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THEORETICAL STUDIES OF HIGH FIELD TRANSPORT
IN III - V SEMICONDUCTORS

Hisashi Shichijo, Ph.D.

Coordinated Science Laboratory
and

Department of Electrical Engineering

Two theoretical aspects of high field transport in III - V

semiconductors have been studied. First, a new mechanism to obtain

negative differential resistance in a GaAs-AIGaAs multilayered structure

is described. The mechanism is based on the transfer of electrons in real

space from a high mobility GaAs region to an adjacent low mobility AlGaAs

region when a high electric field is applied parallel to the interface.

It is analogous in many respects to the Gunn effect, except that this

mechanism allows greater control of device characteristics. These

characteristics can be adjusted by varying the doping densities, the

layer thicknesses, and the Al mole fraction in the AlGaAs.

The mechanism is analyzed using the electron temperature model

and the Monte Carlo simulation. The electron temperature model is exact

. in the high carrier density limit, whereas the Monte Carlo method is valid

0 in the low density limit. Both methods clearly illustrate the degree of

control possible with this mechanism over device characteristics. Com-

parisons are made between the two models. Miscellaneous effects which are

* -neglected in the models are discussed. These include two-dimensional

effects, band bending, statistical fluctuation, and quantum mechanical

transmission at the interface. Switching characteristics have been

analyzed, and the switching time s estimated to be approximately 1 x 1012

sec. This fast transfer mechanism isattractive for microwave, switching,

and memory devices.



The second portion of the present work deals with the band

structure dependence of high field transport and impact ionization in GaAs.

An understanding of impact ionization is important because of its influence

on the performance of avalanche photodetectors and IMPATT diodes. It also

determines the ultimate performance limits of small semiconductor devices,

such as CCDs and FETs.

A realistic band structure has been included in a Monte Carlo

simulation of high field transport in GaAs. The band structure has been

calculated using the empirical pseudopotential method. Partly due to the

lack of information and partly for simplicity, we have made simplifying

assumptions on the phonon scattering rate, the ionization threshold, and

the ionization probability. Unlike previous theories of impact ionization,

3the method requires, in principle, no adjustable parameters as long as the
band structure and the scattering mechanisms are known. The calculated

drift velocity, mean free path, and impact ionization rate are in fair

agreement with the experimental data. It is found that the contribution

of ballistic electrons to the impact ionization rate is negligibly small.

Within statistical uncertainty we do not observe the anisotropy of the

4 electron ionization rate in contradiction to the recent experimental

results. Based on the results of the simulation, a general discussion of

impact ionization is given.
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1. INTRODUCTION

The field of hot electron physics is now more than thirty years oil.

Following earlier work on dielectric breakdown in insulators, Shockleyi1 ,

in 1951, initiated experimental investigation of hot carrier effects in

semiconductors. In the 60's the field saw one of its peaks with the

prediction and the discovery of the Gunn effect. The historical background

which led to this discovery is discribed by Hilsum in his excellent

paper[2]. The recent revival of interest in this field is due to hot

carrier effects which occur in submicron silicon '2O3FETs and 'aAs 7TTs.

Oxide breakdown, hot electron emission frao silicon into the gate-oxide,

velocity overshoot, and ballis'tic transport in GaAs FETs are examples of

such effects.

Among all the semiconductors the III-V compounds rank only behind

silicon in technological imortance, and are second to none with respect to

basic research interests. One of the unique properties of the !I!-V

semiconductors is their band structure wh ich makes possible the

construction of transferred electron devices (TEDs)[3]. The 'ascinatia

idea of electrons transfering in momentum space from one valley to another

has attracted many physicists and engineers[2]. Another interestin

property of III-V semiconductors is that they can be epitaxially grown

lattice-matched to each other when proper binary, ternary o, quaternary

alloys are employed. This property has been fully utilizei in

oDtoelectronics devices. From the viewpoint of carrier transport,

heterostructures can provide an entire new class of devices with unosual

*transport properties. The concept of a "superlattice" first proposel by

Esaki and TsuV±] in 1,969 is one such examole. It is expectel that 4n .1e

S.'
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future more and more heterostructures will be utilized in various

semiconductor devices.

It is possible, for example, to realize electron transfer in real

space utilizing heterostructures as proposed by liess and co-workersF5].

The mechanism is basically analogous to the Gunn effect in momentum space.

As a matter of fact, when the Gunn effect was discovered in 1963, the

possibility of a similar effect in real space was on the minds of* several

scientistsr6]. The actual realization, however, had to wait for the

evolution of the molecular beam epitaxy (43E) technique and the concept of

modulation dopingr 4,7]. The real space transfer mechanism is based on the

thermionic emission of hot electrons from the high mobility GaAs layer to

the low mobility AlGaAs layer in the presence of a high electric field.

This transfer leads to a negative differential resistance (NDR) just as in

the 'unn effect. The advantage of the real space transfer mechanism,

however, lies in its degree of control of device characteristics. Negative

differential effects are important for their possible applications to

microwave, switching, and memory devices. The present work also aims to

contribute generally to the theory of high field transport in semiconductor

heterostructures. Additionally, the theoretical techniques used to study

this effect gives us the understanding and the tools to attack another

interesting problem of semiconductor physics the rigorous treatment

of impact ionization in semiconductors.
4

Impact ionization is a very important hot carrier effect. It directly

influences the oerformance of avalanche phctodetectrs3] ani !-MkTT

diodesF_9]. It also determines the ultimate nerfornance limits of srall

semiconductor devices, such as Ds' 1D] and FET3 11 e. neverthess, the

-.
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previous theories of impact ionization have b~en limited by various

assumptions and also by the use of several adjustable parameters, such as

the scattering mean free path. The effective mass approximation and small

non-parabolicity correction have been used in spite of the fact that

carriers gain more than 1 eV in energy (as measured from the bottom of the

conduction band). In our work we have attempted to include a realistic

band structure in the Monte Carlo simulation of high field transport in

GaAs. This method can calculate not only the impact ionization rate but

also other quantities of interest, such as drift velocity and distribution

functions. The inclusion of a realistic band structure is expected to

expand our understanding of high field transport to extremely high electric

fields

In Chapter 2 the real space electron transfer mechanism is analyzed

using the electron temperature model and the Monte Carlo technique. Then,

various effects which are neglected in the analysis are described. Some

comments will also be made on the application of this mechanism.

In Chapter 3 a new Monte Carlo method using a realistic band structure

is described. The method is applied to the study of high field transport

_I . in GaAs. On this basis, a detailed study of the band structure dependence

of impact ionization in GaAs is given.

4i

4
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2. REAL SPACE ELECTRON TRANSFER IN

GaAs-Ala 1-xAs HETEROSTRUCTURES

2.1 General Discussion

The basic structure consists of alternating GaAs-Alxa_ xAs layers, or

other appropriate lattice-matched materials with dissimilar band-gap

energies and carrier mobilities. Typical layer dimensions are from 100 .

to a few tenths of a micron. Such structures have been realized by

utilizing molecular beam epitaxial (MBE)[12-141, vapor phase epitaxial

(VPE)[15,16], or liquid phase epitaxial (LPE)[17,181 growth techniques. In

this work -de are concerned with GaAs-AlxGax As multilayers. ?or 0 < x <

0.45 the r direct gap of AlxGaI xAs changes asF191

E 1.424 + 1.247x (eV). (2.1)
g

In GaAs-Al xGas1 AS heterostructures approximately 88 of this band gap

discontinuity is in- the conduction band[20]. The potential barriers forn a

rectangular potential well for electrons. At thernal equilibrium electrons

resiie at the minimum of the potential wells, i.e., in the gaAs leyers.

Application of a high electric field parallel to the layer interfaces of

this structure -will result in heating of the electrons. When the mean

kinetic energy of the electrons becomes comparable to the potential barrier

height, AE, they can be thermionically emitted into the AlGaAs. If the

-°* mobility of electons in the GaAs layer is much higher than the mobility in -

the AlGaAs layer, the sample should exhibit negative differential

resistance (NDR).

14
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To properly describe real space electron transfer, it is necessary to

account for the scattering mechanisms encountered by electrons being
..

transported at high kinetic energies in the potential well. A mechanical

analogue to real space transfer is provided by the example of a ball

rolling down a chute. The ball will stay in the chute if its kinetic

energy remains small. However, if the ball gains adequate kinetic energy,

then an obstacle can scatter the ball out of the chute. A similar effect

occurs in a layered heterostructures, where electrons drift in a potential

well under the influence of a high electric field.

In order to realize large difference of mobilities in two materials

modulation doping[7,22] 6f the layers may be utilized. Fig. 2.1

schematically shows the band structure, doping distributions, and electron

mobility of modulation-doped GaAs-Al Ga1As layers. The AlGaAs layers are

intentionally doped to a density of 1017 _ 1018 cm- 3, whereas the GaAs

* layers contain only unintentional background impurities (1014~ 1015

CM- 3 ). At thermal equilibrium the electrons reside in the GaAs layers.

* C When separated more than 200 R t1iese electrons experience strongly reduced

impurity scattering. Hess has shown that the differential scattering rate

due to ionized impurities decreases exponentially with spatial

distance[23]. This mobility enhancement by spatial separation of electrons

from donors was first proposed by Esaki and Tsu[4], and later verified

experimentally by Dingle et al.[7]. They have observed a mobility of 5000

cm2 /Vsec at 300 K, and even higher mobilities (~ 15000 cm2!Vsec at low

temperatures. The AiGaAs layers can be made strongly compensated, and

thereby the mobility in these layers can be very low (- 500 cm2 /Vsec or

less). In this manner a mobility ratio of ten or more can be realized in

modulation dtj~ed structures.
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Fig. 2.1. Schematic diagrams of doping density, electron mobility, and
conduction band energy of modulation-doped layers.
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Since the carrier temperature is determined by the power balance

equation:

2 dEeUF d (2.2)

and the energy loss rates are similar in the two materials, the heating of

carriers occurs only in the GaAs layer. These hot electrons transfer in

space to the adjacent AlGaAs layers and then thermalize. Some of the

cooler electrons in the AlGaAs layers can undergo reverse transfer into the

GaAs layer. In order to take account of this energy and momentum exchange

-- between the GaAs and the AlGaAs layers, one must solve the Boltzmann

equation:

3f 4. -0. ."+ t - F 7kf + v f - - (2.3)
a t h k r at 2

' with appropriate boundary conditions. In addition to the spatial

inhomogeneity of this system, there are several other factors which

complicate the analysis:

i) At high electric fields the energy distribution functions in

4 Lpolar semiconductors are highly non-Maxwellian.

ii) There is an energy exchange between the layers because

energetic carriers are flowing out of the GaAs and cold

carriers are returning.

iii) Electron-electron interactions must be taken into account.

iv) The effects of higher L minima in two marerials shoull be

considered.

v) There are several other effects which make the analysis

i
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extremely difficult, such as two dimensional effects, bani

bending, reflection and trapping of electrons at the

interfaces, etc.

To this end we have chosen two methods; the electron temperature model and

the Monte Carlo method. The electron temperature model assumes nearly

Maxwellian distributions in the two materials. The Monte Carlo method is a

one particle simulation of electron transport in a simplified potential

profile. Each method applies only under certain conditions. Detailed

discussion of the two models, assumptions, and the results of the

*calculations are presented in the next two sections.

In both methods we have deliberately chosen typical layer widths

larger than 400 .. This avoids the complications arising from size

quantization effect and other two dimensional effects. Some of the two

dimensional effects are discussed in Section 2.4. The choice of large

layer widths also allows the use of the semiclassical Boltzmann equation.

Otherwise one must resort to a quantum mechanical treatment. With largo

1 %yer -Aid ths, the potential fluctuations lue to the statisti:a!

distribution of the impurities can also be neglected. Other simplifying

assumptions in the models are taken up and reexamined in Section ?.5.

*

0
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2.2 Electron Temperature ModelF241

K 2.2.1 Description of the model

In polar semiconductors the energy distribution of electrons can be

highly non-Maxwellian, since polar optical scattering is inelastic and is

not randomizing (see Fig. A.3 in Appendix 1). To make the analysis

explicitly tractable, however, we assume a Maxwellian form for the

isotropic part of the distribution function. This assumption is partly

justified by the fact that the electron density is high in the GaAs layer

at the start of the electron transfer, since the GaAs layer collects

electrons from the neighboring AlGaAs layers. Typically the GaAs layer

will have an electron density of 1018 ~ 10 19 cm-3. Electron-electron

* collisions will, therefore, randomize the energy gained in the electric

field direction and establish a Maxwellian distribution. Above the band

edge of the AlGaAs the electrons in the GaAs will follow a "coolar"

distribution because of the reverse transfer of cooler electrons from the

E AlGaAs. This will be shown as a result of Monte Carlo simulations in

Section 2.3.3 (Fig. 2.25). However, since the GaAs layer is sufficiently

narrow, we can use a single electron temperature in the GaAs.

If there were no interaction between the GaAs and AlGaAs layers, the

electron temperature in the AlGaAs layer would be constant and close to the

lattice temperature, T0. However, this is not a realistic assumption. Due4- o

to the transfer of hot electrons from the GaAs layer, electrons close to

the GaAs layer will have considerably higher temperature than the lattice

temperature. As electrons move away from the interface they ther-alize to

the equilibrium. Therefore, we need to consider the position dependence of

the electron temperature in order to account for the power flowI"
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perpendicular to the interface.

Fig. 2.2 shows the model used in the calculations. We assume a

position-dependent electron temperature, TL(x), and a position-dependent

quasi-Fermi level, EF2 (X), in the AlGaAs layer. Similar methods have

recently been employed by other workers to analyze thermionic emission in

metal-GaAs contactsF251. Both the concept of the electron temperature and

of quasi-Fermi levels require high carrier densities in order to be valid.

In the thin GaAs layer we assume a position-independent electron

temperature, T., and quasi-Fermi level, EFi. With this assumption we only

need to solve the position dependence of the electron temperature and the

quasi-Fermi level in the AlGaAs layers. The thermal conduction of hot

electrons from the GaAs layer into the AlGaAs layers is then accounted for

by the slope of TL(x) at the interface boundary. Although at the boundary

the slope'of Te in the GaAs layer is zero (since we have assumed Te to be

constant), we assume that the same amount of energy as given by the slope

of T(x) is extracted from the GaAs.

2.2.2 Calculations

We proceed to assume a distribution function of a form:

f = fo ( , x) + g(:, x)k + h( e, x)k x  (2.4)

4Whereo f -E,x) is a :Taxwellian distribution:

FE 2 (x) - E
f (E:, x) = exp s (2.5)

-.the Ala. s layer. Tecoordinate system is sh:;ri in 2ig 2 Th



Te TL(Y

LE EFIE F2(X)

GaAs AlXGO1 AsLP13

Fig. 2.2. Simplified electron-temperature model with coordinate system
used for the calculations.
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electric field is in the y-direction. The second term of Eq. (2.4)

represent the drift term of the distribution along the electric fiell as is

usually used for a spatially uniform systemr26]. The third te-r is to take

into account the spatial nonuniformity. It represents the lisplacement of

the distribution perpendicular to the electri field. This Ie. is

essential to account for the energy flow normal to the field direction.

The isotropic part of the distribution function in the GaAs layer is given

by a form similar to Eq. (2.5) in terms of Tean E ibu wthtte

position dependence.

As is normally done, we then separate the variables into equations fo r

the spatially symmetric part and the drift termsF26]. The method of

momentsF271 is then utilized to obtain the differential equations for T' (.X)
L'

and E.,(x). The set of equations obtained is given below:

1/2
/2h e exp(Z -ZL)- 1 12 e

oE e- ( )- L p(ZL/2) K (Z /2)
2-rM 0

2 5p 2 -3/2 ej)/
= v 2 F + -- (kTL) x(-E F2 /kT L 7 (kTL7/ exp(EF2/kTLj-

(2.6)

and

d2 kT 5/2 x(E /kT) = (2.7)

dx

kTL kT
where Z L = t , Z0 = w , T 0is the lattice temperature, '2is theI'

0 0
mobility in the Al'aaAs layer, 7 is the appliei electric fiell, anI K 0 i's

the Bessel function of the zeroth order. T1he position iepeninces o

3,,x) -and TL x) have been omitted in the notations. The left siie of

Eq. (2')is the rate of energy loss due to nolar ooti -alsctei'j,
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and the first term on the right side is the power input from the applied

electric field. The second term on the right represents the energy flow

from the GaAs due to the transfer of hot electrons. Applying energy

conservation at the boundary, we then obtain a similar power balance

equation relating T and F in the GaAs layer;

(2Oi/2 eE exp(Z°-Ze)-e( 1 Z/2 exp(Z /2) K (Z /2)

-r 0 ex ( -

2 5p 2  dT L(0)

SeplF2 + 2 kT (0 )  (2.8)

kT
" wher e e and is the mobility in the GaAs when only polar optical

* scattering is operative. This mobility is given by;

3f~ 3/( 2w 0 1/ 1 Z-3 /2 exp (-Z /2)f exp(Z -Z )+I] K (Z /2)•2E\ N q e e 0 e e

+ [exp(Z o-Z e)-I] K (Ze/2)i (2.9)

where K is the Bessel function of the first order, and N is given by

:- -X-P(h 0ok T ) (2.10)

0 B 0

- The second tern on the right side of Eq. (2.8) represents the power flowing

" out of the GaAs into the AlGaAs layers. TL(O) and iTL(O)!dx are evaluated

at the boundary x = 0. We have used the fact that this Dower flow is due

only to those electrons in the GaAs with energy higher than the AlZaAs band

- edge. Combining Eqs. (2.6) and (2.7), we can eliminate E (x) and obtain

the differential equation in terns of TL(x) only:
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d2T (x) 2 2 2h exp(Z-Z
L 2e - E oL/2

dx2 5k2 TL W a2 ] m * ° exp(Z) - 1 L

d5kL~x IF '2 2L

x exp (ZL/2) Ko(ZL/2)]• (2.11)

This equation is now solved numerically with the boundary condition; TL(O)

= Te, and dTL(x)/dx = 0 at TL = To .

To determine the quasi-Fermni levels, EFt and EF2(x), we need two

additional conditions. One is obtained from the conditicn j 3. ".e

simplify this condition to the balance of the thernionic currents in both

directions at the interface. Under collision-free transport conditions the

thermionic current j from the GaAs to the AlaAs, is viven after

"ethe r 25] by;

em 1  2 EFl IJl-2~ 2 2 3 (k) kEI-E

The current j,_I flowing from the Al^aAs to the laAs layer is;

= 2 (kTL) 2 !EFF2- AE (

2-1 2h3 eL -

where T is evaluated at x = 0. Under steady-state conditions we hare j. -
L1-

= J2-1' The other additional condition arises from conser-iation of the

total number of electrons, N = N1 + N2 . N I -nd N2 are cal-ulated uisini the

electron temperature and quasi-Fermi level in each layer.

.4

i-
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2.2.3 Results

From Eq. (2.8) we obtain the variation of electron temperature, T.,

with the electric field in the GaAs layer. The result is shown in Fig. 2.3

with the mobility in the AlGaAs layer as a parameter. The dashed curve is

w for bulk GaAs, with only polar optical scattering operative. This

corresponds to treating the GaAs and the AlGaAs layers independently (in

other words, P2 = 0). As is well known[29,30], at an electric field of

about 3.4 kV/cm the electron temperature goes to infinity and "polar

runaway" occurs. Vhen the transport of hot electrons is ;aken into

account, however, the electron temperature does not increase as rapidly.

The rate of increase is slower for higher mobility in the AlYaAs, because

of the larger power out-flow. This situation is quite analogous to the

Gunn effectF30,31] where intervalley scattering supplies an additional

U energy loss mechanism[32].

Fig. 2.4 shows the position dependence of both the electron

temperature, TL(x), and the Fermi level, EF 2 (x), for :everal values of

electric fiell. The dashed line indicates the GaAs potential well of 950

meV depth. The interface is set at x = 0. It can be seen that both TL(X)

and EF2(x) approach their equilibrium values within a distance on the order

of 0.1 1. The small spikes in the quasi-Fermi levels which occur at the

boundary arise from the imposed condition of thernionic current balance and

from the small difference in effective masses. These spikes are of no

physical significance. The rapid decrease of the quasi-Ferni level in the

3aAs with higher fiells indicates the depletion of electrons in this layer,

and hence the transfer of electrctis into the AlGaAs. The variation of the

fraction of electrons in the 3aAs layer with increased fieli is illustrated
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in Fig. 2.5. The transfer is larger for smaller mobility values, a

consequence of the greater carrier heating for smaller mobility as seen in

Fig. 2.3. Here again the analogy with the 'unn effect should be noted[32 .

The current-voltage characteristics are straight forward to calculate

from this model. The results of the calculations are shown in Fig. 2.6.

The magnitude of the NDR changes dramatically with the mobility in the

AlGaAs layer. For purposes of comparison we include in Fig. 2.6 (insert)

the velocity-field characteristics calculated by Fawcett et al.33] in 1970

for the 3unn effect. The parameter for their curves was the intervalley

deformation potential. Since no reliable data on the strength of

* intervalley scattering was available in 1970, the intervalley deformation

ootential was used as a parameter.

2.2.4 Comparisons with the Gunn effect

The two sets of curves in Fig. 2.6 show surprisingly similar features.

Actually our discussion of real space transfer aliost parallels that of the

Gunn effect, but with two crucial differences. First, in our mechanism Z

electrons leave the high mobility GaAs layer by thermionic emission and are

transferred in real space to the low mobility Al3aAs layer. In the lunn

* effect, on the other hand, electrons transfer from one valley of high

mobility to another of low mobility in momentum or k-space. Second qnd

most important is the fact that our device characteristics can be

controlled to a greater degree than with a device utilizing the unn

effect. As already seen in Fig. 2.6 (insert), the curves for the Gunn

effect have as a parameter the intervalley deformation potentiql, which is

a material property and cannot be changed. The inteaialley defomtion

potential between the r and L valleys is now known to be around I x J
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eV/cm in GaAs[34]. On the other hand, the parameter in Fig. 2.6 for the

real space transfer process is the mobility of the AlGaAs layer, which can

r be controlled by adjusting the doping of the layer. The characteristics

can also be changed by varying other device parameters, such as the layer

* 'dimensions and the potential barrier height.

2.2.5 Influence of material parameters on the real space transfer

The potential barrier height can be controlled by changing the Al mole

fraction of the AlGaAs. The effect of this parameter on the

current-voltage characteristics is shown in Fig. 2.7. For this particular

set of parameters the threshold field for the onset of NDR can be varied

between 2 and 3 kV/cm and the peak-to-valley ratio between 1.3 and 2.0.

Fig. 2.8 shows the fraction of electrons in the GaAs for the see

parameter. The transfer of electrons is more abrupt for the deeper

Vpotential well, which results in larger peak-to-valley ratio as shown in

Fig. 2.7. This occurs because the deeper the potential well is, the more

the electrons can be heated before they begin to transfer, and hence the

larger gradient of carrier temperature results at the interface at the

beginning of transfer. In this electron temperature model we do not take

into account the effects of the conduction band L minima, which are known

to be located approximately 330 meV above the r minimum of GaAsF34,361. We

have deliberately chosen values of AE such that the L minima are above the

band edge of the AlGaAs. The effects of the L minima will be iscus3ed

more extensively in Section 2.3.

The layer dimensions can be varied by changing the crystal growth

parameters. Fig. 2.9 shows the electron temperature in the GaAs as a

function of electric field for several thicknesses of the 3aAs layers. The
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degree of carrier heating is smaller for thinner GaAs layers because of the

larger cooling effect of the surrounding AlGaAs layers. Fig. 2.10 shows

the effect of changing the GaAs thickness on the current-voltage

characteristics.

The lattice temperature dependence of the current-voltage

characteristics is another interesting subject[35]. Fig. 2.11 shows the

result of the calculation in the temperature range 77 - 400 K. In this

calculation the electron mobility in the AlGaAs layer is assumed to be

constant at 100 cm2/Vsec. In heavily doped materials, and in particular,

compensated materials, the mobility is 'mown to vary very little with

temperaturef[37]. Since the mobility in the GaAs layer increases

considerably as the temperature decreases, the larger peak-to-valley ratio

results at lower temperature. According to our calculation, the

U peak-to-valley ratio improves from 1.56 at 400 K to 7.75 at 77 K. This

suggests that the experimental manifestation of the real space transfer

mechanism can be more easily realized at lower temperature.

Although the electron temperature model is based on several

simplifying assumption, some of which are difficult to justify, it provides

a qualitative method with which to analyze the real space transfer

mechanism. The model is exact in the high carrier density limit. The

Monte Carlo method is easily tractable in the other extreme, i.e. the lowi

density limit. As will be seen the results obtained from both method show

surprisingly similar features (such as dependence on barrier height, AlGaAs

mobility, etc.). This suggests that these features are in fact general and

do not depend on the assumptions of the model.
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2.3 Monte Carlo Simulation of Real Space Electron Transfer

2.3.1 Introduction

The Monte Carlo method[38] used in transport theory is based on a

computer simulation of the carrier motion of an individual electron in an

electric field. Physical quantities of interest (such as drift velocity)

are obtained as proper statistical averages among sample members of an

ensemble. The Monte Carlo procedure has been shown to yield a distribution

function which is a solution of the Boltzmann equationF33i and thus

provides a powerful method to solve the Boltzmann equation under zuite

.7eneral conditions. It has been applied A ith great success to the study of

high field transport, and in particular, to the Ounn effect[33].

The Monte Carlo method follows a carrier experiencing successive drift

and scattering event. The scattering event and the duration of each drift

are letermined by random numbers. The simulation is repeated a sufficient

number of times to minimize statistical fluctuations.

The effectiveness of the Monte Carlo method lies in its simple

orinciple and its flexibility. The inclusion of various complex scattering

mechanisms, time dependence, and physical boundaries in position space can

be done with minor elaboration of the algorithm. It is this flexibility

that makes the Monte Carlo method especially useful for the simulation of

real space transfer.
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2.3.2 Simulation procedure

Fig. 2.12 shows the flow chart for the Monte Carlo simulation of real

* space transfer in GaAs-AlGaAs heterostructures. The quantities r, 7, and E

denote the position vector, the k-vector, and the energy of the electron

respectively. The appearance of rn in the flow chart means that a random

number uniformly distributed between 0 and 1 is necessary at that stage.

The lower right portion of the flow chart is specific to the

simulation of real space transfer mechanism. The spatial configuration is

sho-wn in Fig. 2.13. The model assumes an abrupt potential barrier of

height AE in the OaAs. Band bending effects are neglected as in the

electron temperature model. The basic cell from x = 0 to x = 1 + d2 is

cyclically repeated in the simulation. The calculation of the transmission

coefficient is described in detail in Section 2.5.2.U
All the formula and material constants necessary for the calculation

of the scattering rates are given in Appendices 1 and 2. After the

scattering rate of each mechanism has been calculated, the total scatt-ering

rate is obtained by summing over all the possible scattering mechanisms at

each value of electron energy. The probability table is then constructed,

which is used in the determination of the scattering machanism. This table

contains the relative probability of eacn scattering mechanism at every

value of electron energy. The total scattering rate is stored in memory in

the form of the slope and the intercept which linearly interpolate the rate

between two neighboring energy points. This table of the slope an! the

intercept is used in the look-up scheme to calculate the total scatterin g

rate at an arbitrary electron enervyF39]. The integration
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Fig. 2.13. Material configuration used to simulate real
space transfer.
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d1 ' (2.14)

~t(t')

• "J 0

is perfom-ed by using the trapezoidal rule with a time step which is 1/10

th the average drift time.

The simulation begins by releasing an electron with thermal energy

from the center of the Gaks well and in a randomly selected direction. The

electron then undergoes scattering interactions. The scattering mechanism

considered in the calculationsF64] include acoustic phonon scattering,

optical phonon scattering, piezoelectric scattering, equivalent and

- non-equivalent intervalley scattering, ionized impurity scattering, and

random potential alloy scatteringr73] in the AlGaAs. In some of the

simulations only polar optical scattering and intervalley scattering in the

GaAs and ionized impurity scattering and polar optical scattering in the

Al'aAs are used to minimize the computer time. This does not affect the

essential features of the results, since these scattering mechanisms are

the most dominant ones. Some comparisons will be made between these two

cases in the next section. In all of the simulations only the r (00) and

L(111) conduction bands are considered for 'aAs, and only the (000)

conduction band is considered in AlGaAs.

A typical simulation consists of approximately 100,000 to 250,000

interactions to obtain accurate velocity estimates. The average Irift -

velocities in the individual materials and the average velocity in the

heterostructures are calculated using standard velocity estimators 11 19

For the ohmic range (in the GaAs at low fieli and in the low-mobility

AlGaAs) the diffusion 2oefficient is calculated first from a maxinul

0o
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likelihood estimate:

< (y- Vdt)2 > = 2Dt (2.15)

where vd is the drift velocity, and t is the duration of sampling. Then

the Einstein ralation is used to calculate the mobility. This method has

been found to reduce the uncertainty in the calculated drift velocity at

low electric field[40,41].

2.3.3 Results

Fig. 2.14 shows an example of the electron trajectory in real space

for low (2 kV/cm) and high (6 kV/cm) electric fields obtained by the Monte

Carlo method. The narrow region between two lines represents the GaAs

layer, whereas the region outside are the AlGaAs layers. At low electric

field (2 kV/cm) the electron stays inside the potential well as it drifts

along the well, since the average electron energy (- 0.06 eV) is much

smaller than the potential barrier height (0.2 eV). The mean free path of

scattering for this electric field in undoped GaAs is approximately 600 .

Therefore the electron is reflected by the interface more often than it is

scattered by a phonon. In our simulation we have assumed a specular

reflection at the wall -with no loss of velocity in the field direction. In

reality the interface scattering may play an important role in determining

the mobility in the GaAs potential well. When the electric field is high

(6 kV/cm) the electron gains enough kinetic energy (- 0.17 eV) so that it

can be scattered out to the AlGaAs layer as shown on the right side of

Fig. 2.14. Since the electron mobility in the AlaAs is much 1iwer, the

4 electron moves much slower in this layer, and the mean free path is much

shorter. There is a possibility, of course, that the electron will move

4
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back into the GaAs potential well after it moves in the AlGaAs layer for a

while. This is also illustrated in the figure. When observed over a

sufficiently long time this individual electron's motion should be

representative of all the electrons in the GaAs-AlGaAs structure. This

provides a one particle picture of real space transfer.

The velocity-field characterictic of a real space transfer (RST)

device obtained by the Monte Carlo method is shown in Fig. 2.15. This

-- simulation has been done by Glisson et ai.r64] including all the scattering

me!hanisms. For comparison the bulk characteristics of the GaAs and the

-aAs ,,re shown. The ]aAs has no ionized impurities, and shows r.e usual

a I 'a 4/fn. The low-field mobility is 3000 cm2/Vsec. The

AA3 s s3rcngly cmonensated with an impurity density of 1 x 10 19 cm-
S3fre electron density of 1 x 1017 cm-3 . This gives an electron

.- :f spproximately 500 cm2/Vsec in this material. The transport in

- ik remains essentially ohmic for the range of electric field shown

f .g're. The impurity density should be considered as a parameter

". 'i.oryn-~. the mobility in the Ai7aAs layer. In reality it may not be

ae essar- :-o iope the layer with this high impurity density if there is

anothe" alternative way to grow a low-mobility material. The Al content in

the Al'aAs is chosen to give a potential barrier of 0.2 eV (x = 0.18) in

the iST ievice. The real space transfer structure shows NDR at 2.4 kV!cm

with a peak velocity of 1.6 x 107 cm/sec.

For comparison we show in Fig. 2.16 the calculated velocity-field

characteristics -with only polar optical and intervalley scatterings in the

GaAs and polar optical and ionized impurity scatterings in the AlaAs. In

this case we have fewer mechanisms for energy and momentum loss. As a
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result, the Gunn effect occurs at a slightly lower electric field. The low

field mobility for GaAs and the RST device is slightly higher for the same

reason. The usual Brooks-Herring formula for ionized impurity

* scattering[27j has been used in this calculation, whereas Glisson et al.

* have assumed a cut-off distance for the screened Coulomb interaction. The

Brooks-Herring formula gives a mobility of only 270 cm2 /Vsec for a lower

impurity density of 4 x 1013 cM- 3 (and the same free electron density of 1

x 1017 cm- 3 ). The reason for the discrepancy is that for very high dopings

the average distance between impurities becomes smaller than the Debye-

screening distance. As a result, the Brooks-Herring formula (which only

considers an isolated impurity) overestimates the interaction. For the

analysis of real space transfer, however, this discrepancy is irrelevant

because the characteristics are determined mainly by the mobility. As long

as the mobilities are similar, the two results are expected to be similar.

Fig. 2.17 shows the relative numbers of electrons in the .aAs and the

Al~aAs layers using the same parameter values as shown in Fig. 2.15. It

can be seen that even for fields well above threshold a substantial

fraction of electrons remains in the 'aAs. These residual electrons in the

GaAs layer might hinder the application of this mechanism to switching

devices since they constitute a considerably large current in the "off"

state. The ratio of electrons in the two materials can be improved,

however, by reducing further the mobility in the AlGaAs. In Fig. 2.13 the

mobility is reduced to about 50 cm2/Vsec by increasing the impurity lensity

to I x 1020 cl-3. In this case less than 10 of the electrons remain in

the GaAs at 3 kv/cm. The peak velocity of 1.6 x 107 cm/sec, threshold

S field of 2.8 kV/cm, peak-to-valley ratio of , an n negative mobility

magnitude above threshold of greater than I x O cm2 !Vsec are ver
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attractive parameters for Gunn-type device considerations. On the other

hand, if the AlGaAs mobility is increased, a substantial number of

electrons remain in the GaAs. Now the transport property of the structure

is determined by both the GaAs and the AlGaAs. This is illustrated in

Fig. 2.19 for an AlGaAs mobility of 4000 cm2 /Vsec. The curve shows the

saturating characteristic and a peak velocity of 2 x 10 cm/sec with very

small negative resistance. This illustrates the possibility of

artificially creating the velocity-field characteristics using a layered

* -heterostructure.

As in the electron temperature model it is possible to study the

0 effects of changing various device parameters with the Monte Carlo

simulation. For example, the effect of varying the potential barrier

height (Al mole fraction) is shown in Fig. 2.20. Although the peak

r velocity increases with the barrier height, the magnitude of the negative

differential resistance shows a maximum for a barrier height of about 0.2

eV. This result should be compared with the one obtained from the electron

L temperature model (Fig. 2.7). Fig. 2.21 shows the effect of changing the

layer dimensions. By increasing the ratio of the AlGaAs and the GaAs layer

width the peak velocity decreases whereas the peak-to-valley ratio

0 increased. The larger peak-to-valley ratio results from the larger

fraction of electrons in the AlGaAs as shown in Fig. 2.22. Again,

Fig. 2.21 should be compared with Fig. 2.10 from the electron temperature

0 model.

So far we have not mentioned the effects of L valley in the 3aAs. The

L valley is known to be located approximately 0.33 eV above the F

minimum'34,36]. If the barrier height, LE, is close to this enrvy, it is

0 . .. . .• a "- "n "" I
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possible for some of the hot electrons to transfer to the L valley of 'aAs

rather than to the AlGaAs layer. This is illustrated in Fig. 2.23 which

shows the relative populations of the F and L valleys in the 'aAs and

AlGaAs for the parameters used in Fig. 2.16. With this set of parameters

(AS = 0.2 eV) approximately 20 ' of the electrons are transferred to the L

valley at 3 kV/cm. If the band edge of the AlGaAs is aligned with the

location of the L valley (AE = 0.33 eV), the effect is expected to be

larger. The result of this calculation is shown in Fig. 2.24. Now more

than 40 1 of electrons transfer to the L valley. This figure also shows

that the transfer to the L valley is slightly more efficient than real

space transfer to the AIGaAs layer. For the real space transfer mechani3m

to be dominant, the barrier height should be lower than - 0.25 eV. The

effect of the L valley in the AlGaAs is expected to be very small, since

the electrons in the low mobility AlGaAs will not heat up as much.

The Monte Carlo simulations also provide the distribution function by

setting up an energy histogramF33]. Fig 2.25 shows the distribution

function sampled at the GaAs side of the interface. At lower fields (_i

*kV/cm) the curve is almost a straight line indicating that the distribution

is approximately Maxwellian. As the field increases, however, a

significant structure appears above 0.2 eV which corresponds to the

conduction band edge of AlGaAs. Since the mobility in the AlGaAs layer is

much lower, the AlGaAs electrons do not heat up as much as those in the

GaAs layer. These cooler electrons can be transfered back to the ZaAs

layer causing a bump in the distribution function. It is also noted that

the effective electron temperature (inverse slope of the distribution

* function) is smaller at higher energies due to these cooler electrons fromq

the Al'aAs. This situation is uite analogous to that in the 'unn effect,

au nlgu o+a nte n e
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where cooler electrons from the low-mobility L valleys cause a bump in the

distribution function in the r valley (compare Fig. 2.25 with Fig. 3 of

Ref. 33). Also, the degree of the deviation from the straight line

indicates the degree of validity of the electron temperature model, which

is discussed in more detail in the next section.

2.3.4 Comparisons with the electron temperature model

As seen in Fig. 2.25 the distribution function can be considerably

non-Maxwellian at high electric fields. In this case the electron

temerature model, which assumes a single carrier temperature in the 'aAs,

is not adequate. Moreover, the electron temperature model is based on more

assumptions (such as the existence of the quasi-Fermi level) than the Monte

Carlo simulations. The most fundamental difference between the two models

is that the Monte Carlo method is a one particle simulation without

iarrier-carrier interaction being taken into account, whereas the electron

temperature model assu:mes strong carrier-carrier interaction which yields

the Maxwellian distribution. This results in a different power flow rate

as is explained below.

In quite general situations the diffusion of energy can be

accomplished in two different ways. The first is by actual carier

transport. When a carrier moves, it takes its energy (kinetic energy) with

it, thereby reducing the total energy left behind. The other is by the

thernal diffusionF-42]. This is due to the electron temperature gradient

and is analogous to conventional theral diffusion of gas particles in a

temperature gradient. These two effects can be easily demonstrated f:r

4( one-dimensional case by multiplying the Boltzmann equation . (2.3)) by

the energy and integrating. Dne then obtains 42,

4nnotisl,3
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_n<E = . + T + {K - + £ (TE 2

t 3x 3x e (TE) -' (1

whrere < is the thermal conductivity of the electrons given by

K = 2nkBD. (2.17)

Eq. (2.16) is the usual power balance equation with two additional terms

(inside the brackets) due to the inhomogeneity of the system. The first

tern represents the thermal diffusion, and the second tern the carrier

transport effect. In the electron temperature model both of these effects

are included. In the Monte Carlo simulation, however, only carrier

transport is included, since thermal diffusion is a many-particle effect.

From these arguments we can speculate that the power flow out of the 'aAs

is larger in the electron temperature model than in the Monte Carlo method.

This speculation is born out by the comparison in Fig. 2.26, which shows

the velocity-field characteristics from the two models using the identical

set of parameters. The M6nte Carlo simulation shows a large negative

d
Sdifferential resistance, whereas the electron temperature model result

doesn't even show velocity saturation. In reality the characteristic is

expected to be intermediate between the two, which one is closer depends on

the carrier density in the system.

2.4 Two-dimensional Effects

2.4.1 Size quantization

In both the electron temperature model and the Monte Carlo simulation

we have considered layer dimensions of typically 400 R or larger to avoil

the complexity arising from two-dimensional effects. WThen the layer
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dimension is comparable to the DeBroglie wavelength of a carrier, bound

states are forned and the energy levels become discrete due to the

restriction of the carrier motion in the direction normal to the layer

(referred to as the z-direction in this section). The energy levels (for a

infinitely deep well) are then given by[44]

h 2 2 2
E = E+--(k x k ) (2.18)

2 2
E = _[ z (2.19)

n 2m* z

where L is the layer thiicnIess. Each value of " is connected to a
z n

continuum of levels, called a subband. In GaAs-AlGaAs heterostructure this

quantuxm size effect (QSE) is expected to appear for layer dimensions below

500 -[44]. The quantization of carrier motion can also occur at the

GaAs-AlGaAs interface due to band bending[45,46]. Electrons or holes in

such a system can be considered as two-dimensional. The modification of

scattering rate due to this two-dimensionality and its influence on the

real space transfer mechanism are discussed in the next two sections.

2.4.2 Polar optical scattering in two dimensions

Polar optical scattering is the most dominant scattering mechanism at

low energies in GaAs. We show here how the two-dimensional effects modify

the scattering rate of this mechanism. Other mechanisms have been

considered by Hess[23]. There is also a considerable amount of work on

two-dimensional scattering in connection with silicon 40S inversion

layersC47-49] •

4.
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For polar optical scattering we assume that the phonon modes are

three-dimensional, since the gaAs and A~a 1 _x As are chemically sitmilar,

especially for a small value of x. We then start with the Hamiltonian_5o]

Hel-ph = e q( iqr- ae qr), (2.20)

q q q

where q is a three-dimensional phonon vector, a-) and a-) are boson
q q

operators, and C is given by

C Fieh o
C Lv(± )1 (2.21)

We only consider the ground state for the electron whose wavefunction is

given by

e 2A sln. -je 7, (2.22)

e .L

where k,, and , denote the components parallel to the interface, L is the

layer thic.aess, and A is the interface area. We can then calculate the

matrix element of the electron-phonon interaction:

_ M =k', Nq+I HelphI k, Nq (2.23)

&sstming qz L < 1, we obtain, for the phonon emission,

2 1C N + 1 )(2.24)
q 

q

The total scattering rate is calculated -as

0
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U2
I 2,r E (N+ 1) (.- +w )
T hqq \q 2 0~~-

z q k-q k

F (2.25)

2T dq//dq (N + 1) ~ +hW 0-,h (2 )z q /l q 2 2

(2) k-q k

Performing the q integration with q < < k"' we get 93]

2 2T

e (i dqd4 (Nq+ ) ( (2.26)
T 8TE O  0 q 2 2k

where upper and lower signs correspond to phonon absorption and emission,

respectively, and the notation has been changed ( k,- k, an q " To

find an explicit expression for T, we perform the integration over the

5-function[51], and obtain:

2eE N q1T/2  dS= o q1

tab 12J / 2 hE

-4
2eE N 1 " 1 \
2E o (2.27)

/2mE ++ 0'

for phonon absorption, and

.

I
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1 2eE (N + 1 ) 6/2

e2m*E
0 Q\ 2sn

2eE (N+1) h (0 - - K,11 --- (2.28)

,2m*E

for phonon emission. In these expressions E is the effective field
0

strength for' GaAs (see Append. 1), and K(x) is the complete elliptic

integral of the first kind.

In Fig. 2.27 these results are compared with the polar optical

scattering rate in three dimensions. As seen from the figure, the

two-dimensional scattering rates are considerably higher (for both phonon

emission and absorption) than in the three-dimensional case for any

electron ener3iCs. An enhancement of polar optical scattering rate' has

been experimentally verified by Holonyak et a1.[52] using photopumped

multiple quantum-well GaAs-AlGaAs heterostfuctures.

2.4.3 Influence on the real space transfer mechanism

The enhancement of the polar optical scattering rate alone is expected

to increase the threshold electric field for NDR onset by a factor of 2 at

room temperature[5]. It is rather difficult, however, to assess all the

effects of two-dimensionality on the real space transfer mechanisma because -

of its complexity. For a realistic device, we shoull take into account the

existence of subbands. The energy levels of these subbanis c-n be

*calculated using a variational principleF53,541 or a self-consistent

methodF53]._ The intervalley and the polar optical scattering rates nust be

@
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obtained including those subbands. It is then possible to calculate the

transport property in the two-dimensional system using the electron

temperature model[55], or the Monte Carlo techniqueF56]. The transition

from two to three dimensions is necessary at the electron energy equal to

the band edge of AlGaAs to account for the real space transfer mechanism.

The quantization at the GaAs-AlGaAs interface due to band bending[46] is

irrelevant to the real space transfer, because when the carriers become hot

they are no longer bound at the interface.

2.5 Miscellaneous Effects

2.5.1 Band bending

Band bending effects have been neglected both in the electron

temperature model and the Monte Carlo simulation for the same of

simplicity, although it is possible to include these effects in the Monte

Carlo simulation in the form of a position-dependent electric field. The

actual potential profile including band bending is schematically shown in

Fig. 2.28. The electric field created by the ionized donors tends to

attract energetic electrons and pull them from the gaAs into the A!$aAs.

Hence, it is expected to enhance transfer out of the well and impede

0 transfer back into the well. An exact treatment to calculate the band

bending should employ a self-consistent methodF531 to account for the

rearrangement of the electrons. However, a rough estimate can be ji-.ien

rather easily if we neglect two-dimensional effects and assume a unif.-n

carrier distribution (valid only for small band bending).

6
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Using the depletion approximation 9], we obtain (Fig. 2.28)

e 2  (2.29)
# 8 NDL2

-and

= L- -n 2  e NDL2LI , (2.30)

where n is the carrier density in the GaAs. Here we have used the relation

n NDL 2 /L I  
(2.31)

at the start of the transfer. In order to have all the electrons in the

GaAs layer before the real snace transfer, we want to have

'2 < AE-( EF - Ec) -  i (2.32)

'Jsing Eqs. (2.29) and (2.30), and n F exp( ;T , we can rewrite this

inequality as

2 <8cT ND L2  L2L2 <eD ( AE---- inN-- I) - L2L I 2.3

2 eN De N CL 2 1 (.3

If we replace the inequality by the equality, we can find the maximum

allowable layer dimension to have all the electrons in the GaAs.

Assuming L' 16 -3
2/L 5 ND = 1 x 10 cm and AE 0.25 ev, we obtain LI

= 240 R, L2 = 0.12 1, and '2 = 25 meV. In order to have low-mobility

AlIGaAs, the layer must be doped higher than 1 x 106 cm- . Then the band

bending effect is certainly not negligible. By utilizing zompensation

doping of the AllaAs, the mobility can be lowered "Aithout large band

bending effects. In any case, to obtain a more realistic picture of the

0
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real space transfer mechanism, band bending effects shouli be examined in

the Monte Carlo simulation. Tunneling through the barrier may also be

significant for large band bending. Furthermore, in stead of trying to

eliminate the band bending effects, there might be a possibility of charge

storage device utilizing this effect.

2.5.2 Transmission coefficient at the interface

It is well known[57,58] that when an electron collides with a

potential step, either reflection or transmission may occur with finite

probability. Therefore, at the GaAs-AlGaAs interface some electrons are

transmitted, while others are reflected during the transfer. Wu and

Yang[59] have calculated the transmission coefficient across heterojunction

. interfaces taking into account the difference of effective masses on the

two sides of the junction. Their treatment is not correct, however,

because the effective mass concept is not valid at an abrupt potential

step. A more rigorous calculation has been done by Osbourn and Smith[60]

using the empirical tight-binding approximation. Their result, as compared

with Wu and Yang's result, is shown in Fig. 2.29. The figure shows the

*transmission coefficient at the interface as a function of electron energy

4 for a wave vector perpendicular to the interface. Osbourn and Smith's

result in ter-s of wave vectors has been replotted using the relation

h 2k
E 2 = * - 1 (2.34)

• 2m*

Their cal-ulation gives smaller transmission coefficient than obtainei by

Wu and Yan s calculation as pointed out by Price,61 ]. In actual

heterojunctions the interface is not atomically abrupt, but is graded over

I4
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more than 15 R even for MBE grown heterojunctionsr62]. This compositional

grading has been shown to increase the transmission coefficient

slightly[63].

Glisson et al.J64] have compared a classical transmission model and

the quantum-mechanical transmission using the formula by Wu and Yang in the

Monte Carlo simulations. In the classical model, the transmission

coefficient is a step function, being unity at the conduction band edge of

the AlGaAs. Within the statistical error of the simulation they have

observed no substantial differences in the results between these two

transmission models. If the results by Osbourn and Smith are used, there

may be a small difference. Intuitively, the inclusion of the

quantum-mechanical transmission is nearly equivalent to slightly increasing

the barrier height in the classical model. In any case, the effect is

Iexpected to be small.

2.5.3 Statistical fluctuation

Due to the small layer dimensions, the statistical fluctuations of the

electron density and the impurity density might be substantialr65]. For

example, if we assume L 400 R, N1 = I x 1018 cm 3  and the device area

of 100 jim by 100 jim, the total number of electrons will be N = 4 x 104

electrons, which is rather small for a total number of carriers. The

average distance between electrons in this case is 100 .. For the

impurity density, we take L = 2000 R, N2 = 2 x 1017 cm-3, and the same

device area. Then the total number of impurities in the AllaAs is 4 x 10

The average distance between impurities is 170 .
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Of course, this problem can be circumvented by utilizing many stacked

layers. By the , BE technique, for example, it is possible to grow more

than 100 stacked layers[44].

2.6 Switching Characteristics

When considering the application of the NDR mechanism to microwave and

switching devices, one of the most important questions to ask is how fast

ioes the mechanism occur , or, how fast does it respond to the applied

electric field. We first consider the transfer time of the electrons from

the GaAs into the AlGaAs layer. Under collision-free transport conditions,

the transfer is due to the thernionic emission current, which is given

byF28] (see Eq. (2.12))

kTe _2LEl-2 = en , exp (2.35)

*2Trm. \ e/

where n1 is the electron density in the GaAs, and AE is the potential

barrier height. Comparing Eq. (2.35) with

. dn I n 1 (2.36)
1 -. T -,

a1-2

gives the time constant T as
+i-2

ST-2 = Lk"me £1 exp kE) (2.37)

~~Substituting the typical values, A5 = 0.2 eV, kT = 3.1' eV, and LI - .=
e

* , we get r 1 - 2 = 4.8 x "o- 1 3 sec, which is an attractively short time.

Since the time required for heating of the electrons is much larger (~ 5
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10-12 sec) than T 1-2 the switch-on time is limited by the heating of

carriers.

Depending on the impurity density in the AlGaAs layer, the transfer

time from the AlGaAs to the GaAs fter switching off the electric field

will be limited either by diffusion (high density) or by thermionic

emission (low density). For the diffusion limited case, the situation is

similar to charge transfer in charge-coupled devices, where electrons move

by diffusion from one gate to another of lower potential energy. Using

this analogy, we obtain the transfer time,T , from the AIGaAs to the
2-1

laAs. given byI5,66]

4L2

T2 1  -r2D (2.38)
iT D

w where D is the diffusion constant in the AlGaAs. This formula is valid

only as long as the diffusion concept applies, and mean free path for

phonon scattering,X ph , is smaller than LI. If Xph is longer than L1 , the

probability of an electron being captured in the well is reduced by L1/Xph.

Taen we have

* - 4L2 X

T 2Dph (2.39)
2- r2 DL1

For typical values such as LI 400 R, L2  2000 X, p = 1000 R, and D
2 ph

-2kTL/e = 10 cm2/sec, we obtain T2-1 = 4 x10-11 sec. This give an

estimate of the switch-off time for the diffusion limited case.
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If the transport is collision-free, the time T 2 -1 can be estimated in a

similar way as for T We then obtain
1-2

eN L m%
T = 2m° exp;- (2.40)r2-1 * 2 -- ex kTL .

L

where A is the Richardson constant (120 A/cm2K2), r is the effective mass

in the AlGaAs, m is the free electron mass, is the potential created by
0

the donors in the AlGaAs ( 2 in Fig. 2.25), and Nc is .the effective density

of states in the Al'aAs. If we assume e /kTL = 2, we obtain t 2 1  2.2 x

i012 sec. Therefore the switch-off time is also deternined by the cooling

time of electrons in the GaAs.

Of course, these numbers only give rough estimates of the transfer

time. A more rigorous calculation can be done by a transient Monte Carlo

methodF67] including the real space transfer mechanism. It is also

interesting to compare the real space transfer time and the transfer to the

L valleys, and observe the relative population as a function of time,

especially for a large potential barrier height (AE ~ 0.3 eV).

An example of an actual device configuration for a switching device is

* shown in Fig. 2.30[68]. The GaAs and the AlGaAs layers are contacted .

separately, so that voltages can be applied independently to the two

materials. Such structures can be realized using the MBE technique. There

wdill be a negligible current in the AlGaAs until an appreciable fraction of

electrons are emitted from the GaAs. Fig. 2.31 illustrates this switching

effect calculated by the electron temperature model. The electric field to

the AlGaAs is kept constant at 12 kV/cm. The GaAs and the Al'aAs currents

can be switched on and off by the electric field applied to the 'aAs layer.
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The dotted curve is obtained in the case of no thermal conduction.

Fig. 2.32 illustrates another aspect of the switching characteristics.

-ere the same electric field is applied to both the aAs and the Ai~aAs

layers. The figure shows how the current in the AlGaAs increases as the

field increases with the AlGaAs mobility as a parameter.

The possible problems which might be encountered in the application of

the real space transfer mechanism to switching devices include the

remaining electrons in the GaAs, and the existence of traps at the

interfaces and in the AlGaAs layer. Electrons remaining in the 3aAs layer

above threshold fld cause a large power consumption. Traps cause the

loss of carriers and/or slower switching speed.

2.7 Summary

5In this chapter we have described the mechanism of real space electron

transfer -hich can occur in GaAs-AlGaAs heterostructures. A negative

differential resistance results from the transfer of electrons from a

1 high-mobility GaAs region to an adjacent low-mobility AlGaAs region under

the influence of a high electric field. The mechanism is analogous in many

respects to the Gunn effect, except that the device characteristics can be

controlled primarily through doping densities, layer thicknesses, and the

Al mole fraction in the AlGaAs. We have analyzed the mechanism using two

different methods, the electron temperature model and the Monte Carlo

simulation. Both methods clearly illustrate the degree of control of the

device characteristics. Some comparisons have also been made between the

two models. The electron temperature model has been sho-Tn to give a larger

power flow to adjacent layers than the Monte Carlo simulation.
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Tgo dimensional effects might be important in actual devices, althougih

they have been neglected in the two methods. More work needs to be done on

this subject. Other effects, such as band bending and quantum-mechanic2al

transmission have been discussed. These effects might also influence the

actual device characteriszics. Especially, band bending effects should be

included i n the Monte Carlo simulations. Switching characteristics

including the switching speed have been examined. The switching speed is

estimated to be on the order of 1 x 10-  sec, which is an attractively

short time for device applications.

There is also a possibility of enhancing the transfer-out from the

"aAs, such as simultaneous application of an electric field and a magnetic

field parallel to the interface to divert the electron trajectory. Monte

Carlo simulations including a magnetic field effect should be easy. The

possibility of charge storage (resembling charge-coupled devices) utilizing

band bending effects should also be pursued. Finally, we note that a

similar mechanism is important in other semiconductor devices. For

C example, in silicon MOS devices hot electrons move to the Si-SiO 2

interface, causing some unwelcome effects[70,71 1. In the same way,

electrons are emitted into substrate in FETs causing higher output

* conduc tance[72].

Regarding experimental work on the real space transfer mechanism,

'Keever et al .F69] have recently carried out measurements of the

current-voltage characteristics of 'aAs-A13aAs heterojunctions. They have

observed current saturation and negative differential resistance in

qualitative agreement -with the Monte Carlo simulation liscussed here.

Their results tend to support the general concept of real space transfer
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described in this chapter. In any aase, there is no question that hot

electron effects in semiconductor heterostructures will attract more

interest in the future.

r l .
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3. BAND STRUCTURE DEPENDENT TRANSPORT
AND IMPACT IONIZATION IN 3aAs

3.1 Introductory Remarks

A large number of semiconductor devices depend on high-energetic (hot)

electrons for their operation. Impact ionization is an essential mechanism

in the operation of many semiconductor devices, such as photodetectors and

LMPATT diodes. At present, however, the theoretical understanding of this

effect is provided by a number of theories[74-79] which contain several

adjustable parameters whose physical significance is not well 'Inown.

Currently the most widely used theory of impact ionization has been given

by 3araff[76]. The adjustable parameters of his theory are the threshold

"* energy for ionization, the optical phonon energy, the ionization mean free

path, and the mean free path for optical phonon scattering. Although some

attempts have previously been made to deter-ine these parameters

theoreticallyFSO,1 1 a "complete" theory of impact ionization, which is

capable of calculating these quantities (and therefore the ionization rate)

from first principles, has not been developed. The main reason is that any

theory applicable at high electri3 field (causing ionization) must abandon

the effective mass approximation or simple extensions using

non-parabolicity constant, and instead include a realistic band structure.

The surprising success of Baraff's theory in explaining the electric field

dependence of the ionization rate is due to ths adjustable parameters,

which can smear out the band structure effects. he inclusi:n of the band0
structure in analtical solutions of the Boltzmann equation, however,

impractical. It is also iifficult to include raa!listic scattering

* mechanisms. For example, the inclusion of both snall angle scattering and

randomizing scattering mechanisms in the sme analytical framework is

*'
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difficult, not to mention several different mechanisms. As a consequence

all the previous theories are only applicable to specific materials. For

instance, Dumke's theoryF78] is only applicable to !nSb or InAs, whereas

Baraff s[76 ] or Chwang's[79] treatment is only valid for nonpolar

materials, such as Si or Ge.

As we have seen in the analysis of real space transfer, the Monte

Carlo method provides an alternative to the solution of the Boltzmann

equation. The method can take into account a large variety of scattering

mechanisms, and therefore, is applicable to both polar and nonpolar

semiconductors. It can calculate the quantities of interest such as drift

velocity, mean free path, average electron energy without any a priori

assumptions on the form of the distribution function. Some attempts have

previously been made to calculate the impact ionization rate by the Monte

Carlo method[33,841, but without including a realistic band structure. In

this chapter we describe a Monte Carlo method that inc ludes a realistic

band structure as calculated by the empirical pseudopotential methodJi5].

This method should provide a too! for understanding electronic transport in

very high fields, which has not been possible with conventional methods

utilizing effective mass theory. Of course, we do not yet have all the

necessary information to perform a rigcrous calculation at such high

fiels. For example, not much is known about the selection rules for

scatterings at the non-symmetric points, the changes of the ionization
4

matrix, and the scattering rate at high energies. Because of this lack of

information, we must still use a simpler model than is possible with this

;echnique. These simplications should not be considered as restrictions of

the method itself. As more information becomes available in the future,

the method can be improved with ease to accomodate new infornation. 1n

4
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spite of the simplications, the results we obtain provide insight into how

the various parameters in previous theories are connected and into how the

band structure influences the impact ionization rate. In particular, the

. method is applied to study the electron initiated ionization in GaAs.

Finally the results also give us information about the accuracy of the

pseudopotential band structure at high energies.

3.2 Summary of Experimental Results

Before we discuss the theory of impact ionization, it is instructive

to summarize the available experimental data. Various experimental

techniques to measure the ionization rate are described in detail in a

review paper by Stillman and Wolfe[]. Their article also contains some of

the exoerimental data on the electron initiated ionization rate in GaAs.

Fig. 3.1 summarizes more recent dataF36-901. The experimental data usually

shows a 1/E or 1/E dependence of the ionization rate. As can be seen from

the figure, the data of- different workers scatter almost by an order of

r magnitude.

Of special interest are the results of Pearsall et a!.-59], who

measured the electron ionization rate with the electric field applied in

three different crystallographic directions. Their data are replotted in

Fig. 3.2. They have measured th& highest ionization rate in the <110>

direction and the lowest in the <111> direction. They have attributed this
difference to ballistic electrons and electron tunneling to upper

conduction band[39,91 ]. Although these data raise an interesting question

as to how the band structure actually influences the ionization rate, their

notion of ballistic electrons see-as to be incorrect, as is shown in this

work. More systematic and reliable data are necessary to make a comparison
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with theory.

3.3 Previous Theories of Impact Ionization

Wolff[74] was the first to calculate the ionization rate in

semiconductors. 'He applied the gas discharge theory to solve the Boltzmann

equation taking into account the effect of electron-phonon and

pair-producing collisions on the distribution functions. The velocity

distribution function was approximated as

n (v,e) = n (v) + nl(v) cose , (3.1)

where v is the electron velocity, and e is the angle between the velocity

and the electric field. This is an energy diffusion theory, in which the

electrons undergo many collisions when moving to higher energies. The

Boltzmann equation was then solved to calculate the ionization rate with

the result

2
a( F) exp(-A/F2) , (3.2)

where F is the electric field.

ShockleyE75], on the other hand, argued that ionization is mainly due

to "lucky" electrons which completely escape phonon scatterings and reach

the threshold energy. In this streaming approximation the distribution is

a spike in the direction of the electric field. He considered the relative

probability of phonon scattering and pair production, and obtaine an

ionization rate whose dependence on F is given by:

Sa( F) exp(-B/F) (3.3)

4"
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Next, Baraff[76,92] solved the time dependent Boltzmann equation and

showed that his result contained Shockley's result as a low field limit, and

Wolff's result as a high field limit. His theory gives the "universal"

curves with phonon mean free path and ionization threshold energy as

parameters, which are adjusted to fit theory to experimental data.

uHowever, it does not provide a way to calculate these quantities, nor does

it include the band structure.

Recently, Chwang et al.[79] took a different and interesting approach

using a finite Markov chain formation. Their method is based on the

calculation of a transition matrix which characterizes the transition

probability between virtual states defined by small discrete evergy

intervials. Interesting as it is, their method is unfortunately limited by

the analytical formulations. It still requires the same assumptions as

U Baraff's theory and does not produce much more information. For example,

an assumption of a constant mean free path for phonon scattering is still

necessary-. Moreover, the Markov formulation is only applicable to nonpolar

i semiconductors.

Nevertheless, Baraff's and Chwang's theories contain some "truth"

about the impact ionization mechanism, as does $hockley's or Wolff's

approach. How they are related, and how they complement each other will be

clear as a result of the Monte Carlo calculation described in this work.

- This Monte Carlo method includes a realistic band structure. As a result,

the orientation dependence of the impact ionization rate can be calculated

for the first time.

I"

o~
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3.4 The Band Structure of GaAs

The band structure of GaAs has been calculated using the empirical

pseudopotential method as described by Cohen and Bergstresser[35]. only

the lowest conduction band has been considered. The effect of higher band

is briefly discussed in the later sections. Advantage is taken of the

48-fold symmetry of the Brillouin zone of the zinc-blend structure[93]. It

is then nece ;sary to examine only that 1/48 th part of the tone indicated

in Fig. 3.3. This region is defined by the conditions:

0 < k < k < k < 1 , (3.4)

and

k + k + k < (3.5)
x y z- 2

'where all the k components are in units of 27/a (a is the lattice constant;

a = 5.64 R for GaAs). Mesh points (k ky k z = 0.0, 0.1, .. ) are sampled

from this region, and the energy and its gradient (velocity) at each

k-point is calculated. A total of 249 points have been sampled, with 156 W

points within ,:he sampling region. The extra 93 points outside the region

are necessary for the interpolation of energy in the proximity of the

surface of the sampling region. Table 3.1 lists the calculated E(k)

relation for these 249 points. Fig. 3.5 illustrates the isoenergy 1-ines in

the cross section of the Brillouin zone shown in Fig. 3.4, with the numbers

representing the electron energy from the bottom of the conduction band "i

point). It can be seen that the r valley is nearly isotropic, whereas the

X valleys are more elliptic. A similar plot of isoenergy lines in the

cross section shown in Fig. 3.6 is illustrated in Fig. 3.7. The overall

electron energy in this cross section is considerably lower than in the

.4., . . . .. ,• .. . .. . , . . . . .. .
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Fig. 3.3. Sampling region for the calculation of the band structure of

GaAs. The region is a 1/48 th part of the Brillouin zone.
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Fig. 3.4. Cross section of the Brillouin zone.
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Fig. 3.5. Isoenergy lines of the lowest conduction band of GaAs in the
cross section shown in Fig. 3.4. The numbers represent the
energies measured from the r minimum.

.i

*



1 -R121 947 THEORETICAL STUDIES OF HIGH FIELD TRANSPORT IN IIl-V 2/2
SENICONDUCTORS(U) ILLINOIS UNIV AT URBANA COORDINATED
SCIENCE LAB H SHICHIJO SEP 89 R-892 N8BBI4-79-C-B424

UNCLAISSIFIED F/G 29M1.2

m~hh~h~hIND



Woo

4

L1

ala

111W

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A



86

LP-2.600

4 Fig. 3.6. Cross section of the Brillouin zone.
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cross section of Fig. 3.4. This band structure is stored in emory, and

used in the Monte Carlo simulation which is described in Section 3.6. --

In the study of ballistic electron transport in three major crystal

directions, i.e., the <100>, <110>, and <111> directions, extra k-points

have been sampled, and the E(k) relation is calculated. The result of the

calculation is shown in Fig. 3.8. It is obvious from the figure that the

use of effective mass and non-parabolicity constant is not valid for

electron energies above approximately 1 eV in some directions. In fact,

the effective mass defined as

1 I 2E(k) (3.6)
, 2  k2m

goes to negative values at higher enervies.

3.5 Ballistic Electron Transport and Phonon Scattering

The termi "ballistic electrons" is used to denote those electrons which

do not suffer phonon scattering. This is equivalent to the "lucky"

electron notion in Shockley's theory. Since the possible contribution of

ballistic electrons to impact ionization has been suggested[91 1, the

behavior of ballistic electrons has been examined using the pseudopotential

band structrure[94. The study has been performed by solving the equations

of motion:

0 -4-

hd e (3.7)
dt

and
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-- VkE() (3.8)
k

where F is the applied electric field, k is the electron wave vector, E is

4.

the electron energy, and v is the group velocity of the electron. 'With the

initial condition k = 0 at t = 0, we obtain

ht = t . (3.9)

The field is as'sumed to be constant. Tqs. (3.3) and (3.9) are solved

simultaneously to express v and E as a function of time t. The results of

the calculations are sho~i in Figs. 3.9 and 3.10 for the three major

crystallographic directions. The electric field has been chosen to be 500

kV/cm, a typical field for impact ionization. Fig. 3.9 shows the electron

velocity, v, as a function of time. The orientation dependence of the

ballistic behavior is obvious from this figure. The highest peak velocity

is reached in the <100> direction (- 1.1 x 108 cm/sec) and the lowest in

the <111> direction (~ 0.8 x 108 cm/se.c). Fig. 3.10 shows the variation of

electron energy with time as measured from the conduction band edge. The

rate of increase is largest in the <100> direction and smallest in the

<111> direction.

In reality, however, ballistic transport must compete with scattering

processes. It will be shown by the Monte Carlo simulation that on the

* average an electron can travel ballistically for only - 3 x 14-14 sec

before it suffers a phonon scattering. In the <111> direction, the

electron can never gain sufficient energy ballistically for impact

ionizationF39]. In the <100> direction, the impact ionization thresholl

can be reached only if electrons tunnel in k-space to the next higher bani

4
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- 0.2 eV above the principal conduction bandF39]. Therefore, scattei-ing

events become crucial for the occurrence of impact ionization in these

directions.

Electrons can be scattered to other regions of the Brillouin zone with

a single scattering event being sufficient to permit the electrons to reach

*i" threshold energy. This mechanism is illustrated in Figs. 3.11 and 3.12 for

an electric field applied in the <111> direction. An electron starts at

the r point and moves along the <111> direction. At point A (k -

I".3,0.3,0.3)), the energy is at the maximum for this direction, but it is
a

still much less than the threshold energy. Subsequently, the electron can

- be scattered (by a phonon or impurity) to some other point in the Brillouin

zone, point B, for example. Following this scattering event, the <111>

component of the electron wave vector continues to increase. However, the

wave vector points in a direction different from the <111> so that the

electron can now reach a higher energy. As shown in Fig. 3.12, the

electron can actually exceed the threshold energy for impact ionization .

2.0 eV).

This is, of course, only one example of an electron trajectory to show

the importance of scattering processes to impact ionization. The actual

calculation of the impact ionization rate must involve averaging of all the

possible electron trajectories until the electron reaches the threshold

energy. This is achieved by the Monte Carlo method which is described in

the next section.

a..
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(a) .

(b) K

LP- 1566

Fig. 3.11. (a) (110) section of the first Brillouin zone.
(b) Wave vector trajectory of electron in this plane under the

influence of electric field in the <111> direction.
Electron is scattered from A to B. Energy change in the
scatteting process has been neglected.
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3.6 Simulation Method

The Monte Carlo simulation keeps track of an electron k-ector in the

Brillouin zone until it reaches the threshold energy for impact ionization.

Tnis is done -with a kowledge of scattering mechanisms, scattering rates,

and band structure in the whole Brillouin zone. The E(K relation -'Or an

arbitrary k-point can be calculated in the following way. First, the

k-point is mapped into the sampling region (Fig. 3.3) by symmetry

operations which consist of taking absolute signs and the permutation of

wave vector components. The energy is then calculated by quadratic

interpolation utilizing the energies and the gradients of the surrounding -3

mesh points. The gradient is interpolated only linearly. Applying the

inverse operations on the calculated energy and gradient gives the -Efk

relation and the gradient at the original k-point.

Next we need to kniow the phonon scattering rate. ideally the

scattering rate should be calculated at each k-point in o-der to take into

account the overlap integral95] (see Eq. (AI.7) in Append. 1). Also, when

the initial or final electron state is not on the symmetry points, the

selection rules[96] become less restrictive and may -ive rise to additional

scattering mechanisms. Moreover, even near the bottom of the valleys, it

is kno-n that the scattering rates are different in the -, L, and X

valleys. In spite of these facts, we have assumed the scattering rate to

be isotropic (only energy-dependent) for simplicity and because of lack of

additional information. We have taken the scattering rate as given for the

central valley. This overestimates the scattering rate when the electron

is in the satellite valleys. The simplification is partly justified by the

fact that the scattering rate of iif Terent valleys anrroach eth .other at
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higzher energies. u- rthermore, since scattering to upper bans is ossiole

in reality (which increases the scattering

the overestimation is at least partly conpensated.

The values of the parameters for the calculation of the scatteri.g

v rate are the same as the ones used in the simulation of the real soac

transfer mechanism, which are aown to give a good fit to experimental ia;a

of the Gunn effect34]. Below 0.33 eV only polar optical scattering occurs

in the central valley. Above 0.33 eV polar optical scattering occurs only

.nen an electron is 4n the central valley !efined arbitrarily as

-0.3 < k, k, k < 0.3 (3.20)

where the components are in units of 27/a. Other-se intrr alley

scattering occurs. It is not appropriate to simply extend the scattering

rate to higher energies because of the comlicated band structure. 3ecause

the intervalley scattering rate is proportional to the density of final

states, and the density of states in the conduction band decreases nearly

quadratically above 1.5 eVF97], we have assumed a quadratically iecreasing

scattering rate above 1.5 eV. The resultant total scattering rate as a

function of electron energy is shown in Fig. 3.13 (solid lin-'. The

maxiqum scattering rate is 4.5 x 1014 sec - 1 at 1.5 eV.

In the <100> direction the threshold state for electron initiated

ionization lies in the second conduction band,39]._ An electron c'an tu-nnel-

throug-h the "oseudo-gao" / 0.2 eV) between the lowest and the second

conduction band to reach threshold. No attempt has been mqle to simulate

this tunneling mechanism. $tnce the tunnelinq time is estimated to be on

the order of 1 x 1013 secV3s,-3], and the intervalley s "atterin- ti e for
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an electron energy of 2.0 eV is much shorter (< 1 x 10- 1  sec) than this

tunneling time, electrons are more likely to be 3cattered before they can

tunnel to the upper band. Therefore, the contribution of these tunneling

-- electrons to impact ionization is expected to be small.

The final state of the scattering process is letermined in the

following way. Since polar optical scattering is dominant only at low

energies in Lhe central valley, the usual formula (see Append. i) with

effective mass and non-Darabolicity terms is used to choose a candidate for

the final k-point. The energy at this k-point is then recalculated usir

the exact band structure to check if it is within an allowed ranae

(typically 30 meV) around the final energy (for example, S+-.w o in the case

of phonon absorption). If it is outside this range, a different final

state is chosen and the process is repeated until a proper state within the

correct energy range is found. Intervalley scattering is Iciown to be

completely randomizing260. For this mechanism, once the final energy is

calculated, those mesh points whose energies are within the allowed range

D 9 are tabulated. One of them is then randomly selected as the final state.

Our treatment of phonon scattering processes represents a compromise

between accuracy and numerical tractability. For a finite number of mesh0
points, the energ-y separation between any two k-points is finite. For

example, for our 156 mesh points this energy separation can be as large as

60 me1. The allowed energy range luring the scattering must be lar-e

enough to bridge this gap in orier to assure the continuity of the energy

band. In the limit of infinitely fine meash points, the llowed range for

final energy can be infinitely small. he number of k-points in this

energy range for a given final energy is proportiona to the? iensity 0f
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states at each region of k space with this final energy. Therefore, the

procedure is basically correct, since the scatteria,- rate for deformation

potential scattering is proportional to the final density of states.

The impact ionizing collision is treated as an additional scatteririg

mechanism. We assume an isotropic threshold energy of 2.0 eV. Anderson

and Crowell[S0] have shown that the threshold energy actually depends on

the k-vector. However, their graphical procedure is almost impossible to

nerform in th ree- dimensional momeentumn space. A more systeMatic approach

may be possibleT99]. if the threshold energy is calcuslated for eacn

k-po in t, it can be easily included in this simulation procedure. Th e

impact ionization probability can be calculated from the matrix -Tement for

the screened Coulomb interactionF84,13O,1DA~ However, here we use a

simpler model demonstrated by KeldyshF77,102] and used by othersr7 91*

*According to Keldysh the probability of impact ionization can be

represented as

EE2
1 1 FEi (3.11)

where E is the electron energy, E i is the threshold energy, 1/ & (B. is the

scattering rate at E = Ei, and P is a dimensionless constant which is -

usually much larger than unity. This formula is valid for semiconductors

-.ith large dielectric constants. We take ? as a parameter. P = 50

has been used by Chwang et alJ. 7 9]. As shown by 3araff :c1, and then by

chwaagr79] the impoact ionization rate does not stron7,ly depend on t"'is

parameter as long is ? is large compared V4ith unity. The energy isonen

of impact ionization probability for P 0 0 is illustrate! in Fij.717
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Once the scattering rate an! the ionization probability are

determined, the rest of the simulation procedure is similar to the one

described for the real space transfer mechanism, except that instead of

determining the drift time by the integral (sq. (2.14)), the scattering

probability (At/T(3)) is calculated at each time interval, At, and compared

- with a random number. This is necessary because of the complicated E(k)

relation. At is taken to be approximately 1/10 th the average drift time.

The simulation starts by releasing an electron with zero energy at the

bottom of the central valley. The energy and the k vector of the electron

are traced. fAhen impact ionization occurs, the energy is reinitialized to

zero to start a new history. This is justified by the fact that the

resultant electron after ionization lies very close to the bottom of the

central valleyFBOl. The impact ionization rate can be obtained by

averaging each distance that an electron travels until impact ionization

occurs over a sufficient number of ionizations. The distance, Ax, traveled

during each drift is calculated either by acci-mulating a differential

distance, vat, or by atilizing the relation

AE = eFAx , (3.12)

S*Where AE is the energy gained during the drift. The velocity v is

calculated from the gradient of E(k) relation.

3.7 Results
0

3.7.1 Contribution of ballistic electrons

By terminating the simulation after the first scattering the elc.on

suffers, the behavior of ballistic electrons can be studiel. Aditionall ,

we can deternine, the extent Wnich these ballistic electrons -cntribute to
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impact ionization. Since there is no electron initiatel threshold state in

the <100> or the <111> directionl 89], we only consider the <110> iir-3ction.

We have also changed the threshold energy to 1 .7 eV, which is the correct

threshold energy in this directionF80]. Typically 100,000 trials have been

done for each electric field.

The result of the calculation shows that an electron travels on the

average approximately 200 R, for an average time of 3 x 10-14 sec before

the first scattering event. These numbers differ slightly for different

orientations. By counting those electrons -which cause impact ionization

instead of scattering, we can estimate the contribution of ballistic

electrons to the impact ionization rate. If the same scattering rate is

used as shorn in Fig. 3.13 (known to give a good fit to the 1-.nn

effect[341), we find no electrons (less than 0.001 ) causing impact

ionization. There may be some uncertainties in the scattering rate,

particularly in the values for the effective masses or the deformation

potential constants. To find the maximu.m possible contibution of ballistic

electrons to impact ionization, a smaller scattering rate has been tried. -i

We have used the values given by Vinson et al._173: S = 0.4 eV:

_ 0.38 eV; DF_ = 1.1 x 109 el/cm; and D,_ 2.3 x 1,0-  el/o..

This gives the scattering rate shown by the broken line in Fig. 3.13. This

rate is approximately half of the previous value. Using this scattering

rate in our calculation we obtain the results shown in Fig. 3.1-1. hi s

figure show-s the probability that an electron causes impact ion4atio

prior to its scattering by a phonon as a function of electric fiel.

can be seen, even at the maximu-m "5<00 kV/cm f-r P = o), only 0._ 2 of th,.

elctrons causing impact ionization are "ballistic". Therefore .! curcncle

that the contribution of ballistic electrons to impact ionization :n
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negligibly small if our present understanding of the scattering rate is

correct. This conclusion negates the considerations by Canasso et a!.F91]

"dno suggested that ballistic electrons give a non-negli-gible contribution

to the total ionization rate.

These "ballistic" electrons were discussed by Shockley who called them

"luc ky" electronsF75]. We have shown that Shockley's theory gives

ionization rate that are too small. It is interesting to note, however,

that the two curves in Fig. 3.14 show the correct i/E dependence as in

Shockley's theory inspite of the more complicated band structure and

scattering rate that we used.

3.7.2 Transport properties and ionization rate

In the calculation of the impact ionization rate a typical simulation

consists of approximately 200,000 to 400,000 scattering events. Depending

on electric field this would give 40 - 300 impact ionization events.

Fig. 3.15 shows a typical trajectory of the k vector in the Brillouin zone

for an electric field of 500 kV/cm in the <100> direction. The solid lines

represent the drift of the electron, and the broken lines represent the

scatterings from one end to the next. Tnen the k vector lies outside of

the Brillouin zone, it is placed back inside the zone to the equivalent

point. This is done by adding the appropriate reciprocal lattice vector to

the original k vector. As seen from the figure the drift tine is very

short because of the high scattering rate at higher energies. The electron

is frequently scattered over practically the entire 3rillouin zone.

0

0%
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Fig. 3.16 shows how the calculated drift velocity converges as -he

number of scattering3 is increased. Following some initial fluctuations,

the velocity seems to "settle down" after approximately 2000 scatterings.

Therefore, 200,000 scatterings should give a good estimate of the drift

velocity. Similar curves are shown in Fig. 3.17 for the ionization rate.

Because of the limited CPU time it has not been possible to take averages

over more than 300 ionizations. However, the convergence is fairly good

after 10 ionizations. From this figure the statistical fluctuation is

estimated to be apporoximatly 20 0. The problem of statistical fluctuation

can be overcome by repeating the simulation only for the high energy

tailF104]. This has not been attempted in this work.

Fig. 3.18 shows the average electron energy as a function of the

electric field. The reason for the steeper increase beyond 1DX kV/cm is
p.-

not 'mown, but may be related to the band structure. Fig. 3.19 shows the

electron mean free path as a function of electric field. In the electric

field range where impact ionization occurs, the mean free path changes from

0 to 30 . This is in good agreement -ith the experimental

iatar9,105] and the conventional Monte Carlo calculationF9i 1_ . e reason

that our calculation agrees in this respect with the conventional method

which does not include a realistic band structure is that the mean free

path is mainly determined by the average electron energy, which is still

small enough (- 0.8 eV) for effective mass and non-parabolicity corrections

to be sufficient.

The calculated electric field dependence of the electron drift

velocity is shown in Fig. 3.20. The broken curve renresents the

exer:mpent_ data by Ruch and Kino_1 O61 at low electric fielI < I- k - ,

I@
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Fig. 3.16. Electron drift velocity in GaAs as a function of the number of
scattering events obtained with a Monte Carlo sirnulaticn..
The velocity is calculated from the slope of the E(k) curve
(4 ) or from Eq. (3.12) (o).
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Fig. 3.17. Impact ionization rate in GaAs as a function of the number
of ionizations obtained with a Monte Carlo simulation.
The calculation is from the slope of the E(k) curve (L)
or from Eq. (3.12) (o).
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Fig. 3.18. Average electron energy in G As as a function of
electric field calculated by a Monte Carlo simulation.
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and by Houston and Evans- 1071 at high fieli -,20 ~100 kV/cm) The

agreement is gool over the entire range of electric fields experimentally

investigated. The result using Eq. (3.11) gives much better fit than the

result using the slopes of the E(k) relation. It is suspected that the

accumulation of numerical errors in the slope calculation is responsible

for the discrepancy. The slight deviations between theory and experiment at

higher fields are believed to be mainly due to the pseudopotential band

structure which gives the satellite valley effective massses larger than

are usually measured. In Fig. 3.20 it can also be seen that the

.alulations dscribe iuantitatively the ?inn effect. This eans that the

method can simulate polar optical scattering as well as intervalley

scattering, and that the transition from polar optical scattering (low

en-rgy region) to intervalley scattering 'high energy region) is

accomplishe d smoothly.

Fig. 3.21 shows the calculated electric field dependence of the inact

ionization rate in GaAs for three different crystal orientations. We have

assumed P = 400. The shaded region indicates the range coverel by the

experimental data Section 3.2). The agreement is fair, consiiering the

uncertainty in the scattering rate at higher energies. The inclusion of
4

ipper bands is expected to increase the calculated ionization rate

slightly, and therefore to improve the fit to the experimental data. Note,

hoever, that the calculation showo within statistical fluctuations ~ 20

no orientation dependece for the ioinzation rate. Tais contradicts the

experimental dava by Pearsall et al .F9](Fig. S.2). Another way to

calculate the orientation ecoendence is by ro tatint the electri! fi-l

direction from one axis to another. The result is shown in Fig. 3.22 for

an elecri fiell of 10 1<1/cm when the field is rotate! from the 41 1> t0
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Fig. 3.22. Calculated impact ionization rate of an electron wiL.h an
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<111> direction. Again we do not see any orientation dependence within the

-. statistical error. A solution including this rotation .f the ectri..

field can be obtained only by the !onte Carlo method.

The effect of changing the value of P has been also examined. The

result is shown in Fig. 3.23 for the case of P = 100, 400, and 1600 the

different definition from Chwang[79] has been used. P = 100 in our case

corresponds to P = 50 in their paper). All the cases give practically the

same impact ionization rate. This confirms the result by Baraff76 and

Chwang that the ionization rate is insensitive to the ionization

probability as long as it is much larger than the probability of phonon

scatterinz.

Due to the nature of the onte Carlo principle, the calculation of the

effective threshold energyrt081 is trivial. The effective thresholi energy

Is lefined as the energy at which Lmpact ionization actually takes nla --

it is usually slightly larger than the threshold energy because of the

finite cross section for pair production. T..e result of this M-.onte Oarlo

simulation is shown in Fig. 3.24. The effective .. hreshole is nearly

independent of the electric field for large values of P, and a slightly

* increasing function of the field for smaller values of in a-reement with

others79,109]. This also agrees -Pth the result' 1 t n the a verage

the ilnact ionization event takes place at 0.6 t 0.2 of i7Xop abov:e the

oop" threshold energy ,, op is the mean free path for opoial orhono' scattering).

For a bet.er unierstaniing of how the el'ectron a ire t"'e hi

energies, -an how inact ionization is az'ua!.- 3cL s ISeI, we s:o ;In

Figs. 3.25 and 3.26 the variation of electron, enrgy after each s atterin

event for electric- fie ls of 53O kV/cm ani DO kI - cD - o-tti:. :n Ts-)e



116

105 1 1 1

GaAs <io>
aP: i00

0 0 P=400
E c P=1600

C)A
00

4-

U 0

C

C-°

0 10

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2
1/E (lO-6cm--')

Fig. 3.23. Calculated impact ionization rate of an electron for several
values of P (see Eq. (3.11)).
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Fig. 3.25. Variation of electron energy after each scattering event for
an electric field of 500 kV/cm obtained with a MIonte Carlo
simulation.
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120

case of 500 kV/cm, the electron energy stays around 0.7 ~ 1.2 e' most of

the time, but the electron occasionally escapes phonon scattering and moves

up to higher energies. In Fig. 3.25 we can see 4 - 5 spikes which reach to

1 1.3 elf. When an electron reaches 2.0 eV, it causes impact ionization.

We can think of these electrons as the "lucky electrons" in Shockleys

theory, and those electrons around the average energy as the diffusing (in

energy) electrons in Wolff-s therory. However, as seen in the figure this

classification is not very distinct. Even those electrons in the spikes

suffer several scatterings before they reach the peak energies. Our

results, therefore, contain Shockley's and Wolff's notions of ionizing

electrons as does 3araff's theory, but under much more general conditions.

Using 3sraff's word!76], the notion of ballistic electrons by Shockley and

diffusing electrons of Wolff are "complementary" in determining the impact

ionization rate. This is due to the fact that the height of spikes (in

Fig. 3.25) depends on the average energy of electrons. It is also

important to note the difference between our ionizing electrons and

Shockley's "lucky" electrons. Shockley's "luckyy" electrons start from zero

energy, escape the phonon scattering completely, and impact ionize. The

ionizing electrons of our result start at the average energy and reach

ionization threshold after a few scattering events. This explains why
4-

Shockley's theory badly underestimates the ionization rate. The actual

cause of impact ionization is exactly what Shockley neglected, i.e., those

electrons which suffer ohonon scattering at intermediate energies ani

continue upwards in energy.

i:
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3.5 Summary

A Monte Carlo simulation of high field transport in GaAs employing a

realistic band structure has been described. The method has been used to

study the impact ionization mechanism in Gais. The band structure of 3aAs

has been calculated using the empirical pseudopotential method. ?artly due

to the lack of information and partly for sLmplicity, we have made

simplifying assumptions on the phonon scattering rates, the ionization

- threshold energy, and the ionization probability. This, however, is not an

inherent limitation of the method. Unlike orevious theories of impact
;n -rncipe no te3

ionization, the method requires, in principle, no adjustable parameters as

.long as the band structure and the scattering mechanism are blown. The

letho h1a3 provided ne, results and increased the unlerstanding of hi-*h

field transport and impact ionization in GaAs. The calculated drift

velocity, the mean free path, and the impact ionization rate are in fair

agreement wiith the exrermental data. The inclusion of the higher

conduction bands is exoected to further improve the fit. We do not expect,

- however, to obtain the anisotropy measured by Pearsall et al.1 59]. In our

opinion this anisotropy is not a consequence of the band structure, but is

rather caused by crystal iefects or other effects not well understood. It

is found that the contribution of ballistic electrons to the impact

ionization rate is negligibly small. Shockley's theory, therefore, badly

,nderestimates the ionization rate. We have confirned that the im-c

ionization rate is rather insensitive to the ionization probability abo'e

the threshold energy as long as the probability is much larger than the

phonon scattering rate. The effective thereshold energy has also been

" calculatel and liscussed brii fly.



122

Based on the results of the sLmulation, a general discussion of impact

ionzation has been given. We find that typically electrons stay around an

average energy and experience a large number of phonon scatterings.

Occasionally electrons escape phonon scattering and move up to higher

energy. Some reach ionization threshold after a few scattering events.

This feature is seen in Fig. 3.25. It can be considered as a combination

of Wolff's and Shockley's notion of ionizing electrons, but the distinction

is rather vague. The reason for the success of Baraff's theory is that his

theory also contains this feature. However, because of his forraulation

using distribution functions, the physical oicture is not as clear as in

our results. Moreover, our method includes realistic scattering mechanisms

and band structure for the material considered.

Unlike previous theories of impact ionization, the present method can

in principle be applied to any semiconductor. The method can be used for

both polar and nonpolar materials. This is obvious from the successful

simulation of the 'unn effect, which contains the transition from colar

optical scattering to intervalley scattering. The calculation of hole

' initiated ionization rates should also be pocsible, although presently our

understanding for hole transport is not as deep as for electron transport.

This imnlies a tremendous importance for understanding the operation of

photodetectors[3j, since their perfornance depends on the ratio of electron

and hole initiated ionization rates. It should be understood that the
method is quite versatile in its application. A transient Monte arlo

method including the band structure may be usei to investigate the

orientation dependence of the avalanche resronse timerl 1,. The incl "sion

of the position dependence shoull enable us to study thee )f the

"dark-soace ' I1• J.

S0
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'There are some improvements ,vhich should be investigated in the

future. First of all, the upper 3oniuction bands, at least the second

c conduction band, should be included in the simulation. This can be done

rather easily if we '.mow (or calculate) the scatterig rate between

* different bands. The inclusion of tunneling is also possible. Next, finer

mesh pints should be used in the calculation of the band structure to

increase the nuzmerical accuracy. Ideally the maximum energy separation

between any two points should be much smaller than the phonon energy.

YM Thinrovement on the scattering rates also seems imortant. T-he scatter n

rates should be assigned at each k point inc a  the overlap i-nt"ra-s

.Which are available from the band structure calculations.

iO

I,

0"

0

0-

i
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4. CO C LJS T N3

Two theoretical aspects of high field transport in IiI-V

semiconductors have been studied. One occurs in real space (real-space

electron transfer), while the other is related to momentum space (band

structure). To understand and exploit high field transport, we have to

examine it in both real and momentum spaces. Just as the band structure

(inhomogeneity in momentum space) makes possible the transfer of electrons,

inhomogeneities in real space (heterostructures) lead to interesting

transort ohenomena. As for our simulation of high field transport

utilizing a realistic band structure, we feel this study is still in a

preliminary stage. Our ultimate goal is to understand what an electron

undergoes at each point in momentum space at high energies, including

details of the scattering mechanisms.

! would like to close this thesis work by quoting a statement by

E. M. ConwellF26] in 1967, "Our present knowldvde of high-field transoort

in particular materials is limited to regions close to the band edges. In

the near future we should be able to penetrate further into the bands,

proceeding hand in hand -,ith the detailed studies of band structure now

becoming available, and perhaps even contributing to these studies. Such

advances should make Possible a more detailed understanding of avalanche

and perhaps ultimately of the problem that first stimulated intere; 11

these studies, dielectric breakiown." A step toward these goals has been

made in this thesis work.

4
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APPENDIX 1

Total Scattering Rates and Angular Deperdences

of Various Scattering Mechanisms

In this appendix formulas for the total scattering rates and the

angular dependences of various scattering mechanisms for charge carriers
[.4.

with wave vector k are summarized. These equations are needed for the

Monte Carlo calculations described in the text.

In general the transition rate from wave vector k to k' is given

by the golden rule:

2
~~ , Hfi 6 (Ef- Ei  (Ai i)

where H is the matrix element of the perturbing potential H between the
fi

initial and final states. The angular dependence of S(k,k') gives direct-

ly the angular dependence of the scattering. The total scattering rate

out of the state k is obtained by summing over all the final state k'

Therefore,

:!iit

1 V dkda S(kk k'sin$ (Al.2)
,) 0(2i) d 0 0

where V is the volume of the crystal, and S is the angle between k and k'.

Wherever possible, the effect of non-parabolic bands and the

admixture of p-type valence band wave functions in the 7 valley will be

included in the formalism. A.Ti. the figures include non-parabolicity, but

not the admixture of p-type wave functions. Non-parabolicity is defined

by the relationship

h 2 k 2

y y(E) = E(l+aE). (Al.3)

2m
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1. Polar Optical Scattering [33]

The transition rate for polar optical scattering is given by

4. (N 6[E(k')-E(k)-hw ] (absorption)

S k k - -0 0 (AI.4)
o' ((No+1)6 [E(k)-E(k)+hI o ] (emission)

where2
27re h (d

B 0(k*,k) = 4 2  -[ k G(k,k') (Al.5)

0 4ore V-' 2  o

0

In these expressions w is the optical phonon frequency and N is the
0 0

thermodynamic average value of the optical phonon number, which is in

equilibrium:

N = 1 (Al.6)
o exp (hw /kBT)-l

•0 B
1 4 . 4G(k,k') 2 E I dr u + ('r)u (r) (Al.7)

-. , , J .i'k' ~ ik

is the overlap integral between the periodic parts of the Bloch functions

.

at k and k' summed over the doubly degenerate final spin states and aver-

aged over the initial spin states. It is given by

" 2
G&k,k') = (ak ak +c kCk' cos 6) (Al.8)

where -

a -1-1-aE (k)ak = L12aEk (Al.9)

C E(k) (Al.i0)
k +2aE (k)

For s-type wave functions we let a - 0 and G(k,'') - 1.

07
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TI-e tctal scattering rate iz- calzulated as

em 'W 0 1 '~(l+2ntE')N0 A1)
-j F 0 (E, E') X) A.

where

(B + hw (absorption)
Ef 0 (Al. 12)

E -hw (emission)
0.

and

F(E,E') =C A.ZnJ )yE' +BJ (Al113)

A 2 2(1+iE) (1-i-nE') +a {y (E) + y(E')}]l (A1.14)

B =-2ocy (E)y (E') [4(l+oaE) (1+aE')

Ct y ty(E) + y(E')] (Al. 15)

C 4 (1+aE) (1-raE') (i+2cE) (l+2tE') (Al.16)

To recover the result for non-parabolic bands without taking account of

the admixture of p-functions we let a 0 in A, B and C, then A=C=4

and B= 0. Quite often an "effective field strength" defined as

E o ew L 1 (Al.17)
41TE h ~%~ o"

0

is used in the total scattering rate. It has the value of E 5.95 /c

for the T' valley of GaAs.

* From Eqs. (Al.5) and (Al.8) we obtain the angular dependence of

the scattering
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P(8)dB k-I- E T T+2E' + ,'l+2aE 1 l+2E' o sin a dS. (Al.18)

[y(E) +y(E') - 2y (E)yE') cos 8]

To realize this probability distribution using uniformly distributed random

numbers, von Neumann's rejection method can be used [33,38]. For

parabolic bands with a = 0, we have

P($)d$ sin8 d$ (Al.19)
[E+E' 2 E-E cos s

In this case using random numbers, r, equally distributed between 0 and 1

gives

r = J P($)dB (Al.20)

0

or

cos [(l+f) - (l+2f)r1 / f (Al.21)

where

2
f = 2 VEE- / (/YE- E)2. (Al.22)

When 8 has been determined, a further random number determines the azi-

6 muthal angle between 0 and 2ir, and then k'is completely specified.

In actual Monte Carlo calculations, however, it is sometimes

more convenient to specify the phonon vector q = '-( (for the case of

phonon absorption) by the vector length q = and the angle e between

and q (Fig. A.1). Making use of

2 k2 k,
q = k + - 2kk' cos $ (Al.23)

and Eq. (Al.21) with

'6
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LP- 1663

Fig. A.l. Vector diagram illustrating momentum balanr e in a scattering

process. An electron scatters from state k to state k with
emission (dashed line) or absorption (solid line) of a phonon.
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f 2r(E)r (Al.24)

[r ' - ( ]2

appropriate for s-type wave functions, it is possible to show that

q = * I y-(E') - Yy(E)j - _ +r ( (Al.25)
V r E) -( E)

Once q has been determined, cos 8 is calculated from

k,2 2+7,

k q + 2qk cose (Al.26)

with the result

2m 2
2m hw [1+c(2E+hw )] +q

cosO - (Al,27)

2q .-/ 2m y(E)

where upper and lower signs correspond to absorption and emission of a

phonon respectively. Using random azimuthal angles relative to k as

before, k' again can be specified.

In Fig. A.2 the energy dependence of the polar optical scat-0
tering rate in the r valley of GaAs at 3000K is shown. Fig. A.3 shows the

angular dependence of the scattering probability for electron energies of

0.1 eV and 0.4 eV.
0

0

0



Total

- - Emission

IGaAs 300'K
I Polar Optical Scattering

Absorption

0 0.2 0.4 0.6
Energy (eV/) *1

* Fig. A.2. Energcy dependence of the polar optical scattering rate for the 7
valley of GaAs (300 K).
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Scattering Angle (radian)
0 0.1.7r 0.27r 0.37r

GaAs 300'1K
Polar Optical Scattering

C :

- -Absorption 0.4eV
~jI~mm-Emission 0.4eV
-Absorption U.LIeV

U, Emission 0.1eV

-A4

020 40
Scattering Angle (degree)

Fig. A.3. Angular distribution of the polar optical scattering probability
for electrons with energies of 0.1 or 0.4 eV.
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2. Non-equivalent Intervallev Scattering [331

We distinguish two types of valleys by suffices i and *j. The

transition rate from -k in valley i to in valley j is

S S..kk' B. i(i ~')

N ij 6[E (k)-E (W)+ A L .h .j

ii . 3 1 1 (A1.28)
(N..+l)5 [E .(k') E B (k) + A -A.i +h i .

where

B. (k,) Z. D:.G.. (k,k')(A2)

and j.,. is the intervalley phonon frequency, 2.is the number of valleys

of type j, D; . is the intervalley deformation potential, p is the density

r nd N. is the intervalley phonon occupation number given by the Bose

distribution:

C:! ep~iN 1k)- (Al.30)
ij B

The energy is measured from the minimum of the valley which is denoted by

* .and 2. otr valleys i and j respectively. The function G .3 (k,k') is

griven by an equation analogous to Eq. (Al.8) but here we ignore the ad-

mixture of p-functions and let G(k,k) 1l. The total scattering rate is

~ren

2 3
Z.DT.(M.)p. (alscrption)

1i _ Y~3' (E')(1+2zt.E, )X 13 (Al.31)

*j "2 -h 2(. .)' 3j (. .+1) (emission)
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where

E. -A +A + hw.. (absorption)E' = z 3 l 13(AI. 32)

E A+ hw.. (emission)
E. 3 +A i  1

All the intervalley scattering processes including equivalent

intervalley scattering (explained in the next section) are completely

randomizing, i.e. there is no dependence on the scattering direction.

Therefore using random numbers, r, we have

r = sin~d5 (A.l.33)

J2
0

or

cos = 1-2r . (Al.34)

Fig. A.4 shows the energy dependence of the intervalley scat-

0
tering rates from the r valley to the L and X valleys of GaAs at 300 K.

3. Equivalent Intervalley Scattering [33]

* * The transition rate is given by

SS e(k,k) B

N e [E(k')- (k) -hw

X e (Al.35)

(Ne+l) 6 [E(k') - E(k) +hw e

where

i ,h 2'

B -(k') = (Z -1) De (Al.36)

and w is the intervalley phonon frequency, D is the deformation potential,

e e



.~*1145

2 GaAs 300'K
Intervalley Scattering

1()14-- -00

-4 -

T(ta

1o13- Totaln
- - F---X Emsio

/...........F*L Emission
F -X Absorption

'I~ -- -F -L Absorption

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Energy (eV)

*Fig. A.4. Energy dependence of the intervalley scattering rate in the,"
valley of GaAs (300 K). The L and X valleys are 0.33 and 0-522

eV away from the r band edge respectively.
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and Z is the number of equivalent valleys. N is the thermal equilibrium
e e

number of phonons per mode given by

1
N (Al.37)e exp(hw e/kBT)-i

The total scattering rate is calculated as

3 3/2 2 .
1(m)/ D 2 N e

! (Ze-l) e 1/2e(A3)
e 2 e y (E') (l+2aE') )(AI.38)e Y"2 TrP h 2(hwe (Ne+l) i.

ee e

where

E(k) + bh (absorption)
E = e (Al.39)

E(k) - hw e (emission)
e

In Fig. A.5 the energy dependence of the equivalent and non-

equivalent (L valley to r valley) scattering rates in the L valley of GaAs

at 300°K is shown.

4. Acoustic Phonon Scattering [331

We assume that the energy of the acoustic phonon is negligible

compared with kBT, and neglect the change in the electron energy during the

scattering. Including both absorption and emission, we have -

Sk') B- B(k,k') N 6[E(k')-E(k) (Al.40)

where

hE 2

B = 2 aG(kk')
a 2psV
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1014  I

GaAs L Valley

iciz 
-

-L -~ L Emission

L 7Total
.L-7 Emission

.................. ........ L- 7- Absorption

* * 02Energy (eV) 0.4- 0.6

Fig. A.5. Energy dependence of the equivalent (L to L) and non-equivalent
(L to F) inter-valley scattering rate in the L valley of GaAs
(300 K).
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and

N 1 (equipartition). (Al.42)
xa hsI-k-j '_i hsjk-k'I

G(kk') is given by Eq. (Al.8). In these expressions p is the density,

s is the velocity of sound, and Ea is the deformation potential.

The total scattering rate is given by

32
(2m) / T E

1-a

ta 2l ps 4  y (E) (1+2aE)F a(E) (Al.43)

where

2 1 2(l+E) + ;7(cE)
F (E) = (Al.44)
a (l+2aE)2

To recover the result for a non-parabolic band alone we set a = 0 in F (E).
a

The angular dependence is obtained from Eqs. (Al.18), (Al.38),

(Al.39) and (Al.40) with the result

2e(()dB [(l+aE) + Ecos 1 sinBda. (Al.45)

With random numbers, r, the angle a can be determined by

31 1/3
Cos [(l+2aE) (l-r)+r]I - (1+aE) (Al.46)aE

When a 0, the scattering is completely randomizing.

In Figs. A.6 and A.7 the energy dependence of the scattering rate

and the angular dependence are shown for the r valley of GaAs at 300°K. As

seen from Fig. A.6 the acoustic phonon scattering rate is negligible compared

with polar optical scattering rate and intervalley scattering rate in polar
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1012 -
- GaAs 300'K1
- Acoustic Phonon Scattering

Yi

U1 t

0 0.2 0.4 0.6* Energy (eV)

Fig-. A.6. Energy dependence of the acoustic phonon scattering rate in the
valley of GaAs (300 K).
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o0.4 eV 01e

0%r

0L

*0 50 100 150
Scattering Angle (degree)LP17

Fig. A.7. Angular distribution of scattering by acoustic phonons forr electrons with energies of 0.1 and 0.4 eV.
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materials.

5. Intravalley Non-polar Optical Scattering [33]

In non-polar materials the hamiltonian matrix element of non-polar

optical scattering vanishes for s-like band minima. This is also true for

the Ill-V semiconductors with their s-like conduction bands. Consequently,

i! this process needs only be considered at high energies. At these energies

it is probable that intervalley scattering dominates in most of the III-V

semiconductors. Therefore, non-polar optical scattering is commonly ne-

glected.

The formula for non-polar optical scattering is very similar to

the one for intervalley scattering. The total scattering rate is given by

B ir D2 m*3/2 9

D 0 (m 1/2
2-- h2 p ~ Y (E')(l+2CaE') X (Al.47)0 /-7T (hWo  (N o+1)

0 0

where

SE +ho (absorption)

E =0 (Al.48)

E - h (emission)
o

and

1

= exp(h o/k T) -1 (Al.49)
o B

D is the optical deformation potential.
0

6. Piezoelectric Scattering [27]

In cubic crystals lacking inversion sN-rnetry, the piezoelectric

stress tensor is nonvanishing and electrons are scattered by the piezo-

electric fields. However, piezoelectric scattering is important only at
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low temperatures in high-purity materials. Taking into account screening,

the transition rate can be written as

2
,eP~ k T Gkk)

S(,k') - B 2 6 (E-E (Al.50)

2

where Pz is the piezoelectric constant, C. = ps is the longitudinal elas-

tic constant, and L is the Debye length given by
D

kBT

e n 
(Al.51)

e n

To calculate the total scattering rate, we let G(k,k') =1 and integrate

over the final state k' Including both phonon absorption and emission,

we get

e 2 kT2
1 _ m 2 B 1 + 2aE LD=e i * + 2 in + y (E) (Al.52)T pz 4rh 2  F_ _oj CZ m*y E h 2 -

~2m y (E

From Eq. (Al.50) the angular dependence is given by

'IP(8)dB sina2 (AI. 53)

[y(E) + ,2- - y(E)cos8l
LD

*Using random numbers, r, we can realize this distribution as

4m 2 8m LD  r

cos$ - 1+ * 2  { - + DY(E (AI.54)

4m Ln y(w) 1h
2 

to dno 
wc=i

LD

If one wishes to determine the phonon wave vector q ; '-k first,
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it is given by

8m -y (E) -1
q = L + * (Al.55)

U and cosO is calculated as in Eq. (Al.27).

7. Ionized Impurity Scattering [35.1

The transition rate is given by

K

i ~~ ~ ~ 1 S(,', 238e22 I  G(k,k')_

S(kk') 2 62 2 (E-E' ) (Al.56)"'0 t7 ?k 2
47r ) tV ( k- + 'I - )

L;.

where N is the impurity concentration and ,\= !/L is the inverse screening
I D

distance. G(k,k') is given by Eq. (Al.8). The total scattering rate is

U gcalculated as

2 2
.1 _ 21r (Ze ) N~ 3 2 +2

• < 2 Ze2 ) N
I 1 + 2 otE

i m ( 4 , r = ) 2 * 3 / 2  ( i + E 3 / 2

[1 + 2ck 2(/2k) 2 22 (')k) 2  4
x 9 + ck  [1+ 

2ck (-k' n 2
4(,/ 2k) 2[ l+(,/2k) J + ('2k)

4, (Al.57)

where ck is given by Eq. (Al.IO). In most cases of interest

2 2
(2k/X) >> ck . Therefore, we get

__ _ _e 1 i+2 aE

2- 2? E3/2 3/2im 32 (Z(e1+/2k) 2 2 + X/2 2
] (i + aE)

(Al.58)

For the angular dependence of scattering, we let G(k,k) 1.

Then, from Eq. (Al.56), we have
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p )d ~ sin d3
P (0id3- 2 2n 2 (Al. 59)

(4k 2sin2 
- + 2

By using random numbers, r, we get

cos 1 2(l-r) (Al.60)
1 + r (4k /

2 )

In terms of q = k'- k, this can be rewritten as

2 k \. - r

i + r (4k/A)(AI.61)

and cosO is given by

cosO = - q/2k. (Al.62)

Fig. A8 shows the energy dependence of the ionized impurity
= 017 -3

scattering rate foi uncompensated GaAs doped with ND 1 x 10 cm and
18 -3 018 - 3

for compensated GaAs doped with ND = 1.1 x 1018 cm 3 and N A  i1 10x cm

17 -3
which gives an electron density of 1 x 10 cm In uncompensated material

the scattering rate depends very little on the impurity doping density due

to screening. Fig. A.9 shows the angular dependence of ionized impurity

scattering for electron energies of 0.1 eV and 0.3 eV and two different --

16 -3 17 -3
electron densities, 1 x 10 cm and 1 x 10 cm . As can be seen from

this figure ionized impurity scattering gives small scattering angles.

8. Alloy Scattering [73]

Here we adopt the model developed by Harrison and Hauser. They

assume the crystal to 'iave a uniform background potential with square well-

of depth AE and extent r < r at random sites associated with one of the

alloying consistuents. They arbitarily take r° to be the nearest-neighbor
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Fig. A.8. Energy dependence of ionized i p u 7i t. s ca t te ri zini uncompensated
and compensated GaAs (300 K).
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separation, or l'3a. LE is taken to be the electron affinity difference

r between two end binaries. Assuming the perfectly random case gives, for

the transition rate,

S (,")= 2 6 3 V x(l-x) (AE)2 S(E-E' ) (Al.63)
= - i 6NV

Mi a

-. where N is the density of alloying sites, and x is the mole fraction of
L a

- the binary AC in the ternary alloy AxB1 -xC.

Integrating over the final states gives the total scattering

rate

. 9 *3/2 1/2
.1 _ 3X2. x (l-x) (AE) (i) (i++ (E)

a al 8h4 N
a (Al. 64)

As seen from Eq. (Al.63) alloy scattering is completely randomizing in the

a first order. Therefore, cosS is determined by Eq. (Al.34).

Fig. A.10 shows the energy dependence of alloy scattering rate

for A10. 2 Ga0. 8 As (x 0.2) at 300 K. (m 0.0796 m, AE 0.55 eV and
122 -3

N = 2.22 x 10 cm have been used for the calculations.)

a

.
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APPENDIX 2

Material Parameters used in the calculations [34]

, "i. GaAs

Bulk material parameters

Lattice- constant 5.642

Density 5.36 g/cm 
3

Electron affinity 4.07 eV

Piezoelectric constant 0.16 C/m2

LO phonon energy 0.03536 eV

5
Longitudinal sound velocity 5.24 x 10 cm/sec

Optical dielectric constant 10.92

Static dielectric constant 12.90

Valley-dependent material parameters

r(000) L(ll1) X(100)

Effective mass (m /M ) 0.063 0.222 0.58
0

Nonparabolicity (eV- I) 0.610 0.461 0.204

Energy band gap relative 1.439 1.769 1.961
to valence band (eV) (0) (0.33) (0.522)

Acoustic deformation

potential (eV) 7.0 9.2 9.7

Optical deformation 8
potential (eV/cm) 0 3 x 10 0

Optical phonon energy (eV) - 0.0343

Number of equivalent
valleys 1 4 3
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r(OOO) L(111) X(l00)

Intervalley deformation
potential (eV/cm)

r 0 1 x 109  1 x 10 9

L 1 x 10 9  1 x 10 9  5 x 10 8

X 1 x 109  5 x 108  7 x 10 8

Intervalley phonon
energy (eV)

r ,0 0.0278 0.0299

L 0.0278 0.0290 0.0293

X 0.0299 0.0293 0.0299

2. AlxalxAs

Effective mass in the r valley m /m = 0.063 + 0.083x
r

Energy bandgap (eV) EF = 1.439 + 1.247x
g

Optical dielectric constant e = 10.92 - 2.42x

Static dielectric constant = 2.o  2O

LO phonon energy (eV) hw = 0.03535 + 0.01464x
0

4

4:

qI
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APPENDIX 3

I Wave Vector Relations

In this appendix the vector algebra necessary to determine k'

is presented. k' can be determined either directly by specifying the polar

coordinates (k', , a) relative to k, or by specifying q = - . We

write the vector k as (refer to Fig. A.11)

ky ( ksinOlcsl)
= I = ksinO sin(

S' \~ kcosO1

1. k' specified by the polar coordinates (k', , ) relative to k

The length of k' is determined by energy conservation. We

consider an operation which aligns the vector k with the z-axis. This

operation can be written as

U =Y-0 Z-1 (A3.2)

where Y10 represents the ro'tation around the y-axis with an angle 0 and

Z represents the rotation around the z-axis with an angle 6. In matrix

representations these rotations can be written as

,"cos0 0 sinO\

Y0  0 1 0 (A3.3)
. -sin 0 cosO

/cos -sins 0

Z= sins cos 0 (A3.4)

"0 0 1

Now suppose the angle 3 between k and k' and the azimuthal angle, a,

are given as in the Monte Carlo calculations. Then k' is given b%

lk Z k ' k'' (A3.5)
1 1
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/k

li Fig. A.11. Polar coordinates for electron wave vectors k and k. is
* the angle between the two vectors.
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k' sin~cosa
where -i whrek'' k' sin~sina) (A3.6)

k' cosa /

Performing the matrix multiplications, we obtain

.0 k' = k' (cosO1cospisinacosa - sin$1sinsina + sin0 1cos 1 cosa)

k ' = (cosO1 sin,,sin~cosa + cos Isin~sina + sinO1sin icos)Y

k k' (-sinO sin~cosa + cosO cos3). (A3.7)
z 1 1

4. -+

2-. k' specified by q = k' - k

Given the length of q and the polar angles, 0 and 6, relative

to k, q can be obtained by operating

- cos0 icost I  -sin l sin0 icos$1 '\

z y 1O = cos0 1 sin$1  coscO 1 0 sin ll (A3.8)

-inO 1 Cos 1

-- . to

qx/ qsin~cos$ ',

-q q , qsinOsin (A3.9)

qzI qcos .

Therefore, using k'-= k + q, we have

k = qx'coslcos~l - q y'sinl + (qz'+k)sinO]cos 1. (A3.10)

ky' x 1 1'cosOlsinl + qy'cosl + (qz'+k) sin0 sinl

k = _q 'sin 0
1 + (qz'+k)coso1 .

z - oz
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