will become evident that the error coding

functions impose a relatively high degree of complexity on the pro-

cessing circuitry, it is hoped that the analogies with more conven-

tional linear digital signal processing functions will aid in the

development of functional LSI hardware - and perhaps also lead to

the use of finite-field methods where useful and appropriate for

other linear signal processing purposes.

1.2 Background

Previous work on the low-cost electronics project demonstrated

that error correction coding, when used in conjunction with spread-

spectrum modulation, provides an added dimension to the design of

jam-resistant communications systems. Error correction codes

are useful to correct message errors caused by interference, additive

random noise, and other disturbance present on the channel. They do

so by adding redundant symbols according to a predetermined strategy

(coding) and then extracting the correct message from the noisy

received signal (decoding), aided by prior knowledge of the code.

Given sufficent channel signal-to-noise ratio (measured at the

receiver) it can be shown that this represe.-ts an effective means

of obtaining low error probability in the decoded message, even

though the energy per transmitted symbol is reduced because of the

added redundai.-y (we assume a fixed energy available per source

message symbol). In other words, the coding strategy produces an

effective gain (at a modest price in bandwidth) that more than com-

pensates for the necessity to spread the available energy over the



combined message and redundancy symbols. The net result is a coding

gain obtained by computatlonal processing that may range from a few

dB for channels corrupted by additive gaussian noise to some tens of

dB for randomly fading noisy channels. As the tolerance to errors

in the output data is lowered, the arguments for using error coding

are strengthened.

Under this project we previously examined the application of the

BCH decoding algorithm for decoding Reed-Solomon codes with particu-

lar attention to Utf, structural implementation. We also exper-

imented with the direct decoding of Reed-Solomon codes having short

block lengths by implementing a code-table search algorithm under

microprocessor control. The work reported here is concerned

with the algorithm and structures for decoding Reed-Solomon codes by

application of a transform method.

If the message sv-o1l, to be encoded by a Reed-Solomon code lie

in the domain of a linear Fourier-like transformation from the mes-

sage to the sequence that is transmitted over the communication

channel, then it is possible to eliminate a number of computational

steps in the decoding algorithm. The finite-field linear transforms

involved are directly analogous to the discrete Fourier transform

pair defined over the complex number field, except that in this case

they are defined in the finite algebraic field that contains the

code symbols. The transform algorithm can be summarized by the

following steps:

Encoding

1. Define a sequence in the algebraic domain of the

channel code transform as the message symbols accom-

panied by a sequence of zeros.

The transform method of decoding Reed-Solomon codes has a historical

precedent in the definition of the codes, but only recently has

there been renewed interest in its application [i], [2], [3].

9



2. 'enerate the channel codeword by taking the forward

transf urn of the defined sequence.

(Ihis produces a ron-systematic channel co.'e.

1. lake the inverse transform of the r- ceived se, - nee.

2. Isolate the error syndrome from the inverse transform

and use it to determine the error locator polynomial

or equivalently the connection poly-nomial of a cor-

responding linear feedback shift register (LFSR).

3. Extrapolate the iverse error-transform sequence using

the unforced response of the synthesi.ed LFSR, and

subtract it f,-m the inverse transf,,rm of the received

sei-uence. The difference is the corrected message

sequence.

In comparison '.'ith the conventio-al BCH decoding algorithm as applied

to Reed-Solomon codes, the transform decoding algorithm eliminates

the need to search for roots c' the error locator polynomial. It is

also unnecessary to calculate the error values in the co-domain of

the channel code, a step that in effect solves a set of simultaneous

linear equations. For a non-systematic channel code, the BCH decoding

algorithm requires polynomial division by the code generator poly-

nomial of the corrected received sequence in order to retrieve the

information symbols. This step is eliminated in the transform

algorithm because the message symbols are defined in the domain that

contains the inverse error transform values.

1.3 Scope

The next section of this report describes in overview the Reed-

Solomon codes and the transform decoding algorithm in a convenient

algebraic setting in which the discrete transform and its inverse

are regarded as equivalent to polynomial evaloation and inter-

polation. In Section III a fast algorithm for ,,leme, inc the

.. . . " ' . . . . . .... .I] F".. . I I I Iin



transform and its application for the encoder are discussed.

Section IV presents the major steps of the decoding algorithm, in-

Qlukling modification of the basic algorithm to accommodate the cor-

rection of both errors and erasures up to the minimum distance limit

of the code.

In Section V we discuss some hardware implementation issues and

present a summary of recommended design features and parameters to

be incorporated in a set of integrated circuits to enable decoding

of a large number of Reed-Solomon codes. The second volume of this

report [4] documents the detailed logical design of circuitry and

the construction of a discrete logic breadboard.

III



SECTION 1I

THEi TRANSFOR.M APPROACH

2.1 Linear Block Codes

A linear block code is a linear mapping (homomorphism) from a

k-dimensional vector space to a larger n-dimensional vector space;

the redundancy is n-k. lhe message space may consist, for example,

of (qm)k sequences -- or k-tuples -- of m-bit message symbols while

m n
the code space consists of (2 ) code sequences - or n-tuples - of

m-bit symbol: c( :-tan n, (2) k code sequences that combine both

message and redundancy. The mapping increases the distance (or

spacing) between code words corresponding to message sequences, dis-

tance being measured as the number of different symbols between pairs

of such code words. In fact this distance increases exponentially as

the redundancy increases linearly. When random errors occur in the

transmitted code words, the increased spacing permits decoding by a

maximum distance (equivalent to maximum-likelihood) decoding rule.

lWhei the block length of the code becomes sufficiently long, such a

decoding procedure becomes impractical. One may then resort to the

algebraic properties of the code construction to facilitate practical

decoding.

2.2 Maximum Distance Co-les

The Reed-Solomon codes in which we are interested are members of

a class of linear block codes called maximum distance separable codes.

These are codes for which the minimum distance between pairs of code

words equals the maximum value

d = n - k + 1 ()

admitted by the Hamming volume (or sphere-packing) bound. For such

codtc! it is pos:,ible to correct a number of symbol errors not exceed-

ing one-half the redundancy of the code. Arguments based on the

12



triangle inequality can be used to show that twice as many erasures

are correctable, an erasure (rather than an error) being defined as

a codeword svibol of unknown (rather than incorrect) value occurring

at a Vnewn (rather than unknown) symbol location. In fact, it can

be shown that it is possible to correct any combination of t errors

and s erasures provided that the inequality

2t + s < n - k (2)

is satisfied for the maximum distance codes.

In order to discuss the structural properties of such codes

and the apparatus for coding and decoding, it is convenient to de-

scribe an n-tuple of m-bit symbols by a polynomial of degree n-i

having coefficients tlat are members of the finite algebraic field

of 2m elements. Such a polynomi:il is determined uniquely by its n

coefficients, or equivalently by its values at any n distinct points

of the field. A code word of block length n, for example, may be

specified either by a set of n values or by the polynomial coeffi-

cients interpolated from those values.

2.3 Reed-Solomon Codes

A maximal distance code of block length n and dimension k can

be generated by a set of k functions {gi(z)1 defined over an alge-

braic field F containing at least n elements provided that the func-

tions in the Fet are independent and that no linear combination of

them as more than k-i roots in the field. The Reed-Solomon codes
2 3 k-i

are a special case for which the function set is fl, z, z ' z ,..., ) [5].

We are concerned here with codes (and messages) for which the

symbols are binary m-tuples. These are elements of the Galois field

of 2m elements. The elements of this finite field can be written aq
2 ,M_ I0, b, b2
,..., b2 m

-
l
, where b is a primitive element of the field.

For the Reed-Solomon codes, let the message be represented by the

polynomial f(x) = a0 + aIz + a2z2 + ... + ak-l zk - where the coeffi-

cients a are elements of the field F GF(2m) that represent the set

13



of k message symbols. The mapping from the message space to the

code space is accomplished by evaluating the message polynomial f(x)

at the 2 -1 non-zero points of the field. The transmitted code word

consists of the sequence of n =2 - values

f(b), f(b ) .. , f(b )

resultin, f rot' the polvnomial evaluation. To decode the mssace

after receiving the code sequence, one may form the n equations

(h)2 k-i
f(b) a0 + alb + a 2 b + . . + aklb

f(b-) a 0 + a1 b- + a 2b4 + . . + a k-ib

(3)

f(b )=a 0 + a + a, + + ak

where the coefficients a. are the unknown values to be found by

solution of the equation , et. AnV subset of k of t ,', qtqt i01s

is linearlv independent and may therefore be used. If one or more

of the code symbols are received in error, then different solutions

may result from the various k-subsets. The errors may be corrected

by solving all of the distinct k-subsets and taking a majority vote.

Such an approach, although valid in principle, is generally not

oractical to implement directly because of the large number of equation

sets to be solved, each implying the inversion of a square matrix of

dimension k.

Combinatorial methods based on (n,k,t)-covering systems have

been devised as a way of trappng the correctable error patterns in

order to reduce systematically the number of equation sets to be

solved. When combined with a minimum distance decoding rule, the

covering method can yield practical results for codes of modest

block length. It can also accommodate shortened cyclic codes.

14



For codes of moderately long block length, one can successfully

apply a concise decoding algorithm based on the algebraic properties

and structure of the code. The well-known BCH decoding algorithm

depends on calculating an error syndrome as a linear transformation

of the received channel symbols and then using the syndrome to

determine an error locator polynomial as the solution of a linear

recursion (the so-called key equation) [6). The roots of the error-

locator, which may be found by a systematic root-search, designate

the locations of the errors (or the multiplicative inverses of the

locations). These values are then used to solve a set of linear

equations for the channel errors, enabling correction of the channel

code and subsequent extraction of the message [7].

The error locator is the key step of the algorithm. It may be

regarded as a means of determining which set of k equations drawn

from the full set of equation (3) is sufficient to solve for the message

symbols, since having determined which values f(bi ) are in error,

the remaining ones must be hypothesized to be correct. The conven-

tional BCH decoding algorithm is described schematically in Figure 1.

In our work we resort to a transform decoding algorithm for the

Reed-Solomon codes that is a variation of the BCH decoding algorithm

which allows a major reduction in the computational complexity of the

algorithm. The princiyal features of our implementation include:

1. Interpolation of the code word sequence to produce

a coefficient syndrome.

2. Solution of a linear recursion based on the interpolated

coefficients.

3. Extrapolation of a sequence of error coefficients

to extract the message coefficients.

It will be shown that the first step is equivalent to taking an n-

point transform (defined over the finite field GF(2 m)) that is

15
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completely analogous to the discrete Fourier transform defined over

the field of complex numbers. The second step, which determines

the symbol error locations, uses an algorithm (Berlekamp-Massey)

that synthesizes the shortest linear feedback shift register that

generates a prescribed sequence [8]. Each iteration of this algor-

ithm involves a convolution of the syndrome coefficients with the

shift register tap weights. The third step utilizes the unforced

response of the synthesized LFSR, again involving convolution. A

simple block diagram of the decoding apparatus is shown in Figure 2.

The transform approach to Reed-Solomon codes is evident in their

original exposition [11, the connection between the message symbols

and the channel code being variously regarded as based on the Mattson-

Solomon polynomial [91, the Chinese remainder theorem [10],

LaGrange's interpolation formula [11], and more recently number-

theoretic Fourier-like transforms [2,4,12,13]. The computational

advantages of a transform approach to encoding and decoding relative

to the more or less standard BCH decoding algorithm have been pre-

viously discussed [2,4,12,131 but efficient hardware implementing

these codes is still not commonly available. The principal

computational advantages are (1), the ability to both encode and

compute the error syndrome with fast algorithms that mimic FFT algo-

rithms, and (2), the ability to predict the transform of the

channel error pattern from the error-locator polynomial. The second

advantage avoids a root-search for the error-locations, followed by

generation of the error evaluation polynomial and explicit compu-

tation of the channel error values. Instead, to decode one needs

only to: a) compute the transform of the received channel sequence,

the error syndrome constituting a subset of the transform, b) compute

17



LU(

w Wn

C)C

CC U

ji 0

0)

I.

LU O

T- mLd
18 V



the error locator polynomial 
by an iterative algorithm 

(Berlekamp-

Massey algorithm or continued-fractiOns) 
which operates on the syn-

drome, and C) generate 
the transform of the 

error sequence as 
a

linear recursion with 
the error locator polynomial. 

The validity of

the third step was proved 
by Reed, et al. 2b
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SECTION III

REED-SOLOMON TRANSFORM ENCODING

3.1 Reed-Solomon Encoding

Reed-Solomon codes were first described in 1960 12]. Shortly

afterwards they were generalized and a decoding algorithm based on

thoir algebraic properties wo,. suggested [6]. Today these codes

are usually described as the polynomial product of a generator

function g(z) defined over a finite field GF(q) with an information

sequence polynomial defined over the same field [7]. In algebraic

terminology, the code forms ar ideal in the ring of polynomials

modulo z - 1 over GF(q) that is generated by g(z). The roots of g(z),

which are contained in GF(q), consist of a consecutive set of elements

of the cyclic multiplicative group of GF(u). Since the code ideal

consists of all products of g(z), each member when evaluated at any

of the roots of g(z) becomes congruent to zero. This is the basis

For determining the error syndrome of the channel sequence which is

required for further decoding. Below we discuss the generation of

codewords from the transform viewpoint.

3.2 Codeword Generation by Discrete Transformation

We have described the function of code generation in Section II

as n-point evaluation of a message polynomial defined over a finite

algebraic field. The inverse function is interpolation of the poly-

nomial from its n values. These functions (evaluation and interpol-

ation) are inverse in the sense that their (commutative) product is

the identity function. I has also been shown that these functions

form a "transform" pair analogous to the discrete Fourier transform

pair defined over the complex number field [14]. In our case the

transforms are defined over the finite algebraic field of the code.

Let ao, a1 , ., an 1 be distinct elements of a finite

20



m
algebraic field GF(pm) of order p - 1, having an element b of order

n. The linear transformation n-l

Aj ] a ai b i j  (4)

i=0

is an endomorphic mapping of GF(p m). It is assumed that n divides
m m

p - 1, the order of the field, and for our purposes n = p - 1.

In that case the field element b is a primitive nt h root of unity.

It can be shown that for any integer r,
n-1

E bir n, r = 0 mod n

i=0 10, otherwise

and the property can be used to verify by direct calculation that

the mapping that is inverse to that of equation (4) is the linear

transformation

n-1

ai - A.b-Ji (6)

j=0
-2 m

where -n n = p - 1. Equations (4) and (6) define a discrete trans-

form pair over GF(p m ) and the operations of addition and multipli-

cation are defined in the same field. Addition may be performed as

modulo-p addition of the m-tuples that are the field elements com-

posing the sum. Multiplication may be defined by addition of in-

dices of the field elements

br b
5  b(r + s) mod pm _ 1

The transform pair of equation (4) and equation (6) is analogous

to the discrete Fourier transform pair for which b would be a complex

n root of unity and the arithmetic would be defined in the complex

number field. The conceptual value of the Fourier transform pair

is preserved in the finite field. In particular, the cyclic

21



convolution property holds. Fast computational algorithms, analogous

to the FFT algorithms, can also be applied.

If the sequence to be transformed is kxpressed as a polynomial

over GF(pm)

2n-i18
a(z) = a + a ; a z + . + an z ,

0 1 n-i

then the transform of the sequence ao, al a ,)a2 , . .. . a n-I is

identical with polynomial evaluation of a(z) at the n distinct

1 2 n-lpoints b", b , b b and the inverse transform is identic l

with interpolation of the polynomial a(z) from its n values.

In order to generate a Reed-Solomon (n,k) cooce, we let the set

a a ,  . .. a_ 1 represent the message symbols, setting a. = 0 for

i k, k + 1, ., n - 1, and evaluate the resulting polynomial

(by calculating the transform of the message sequence) t the n = p

non-zero units of the field. The transform, or polyno"iial evaluiation,

can be expressed as a continued product

a(b j ) - a + b j (a + + 0J (a + b j a (9)= o (al " " " (n-2 +  n-1) ")  (

or equivalently it can be interpreted as the re.'o der of the poly-

nomial division a(z) / (z-bj ) evaluated at bi. The second inter-

pretation may be represented as the set of polynomial congruences

a(b j ) = a(z) mod (z-bJ), j = 0, 1, .. . n - 1. (10)

A structure for computing the transform is shown in Figure 3. Notice

that the same structure can be used for calculating both the trans-
2

form and its inverse. The meil,od shown requires n separate products

in GF(pm) to be formed by sequencing n symbols through a set of reg-

isters containing n :eparate multipliers. Since the hardware

22
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complexity of finite field multiplication is formidable, we should

look for "fast" computational algorithms that reduce the number of

multiplications in GF(pl ). Alternative ly, one could use table-lo'k-

up mu lt iplicat ion at the sacrifice of speed.

i. A A F,:st fransform Algorithm

A fast transform algorithm -- one that tends to minimize the

number of multiplications in (;F(p ) -- can be devised to compute the

transform pair -1 equation (Li) and equation (6). The set of congru-

ences of equation (10) can be kalculated in principle bv dividing

the polynomial , Z)s ,paratelv by the first degree polynomials (z-b

ke, pinve onl the remainders. That is operationally equivalent to

evaluoat ing a(z) it the n non-zero field points 1) . In either case

2 1. - "-, icati,,ns il GF(pE are implied.

An equiv, 'ent 2ethod is to first divi 'e a(z) by a smaller set of

polvnomi-.ls of hitcher degree containing distinct factors of the

form (z-b 1
, aad thenl to evaluate the remainder polynomials at th,<

approprlate vaIles h . If this set of divider polynomials is the set

of minimal polynomials of the non-zero field elements, then their

coefficients are elements of the prime field GF(p) so that only scalar

Itiplication bv the elements of the prime field is required in the

first step. This is particularly significant when p = 2 and the cor-

responding scale factors are either zero or one. The equivalence of

the two methods is easily seen by examination of the factorization over
m nGF(pm ) of tie polynomial z - 1:

m
p -

n _ bj=n: - i IT (z - b); b c GF(pm) (11)

= 0

which can also be expressed as the product oc the minimal polynomials

m.(z) having as roots the value b i and its conjugates (bi)p ". This1

factorization is given explic'tly by
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M

T -1 = T m. (z) (12a)
i=1

where M is the number of irreducible factors of z- I and

m. (Z) = Tt (z-b 
i ) 

(7-b
ip )  

(z-bi~) (12b)

The minimal polynomials m.(z) have their coefficients restricted to
1

the prime field GF(p).

To complete the tranisform computation, we must evaluate each of

the remainders at the conjugate roots of the associated mini7 al poly-

nomial divisor. This second step requires multiplications in GF(p m ),

but the number is substantially reduced because there is a relatively

small number of remainder polynomials, each of smaller degree thanI
the degree of field extension.

As an illustration of the fast algorithm, a structure for compu-

tation of a 31-point transform over GF(2 5) is shown in Figure 4.

Notice that division by the 5th degree minimal polynomial factors

of z 31-1 is accomplished in a set of six binary feedback shift reg-

isters of length m = 5. The additional transform point corresponding

to division by the first deg'-ee polynomial factor z-1 is calculated

simply by summing the coefficients of a(z). In the structure shown

we use a single multiplier in GF(2 5) sequentially to evaluate the

remainder polynomials. This choice of implementation is used in the

hardware design of our encoder and decoder because of the relative

complexity of such a multiplier and also because it supplies data

at a sufficient rate for the remaining operations. For the example

given, the number of multiplications in GF(2 5) resulting from the

remainder e-aluation has been reduced from 930 to 120 by the use of

this algorithm. The corresponding reductions for some other situations

of interest are ii6ted in Table 1.

25



oro

00

-K-

I C

10

- 10

i~

C

E

as >

U-

- - ---- -

I26

I ,

II



M r- 0 0 C(4 00 cc -T cl 00 (N4 C4
u m (N Lf( fl- 00 m~ -4 m- m -

H4 $4 r-ne
-

-1 A4

1-4 ro

E 0

*0

0 0

-4 ~-

w cc

0~ 0D

0 :2:

r, 0 0 N 0 '0 Do 0n 0o (N 0 (
0 1 . 0 04 0 L1 cli (Nj C4 C4 Nl C14

44 0 --

E- Q)

44 C1 0-
0 to

r_
0 -
04

-I-27



3.4 Field Programmability of the Fast Transform Algorithm

The hardware for the fast transform algorithm described in

section 3.3 can be reconfigured easily to compute transforms of

appropriate lengths in the different Galois fields GF(2m). In each

field of order 2m a transform of n points can be defined for every

integer n that divides 2m -1. Thus in GF(2 8), transforms of

255, 85, 51, 17, 5 and 3 points and the trivial 1-point (identity)

transform can be defined. Division by the minimal polynomial factors
n

that split z -I is performed in a set of binary feedback shift reg-

isters of length m. There are m of these registers identically con-

figured, operating on the m-bit symbols of the input sequence, and

used in association with each of the minimal polynomial factors. As

an example, for a 31-point transform over GF(2 5), there are six 5th-

degree factors and one first-degree factor that split z 31-]. Division

by each polynomial factor requires 5 binary feedback shift registers

wired with the same connection polynomial, as shown in Figure 4.

We have designed our Reed-Solomon coder and decoder to accommo-

date codes, of both maximum and sub-maximum lengths, having symbol

fields ranging from 4 to 8 bits per symbol. The lengths of the non-

trivial transforms defined in the various fields are tabulated in
:n _

Table II together with the minimal polynomial factors of z - for the

different transform lengths n in each field. The minimal polynomials

are given in Table 111-1 through Table 111-3. If we provide for a 255-

point transform over GF(2 8); by reconfiguring the lengths and con-

nection polynomials of the feedback shift registers, all of the other

cases can be accommodated. Of course, the multiplier in GF(2 m ) that

is used in evaluating the remainders needs also to be reconfigured.

The design details of the hardware that can be electronically reconfig-

ured to compute the full set of transforms enumerated in Table 11 are

described in Volume II of this report. We have constructed a bread-

board, with medium scale logic, of a transformer used in a Reed-Solomon
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TABLE II

Transforms over GF(2m)

Field of Transform Length Required Minimal Polynomial

Calculation N Divisors

GF(2 ) 255 m0  (z), mI (z), m. (z),

m 5  (z), m7  (z), m (z),
m 1 1 (z), m 13 (z), m 5 (z),

m1 7 (z), m 1  (z) , i 2 1 (W),
S2 3 (Z), in25 (z), i 7 (z),

m (z), mi31 (z), m37 (z),
m 39 (z), m4 3 (z), m 5 (z),
m 7 (4), Mi5 1 (z), m 5  (z),
m 55 (z), m5  (z), i (z),

m6 3 (Z), m 8 5 (z), m8 7 (,
m9 1 (z), m 9 5 (z), i (Z),
in 9(z), in 2(z)
m119 (),m127 Z

85 m0  (z), m3  (z), m9  (z),
in1 5 (z), mi2 1 (z), m 27 (z),
m53 9 (z), m4 5 (Z),m 5 1 W,
m 6 3 (z), in8 7 (z), i (z)___m63___m__7____ll 1

I*

51 mi0  (z), m5  (Z), m 1 5 (W),
2 5 (), m4 5 ( 5 5

_ m8 5 (z), mn95 (z)

17 m0  (W), m1 5 (z), m4 5 (z)

15 m0  (z), m1 7 (z), (),

______mi 8 5 (z), m 119

5 m0  (z), M 5 1 (z)

3 m0  (z), m 8 5 (Z)

7
GF(27) 127 mi0  (z), m.1 (z), m (z),

m5  (z), m7  (z), mi (W),
1 1 (, 1 3 (z), 1 5 (),

1 (), m 1 (z), n 2 3 (z),
i 2 7 (Z), m2 9 (z), m 3 (z),

(z), m 4 7 (z), m (z),
m 63 (z)

* Cases included in breadboard
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TABLE II (Concluded)

Transforms over GF(2 m

Field of transform Length~ Required Minimal Polynomial
Cai 1cu11 at ion N Divisors

GF(2 b 63 m 0  Wz, ml (z, m3  (z,
m 5  (z), m 7  (z , m9  Wz,

(z) in 1 3 Wz) m 1 5 Wz,

2 1 (),i 2 3 (zi 2 7 (

"31 Wz

21 in0  (z) , m 3  (z) , in9  Wz,

in 1 5 (z), in2 1 (z), in2 7 Wz

9 m 0  (z, in7  (z), in2 1 ()

7 in0  Wz, in9  (Z), in2 7 Wz

3 in0  Wz, m 2 1 W

GF(2 5  31* m0  W) in (), m 3  (z,

5  ( 7) (z, 11 ()
______________ i 1 5  (z

4*
GF(2 )15 m 0  W) in1  (z, m (3),

(z),W m 7  Wz

5 _______ 0 (Z), in3  Wz

3 in0  Wz), m 5  (Z)

C-ses included In breadboard

30



Table III - 1

Minimal Irreducible Polynomials over GF(2
8 )

mi(z) m0 + mIz I + m2 z2 + m 3 z3 + m4 z4 + m5 z5 + m6 z6 + m7 z + m 8 z 8

Polynomial mo mI m 2  m 3  m4 m5 m6  m 7  m8

m0  (z) I 1 0 0 0 0 0 0 0
mI  (z) 1 0 I 1 1 0 0 0 1
m3  (z) 1 1 1 0 1 1 1 0 1
m5  (z) 1 1 0 0 1 1 1 1 1
m 7  (z) 1 0 0 1 0 1 1 0 1
m9  (z) 1 0 1 1 1 1 0 1 1

(z) 1 1 0 0 1 1 1 1
ro3(z) 1 1 0 1 0 1 0 0 1
m15 (z) 1 1 0 1 0 1 1 1
m1 (z) 1 0 0 1 0 0 0 0
im1 7 (z) 1 0 1 0 0 1 1 0 1
m 1 (z) 1 1 0 1 0 0 0 1 1
m23 (z) I 1 0 0 0 1 1 0 1
m2 5 (z) 1 1 0 1 1 0 0 0 1
m27 (z) I I I I 1 1 0 0 1
m 2 9 (z) 1 0 1 1 0 0 0 1 1
mi9 (z) 1 0 1 1 0 1 0 0 1
m 37 (z) 1 1 1 1 1 0 1 0 1
m3 9 (z) 1 0 0 1 1 1 1 1 1
m14 3 (Z) I 1 0 0 0 0 1 1 1
m4 3 (z) 1 0 0 1 1 1 0 0 1
i 4 7 (z) 1 0 0 1 0 1 0 1 1

475 (z) I I 1 1 1 0 0 0 0
5 1(z) 1 1 1 0 0 0 0 1 1

i53 (z) 1 0 0 0 1 1 0 1 1
i55 (z) 1 0 1 1 0 0 1 0 1
m59 (z) 1 I I 1 0 0 1 1 1m61
m (z) 1 0 1 1 0 0 1 1 1
638 (Z) 1 1 1 0 0 0 0 0 0

i 8 7 (z) 1 1 0 0 0 1 0 1 1
87 (z) 1 0 1 0 1 1 1 1 1

i 9 1 z 1 1 0 0 1 1
m 1 11 (z) 1 1 0 1 1 1 1 0 1
mi (z) 1 0 0 1 1 0 0 0 0
1191-mi27 (Z) 1 0 0 0 1 1 1 0 1

31
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Table III - 2

Minimal Irreducible Polynomials over 
GF(2 )

m. (z) = m0 + m 1Zl + m2z2 + m3z3 + m4z4 + m5z5 + m6z + m7z

Polynomial m0 mI  m2 m3 m4 m5 m6 m7

m0  (z) 1 1 0 0 0 0 0 0
mI  (z) 1 0 0 1 0 0 0 1
mi3  (z) 1 1 1 1 0 0 0 1

mi5  (z) 1 0 1 1 1 0 0 1
mi7  (z) 1 1 1 0 1 1 1 1

mi9  (z) 1 1 1 1 1 1 0 1
rol 1 (z) 1 0 1 0 1 0 1 1

mi1 3 (z) 1 1 0 0 0 0 0 1
i 1 5 (z) 1 1 1 1 0 1 1 1
m1 9 (z) I 1 0 1 ) 0 1 1
m21 (z) 1 0 1 0 0 1 1 1

2 3 (z) 1 0 0 0 0 0 1 1
i23 (z) 1 1 0 0 1 0 1 1
m2 9 (z) I 1 0 1 0 1 0 1

931 (z) 1 0 0 0 1 1 1 1
3 (z 1 1 1 0 0 1 0 1

m43 (z) 1 0 0 1 1 1 0 1
47 (z) 1 0 1 1 1 1 1 1
55 (z) 1 0 0 0 1 0 0 1
63

Minimal Irreducible Polynomials over GF(26

m.(z) = m0 + m1 z
1 . m2 z

2 + m3z3 + m4z4 + M5z5 + m6z6

1 3 4 5 6Polynomial im0  in1  i 2  mn3  in, m, in6

m 0  (z) 1 1 0 0 0 0 0
m I  (z) 1 1 0 0 0 0 1
m3  (z) 1 1 1 0 1 0 1
mn5  (z) 1 I 1 0 0 1 1
m7  (z) 1 0 0 1 0 0 1
mi9  (z) 1 0 1 1 0 0 0

mn1 1 (z) 1 0 1 1 0 1 1
r13 (z) 1 1 0 1 1 0 1
m 15 (z) 1 0 1 0 1 1 1
m2 1 (z) 1 1 0 0 0 0
m 2 3 (z) 1 1 0 0 1 1 1
m27 (z) 1 1 0 1 0 0 0
mi3 1 (z) 1 0 0 0 0 1 1
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Table III - 3

Minimal Irreducible Polynomials over 
GF(2 5 )

m.(')= W m0 + mIz + m2 z 2 + m 3z
3 + m4 z4 + m5 z 5

1

Polynomial m 0  mI1  m2  m3  m4  m5

m0  (z) 1 1 0 0 0 0

m (z) 1 0 1 0 0 1
m3  (z) 1 0 1 1 1 1

m5  (z) 1 1 1 0 1 1
m 7  (z) 1 1 1 1 0 1

m 11 (z) 1 1 0 1 1 1

m1 5 (z) 1 0 0 1 0 1

Minimal Irreducible Polynomials over GF(2 )

m.(z) = m 0 + mlz, + m 2 z
2 + m 3z

3 + m 4 z4
1

Polynomial m0  mI m2  m3  m 4

i (z) I 1 0 0 0

m.I(z) 1 1 0 0 1
m.3(Z) I I I I I
m () 1 1 1 0 0

n17 (z) 1 0 0 1 1
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encoder and decoder. It will compute transforms of LIp to 51 points

in CF(2 8 ) and the transforms in the smaller fields, as indicated

by asterisks in 'Fable II. The hardware implementation of the bread-

board is also described in Volume II.

3.4.1 Multi-Uimensional Transform Partitioning

It has been shown elsewhere that a transform over GF(2 m ) of n

points can be decomposed into a multi-dimensional transform having

one-dimensional components of transform lengths ni , n2 , . . nk, where

the individual lengths are a complete set of relatively prime factors

of n [15]. In that work, the individual one-dimensional transforms were

compted by means of the Winograd algorithm for fast cvclic convo-

lution. The multi-dimensional transform decomposition can also be

combined with our algorithm for fast polynomial evaluation to produc.

a fast transfk-rm algorithm with attractive hardware implications.

For example, a 255-point transform over GF(2 8 ) could be configured

as a 3-dimensional transform of component lengths of 17, 5 and 3

poiuts respectively. Equivalently it could be configured as a 2-

dimensional transform of 17 and 15 points, or of 85 and 3 points, or

of 51 and 5 points. Consider the last case: the full transform can

be configured as 5 transforms of 51 points each followed by 51 trans-

forms of 5 points each. The 51-point transforms would use identical

(or time-shared) hardware but operate on different input data,

selected as every 5th term of the input sequence appropriately

offset. The 5-point transforms are calculated in succession from

the 5 outputs of the 51-po'nt transforms. This example is of direct

interest to us in the use of our 51-point transform breadboard.

Expansion to 255 po-nts using this 2-dimensional decomposition merely

requires replication of the 51-point transform hardware, followed

by a single 5-point transformer used sequentially. A block diagram

of such a configuration is shown in Figure 5. In practice, a larger

number of 5-point transformers would be used (perhaps 5) in order

to maintain throughput.
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Comparison of the multi-dimensional approach with a direct method

of transformation, both b.-ed on our algorithm for fast polynomial

evaluation, will show that approximately the same amount of hardware

(polynomial dividers, field multipliers, logic gates) is needed in

either case. But in the multi-dimensional case there is greater

opportunity for the use of r plicated hardware. Ia the example shown

in Figure 5 there are 35 polynomial division registers, but only 8

different types rather than 33 different types required for the direct

implementation. There are 255 multiplier-s in GF(2m) required in the

e::ample, but only 56 different types. In general a multi-dimensional

transform of length n = T n. points requires polynomial evaluation

i=l
k

to be performed at only £ = ni dilfarent roots.

i=3
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SE LCTION IV

REED-SOLOMON TRANSFORM DECODING ALGORITHM

Assume that a message represented by the polynomial a(z) is

encoded as a Reed-Solomon codeword by the transform, or polynomial

evaluation, method described in Section IIl and that a number of

errors, within the constraint of equation (2), occurs in trans-

mission. The received code sequence contains these errors. If we

know which symbols are correctly received, (which is tile same as

knowing which symbols are in error) we can choose a correct subset

of k linearly independent equations from the full set of equation

'3) and solve them for the message svmbols. An equivalent procedure,

and the one that is most often used, is to find the error locations

in the received sequence and then to use them directly to solve for

the error values, correcting the received code sequence from which

the message can be decoded. Since there are usually fewer errors

than message symbols, the second method should require less compu-

tational effort. As discussed in Section Il, we will use a transform

version of the algebraic decoding algorithm to streamline the required

operations. But we must first determine the error syndrome from

which the error locator polynomial may be determined.

4.1 Error Syndrome Computation

Let the source message he represented by the polynomial
2k-l

a(z) = a0 + alz + a Z ? + + a k- , which we will regard as

having degree n-1 but with the n-k highest-degree coefficients

equal to zero. The transmitted codeword is represented by the poly-

nomial A(z) = A0 + Alz + Az
2 + . . . + A nz n-i in which the co-

efficient A. is determined as a(b ) in accordance with the transform

of equation (4). If we were to apply the inverse transform of equa-

tion (6) to the coefficient sequence of A(z), we would obtain the

message a(z).
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Notice in particular that for any valid A(z) the interpolated message

ciL)tficients a. must equal zero for i~k. This construction is equiv-
1 k -(+)(k+ 2) bn+l

alent to choosing the set ib , b b - b as the

root; of the polynomial g(z) that generates the code ideal in the

ring of polynomials modulo z -1.

Assume that an error sequence represented by the polynomial

E(z) = F + E z + ',)z- + En Zn-1 has been added to the en~oued
0 -l n-

message upon transi-ission. If the received word is correctable.
n-k

then E(z) will have no more than --k non-zero coefficients; both

their values and locations will be unknown. The received sequence

is represented by the polynomial sum R(z) = E(z) + A(z) so its

inverse transform is r(z) = e(z) + a(z), where e(z) is the inverse

transform of E(z) and a(z) is the original message. The de-

coding problem is to determine e(z) in order to e..tract the message

a(z) from the inverse transform r(z) of the observed suquence '(z).

To compute the error syndrome, we first interpolate the poly-

nomial r(z) from the values of the received sequence R(z) y taking

its inverse transform,
n-1

r -n bJ (14)

j=0

which is equivalent to multiplying by the constant factor n the

values R(b - ) that result from evaluation of the received sequence

-i n-i
polynomial R(z). Since b b it follows that the Lronsform

structures described in Section III can also be used to calculate

the inverse transform, provided that we index the output values in
-1

reverse or'er and multiply them by the scale factor n . The codes

that concern us here have symbols that are binary m-tuples, and

consequently n = 2 -1 1 mod 2 so that the scale factor is unity,

all of which will be assumed below.

Since A(b - ) 0 for i > k because of the method of code con-

struction, we can separate from equation (14) a term valid for
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i=k, k +1, ., n-,
n-i

s. =  R(b- ) =  Eb-Ji ; i=k, k + 1, ., n - 1. (15)

i=0

The sequence {s.} of the n-k values calculated from equation (15)
1

constitutes the error syndrore associated with the channel error

pattern E(z). This error syndrome is, by definition, equal exactly

to the last n-k alues of the invcrse transform of the received

channel sequence, given by equation (14). The values of equation

(14) For i < k are, in general, different from the values that we would

obtain by exteniding the definition of equation (15).

4.2 Error Location

After the urror syndrome has been calculated, it can be used to

determine the locations of the errors in the channel error paLtern

E(z). Several procedures are available for determining the error

locations, including a method of continued fractions [161, another

method that applies Euclid's algorithm 15], and an algorithm formu-

lated by Berlekamp and Massey [8]. Common to all of these methods

is the determination of a polynomial whose distinct roots designate

the error locations (or their multiplicative inverses).

In our work, we employ the Berlekamp-Massey algorithm, judging

it to be an available method that is computationally efficient and

conceptually satisfactory from a signal processing viewpoint.

It may be regarded as an algorithm for synthesizing the shortest

linear feedback shift register that generates a prescribed

sequence obtained from the inverse transform (interpolation) of the

received code sequence. The error locator pflynomial is the char-

acteristic polynomial of the LFSR; its coefficients uniquely satisfy

a linear recursion with the first n-k coefficients of the interpolated

!equence. In our use of this algorithm, we include correction for

erasures by initializing the algorithm in accordance with the known
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erasure locations. The linear recursion satisfied by the LFSR is

simply a convolution between the input sequence and the feedback co-

efficients.

A competing method, one that may be simpler conceptually althouFh

not as convenient for hardware implementation with linear sequential

circuits, is based on a continued-fraction development of a power

series expansion of the ecror syndrome. The continued fraction can

bc used to synthesize directly a canonic ladder realization of an

equivalent rational polynomial transfer function, or its values

can be used to compute lv iteration the characteristic polynomial o1

the LFSR. Both methods will b described.

4.2.1 The Berlekamp-Massev Al.dorithm

The Berlekamp-Massey algorithm has been discussed thoroughly by

its authors 1(, 8]. The discussion presented here, which is taken

in part from a previous project document, is included merely for

the sake of ,ompleteness and for continuity with the transform

decoding method being described.

The channel error sequence E(z) is described by a list of pairs

of tield elements, Y. (the value of the error) and X. (an error lo-.
i th

cation determined by the index of a field element) for the i symbol

error (7]. The syndrome values may be expressed in terms of these

elements as

V

R(b - ) = s= ; j=k, k+l, . . n-i (16)

(in accordance with the code construction of Sectiron III) where v is

the 'Imming weight of the error pattern or equivalently the number

of non-zero coefficients of E(z). We assume v<(n-k)/2 so that the

error bound of the code is not exceeded.

The algorithm is concerned with determining the coefficients of

an error-locator polynomial
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0(z) = (z-X) O a + .1 z + .v2Z + + zV  (17

i=1

whose distinct roots are the error locations. The effect of intro-

ducing the error-locator polynomial is to reduce the system of non-

linear equations relating the error values, locations, and syndrome

components to a system of separate sets of linear equations.

In the BCH decoding algorithm, a system of equations is first solved

for the error locations Xi, which reduces equation (16) to a linear
1

system relating the syndrome values s. and error values Y.. The errorJ 1

locator polynomial provides an intermediate step in the process that

is useful for determining the error locations Yi.

For the transform decoding algorithm, the orror locator polyno.

-:iial has even greater significance. First, a unique linear relation-

ship can be established between the syndrome values and the coefficients

of the error locator polynomial, namely

s5  V + s . + +-l+ jv = (18)

which is valid for all k < j < n-l-v. This relationship is established

by multiplying (both sides) of equation (17) by YiXi, then substi-

tut;T'g X. for z, summing the result over the index 1 < i < v, and sub-

stituting from equation (16). Next, it can be proven that there

exists a polynomial e(z) of degree less than n that satisifies

linear recursion (18) ...ith o(z) for all 1 < j < n, and that e(z)

is uniquely specified by \ consecutive values of its transform E(b-)

(where for example j=k, k + 1, . ., k+v-1) and E(z) has no more than

v non-zero coefficients. In that case E(z) is the channel error

pattern, and the calculated values E(b-j ) form its inverse transform.

The proof is given in Appendix A of reference [21.
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The error locator polynomial can be determined from the error syndrome

and then be used to extrapolate the inverse transform e(z), which

must be subtracted from the inverse transform r(z) of the received

channel sequence to extract the message. The values E(b-j ) for j > k

exactly balance the syndrome coefficients to produce zero.s in those

message positions. There is no need to explicitly find the error

locations in order to solve a set of linear equations for the channel

error values, as is usually done in the BCH decoding algorithm.

The Berlekamp-Massey algorithm provides an iterative method of

synthesizing the canonic linear feedback shift register that has the

characteristic polynomial O(z) which is used to extrapolate the

inverse error transform e(z). The algorithm is in fact a constructive

proof that if the length L and connection polynomial 0 r(z) are

known for the minimal length LFSR that generates the sequence

(sk' Sk+l' ., s r ) but not the sequence (sk9 Sk+l, . ., Sr, Sr+l)I

then a valid choice for the connection polynomial to generate the

latter sequence is

rl) r-m (r) -lo(in)

o(r+1)(z) = z (z) - d d O (z) (19)~r m

where the next discrepancy d is defined asr
V

r (r)
dr = sr+k + i s r+k-i (20)

i=l

and the maximum degree of 0 (r+l) (z), which is also the minimum length

of the shift register is

Lr+ = max (1, r+l Lr ; d r  0 (21)

LrL ; dr P= P.
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The recursion begins with the initial conditions established for

r=O, -1,

L_ =0 L0 = 0

- = 1 (o) (22)

d_= 1 d0 = Sk.

The index r corresponds to the rth step in the recursion of

equation (19); it is also the length of the correct seauence generated

by the minimal shift register of length L when d =0. The index m is(m) r r
the index of a (z), the last connection polynomial before the nrevious

shift register length change. The test 2L < m must be met before
(m)(z) is updated in the recursion. The discrepancy d is the difference

r
between the desired next value sr+k and the actual value computed by

the approximating shift register of length L having connection poly-
rr

nomial (r)(z). The recursion must be continued until the minimum-

length shift register that generates the error syndrome sequence

Sk9 Sk+l,...' Sk+,",.'. Sk+2v has been determined, which requires

processing all n-k syndrome values to ensure proper termination.

The corresponding shift register length is equal to ,), which equals

the number of errors that occurred, and the connection polynomial

satisfies equations (20) and (21) uniquely [8).

After the LFSR has been synthesized by this algorithm, it is

necessary only to continue its operation, with zero input, for an

additional k shifts in order to extrapolate the k unknown values of

the inverse error transform e(z) [2]. These values are subtracted

from the corre;ponding values of r(z) in order to decode the correct

message. This represents a substantial savings in finite-field

computation in comparison with the error-value computation of the

BCH decoding algorithm.

43



In the BCHt decoding algorithm, after the error locations have

been determined, it is necessary to find the error values in order to

correct the received seQlo,-ce and decode the message. The conventional

(non-transform) application of the BCH decoding algorithm would

require us first to find the error locations by searching for the

roots of the error locator polynomial and then to calculate the error

values by sol. ing a set of linear equations, Alternatively, the

error value calculation can be carried out by evaluating the residues

of a partial fraction expansion in the error location singularities

of an error-syndrome generating function.

From the transfom viewpoint such a procedure is overly compli-

cated. Instead, the LFSR that is characterized by the error locator

polynomial is used to extrapolate the inverse transform of the error

;equence that was added to the transmitted codeword sequence. Since

the message :polynomial is the inverse transform of the channel code

!;equence, we need only to subtract the inverse error transform from

the interpolated received sequence to complete the decoding, as was

shown in Figure 2.

4.2.2 Modification For Correction Of Errors and Erasures

The decoding al -.orithm described above was concerned only with

correcting errors, an error being described as a received symbol

of incorrect (or unknown) value occurring at an unknown location.

An erasure is described as an unknown symbol value o cur:'ing at a

known location; it may ocur for example by observing the channel

noise, assigning an erasure when the detection decision becomes

suffic !ntly uncertain. A Reed-Solomon code can correct twice as

many erasures as errors; in fact it can correct any pattern of t

errors and s erasures provided the inequality of eq. (2) is satisfied.

A useful Reed-Solomon decoder should be capable of correcting both

errors and erasures, which requires some modificatio- t o he ?c,0oirg

al ;,rithm used for correcting errors only.
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Forney has described a modified BCH decoding algorithm for

correcting errors and erasures [17]. In his method the known error

locations are used to linearly transform the error syndrome values

to a modified syndrome, the latter being used to solve for the

error locations. This can be done, for example, by using the modified

syndrome as input to the Berlekamp-Massey algorithm for determining

the error locator polynomial, followed by a root search. From the

known errata locations, a set of linear equations can be solved to

determine the unknown symbol values.

In our method of correcting for errors and erasures we initial-

ize the error locator algorithm (Berlekamp-Massey) with the connec-

tion polynomial computed from the known erasure locations. Then,

we continue the algorithm normally to synthesize an errata locator

polynomial which is the product of the error locator polynomial and

the erasure locator polynomial. Once the errata locator polynomial

is synthesized, there is no further distinction between errors and

erasures, and the inverse transform of the errata pattern may be

extrapolated by free-running the synthesized LFSR as before.

The erasure locator polynomial y(z) will be defined as

" (T 2 0(z) = (z X I ) = P + YP-I z + Yp- 2Z +" + z (23)
i=l

where p erasures have occurred, not exceeding the minimum-distance

bound of equation (2). The roots X. designate the erasure locations,1

forming a set that is disjoint from the error locations X.. It is1

convenient to define an errata locator polynomial a(z) as the product

of the error locator and erasure locator polynomials

p v

~()=y(Z)a(z) = 7J (Z-ki) J{ (z-X ) (24)

i=l j=l
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a rooL of '(z) designating either an error or an erasure location,

in other words an errata location.

The erasure locator polynomial can be calculated recursively by

the formula

Y (r+l)(z) = zyr(s) - r+l (z), y() = 1. (25)

By comparison of this expression with eq. (19) it is evident that

the erasure locator polynomial can be calculated by the error locator's

weight calculator if the erasure locations X. are taken in sequence

in place of the next discrepancy values d .* This initializationr
sets up the erasure locator Y(z) as the characteristic polynomial of

the correlation register. During the initialization the first p

syndrome values, equal to the number of erasures, are sequenced into

the correlation register. In the absence of erasures, the initial-

ization reverts to the error-locator mode.

After the apparatus has been initialized with the erasure

locator, the algorithm continues in the error locacor mode to gener-

ate the errata locator polynomial

%(r+l) r-m%(r)
ar (z) = z (z) -d d (z) (26

Irm

r

dr = Sr+k+ a i(r)sr+ki (27)

with the initilization at r = 0 given by

a( (z) = Y(z) c(m) = (-)(z) = y(z) (26)

o

do  S + N' YiSP+k-i d = d_ 1  1

i= 1

*See Figure 8 of section 5.1.

46



If we write

%(P) (0)a (z) = y(z)o (  (z)
(29)

a (-)z) = y 0 (z)

and observe that the errata locator recursion begins at r = 0, we

can factor the right hand side of eq. (26) to obtain

0 (r+l) (z) Z) 1zr-mo(r)(z) - d d -1O(m)(z)] (30)

= v(z)G(z)

and observe that the term in brackets is the recursion that calculates

the error-locator tap weights. If the minimum distance bound of the

code has not been exceeded, 2v + P < d - 1, then the remaining

n-k-a syndrome digits are sufficient to uniquely determine the error

locator factor, a(z), of the errata locator polynomial. This result,

as in the case of Massey's algorithm for the error locator, can be

proved by induction. Extrc.rolation of the errata transform from

the synthesized errata location shift register implicitly follos

from the error-extrapolation proof in Appendix A of reference [21.

4.2.3 Continued Fraction Algorithm

Recently a method of continued fractions has been advocated for

use as an equivalent to the Berlekamp-Massey algorithm for decoding

Reed-Solomon codes [16], As part of our work, we examined this

approach, but our analysis indicates slightly reduced compu-

tational complexity of the Berlekamp-Massey algorithm, and its con-

venience of hardware implementation, which we continue to prefer. A

summary of our examination of the continued-fraction method is civen

below.
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It lie error syndrome is expressed as a power series

~ - I ) -12 (nk

S(z- SkZ + sk+lz + + sniz-(nk) + .(3

it is possible by successive polynomial division to exactly approx--

imate the series by the finite Stieltjes continued-fraction,

s (z -l) = 1z

v I + 1 (32)

u 2z+"

+ 1
u z+l

V

V

The process of successive division terminates after 2v steps where

v is the weight of the error pattern. The continued-fraction express-

k.n can be used directly to synthesize the canonic ladder realization

of a digital filter network, as shown in Figure 6. The unit sample

response of this Filter generates (periodically) the inverse trans-

form e(z) of the channel error sequence E(z), which accomplishes

the same function as free-running the LFSR synthesized by the

Berlekamp-Massey algorithm. In fact, it can be shown that the com-

pani', matrix of the ladder network of Figure 6 and the corresponding
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LFSR have the same characteristic polynomial 0(z).

Instead of using the ladder network we could also use the

Stieltjes continued-fraction convergent to form successive approxi-

mations to the error locator polynomial, by the iterative set of

computations

y(0) (z)
o (1 ) (z) =ulz

a(2) (z) =v a(1) (z) + (0) (z)

o (3)(z) =u2a(2) (z) + 0(1)(z) (33)

o (20(z) = v a(2v-l)(z) + a (2-2)(z) = 0(z)

which terminates with the last step of the successive division. The

final iteration produces the connection polynomial of the LFSR

used to extrapolate the inverse error transform.

In comparing the computational complexity of the Berlekamp-Massey

algorithm with the method of continued fractions, observe that both

methods in effect synthesize a recursive filter determined by the

error locator polynomial. Once this filter is synthesized, the same

number of computational steps are required to extrapolate the error

transform, so the relative complexity can be compared for the filter

synthesis step of the decoding algorithm. The complexity of the two

methods, measured by the number of finite-field products computed is

relatively equal, the Berlekamp-Massey algorithm always providing the

slightly lower value. But there is an important difference for hard-

ware implementation. The Berlekamp-Massey algorithm operates on the

syndrome values sequentially, allowing for serial computation of the

syndrome.
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The continued-fraction algorithm performs a polynomial division in-

volving the error syndrome values at each step of the recursion, thus

the syndrome computation must be complete before the continued-

fraction algorithm can proceed. An advantage of the continued

fraction method is that the number of recursions never exceeds the

number of errors being corrected. For the hardware design of our

Reed-Solomon decoder we prefer the serial computation cf the syndrome.

4.3 Message Extraction

Following synthesis of the error (or errata) locator polynomial,

the inverse error transform is produced as the unforced response of

the synthesized LFSR and the message is extracted by subtracting the

inverse error transform from the inver3e transform of the received

channel sequence. Proof that the error locator polynomial may be

used to generate the inverse error transform may be found in Appendix

A of reference 121. The proof relies on two lemmas which can be used

to establish the uniqueness of the linear recursion between the in-

verse error transform and the error locator polynomial, and the suf-

ficiency of the error syndrome to uniquely define the error locator.

The reader is referred to the reference for the details of the proof.
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SECTION V

HARDWARE DES ICN (SUMA RY)

It has consistently been our goal in this work to produce a

design, suitable for large-scale circuit integration, that accommodates

many Reed-Solomon code parameters in order to maximize the utility

of the hardware. A number of design-related tradeoff studies were

performed to resolve the issues of hardware programmability, functional

partitioning, speed versus gate complexity, interface and control.

This work successfully culminated in the complete design, at a basic

logic level, of a versatile decoder and in the hardware implementation

of a breadboard, the complete details of which are reported separately

in Volume II of this report [4]. Salient features of our hardware

design are described below.

5.1 Functional Partitioning and Programmability

The two principal processing functions used in our Reed-Solomon

decoder, the Transformer, which is used both for code generation and

error syndrome computation, and the Error Locator, which is used both

to compute the error locator polynomial by means of the Berlekamp-

Massey LFSR algorithm and to extrapolate the inverse transform of the

channel error sequence for use in extracting the corrected message

symbols, are described schematically in Figure 7 and Figure 8. They

have both been designed to incorporate programmability to accommodate

a wide range of code parameters. The total range of Reed-Solomon

codes that our design can implement is shown in Table IV. From this

table, t the number of correctable errors is determined as one-half the

redundancy, or (_-k). There are 588 separate codes identified by the

code parameters (n,k,t) that can be decoded. The subset of multiple-

error correcting codes of rate approximately one-half that can be

decoded is shown in Table V; there are 17 of these.
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Table V: Half-Rate Codes Accommodated

by the Hardware Design

(n,k) code Bits/Symbol

(255, 127) 8
(127, 63) 7
(85, 42) 8
(63, 31) 6
(51, 25) 8
(31, 15) 5
(21, 10) 6(1.7, 8) 8
(15, 7) 8,4
(9, 4) 6
(7, 3) 6
(5, 2) 8,4
(3, 1) 8,6,4
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Programmability of the hardware is achieved by stored program

control of electronically reconfigurable feedback shift registers,

transversal cross-correlators, and finite-field multipliers. For

the transformer circuit of Figure 7, the field elements required by

the programmable multiplier-accumulator that computes the residues

of the divider outputs is generated by a programmable linear feedback

shift register. The polynomial division registers, which divide the

incoming channel sequence by the minimal polynomials of the field

elementq and store the remainders, are also configured as binary

programma- le linear feedback shift registers, both the feedback con-

nections and lengths being reconfigurable by external program control.

Notice that the division registers shown schematically in the figure

actually represent a set of m identical binary feedback shift registers,

each operating independently on a component of the m-bit input symbol.

It is expected that the entire set of logic functions for the transformer

could be fabric:)ted on a single VLSI (or VIHSIC) integrated circuit,

the processor complexity requiring about 2000 shift register stages

and about 9000 logic gates. The program control would most likely be

on a separote control chip containing a modest amount of programmable

rea'-only memory, easily attainable with today's LSI design rules.

Custom LSI 4mplementation of the transformer rAght require several

chips.

The .rror locator circuit, used also to generate the message

correction symbols, has a transversal structure that can be either

parLitioned or fabricated in identical slices as indicated in the

dashed portion of Figure 8 for the Weight Calculator and Digital -

Correlator sections. The digital correlator section can be thought

of as a programmable transversal filter configured as a cross-correlator

(or convolver),the syndrome digits providing one set of inputs and the

coefficients of the characteristic polynomial providing the other.

The weight calculator performs the successive appro3imations of the
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characteristic (error locator) polynomial and is also used to initial-

ize the digital correlator by calculating the erasure polynomial re-

cursively from the known erasure locations. The remaining section

combines partial vector products produced by the digital correlator

section, performs the finite-field residue-class reduction required,

and provides input and control functions for the weight calculator

and digital correlator sections.

The error locator circuit complexity required for a rate one-

half code of block length 255 would require about 4500 shift register

stages and about 1400 logic gates. Because of the slice fabrication,

we would expect this level of complexity to be attainable on a single

ViISIC integrated circuit chip. For custom LSI one might expect to

be able to fabricate a 16-symbol section on one substrate; this would

require 8 sections for the same code, plus an additional LSI chip for

the arithmetic and logic sections. One each of these custom LSI

circuits would accommodate a Reed-Solomon (31,15) code; an additional

small number of custom LSI transformer chips would be required to

complete the decoder.

5.2 Throughput

For the design described, if the error locator uses digital

logic that operates at the conservative (medium-scale logic) clock

rate of 10 MHz; then it takes about 2 sec to correct a message symbol,

or 2Npsec to decode an N-symbol codeword. For rate one-half codes,

there is no output for about one-half the time while the error locator

polynomial is being synthesized. During the remaining half of the

block duration, the symbols are corrected sequentially. This dead-

time could be used effectively with a pair of decoders processing

alternate code blocks. For the conservative 10 MHz example, this would

permit a constant message throughput of 500K symbols (m-bits) per

second; decoding times for rate one-half codes are shown in table VI.

The higher clock rates expected for LSI and VHSIC technology

58

" - l I I " il - l l , .... ..



Table VI

Decoding Times for Half-Rate Reed-Solomon Codes

Code Bits/Symbol Block T'ecoding Time*

(255, 127) 8 1,020 iisec

(127, 63) 7 508 wisec

(85, 42) 8 340 lpsec

(63, 31) 6 252 iisec

(51, 25) 8 204 visec

(31, 15) 5 124 iisec

(21, 10) 6 84 i~c

(17, 8) 8 68 jsec

(15, 7) 8, 4 60 ijsec

Assuming 10 MHz Logic
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would permit a proportionately higher throughput. The medium-scale

logic breadboard designed and constructed under this project will

decode a Reed-Solomon (31,15) code completely in 124 psec with 50%

efficiency.
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