
AD AI23 946 REALIZING A LARGE MEMORY SPACE ON4 A MICROPROCESSOR I/
SYSTEM(U) ILLINOIS LR4IV AT URBANA COORDINATED SCIENCE

UNC~~~LASI D BE F PFLUG lUJL 80,R-887 N00014-79-C 0428FG92 N

mmhmhhhhhhhl
mmmhhhhmhhum
mhEmhhEEshmhhE
EhhmhmhohhohEI
IhhEEmomomw

..11 It __ 2 m _ a

I . EIL--1.8

11111_!2 .

MICROCOPY RESOLUTION~ TEST CHART
NATIONAL BUREAU OF STANDARDS-_I963 A

I

,I , UNCLASSIFIED

ISICURIY CLAiiIPICATION OR TNI PAIAI (Wheo DI@ InSe__ _ _ _

REPORT DOCUMENTATION PACE N*Ag D INMUC'IroNs

, REPORT NUfMI 1. GOVT ACCEISION NO. 3, lOClPllNT'l CATA6-O NUMBER

4. TITLE t(Ewme 1. Type I T ANPEl Oa n 1PO 6 i P1iOD COVlRED

REALIZING A LARGE MEMORY SPACE ON A MICROPROCESSOR Technical Report
SYSTEM ,Pll'lqNOO, qPT Uell

R-887; ULs-1NG 80 2219__
7. AUTMORI(IN I- CONTRACT ON GANT AUMD DES1RPT A

Jimer Frederick Pflug, i N00014-79-C-0425

I C UMUErOPPAOII

6. PITFORMING OAGANIZATION NAME AND ACON6l IS, 0 UNITY PA.R*, POET TAIE K
Coordinated Science Laboratory Ai ~ Ui Uln

University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

It. "CONTR~OL.LING OFIlCE NAMEI AND ADDR9lll '2 IIIBPORT' DAYS

Joint Services Electronics Program uly, 1980IP ell

66
VC4 MCNITORIINO AONCY NAME A AGORKlll0 dillowl IlMM C6111001110119 ee 01 I,0 16 CUMITY Ct-AII, (01 this M"#)

UNCLASSIFIED

Ila. OECLASII FICATION/ DOWNGRAOING

SCHMIULE

II. OISTRIUTION STATEMENT (at this Report)

Approved for public release; distribution unlimited

4

17. DISTRIBUTION STATEMENT (of the ebstract entered In Block 20, It different (om Report)

18. SUPPLEMENTARY NOTES

19. KIEY WOROS (Continue on reverse side it necessary aod identify by block number)

Microprocessor System
Memory Addressing
Virtual Memory

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

The memory space of current microprocessors is limited by the number of
address bits inherent in the architecture. Several applications of micro-
processors require large addressing space, for example, in multiple micro-
processor systems with a single shared memory.

This research is focussed on obtaining cost-effective ways to achieve a
large addressing space. Several different ways are suggested for this

DD I FANMP
- 1473 EDION, O 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

= - - -. - - . t

SECURITY CLASSIFICAION OF TNIS PAO9Mhm D4 Entered)

20. Abstract (continued)

purpose. Applicability of these results to three real microprocessors
is discussed. The microprocessors discussed are Intel 8080 Zilog Z80
and Motorola 6800. It is concluded that Intel 8080 and Z80 can address
a large memory space with very little additional hardware, while
Motorola 6800 requires much more hardware.

A large memory is usually implemented as two-level hierarchy for reasons
of cost-effectiveness. This research also focusses on the ways to
organize a two-level virtual memory system for microprocessors. It is
concluded that current microprocessors require a large amount of
external hardware to support a virtual memory system. Even with this
additional hardware, the virtual memory system is not as general as in
large computer systems. The restrictions imposed on the system to
correctly support a virtual memory system on a microprocessor are also
discussed.

*/

Ao@* I'on "or

JEnSl GcttI.

DiU, -pe .
Avabll11tv COdcf-

~Ai 2a..O
wij~or

It I

A at

SECURI1TY CLASSIFICATION OF TNIS PAGZ(Whoi 04Na Entered)

r

UILU-ENG 80-2219

REALIZING A LARGE MEMORY SPACE

ON A MICROPROCESSOR SYSTEM

BY

Elmer Frederick Pflug, III

This work was supported in part by the Joint Services Electronics

Program (U.S. Army, U.S. Navy and U.S. Air Force) under Contract

N00014-79-C-042 4 .

Reproduction in whole or in part is permitted for any purpose

of the United States Government.

Approved for public release. Distributed unlimited.

REALIZING A LARGE MEMORY SPACE

ON A MICROPROCESSOR SYSTEM

By

Elmer Frederick Pflug, III

Abstract

->The memory space of current microprocessors is limited by the

number of address bits inherent in the architecture. Several applications

of microprocessors require large addressing space, for example, in

multiple microprocessor systems with a single shared memory.

This research is focusSed on obtaining cost-effective ways to

achieve a large addressing space Several different ways are suggested

for this purpose. Applicability of these results to three real micro-

processors is discussed. The microprocessors discussed are Intel 8080

Zilog Z80 and Motorola 6800. It is concluded that Intel 8080 and Z8O

can address a large memory space with very little additional hardware,

while Motorola 6800 requires much more hardware.

A large memory is usually implemented as two-level hierarchy

for reasons of cost-effectiveness. This research also focusses on the

ways to organize a two-level virtual memory system for microprocessors.

It is concluded that current microprocessors require a large amount of

external hardware to support a virtual memory system. Zven with this

additional hardware, the virtual memory system is not as general as in

large computer systems. The restrictions imposed on the system to

correctly support a virtual memory system on a microprocessor are also

discussed.

ACKNOWLEDGEMNT

I would like to express my appreciation to Professor Ed Davidson

and especially to ?rofessor Janak ?atel for the generous amount of time

they Spent advising me on this paper. I would also like to thank my

wife Julie for her assistance in typing and proof reading this paper. I

would especially like to thank my parents, IMarion and Elmer F. ?flug Jr.

for their support and encouragement throughout my college career.

Z7Ii

iv

TABLE OF CONTENTS

CHAPTER 1 Introduction .. 1

1.1 Background and Motivation 1

1.2 Overview of Research .. 2

CHAPTER 2 Increasing the Logical Memory Space 3

2.1 Introduction .. 3

2.2 Access Modes .. 5

2.3 Implementing Modes on Microprocessor Systems 13

2.4 Segmentation ... 18

2.5 Uses of Modes and Segmentation in New Microprocessors 25

2.6 Multiple Microprocessor Systems 28

2.7 Concluding Remarks ... 29

CHAPTER 3 Handling Page Faults on Microprocessor Systems 31

3.1 Introduction ... 31

3.2 Handling Page Faults with Current Microprocessors 33

3.3 Interrupts on Microprocessors Compatable with Virtual Memory 38

3.4 Concluding Remarks ... 48

CHAPTER 4 Address Mapping on Microprocessor Systems 50

4.1 Introduction .. . 0

4.2 The Basic Principles of Address Mapping 51

4.3 The Basis for a Single Chip MMU 55

4.4 Features of an tIU ... 56

v

TABLE OF CONTENTS (continued)

4.5 Address Mapping on Multiple Microprocessor Systems 60

4.6 Concluding Remarks ... 61

CHAPTER 5 Conclusions ... 62

5.1 Sum ary .. 62

5.2 Suggestions .. 63

REFERENCES .. 65

CHAPTER 1

Introduction

1.1 Background and Motivation

The power of the microprocessor has been increasing greatly since

its conception. Today microprocessors are being used in applications

requiring large address spaces to handle larger user memory requirements

and protection. Multiple microprocessor systems require large shared

memory spaces to be effective.

The current widely used generation of 8 bit microprocessors is

inhe:ently limited to an address length of 16 bits and thus an address

space of 216 or 64K words. This has become inadequate for the

increasingly complex applications fom which these microprocessors are

being used. Therefore one objective is to increase the addressing

capabilities of such microprocessors beyond 64K words.

The large memory requirements of some applications force the use of

a two-level memory hierarchy for cost effectiveness. Normally a paging

scheme is used in implementing this two-level hierarchy because of the

ease with which it is applied to the two-level memory system and because

of the structure that it brings to the design.

At the present time there are no inherent capabilities for

implementing a virtual memory system on current microprocessors. A

second objective is to study the constraints of implementing a virtual

memory system for current microprocessors and to suggest ways to make

new microprocessors more compatible with virtual memory.

1.2 Overview of Research

In chapter 2 of this paper the objective of extending the

addressing capabilities of current microprocessors is explored. Some

general statements are made and some real microprocessors are examined.

Chapters 3 and 4 deal with the compatibility of microprocessors with

virtual memory. Chapter 3 covers the topic of page faults and how they

are handled. Chapter 4 investigates the translation of virtual

addresses to physical addresses. Chapter 5 ends the paper with some

conclusions and comments.

CHAPTER 2

Increasing The Logical Memory Space

2.1 Introduction

The address space of any microprocessor is architecturally limited

by the number of bits in that microprocessor's address. The

microprocessor's address is a loose term which car be interpreted as the

maximum number of address bits that an instruction can specify, the

width of an index register or program counter (PC), or the width of the

external address bus. On many microprocessors all of these are equal.

In this discussion the number of bits in the microprocessor's address

will be considered to be the width of the address bus. A microprocessor

with m lines in its external address bus, 1,&., an m bit microprocessor

address, has an address space of 2m words. For example, a

microprocessor with 16 address bits has an address space of 216 words or

64K words (K words is equal to 1024 words).

i

41

The address length of the microprocessor limits the total memory

space that can be directly addressed by that microprocessor, without any

external help, to one address space. However, with additional hardware

the total memory space accessible by that microprocessor can be

increased. For example, multiple copies of the entire address space can

be created to make the total accessible memory space much larger than

one address space. This is done by creating or obtaining information

independent of the microprocessor address which can be used to

differentiate between multiple address spaces. In many cases the cost

of the external hardware necessary to do this will be small compared to

the gain in the total logical memory space accessible to the

microprocessor.

The design of such hardware is the subject of this chapter. The

techniques for increasing the accessible memory space can be classified

as:

1. modes: distinguishing between the type of memory access

2. segmentation: explicitly keeping track of multiple address

spaces by the use of an external register.

Section 2.2 and 2.3 investigate access modes, while section 2.4

discusses segmentation.

Manufacturers of microprocessors are acknowledging the need for

greater addressing capabilities and through the ever increasing power of

technology are starting to meet these needs. Sections 2.2, 2.3, and 2.4

then are directed toward the most commonly used 8 bit generation of

microprocessors which are limited to 15 address bits. Section 2.5

examines how the new generation microprocessors are internally using the

f5

topics of these previous sections to extend their addressing

capabilities. Section 2.6 discusses the need of memory expansion on

multiple microprocessor systems.

2.2 Access Modes

One way of extending the logical memory space of a system is to

create modes from microprocessor status information, providing that this

information can be obtained. A mode is a state of the microprocessor

which is independent of the microprocessor address and can be used to

identify the type of memory reference. For example, the internal state

of a microprocessor has sufficient information to distinguish between an

instruction word fetch and a data word fetch. If this information is

available externally, then two modes can be obtained, the instruction

mode and the data mode. Then it is possible to have two mode areas,

eajh an entire address space of length 2m words, where m is the length

of the microprocessor address. One or the other of these two mode areas

is accessed depending on the mode of the microprocessor. This is like

adding an extra bit to the microprocessor address, creating a new memory

space of length 2(m+ 1) words. Other potentially useful modes are the

stack mode, the interrupt service routine mode, and possibly the

input/ouput mode.

The stack mode is defined as an access done directly using the

stack pointer (SP). This includes such common instructions as PUSH,

POP, CALL, and RET. The stack mode is a potentially useful mode.

z6

Including a stack mode allows a stack to have up to 2m words. This

relieves the user from having to worry about the stack running into

other data or code. However, there are some drawbacks to the stack

mode. For example, in some cases it is convenient to reference data

within the stack without using a stack instruction such as PUSH or POP,

but rather by doing a normal memory reference using the stack pointer

contents with an offset as an operand address. This type of reference

to the stack cannot be done with a system using a stack mode unless an

instruction such as EXAMINE STACK existed which would reference within

the stack and also cause the microprocessor to indicate a stack

reference.

The i service routine (ISR) mode is defined as accesses

made while running an ISR. This mode would be entered when an interrupt

is first acknowledged and would continue until the return at the end of

the ISR is executed. The mechanisms for determining these entrance and

exit points will be discussed later. The input/output mode would be

defined as an input or output data reference. Many microprocessors have

this capability (eg. the Intel 8080). The usefulness of this mode is

questionable from the point of view of extending the addressing space,

and depends on the number of input/output devices on the system. The

input/output mode will not be examined in this discussion since it is

just an application of the concepts to be discussed and since its

usefulness is limited.

Some modes may be nested to create even more modes. For example,

the instruction, data, and stack modes could be nested within the ISR

mode to create new modes: the ISR instruction mode, the ISR data mode,

i-.

and the ISR stack mode. It is important to examine these modes to see

if they are useful. It is useful to have an ISR mode area which holds

interrupt service routines to free the user from having to worry about

where they reside in the user area. However it is not useful, and

probably detrimental, to have the data for these tSR's reside in the ISR

mode area, since this would necessitate a large amount of communication

with the user; for example with interrupt driven input/output. It is

equally detrimental to have the data for the ISR's be in an tSR data or

stack area, since these too would be unaccessible to the user programs.

It is much more useful to have the instructions of the ISR's reside in a

private area and have the data for these routines reside 'n the user's

data area. This can be done by creating a normal instruction mode, an

TSR instruction mode and a common data mode. The common data mode can

further be broken into the normal data mode and the stack mode.

There are then four modes considered to be useful; the normal

instruction mode, the ISR instruction mode, the data mode and the stack

mode. Reasonable combinations of these modes can be used to create a

system with two, three, or four modes. Not all modes can be created

with every microprocessor. Also the amount of external hardware required

for identifying a particular mode varies a great deal with the different

microprocessors. By creating n modes from microprocessor status

information, n mode areas, each an address space of size 2m, may be

differentiated. If n=2X, then this is like adding x bits to the

microprocessor address, giving a total effective memory space of
(m~x)

2(m+ x) words. If a memory expansion factor, MEF, is defined as the

total expanded memory space using modes divided by the original address

8

space, then using n modes yields a memory expansion factor of n. Even

with only two modes this is an appreciable gain of logical memory space.

In some cases however it may not be advantageous to use modes to

differentiate between mode areas which are entire address spaces.

Consider a system with a single microprocessor which must assemble and

load its own programs. A problem arises in that this microprocessor

cannot write in its logical instruction mode area. If it is assumed

that the assembler program is in the instruction mode area and the

source program is in the data mode area, then the microprocessor can

assemble the source program and store the object program in the data

mode area. This presents no problems until it is time to run the object

program. Now the object program should be in the instruction mode area

in order to run. It is however in the data mode area. One solution

would be to simply have a way to exchange the physical instruction mode

and data mode areas, but this is not a complete solution. During

assembly some constants may be generated and these are data and must

reside in the data mode area when the object is run. However after the

instruction mode and data mode areas are exchanged, they will reside in

the instruction mode area and therefore cannot be accessed as operands.

In such a case the mode information can be used to create separate

mode areas whose sizes are a subset of one address space. The two mode

areas are now of size 2m-a, where O<s<2 M . There then exists a

remaining space of size s, which can be shared by all modes. This space

is called the common area. Now the assembler can reside in the present

instruction mode area, and the source-program in the data mode area. As

the source is assembled, the object program will be stored in the data

mode area, and all constants can be stored in the common area. When the

exchange of instruction mode and data mode is made, the constants are

still accessible in the common area.

The method by which the common area is distinguished from the mode

areas is to use high order address bit(s) to determine whether or not

mode information is to be enabled. For example, assume that the high

order address bit A is used to determine whether or not to enable

modes. Then three areas are created, each of size 2m
- 1 words. One area

is used when Am1 1=1 and mode = instruction mode. Another area is used

when A M1=1 and mode = data mode. These are the mode areas. The

remaining area, the common area, is used when Am_1=0, no matter which

mode is in effect. Figure 2.1 shows the memory map for this particular

example, assuming m=16.

O7FFF OFFFF 1FFFF

area area
common for for
area inst. data

mode mode

00000 08000 18000

Figure 2.1 Logical memory space of two mode system with m=16

(addresses in hexadecimal).

1
!

10

The size of the common and mode areas can be made larger or smaller

by changing the number and the use of the high order address bits. When

the common area size is increased, the mode area sizes are decreased and

vice versa. Assume that the three high order address bits

Am_ 1 Am-2Am-3 are used to determine mode usage. In this case

many different common area and mode area sizes can be obtained. If the

common area is used only when A A A =111, then the common area
rn-1 M-2 m-3

will be of size 2m
- 3 and each of the mode areas will be of size

2M-2m 3=(7 /8)*2
m . If however the common area is used when

Ar- m-2 Am-3111, 110 or 101, then the common area will be of size

m-3 m-
302 , and the mode areas will each be of size 2 m-(3 02 m3) . Using more

or less of the combinations of AM-1Am-2Am-3 to enable the modes effects

the sizes of the common area and the mode areas.

Figure 2.2 shows a logical implementation of the mode enabling

circuitry for a system with four modes, using three bits with the

combinations 000, 001, and 010 to designate the common area. When any

of these three combinations appear, the added address lines Am+IA m are

forced to 0 and the common area is referenced. When any other

combination of bits Ami Am-2Am-3 appear the outputs of the encoder are

gated to Am+1Am . Figure 2.3 shows where in the logical memory space the

common area and the specific mode areas reside, assuming m=16.

The exchanging of modes can be done by using a small programmable

random access memory to map the outputs of the decoder into the added

address lines Am 1 A m . Figure 2.4 a) shows the logic for a two mode

system, and figure 2.4 b) shows the logic for a four mode system. This

logic is inserted in the dashed box labeled mapping in figure 2.2. The

I

IA 11

Aml1

A a-

(mapping)AA

ModeI I m

Mode 2 to2IMode 3 EncoderAA1
Mode L =+I -.- 'A~

I J

Figure 2.2 Mode enabling circuitry for four modes with combinations
000, 001, 010 signifying common area.

OFFFF 1FFFF 2FFFF 3FFFF

mode 1 mode 2 mode 3 mode 4
area area area area

06000 16000 26000 36000

common
area

00000

Figure 2.3 Logical memory space of above mode system
(address in hexadecimal).

12

map is written as an output device and the system is responsible for

changing the map contents. By changing the map, each mode area can

reside in any logical mode frame. This flexibility is necessary on a

system which must assemble its own programs and/or load its own memory.

SX2

data encoder out 1 A

encoder out 2 2 m

data 1 A
data 2 2

M+ !

encodr outmutJ f i

,, l adI

a) b)

Figure 2.4 Mapping hardware for systems with a) two modes
and b) four modes.

It is possible to derive generalized equations for the sizes of the

common area and the modes areas. Using these equations a generalized

memory expansion factor can be obtained. Let n be the number of modes

that can be obtained from microprocessor information. Also let b be the

number of high order address bits used, with c combinations of these b

bits signifying a reference to the common area. Then the common area is

of size c.2m-b words, and each mode area is of size 2m-(c0 2m-b) words.

The total memory space accessible under these constraints is

(c*2mb)+(r*(2m-(c*2m'b))) words. Simplifying this equation and

LI

13

dividing by 2 m gives a memory expansion factor of

MEF=n-((n-1)Oce2"b1. (2.1)

In the above example of two modes and one combination of one bit, namely

AM1 0, used to reference the common area, the values of the variables

are n=2, b=1, and cW1. Substituting these values into equation 2.1

gives an MEF of 1.5. This can easily be seen to be true in figure 2.1.

Table 2.1 lists some representative values of n, b, and c, and shows the

resulting common area size, mode area sizes, and memory expansion

factor.

2.3 Implementing Modes on Microprocessor Systems

The concepts discussed in section 2.2 are applicable to a large set

of microprocessors. The specific microprocessors examined however will

be limited to the Intel 8080, the Motorola 6800, and the Zilog Z80

microprocessors, all commonly used in industry today. They all have a

limited address length of 16 bits, resulting in an address space of 64K

bytes. In most systems using these microprocessors, the total logical

memory space is equal to the address space. In many applications this

may be inadequate and thus there exits a need to increase the logical

memory space of these microprocessors.

La the preceding section some useful modes were discussed; the

mormal instruction mode, the interrupt service routine (ISR) instruction

mode, the data mode, and the stack mode. To ootain these modes certain

processor information must be present. It must be possible to

14

TABLE 2.1 Some values of n, b, and c and the corresponding

memory area sizes and MEF (m=16).

mode area common area
n c sizes sizes MEF

modes (K words) (K words)

1 1 32 32 1.500

2 1 48 16 1.750
3 16 48 1.250

2
1 56 08 1.875

3 3 40 24 1.625
5 24 40 1.375
7 08 56 1.125

3 32 32 2.000

2 1 '48 16 2.500
3 16 48 1.500

3
1 56 08 2.750

33 40 24 2.250
5 24 40 1.750
7 08 56 1.250

1 1 32 32 2.500

2 1 48 16 3.250
3 16 48 1.750

4
1 56 08 3.625

3 3 40 24 2.875
5 24 '40 2.125
7 08 56 1.375

15

differentiate between an instruction fetch and a data reference, between

a normal data reference and a stack reference, and between a normal

program instruction fetch and an instruction fetch while running an ISR.

It will not be possible to get all this information out of every

microprocessor. Therefore some microprocessors are not capable of

supporting four modes, but may support less than four modes.

2.3.1 Modes in an Intel 8080 System.

One microprocessor capable of supporting all four of the previously

defined modes is the Intel 8080. Each 8080 memory reference takes one

machine cycle which is broken up into three to five states [1]. During

the first state of every machine cycle a processor status word is output

on the data bus. This status word can be latched and used to determine

the proper mode for each reference. Some of the information included in

the status word is an interrupt acknowledge signal (INTA), a stack

reference signal (STACK), and a signal called M1 which indicates the

fetch of the first byte of an instruction. STACK can be used directly

as the stack mode signal. The rest of the mode signals however must be

generated using external hardware.

To determine when an instruction fetch is being done, M1 must be

used. Whenever M1 is present an instruction fetch is being done, but M1

is not present during the fetch of succeeding instruction bytes of a

multiple-byte instruction. The opcode of the instruction will be

present on the data lines during state T3 of cycle M1. This opcode can

I

be externally decoded by a 256 X 2 read only memory (ROM) to determine

the length of the instruction. A counter can then count the number of

memory references after each M1 cycle. Using this counter, M1, and the

ROM outputs, an instruction byte fetch can be identified. A data mode

signal can now be generated by (not instruction fetch) AND (not STACK).

To determine whether an instruction byte fetch is a normal

instruction fetch or an ISR instruction fetch, a way must be found to

tell when an LSR is being run. When the first byte of an ISR is

accessed, the INTA bit of the status word is one. This can be used to

set a flip-flop which holds the ISR information. When the flip-flop

output is one an ISR is being run. The flip-flop needs to be reset

after the ISR has completed running. This can be done by creating a

special location somewhere within the ISR instruction mode area which

when referenced resets the flip-flop and returns the opcode for the RET

(return) instruction on the data bus. To exit the ISR instruction mode,

a JMP is done to this location. The RET causes the program which was

running before interrupt to resume. ISR instruction mode can now be

generated by (instruction fetch) AND (ISR flip-flop set), while normal

instruction mode is indicated by (instruction fetch) AND (ISR flip-flop

not set).

All four mode signals are now generated and two extra address bits

can be formed as in section 2.2. Again, unless the system's programs

and data are down loaded from a host system, there should be hardware to

create a common area. This hardware is straight forward as in section

2.2 and will not be cetailed in this section.

17

2.3.2 Modes in a Zilog Z80 System.

The Z80 microprocessor is to a large extent an enhancement of the

8080, and therefore the generation of mode signals with a Z80 system is

very similar to that of an 8080 system C23. Howeve.: only three modes of

the four considered can be obtained in a Z80 system. The Z80 does not

output a processor status word. Instead the status is indicated by

certain output signals on the microprocessor's pins. The 8080

implementation of four modes required the STACK, INTA, and M1 bits of

the processor status word to generate the mode signals. No indication

of a stack reference can be obtained from the Z80 and therefore the

stack mode cannot be created. However M1 is an output pin of the ZSO

and INTA can be generated by ANDing the IORQ (input/output request) and

M1 output pins, so ISR instruction mode and normal instruction mode can

be generated as in the 8080 case.

The third mode created with the Z80, namely the data mode, contains

the stack mode and normal data mode of the 8080 system. The data mode

signal is simply generated when an instruction byte is not being

fetched.

2.3.3 Modes in a Motorola 6800 System.

The Motorola 6800 microprocessor does not externally supply any

processor status information necessary to create modes [31. Therefore

this microprocessor is not readily applicable to the mode method of

increasing the logical memory space, for it would require an extreme

amount of external hardware.

2.4 Segmentation

A second way of increasing the logical memory space is to define

segments which are copies of the address space or subsets of the address

space, just as modes were. However moving from one segment to another

is more difficult and must be better defined than moving between mode

areas. To differentiate between segments, a segment register exists.

This register holds a pointer to a segment frame in logical memory. The

number of segments in logical memory is determined during system design.

Segments differ from modes in that the user must be very conscious

of segments. in the mode method of section 2.2, the user only had to be

sure his program would fit in the instruction mode area, his data would

fit in the data mode area, etc. Switching between modes was done

transparent to the user. But with segments, the user must be aware of

when a segment switch should be made, and in fact he should request the

switch. Therefore he must structure his programs accordingly. This is

most easily done by breaking up the program into subroutines. 1ach

subroutine can reside in a separate segment or many subroutines can

reside in one segment. ideally each subroutine should reside entirely

within one segment to minimize the overhead of switching between

segments.

' i m • IN i i iI

19

The segment size can be as large as the address space of the

processor, but as with modes this may create some problems. One of the

problems with segmentation is how to switch execution between segments.

What is desired to be done is to first change the segment register, and

then jump to a particular entry point in the nea segment. However if

this is to be done with code in the old segment, then after the segment

register is changed, the new segment is already the current segment and

the jump instruction in the old segment cannot be executed. This is not

a problem if the program counter of the microprocessor after executing

the change segment instruction is equal to the desired entry point of

the new segment, but requiring this would create extremely awkward

segment switching with high overhead. Even if this is tolerated, there

is still a problem with parameter passing.

The solution to these problems is to have a segment size which is a

fraction of the total address space, and allow more than one segment to

be accessible at once. This is typically done by having a base segment

and a current segment concurrently accessible. The base segment is

always accessible and contains the necessary routines and storage tor

parameter passing, current segment switching, system management, and

possibly the user's global variables. The current segment is the user

segment which contains the subroutine(s) and local variables for the

subroutine(s). The sizes of the base and current segments can be fixed

or dynamic depending on the implementation.

There are two ways to define segments. One way is to require that

all segments are disjoint and the other way is to allow overlapping

segments. The implementation and concepts of the two are different.

20

2.4.1 Overlapping Segments

There are two possible reasons for allowing overlapping segments:

a) to allow sharing between two adjacent segments in logical memory, and

b) to minimize fragmentation in a fixed segment size system. Sharing is

not a valid reason because the sharing due to overlapping is only

between adjacent segments. Any sharing or switching between nonadjacent

segments requires a base-current segment system. This base-current

segment system already can share and switch adjacent segments.

Therefore sharing between segments is not a good reason for allowing

overlapping segments.

Minimizing fragmentation is a marginally acceptable reason for

having overlapping segments only in a system which has fixed size

segments. if a subroutine requires only one half of a segment and no

other subroutines exist which have size less than or equal to one half

of a segment, then allowing overlapping segments would permit the next

segment to begin right after the one half segment subroutine, thus

saving one half of a segment from being wasted. However the price paid

for saving this otherwise fragmented memory may be too high to pay.

To implement overlapping segments, the segment register must be

able to reference any location in the logical memory space. This

requires a long register. Also the contents of the segment register

must be added to the processor address for every memory reference. This

requires a large adder and may introduce a significant amount of time

overhead for each reference. This reduced system performance, and the

extra hardware necessary may be too high a price to pay for reducing the

logical memory fragmentation.

[.

21

It is important to note that any segmentation system which is used

with a two-level virtual memory system using paging will only have this

large fragmentation problem in the virtual space. The largest fragment

in physical space is only one page. In most real applications the large

virtual space created with segments will be used with a two-level

hierarchy memory system with paging. Therefore the fragmentation reason

for overlapped segments is not a strong one.

2.4.2 Disjoint Segments

Overlapping segments were justifiable only in a fixed segment size

system. However disjoint segments can be either fixed size or variable

size. Fixed size segments on a system with only a one-level physical

memory can result in a large amount of fragmentation of the logical

memory space. Variable size segments can prevent this fragmentation,

but are costly to implement.

To implement variable size segments, the system must be capable of

storing the starting address of a segment (which could be any location

in memory) and the length of a segment in a hardware register. Each

memory reference must generate an address by adding the processor

address to the segment's starting address as in the overlapping segment

case, and also check to see if this processor address is within the

segment. These two operations can be done in parallel, but some time

overhead still results and a significant amount of hardware is

necessary. This extra time and hardware is probably not justified by

the saving of otherwise fragmented logical memory.

22

The most straightforward and easy to implement segment system is

one that uses fixed size, nonoverlapping segments. If the size of the

segments is a power of two, then no addition is necessary and the

contents of the segment register can simply be concatenated with a part

of the microprocessor address. Figure 2.5 shows how a system of this

type might be implemented. The segment register is addressable as an

I/O port. Thus it can be changed under program control.

{0

Xeen bits (M-) bit .rocessor
reg ister iit address

.4 0

2 to 1 i
x bit sel M-,4
Mux

xlogical
x bits (n-) bits address

Figure 2.5 Basic segment system with 2x segments of size

2 M -1 words each.

The microprocessor address length is m bits and the high order bit

AM_1 is used to determine whether the base segment or the current

segment is being referenced. The segment register is x bits long

23

permitting 2x possible segments. Segment 0 is the base segment and the

next 2x-1 segments are user segments. All segments are of size 2m -1

words. There is only the small multiplexer delay between the time the

processor address is valid and the time the logical address is valid.

This will probably not result in any time overhead.

As in the mode method of increasing the logical memory space, the

sizes of the base segment and user segments can be different by using

more high order address bits and different combinations of the bits to

determine whether the base or current segment is referenced. Again as

the size of the base segment decreases the user segment sizes increase

and vice versa. The memory expansion factor (MEF) as previously defined

is for this system
MF=Cc*2 (m-b) +((2 x.)*(2m_(c*2 (m-b))))]/2 m .

This simplifies to

MEF=2x- (2x-2),c,2 " b -

where b and c are defined as they were in the mode system with b being

the number of high order address bits used to determine base or current

segment and c being the number of combinations of these bits signifying

a reference to the base segment. Table 2.2 gives some segment sizes and

MEF's for representative values of b, c, and x.

24

TABLE 2.2 Some values of x, b, and c and the corresponding

segment sizes and MEF (m=16).

user seg. base seg.
x b C sizes sizes MEF

(K words) (K wo s)

1 32 32 2.00

2 1 48 16 2.5O
3 15 48 1.50

2
1 56 08 2.75

3 3 40 24 2.25
5 24 40 1.75
7 08 56 1.25

1 1 32 32 4.00

2 1 48 16 5.50
3 76 4.9 2.50

3
1 56 08 6.25

3 3 40 24 4.75
5 24 40 3.25
7 08 56 1.75

1 1 32 32 3.00

2 1 48 16 11.50
3 16 48 4.50

1 56 08 13.25
3 3 40 24 9.75

5 24 40 6.25
7 08 56 2.75

1 32 32 16.00

2 1 48 16 23.50
3 16 48 3.50

5
1 56 08 27.25

3 3 40 24 19.75
5 24 40 12.25
- 08 56 u.75

25

2.5 Uses of Modes and Segmentation in New
Microprocessors

Currently there are three major manufacturers of advanced

microprocessors; the same three who manufacture the "standard" eight bit

microprocessors: Zilog, Motorola, and Intel. These advanced

microprocessors have at least 16 bit data paths and increased addressing

capabilities. The new generation microprocessors are the Zilog Z8000,

the Motorola 68000, and the Intel 8086.

Of the three the one most directly utilizing modes and segmentation

is the Zilog Z8000 £4]. In the Z8000 references to input/output and

memory are references to separate memory spaces. The input/output space

is 64K words long, while the memory space is broken up into as many as

six mode areas, each an address space of length 64K words on the 40 pin

version, and each a segmented memory space of up to 8 Megawords on the

48 pin version (the Z8000 comes in two versions, one for small systems

and one for medium to large systems). These address spaces are

referenced under the following modes: user instruction, user data, user

stack, system instruction, system data, and system stack modes. As was

pointed out in section 2.2 for interrupts, the system data and system

stack modes are not necessarily useful.

The Z8000 uses segmentation on the 48 pin version. There are seven

segment bits in the processor address which means that there are

possibly 128 64K word segments. The address space as previously defined

is, for the 48 pin version of the ZS0OO, the addressable space after

segmentation since segmentation is done internal to the microprocessor.

Therefore each segment is not equal to an address space as previouslyI
I

26

defined. However segmentation internal to the Z8000 is implemented as

nonoverlapping fixed size segments of length 64K words. All address

arithmetic is done in 16 bit quantities so that the same arithmetic unit

that is used for data can be used for addresses. The segment register

is not affected by the address arithmetic. Therefore the internal

segment implementation of the Z8OO is very much like that discussed in

section 2.4. go base segment is necessary, however, since each

instruction can specify an entire address including the segment number

and thus switching segments and passing parameters can be done directly.

The Intel 8086 implements segments slightly different than the

ZO00 [5]. Like the Z8000, 16 bit arithmetic is done and therefore

segments are 64K words long. However unlike the Z8000, the 8086 uses a

16 bit segment register in address calculations. The most significant

16 bits of a 20 bit address are represented in this segment register.

This is equivalent to having a 20 bit segment register with the 4 least

significant bits equal to zero. The 8086 thus uses 64K word segments

which may overlap, but which begin on boundries that are multiples of

16. Or another way to interpret this is that there are 216 disjoint

segments each of size 16 words. Figure 2.6 shows the microprocessor

address generation of the 8086.

The 8086 also allows four modes; the current code, current data,

current stack, and current extra modes. These modes are used internally

to pick one of four segment registers which is then used to generate the

processor address.

27

2 43 0l I ' offset
effective address adess

memo ~ ades lhaddress

15 0
segent register 0 0 J 0

16' 16-

adder 1

memory address latch adresso

Figure 2.6 Memory address generation of the Intel 5086.

The Motorola 68000, as understood from available information, seems

to have 2 modes: a user mode and a supervisory or system mode [6]. The

mode is externally indicated so that separate address spaces can be

created, or address translation can be disabled in system mode.

Variable length segmentation is utilized in an architecture specified

memory management scheme. Not much specific literature is available on

the 68000, so the details of this segmentation are not known.

1

28

2.6 Multiple Microprocessor Systems

When more than one microprocessor is used in a system, each with

its own instruction and data streams, there are a couple of ways in

which the total logical memory space of the system can be defined. Each

microprocessor can address the same memory space. Then two

microprocessors with the same address will access the same memory

location. In this type of system sharing between microprocessors is

trivial, but protection and contention become significant problems. The

more microprocessors in the system, the less memory space each

microprocessor can privately access.

The other way of defining the total logical memory space is to have

each microprocessor's memory space be a separate space. If there are y

identical microprocessors in the system, then the total logical memory

space of the system becomes y times the total memory space per

microprocessor, The separate spaces are accessed by appending a

processor number to the microprocessor address, thereby extending the

system address length. Protection is enhanced in this type of system.

Sharing can be accomplished by mapping the logical processor address of

two microprocessors into the same physical address. This also allows

more flexible sharing than having the microprocessors access the same

logical address because the two logical microprocessor addresses need

not be equal to be mapped to the same physical address.

29

2.7 Concluding Remarks

The use of external hardware is a real solution to the memory

addressing problems of the current microprocessors with 16 bit

addresses. Segmentation can be used by any microprocessor, but its use

is not transparent to the user. Access modes are transparent to the

user, but cannot be used by all microprocessors. Table 2.3 shows the

relative difficulty of implementing the four modes presented on the

three popular microprocessors.

Even with the advances in technology that have been experienced

recently, the amount of logic that can be put on a chip is still not

limitless. Therefore manufactures are using techniques similar to those

presented in sections 2.2 and 2.4 to minimize the internal logic of new

microprocessors, especially in respect to busses and address arithmetic.

30

TABLE 2.3 Relative dilfficulty of using each of' the f'our modes

on the three microprocessors examined.

microprocessor data mode inst. mode stack mode :SR mode

Intel 8080 moderate moderate trivial moderate

Zilog Z80 moderate moderate extreme moderate

Motorola 6800 extreme extreme extreme extreme

31

CHAPTER 3

Handling Page Faults On Microprocessor Systems

3.1 Introduction

Virtual memory is a well known and proven technique of implementing

a large logical memory space with a good speed, cost per word compromise

[7,8]. Implementation on a single large processor system has been well

studied and is fairly .raightforward. However, microprocessor systems

present some significant problems for virtual memory implementation.

This chapter investigates the problem of handling page faults on

microprocessor systems, and goes on to discuss ways to handle interrupts

on microprocessors designed to be used in 4irtual memory systems.

Ideally it is desired to immediately interrupt the m <'rocessor

on the occurrence of a page fault. There are two levels on which

interrupts may be handled [151. The first and most common level is the

32

machine level interrupt. In this level interrupt requests are tested

for only before the machine instruction fetch cycle. This method

guarantees that an interrupt can occur only after the machine

instruction is completed and before a new instruction starts.

The second level of handling interrupts is the control (or

microprogram) level. In this level interrupts are tested for as often

as once every microprocessor clock cycle. This method allows interrupt

requests to be handled quickly before the CPU state changes, but

requires that restrictions be placed on the control and interrupt

mechanisms. These restrictions are due to the extra CPU information

which must be saved, and the timing of the microprocessor.

The current generation of microprocessors can only be interrupted

on the first level; the machine level. This is a severe inadequacy when

the microprocessor is to be used in a virtual memory system.

Section 3.2 investigates the handling of page faults on current

microprocessor systems. 3.2.1 looks at a method which does not use the

interrupt capability of the microprocessor at all, and 3.2.2 looks at

the constraints placed on a virtual memory system by a current

microprocessor with only machine level interrupts. The methods

suggested are very restrictive and certainly a microprocessor designed

for use in a virtual memory system could do better. Section 3.3

explores the internal requirements of the control level interrupt

capability necessary on a microprocessor suited to supporting virtual

memory.

I

33

3.2 Handling Page Faults with Current Microprocessors

3.2.1 Without Interrupts - Waiting

One method of handling a page fault on microprocessor systems is to

simply have the microprocessor go into a wait state until the needed

page is brought into memory £9]. The concept is to, on a page fault,

have the page checking hardware force the microprocessor into a wait

state and inform the system of the fault. After the page fault is

serviced, the microprocessor is allowed to exit its wait state and

continue as if nothing happened. Therefore to the microprocessor a page

fault is nothing more than a very slow memory reference. This technique

can only be used when two important requirements are met: 1) the

microprocessor is capable of waiting an indefinite amount of time before

the memory reference is completed, and 2) the system has the capability

to handle the page fault independent of the main microprocessor.

Only some microprocessors are capable of waiting indefinitely for

the completion of a memory reference. This wait is normally initiated

by an external processor signal which is controlled by the referenced

memory. Two microprocessors with the wait state capability are the

Intel 8080 and the Zilog ZSO [1],[21. The external processor signal on

the 8080 is the READY line while on the ZSO it is called the WAIT line.

Pulling this line low before a specific time in state T2 of a machine

cycle will cause the microprocessor to go into a wait state. Returning

the line to high after a particular time in the wait state allows the

microprocessor to complete the machine cycle.

I

34~

One possible problem with waiting for a page fault recovery on

these microprocessors is that the decision of whether or not to wait

must be made in a relatively short amount of time. On both the 8080 and

the ZSO this decision time is about one clock period from the time the

address bus is stable. This may be as short as 320 ns which is not

sufficient to check maps for page availability unless high speed logic

is used. One way to extend the decisicn time is to automatically insert

one or more wait states after the Ti state of each machine cycle, which

would add extra clock periods to the decision time. This however would

also degrade the performance of the system and should be avoided if

possible.

There are a couple of reasons for not handling page faults on a

microprocessor system by going into a wait state. One reason is that

many microprocessors are not capable of waiting indefinitely for the

completion of a memory reference. One such microprocessor is the

Motorola 6800, which cannot go into a wait or idle state in the middle

of an instruction [3]. The memory response time can be extended

slightly by stretching the clock signals, but only to a maximum of U us

before internal processor information is in danger of being lost. This

is clearly too short a time period for a page swap to be made. Thus the

Motorola 6800 and all other microprocessors not capable of going into an

indefinite wait state in the middle of a memory reference are not

capable of handling page faults by waiting.

A second reason for not handling a page fault by waiting is the

second requirement that the system be capable of doing the page fault

servicing independent of the main microprocessor. To service a page

35

fault some processing is required to determine what page to replace,

whether the replaced page should be written back to secondary memory,

where the desired page resides in secondary memory, and also to update

the virtual memory maps. The system must be capable of processing a

page fault independent of the main processor. This means that there

must either be a host system to do page swapping and map updating, or

there must be a separate processing unit dedicated to virtual memory

page fault routines and map management. In a single processor

microcomputer system it may not be desirable to add a separate

microprocessor dedicated to handling system management.

The reason the main processor is not capable of processing the page

fault is that it must be in the wait state the entire time the page

fault is being processed. It cannot execute any instructions until the

current instruction is completed, but the current instruction cannot be

completed until the page fault is resolved. So processing time is

wasted while the microprocessor is in this wait state.

3.2.2 Handling Page Faults with Machine Level Interrupts

A second way of handling page faults on current microprocessor

systems is to have the page fault generate a machine level interrupt.

Since the instruction causing the page fault must complete ,'are the

interrupt request is acknowledged, its result is computed with invalid

data and it must be re-executed. It will be shown that this completion

with false data and re-execution of the instruction is costly.

U "

36

In order to re-execute the instruction, certain information about

the state of the machine must be saved. The address of the first word

of the instruction and the page number of the missing page must be

saved. The quickest and easiest way of saving this information is to

use hardware registers. The instruction address is stored during the

fetch of the first word of every instruction until a page fault occurs.

Then the storing of this register is disabled and the register contains

the desired restarting point. After the page fault is processed the

restart adress is obtained and the loading of this register is again

enabled. The page number is similarly stored in a hardware register

which is loaded with the proper address bits when a page fault occurs.

When a page fault occurs the completion of the current instruction

must be correctable. This means that the completion and re-execution of

this instruction cannot affect its result. This requirement results in

the following restrictions [10].

First, multiple word instructions should not cross page boundaries.

The first word of an instruction contains the opcode, while the

following words normally contain either immediate data or an operand

address. Faulty immediate data can cause the alteration of an internal

register in a way which makes recovery impossible. A faulty operand

address could result in the modification of memory and this cannot be

allowed.

A second restriction is that the data returned by the faulty memory

reference must be forced to a value which allows the largest number of

instructions to be re-executed. Any instructions which cannot be

correctly re-executed must be prohibited. The prohibited instructions

II

37

can probably be converted by macros in the assembler or compiler into a

sequence of allowable instructions and thus this prohibiting of

instructions can be kept transparent to the user. With microprocessor

instruction sets, normally only a small number of instructions will have

to be prohibited. Anderson and Lipovski show that if the data lines of

an Intel 8080 based system are forced to zero when a page fault occurs,

only three instructions need be prohibited [10].

The third restriction is that whenever the microprocessor is

running a program which resides in virtual space, interrupts must be

enabled. This is an obvious restriction since if it is not possible to

inform the microprocessor of the page fault, the microprocessor

will continue executing using false data, and it will generate false

results.

A final restriction is that a normal stack reference cannot be

allowed to cause a page fault interrupt. Most microprocessors react to

an interrupt by PUSHing at least the program counter (PC) onto the

stack. Following a stack reference page fault this would also cause a

page fault resulting in an endless loop. Anderson and Lipovski suggest

solutions to this problem (10]. The preferred solution for virtual

memory systems implemented with current microprocessors is to have the

current and next pages of the stack resident in main memory at all

times. This does dedicate two pages of the main memory to the stack,

but this is much more attractive than limiting the stack to one page.

From the above discussion it is apparent that with current

microprocessors it is not very easy to handle paie fault interrupts.

This makes implementing any sort of virtual memory system with these

I

38

microprocessors awkward. Depending on the system and the microprocessor

used, it may be more cost effective to increase the main memory size of

the system rather than implement virtual memory.

3.3 interrupts on Microprocessors Compatible with Virtual Memory

3.3.1 Concepts

One of the more important requirements of any computing system is

that the results of a program should not be dependent on the system

configuration or state at the time the program is executed. Thus in

order for a microprocessor to be compatible with virtual memory it must

be able to guarantee that pseudo random occurrences of page faults do

not result in invalid output. A page fault signals the system and the

microprocessor that the memory location referenced is not presently

accessible and if any dummy data is returned in response to this

reference then it is not valid. Completing the execution of the

Instruction using this dummy data can result in a change of

microprocessor state which cannot be recovered from. This of course

will cause invalid program results and must be prohibited. it is

therefore necessary to have a page fault result in the current

instruction being canceled (suspended) and re-executed (completed) after

the page fault has been ser~ticed.

39

The most logical way to have the page fault affect the

microprocessor is through the interrupt mechanism. For the purpose of

this discussion an interrupt request will be the act of a device

external to the control unit of a microprocessor signalling its desire

to have normal program execution altered, while an interrupt will be the

act of the control unit acknowledging the interrupt request and altering

the program execution. There are two types of interrupt requests:

internal and external Ell). Internal requests are due to arithmetic

results (overflow, divide by zero, etc.), control conditions (illegal

opcode, stack overflow), or memory conditions (parity error, protection

error, page fault). External interrupts are generated by I/O devices or

other devices such as another microprocessor in a multiple

microprocessor system or an operator console. The page fault interrupt

will be treated as a special case, because these other types of

Lnterrputs can be adequately handled with present interrupt strategies.

Most small and medium scale computers today do not allow control

level interrupts. As was seen in the previous section, implementing

virtual memory on these systems is difficult and restrictive. To

understand why the choice of interrupting only between instructions is

made, the concepts of CPU state and instruction cycle must first be

defined. Cr', state is an important concept because in order to continue

execution of an interrupted program after servicing the interrupt

request, it is necessary to restore the state of the processor to what

it was when the interrupt occurred. To do this the state of the

microprocessor at the time of this interrupt 4"sz obviously be saved.

The instruction cycle is important to define because a big issue with

1
...... :-- --

40

interrupts is when they occur and the instruction cycle has been used as

the determining factor.

The term state is very loosely used with a variety of different

meanings. However the state of a CPU is normally defined by

1. the contents of all the registers within the CPU

2. the state of all control signals in the CPU hardware [12]

and will be used as such in this discussion. There are basically two

types of elements in CPU hardware. One is combinational logic and the

other is the memory element. The CPU state is made up of all of these

memory elements each of which falls into one of the above two

categories. The state of the microprocessor is therefore a large amount

of information and saving it is not a trivial matter.

The instruction cycle of a microprocessor is composed of the

actions required to fetch and execute the instruction. These actions

vary with different instructions. The composition of an instruction

cycle is typically not well defined. Ho,4ever there are certain

divisions which can be made in instruction cycles. One such division is

between the instruction fetch and the execution. Every instruction

contains these two divisions. However these are fairly broad divisions

and the instruction cycle can be futher broken down into: 113j

1. fetch instruction

2. increment PC

3. decode instruction

4. fetch operands

execute

41

Numbers 1 and 2 above constitute the previous instruction fetch division

and numbers 3, 4, and 5 constitute the execution division. Zero address

instructions do not require any operand fetch (memory reference) while

some instructions may fetch several operands.

There are of course some exceptions to this general instruction

structure. There are some newer microprocessors which include

instructions that do string operations. These instructions have

multiple operand fetch, execute cycles resulting in an instruction cycle

such as

1. fetch instruction

2. increment PC

3. decode instruction

4. fetch operands

5. execute

n-1. fetch operands

n. execute

This type of instruction will be ignored since small systems are being

addressed here and these string operations are generally found on larger

systems. Instructions in many microprocessor instruction sets are more

than one word in length. In these cases there are one or more fetch

instruction word, increment PC cycles inserted after the instruction

decode. Some microprocessors may also have auto increment/decrement

features. An instruction with one of these features would have an

increment/decrement register before or after the fetch operand cycle.

42

All instruction cycles do have the fetch instruction cycle. This

is the first thing done in an instruction. It consists of outputting

the PC onto the address bus and after a period of time inputting the

data into the instruction register. This is the one thing that has made

interrupting only between instructions such an attractive method.

Because of this common first cycle, all instructions start out with

almost the same control state. Therefore by interrupting only between

instructions, very little control state information has to be saved.

The return to a program after an interrupt routine can be, and often is,

handled in exactly the same way as a return from a subroutine call.

This is not only the easiest way of handling interrupts, but it is

also all that is really necessary for interrupts as they are commonly

used. Harold S. Stone puts it like this:

"The purpose of the interrupt system is to provide for useful

computation in place of wait loops (especially while waiting for

the completion of an 1/0 operation)." [14]

Page fault interrupts obviously do not fall into this limited purpose

and therefore any system compatible with virtual memory needs expanded

interrupt capabilities.

There are two basic issues to be resolved on page fault interrupts.

The first is wje should the interrupt be handled and the second is how

should the interrupt be handled. These two issues are fairly

independent. The issue of when the page fault interrupt should occur

has one preferred solution over the total range of possible instruction

sets, while the issue of how the page fault interrupt is to be handled

.4. ~~-wd

43

has two basic solutions, with the preferred one being dependent on the

instruction set complexity and the implementation of the CPU's control

unit.

To answer the question of when the interrupt should be handled, it

is first necessary to further explore the composition of an instruction

cycle. The CPU basically consists of a functional unit to do

operations, some registers to store operands and results, buses on which

data is transferred, and a control unit to determine what data is

transferred where and when, and how this data is operated on. The

instruction cycle is then made up of CPU clock cycles, each defining one

or more concurrent register transfers and operations.

A memory reference consists of a register transfer from some

register holding the desired address (eg. the PC) to a buffer register

commonly called the memory address register (MAR). After a

predetermined amount of time (typically one or two CPU clock cycles) the

reference is completed by loading the contents of the data bus into a

register. If a page fault occurs during this memory reference this data

is invalid and it is therefore desirable to have a page fault interrupt

prohibit the transfer of the data bus contents to the selected register.

Therefore the interrupt must be allowed to occur before this transfer

for every memory reference which is done. Typically this could be done

by allowing the interrupt to occur at a particular time during every

clock cycle, or possibly only during the last clock cycle of each memory

reference.

Ma11

44

Allowing interrupts at these points also puts a constraint on the

virtual memory hardware. If the interrupt is to be allowed before any

register gets loaded with data due to a memory reference, the interrupt

request must be generated prior to this time. This constraint is easily

met since the information which causes a page fault is normally stored

and retrieved from the same map that is used to determine the physical

address which references the data.

As stated, there are two different methods of handling the page

fault intprrupt when it does occur. The big difference between the two

is the place from where execution is continued after the page fault has

been processed. One method allows execution to resume at the beginning

of the memory reference causing the page fault interrupt, while the

other requires that the entire instruction be re-executed. The

preferred solution depends on the complexity of the CPU.

3.3.2 Re-executing the Entire Instruction

The method of re-executing the entire instruction is attractive

because it does not require the preservation of all the control

information. Preser-ing the control state is especially difficult when

the CPU control unit is hardwired since the logic is fairly random and

many of the memory elements of the control are often hard to access

cleanly. What must be preserved for the re-execution method is all CPU

state information, except the control state which is repeatable at the

beginning of each instruction, which can change during the course cf any

45

instruction of the instruction set prior to the last memory reference

data transfer of that instruction. This typically includes all of the

user accessible registers; all condition registers; virtually all

information which must be protected while calling and running a

subroutine.

This information must be preserved such that the re-execution of

the current instruction due to a page fault will not alter its results.

Generally this may require a temporary duplicate set of all of these

registers, which are loaded with the contents of their corresponding

user accessible registers at the start of each instruction. However

only those registers that are changed in a way which would cause false

results upon re-execution must be saved in temporary duplicate

registers. For example, any register which is only irrevocably changed

after the last memory reference of any instruction need not be saved

since a page fault cannot occur between the time the register is changed

and the time the instruction ends. Also any register which is only

changed by being loaded from memory need not be saved since re-execution

would simply reload it.

It also may not be necessary to save all registers whose contents

can be irrevocably changed by any instruction. Assume that there are m

registers whose contents are modified in one or more instructions of the

instruction set. Now suppose that at most, n of these m registers are

" modified during any single instruction. Then only n additional

registers are needed to preserve the state of the microprocessor while

executing an instruction. Some obvio., registers which must be stored

for every instruction include the PC (program counter) and the SP (stack

I

46

pointer).

One drawback to this method is that it is limited in the complexity

of the instruction set of the CPU with which it is implemented. This is

because certain more powerful instructionc not only alter the CPU state

but also the main memory in a way in which re-execution would cause

false results. Consider an instuction which could have a page fault

occur after loading a register from memory and writing this same memory

location. Proper re-execution is impossible by this method since after

the register is restored to what it was prior to this instruction, the

correct contents of the memory location is lost. This is typical of

string operations. Thus the instruction set of a CPU with such an

interrupt handling method is restricted. This restriction may not be

serious for some microprocessors however.

Consider the Intel 8080 microprocessor [Ij. !ts instruction cycle

is broken up into machine cycles which may or may not include a memory

reference (only one instruction in the 8080 instruction set has machine

cycles which do not include memory references). Each machine cycle is

broken up into states (Ti's). The memory reference of a machine cycle

is initiated during Ti and the data transfered to a register during T3.

The preferred time to allow interruption is during state T2 of every

memory referencing machine cycle. Then by saving the PC and SP at the

beginning of every instruction, all instructions of the instruction set

could validly be re-executed. Thus it is seen that for less powerful

instruction sets, the re-execution of the entire instruction is an

attractive method of handling these page fault interrupts.

47

3.3.3 Cintinuing Execution with the Interrupted Memory Reference

The second method of handling interrupts is to resume execution of

the interrupted instruction at the last memory reference before the

interrupt. This allows a more powerful instruction set, but also

requires the saving of all CPU control state information at the

beginning of each memory reference. This requires temporary control

registers to save the state of the control memory elements. The main

advantage of this method is that any instruction can be treated in this

manner, allowing arbitrarily powerful and complex instruction sets.

The implementation of this method may or may not be realistic,

depending on the complexity of the control unit. In a CPU with a

straightforwardly implemented microprogrammed control unit, all that may

be necessary is to additionally store the microprogram counter. In more

complex microprogrammed control units it may be necessary to save a

microprogram scratchpad register set and/or stack. On microprogrammed

control units with subroutines, it may be possible to just PUSH the

current microprogram counter onto a return stack. The implementation

varies largely with the control unit realization.

Due to the complexity and overhead of interrupting in the middle of

an instruction, it may be advantageous to have two distinct interrupt

types. One would interrupt only between instructions, while the other

could interrupt in the middle of instructions. In this way interrupt

requests whose sources do not affect the result of the current

instruction could be handled between instructions, thereby avoiding some

costly overhead.

48

3.3.4 Stack Issues

One problem which must be resolved under either of these methods is

where to save the CPU state information which must be preserved. In a

system with only one stack, the information could be PUSHed onto the

stack. Then however stack references could not be allowed to cause page

faults. This is for the same reasons as were discussed in section 3.3.

.n systems with more than one register allowed as the stack pointer, or

even a memory location allowed as the stack pointer, the solution of

section 3.3 of keeping the current and next closest stack pages in main

memory would be unrealistically complex and time consuming. In these

cases, and generally, it may be preferrable to reserve a resident part

of main memory for storing CPU state registers during a page fault

interrupt. Some resident memory is already necessary to store the page

fault routine since servicing a page fault must not cause another pae

fault. Since this must be a fixed size portion of memory only a few

concurrent page faults (from different tasks) should be allowed.

3.4 Concluding Remarks

In this chapter it has been shown that implementing a virtual

memory system on current microprocessors is extremely difficult and

costly. It can be done for some 3 bit microprocessors such as the Intel

3080, but it is very restrictive. The more oowerful instruction sets of

the newer microprocessors are going to make it much harder and

1.

4~9

more costly to implement. Therefore new microprocessors should be

designed with extended interrupt capabilities in order that they may

better support virtual memory systems.

The large addressing capabilities of new microprocessors dictate

that systems of the future will use virtual memory. This will require

control level interrupt capabilities. Designing a microprocessor with

control level interrupts has been shown to be a fairly reasonable task.

With the wide spread and almost complete use of microprogrammed control

units, this task is made even easier.

50

CHAPTER 4

Address Mapping On Microprocessor Systems

4.1 Introduction

One of the key components of any virtual memory system is the

translation of the processor generated virtual address into the physical

address sent to the main memory. The hardware which accomplishes this

is called the address mapping hardware due to the fact that this

translation is a mapping frcm virtual space into physical space. This

address mapping has been thoroughly studied with respect to large

microprocessor systems [71,[8]. However the cost and implementation of

microprocessor systems affect some of the design tradeoffs of address

mapping. Section 4.2 will present the basic principle of address

mapping.

51

Section 4.3 will develop the basis for desiring to have this

mapping done by a single chip called the memory management unit (MMU).

Section 4.4 will develop the M4KU concept and try to investigate what

features should be included in this chip. Section 4.5 will discuss some

issues of mapping in a multiple microprocessor system.

4.2 The Basic Principles of Address Mapping

The virtual and physical memory spaces of a virtual memory system

are normally divided into fixed size blocks, called pages. Assume that

each virtual and physical page is of length 2r words, that the virtual

space is composed of J=2 pages, and that the physical space is composed

of K=2 k pages. For virtual memory to be effective J>>K must be true.

Each page in physical memory potentially holds a virtual page and is

thus called a page frame. Figure 4.1 a) shows the virtual and physical

memory spaces and figure 4.1 b) shows the corresponding addresses. Some

of the obvious design considerations involved with paging are page size,

number of virtual pages, and number of physical pages. These are

application dependent and will not be discussed in this paper. Matick

[7] and Denning (8] explore some representative cases.

The purpose of address mapping is to provide the translation of the

virtual address of the microprocessor to the physical address needed by

the main memory, and also to determine if the referenced page resides in

main memory. The basic scheme for this is shown in figure 4.2. The map

can either be a lookup table called an indexed page table, with Ji
I

52

virtual smaceII R
rphysical space

ords

pages p- pages

a)

k bits r bits ua:

vrtual page number word

1 bits r bits rysical
___________________________ ress

physical page number wcrd

b)

Fizure 4.1 The memory spaces (a) and addresses (b) of a
virtual memory system.

53

entries, one for each virtual page, or it can be an associative (content

addressable) table with K entries, one for each physical page frame.

The entries in the indexed table would contain the physical page number,

a presence bit, and some other control information while the associative

table entries would contain a virtual page number, a physical page

number, and some other control bits.

k bits r bits address

page
faul.t "ap

I bits r bits laddress

Figure 4.2 Address translation of a virtual memory system.

The presence of a virtual page in physical memory is simply determined

by testing the presence bit in the indexed table implementation of the

.

54

map, while it is determined by an associative match of the virtual page

number in the associative table.

Each of these two methods has its drawbacks. The indexed table

method requires a large amount of memory to store all the entries. It

can be stored in fast, dedicated memory, but this is very expensive. It

can be stored in the main memory, but this requires an extra main memory

cycle for each microprocessor memory reference which results in extreme

performance degradation. The associative table requires less storage

for its entries, but it requires an associative compare of the virtual

page number portion of each entry. This can be extremely expensive with

a moderate number of physical pages. Thus both methods by themselves

are not adequate.

The typical solution is to use both an indexed page table and a

partial associative table, or CAM (content addressable memory). The

indexed page table is stored in main memory and the CAM is a small, fast

memory with typically 8 or 16 entries. The CAM is of course dedicated

hardware.

A memory reference first initiates a test of the CAM. if the

virtual page number is in the CAM then the translation occurs quickly,

and the reference is completed in one memory cycle. If the virtual page

number is not in the CAM, then the indexed page table is referenced to

see if the virtual page is in fact in physical memory. If it is, then

this virtual page entry of the page table replaces the least recently

used (LRU) entry of the CAM and the reference is completed in two memory

cycles. By keeping the most recently used page table entries in the

CAM, most references are completed in one memory cycle due to the

- - -*-pi

55

locality of references [7]. If the virtual page is not in main memory,

J&,, if both these tests fail, then a page fault is generated.

This scheme of having both an indexed page table and a partial

associative table is a very effective compromise between the two

methods. It is based on the same principle as virtual memory, which is

the phenomenon of locality of reference. It is also a very general

scheme in that any virtual page may reside in any physical page frame.

4.3 The Basis for a Single Chip M4U

The implementation of virtual memory on a microprocessor system

must be done under some serious constraints. The microprocessor is a

device which is relatively inexpensive, even with its increasing

computing power. Thus the designer of a system built around a

microprocessor must especially be aware of the cost of this system. It

does not make sense to use a microprocessor as the central processing

unit of a system with with extensive support hardware.

The microprocessor has been kept a relatively inexpensive component

through the use of circuit integration, i.., putting the entire logic

of the microprocessor onto a single chip. The cost of developing such a

chip must be absorbed by mass producing it to keep the individual chip

costs down. Thus the design of a single chip should be general enough

to cover a wide range of applications. This integration concept can be

applied to the address mapping of a virtual memory system.

I
4 ___ ___________

,- - - - - -

56

It is therefore desirable to include all of the address mapping

hardware on a single chip. This chip will be called the LtMU (memory

management unit). This integration and the required generality can

impose some constraints on the mapping design. it also gives powerful

possibilities since a large amount of logic can be inexpensively put on

a single chip.

4.4 Features of an MU

4.4.1 The Page Table Register

Normally a system utilizing virtual memory is a foairly powerful

system. Usually multiple tasks or users are allowed on such systems to

keep the CPU utilization high. Each task should be given its own page

table to enhance the flexibility of the system and the relocatability of

shared code such as system routines. When a task is running its page

table is used. When this task is switched to another task, the page

table used to generate physical memory addresses is also switched.

The switching of tasks can occur under several cases. One case is

when the first task finishes and a second task is then begun. Another

case is when a page fault occurs. The normal course of action on a page

fault is to have the microprocessor do some system management including

determining which page to swap out of main memory and changing maps,

initiating a page transfer, and then continuing to process another task

----- ---- ---- - -

57

whose working set of pages resides in main memory. An important factor

in system performance is task switching, which includes page table

switching.

Two methods for implementing page tables exist. One method uses a

fixed page table area. The page table is then switched by writing out

the current table and then writing in the new one. This is very time

consuming and degrades the task switching efficiency. The second way is

to make page tables relocatable. A pointer is used to point to the

currently used page table. The current page table entries are then

accessed by adding the virtual page number to the page table pointer and

using the result to reference the page table. Changing page tables

becomes as easy as changing the page table pointer. This pointer can be

stored in a register called the page table register (PTR).

Typically there are a predetermined number of tasks whose working

sets can be resident in main memory. The pages of main memory are then

divided between these tasks with a few extra pages remaining uncommitted

for the handling of page faults.

4.4.2 The Associative Array

As discussed in section 4.3 , the most desirable implementation of

address mapping is to have both the indexed page table and the

associative table to achieve a compromise between mapping speed and

cost. The indexed page tables reside in main memory while the

associative table resides in the *IU. Two important issues are the

58

number of entries or the size of the partial associative table (which

determines the number of associative compares done) and the contents of

the table.

The size of the partial associative table, or CAM, is really a

compromise between the time and complexity of doing the associative

compares and the hit ratio of the CAM. The hit ratio of the CAM is the

number of address translations done through the CAM divided by the total

number of address translations (done through both the CAM and the

indexed table). On most large computers this tradeoff has resulted in

CAM's Of 8 to 32 entries. However some study should be done to

determine a good CAM size for microprocessor systems. This size will

probably be dependent on the system and its application, but some

general size should be chosen for the IU to keep it flexible.

The entries of the CAM should include a virtual page number which

is associatively compared, a corresponding physical page number and some

control bits. The physical page number and control bits for an entry

are output when the virtual page number of that entry matches the

microprocessor generated virtual page number. Some control bits which

are necessary are a clean/dirty bit used to determine whether a page to

be replaced in main memory needs to be written out to secondary memory,

protection bits which are used if the page table contains protection

information, and some bits to keep track of the least recently used

entry, so that this entry can be replaced when a referenced virtual page

number is not in the CAM.

PI

59

4.4.3 Control Logic

The t4U must be capable of performing some dedicated functions. It

must be capable of accepting a virtual address and doing the mapping

function. Thus it must be able to first initiate the associative

compare. If this fails it must be able to use the PTR to generate a

reference to the indexed page table in main memory. If this is

successful, the NMU must generate a second reference to main memory to

complete the requested reference and also update the array. If the

indexed page table reference returns a false presence bit the MMU must

send a page fault signal to the microprocessor.

The PTR and CAM of the MMU must oe readable and writeable by the

microprocessor to allow the microprocessor to do system management.

Also when the system is servicing the page fault in a supervisory mode,

the M4U must be able to inhibit the address mapping and pass addresses

directly to main memory.

4.4.4 Other Features Which May Be Included in the MMU

The previous three sections discussed some of the required features

of the MU. This is by no means all of the possible features which may

be included in the MU. Some other features which may fit nicely into

the function of the MMU include memory protection checking and

segmentation. Since memory protection information is often kept in page

tables, the *U, which uses page table information to generate

addresses, would be a natural place to include the memory protection

60

checking hardware. In segmentation, microprocessor addresses are used

with a segment register to generate a full virtual address. This

address is then sent to the address mapping hardware which in this case

is the MMU. It would be convenient to include both the segmentation and

mapping hardware in the MMU. Then the MU would be the only hardware

involved in taking the microprocessor address and generating the

physical address.

4.5 Address Mapping on Multiple Microprocessor Systems

There are some critical design tradeoffs in implementing the

address translation hardware of a multiple microprocessor system with a

shared virtual memory. One important decision is whether to give each

microprocessor its own map, or whether to have a global map. This

section does not attempt to solve this problem, but rather to discuss

how the MMU can be used to enhance either method. Obviously if one

central map were used, the .0MU would be a natural choice since it could

maintain the map and do the translation function. A problem of

contention could arise, but it would be no more serious than the

contention problems which already exist for the global table and the

memory itself.

If individual maps were used, each microprocessor would require its

own page table to reside in the virtual memory. The address translation

for each microprocessor could be done separately, but there must be some

global system unit which would oversee the individual translaticns.

. - --- -_

61

This is due to the sharing among microprocessors which is desired to

enhance system efficiency. The NVU could be such a unit. In such a

case the MU would not have to have any address translation duties. It

would rather be called upon to handle page faults to keep all of the

individual maps of each microprocessor valid. This function could be

done independently and in parallel with the normal address translation

of each microprocessor, increasing the efficiency of the system.

The role of the MMU in a multiple microprocessor system may change

some from its role in a single microprocessor system. However it still

would utilize the powerful concept of integration and cost reduction,

thus enhancing the implementation of virtual memory on microprocessor

systems.

4.6 Concluding Remarks

This chapter was in no way intended to be a complete treatment of a

single chip MMU. It was however intended to generate some thought on

the possiblilities of creating a single chip which could do the required

functions of address translation. Hopefully it has been shown that this

MMU could be an atractive way of bringing virtual memory capabilities

to microprocessor systems of the future.

62

CHAPTER 5

Conclusions

5.1 Summary

In some applications, current microprocessors are limited by the

size of the address space which they can access. This is due to the

number of address bits which they use. This limitation can be overcome

to a certain extent by adding external hardware to create more address

bits. One method of doing this is to use processor state ino.-nation to

create memory access modes such as instruction mode or data mode. The

switching of these modes can easily be made transparent to the user. A

second method is to form A which are independent of the

microprocessor state. Arbitrarily large numbers of segments can be

created, but segment switching is not transparent to the user.

63

Large logical memory spaces are typically not implemented entirely

in main memory. It is much more cost effective to use at least a

two-level virtual memory scheme. Microprocessors do create some

problems with such an implementation.

One problem is that a page fault must interrupt program execution

in a way such that correct results are insured. The limited interrupt

capabilities of microprocessors make program interruption and

continuation difficult and restrictive.

The second problem which arises is created by the cost constraints

of microprocessor systems. One reason for using a microprocessor (and

extending its addressing capabilities) is that it is a relatively

inexpensive component. The system which utilizes a microprocessor is

also under this cost constraint. It is necessary to make the

implementation of virtual memory more cost effective so that it can be

used in microprocessor systems.

5.2 Suggestions

The limited address space problem of the microprocessor is being

avoided in new generation microprocessors through the use of greater

address lengths in both instructions and in the address bus. However

the virtual memory implementation of these large memory spaces is still

difficult and expensive. Microprocessor designers should now

investigate ways of making future microprocessors more compatible with

virtual memory.

II

64

Two ways of doing this were discussed in this paper. The first way

is to enhance the interrupt capabilities of future microprocessors,

thereby making page fault handling easier. The second way is to create

support chips dedicated to virtual memory implementation, thus making

this implementation more cost effective.

Meeting the needs of future microprocessor users will require

research and development on the part of the microprocessor

manufacturers. Rowever the technology of today certainly makes a

two-level virtual memory implementation a realistic goal of future

microprocessor systems.

I

65

I. Intel Corporation, Intel 8080 Microcomputer Systems Users

Manual, September 1975, pp. 2-1 - 2-20.

2. Adam Osborne, An Introduction to Microprocessors. Volume

II. Some Real Products. Adam Osborne and Associates, 1976,

pp. 5-1 - 5-65.

3. Motorola Corporation, M6800 Microcomputer Systems

.einn M .anua. Motorola Corporation, 1975.

4. Bernard L. Pueto, "Architecture of a New Microprocessor,"

i t, pp. 10-21, February 1979.

5. S. Morse, W. Pohlman, B. Ravenel, "The Intel 8086

Microprocessor: A 16-Bit Evolution of the 8080," Comouter,

pp. 18-27, June 1978.

6. E. Stritter, T. Gunter, "A Microprocessor Architecture

for a Changing World: The Motorola 68000," Comouter, pp.

43-51, February 1979.

7. R. E. Matick, Computer Storage Systems and Technolovy.

New York: Wiley and Sons, 1977, PP. 532-644.

8. P. J. Denning, "Virtual Memory," Comoutina Surveys, vol 2,

no 3, P. 153, September 1970.

9. M. D. Ruggiero, S. G. Zaky, "A Microprocessor-Based

Virtual Memory System".

I7

rI
! .------

66

10. J. A. Anderson, G. J. Lpovski, "A Virtual Memory for

Microprocessors," Proc. Second Annual Svmo. on Comp. Arch.,

pp. 80-84, January 1975.

11. D. J. Kuck, The Structure of Computers and Comoutations.

New York: Wiley and Sons, 1978, p.348.

12. A. G. Lippiatt, The Architecture of Small Comouter

Systems. London: Prentice-Hall International, Inc.

1973, p.98.

13. J. L. Peterson, Comouter 0rganization and Assembly

Lanauaae Proarammina. New York: Academic Press, 1973, p.55.

14. H. S. Stone, Introdu3tion to Comouter Organizations and

Data Structures. New York: McGraw-Hill, 1972, p.174.

15. Advanced Micro Devices, Build a Microcomputer. Chaoter VI.

Advanced Micro Devices, 1979, pp. 1-29.

I,

!i

