“ AD-A123° 948  REALIZING A LARGE MEMORY SPACE ON A MICROPROCESSOR
SYSTEM(U) ILLINOIS UNIV AT URBANA COORDINATED SCIENCE
LAB E F PFLUG JUL 80, R-887 NOOO14-79-C-0428

UNCLASSIFIED

83

prIc




fhis b3

———— E m I‘
b

o =°

= “I.B

=

IL2s flis pie

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A




oOv6¢caT VI




L

SECURITY CLABSIFICATION OF THil PAGR (When Date Bntered)

t : REPORT DOCUMENTATION PAGE oy EAD INETRUCTIONS
N ﬂf1!'!l¥1ﬂﬂ'!l T. GOVY ACCESSION NOJ 3. TEN
Ab .23 24/&
4. TITLE (and Subiitle) 5. TYPE OF REPORT & PERIOO COVERED
. REALIZING A LARGE MEMORY SPACE ON A MICROPROCESSOR| Technical Report
6. PERRFOAMING ORG, ABPORT NUMBER
R-887; UILU-ENG 80 2219
¥ AUTHOR(e) T, CONTRAZT ON ORANY NUMBERT) |
NO0014-79-C=-0425

Elmer Frederick Pflug, IIIX

R ERFORWING OROANTIATION NAWE AND ACOREN T&4F?1ﬂ§"“ﬁﬁi‘f‘ﬁ3}!?7?75?"
Coordinated Science Laboratory ARER ol UNIY oERs
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

1. CONTROLLING OFPICE NAME AND AODRESS 12. REPOMT DATE

Joint Services Electronics Program July, 1980
T3, NUMBER OF PAGES

66
T —
. MONI IN N NAM AODRESS(I{ diltarent frem Contrelling Ollige) 18, SECURITY CLASS (of this repert)

UNCLASSIFIED

[Tha ORCLASSIFICATION/ DOWNGRADING |

SCHEDULE

e T — v S Sy P
16. DISTRISUTION STATEMENT (of thia Report)

Approved for public release; distribution unlimited

A ———

17. DISTRIBUTION STATEMENT (of the adatract entered in Block 20, i different (rom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORODS (Continue on reverse side il necessary and identify by dlock number)

Microprocessor System
Memory Addressing
- Virtual Memory

20. ABSTRACT (Continue on reverse side if necessary and identily by bdlock number)

The memory space of current microprocessors is limited by the number of
address bits inherent in the architecture. Several applications of micro-
processors require large addressing space, for example, in multiple micro-
processor systems with a single shared memory.

This research is focussed on obtaining cost-effective ways to achieve a
large addressing space. Several different ways are suggested for this

DD t j::”?a ]473 EDITION OF 1 NOV 65 1S OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

- - L N2 % . . NPT . ,




SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. Abstract (continued)

purpose. Applicability of these results to three real microprocessors
is discussed. The microprocessors discussed are Intel 8080 Zilog Z80
and Motorola 6800. It is concluded that Intel 8080 and Z80 can address
a large memory space with very little additional hardware, while
Motorola 6800 requires much more hardware.

! A large memory is usually implemented as two-level hierarchy for reasons
of cost-effectiveness. This research also focusses on the ways to

E organize a two-level virtual memory system for microprocessors. It is
concluded that current microprocessors require a large amount of

external hardware to support a virtual memory system. Even with this

additional hardware, the virtual memory system is not as general as in

large computer systems. The restrictions imposed on the system to

correctly support a virtual memory system on a microprocessor are also
discussed.

AT L SR - .7 T

2ceesaion Tor
NrIs Gl
PTIC 1.3
Unanne:::~:ad I
Justificotien .

—— o eama o
e s m————— .

P

J
_ggggrlbuslon/
Avatladility Cogos

“lAvctl ané/or
Dist | Spectal

SECURITY CLASSIFICATION OF THIS PAGE(When Dete Entered)

- - S — © e e——————




TRy i i L

UILU-ENG 80-2219

REALIZING A LARGE MEMORY SPACE
ON A MICROPROCESSOR SYSTEM

BY

Elmer Frederick Pflug, III

This work was supported in part by the Joint Services Electronics
Program (U.S. Army, U.S. Navy and U.S. Air Force) under Contract
N00014~79-C-0424.

Reproduction in whole or in part is permitted for any purpose

of the United States Government.

Approved for public release. Distributed unlimited.

A Mt &




REALIZING A LARGE MEMORY SPACE

ON A MICROPROCESSOR SYSTEM
By

Elmer Frederick Pflug, III

\\\\\ Abstract
N -

-//Ihe memory space of current microprocessors is limited by the

number of address bits inherent in the architecture. Several applications

of microprocessors require large addressing space, for example, in
multiple microprocessor systems with a single shared memory.

This research is focué}éd on obtaining cost~effective ways to
achieve a large addressing spac; Several different ways are suggested
for this purpose. Applicability of these results to three real micro-
processors is discussed. The microprocessors discussed are Intel 8080
Zilog Z80 and Motorola 6800. It is concluded that Intel 8080 and Z80
can address a large memory space with very little additional hardware,
while Motorola 6800 requires much more hardware.

A large memory is usually implemented as two-level hierarchy
for reasons of cost-effectiveness. This research also focusses on the
ways to organize a two-level virtual memory system for microprocessors.
It is concluded that current microprocessors require a large amount of
external hardware to support a virtual memory system. GZEven with this
additional hardware, the virtual memory system is not as general as in
large computer systems. The restrictions imposed on the system to
correctly support a virtual memory system on a microprocessor are also

discussed.

ii




———

4

iil

I would like to express my appreciation to Professor Ed Davidson
and aspecially to Professor Janak Patel for tha gZenerous amount of time
they spent advising me on this paper, I would also like to thank my
wife Julies for her assistance in typing and proof reading this paper. I
would especially like to thank @y parents, Marion and Zlmer F. Pflug Jr.

for their support and encouragement throughout my college career,




iv

JABLE OF CONTENTS

CHAPTER 1 INtroduction ..ecceescececesececacocarrasesonscassnasonasse 1
1.1 Background and Motivation ....ieeieiccietneicreccssrsonnenes
1.2 Overview of Hesearch .i.cc.ccvietercceneccvrsnsnnasscsosssanes 2
CHAPTER 2 Inéreasing the Logical Memory Spac® ....cceececesecsnvonse 3
2.1 Introduction ce.iieieiereeritiencarttrentadterersancstnoasesanss 3
2.2 AcCesS MOdeS ... .iciverrarsnrcersrsrstascansosstanssctnncnsens D
2.3 Implementing Modes on Microprocessor Systems ....... cessases 13
2.4 Segmentation .ie.vesvrornscsescrssnacsrasoactirscsssassasess 18
2.5 Uses of Modes and Segmentation in New Microprocessors ..... . 25
2.6 Multiple Microprocessor SYSLeMS ......cccoeeveecenee cevessses 28
2.7 Concluding ReMArKS ...cccvcvevesascersssccnsasonscasnavsssnns 29
CHAPTER 3 Handling Page Faults on Microprocessor Systems .......... 31
3.7 INtroduction ..i.ieeiiieerieciusaterieatittrecnraononsonan eee N
3.2 Handling Pagé Faults with Current Microprocessors .......... 33
3.3 Interrupts on Microprocessors Compatable with Virtual Memory 38
3.4 Concluding ReMArkS ....cveesevnsessocccnsssrsassscosanasncass U8
CHAPTER 4 Address Mapping on Microprocessor Systels ......c.ceese.. 50
4.1 Introduction ci.vevenerieseescarsencconrsonserscnssasscenssess 50
4.2 The Basic Principles of Address Mapping ....ceeeveceassescss 51
4.3 The Basis for a Single Chip MMU .....cccvvvvsenrncnaceanssase 85

4.4 Features of an MMU ..i..iveieeintoecscannsesscsossasssncscses 50




JABLE OF CONTENTS _ (continued)

4.5 Address Mapping on Multiple Microprocessor Systems ......... 60
4.6 Concluding ReMArKS ..c.ivcvesecssencsecvossoasenssesscosesses BI
CHAPTER § ConcluSions ....ceevecesersnccvccsosonssasosscnsnsasescass B2
5.1 SUMMAT'Y «eevesovarssosnsassosescsasasssssssnnssscassssaasces B2
5.2 SUEEESLIONS .0vvvuennovacsoacacersasssvossatscsssonnsasoscsss D3

R ERENCES . iitiiieiririieieninoasencnsecsosssnsnsocanssassssssnancass B9

T m—a ——




i

ANt g

CHAPTER 1

Introduction

1.1 Background and Motivation

The power of the microprocessor has been increasing greatly since
its conception. Today microprocessors are being used in applications
requiring large address spaces to handle larger user memory requirements
and protection. Multiple microprocessor systems require large shared
memory spaces to be effective.

The current widely used generation of 8§ bit microprocessors is
inrerently limited to an address length of 16 bits and thus an address

space of 216

or 6&UK words. This has become inadequate for the
increasingly complex applications fo» which these microprocessors are
being used. Therefore one cbjective 1is to increase the addressing

capabilities of such microprocessors beyond 64K words.

S s ——— — e -




3

The large memory requirements of some applications force the use of
a two-level memory hisrarchy for cost effectiveness. Normally a paging
scheme is used in implementing this two-level hierarchy because of the
ease with which it is applied to the two-level memory system and because
of the structure that it brings to the design.

At the present time there are no inherent capabilities for
implementing a virtual memory system on current microprocessors. A
second objective is to study the constraints of implementing a virtual
memory system for current microprocessors and to suggest ways to make

new aicroprocessors more compatible with virtual amemory.

1.2 Overview of Research

In chapter 2 of this paper the objective of extending the
addressing capabilities of current microprocessors is explored. Sonme
general statements are made and some real microprocessors are examined.
Chapters 3 and Y4 deal with the compatibility of microprocessors with
virtual memory. Chapter 3 covers the topic of page faults and how they
are handled. Chapter U4 investigates the translation of virtual
addresses to physical addresses. Chapter 5 ends the paper with some

conclusions and comments.

ity




rﬂ___m.LTV ~— " — e i o

CHAPTER 2

Increasing The Logical Memory Space

2.1 Introduction

The address space of any microprocessor is architecturally limited
by the number of bits in that wmicroprocessor's address, The
microprocessor's address is a loose term which carn be interpreted as the
maximum number of address bits that an instruction can specify, the
width of an index register or program counter (PC), or the width of the

external address bus. On many aicroprocessors all of these are equal.

- In this discussion the number of bits in the microprocessor's address
will be considered to be the width of the address bus. A microprocessor

with m lines in its external address bus, ji.e,, an m bit microprocessor

- address, has an address space of 2" words. For example, a
§ * microprocessor with 16 address bits has an address space of 2"6 words or
| 6UK words (1K words is =qual to 1024 words).

T n x RIS S . -, N W TSN P L. -

t . . . - . — . —— e — — = - - —————




T TR oETeaEETTNaey e e e = = ===

The address length of the microprocessor limits the total memory
space that can be directly addressed by that microprocessor, without any
external help, to one address space. However, with additional hardware
the total memory space accessible by that microprocessor can be
increased. For example, multiple copies of the entire address space can
be created ¢to wmake the total accessible memory space much larger than
one address space. This is done by creating or obtaining information
independent of the mwmicroprocessor address which c¢an be used to
differentiate between multiple address spaces. In many cases the cost
of the external hardware necessary to do this will be small compared to
the gain in the total 1logical memory space accessible to the
aicroprocessor.

The design of such hardware is the subject of this chapter. The

techniques for increasing the accessibls memory space can be classified

1. modes: distinguisning between the type of memory access
2. segmentation: explicitly keeping track of multiple address
spaces by the use of an external register.
Section 2.2 and 2.3 investigate access modes, while section 2.4
discusses segmentation.

Manufacturers of microprocessors are acknowledging <ne need for
greater addressing capabilities and through the ever increasing power of
technology are starting to meet these needs. Sections 2.2, 2.3, and 2.4
then are directed toward the wmost commonly used 8 bit generation of
microprocessors which are limited to 15 address bits. Section 2.5

examines how the new generation microprocessors are internally using the




topics of these previous sections to extend their addressing
capabilities. Section 2.6 discusses the need of memory expansion on

multiple microprocessor systems.

2.2 Access Modes

One way of extending the logical memory space of a system is to
create modes from microprocessor status information, providing that this
information can be obtained. A mode is a state of the microprocessor
which 1is independent of the microprocessor address and can be used to
identify the type of memory reference. For example, the jnternal state
of a microprocessor has sufficient information to distinguish between an
instruction word fetch and a data word fetch. If this 4information is
avallable externally, then two modes can be obtained, the instruction
mode and the data mode. Then it is possible to have two mode areas,
eachl an entire address space of length 28 words, where m is the langth
of the microprocessor address. One or the other of these two mode areas
is accessed depending on the mode of the microprocesascr. This is like
adding an extra bit to the microprocessor address, creating a new memory

space of length 2<m¢1)

words. OQther potentially useful modes are the
stack mode, the interrupt service routine mode, and possibly the
input/ouput mode.

The atack mode is defined as an access done directly using the

stack pointer (SP). This 1includes such common instructions as PUSH,

POP, CALL, and RET. The stack node is a potentially useful wmode.




Including a stack mode allows a stack to have up to Zm words. This

relieves the user from having to worry about the stack running into
other data or code. However, there are some drawbacks to the stack
mode. For example, in some cases it is convenient to reference data
within the stack without using a stack instruction such as PUSH or POP,
but rather by doing a normal memory reference using the stack pointer
contents with an offset as an operand address. This type of reference
to the stack cannot be done with a system using a stack mode unless an
instruction such as EXAMINE STACX existed which would reference within
the stack and also cause the microprocessor to indicate a stack
reference,

The interrypt service routjine (ISR) mode is defined as accesses
made while running an ISR. This mode would be entered when an interrupt
is first acknowledged and would continue until the return at the end of
the ISR is executed. The mechanisms for determining these entrance and
exit points will be discussed later. The input/output mode would be
defined as an input or output data reference. Many microprocessors have
this capability (eg. the Intel 8080). The usefulness of this mode is
questionable from the point of view of extending the addressing space,
and depends on the number of input/ocutput devices on the system. The
input/output wmode will not be examined in this discussion since it is
just an application of the concepts to be discussed and since its
usefulness is limited.

Some modes may be nested to create even more modes. For example,

the instruction, data, and stack modes could be nested within the ISR

zode to create new modes: the ISR instruction mode, the ISR data mode,




and the ISR stack mode. It is important to examine these modes to see
if they are useful. It is useful to have an ISR mode area which holds
interrupt service routines to free the user from having to worry about
where they reside in the user area. However it is not wuseful, and
probably detrimental, to have the data for these ISR's reside in the ISR
mode area, since this would necessitate a large amount of communication
with the user; for example with interrupt driven input/output. It is
equally detrimental to have.the data for the ISR's be in an ISR data or
stack area, since these too would be unaccesasible to the user programs.
It is much more useful to have the instructions of the ISR's reside in a
private area and have the data for these routines reside in the user's
data area. This can be done by creating a normal instruction mode, an
ISR instruction mode and a common data mode. The common data mode can
further be broken into the normal data mode and the stack mode.

There are then four modes considered to be wuseful; the normal
instruction mode, the ISR instruction mode, the data mode and the stack
mode. Reasonable combinations of these modes can be used to create a
system with two, three, or four modes. Not all modes can be created
with every microprocessor. Also the amount of external hardware required
for identifying a particular mode varies a great deal with the different
microprocessors. By creating n modes from microprocessor status
information, n mode areas, each an address space of size Zm, may be
differentiated. 1If n=2x, then this 1is 1like adding x oits tc the
microprocessor address, giving a total effective wmemory space of
2(m+x) words. If a memory expansion factor, MEF, is defined as the

total expanded memory space using modes divided by the original address

— e - . - . . e . ]




space, then using n modes yields a memory expansion factor of n. Even
with only two modes this is an appreciable gain of logical memory space.
In some cases however it may not be advantageous to use modes to
differentiate between wmode areas which are entire address spaces.
Consider a system with a single microprocessor which must assemble and
load its own programs. A problem arises in that this microprocessor
cannot write in its logical instruction mode area. If it 1is assumed
that the assembler program is 1in the instruction mode area and the
source program is in the data mode area, then the wmicroprocessor can
assemble the source program and store the object program in the data
mode area. This presents no problems until it is time %o run the object
program. Now the object program should be in the instruction mode area
in order to run. It is however in the data wmode area. One solution
would be to simply have a way to exchange the physical instruction mode
and data mode areas, but this is not a complete solution. During
assembly 3some c¢onstants may be generated and these are data and amust
reside in the data mode area when the object is run. However after the
instruction mode and data mode areas are exchanged, they will reside in
the instruction mode area and therefore cannot be accessed as operands.
In such a case the mode information can be used to create separate
mode areas whose sizes are a subset of one address space. The two mode
areas are now of size Zm-s, where 0<s<2®. There then exists a
remaining space of size 3, which can be shared by all modes. This space
is called the common area. Now the assembler can reside in the »present
instruction mode area, and the source-program in the data mode area. As

the source is assembled, the object program will be stored in the data




mede area, and all constants can be stored in the common area. When the

axchange of instruction mode and data mode is made, the constants are
still accessible in the common area.

The method by which the common area is distinguished from the mode
areas is to use high order address bit(s) to determine whether or not
mode information is to be enabled. For example, assume that the high
order address bit Am_1 is used to determine whether or not toc enable

modes. Then three areas are created, each of size 2m-1

words. One area
is used when Am-1=1 and mode = instruction mode. Another area is used
when Am_1=1 and mode = data mode. These are the mode areas. The
remaining area, the common area, is used when Am-1=0, no matter which

mode is in effect. Figure 2.1 shows the memory map for this particular

example, assuming m=16.

QTFFF QFFFF 1FFFF
area area
common for for
area inst. data
mode mode
00000 08000 18000

Figure 2.1 Logical memory space of two mode system with m=16
(addresses in hexadecimal).

—a e AN s




10

The size of the common and mode areas can be made larger or smaller
by changing the number and the use of the high order address bits. When
the common area aize is increased, the mode area sizes are decreased and
vice versa. Assume that the three high order address bits

Am-1Am-2Am-3 are used to determine mode usage. In this case

many different common area and mode area sizes can be obtained. If the

common area i1s used only when A 2111, then the common area

a-132-2%2-3
will be of size 2m-3 and each of the mode areas will be of 3size

am-2m°3=(7/8)'2m. If however the common area is used when

A 2111, 110 or 101, then the common area will be of size

m-1Am-2Am-3
3'2m'3, and the mode areas will each be of size Zm-(3'2m'3). Using more

or less of the combinations of A A to enable the modes effects

-1 m-ZAm-3
the sizes of the common area and the mode areas.

Figure 2.2 shows a logical implementation of the mode enabling
circuitry for a system with four wmodes, using three bits with the
combinations 000, 001, and 010 to designate the common area. When any
of these three combinations appear, the added address lines Am“Am are
forced to 0 and the common area is referenced. When any other
combination of bits Am-1ﬁm-2Am-3 appear the outputs of the encoder arse
gated to Am+1Am' Figure 2.3 shows where in the logical memory space the
common area and the specific mode areas reside, assuming m=16.

The exchanging of modes can be done by using a small programmable
random access memory to map the outputs of the decoder into the added
address lines Am+1Am' Figure 2.4 a) shows the logic for a two mode

system, and figure 2.4 b) shows the logic for a four mocde system. This

logic is inserted in the dashed box labeled mapping in figure 2.2. The




v

RN

Figure 2.2

1

Azn-l
Q
F 3 |
—C
A
m—3 g I
(mapping)
r====A A
Mode 1 ‘ | | :::::)__1L___
Mode 2 |\ . 5 T -
| Encoder AAL '
k Mode L t t a+l
| |
I |

Mode enabling circuitry for four modes with combinations
000, 001, 010 signifying common area.

OFFFF 1FFFF 2FFFF 3FFFF
mode 1 mode 2 mode 3 mode U
area area area area
06000 16000 25000 36000
common
area
00000
Figure 2.3 Logical memcry space of above mode system

(address in hexadecimal).




12

map is written as an output device and the system is responsible for
changing the map contents. By changing the map, each mode area can
reside in any 1logical mode frame. This flexibility is necessary on a

system which must assemble its own programs and/or load its own memory.

L X 2
5 RAM
-Sa%a lp o encoder out 1 I, A
encoder out 2 a2 Up———
M—lw Q da&a 1 T1 A
data 2 QZ.—-&ﬂ_—

encoder outvut

a) o)

Figure 2.4 Mapping hardware for systems with a) two modes
and b) four modes.

It is possible to derive generalized equaticns for the sizes of the
common area and the modes areas. Using these equations a generalized
memory expansion factor can be obtained. Let n be the number of mdodes
that can be obtained from microprocessor information. Also let b be the
number of high order address bits used, with c combinations of these b
bits signifying a reference to the common area. Then the common area is
of size c#2®P words, and each mode area is of size Zm—(c*zm'b) w“ords.
The total memory space accessible under these constraints is

(#2541 (n#(2®-(c#2®®)))  words. Simplifying this equation and

— e - ——— ———— — .- - . -




13

dividing by Zm gives a memory expansion factor of
=n-{(n-1)%c#27]. (2.1)

In the above example of two modes and one combination of one bit, namely
Am—1=°' used to reference the common area, the values of the variables
are n=2, b=1, and ec=1. Substituting these values into equation 2.1
gives an MEF of 1.5. This can easily be seen to be true in figure 2.1,
Table 2.1 lists some representative values of n, b, and ¢, and shows the
resulting common area size, mode area sizes, and wmemory expansion

factor.

2.3 Implementing Modes on Microprocessor Systems

The concepts discussed in section 2.2 are applicable to a large set
of microprocessors. The specific microprocessors examined however will
be limited to the Intel 3080, the Motorola 6800, and the Zilog 280
microprocessors, all commonly used in industry tocday. They all have a
limited address length of 16 bits, resulting in an address space of 6UK
bytes. In most systems using these microprocessors, the total logical
memory space is equal to the address space. In many applications this
may be inadequate and thus there exits a need to increase the logical
memory space of these microprocessors.

In the preceding section some useful modes were discussed; the
mormal instruction mode, the interrupt service routine (ISR) instruction
mode, the data mode, and the stack mode. To ootain these modes certain

processor information must be present. It must be possible to




TABLE 2.1 Some values of n, b, and ¢ and the corresponding
memory area sizes and MEF (m=16).
mode area |common area
n ¢ sizes sizes MEF
modes (K words) (K words)
1 32 32 1.500
1 u8 16 1.750
3 16 48 1.250
2
1 56 08 1.875
3 40 24 1.625
5 24 40 1.37%
7 08 56 1.125
1 32 32 2.000
1 48 16 2.500
3 16 48 1.500
3
1 56 08 2.750
3 49 24 2.2%0
5 24 40 1.750
7 08 56 1.250
1 32 32 2.500
1 u8 16 3.250
3 18 u8 1.750
4
1 56 08 3.62%
3 uQ 24 2.875
5 24 40 2.128
7 08 56 1.375

1)




15

differentiate between an instruction fetch and a data reference, between
a normal data reference and a stack reference, and between a normal
program instruction fetch and an instruction fetch while running an ISR.
It will not be possible to get all this information out of every
microprocessor. Therefore some wmicroprocessors are not capable of

supporting four modes, but may support less than four modes.

2.3.1 Mecdes in an Intel 8080 System.

One microprocessor capable of supporting all four of the previously
defined modes is the Intel 8080. Each 8080 memory reference takes one
machine cycle which is broken up into three to five states [1]. During
the first state of every machine cycle a processor status word is output
on the data bus. This status word can be latched and used to determine
the proper mode for each reference. Some of the information included in
the status word i3 an interrupt acknowledge signal (INTA), a stack
reference signal (STACK), and a signal called M1 which indicates the
fetch of the first byte of an instruction. STACK can be wused directly
as the stack mode signal. The rest of the mode signals however must be
generated using external hardware.

To determine when an instruction fetch i3 being done, M1 qust be
used. Whenever M1 is present an instruction fetch is being done, but M1
is not present during the fetch of succeeding instruction bytes of a
pultiple-byte instruction. The opcode of the instruction will be

present on the data lines during state T3 of c¢ycle M1. This opcode can




16

be externally decoded by a 256 X 2 read only memory (ROM) to determine
the length of the instruction. A counter can then count the number of
aemory references after each M1 cycle, Using this counter, M1, and the
ROM outputs, an instruction byte fetch can be identified. A data mcde
signal can now be generated by {(not instruction fatch) AND (not STACK).

To determine whether an instruction byte fetch is a normal
instruction fetch or an ISR instruction fetch, 2 way must be found to
tell when an ISR is being run. When the first byte of an ISR is
accessed, the INTA bit of the status word is one. This can be used to
set a flip-flop which holds the ISR information. When the f(lip-flop
output is one an ISR is being run. The flip-flop needs to be reset
after the ISR has completed running. This can be done by creating a
special location somewhere within the ISR instruction mode area which
when referenced resets the flip-flcop and returns the opcode for the RET
(return) instruction on the data bus. To exit the ISR instruction mode,
a JMP is done to this location. The RET causes the program which was
running before interrupt to resume. ISR instruction mode ¢an now be
generated by (instruction fetch) AND (ISR flip-flop set), while normal
instruction mode is indicated by (instruction fetch) AND (ISR flip-flop
not set).

All four mode signals are now generated and two extra address bits
can be formed as in section 2.2. Again, unless the system's programs
and data are down loaded from a host system, there should be hardware <o

create a common area. This hardware is straight forward as in section

2.2 and will not be aetailed in this sectiom.

A"




2.3.2 Modes in a Zilog Z80 System.

The Z80 microprocessor is to a large extent an enhancement of the
8080, and therafore the generation of mode signals with a Z80 system is
very similar to that of an 8080 system [2]. Howeve. only three modes of
the four considered can be obtained in a Z80 system. The Z30 does not
output a processor status word. Instead the status is indicated by
certain output signals on the microprocessor's pins. The 8080
implementation of four modes required the STACK, INTA, and M1 bits of
the processor status word to generate the mode signals. No indication
of a stack reference can be obtained from the 1Z80 and therefore the
stack mode cannot be created. However M1 is an output pin of the Z80
and INTA can be generated by ANDing the IORQ (input/output request) and
M1 output pins, so ISR instruction mode and normal instruction mode can
be generated as in the 8080 case.

The third mode created with the Z80, namely the data mode, contains
the stack mode and normal data mode of the 8080 system. The data mode
signal is simply generated when an instruction byte 1is not being

fetched.

2.3.3 Modes in a Motorola 6800 System.

The Motorola 6800 microprocessor does not externally supply any
processor status information necessary to create modes [3]). Therefore
this microprocessor is not readily applicable %to the mode method of

increasing the logical wmemory space, for it would require an extreme

N




18

amount of external hardware.

2.4 Segmentation

A second way of increasing the logical memory space is to define
segments which are copies of the address space or subsets of the address
space, just as modes were., However moving from one segment to another
is more difficult and must be better defined than moving between mode
areas, To differentiate between segments, a segment register exists. i
This register holds a pointer to a segment frame in logical memory. The
number of segments in logical memory is determined during system design.

Segments differ from modes in that the user nmust be very conscious
of segments. 1In the mode method of section 2.2, the user only had to be
sure his program would fit in the instruction mode area, his data would
fit in the data mode area, etc. Switching between modes was done

transparent to the user. But with segments, the user must be aware of

when a segment switch should Ye made, and in fact he should request the
switch. Therefore he must structure his programs accordingly. This is
most easily done by breaking up the program into subroutines. 3Zach
subroutine can reside in a separate segment or many subroutines can
reside in one segment. Ideally each subroutine should reside entirely
within one segment to ainimize the overhead of switching between

segments.




19

The segment size can be as large as the address space of the
processor, but as with modes this may create some problems. One of the
problems with segmentation is how to switch execution between segments.
What is desired to be done is to first change the segment register, and
then jump to a particular entry point in the new segment. However if
this 1is to be done with code in the old segment, then after the segment
register is changed, the new segment is already the current segment and
the jump instruction in the old segment cannot be executed. This is not
a problem if the program counter of the microprocessor after executing
the change segment instruction is equal to the desired entry point of
the new segment, but requiring this would create extremely awkward
segment switching with high overhead. &Even if this is tolerated, there
is still a problem with parameter passing.

The solution to these problems is to have a segment size which is a
fraction of the total address space, and allow more than one segment to
be accessible at once. This is typically done by having a base segment
and a current segment concurrently accessible. The base segment is
always accessible and contains the necessary routines and storage ior
parameter passing, current segment switching, system management, and
possibly the user's global variables. The current segment is the user
segment which contains the subroutine(s) and local variables for the
subroutine(s). The sizes of the base and current segments can be fixed
or dynamic depending on the implementation.

There are two ways to define segments. One way is to require that
all segments are disjoint and the other way is tc allow overlapping

segments. The implementation and concepts of the two are different.




20

2.4.1 Overlapping Segments

There are two possible reasons for allowing overlapping segments:
a) to allow sharing between two adjacent segments in logical memory, and
b) to minimize fragmentation in a fixed segment size system. Sharing is
not a valid reason because the sharing due to overlapping is only
between adjacent segments. Any sharing or switching between nonadjacent
segments requires a Dbase-current segment system. is base-current
segment system already can share and switch ad jacent segments,
Therefore sharing between segments is not a good reason for allowing
overlapping segments.

Minimizing fragmentation is a marginally acceptable reason for
having overlapping segments only in a system which has fixed size
segments. If a subroutine requires only one nalf of a segment and no
other subroutines exist which have size less than or equal to one nalf
of a segment, then allowing overlapping segments would permit the next
segment to begin right after the one half segment subroutine, thus
saving one half of a segment from being wasted. However the price paid
for saving this otherwise fragmented amemory may be too high to pay.

To implement overlapping segments, the segment register must be
able to reference any location in the logical memory space. This
requires a long register. Also the contents of the segment register
must be added to the processor address for every memory reference. This
requires a large adder and may introduce a significant amount of time
overhead for each reference. This reduced system performance, and the
extra hardware necessary may be too high a price to pay for reducing the

logical memory fragmentation.




RIS S SR o i st icpia? oS Sl A

21

It is important to note that any segmentation system which is used
with a two-level virtual memory system using paging will only have this
large fragmentation problem in the virtual space. The largest fragment
in physical space is only one page. In most real applications the large
virtual space created with segments will be wused with a two-level
hierarchy memory system with paging. Therefore the fragmentation reason

for overlapped segments is not a strong one.

2.4.2 Disjoint Segments

Overlapping segments were justifiable only in a fixed segment size

system. However disjoint segments can be either fixed size or variable
size, Fixed size segments on a system with only a one-level physical
memory can result in a large amount of fragmentation of the logical
memory space. Variable size segments can prevent this fragmentation,
but are costly to implement.

To implement variable size segments, the system must be capable of
storing the starting address of a segment (which could be any location
in memory) and the length of a segment in a hardware register, Each
memory reference must generate an address by adding the processor
address to the segment's starting address as in the overlapping segment
case, and also check to see if this processor address is within the
segment, These two operations can be done in parallel, but some time
overhead still results and a significant amount of hardware is

necessary. This extra time and hardware is probably not Jjustified by

the saving of otherwise fragmented logical memory.




22

The most straightforward and easy to implement segment 3system is
one that uses fixed size, ncnoverlapping segments. If the size of the
segments is a power of two, then no addition is necessary and the
contents of the segment register can simply be concatenated with a part
of the microprocessor address. Figure 2.5 shows how a system of this
type might be implemented. The segment register is addressable as an

I/0 port. Thus it can be changed under program control.

A
m-1 0
segment s 1 s Frocessor
: x bits o - oit A
register 2 bit (a-1) s address

m-lw’
X1
A\
3 s
e - logical
X t A= iz
bits (m=1) vits adaress

Figure 2.5 Basic segment system with zx segments of size

™' Lords each.

The microprocessor address length is m bits and the high order bit

Am_1 is used to determine whether the base segment or the current

segment is being referenced. The segment register is x bits leng




23

permitting 2x possible segments. Segment O is the base segment and the

next 2x-1 segments are user segments. All segments are of size 2“‘.1

words, There is only the small multiplexer delay between the time the

processor address is valid and the time the logical address is valid.
This will probably not result in any time overhead.

As in the modé method of increasing the logical memory space, the
& gizes of the base segment and user segments can be different by using

more high order address bits and different combinaticns of the bits to

determine whether the base or current segment is referenced. Again as
the size of the base segment decreases the user segment sizes increase
and vice versa. The memory expansion factor (MEF) as previously defined
is for this system

(m=d)yyyy/2m,

MEF={ #2720 (2% 1)9 (20 (c%2
This simplifies to
MEF=2%-[ (2%-2)%c#2701-1
where b and ¢ are defined as they were in the mode system with b being
the number of high order address bits used to determine base or current
segment and ¢ being the number of combinations of these bits signifying

a reference to the base segment. Table 2.2 gives some segment sizes and

MEF's for representative values of b, ¢, and x.

b L [



TABLE 2.2 Some values of x, b, and ¢ and the corresponding
segment sizes and MEF (m=16).
]
E user seg. base seg.
x b ¢ sizes sizes MEF
(K words) (K wo 3)
1 1 32 32 2.00
h 2 1 48 16 2.50
3 1% ug 1.50
2
1 56 08 2.7
3 3 40 24 2.25
5 24 40 1.75
7 08 56 1.25
1 1 32 32 4.00
2 1 ug 16 5.50
3 16 43 2.50
3
1 56 08 6.25
3 3 40 24 4.75
5 24 40 3.25
7 08 56 1.75
1 1 32 32 8.00
2 1 u8 16 11.50
3 16 u8 4.50
_)‘
1 56 08 13.25%
3 3 40 24 9.75
5 24 40 6.25
. 7 08 56 2.75
1 1 32 32 15.00
2 1 u8 16 23.50
16 48 2.50
5
1 56 08 27.25
3 3 Lo 24 19.75
5 24 10 12.25
7 08 56 u,75

24




25

2.5 Uses of Modes and Segmentation in New Microprocessors

Currently there are three major manufacturers of advanced
microprocessors; the same three who manufacture the "standard" eight bit
microprocessors: Zilog, Motorola, and Intel. These advanced
microprocessors have at least 16 bit data paths and increased addressing
capabilities. The new generation microprocessors are the Zilog Z8000,
the Motorola 68000, and the Intel 8086.

Of the three the one most directly utilizing modes and segmentation
is the Zilog 28000 (4]. In the 28000 references to input/output and
memory are references to separate memory spaces. The input/output space
is 64K words long, while the memory space is broken up into as many as
six mode areas, each an address space of length 64K words on the 40 pin
version, and each a segmented memory space of up to 8 Megawords on the
48 pin version (the Z8000 comes in two versions, one for small systems
and one for medium to large systems), These address spaces are
referenced under the following modes: user instruction, user data, user
stack, system instruction, system data, and system stack modes. As was
pointed out in section 2.2 for interrupts, the system data and system
stack modes are not necessarily useful.

The 28000 uses segmentation on the 48 pin version. There are seven
segment bits in the processor address which means that there are
possibly 128 64K word segments. The address space as previously defined
is, for the u8 pin version of the 28000, the addressable space after
segmentation since segmentation is done internal to the wmicroprocessor.

Therefore each segment is not equal to an address space as previously




26

defined. However segmentation intermal to the 28000 is implemented as

nonoverlapping f{ixed size segments of length 64K words. All address

arithmetic is done in 16 bit quantities so that the same arithmetic unit

that is used for data can be used for addresses. The segment register

is not affected by the address arithmetic. Therefore the internal

segment implementation of the 28000 is very much like that discussed in

section 2.4. No base segment 1is necessary, however, 3since each

instruction can specify an entire address including the segment number

and thus switching segments and passing parameters can be done directly.

The Intel 3086 izmplements segments slightly different than the

i 23000 [s5]. Like the 28000, 16 bit arithmetic is done and therefore
| segments are H4K words long. However unlike the Z8000, the 3086 uses a
16 bit segment register in address calculations. The most significant

16 bits of 3 20 bit address are represented in this segment register.

This 1is equivalent to having a 20 bit segment register with the 4 least

significant bits equal to zero., The 8086 thus uses 64X word segments

which may overlap, but which begin on boundries that are multiples of

16. Or another way to interpret this is that there are 216

disjoint
segments each of size 16 words, Figure 2.6 shows the microprocessor
address generation of the 8086.

The 8086 also allows four modes; the current code, current data,

3 current stack, and current extra modes. These modes are used intermally

} to pick one of four segment registers which is then used to generate the

processor address.




1 53 offset
affective addrefs address
segment register 002d0
161 16
L4
adder
— processor
memory address latch address

19 T3 d

Figure 2.6 Memory address generatiocn of the Intel 9086.

The Motorola 68000, as understood from available information, seems
to have 2 modes: a user mode and a supervisory or system mode [6]. The
mode is externally indicated so that gseparate address spaces can be
created, or address translation can be disabled in system mode.
Variable length segmentation is utilized in an architecture specified
memory management scheme. Not much specific literature is available on

the 68000, so the details of this segmentation are not known.




28

2.6 Multipla Microprocessor Systems

When more than one microprocessor is used in a system, each with
its own instruction and data streams, there are a couple of ways in
which the total logical memory space of the system can be defined. Each
microprocessor can address the same memory space. Then two
microprocessors with the same address will access the same memory
location. In this type of system sharing between microprocessors is
trivial, but protection and contention become significant problems. The
more microprocessors in the system, the less memory space each
aicroprocessor can privately access.

The other way of defining the total logical memory space is to have
each microprocessor's memory space be a separate space. If there are y
identical microorocessors in the system, then the total logical memory
space of the asystem becomes y times ¢the total memory space per
microprocessor, The separate 3paces are accessed by appending a
processor number to the microprocessor address, thereby extending the
system address langth. Protection is enhanced in this type of system.
Sharing can be accomplished by mapping the logical processor address of
two microprocessors into the same physical address. This 2lso allows
more flexible sharing than having the microprocessors access the same
logical address because the two logical microprocessor addresses need

not be equal to be mapped to the same physical address.

insiniietetite N 7




29

2.7 Concluding Remarks

The use of external hardware is a real solution ¢to the memory
addressing problems of the current microprocessors with 16 bit
addresses. Segmentation can be used by any microprocessor, but its use
is not transparent to the user. Access modes are transparent to the
user, but cannot be used by all microprocessors. Table 2.3 shows the
relative difficulty of implementing the four modes presented on the
three popular microprocessors.

Even with the advances in technology that have been experienced
recently, the amount of logic that can be put on a chip is still not
limitless. Therefore manufactures are using techniques similar to those
presented in sections 2.2 and 2.4 to minimize the internal logic of new

microprocessors, especially in respect to busses and address arithmetic.




30

: TABLE 2.3 Relative difficulty of using each of the four modes

on the three microprocessors examined.

microprocessor data mode inst. mode stack mode ISR mode

E Intel 8080 moderate moderate trivial moderate
i

Zilog 280 moderate moderate extrenme aoderate

L]

g Motorola 6800 extreme extreme extreme extreme




31

k CHAPTER 3

Handling Page Faults On Microprocessor Systems

3.1 Introduction

Virtual memory is a well known and proven technique of implementing
a large logical memory space with a good speed, cost per word compromise
[7,81. Implementation on 2 single large processor system has been well
studied and is fairly . :raightforward. However, microprocessor systems
present some significant problems for virtual memory implementation.
This chapter investigates the problem of handling page faults on
microprocessor systems, and goes on to discuss ways to handle interrupts
on microprocessors designed to be used in ~irtual memory systems.

Ideally it is desired to immediately interrupt the am - .Drccessor

on the occurrence of a page fault. There are two levels on which

interrupts may be handled [15]. The first and most common level is the

R VULV — - - —————




32

machine 1level interrupt. In this level interrupt requests are tested
for only before the machine instruction fetch cycle. This method
guarantees that an interrupt can occur only after the machine
instruction is completed and before a new instruction starts.

The second 1level of handling interrupts is the control (or
microprogram) level. In this level interrupts are tested for as often
as once every microprocessor clock cycle. This method allows interrupt
requests t$o be nandled quickly before the CPU state changes, but
requires that restrictions be placed on the control and interrupt
mechanisms. These restrictions are due to the extra CPU information
Which must be saved, and the timing of the aicroprocessor.

The current generation of microprocessors can only be interrupted
on the first level; the machine level, This is a severe inadequacy when
the aicroprocessor is to be used in a virtual memory system.

Section 3.2 investigates the handling of page faults on current
microprocessor systems. 3.2.1 looks at a method which does not use the
interrupt capability of the microprocessor at all, and 3.2.2 1locks at
the constraints placed on a virtual memory system by a3 current
aicroprocessor with only wmachine level interrupts. The methods
suggested are very restrictive and certainly a microprocessor designed
for use in a virtual memory system could do better. Section 3.3
explores the internal requirements of the control level interrupt
capability necessary on a aicroprocessor suited to supporting virtual

nemory.




33

3.2 Handling Page Faults with Current Microprocessors

3.2.1 Without Interrupts - Waiting

One method of handling a page fault on microprocessor systems is to

simply have the microprocessor go into a wait state until the needed

page is brought into memory [9]. The concept is to, on a page fault,
have the page checking hardware force the microprocessor into a wait
state and inform the system of the fault. After the page fault |is
serviced, the microprocessor is allowed to exit its wait state and

continue as if nothing happened. Therefore to the microprocessor a page

fault is nothing more than a very slow memory reference. This technique

can only be used when ¢two important requirements are met: 1) <the

microprocessor is capable of waiting an indefinite amount of time before

the memory reference is completed, and 2) the system has the capability
to handle the page fault independent of the main microprocessor.

Only some microprocessors are capable of waiting indefinitely for
the completion of a memory reference. This wait is normally initiated H
by an external processor signal which is contrelled by the referenced
memory. Two microprocessors with the wait state capability are the
Intel 8080 and the Zilog Z80 (1],(2]. The external processor signal on

the 8080 is the READY line while on the 280 it is called the WAIT line.

Pulling this line low before a specific time in state T2 of a machine

cycle will cause the microprocessor to go into a wait state. Returning
the line to high after a particular time in the wait state allows the

microprocessor to complete the machine cycle.

2 e . BRI - IRy




One possible problem with waiting for a page fault recovery on
these microprocessors is that the decision of whether or not to wai¢
aust be made in a relatively short amount of time. On both the 8080 and
the Z80 ¢this decision time is about one clock period from the time the
address bus is stable. This may be as short as 320 ns which is not
sufficient to check maps for page availability unless high speed logic
is used. Cne way to extend the decisicn time is to automatically insert
cne or more waillt states after the T1 state of each macnine cycie, which
would add extra clock periods to the decision time. This however would
aiso degrade the performance of the system and should be avoided if
possible.

There are 3 couple of reascns for not handling page faults on a
microprocessor system by going into a wait state. One reason is that
many microprocessors are not capable of waiting indefinitely for the
completion ¢f a amemory reference. One such aicroprocessor i1s the
Motorola 6800, which cannot go into a wait or idle state in the middle

P

of an instruction [3]. The wmemory response time can bYe extended
slightly by stretching the clock signals, but only to a maximum of 4 us
before internal processor information is in danger of being lost. This
i3 clearly too short a3 time period for a page swap to be made. Thus the
Motorola 6800 and all other microprocessors not capable of going into an
indefinite wait state in the wmiddle of a uwmemory refarence are not
capable of nandling page faults by waiting.

A second reascon for not handling a page faul:t by waiting 1is the
3econd requirement <that the system bYe capable of doing the page fault

servicing independent of the main aicroprocessor. Tc service a page




35

fault some processing is required to determine what page to replace,
whether the replaced page should be written back to secondary memory,
where the desired page resides in secondary memory, and also to update
the virtual memory maps. The system must be capable of processing a
page fault independent of the main processor. This means that there
aust either be a host system to do page swapping and map wupdating, or
there must be a separate processing unit dedicated to virtual memory
page fault routines and map wnanagement. In a single processor
microcomputer system it may not be desirable to add a separate
microprocessor dedicated to handling system management.

The reason the main processcor is not capable of processing the page
fault is that it must be in the wait state the entire time the page
fault is being processed. It cannot execute any instructions until the
current instruction is completed, but the current instruction cannot be
completed until the page fault is resolved. So processing time is

wasted while the microprocessor is in this wait state.

3.2.2 Handling Page Faults with Machine Level Interrupts

A second way of handling page faults on current microprocessor
systems is to have the page fault generate a machine level interrupt.
Since the instruction causing the page fault must complete :'ore the
interrupt request is acknowledged, its result is computed with invalid
data and it must be re-executed. It will be shown that this completion

with false data and re-execution of the instruction is costly.




36

# In order to re-execute the instruction, certain iaformation abcut
the state of the machine must be saved. The address of the first word
of the instruction and the page number of the missing page must be
saved. The quickest and easiest way of saving this information is to
use hardware registers. The instruction address is stored during the
fetch of the first word of every instruction until a page fault occurs.
Then the storing of this register is disabled and the register contains

the desired restarting point. After the page fault is processed the

restart adress is obtained and the locading of this register is again
enabled. The npage number i3 similarly stored in a hardware register
which is loaded with the proper address bits when a page fault cccurs.
When a page fault occurs the completion of the current instruction
nust be correctable. This means that the completion and re-execution of
f this instruction cannot affect its result. This requirement results in
the following restrictions (10].
First, multiple word instructions should not cross page boundaries.
The first word of an instruction contains the opcode, while the
following words normally contain either immediate data or an operand
address. faulty immediate data can cause the alteration of an internal
register in a way which makes recovery impossible. A faulty operand
N address o2ould result in the modification of memory and this cannot be
allowed,
A second restriction is that the data returned by the faulty memcry
ref'arence must be forzed to a value which allows the largest number of

instructions to 9%e re-executed, Any 1instructions which cannot be

correctly re-exscuted must be prohibited. The prohibited instructions




[ Y

37

can probably be converted by macros in the assembler or compiler into a
sequence of allowable instructions and thus this prohibiting of
instructions can be kept transparent to the user. With microprocessor
{ instruction sets, normally only a small number of imstructions will have
to be prohibited. Anderson and Lipovski show that if the data lines of
an Intel 8080 based system are forced to zero when a page fault occurs,
only three instructions need be prohibited [10].

i The third restriction is that whenever the microprocessor is
running a program which resides in virtual space, interrupts must be

enabled. This is an obvious restriction since if it is not possible ¢to

inform the microprocessor of the page fault, the microprocessor
} will continue executing using false data, and it will generate false

i results,
A final restriction is that a normal stack reference cannot be
allowed to cause a page fault interrupt. Most microprocessors react to
an interrupt by PUSHing at least the program counter (PC) onto the

stack. Following a stack reference page fault this would also cause a

page fault resulting in an endless loop. Anderson and Lipovski suggest
solutions to this problem [10]. The preferred solution for virtual
memory systems implemented with current microprocessors is to have the

current and next pages of the stack resident in main memory at all

times. This does dedicate two pages of the main memory to the stack, i

but this is much more attractive than limiting the stack to one page.
from the above discussion it is apparent that with current

microprocessors it 1is not very easy to handle page fault interrupts.

This makes implementing any sort of virtual memory system with these




N . S U S e T,

38

microprocessors awkward. Depending on the system and the microprocessor
used, it may be more cost effective to increase the main memory size of

the system rather than implement virtual memory.

3.3 Interrupts on Microprocessors Compatible with Virtual Memory

3.3.1 Concepts

One of the more important requirements of any computing system is
that the results of a program should not be dependent on the system
configuration or state at the time the program is axscutad. Thus in
order for a microprocessor to be compatible with virtual memory it aust
be able t¢o guarantee that pseudo randem occurrences of page Ffaults do
not result in invalid output. A page fault signals the system and the
aicroprocessor that the memory location referenced is not presently
accessible and if any dummy data 1is returned in response to this
reference then it is not valid. Completing the execution of the
instruction using this dummy data can result in a change of
Bicroprocessor state which cannot be recovered frem. This of course
will cause invalid program results and must be prohibited. It is
therefore necessary to have a page fault result in the current
instruction being canceled (suspended) and re-executed {(ccmpleted) after

the page {aul” has been serviced,




$-— ¥

——

39

The most 1logical way to have the page fault affect the
microprocessor 1is through the interrupt mechanism. For the purpose of
this discussion an interrupt request will be the act of a device
external to the control unit of a microprocessor signalling its desire
to have normal program execution altered, while an interrupt will be the
act of the control unit acknowledging the interrupt request and altering
the program execution. There are two types of interrupt requests:
internal and external [11]. Internal requests are due to arithmetic
results (overflow, divide by zero, etc.), control conditions (illegal
opcode, stack overflow), or memory conditions (parity error, protection
error, page fault). External interrupts are generated by I/0 devices or
other devices such as another microprocessor in a multiple
microprocessor system or an operator console. The page fault interrupt
will bYe treated as a special case, because these other types of
interrputs can be adequately handled with present interrupt strategies.

Most small and medium scale computers today do not allow control
level interrupts. As was seen in the previous section, implementing
virtual memory on these systems is difficult and restrictive. To
understand why the choice of interrupting only between instructions is
made, the concepts of CPU state and instruction cyecle must first Dbe
defined. CI' state is an important concept because in order to continue
execution of an interrupted program after servicing the interrupt
request, it {3 necessary to restore the state of the processor to what
it was when the interrupt occurred. To do this the state of the
microprocessor at the time of this interrupt zust obviously be saved.

The instruction cycle is laportant to define because a3 big issue with




40

interrupts is when they occur and the instruction c¢ycls has been used as
the determining factor.

The term state is very loosely used with a variety of different
meanings. However the state of a CPU is normally defined by

1. the contents of all the registers within the CPU

2. the state of all control signals in the CPU hardware [12]
and will be used as such in this discussion. There are basically two
tyves of elsments in CPU hardware. One is combinational logic and the
other is the memory element. The C2U state is made up of all of these
aemory elements each of which falls into one of the above two
categories. The state of the microprocessor is therefore a large amount
of information and saving it is not a trivial matter.

The instruction cycle of a wmicroprocessor is composed of the
actions required to f{atch and execute the instruction. These actions
vary with different instructions. The composition of an instruction
cycle 1is typically not well defined. However there are certain
divisions which can be made in instruction c¢ycles. One such divisien is
between the instruction Ffeteh and the execution. Every instruction
contains these two divisions. However these are fairly broad divisions
and the instruction cycle can be futher broken down into: [13]

1. fetch instruction

2. increment PC

3. decode instruction

4, fetch operands

5. execute




b1

Numbers 1 and 2 above constitute the previous instruction fetch division
and numbers 3, 4, and 5 constitute the execution division. Zero address
instructions do not require any operand fetch (memory reference) while
some instructions may fetch several operands.

There are of course some exceptions to this general instruction
structure. There are some newer amicroprocessors which include
instructions that do string operations. These instructions have
aultiple operand fetch, execute cycles resulting in an instruction cyecle
such as

1. fetch instruction

2. increment PC

3. decode instruction

I, fetch operands

5. execute

n-1., feteh operands

n. execute
This type of instruction will be ignored since small systems are being
addressed nere and these string operations are generally {ound on larger
systems. Instructions in many microprocessor instruction sets are more
than one word in length. In these cases there are one or more fetch
instruction word, increment PC cycles inserted after the instruction
decode. Some microprocessors may also have auto increment/decrement
features, An instruction with one of these features would have an

increment/decrement register before or after tiz fetch operand cycle.




Bl ol

42

All instruction cycles do have the fetch instruction cyele. This
is the first thing done in an instruction. It consists of outputting
the PC onto the address bus and after a period of time inputting the
data into the instruction register. This is the one thing that has made
interrupting only between instructions such an attractive method.
Because of this common first cycle, all instructions start out with
almost the same control state. Therefore by interrupting only between
instructicons, very 1little control state information has to be savad.
The return to a program after an interrupt routine can be, and often is,
handled in exactly the same way as a return from a subroutine call.

This is not only the easiest way of handling interrupts, but it is
also all that is really necessary for interrupts as they are commonly
used. Harold S. Stone puts it like this:

“The purpose of the interrupt system is to provide for useful

computation in place of wait loops (especially while waiting for

the completion of an 1/0 operation).” {14]

Page fault interrupts obviously do not fall into this limitad purpose
and therefore any system compatible with virtual memory needs expanded
interrupt capabilities,

There are two basic issues to be resolved on page fault interrupts.
The first is whep should the interrupt be handled and the second is hcw
snould the interrupt bYe handled. These two issues are fairly
independent. The 1issue of when the page fault interrupt shculd occur
has one preferred solution over the total range of possible instruction

sets, while the issue of how the page fault interrupt is to be handled

w0 S TR ¥ - 1 1% : .

—— m—— o — -




43

has two basic solutions, with the preferred one being dependent on the
instruction set complexity and the implementation of the CPU's control
unit.

To answer the question of when the interrupt should be handled, it
is (first necessary to further explore the composition of an instruction
cycle. The CPU basically consists of a functional unit to do
operations, some registers to store operands and results, buses on which
data is transferred, and a control unit ¢to determine what data 1is
transferred where and when, and how this data is operated con. The
instruction cycle is then made up of CPU clock cyclas, each defining one
or more concurrent register transfers and operations.

A memory reference consists of a register transfer from some
register holding the desired address (eg. the PC) to a buffer register
commonly called the amemory address register (MAR). After a
predetermined amount of time (typically one or two CPU cloeck cycles) the
reference is completed by loading the contents of the data bus into a
register. If a page fault occurs during this memory reference this data
is invalid and it is therefore desirable to have a page fault interrupt
prohibit the transfer of the data bus contents to the selected register.
Therefore the interrupt must be allowed to occur before this transfer
for every memory reference which is done. Typically this could be done
by allowing the interrupt to occur at a particular time during every
clock cycle, or possibly only during the last clock cycle of each memory

reference.




4y

Allowing interrupts at these points also puts a constraint on the
virtual memory hardware. If the interrupt is to be allowed before any
register gets loaded with data due to a memory reference, the interrupt
request must be generated prior to this time. This constraint is easily
met since the information which causes a page fault is normally stored
and retrieved from the same map that is used to determine the physical
address which references the data,

As stated, there are two different methods of handling the page
fault intprrupt when it does occur. The big difference between the two
is the place from where execution is continued after the page fault nas
been procesgsed. One method allows execution to resume at the beginning
of the memory reference causing the page fault interrupt, while the
other requires that the entire instruction be re-exacuted. The

preferred solution depends on the complexity of the CPU.

3.3.2 QRe-executing the Entire Instruction

The method of re-executing the entire instruction 1is attractive
because it does not require <the preservation of all the control
information. Preserving the control state is especially difficult when
the CPU control unit is hardwired since the logic is fairly random and
many of the memory elements of the control are often hard to access
cleanly. “hat must be preserved for the re-exacution method is ali CPU

state information, except the control state which is repeatable at the

beginning of each instruction, which can change during the course o>f any



45

instruction of the instruction set prior to the last memory reference
data transfer of that instruction. This typically includes all of the
user accessible registers; all condition registers; virtually all
information which must be protected while calling and running a
subroutine.

This information must be preserved such that the re-execution of
the current instruction due to a page fault will not alter its results.
Generally this may require a temporary duplicate set of all of these
registers, which are loaded with the contents of their corresponding
user accessible registers at the start of each instruction. However
only those registers that are changed in a way which would cause false
results upon re-execution must be saved in temporary duplicate
registers. For example, any register which is only irrevocably changed
after the last memory reference of any instruction need not be saved
since a page fault cannot occur between the time the register is changead
and the time the instruction ends. Also any register which is only
changed by being loaded from memory need not be saved since re-execution
would simply reload it.

It also may not be necessary to save all registers whose contents
can be irrevocably changed by any instruction. Assume that there are m
registers whose contents are modified in one or more instructions of the
instruction set. Now suppose that at most, n of these m registers are
nodified during any single instruction. Then only n additional
registers are needed tc preserve the state of the microprocessor while
executing an instruction. Some obvicus registers which must be stored

for every instruction include the PC (program counter) and the SP (stack




us

pointer).

One drawback to this method is that it is limited in the complexity
of the instruction set of the CPU with which it is implemented. This is
because certain more powerful instructions not only alter the CPU state
but also <the main memory in a way in which re-execution would cause
false results. Consider an instuction which could have a page fault
occur after loading a register from memory and writing this same zmemory
location. Proper re-execution is impossible by this method since after
the register 1is restored to what it was prior to this instruction, the
correct contents of the memory location is lost. Thiz is typical of
string operations. Thus the instruction set of a C?Y with such an
interrupt handling method is restricted. This restriction may not Dbe
serious for some microprocessors however.

Consider the Intel 8080 amicroprocessor {1]. Its instruction cyzlia
is broken up into machine cycles which may or may not inciude 2 memory
reference (only one instruction in the 8080 instruction set nas machine
cyecles which do not include memory references). Each machine cycla is
broken up into states (Ti's). The memory reference of a machine cycls
is 1initiated during T1 and the data transfered to a register during T3.
The preferred time to allow interruption is during state T2 of every
memory referencing machine cycle., Then by saving the PC and SP at the
bveginning of every instruction, all instructions of the instruction set
could validly be re-exacuted. Thus it is seen that for less powerful

instruction sets, the re-execution of the entire instruction is an

attractive method of nandling these page fault intarrupts.




3.3.3 Continuing Execution with the Interrupted Memory Reference

The second method of handling interrupts is to resume execution of
the interrupted instruction at the last memory reference befcre the
interrupt. This allows a more powerful instruction set, but also
requires the saving of all CPU control state information at the
beginning of each memory reference. This requires temporary control
registers to save the state of the control memory elements. The main
advantage of this method is that any instruction can be treatad in this
manner, allowing arbitrarily powerful and complex instruction sets.

The implementation of this method may or may not be realistic,
depending on the complexity of ¢the control unit. In a CPU with a
straightforwardly implemented microprogrammed control unit, all that may
be necessary i1is to additionally store the microprogram counter. In more
complex microprogrammed control units it may be necessary to save a
microprogram scratchpad register set and/or stack. On microprogrammed
control units with subroutines, it may be possible to Jjust PUSH the
current gmicroprogram counter onto a return stack. The implementation
varies largely with the control unit realization.

Due to the complexity and overhead of interrupting in the middle of
an instruction, it may be advantageous to have two distinet interrupt
types. One would interrupt only between instructions, while the other
could interrupt in the middle of instructions. In this way interrupt
requests whose sources do not affect the result of the current
instruction could be handled between instructions, thereby avoiding scme

costly overhead.

— e ———— el




48

3.3.4 Stack Issues

One problem which must be resolved under either of these methods is
where to save the CPU state information which must be preserved. In a
system with only cne stack, the information could b>e PUSHed onto thne
stack. Then however stack refsrences could not be allowed to cause page
faults. This is for the same reasons as were discussed in section 3.3.
In 3systems with more than one register allowed as the stack pointer, or
even a memory location allowed as the stack pointer, the solution of
section 3.3 of Xeeping the current and next closest stack pages in main
memory wculd be unrealistically complex and time consuming. In these
cases, and generally, it may ve preferrable to reserve a resident part
of main mezory for storing CPU state registers during a page fault
interrupt. Some resident 2emory is already necessary o store the page
fault routine since servicing a page fault must not cause another page
fault. Since this must be a fixed size portion of memory only a faw

concurrent page faults {(from different tasks) should be allowed.

3.4 Concluding Remarks

In this chapter it has been shown that implementing a virtual
memory sSystem on current =microprocessors is extremely difficult and
costly. It can be done for some 8 bit aicroprocessors such as tne Intel
3080, but it is very restrictive. The more powerful instruction sets of

the newer aicroprocessors are going to make it auch harder and




hg

more costly to implement. Therefore new microprocessors should bve
; designed with extended interrupt capabilities in order that they may
| better support virtual memory systems.

The large addressing capabilities of new microprocessors dictate
that systems of the future will use virtual memory. This will require
control level interrupt capabilities. Designing a microprocessor with
control level interrupts has been shown to be a fairly reasonable task.
With the wide spread and almost complste use of aicroprogrammed control

units, this task is made even easier,




™

CHAPTZER U4

Address Mapping On Microprocessor Systenms

4,1 Intreduction

dne of the key components of any virtual memeory system is the
translation of the processor generated virtual address into the physical
address sent to the main memery. The hardware which accomplishes this
is called the address mapping bnardware due ¢tc the Jact that this
translation i3 a mapping frcm virtual space into pnysizal space. This
address mapping has been thoroughly astudied w«with respect to large
nicroprocessor systems 771,(8]. However the cost and implementatzion of
nicroprocessor systems affect some of the design tradeoffs of address
aapping. Section 4,2 will opresent the basic principle of address

napping.




51

Section 4.3 will develop the basis for desiring to have this
mapping done by a single chip called the memory management unit (MMU).
Section 4.4 will develop the MMU concept and ¢try to investigate what
u features should be included in this chip. Section 4.5 will discuss some

issues of mapping in a multiple microprocessor system.

4.2 The Basic Principles of Address Mapping

The virtual and physical memory spaces of a virtual memory system
are normally divided into fixed size blocks, called pages. Assume that
each virtual and physical page is of length 2r words, that the virtual
space is composed of J=2J pages, and that the physical space is composed
of K:Zk pages. For virtual memory to be effective J>>X must Dbe true,
Each page 1in physical memory potentially holds a virtual page and is
thus called a page frame. Figure 4.1 a) shows the virtual and physical
memory spaces and figure 4.1 b) shows the corresponding addresses. Some
of the obvious design considerations involved with paging are page size,
number of virtual pages, and number of physical pages. These are
application dependent and will not be discussed in this paper. Matick
(7] and Denning [8] explore some representative cases.

The purpose of address mapping is to provide the translation of the
virtual address of the microprocessor to the physical address needed by
the main memory, and also to determine if the referenced page resides in

main memory. The basic scheme for this is shown in {igure 4.2. The map

can aither be a lookup table called an indexed page table, with J




virtual stace
R

words
physical space
P -
4 _ R ———
pages 4& . L
- . pages| 2
v
v
a)
L K bits * bits "’1.‘?‘““‘
jaddress
virtual page aunber word
1 oits r bits k?ysm&
édress
shysical page zunber word
b)

Tizure 4.1 The memory spaces (a) and addresses (d) of a
virtual zemory svstem.

52

ords




53

entries, one for each virtual page, or it can be an asscciative (content

addressable) table with K entries, one for each physical page frame.

The entries in the indexed table would contain the physical page number,

a presence bit, and some other control information while the associative

table entries would contain a virtual page number, a physical page

number, and some other control bits.

-
"

he

. . virtual
i X i 3
i X bits r bits address
‘Jf
. .
b}
page
fauls €< nap
- Wi physical
1 bits r bits address
E
i“ Figure u.2 Address translation of a virtual memory system.
:
The presence of a virtual page in physical memory is simply determined
by testing the presence bit in the indexed table implementation of
o T .
— ~ - A




2o w——

54

map, while it is determined by an associative match of the virtual page
number in the associative table.

Each of these two methods has its drawbacks, The indexed table
method requires a large amount of memory to store all the entries. It
can be stored in fast, dedicated memory, but this is very expensive. It
can be stored in the main memory, but this requires an extra main amemory
cycle for each microprocessor memory reference which results in extreme
performance degradation. The associative table requires less storage
for its entries, but it requires an associative compare of the virtual
page number portion of each entry. This can be extremely oxpensive with
a moderate number of physical pages. Thus both methods by themselves
are not adequate.

The typical solution is to use both an indexed page tabls and a
partial associative table, or CAM (content addressable memory). The
indexed page table is stored in main meﬁory and the CAM is a small, fast
memory with tyoically 8 or 16 entries. The CAM is of course dedicated
hardware.

A memory reference first initiates a test of the CAM. if the
virtual page number is in the CAM then the translation occurs quickly,
and the reference is completed in one memory cycle. If the virtual page
number is not in the CAM, then the indexed page table is referenced to
see if the virtual page is in fact in physical memory. If it 1is, then
this virtual page entry of the page table replaces the least recently
used (LAU) entry of the CAM and the refarence is completed in two zemory

cycles., By keeping the most recently used page table entries in the

CAM, most refarences are ccmpleted in one memory <oycle due to the




55

locality of references [7]. If the virtual page is not in main memory,
l.e,, if both these tests fail, then a page fault is generated.

This scheme of having both an indexed page table and a partial
associative table is a very effective compromise between the two
methods. It is based on the same principle as virtual memory, which 1is
the phenomenon of locality of reference. It is also a very general

scheme in that any virtual page may reside in any physical page frame.

4.3 The Basis for a Single Chip MMU

The implementation of virtual memory on a microprocessor system
must be done under some serious constraints. The wmicroprocessor is a
device which 18 relatively inexpensive, even with its increasing
computing power. Thus the designer of a system built around 2
microprocessor must especially be aware of the cost of this system. It
does not make sense to use a microprocessor as the central processing
unit of a system with with extensive support hardware.

The microprocessor has been kept a relatively inexpensive component
through the use of circuit integration, i.e,, putting the entire logic
of the microprocessor onto a single chip. The cost of developing such a
chip must be absorbed by mass producing it to keep the individual chip
costs down. Thus the design of a single chip should be general enough

to cover a wide range of applications. This integration concept can be

applied to the address mapping of a virtual memory system.

WP




56

It is therefore desirable to include all of the address mapping
hardware on a single chip. This chip will be called the MMU (a@emory
management unit). This integration and the required generality can
impose some constraints on the mapping design. It also gives powerful
possibilities since a large amount of logic can be inexpensively put on

a single c¢hip.

4.4 Features of an MMU

4.4.1 The Page Table Register

Normally a system utilizing virtual memory is a {airly powerful
systenm, Usually multiple tasks or users are allowed on such 3ystems to
keep the CPU utilization high. Zach task should be given its own pags
table to enhance the flexibility of the system and the relocatability of
shared code such as system routines. When a task is running its page
table is wused. When this task is switched tc another task, the page
table used to generate physical memory addresses i3 also switched.

The switching of tasks can occur under several cases. One case is
When the first task finishes and a second task is then begun. Another
case is when a page fault occurs. The normal course of action on a page
fault 1s to have the microprocessor do some system management including
determining which page to swap out of main memory and <changing maps,

initiating a page transfer, and then continuing to process another task




57

whose working set of pages resides in main memory. An important factor
in system performance is task switching, which includes page table
switching.

Two methods for implementing page tables exist. One method uses a
fixed page table area. The page table is then switched by writing out
the current table and then writing in the new one. This is very time
consuming and degrades the task switching efficiency. The second way is
to make page tables relocatable. A pointer is used to point to the
currently used page table. The current page table entries are then
accessed by adding the virtual page number to the page table pointer and
using the result to reference the page table. Changing page tables
becomes as easy as changing the page table pointer. This pointer can be
stored in a register called the page table register (PTR).

Typically there are a predetermined number of tasks whose working
sets can be resident in main memory. The pages of main memory are then
divided between these tasks with a few extra pages remaining uncommitted

for the handling of page faults.

4.,4.2 The Associative Array

As discussed in section 4.3, the most desirable implementation of
address mapping is to have both the indexed page table and the
associative table to achieve a compromise between mapping speed and
cost . The indexed page tables reside in main wmemory while the

associative table resides in the MMU. Two important issues are the




58

number of entries or the size of the partial associative table (which
determines the number of associative compares done) and the contents of
the table.

The size of the partial associative table, or CAM, is really a
compromise between the time and complexity of doing the associative
compares and the nit ratio of the CAM. The hit ratio of the CAM is the
number of address translations done through the CAM divided by the total
number of address translations (done through both the CAM and the
indexed table). On most large computers this tradeoff has resulted in
CAM's of 8 to 32 entries. However some study should be done to
determine a good CAM size for microprocessor systems. This size will
probably be dependent on the system and its application, but some
general size should be chesen for the MMU to keep it flexible.

The entries of the CAM should include a virtual page number which
is associatively compared, a corresponding physical page number and some
control bits. The physical page number and control bits for an entry
are output when the virtual page number of that entry matches the
aicroprocessor generated virtual page number. Some control bits which
are necessary are a clean/dirty bit used to determine whether a page to
be replaced in main memory needs to be written out to secondary memory,
protection bits which are used if the page table contains protection
information, and some bits to keep track of the least recently used

entry, so that this entry can be replaced when a referenced virtual page

number is not in the CAM.,




"

59

4.4.3 Control Logic

The MMU must be capable of performing some dedicated functions. It
must be capable of accepting a virtual address and doing the mapping
function. Thus it must be able to first initiate the associative
compare, If this fails it must be able to use the PTR to generate a
reference to the indexed page table in main wmemory. If this is
succesasful, the MMU must generate a second reference to main memory to
complete the requested reference and also update the array. If the
indexed page table reference returns a false presence bit the MMU must
send a page fault signal to the microprocessor.

The PTR and CAM of the MMU must be readable and writeable by the
microprocessor to allow the microprocessor to do system management.
Also when the system is servicing the page fault in a supervisory mode,
the MMU must be able to inhibit the address mapping and pass addresses

directly to main memory.

4. 4.4 Other Features Which May Be Included in the MMU

The previous three sections discussed some of the required fsatures
of the MU. This is by no means all of the possible features which may
be included in the MMU. Some other features which may fit nicely into
the function of the MMU include memory protection checking and
segmentation. Since memory protection information is often kept in page
tables, the MMy, which uses page table information to generate

addresses, would be a natural place to 1include the memory protection




60

checking hardware. In segmentation, microprocessor addresses are used
with a segment register to generate a full virtual address. This
address 1is then sent to the address mapping hardware which in this case
is the MU, It would be convenient to include both the segmentation and
mapping hardware in the MMU. Then the MMU would be the only hardware
involved in taking the microprocessor address and generating the

physical address.

4.5 Address Mapping on Multiple Microprocessor Systems

There are some critical design tradeoffs in implementing the
address translation hardware of a multiple microprocessor system with a
shared virtual memory. One important decision is whether to give each
microprocessor its own map, or whether to have a global map. This
section does not attempt to solve this problem, but rather to discuss
now the MMU can be used to enhance either method. Obviously if one
central map were used, the MMU would be a3 natural choice since it could
maintain the wmap and do the translation function. A problem of
contention could arise, but it would be no more serious than the
contention problems which already exist for the global table and the
nemory itself.

If individual maps were used, each microprocessor would require its
own page table to reside in the virtual memory. The address transiation
for each microprocessor could be done separately, but there must be some

2lobal system unit which would oversee the individual translaticns.




61

This is due to the sharing among microprocessors which is desired to

enhance system efficiency. The MMU could be such a unit. In such a

case the MMU would not have to have any address translation duties. It

would rather be called upon to handle page faults to keep all of the

individual maps of each microprocessor valid, This function could Ve

done independently and in parallel with the normal address translation

of each microprocessor, increasing the efficiency of the systeam.
The role of the MMU in a multiple microprocessor system may change

some from its role in a single microprocessor system. However it still

would utilize the powerful concept of integration and cost reduction,

thus enhancing the implementation of virtual memory on microprocessor

systems.

4,5 Concluding Remarks

This chapter was in no way intended to be a completa treatment of a

single chip MMU. It was however intended to generate some thought on

the possiblilities of creating a single chip which could do the required
functions of address translation. Hopefully it has been shown that this

MMU could be an actractive way of bringing virtual memory capabilities

to microprocessor systems of the future. 7

e wae o e p— e~




CHAPTER 5

Conclusions

5.1 Summary

In some applications, current azicroprccessors are limited by the

size of the address space which they can access. This is due to the

number of address bits which they use. This limitation can be overcome

to a certain extent by adding external hardware to create more address
bits. One method of doing this is to use processor state inuo.mation to
create memory access @odes such as instruction mode or data mode. The
switching of these modes can easily be made transparent to the user. A

second method is to form gseggents which are independent of the

microprocessor state. Arbitrarily large numbers of segments can be

created, but segment switching is not transparent to the user,

T e S———————




63

Large logical memory spaces are typically not implemented entirely
in main memory. It is much more cost effective to use at least a
two-level virtual memory schenme. Microprocessors do create some
problems with such an implementation.

One problem is that a page fault must interrupt program execution
in a way such that correct results are insured. The limited interrupt
capabilities of microprocessors make program interruption and
continuation difficult and restrictive.

The second problem which arises is created by the cost constraints
of microprocessor systems. One reason for using a microprocessor (and
extending its addressing capabilities) 1is that it is a relatively
inexpensive component. The system which utilizes a microprocessor is
also under this cost constraint. It 1is neceassary to nmake the
implementation of virtual memory more cost effective so that it can be

used in microprocessor systems.

5.2 Suggestions

The limited address space problem of the umicroprocessor is being
avoided in new generation microprocessors through the use of greater
address lengths in both instructions and in the address bus. However
the virtual memory implementation of these large memory spaces is still
difficult and expensive. Mieroprocessor designers should now
inveatigate ways of making future microprocessors more compatible with

virtual memory.




64

Two ways of doing this were discussed in this paper. The first way
is to enhance the interrupt capabilities of future microprocessors,
thereby making page f{ault handling easier. The second way is to create
support chips dedicated to virtual memory implementation, thus making
this implementation more cost effective.

Meeting the needs of future microprocessor users will require
research and development on the part of the microprocessor
manufacturers. However the tecnnology of today certainly makes a
two-level virtual memory implementation a realistic goal of future

microprocessor systems.




o ———

2. Adam Osborne, An Introduction to Microorocessors, Volume
II. Some Real Produycts. Adam Osborne and Associates, 1976,
pp. 5-1 - 5-65.

3. Motorola Corporation, M680Q Microcomputer Systems
Desizn Manual. Motorola Corporation, 1975.

4. Bernard L. Pueto, "Architecture of a New Microprocessor,”
Computer, pp. 10-21,.February 1979.

5. S. Morse, W. Pohlman, B. Ravenel, "The Intel 8086
Microprocessor: A 16-Bit Evolution of the 8080," Computer, f
pp. 18-27, June 1978,

6. £. Stritter, T. Gunter, "A Microprocessor Architecture
for a Changing World: The Motorola 68000," Computer, PP. )
43-51, February 1979.

7. R. E. Matick, Computer Storage Svstems apd Technoloay.
New York: Wiley and Soms, 1977, pp. 532-644.

8. P. J. Denning, "Virtual Memory," Computing Survevs, vol 2,
no 3, p. 153, September 1970.

9. M. D. Ruggiero, S. G. Zaky, "A Microprocessor-Based
Virtual Memory System".

s PRI ol A% b bt SIS e e e e O et ST S s

65

Intel Corporation, Intel 8080 Microcomputer Svstems Users
Manual, September 1975, pp. 2-1 - 2-20.

. - - - —




2a amet

10.

11.

2.

13.

14.

15.

66

J. A. Anderson, G. J. Lipovski, "A Virtual Memory for
Microprocessors," Proc, Second Anpual Svmp,. on Comp. Arca.,
pp. 80-84, January 1975.

D. J. Kuck, The Structure of Computers and Computations.
New York: Wiley and Sons, 1979, p.348.

A. G. Lippiatt, Ine Architecture of Small Computer
Systems. London: Prentice-Hall International, Inc.

1978, p.98.

J. L. Peterson, Computer Qrganizatjon and Assembily
Language Programming. New York: Academic Press, 1973, p.55.
H. S. Stone, Iatrodu~tion to Computer Qrzanizaticns and
Data Structures. New York: McGraw-Hill, 1972, p.174.
Advanced Micro Devices, Micro uts2 apter VI.

Advanced Micro Devices, 1979, pp. 1-29.







