
AD-A123 943 PERFORMANCE MODELS FOR MULTPROCESSO CO R S EM
(U) I NO ISBUNIVEAT URRANACOORO INATEDS ENCE LAR

D M YEN OCT 0O R- R94 N00014 7 -C-0424

UNC ASSIF ED
FG92 N

36

11IL.25 Jilfl 1.4 1111116

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANOARDS-1963-A

I SCCUM~I#Y CLASSIFICATION OF THIS PAGE (~Mn Data at*

REPORT DOCUMENTATION PAGE DEoA tMSTpUCinG FONM
'" ~~~3. I[CIFtNIoR C01PTAOG FRMIR

I. REPORT NUMUER 2*. GovT ACCESSIoN No 1. MoCIPIENI5 CATALOG NUMSR

4. TITLE (and SWdtl) S. TYPE[or REPORT & PERIOD COVERED

PERFORMANCE MODELS FOR MULTIPROCESSOR Technical Panel
COMPUTER SYSTEMS S. PERFORMING ORG. REPORT "UMUSR

_R-894o UILU-ENG 80-2226
7. AUTNOR(s) S. CONTRACT OR GRANT NUM0I1Rt(e)

David Wei-Luen Yen N00014-79-C-0424
F33615-78-C-1559

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Coordinated Science Laboratory AREA & WORK UNIT NUNSERS

University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Joint Services Electronics Program October, 1980
13. NUMSER OF PAGES

178
14. MONITORING AGENCY NAME a AORIESS(II difemnt from Conerolline Office) IS. SECURITY CLASS. (o(this report)

UNCLASSIFIED
IS.. 0ECLASSIFICATION/DOWNGRADING

SC E OULE

16. DISTRIBUTION STATEMENT (of this Report)

17. DISTRIBUTION STATEMENT (o the abstract entered In Block 20. It diferent from Report)

Approved for public release; distribution unlimited

W1. SUPPLEMENTARY NOTES

V

19. KEY WORDS (Comtinue on reverse aide if necessar ad identify by block n ber)

multiprocessors, interleaved memories,

h memory bandwidth, performance evaluation,
shared resource models

20. ABSTRACT (Continue on reverse side if neceseary and Identify by block mnmbef)

Multiprocessing is an effective architectural approach to enhance the
performance ot computer systems. However, various problems involved in
multiprocessing may severely degrade system performance. '

This research has mainly centered on the memory interference.problem in
tightly coupled multiprocessor computer systems. Depending on the nature
of the memory-requesting mechanism, discussion is centered on two important
cases of such systems.

DD 71 1473
SECURITY CLASSIFICATION OF THIS PAGE (When Dota Entered)

SECUPITY CLASSIFICATION OF THIS5 PAGE(Whn Data ZtV*Q.E

20. ABSTRACT (continued)

)The memory interference in multiprocessor systems with time-division-multiplexed
(TDM) busses is first discussed.- The discussion starts from Emer's model for a
/ iltiple-instruction-stream -iplined processor with a single fixed-cycle
shared resource. Generalizations of that model for systems with multiple
resources, resources having more general cycle times, and/or unassigned time
slots, are discussed. Provisions for the application of the model to programs
with critical sections treated as software resources are also covered. Measured
performance data from the execution of matrix multiplication on a local multi-
processor system is used to check the above model. Two other models for
matrix multiplication execution are also presented for comparison, These two
models model the imperfect job sharing among processors at the end of a
computation, which has not been previously modeled.

-A general model for the memory interference in synchronous multiprocessor
systems which allow arbitrary memory request rates, non-uniform memory
references, and unequal processor priorities is presented next.\ For the case
o- uniform memory access, an improved model based on a steady hTow concept
is discussed. With the aid of simulation results, this model is compared to
other models in the entire range of memory request rate ((0,1]) to demonstrate
its accuracy. This model is further shown to be extendable to deal with
multiprocessor systems where different memory service priorities are associated
with different processor categories.

'Several application examples which make use of the memory interference models
derived are presented. First, an algorithm is proposed for the estimation
of the execution time of a program running in a multiprocessor system. Such
an algorithm can be used to pick a computation decomposition which best
utilizes the available computing power. A case study of the effect of computa-
tion decomposition on the performance of Gaussian Elimination is presented.
The execution of matrix multiplication in a multiprocessor system with virtual
meniory was evaluated by simulation, in which a memory interference model
capable of dealing with priority was used to dynamically modify various job
execution times according to the number of processors and I/O channels
ac " i the system.

~~~~I" % attt en/ "

1"11 T..

SIECURITY CLASSIFICATION OF THIS PAOlE(1PbOe Does Ui t*e) -

t

_ _ -- = -. .. . . -. - - : . ..... .... .. , ... .. .. .



K
UILU-ENG 80-2226'I

PERFORMANCE MODELS FOR
MULTIPROCESSOR COMPUTER SYSTEMS

I by

David Wei-Luen Yen

This work was supported in part by the Joint Services Electronics

.- Program (U.S. Army, U.S. Navy and U.S. Air Force) under Contract

-* N00014-79-C-0424 and in part by the Wright Patterson Avionics Laboratory

under Contract F33615-78-C-1559.

I

Reproduction in whole or in part is permitted for any purpose

' i. of the United States Government.

4i!

7

Approved for public release. Distribution unlimited.

I



PERFORMANCE MODELS FOR
MULTIPROCESSOR COMPUTER SYSTEMS

BY

DAVID WEI-LUEN YEN

B. S., National Taiwan University, 1973

M.S. , University of Illinois, 1977

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1980

Urbana, Illinois



-VOW

II
I iii

I ACKNOWLEDGMENT

The author wishes to express his sincere appreciation to his thesis

advisor Professor Edward S. Davidson for his great contributions

I throughout the course of this work. Dr. Davidson's patient guidance,

acute insight, and continual encouragement have been invaluable to the

progress of this research, while his genuine personal warmth, kind

concern, and true care have been an indispensable support for the author

during the period of his study.

The author would also like to thank Professor Janak H. Patel for his

stimulating advice, fruitful discussions and friendship.; Thanks are also

due to Professor Michael Schlansker, B. R. Rau, Richard Brown, and Jacob

Abraham for their valuable advice and friendship.

The author thanks his friends and colleagues, Tim Chou, Alan Gant,

Larry Hanes, and Phil Yeh for helpful discussions and various

assistances.

I.. The author owes special gratitude to his wife, Grace Shau-Ling, for

her patience and love. The author would also like to thank his brother,

Wei-chen, for his valuable discussions and contribution to this

dissertation.

Finally, the author wishes to thank Trudy Little for the typing of

formulas and figure legends of ,this dissertation.

F-



iv

TABLE OF CONTENTS

{CHAPTER Page

1. INTRODUCTION .. . ,,. .................................. . I

1.1 Problem Statement and An Overview of the thesis ......... 1
1.2 Previous Work for Ibltiprocessor Systems with Time-

Division-Multiplexed Busses and An Overview of
Chapter 2 ................................ 4
1.2.1 Background and Assumptions ..............=....... 4
1.2.2 Emer's Model for a Maltiple-Instruction-Stream

Pipelined Processor with a Single Fixed-Cycle
Shared Resource .................................. 10

1.2.3 The limitations of Emer's Model and An Overview
of Chapter 2 ..................................... 15

1.3 Previous Work for Synchronous Computer Systems and An
Overview of Chapter 3 ...................... ............ 17
1.3.1 Previous Work ..................................... 17
1.3.2 An Overview of Chapter 3 ......................... 23

2. MEMORY INTERFERENCE AND RESOURCE CONTENTION IN COMPUTER
SYSTEMS WITH TIME-DIVISION-MULTIPLEXED BUSSES ................ 25

2.1 Introduction .............................................. 25
2.2 Generalization for a MUltiple-Resource System ........... 28
2.3 Generalization for the Resource Cycle Times ............. .33
2.4 The SCP Problem ......................................... 36
2.5 Generalization for Software Resources ................... 52
2.6 Speedup and Overhead .................................... 56
2.7 An Experimental Tool - the AMP-I Machine ................ 61

2.7.1 System Organization .............................. 62
2.7.2 Software and Computation Decomposition ........... 65

2.8 Matrix Multiplication as an Experimental Check of the
Model and Two Models for Incorporating Imperfect Job
Sharing ................................................. 66

3. MEMORY INTERFERENCE IN SYNCHRONOUS COMPUTER SYSTEMS .......... 80

3.1 Introduction ............................................ 80
3.2 A General Model for the Memory Interference in

Synchronous Computer Systems............................ .87
3.3 An Improved Model for the Case of Uniform Access

and Equal Priority ...................................... 98
3.4 The Application of the Improved Model in an Environment

with Unequal Processor Priorities ....................... 125

4. APPLICATIONS OF THE MEMORY INTERFERENCE MODELS ............... 129

4.1 Introduction ............................................ 129

7.

- - -,- - - = - - --



TV

4.2 An Algorithm for the Run-Time Estimation of a Program
in a Multiprocessor System ............................. 130

4.3 An Investigation of the Execution of atrix
Multiplication in a Multiprocessor System
with Virtual Memory ..................................... 141

5. CONCLUSIONS .................................................. 161

5.1 Summary of Results ...................................... 161
5.2 Suggestions for Future Research ......................... 163

REFERENCES ....................................................... 166

APPENDIX:
The Effect of Computation Decomposition on the Performance
of Executing Gaussian Elimination on AMP-i ................... 170

VITA ............................................................. 178

1

= 2_ . ... .. .. .. . . . . . . . . ... . ... . . .... . -. - -- ? - - -- :



vi

PERFORMANCE MODELS FOR
MULTIPROCESSOR COMPUTER SYSTEMS

David Wei-Luen Yen, Ph.D.
Coordinated Science Laboratory and

Department of Electrical Engineering
4- University of Illinois at Urbana-Champaign, 1980.

Multiprocessing is an effective architectural approach to enhance

the performance of computer systems. However, various problems involved

in multiprocessing may severely degrade system performance.

This research has mainly centered on the memory interference problem

in tightly coupled multiprocessor computer systems. Depending on the

nature of the memory-requesting mechanism, discussion is centered on two

important cases of such systems.

The memory interference in multiprocessor systems with

time-division- multiplexed (TDM) busses is first discussed. The

discussion starts from Emer's model for a multiple-instruction-stream

pipelined processor with a single fixed-cycle shared resource.

Generalizations of that model for systems with multiple resources,

resources having more general cycle times, and/or unassigned time slots,

are discussed. Provisions for the application of the model to programs

with critical sections treated as software resources are also covered.

Measured performance data from the execution of matrix multiplication on

a local multiprocessor system is used to check the above model. To

other models for matrix multiplication execution are also presented for



vii

comparison. These two models model the imperfect job sharing among

processors at the end of a computation, which has not been previously

modeled.

A general model for the memory interference in synchronous

multiprocessor systems which allow arbitrary memory request rates,

non-uniform memory references, and unequal processor priorities is

presented next. For the case of uniform memory access, an improved model

based on a steady flow concept is discussed. With the aid of simulation

results, this model is compared to other models in the entire range of

memory request rate ( (0,1] ) to demonstrate its accuracy. This model is

further shown to be extendable to deal with multiprocessor systems where

different memory service priorities are associated with different

processor categories.

Several application examples which make use of the memory

interference models derived are presented. First, an algorithm is

proposed for the estimation of the execution time of a program running in

a multiprocessor system. Such an algorithm can be used to pick a

computation decomposition which best utilizes the available computing

power. A case study of the effect of computation decomposition on the

performance of Gaussian Elimination is presented. The execution of

matrix multiplication in a multiprocessor system with virtual memory was

evaluated by simulation, in which a memory interference model capable of

dealing with priority was used to dynamically modify various job

execution times according to the number of processors and 1/0 channels

active in the system.



viii• 1.
LIST OF FIGURES

Figure Page

1.1 An s-segment Pipelined Processor with a Single
Fixed-Cycle Resource ...................................... 5

1.2 State Diagram for a Multiple-Instruction-Stream
Pipelined Processor with a Single Shared Resource ........ 13

2.1 Illustration of the Time Slots Assigned to

Processors for Bus Usage ................................. 26

2.2 A Multiple-Resource Pipelined Processor .................. 30

2.3 State Diagram for a Multiple-Cycle Resource .............. 35

2.4 Illustrations for the SCP Problem ...................... 37

2.5 An Example of the Effect of the Processor
Placement on the Effective Resource Cycle
Time (s - 12, c - 5, p =  5) ......................... .. 39

2.6 Illustration for (a) p - s-1 (Case 3)
(b) s = 2c-1 (Case 4) ............... .. 41

2.7 Contributions Due to an Extra Processor Added to
a k-processor Packed Allocation when k = c-l ............. 47

2.8 An Extra Processor Added to a k-processor
Unpacked Allocation ...................................... 50

2.9 Structure of a Program Section in a
Multiprogrammed Computation .............................. 57

2.10 The AMP-l Multiprocessor System .......................... 63

2.11 Run Time Model of 3x3 Matrix Multiplication
Using 4 Processors ....................................... 71

2.12 The Renewal-Theory Model for the Execution
of Matrix Multiplication ................................. 75

3.1 A Multiprocessor System .................................. 82

3.2 Dependency Classes [CKL77] ............................... 83

3.3 A Cycle Trace of a Processor ............................. 100

3.4 A Steady-Flow Model of the Multiprocessor
System ................................................... 102

'pI

.. *.1 .



ix

Figure Page

3.5 Memory Bandwidth vs. Static Request Rate
for a 4 x 4 Multiprocessor System ......................... 111

3.6 Memory Bandwidth vs. Static Request Rate
for a 4 x 8 Multiprocessor System ......................... 112

3.7 Memory Bandwidth vs. Static Request Rate
for a 8 x 4 Multiprocessor System ......................... 113

3.8 Memory Bandwidth vs. Static Request Rate
for a 8 x 8 Multiprocessor System ......................... 114

3.9 Percentage Differences between Predicted and
Simulated Bandwidths for a 4 x 4 Multiprocessor
System .................................................... 115

3.10 Percentage Differences between Predicted and
Simulated Bandwidths for a 4 x 8 Multiprocessor
System .................................................... 116

3.11 Percentage Differences between Predicted and
Simulated Bandwidths for a 8 x 4 Multiprocessor
System .................................................... 117

3.12 Percentage Differences between Predicted and
Simulated Bandwidths for a 8 x 8 Multiprocessor
System .................................................... 118

4.1 Illustrations of the Run Time Estimation
Algorithm ................................................. 134

4.2 The Block Algorithm for Matrix Multiplication ............. 145

4.3 The Event-Driven Simulation ............................... 148

4.4 Speedups vs. No. of Processors ............................ 152

4.5 Average Value of the Memory Interference vs.
No. of Processors ......................................... 154

4.6 Effective-to-total Page Fault Ratio vs. No.
of Processors ............................................. 155

4.7 Histograms of Inter-page-request Intervals with
Secondary Storage System I ................................. 156

4.8 Histograms of Inter-page-request Intervals with
Secondary Storage System X ................................ 157

I



x

Figure Page

4.9 Histograms of Inter-page-request Intervals with
Secondary Storage System F ............................... 158

A-1 Job Precedence for Normsalization Jobs
and Reduction Jobs ....................................... 171

A.2 Job Precedence for Back Substitution Jobs ................. 172

*A.3 Gaussian Elimination Performance.......................... 174

A-4 GAUSZ Performance ........................................ 175

A.5 MXMC Performance........................................ 177



xi

TABLES

Table Page

2.1 An Example Showing thr Effect of the Existence
of Multiple Resources...........................................32

2.2 Matrix Multiplication Program Data .............................. 68

2.3 Matrix Multiplication Run Time Data ............................. 69

2.4 Matrix Multiplication Run Time Data ............................. 73

2.5 Matrix Multiplication Run Time Data ............................. 78

3;.1l Comparison of Models in Predicted Bandwidth
and Percentage Difference with the Simulation
Data for a 4 x 4 Multiprocessor system ......................... 119

3.2 Comparison of Models in Predicted Bandwidth
and Percentage Difference with the Simulation
Data for a 4 x 8 Multiprocessor System ......................... 120

3.3 Comparison of Models in Predicted Bandwidth
and Percentage Difference with the Simulation
Data for a 8 x 4 Multiprocessor System ......................... 121

3.4 Comparison of Models in Predicted Bandwidth
and Percentage Difference with the Simulation
Data for a 8 x 8 Multiprocessor System ......................... 122

3.5 Memory Interference Models for Synchronous
Computer Systems ............................................... 124

4.1 Execution Times and Speed-ups for the
Problem in Figure 4.1 .......................................... 139

4.2 Various Parameter Values Used in the Simulation Study .......... 150



CH{APTE8R I

Introduction

1.1 Problem Statement and An Overview of the Thesis.

Very often in our lives we see tasks that are considered too big for

a single person to handle. Unless someone with extraordinary capability

is readily available, a team of people, perhaps with differing

specialties, is required to accomplish it. Similarly, as more

) sophisticated and ambitious computer applications are attempted, it is

often difficult to build a single-processor computer system which is

powerful enough to handle the problem. Advances in technology have so

far been driving computer performnance upward. Although technology will

continue to improve the performance of computer systems, people can no

longer solely count on it since it has begun to approach certain physical

limits for the current technology used in computer systems.

Multiprocessing (in a loose sense including distributed processing),

therefore, becomes a natural and promising approach to explore.

Unfortunately, as in multi-person human teams, multiprocessing has

problems. It may not work at all, for which the deadlock phenomenon

11CES71 1, [IsM8O] is a famous extreme example. While inappropriate

algorithm or system design may be blamed for deadlock, there is also much



2

inherent overhead in multiprocessing which degrades performance.

Resource (memory, bus, function units, etc.) contention, precedence

synchronization, critical-section lock-out, processor intercommunication

cost, operating system overhead, etc. are all performance-degrading

factors for multiprocessing.

This thesis mainly studies the memory interference problem (an

important kind of resource contention in multiprocessor systems).

Precedence synchronization and critical-section lock-out overhead is

dealt with to a limited extent. The scope of the thesis is limited to

tightly-coupled multiprocessor systems with shared main memory.

Processor intercommunication in these systems is mostly accomplished

through global variables stored in the shared memory; thus processor

intercommunication cost is not a major concern in these systems.

The remainder of this chapter surveys previous work on the memory

interference problem for both multiprocessor systems with

time-division-multiplexed (TDM) busses and synchronous multiprocessor

systems. Section 1.2 introduces Eher's model for multiprocessor systems

with TDM busses and discusses various limitations of its applicability.

Emer's model is generalized in Chapter 2 to remove these limitations.

Section 1.3 discusses work by Skinner and Asher, Strecker, Ravi,

Bhandarkar, Baskett and Smith, Rau, and Hoogendoorn for synchronous

multiprocessor systems. A general model for the memory interference in

such systems which allow arbitrary memory request rates, non-uniform

memory references, and unequal processor priorities is presentei in

Chapter 3. An improved model for the case of uniform access and equal 1
I

- - -- '--- -- -- |l-- -i



j processor priority is also discussed. This model is further shown to be

extendable to deal with multiprocessor systems where different memory

I service priorities are associated with different processor categories.

I Chapter 4 presents several application examples which make use of

the memory interference models derived in Chapters 2 and 3. However, the

I studies involved in these examples also have value in their own right.

Section 4.2 proposes an algorithm for the estimation of the execution

- time of a program running in a multiprocessor system with and without

memory interference. Section 4.3 discusses an investigation of the

execution of matrix multiplication in a multiprocessor system with

virtual memory.

Conclusions and suggestions for future work are summarized in

. Chapter 5.

Finally, an experiment for the effect of computation decomposition

on the performance of executing Gaussian Elimination on a

locally-designed and locally-built multiprocessor system, AMP-i (see

section 2.7), is presented in the Appendix.



4

1.2 Previous Work for Multiprocessor Systems with Time-Division-

Multiplexed Busses and An Overview of Chapter 2

I. 2. 1 Background and Assumptions

Figure 1.1 shows an s-segment pipelined processor with a single

fixed-cycle resource [Eme79]. At any time instant a distinct task is

assumed to be active in each of the s distinct segments. A task, the

schedulable entity for a pipeline, corresponds to one cycle of an

instruction. Once a task enters the pipeline, it flows from segment to

segment until it exits from the pipeline. Hence if we define each

processor segment to take one segment time unit (STU) to perform its

operation, eac' task will take s STUs for execution and s STUs thus

compose one processor cycle time.

An instruction stream (i.e. a single program in execution) consists

of an ordered sequence of instructions each of which is a sequence of

pipeline tasks. At any given time the s tasks in the s distinct segments

of the pipeline are assumed to come from s distinct instruction streams.

The instruction streams could be totally independent of each other,

working on totally independent jobs, or locally independent of each other

while globally sharing some code and data. In the latter case, some

interstream interactions may be required to achieve cooperation on a

large multiprocessed job. The sharing and interaction mechanisms, if

necessary, would be implemented explicitly by software.

Therefore, only one task from each instruction stream is active in



II
12 3 s-i

Resource

Figure 1.1 An s-segment Pipelined Processor with a Single
Fixed-Cycle Resource



the pipeline at a particular time and all the tasks active simultaneously

in the pipeline are independent of each other. This local independence

alleviates the problem of data dependency which occurs frequently between

tasks from the same instruction stream. It should be noted at this

point, however, that a good decomposition of a complicated computation

into multiprocessible streams cannot easily be achieved in general

without deliberation. When a computation is not properly decomposed, the

need for synchronization to solve global data dependency between

instruction streams may become unnecessarily high. This shortens the

period during which all instruction streams run smoothly and

independently and thereby degrades performance.

Furthermore, the multiple-instruction-stream pipelined processor of

Figure 1.1 is assumed to generate all requests to the shared resource

from a particular segment. In other words, a task which requires the

resource must make its resource request while it passes through that

particular segment, say segment i. Any results produced by an accepted

resource request will always be returned to the processor at segment i+j,

where j-1 is the resource access time in terms of STUs, just as the task

which originated the request arrives at that segment. No buffering is

used in the system. In Figure 1.1, for example, a resource request could

be generated at the end of segment 2 and the corresponding result, if

any, will be returned by the resource to segment s if the request is

accepted. The resource thus has an access time of (s-3) STUs.

Since for the purpose of performance evaluation, given the

particular structure of the interconnection busses under consideration,



7

there is no need to distinguish between the resource access time and the

resource cycle time, we will hereinafter call this time period the

resource cycle time and denote it by c. Any request submitted to the

resource while it is busy serving a previously accepted request will be

rejected. No service once in process by the resources under

consideration can be pre-empted. Since the multiple-instruction-stream

pipelined processor can generate at most one request per STU to the

resource, a resource request will only be rejected when the resource is

busy at the time the request is issued.

A rejected task simply takes a null pass through the pipeline and

resubmits its request when it reaches the request-issuing segment in the

next pass. This process must be repeated until the request is finally

accepted.

In addition to the assumptions made above, the following important

model assumption is imposed in order to obtain an analytic solution for

the performance of such a system: all the requests generated from the

pipelined processor, whether new or resubmitted, whether from different

instruction streams or from the same instruction stream, are independent

of each other and, if the resource is divided into several identical

modules, are distributed uniformly among the modules.

When the resource models an interleaved memory with M memory

modules, the assumption of independence between successive requests from

the same instruction stream is, unfortunately, wrong in view of the

sequentiality of the instruction and data request sequences ERau77l,

especially those due to program constructs such as iteration and



recursion. However, as pointed out in [Bha75] and [Rau79], the merging

of instruction and data request sequences tends to reduce the effects of

correlation between successive requests from the same instruction

stream. The merging of various instruction streams in our pipelined

processor further diminishes the effects of this correlation.

Tight iteration loops, which occur frequently in array computation

algorithms, could nevertheless result in serious memory conflicts for a

multiprogrammed computation executed by multiple processors. The

independence assumption could be poor whenever this kind of conflict

occurs. One should consiier avoiding tight iteration loops in a

multiprocessor program due to their adverse effect on performance. One

straightforward approach is to unwind the tight loops by repetition so

) that the resultant strings are stretched as far as possible across the

interleaved memory, as was done in [Leh66]. Conflict-free data array

access is possible for SIMD-type array processors when data arrays are

stored in a skewed fashion [BuK71], [Law75]. However, for Mf4D-type

multiprocessors in which processors do not work in a lock-step manner,

algorithm modifications to distribute data accesses may be the only

guideline available.

Furthermore, a resubmitted request is, of course, dependent on the

preceding rejected request from the same instruction stream. In fact

they are identical. However, since these two requests are separated by

uncorrelated requests from other instruction streams and as long as the

congestion that caused the original rejection has subsided, the reissued

request would appear as if it were a new request. This assumption is

.. . .. . . . . .. .." II .. . i [ . . ... . . . .. .- - - - . . . . . .



9

particularly appropriate to requests generated by pipelined processors,

since a rejected request is not reissued until one pass (s STUs) after it

was rejected. The time between these requests should generally allow the

original congestion to subside and permit the returning request to be

viewed as a new request. In particular, these conditions should be

satisfied in systems with good performance, since good performance

implies few rejected requests. Because many rejections might tend to

sustain congestion at the resource, this assumption could be less valid

for systems with poor performance. Since we are mainly interested in

systems with reasonably good performance, the assumption of independence

within and among instruction streams will be followed throughout Chapter

2. Briggs[BrDa77] and Emer[Eme79] did show the robustness of this

assumption by simulations.

Many researchers (e.g., [Str7Oj, [Rav72], and [Bri771), who studied

the memory interference problem for the case in which processors' memory

request rates are equal to 1, ignored the rejected requests in their

modeling work. This is appropriate for the study of the memory

interference problem for the particular case they dealt with, as long as

an instruction stream is considered as a sequence of independent

requests. However, for the case in which processors' memory request

rates are less than 1, the independent request assumption with ignorance

of rejected requests can lead to significant inaccuracies. If the

rejected requests are totally ignored, then the instruction stream will

not be perturbed and the memory request rate will be unchanged. The

model, equation 3.22, presented in section 3.3 for the synchronous

multiprocessor systems falls into this category. However, due to the



10

resubmission of rejected requests, the memory request rate is indeed

changed even if the instruction stream is still considered as a sequence

of independent requests. One generally adjusts the memory request rate

to compensate for this fact, as did Strecker[Str70l and

Hoogendoorn[Hoo77] (described in the next section) and EMer[Eme791

(described below).

1.2.2 Emer's Model for a Multiple-Instruction-Stream Pipelined Processor

with a Single Fixed-Cycle Shared Resource

Based on above assumptions Emer derived his analytic model for the

performance of such a multiple-instruction-stream pipelined processor in

terms of the following parameters: r, the probability that a task makes

a resource request, o , the actual request rate seen by the resource

(which is usually larger than '* due to the contribution of reissued

rejected requests), p , the number of passes the average task requires,

and PA' the probability of acceptance for a resource request.

The performance of the system is expressed by the parameter p , the

number of passes the average task requires. This parameter is sometimes

referred to as the interference factor for the system performance,

because when the resource cycle time is equal to the processor cycle time

it serves as a multiplicative factor for the program run time. Actually

the reciprocal of p can be viewed as the probability that a pass or

associated instruction stream is doing useful computation.

Since those tasks which do not request the use of the resource need i



11

only one pass through the pipeline while those tasks which do make

resource requests may need more than one pass, the average number of

passes a task may require can be evaluated as

p - (1-*).l+ A[pA t+PA(1-PA).2 +PA (-PA2"3+--2
A -P1 A > +P(1-PA) * (I I+.."]

- (- 4) +*PA (l-PA) [(I-PA)+(lPA) 2 + (""PA) 3 +

1-P A

(-) A 1-(1-PA )

1-4+4 1 (1.1)

PA

The derivation of the probability of acceptance for a resource

request, PA' can be argued intuitively. Since requests submitted to the

resource are independent with a request rate of y , as seen by the

resource, there will be an average of ce(c-l) requests submitted to the

resource during the c-I STUs following an accepted request. All these

requests will have to be rejected since the resource is busy serving that

request. In other words, one request out of (1+ a(c-1)) requests will be

accepted. Hence

1

PA = 1 +a(c-1) (1.2)

Equation 1.2 can actually be derived rigorously. Emer [Eme79]

refers to Briggs (p.100 of [Bri77]) who derived it in a much more general

context. However, since Briggs' derivation is rather involved because of

its generality and yet the request rate is restricted to be I instead of



12

a much simpler derivation based on the method of the imbedded Markov

chain is given in the following: Looking at the system only at the very

beginning of every STU (before any request to be submitted in that STU is

presented), we define the system to be in state 0 if no request is in

service by the resource and otherwise in state i if i STUs of service

have been provided by the resource for the request in service. In Figure

1.2 is a discrete Markov chain model of the system. The resource of the

system is or becomes idle in state 0, and has a probability a of seeing

a request and accepting it. Once the service of a request is in

progress, the resource remains busy for c STUs regardless what the

processors are doing in the system. The steady state probability of

state 0 becomes the probability that a submitted request is accepted.

If we use -T. to indicate the steady state probability of state i,

i=0,l,2,...,c-1, then we have

T0 = c-i + (1*a)1 0  (1.3)

Also, 0 +rr 1 
+ 

2 
+  + 

C

S0 + (c-l)rr C-1
=1 I, (1.4)

since Tri ' 2 =  c I

Solving equations 1.3 and 1.4, we get

P 1TA 0 1 +a'(c-l)



1 13

IO

Figure 1.2 State Diagram for a Multiple-Instruction-Stream Pipelined

Processor with a Single Shared Resource



14

Finally, the actual request rate, 0 , seen by the resource, can be

determined by considering the total number of (identical) requests

submitted to the resource by a task during the average number of passes

it requires. More specifically,

*[PA -+P (-PA)-2+PA (1-PA)2 3 +...]

I P

P A

P1
A

1 (1.5)

A( -I)+l

Note that in terms of ' and a a beautiful expression for the

probability of acceptance can be obtained from equation 1.5. That is,

PA / -I 't-"- a (1.6)

Using equations 1.1 and 1.6, one can express p in terms of * and

p - (1.7)

Finally, using equations 1.2 and 1.5 together, one can also derive a

closed-form expression for PA as a function of ' and c.

[i



15

1.2.3 The Limitations of Eer's Nodel and An Overview of Chapter 2

Emer's model is of interest here because of the analogy between a

multiple-instruction-stream pipelined processor system and a

multiprocessor system with time-division-multiplexed busses. Emer's

model is simple and fairly accurately predicts the results of several

simulations and some experimental data (section 2.8) taken from a real

multiprocessor system, but it has several limitations.

First, it only models a single shared resource. This makes the

model less useful for a system consisting of a number of different

resources. A generalization which incorporates multiple distinct

resources into the model is presented in section 2.2.

Secondly, the model, at least implicitly, restricts the resource

cycle time to be less than or equal to one processor cycle time, i.e.

the time a task requires to pass through the pipeline once (s STUs in

Figure 1.1). This restriction is probably reasonable for control stores

and main memory, but may be too restrictive for general function units

and other types of resources which could be modeled. Section 2.3 relaxes

this restriction on resource cycle times provided that the independent

request assumption still holds.

Thirdly, in order to apply Eher's model to a multiprocessor system

with time-multiplexed busses, all the bus time slots must be assigned to

active processors. This may not always be true. Some processors might

be deactivated and some might be assigned by the operating system or the

user to some other jobs totally unrelated to the activity we are



16

considering. Hfence such processors wouid not participate in the resource

usage which we are investigating. These processors should be considered

as non-existent as long as their existence does not interfere with the

activity we are considering in any way. The time slots they occupy

should be considered as vacant or inactive. However, if vacant or

inactive time slots do exist, some parameters in the model will have to

be modified since vacant time slots will never issue resource requests.

A model extension dealing with "effective" parameter values and a vacant

slot assignment problem, the "SC? problem", are presented in section 2.4.

Section 2.5 is mainly concerned with model modifications needed in

order to include software resources as model resources. Some performance

4analysis concerning speedup and overhead according to the model of

section 2.5 is done in section 2.6.

A matrix multiplication program was run on. AMP-i, the multiprocessor

machine to be described in section 2.7, and model-predicted values are

compared to measured run time data in section 2.8. Also shown are the

predicted values by two other methods - a deterministic model and a

renewal-theory model - with and without modification by the memory

interference factor. Values predicted with the modification match very

well with the measured data.



17

1.3 Previous Work for Synchronous Computer Systems and An Overview of

Chapter 3

In the scope of this thesis a synchronous computer system refers to

a system in which all memory modules are cycled simultaneously and all

processors are synchronized with the memory. The memory cycle time c is

assumed to be I. In other words, the operation of the system is assumed

to be synchronized to the cyclic operation of the memory. All memory

requests, if any, from all processors in the system are assumed to arrive

at the beginning of a memory cycle. All previous work reviewed in the

following is aimed at multiprocessor systems in this category.

1.3.1 Previous Work

Skinner and Asher[SKA69] proposed a discrete Markov chain model for

multiprocessor systems with request rates equal to 1. Their analysis was

presented for a small number of processors(42), and the model does

contain tie-breaking probabilities in the case of memory usage conflict.

However, for larger systems the complexity of the problem deterred the

authors from further pursuit of an exact analytic solution.

Strecker[Str70], as also reported in [WuB72], developed a set of

simple approximate models. For a system with N processors and M memory

modules, the model corresponding to the case with request rates equal to

1 yiells the now wilely used formula for BW, the memory system baniwitlh:

BW I M(-(-)) (1.8)

M.



Note that the memory bandwidth EW is the expected number of distinct

memory modules requested, given N requests to M modules.

Formula 1.8 can easily be obtained by argument. Based on the

assumption of N statistically identical processors and M identical memory

modules with memory requests uniformly and independently distributed

among them, (1-1/M) is the probability that a processor is not addressing

a particular memory module. Then (1-(1-1/M)") is the probability that at

least one processor is accessing the particular memory module under

consideration and thus is the probability for it to be busy. Collecting

this probability for all X memory modules (multiplying the probability

for one module by X since they are all identical), we get formula 1.8.

The underlying assumption here is that the rejected requests are

discarded to preserve the independence among requests. Another way of

looki~ng at this assumption, however, is that it is equivalent to removing

the queued processors (those processors whose requests are rejected in

the current memory cycle) from all the memory modules at the end of a

memory cycle and reassigning them randomly among all the memory modules

far Dossible service in the next cycle [Bha75] along with new requests

from the nonqueued processors (those whose requests are accepted i4 this
cycle).

Actually, it is this viewpoint that Strecker carried into the

derivation of the bandwidth formula for the case in which memory request

rates are allowed to be less than 1:

BW M(-(- )N) (1.9)

where cr is the adjusted request rate because of interference.



T

19

The fact that the queued processors are removed from all the memory

modules and reassigned at the beginning of the next memory cycle

independently and randomly among all the memory modules makes the

bandwidth predicted by Strecker's model overestimating, or optimistic.

This point is further explained in section 3.3.

Ravi[Rav72] presented a similar model for the case in which request

rates are equal to 1. He approached the memory interference problem by

treating it as a combinatorial problem and presented the memory bandwidth

in terms of the average number of distinct integers in a group of N

integers chosen uniformly and independently from the integers 1 through

M. Again, rejected requests were dropped in the derivation. Ravi's

somewhat complicated result has been shown to be exactly equal to formula

By employing a rather nice algorithm to evaluate the transition

matrix of a Markov chain model, Bhandarkar[Bha75] was able to perform an

exact analysis of the memory interference problem for the case in which

request rates are equal to I. Unfortunately, his algorithm is so

time-consuming that the job of finding the memory bandwidth for a system

with more than 16 processors and more than 16 memory modules becomes

formidable.

Nevertheless, Bhandarkar did find from the exact analysis that the

memory bandwidth is almost symmetric in N and M. Using this knowledge he

modified Strecker's memory bandwidth formula (formula 1.8) and made it a

more accurate empirical estimate. That is,



20

BW -(1- ] (1.10)

where m imax(N,M) and n mini(N,M).

By viewing the memory modules as servers in a queueing system and

assuming that the memory requests, the customer arrivals, are binomially

distributed, Baskett and Smith[BaS76] obtained an expression that is

asymptotically exact (as either M and/or N tend to infinity) for the

system memory bandwidth. Although N and M were assumed to be very large

in the derivation to make the state transition probability

state-independent, the expression turned out to be fairly accurate even

for small values of N and M. Their expression for the bandwidth is

1 12
BW -M  +N-- (M+N- -2N(

The use of the binomial approximation was extended by Baskett and

Smith[BaS76] to cover the case in which memory request rates may be less

than 1. For this purpose they introduced the concept of "think time",

which represents the period of time after a CPU receives the memory

service previously requested and before it issues the next request. They

were not able to solve for the mean queue length observed by a customer

arriving at a memory module in this case, but they got around this by

giving an educated and experienced guess. The approximate expression for

memory bandwidth then becomes

BW 1lM(2 +2 L- -(2+2L 1 2 L) (1.12)
M



21

-(+T- N-1)+ (+T- )2+ 4 (R)
where L " J(1.13)2 (N-1

N

and T is the mean of the think time distribution in units of memory

service (cycle) time.

The accuracy of this result, as well as that of equation 1.9, is

compared with simulation data for memory request rate in the range of

(0,1] in section 3.3.

Recently, Rau[Rau79] used an approximation suggested by Baskett and

SmithEBaS76 1 and obtained a very accurate closed-form expression of the

memory bandwidth for the case in which request rates are equal to 1. The

"decomposition approximation" simply states the following[Rau79:

All processors (totaling K) not queued at a given memory module

are distributed among the other (M-1) modules with precisely the

same distribution that would occur at equilibrium in a system

consisting of K processors and (M-1) modules.

The intuitive justification for this assumption lies in the

independence between the requests made by the various processors and the

fact that each request has an equal and independent probability of being

directed to any module[Rau79].

Rau's bandwidth expression is



22

L-1

BW -M (1.14)L-1 2 i 1M-1 .N-1

where L " min(NM).

Again, this expression is symmetric in N and M, as is expression

1.11. As a matter of fact, expression 1.11 can be obtained from

expression 1.14 via a further approximationFRau79], namely the

insensitivity of the memory bandwidth to the addition of one more module

to the system when the value of M is very large.

Rau's result is the best compared to models 1.8, 1.10, and 1.11 for

the case in which request rates are equal to 1. Actually model I. 14 is

about an order of magnitude more accurate (with respect to percentage

error).

Until Hoogendoorn[Hoo77] presented his work, almost no researcher

since Strecker and Ravi had attempted to attack the memory interference

problem in a multiprocessor system by using a probabilistic approach.

The probabilistic approach attacks the problem from observations of

component behaviors, does not preserve the deterministic structure

inherent in a closed queueing system, and hence does not usually produce

very accurate results, as, for example, compared to Rau's result obtained

using a state-space approach. However, the probabilistic approach has

its strong points. Because of the assumption of independence among

memory requests made by the various processors, usually imposed in the

probabilistic approach, the entire system is essentially decomposed into



23

individual components. The complexity of the problem is, therefore,

greatly reduced. Non-uniform request rates, request rates that are less

than 1, and even processor priorities in accessing memory can thus be

incorporated relatively easily into a probabilistic model without making

the problem unmanageable.

Hoogendoorn[Ho0771 took advantage of this fact and presented a

"general" model for memory interference in multiprocessors. In terms of

a static access matrix, a dynamic access matrix, and the probabilities

that particular processors are successfully accessing particular memory

modules, his model consists of a set of nonlinear equations which has to

be solved by iteration. Nevertheless, the model does allow arbitrary

request rates for processors in the system. However, it is assumed that

memory conflicts are resolved by an unbiased arbiter, so that when i

processors attempt to access the same memory, each has a probability 1/i

of success. Furthermore, for the case of uniform access the model

reduces to model 1.9, which does not yield a very accurate estimate of

the memory bandwidth (see section 3.3).

1.3.2 An Overview of Chapter 3

In section 3.1 the dependency class fCKaL77] for the address streams

produced by processors is specified. The desire for allowing arbitrary

memory request rates and processor memory service priorities is also

motivated in the same section.

Carrying over the same philosophy used in Chapter 2, we present in



24

section 3.2 a general model based on the probabilistic approach for

memory interference in synchronous multiprocessor systems. The model

could be viewed as a cleaner version of Hoogendoorns model with further

generalization, although the two were derived independently.

In section 3.3 an attempt is made to improve the accuracy of the

-* model by looking at the problem with the entire system in mind, as is

done in the state-space approach, while still preserving the strong

points of the probabilistic approach. The resulting model turns out to

be fairly accurate over the entire range of request rates, except for

systems with very few processors and memory modules. The predicted

values of the memory bandwidth for various multiprocessor systems are

compared with simulation data, together with predicted values derived

from other models.

Finally, the model presented in section 3.3 can be used iteratively

to deal with the memory interference problem in an environment where

processor priorities in accessing memories are unequal. This application

is presented in section 3.4.



25

CHAPTER 2

Memory Interference and Resource Contention

in Computer Systems with Time-Division-Multiplexed Busses

2.1 Introduction

In this chapter, we consider the memory interference and resource

contention in time-division-multiplexed (TD,4) systems. The system has p

identical processors. Time-multiplexed busses are used to interconnect

these p processors with any system resources they share. For example,

consider a common memory as a shared resource. Let it be attached to the

system via an address bus, a read data bus, and a write data bus, shared

by all the processors. A strict round-robin discipline is used to

schedule the usage of these busses. All the processors in the system

have the same processor cycle time, and a constant phase shift between

clocks for successive processors is used. Appropriate phase shifts also

exist between busses to account for the necessary processing delay-. For

example, Figure 2.1 shows the time slots assigned to processors for the

usage of the shared address bus and the shared read data bus. The number

indicated in each bus time slot is the processor number assigned to that

slot. Note that the time slot assign-' to a processor for the use of the

read data bus is one memory access timt ter the time slot assigned to

it for the use of address bus. If the memory module addressed by a



26

address bus

one processor cycle

H-one memory
access time

read data bus

** 2 3 4 5 65...13

time

Figure 2.1 Illustration of the Time Slots Assigned to Processors for
Bus Usage



27

processor is idle, the memory content read by the processor is put onto

the read data bus at the next following read data bus time slot assigned

to that processor. That read data bus slot will be left unused if the

memory module addressed by this processor is busy. The write data bus

operates similarly. (A bidirectional data bus may be used without

conflict if the time between address and data bus time slots for a single

request is the same for read and write transactions, Unfortunately this

is usually not the case.)

Analytic tools will be refined in the following sections to evaluate

the performance of such a system. The derivation will start from a model

proposed by Eher [Eme79] for a multiple-instruction-stream pipelined

4processor with a single fixed-cycle shared resource (see section 1.2).

Various generalizations are performed to enlarge the applicability of the

model. These include generalizations for the number of shared resources

(section 2.2), the relative magnitude (with respect to a processor cycle

time) of the resource cycle times (section 2.3), the processor allocation

in the round-robin bus window (section 2.4) and the type of shared

resources (section 2.5). Model-based speed-up and overhead are analyzed

in section 2.6. Finally, run time data from AMP-I, a multiprocessor

computer system (see section 2.7), for a matrix multiplication program

was measured to check with the predicted values from the model in section

2.8.



28

2.2 Generalization for A Multiple-Resource System

The concept of "resource" can be applied at many different levels in

a computer system. The computer itself is a resource to outside users

while, on the other hand, it is composed of various internal resources

whose cooperation accomplishes the work demanded by the user. Whether a

hardware or software tntity should be considered as a resource depends on

its participation in the activity under consideration at the level at

which this activity is being modeled. When the attributes of an entity

do not directly affect the activity that we are investigating, we will

not consider that entity as a resource for this particular activity.

For example, a p-to-rn crossbar switch in a system rmf p processors

and m memory modules is not considered as a resource for the phenomenon

of memory access conflict, since the switch itself cannot cause any

conflict. The m memory modules should be considered as resources for the

study of memory access conflict. However, if a full crossbar were

replaced by a system with possible bus contention, then the bus entities

and the memory modules should be considered as resources.

A more elaborate example involves the execution of a program on a

multiprocessor system. Performance degradation could occur due to memory

interference, critical section lock-out, etc. Therefore, for the

performance evaluation of the multiprocessor system executing such a

program, both the hardware memory modules and the critical sections of

software should be considered as resources.

For above reasons the mode: derived in section 1.2.2 could be more



29

useful if it would allow multiple resources in the system. This

generalization is derived in this section.

Assume there are m resources in the system as in Figure 2.2, where

resource i (1i&m) has a cycle time ci  no greater than the processor

cycle time. Each task has a probability *i of requesting resource i.

Note that which particular segments are request-originating and

result-receiving for particular resources is irrelevant to the model. We

assume that the requests for distinct resources are independent and

mutually exclusive, hence the sum of all ji, 14i~m, shouli be no greater

than 1. The average number of passes a task would require now becomes

m m
P E I *i)-l + Z * [PA -I+PA (I-P i).2 + ..

Jufl Ji A i A A

m m
1- Zi + Z - $ii (2.1)

Jul Ju i- P A i

where the probability of acceptance for a request submitted to resource i

is

1
P l+ ,I i 'a, (2.2)

and the actual request rate seen by resource i is

i [PA -+PiA (1-PA) 2 +'

i p

P

1 a1 f i m . (2.3)
m mZ- r.+ Z.,
Jul "] Jul 

"] Pj



30

'ITO

. resourcei

rsuce j 1
\ Ii

I

resource m

Figure 2.2 A Multiple-Resource Pipelined Processor

[

= .. . . ... . . i,, i = . ... . li I I--_ q . . i ... .... l ... . ... . 1 l l l



31

From here on, we call the programmed request rate to a resource,*

the static request rate to that resource. The actual request rate seen

by the resource during run time, ot , is called the dynamic request rate

to that resource. Note that the dynamic request rate to resource i, Cj,

is now not only a function of the static request rate to that resource,

* but also a function of the static request rates to the rest of the

resources as well. The requests and usages of the resources in the

system by the instruction streams are now interrelated.

To get some flavor of such a system, an example is given in Table

2.1. In systems 2 and 3, the pipeline is assumed to have more than 100

segments. Notice that system 3 is actually a system which contains both

7. resources contained in system 1 and 2 and maintains the same static

request rates to these resources from tasks. Dlue to program blockage

caused by the rejection of a request to either resource, the dynamic

request rate seen by the other resource is lowered. In this example,

both ao's are actually lower in System 3. The probabilities of

acceptance for requests to both resources are thus improved, but the

overall performance, as reflected by the average number of passes a task

requires, is worse, as should be expected. One may notice that the

values of some parameters in this example have been exaggerated to show

the coupling effect prominently, the performances of the systems are

terribly poor, and hence the accuracy of the model due to its

independence assumption is suspect in this case. It should be

understood, though, that the example was constructed only for

demonstration purposes.



32

Table 2.1

An Example Showing the Effect of the

Existence of Multiple Resources

System 1
0.8, c 5

o z =0.950515

PA z 0.208244

p = 4.041647

System 2
4 = 0.1, C : 100

7 a = 0.910100

PA = 0.010977

p = 10.009957

System 3
*1 z 0.8, c, = 5

*2  0.1, c2 = 100

oil = 0.11623, 012 = 0.87989

= 0.68263, PA = 0.01135
1 2

p = 10.082821

... -- J.i



33

2.3 Generalization for the Resource Cycle Times

Up to this point all the resource cycle times have been restricted

to be less than or equal to the processor cycle time. This restriction

seriously reduces the generality of the model, because it excludes, for

example, the possibility of modeling cache miss penalty (if only one miss

can be processed at a time), complex function units, and critical

sections. Each of these resources normally requires more than one

processor cycle per access (c > s) and yet can only serve one request at

a time. In this section we generalize the model to allow the resource

cycle time to be longer than one processor cycle time.

Let n i be a positive integer such that

( -lI)s <c n i

where i -1, 2, ... , m, m-the number of distinct resources in the

system, nl i ' 1, and 52 the number of segments in the pipeline. N~ote that

for resources modeled in previous sections, ni.

Furthermore, we denote the delay between the issuance of a rejected

request submitted to resource i and the issuance of the resubmitted

request for the next trial as di processor cycles. In other words,

d.i is not necessarily 1, as above. Allowing d. to be greater than 1 is

essential for modeling software resources, e.g. when a programmed

request for accessing a critical section is rejected, it will usually

take more than one processor cycle to loop through a few machine

instructions and resubmit the request.

For this generalization, we have



34

M m(1- r *i). 1 + .n~~ 1i+I.A - i )
i- + *i [ i PAiPA(i+

+ ( 1-PA i 2pAi (2di+ni)+ .
m M

" i= + i(ni+( -- l )), (2.4)

P~i "i) i " + ( 1 "  PA .' ".

S[pA .2+(l-P A )2  .3 +

I.

PA

[ i £ m (2.5)

PI['=,#j+=Z#~ j~j I)

Note that although the resource cycle time n. and the retry delay

d. could be larger than 1, there will only be one request issued during

each of those periods. Alas, p could now assume a value larger than I

even without resource contention.

Finally, the expression for the probability of acceptance for

requests to resource i can be obtained by using a discrete Markov chain

model (Figure 2.3) similar to that used in section 1.2.2. We thus have

P~ ~ a ( £ . ) , f " m .(2 .6)

-A 1-1 1 .. 1 - -- 2.6)



35

t -1- 1

(n 1)s <c -5 ,where n 1.

Figure 2.3 State Diagram for a Multiple-Cycle Resource



36

2.4 The SCP Problem

In this section we present a problem, which arises when the model

discussed in previous sections has inactive instruction streams or unused

time slots in a processor cycle.

The system we have been dealing with looks like the ease in Figure

2.4 (a), where a cross signifies an occupied time slot by an active

processor. The entire processor cycle is fully filled with active time

slots. However, the resource cycle time c is used in the model thus far

only to indicate that the next c-I processors following an accepted

request are locked out of the resource which accepts the request. When

the processor cycle is fully filled, the number of processors locked out

2' of the resource following an accepted request coincides exactly with the

number of STUs the resource remains busy after it accepts the request.

Model modifications are required when there are vacant time slots

corresponding to inactive instruction streams in the processor cycle.

For example, in Figure 2.4 (b) only 4 out of the 12 processors are active

and their assigned time slots are spaced evenly over the processor cycle

as shown. The resource cycle time is still 3 STUs, as in (a). However,

no processor will be blocked even if all processors always request the

same resource. As far as resource access conflict is concerned, this

system is equivalent to a 4-processor system with c-1 and 4 STUs per

processor cycle, where the STU is 3 times as long as the STU in Fig ure

2.4 (b).

Therefore, in order to make Eler's model applicable to this case, we



37

(a)

(b

, x

(c )p 5 active processors

Figure 2.4 Illustrations for the SGP Problem



38

define an "effective resource cycle time", ce, which assumes the role the

resource cycle time plays in the model. This modification changes the

relation between the c in Ener's model and the physical time. In other

words, if we use the effective resource cycle time c in lieu of the
e

resource cycle time c in the model, the model will be able to cover this

case.

More specifically, we define the effective resource cycle time,

c to be such that ce -I is the average number of active processors a

processor could block. It should be noted that this simple averaging

operation, instead of a rigorous Markov-chain-based argument, could cause

some error. However, because of the close match between experimentally

measured data and model-predicted values (see section 2.8), it is

believed that the error is pretty small.

In the. general case we have s time slots in one processor cycle, a

physical resource cycle time of c STUs, and p active processors in the

system. A brute-force approach for evaluating ce-I proceeds by summing

up the total number of active processors which may be blocked by each

processor and dividing the sum by p. For example, c e-I (2+2+1+2+2)/5

1.8 in Figure 2.4 (c).

No simple formulas have been found which give the effective resource

cycle time, ce' directly. This is due to the difficulty of quantifying

arbitrary allocations of the p active processors. Figure 2.5 gives an

example to show the effect of different placements of the p active

processors on the effective resource cycle time even with s, c, and p

fixed. There do exist, however, special cases for which simple formulas

-



39

.>K1K1<1 1 X. I i I 
(a) c =2.0e

NINNiN"I
(b) c =2.2

(c) c 2.4
N e

(d ) c =2.6

(e) c 2.8

H

(f) c 3.0

Figure 2.5 An Example of the Effect of the Processor Placement
on the Effective Resource Cycle Time ( s = 12, c = 5,
p=5 )



40

exist for the effective resource cycle time.

For convenience, we will use the following definition:

Definition

A processor, say A, is said to be covered by another processor, say

B, if the time slot assigned to processor A occurs less than one resource

cycle time after the time slot assigned to processor B. In other words,

processor A is covered by processor B if processor A is forbidden from

using the resource whenever processor B is using it.

Casel1 p s: c ~c

Since only one placement is feasible, the proof is straightforward.

Case 2 c =s: c

Proof: Since each processor covers all other processors, ce-1

Case 3 p -s-1 c = C-((O-1 )/pe

Proof: The placement pattern shown in Figure 2.6 (a) is the only

feasible one (ignoring cyclically equivalent patterns). Then

each processor will cover c-i processors except the rightmost c-i

processors each of which covers one fewer because of the vacant

slot at the right end. Therefore



I

41

I_ c

(b)

Figure 2.6 Illustrations for (a) p = s-I (Case 3)
(b) s = 2c-i (Case 4)

. ... . .



42

c - 1 , pc-1)-(c-)) C c- 1 - ((c-1)/p) .(2.7)
e P

Case 4 s 2c-1 : 0 (p)/2

Proof: For each processor we look at its assigned time slot and the time

period of length s with this time slot in the center (see Figure

2.6(b), where a time slot with a "-" sign means it is either

occupied by an active processor or vacant.). Note that s is an

odd integer in this case. All the active processors with

assigned time slots located to the right of this processor are

covered by this processor while this processor is covered by all

the active processors with assigned time slots located to its

left. Therefore, the contribution associated with this processor

to the total sum of covered processors by all processors is p-1.

This value actually includes the number of processors it covers

and the number of processors by which it is covered. Therefore,

multiplying p-1 by the total number of active processors, p,

yields the product p(p-1 ) which is really twice the sum over all

processors of the number of processors covered. Hence

cee-1 - (p(p-1 )/2)/p - (p-1 )/2.

It is interesting to note that in these cases ce is independent of

the allocation of the p active processors to time slots. The last case

is of particular interest to us because the AMP-1 , used in some

experiments (see section 2.7), has s-9 and c-5 and thus falls into this

I



43

category. Hence we can use the simple formula e=(P+1 )/2 without

worrying about the specific processor allocation.

Higher performance results from smaller effective resource cycle

times since fewer processors are blocked due to resource access conflict.

In general, ce is a function of the particular allocation of active

processors to time slots. Thus it would be nice if we could find an

optimal allocation of active processors for any given s, c, and p. This

information could be useful for the design of an operating system for the

kind of machine we are considering. Unfortunately it turns out that

finding an optimal allocation for a given s, c, and p is not a trivial

problem and no general algorithm has been found.

We do have a formula, though, for the packed allocation (all the

active processors are assigned consecutive time slots with the remaining

time slots, if any, left vacant). The formula is given in the following:

(I) p ' c

ce-1 -(p-i )/2 - (I /2p)(p+c-s)max(p+c-l -s, 0)

(II) p > c

ce-1 = (c-I )( -(c/2p)) + (I /2p)(p+c-s)max(p+c- -s, 0)

The derivation of this formula is discussed in two parts:

(i) p + (c- 1) s s

In this case processors in the packed time-slot chain can not cover

processors preceeding them in time.



44

(i) p c

(p-1 )+(p-2)+...+1o p(p-1 )/2 p-1
C-1 a -

e p p 2

() p>
(p-c)(c-1 )+(c-i )+ (c-2)+...+1 40

C -I"
e

p

(p-c)(c-1) c(c-1 )/2
+

P p

c-I c c

p 2 2p

(2) p + (c- ) s

In this case processors in the tail of the packed time-slot chain do

cover processors at the head of the chain. Noite that s-(c-I ) is the

number of processors at the head of the chain which do not cover any

processor preceeding them; p-(s-(c-1 )) is the number of processors in the

tail of the chain which do cover some processors preceding them.

(i) p c (p-1 )+(p-2)+. .+[P-(s-(c-l ))]+[P-(s-(c-i ))]2

c -i1
e

I P(P-1 ) [P-(s-(c-1 ))][P-(s-(c-1 ))-i]

p 2 2

2-[(s- (c-1 ]]

p-1 I -(s-(c- ))-I
p- + p-(s-(c-1 -([P-(S-(C- -

2 p 2

.... .- - - - -- - - - -- -- -- -. - -- - - ,, , -_.. "-l I



45

p-1 I
- - + - (p+c-s)(p+c-1-s)

2 2p

(i)p > c2
(p-c)(c-l )+(c-I )+ (a-2)+...+[p-(s-(o-l))]+[m(5-(o-1 ]

c e - 1=

p

(p-c)(c-1) c(c-1 )2 1
- •+ . +- (p+c-s)(Pc-1 -s)

p p 2p

c 1
S(C-i)(I- - ) + - (p+c-S)(p+C-1-s)

2p 2p

The formulas for cases (I) and (2) can be combined together and the

result is as given previously.

Before we present the optimality theorem for the packed allocation,

we need the following lemma:
/

Lemma

Given a system of k (O<k<s) active processors placed in a packed

allocation. If one extra processor is to be added to the system, then

the (k+1)-processor packed allocation yields, among all possible

positions for processor k+1, the minimum effective resource cycle time

for the case c > s/2, and yields the maximum effective resource cycle

time for the case c & s/2.

Proof:



46

If one extra processor is to be added to a k-processor system, the

sum of the total number of active processors which would be blocked by

other processors will be increased by two kinds of contributionst the sum

of those processors which would block this new processor and the sum of

those processors which this new processor would block. In Figure 2.7 the

former value is shown above in the potential time slot for this processor

and the latter is shown below. Figure 2.7 is valid for the k 4 c-i. The

case k c will be discussed later.

Note that from left to right (increasing time) the values in the top

sequence remain at k first, start to decrease at time slot c+1 with a

slope of -1 (decrease by 1 per time slot), and remain at 0 when the

values decrease to 0. On the contrary, the values in the bottom sequence

)remain at 0 first, start to increase at time siot s-(c-2) with a slope of

+1 (increase by 1 per time slot), and remain at k when the values

increase to k. Thus the sum of the two sequences is one which assumes

the value k at both ends with values in the middle greater than, equal

to, or less than k depending on the relative magnitudes of c+1 and

s- (c-2).

When s-(c-2) < c+1, the bottom sequence starts to increase earlier

than the top sequence starts to decrease and it can be shown that the sum

of the two sequences assumes values greater than k in the middle (see

Figure 2.7(a)). When s-(c-2) - c+1, i.e. the two sequences change slope

simultaneously, the sum of the two sequences assumes the value k

throughout the c-k time slots. This case actually corresponds to Case 4

above, which requires s - 2c-1. In either case, a packed (k+1)-processor



47

k k+l k

slot s-(c-2)
number 1 2 3 • k c+l s

I/ //> / ok l I 1 k k I k I- -- 2

IKc c-k 7 c-k--0

I_ - c-i -HI- -

(a) c > s/2

slot
number 1 2 3 . k c+l s- (c-Z) s

klk~]2.i 1f ~O 0k"'r/ X.=-.-, 0 . k-1 o0 1- ,Ii I° 1 o I 2 k
iK-c - I I- 1-i

(b) c s/2

Figure 2.7 Contributions Due to an Extra Processor Added to a
k-processor Packed Allocation when k c-i

- - - - -- - -



48

allocation yields the minimum effective resource cycle time (with the

minimum extra contribution k from processor k+1). Note that s-(c-2) &

c+1 corresponds to c I (s+1)/2, which is exactly the condition c > s/2.

On the other hand, when s-(c-2) > c+1, i.e. the top sequence starts

to decrease earlier than the bottom sequence starts to increase, it can

be shown that the sum of the two sequences assumes values less than k in

the middle (see Figure 2.7(b)). The condition of this case is exactly

the condition c 4 s/2 and a packed (k+1)-processor allocation in this

case yields the maximum effective resource cycle time (with the maximum

extra contribution k from processor k+1 ).

Finally it can be shown that similar argument with trivial

modification holds for the case k c. The proof is thus omitted.

Q.E.D.

Finally, we have the following theorem:

Theorem

Given p 1 c, the packed allocation of active processors yields the

minimum effective resource cycle time for the case c > s/2, and yields

the maximum effective resource cycle time for the case c 4 s/2.

Proof:

The case of 1 processor is uninteresting. Thus, suppose we have 2

processors in the system. If c > s/2, i.e. 2c > s, conflict between j

I



49

processors can not be avoided and the packed allocation yields the

minimum effective resource cycle time. On the other hand, if c 4 s/2,

i.e. 2c I s, conflict can be completely avoided. The packed allocation

in this case yields the maximum effective resource cycle time.

Assume the theorem is valid for k processors, where 2 4 k A c-I.

Now consider adding one extra processor to a k-processor system.

Let us concentrate on the contribution due to this new processor to the

sum of the total number of active processors which would be blocked by

other processors. If the k processors are placed in a packed allocation,

it is known from the lemma above that putting the new processor in such a

position to form a (k1)-processor packed allocation will, among all

possible positions, achieve minimum contribution for the case c > s/2 and

the maximum contribution for the case c d s/2.

If the k processors are not placed in a packed allocation, we will

show in the following for the case k 4 c-i that the new contribution due

to processor k+1 will be at least the amount it contributes if it were

added to a k-processor packed allocation for the case c > s/2 and at most

the amount it contributes if added to a k-processor packed allocation for

the case c 4 s/2. This fact together with the inductive assumption

yields the theorem for k+1 processors, provided k 4 c-i.

When c > s/2, we have 2c-i s. Therefore, no matter where

processor k+1 is placed into a k-processor allocation, the total number

of processors which it covers and which cover it will be at least k (see

Figure 2.8, where the shaded time slot indicates a potential position for

SI



so

Ci

50

iXN IMX I. VNN/ VA I I X< Ii
CC

(a) c > s/2

V I I, N ' - [H c>: - IN ]

(b) c s/2

Figure 2.8 An Extra Processor Added to a k-processor Unpacked Allocation

IL

1g



51

processor k+1). On the other hand, when c 4 s/2, we have 2c-1 ' s-1.

Therefore, no matter where processor k+1 is placed into a k-processor

allocation, the total number of processors which it covers and which

cover it will be at most k (see Figure 2.8). Remember from the proof of

the lemma that k is the minimum and the maximum extra contribution for

the case c > s/2 and c 4 s/2, respectively, for the case k 4 c-I when

processor k+1 is added to a k-processor packed allocation. This extra

contribution k is achieved by the (k+l )-processor packed allocation in

both cases.

Therefore, while k 1 c-I, when an extra processor is added to a

k-processor allocation, packed or unpacked, the minimum extra

contribution in the case c > s/2 and the maximum extra contribution in

the case c 4 s/2 are both k. Since by assumption the packed allocation

of k active processors yields, among all possible k-processor

allocations, the minimum effective resource cycle time for the case c >

s/2 and the maximum effective resource cycle time for the case c 4 s/2,

the theorem is apparently valid for k+1 processors.

By mathematical induction the theorem is valid for any number of

processors smaller than or equal to c.

Q.E.D.



52

2.5 Generalization for Software Resources

In a multiprocessor program the execution of certain segments of the

program code must be controlled in order to protect data integrity and/or

to provide synchronization information. Very often protection is

provided by allowing only one processor at a time to execute these

segments and no preemption is allowed. Then such segments are usually

referred to as mutual-exclusion critical sections or, loosely, just

critical sections. Since processors have to compete to gain access to

these critical sections, they are essentially shared resources of the

system.

However, while a processor is executing program code, it also

accesses the memory - another shared resource in the system. In the

model discussed in section 2.3 a task needs service from at most one

resource in the system. When a resource i request from a task is

accepted, no request to any resource from the same task will be submitted

during the following c ..j time slots. For a rejected resource i request,

on the other hand, the task under consideration must submit no resource

request during the d i-.1 processor cycles following a previously rejected

request. The last processor cycle in the 1.- cycle period is used to

resubmit the resource i request. Therefore, if we try to model a

mutual-exclusion critical section as a resource of a multiprocessor

system, these constraints will have to be relaxed. However, when a

shared resource is indeed the ind of resource modeled in section 2.5, as

is often the case for a function unit, the previous model should be left

intact. In the rest of this chapter, we will call shared software



53

resources, like critical section code, Type-O resources. The ki nd of

shared resource modeled previously is called a Type-1 resource hereafter.

The value of parameter 8 i will be used to indicate the type of resource
i.

Without loss of generality, we will let resource 0 be the shared

common memory in this section and we assume there are I identical memory

modules in the memory. The requests to memory modules are assumed to be

distributed randomly and independently. This assumption may be closely

approximated in practice by fully interleaved addressing as discussed in

section 1.2.1.

Finally, let's assume there are m non-memory shared resources and p

active processors in the system.

Note that in the particular cycle in which a processor requests a

non-memory resource, it is assumed not to be requesting the memory

simultaneously. In other words, the events to which *i probabilities

are assigned are mutually exclusive. Hence if a non-memory resource i is

a Type-O resource its resource cycle time n. will be expanded on the

average due to memory interference to be

I + (nC-1) (l-* 0 +* 0---

Ao

since only the last n.-1 processor cycles could possibly expand due to

memory interference. If the non-memory resource i is a Type-1 resource,

however, the resource cycle time n. will not be affected by memory

interference. By means of the type parameter 6, the two resource cycle



54

times can be combined and the resulting resource cycle time for resource

i becomes

1 +(n i-IM i + (1- 8i)(l-* 0 + * 0 p_1

A
o

Furthermore, it should be noted that since fully interleaved

addressing is assumed the memory reference behavior is assumed to be so

homogeneous that the memory request rates within and outside Type-O

resource cycles are the same.

The average number of passes a task r3quires, p , now becomes

m
0 (l1' 0 " =l i) ' I + 0[P -I* + (I PA )P A  2+ " " I

00A 0  A0 A0

+ E i (PA [l+(ni.1)(5i+(l6i)(l 0+ 0  1 ))i=l i 0 A o ))

+ (PA )PA [2+((n i - ) + (dI'l))(6i + i)(i'*0 +0 0
3. i A 0

+..

m +
* irl *A

0

+ *i . + [(n1-l) + (d -l)((--1--( I)] ( + i ) (l-* + * 0  A
i,,l Ai A A

i 
A0 (2.8)

The request rate seen by the memory as a whole entity becomes

I



55

IAIOOII)~P j I A, I IP
0  0c 0  P

, #0[1 +  E #i[(ni.)+(d M'L)( - UN l]( 'I ).

. PAo (2.9)

The request rate seen by a non-memory resource is

*i[PA 'l + (1-PAi)PA i2+." ]

ii '. i
i 0

P i P i=1,2, ... ,m . (2.10)

A.

The requests for memory are actually distributed among all

modules. Hence for a particular module the request rate for it is one

Ith of the a0  we obtained above.

The probability of acceptance for a memory request now becomes

A0 M+a 0 T 1 c (2.11)
PAo  I+ ( 01 /) (ce- 1) . )

while the probability of acceptance for a non-memory resource request is

P 1A (2.12)
14a .i[[l+(nil)(6i+(16i)(l_*0+*0 1

Ao

i:1,2, . .. ,



56

2.6 Speedup and Overhead

In this section, we extract some performance information out of the

model discussed in the previous section.

An array computation program intended to run in a multiprocessor

environment often consists of sections each with the structure shown in

Figure 2.9IiChe7l 1. There, a small segment of code at the beginning of

the section is usually devoted to initializing the process. This

initialization segment is then followed by a good number of virtually

independent jobs of equal or unequal sizes. Some jobs in this job pool

may have precedence dependency among them, but the degradation effect of

the dependency could be implicitly removed by properly scheduling the

processors.

Every processor participating in executing this section of program

code must either execute the initialization segment or wait in a

busy-wait loop while that segment is being executed. Thus the

initialization segment is not sharable. However, if there is more than

one processor in the system, they can share the load of executing the

following parallel jobs. Let R. bk the total number of programmed

processor cycles in the initialization segment. Let R 0be the total

number of programmed processor cycles in all the other jobs. Since the

number of jobs is usually large compared to the number of processors, we

will optimistically assume that R .can be evenly shared.

Let p, and opbe the average number of cycles a task requires in a

single processor and p-processor environment, respectively. Then the run



57

initialization R
segment s

Fr * R ..

*1-1

i I__ ___

Figure 2.9 Structure of a Program Section in a Multiprogramined Computation



58

time in processor cycles for the execution of the program section using a

single processor is

R1 - (Rs +R0) . (2.13)

On the other hand, the run time in processor cycles for the

execution of the program section using p processors is

R = (Rs + !-)p (2.14)
p a p p

Therefore, the speed-up, S, for using p processors instead of one

can be calculated as

R1  (Rs+RO)P _ (R0+R8 ) _ (2.15)

R (R0+Rs pR (.5
s F--(Rs+_)Pp R0P s p  "

R
(+ PR s )0 (1+ p 0)

whereX (R+ )P 0O P (2.15)
(R0 +R )P)

(1+ -O)P

If the initialization part takes a negligible amount of time

compared to the sharable part of the program, i.e. PRs << R0 , then the

"penalty factor" [Kun76], X , can be expressed approximately as

(2.16)
Pl



59

It may now be instructive to examine various overhead ingredients in

the expression for the average number of passes required by a task, p

according to the model derived in section 2.5.

The general expression for p is (equation 2.8)

p "p(P A0 PA 1 -1,2, .. m

m

iml 1 0PA 0

+ M. 1 + [(ni-l)+(di-l) 1 -1) [6i+(i-8 i ) ( l - * O+ 0 O W
i=1 PA i PAi

(2.17)

Even with no resource contention at all, we have this no-overhead

value for p

PO P(PA 0 PA "i, -,,..m
0 i

m m
-1- i+ E 1n (2.18)

i-i i-I

As before, resource 0 is used to refer to memory. Hence the

overhead purely due to memory contention is



60

o P(A o 0<1, Pi 1, i-1,2, ... ,x) -pO

(-1)(1+ (n 1) (1-69)

This additive overhead is directly proportional to 0 , the

probability that a task makes a memory request. The second term in the

square bracket represents the overhead factor due to a processor

executing code during the execution of a software resource (e.g. a

critical section).

The overhead due directly to non-memory resource contention can be

expressed as

S (A0=I, j < 1, Pl 1 ,' i-1,2, ...,m, i~j) -p0

Sd 1 , j-l,2, ...,m (2.20)

JPA

Again, this overhead is proportional to the request rate, * . Note

that it is also proportional to the retry delay d .

It is interesting to note the existence of some coupled overhead

between memory contention and non-memory software resource contention.

This coupling is due to memory contention interfering with software

resource retrials.

The coupled overhead is

7



61

m
9CO =  -t" o " i : l ¢ Po

Mm 1

• 0( -1 , (d 1 -1) -) -8 d (2.21)
AO il Ai

Finally, the interference factor p can thus be expressed in terms

of the basic no-overhead value and various overheads:

m
P PO + c0 +  c  (2.22)

2.7 An Experimental Tool - the AMP-I Machine

In this section we briefly describe a locally-designed and

locally-implemented multiprocessor computer system, the AMP-I

machine[DavBO], [Hor78], [Kra77], which is used in the next section and

the Appendix of the thesis to study the inherent resource contention and

job multitasking for parallel execution in a multiprocessor system.



62
4J

2.7.1 System Organization

A block diagram of the AMP-I system [Hor78], [Kra77] appears in

Figure 2.10. The following description is mainly taken from [Dav8O].

The system employs eight Motorola 6800 microprocessors which access

memory over a shared bus system using a strict round-robin bus window

access discipline. The processor controller (see Figure 2.10) contains

the master clock which generates control signals for the processors and

their associated external registers and drivers. The shared bus system

consists of an address bus, a read data bus and a write data bus. Shift

registers in the processor controller provide the necessary control

signal skew between successive processors, so the processors take turns

in using these busses in a strict round-robin fashion. For a particular

processor, appropriate time delay exists between its address bus window

and its read or write data bus window so that the memory has enough time

to process its request, if accepted.

The memory is organized as 64 modules of 1K bytes each. 'When

operating at full speed, the memory modules have a cycle time of 5, i.e.

when a processor accesses a memory module the next 4 processors in

sequence are forbidden from accessing that memory module. The busy

checker determines whether a memory access request is attempting to

access a busy module and if so, disables the clock for that processor for

one complete cycle. The design of the Motorola 6800 processor and the

clock disable logic permit a rejected memory access request to be

resubmitted automatically on the next cycle. The busy checker permits an

extension of the memory cycle time beyond 5 clock times to 6, 7, or 3 I.



63

L'I



64

clock times. It also allows reconfiguration of the memory system as 32

modules of 2K bytes each, 16 modules of 4K bytes each, and so forth down

to 1 module of the entire 64K bytes.

A memory interleaving plug is provided to allow an arbitrary

selection of the level of address interleaving. By selecting different

sets of address bits as the memory module number, one can study

uninterleaved, two-way interleaved, up to fully interleaved addressing.

The BBX interface connects this system to a DEC System 10 computer.

The DEC-10 can read and write any location in memory and can start, stop,

and reset arbitrary combinations of processors. It can also be

interrupted for message passing from the processors.

A set of special memory-mapped locations are designed and

implemented to provide the test-and-set funcion for crit-,al sections in

the programs, interrupt indicator and status message box to the DEC-10,

and other functions not otherwise available.

The memory mapper allows each processor to have a small amount (256

bytes) of logically local memory. Local memory is used as temporary

woring storage and to store enough of the processor state to permnit

convenient reentrant programming so that the processors can share the

same code.

Finally, a hardware monitor (not shown in Figure 2.10) has been

designed and built to collect performance information for programs

running on the system. Counters in the monitor can be clocked by wiring

in chosen system event signals. They can be individually reset and their



65

contents can be latched for reading at any given point by special

instructions inserted in the program code.

2.7.2 Software and Computation Decomposition

Software for this system is written in Motorola assembly language.

The programs are assembled through a cross-assembler resident in DEC-10.

In order to program a multiprocessor system like AMP-i, one must

decompose the work to be done so as to exploit inherent parallelism.

Because of the lack of system software support on AMP-1 , computation

decompositions have to be done completely by the programmer and the

desired scheduling is explicitly programmed. Furthermore, because of

reliability and portability considerations, it is preferable to code

programs with no knowledge of the number of processors available in the

system.

Based on the above considerations, a segment of program code, called

the Job queue, is used to store all jobs waiting to be processed. The

jobs are identified in the job queue in terms of a small number of

parameters, and the job queue itself is treated as a mutual-exclusion

critical section.

T"he jobs in the job queue may have precedence relations among them.

Thus any needed program code is provided at the beginning and the end of

job program code to cheik for satisfaction of precedence requirements and

indicate completion prior to starting or finishing the job, respectively.



66

Scheduling is then accomplished simply by having an idle processor

interrogate the queue for its next job. When a processor finds an empty

job queue, it halts. The computation is complete when all the processors

have halted. Other schemes could, of course, be programmed.

2.8 Matrix .Iultiplication as An Experimental Check of the Model and

Tw.o Models for Incorporating Imperfect Job Sharing

A matrix multiplication program, MXMC, has been written and run on

the AMP-i multiprocessor system described in the last section. Matrix

multiplication was chosen to focus on resource contention overhead only,

since it has a large number of independent jobs with no precedence

constraints among them.

The program multiplies two 32x02 matrices and stores the product

matrix into a third area. The program computation was divided into

independent jobs for scheduling by the job queue. Each job represents a

single inner product calculation. We therefore have 1024 independent and

identical jobs in the job pool of the program. A mutual-exclusion

critical section is used to control the access to the job queue. Only

one processor at a time is allowed to fetch a job so no two or more

processors would get the same job. Fully-interleaved addressing with all

64 memory modules was used since it tends to distribute memory requests

among modules more evenly and 'dependently, and thus is preferred for

checking the model. Data on the effect of address interleaving on the



67

performance of M 4C is presented in the Appendix.

Some pertinent data is given in Table 2.2. The data was measured

when a single processor was used and thus are interference-free values.

The critical section length is noninteger since it is the mean value

of two different internal paths (one path to index through rows and the

other through columns) weighted by their corresponding frequency of

occurence in the trace. Likewise, job length is computed as an average

value. The fluctuation in the execution time of inner-product jobs comes

from the floating-point arithmetic subroutines which are data-dependent

(requiring a variable number of normalization shifts). The lengthy

inner-product calculation time is due to the 5-byte floating point number

format used for each matrix element. For example) the floating point

multiplication routine requires an average of 4,669 cycles. Finally, for

modeling the critical section as a software resource, the semaphore retry

delay, d , is the time required to reaccess the guarding semaphore

(during which a software counter for measurement purpose is incremented).

The measured run time data using fully-interleaved addressing are

shown in Table 2.3. All times are given in processor cycles. It can be

observed that the values predicted by the model (equations 2.1 through

2.3 with resource cycle times replaced by their effective values) are

extremely close to the measured data. However, since the job execution

time is so large compared to the critical section length, the effect of

modeling critical-section access conflict (by equations 2.8 through 2.12)

is insignificant (see predicted values of Table 2.3(b).). Nevertheless,

this insignificance is consistent with measured data, since the

I



68

Table 2.2

Matrix Multiplication Program Data

memory request rate = 0.7917 requests/cycle

in processor cycles

initialization cost 34.0

average critical section length 49.34

average inner-product job length 159432.486

semaphore retry delay 18.0

yl

/D



69

Table 2.3

Matrix Multiplication Run Time Data

total no. of measured predicted predicted time

processors time time measured time

1 163309473 163309473.0 1.000000000
2 82010795 82055137.6 1.000540690
3 55066514 54971038.9 0.998266186
4 41496157 41429493.8 0.998393510
5 33378226 33304965.8 0.997805151
6 28068356 27888942.8 0.993607989
7 24217492 24020633.7 0.991871236

(a) Results when only memory is considered as a resource

total no. of measured predicted predicted time
processors time time measured time

1 163309473 163309473.0 1.000000000
2 82010795 82055143.0 1.000540760
3 55066514 54971046.1 0.998266317
4 41496157 41429501.9 0.998393706
5 33378226 33304974.6 0.997805413
6 28068356 27588951.9 0. 993608315
7 24217492 24020643.2 0.991871627

(b) Results when both memory and the critical section are
considered as resources



70

critical-section accesses rarely conflict in the real runs of our

experiment.

Predicting the matrix multiplication execution times using the above

models basically assumes a perfect sharing of the computation work load

R0 among the processors. For comparison, the necessary run time for

matrix multiplication is predicted by using two other mthods: a simple

deterministic model and a renewal-theory model. Both of these models

explicitly take into consideration the effect of imperfect sharing of

R0 at the end of the computation, which has not been previously modeled.

The simple deterministic model ignores memory interference and

treats job execution time and critical section length as constants. The

run time of matrix multiplication is calculated by considering the

multiprocessing as a deterministic process. The modeled multiprocessing

of a 3 x 3 matrix multiplication by 4 processors is shown in Figure 2.11.

The general expression for the run time Tp using p processors can easily

be obtained and given as follows:

(1) J P (p-1)Cp

(i) p divides N

T - S + pC + (J +C )
P P P p p p

(ii) p does not divide N

T S + (N - ]p) C + al (J +C) (2.23)
p P LP P



71

N=9

C4  C4  ¢4 C4P~I'~' 4 .. J.J
IC J4 811444

I )

W 4 4
P 3 ......

r2  "-W - . o ,U ...

, 3 ' 4 34

Wel

P4f

~T 4

(a) J4 2 3 C4

1S
4C,.4 J C4 J4 C4 C 4

i 44  4

4 , 4 4
e *[~ .. , 1 9 e ! : l .*1 1 , ' ^ ., . ~ , l l

I a

P 4 a 4
a- - I II I .I;JIIi~d ' -- MIII i

I I a

4 4
P4 f I, ,-.IIUA

i - 4

(b) j 4 < 3 C4

Figure 2.11 Run Time Model of 3x3 Matrix Multiplication Using 4 Processors



72

(2) JP < (p-l)Cp

T S +(N+p)C
P p p

where N total number of inner product jobs,

Sp - initialization time,

Jp = job execution time in a p-processor environment,

and Cp - critical section execution time in a p-processor

environment.

Run times predicted by the simple deterministic model for the matrix

multiplication are shown in Table 2.4(a). Although the predicted values

are very close to measured data, the discrepancy does increase as the

number of participating processors increases and memory interference gets

more severe. Memory interference is neglected in this model.

In order to recognize the effect of memory interference, the

interference factor p in equation 2.1 can be used to modify the various

execution times in the deterministic model. To be more specific, the

execution times Sp, Cp, and Jp in different parts of formula 2.23 are

multiplied by appropriate values of the interference factor p depending

on the number of actively participating processors at the particular

moment. This results in a new "hybrid model". Predicted values by the

hybrid model are shown in Table 2.4(b). The match between measured and

predicted times is the best among all models due to the fact that the

hybrid model considers both the end effect of job sharing and memory

conflicts.

~~~~- --------~ - _


73

Table 2.4

Matrix Multiplication Run Time Data

total no. of measured predicted predicted time
processors time time measured Fime

1 163309473 163309473.0 1.000000000
2 82010795 81654827.6 0.995659505
3 55066514 54542867.8 0.990490661
4 41496157 40827578.8 0.983888190
5 33378226 32694005.7 0.979500998
6 28068356 27271623.6 0.971614569
7 24217492 23443961.1 0. 968059001

(a) Results from the simple deterministic model

total no. of measured predicted predicted time
processors time time measured time

1 163309473 163309473.0 1 .000000000
2 82010795 82055187.0 1.000541300
3 55066514 55076838.2 1.000187490
4 41496157 41429643.3 0.998397113
5 33378226 33336852.5 0. 998760465
6 28068356 27941986.5 0. 995497795
7 24217492 24134032.9 0. 996553770

(b) Results from the hybrid model

74

Finally, the execution of matrix multiplication can be viewed from

another abstraction. Figure 2.12 (a) depicts the execution of N inner

product jobs by p processors with job times drawn independently from the

same distribution. If we use T to represent the execution time of

processor i's jth job, ki the total number of jobs executed by processor

i, and t the time instant when processor i finishes and halts, we get

the following se.. of equations:

kI

Z T1
j tI

k
2

E1
T 2j t2

kp
T.=t

j=1 p J P

P

k. =N

k I

and Ti j < min(t,t, ... , t) , i=1,2, ... p (2.24)
jai 1

The last equation in (2.24) is due to the way in which jobs are

scheduled by the job queue. It is desired to solve for the ti's given N

and p with the Tij' s characterized by a job time distribution (or at

least its first two moments). As indicated in Figure 2.12(a), the

maximum of all the ti-s is the run time of the total computation. This

- - ~. ----- -- ---.----.---- - - ~ - -.

75

•tt
(P

total run time

= max(tl,t2 ,...,t)

pPmin (t l ,t 2 1 - 1 • t)

(a) abstraction of the execution of matrix multiplication

processI i ii I I
pro cess2 ' ' '"

process3 , , j: :j ,
I t I I III I II

p o o le d o u t pu t I off I f f I I I I f I

S max (Nth renewal)

tm ((N-p+l)th renewal)

(b) superposition of renewal processes

Figure 2.12 The Renewal-Theory Model for the Execution of Matrix
Multiplication

!

76

set of equations, if solvable, could be difficult to solve.

However, since the job times are random variables drawn

independently from the same distributon, the execution history of each

processor can be viewed as the initial segment of a renewal process

[Cox62] if the time instants at which jobs are finished are interpreted

as renewals.

For convenience we use tmin and tmax to represent the minimum and

maximum, respectively, of all ti's. Results are known for the pooled

output of several renewal processes [Cox62]. These results can be used

to determine the expected value of tmin (see Figure 2.12(b)). In

particular, when N/p is large, we have (Figure 2.12(b) and formula (6) on

p.75 of [Coar621)

Eft n k (Pl)(12+a2) (2.25)
Etmin p 2 pWi

where 4 and a2 are the mean and variance of the job

execution time, respectively.

After the time instant tmin, processors start to halt and hence tmax

cannot be found by using results for the pooled output of several renewal

processes. We can, however, find out the difference between tmax and

tmin by evaluating the expected residue life time, by considering the

process at the time instant tmin. Again, when N/p is large, this

expected residue life time E(VtJ can be obtained as (formula (3) on p.64

of [Cox62]) .

t.
" Ii

77

E(Vt (4+ 2 (2.26)

Therefore, the expression for the average run time becomes (see

Figure 2.12(b))

E~t~~I Eft + +E(Vt)

P + 2pp (2.27)

Run time predictions based on equation 2.27 and data in Table 2.2

are shown in Table 2.5. Again, the discrepancy between measured and

predicted values increases as the number of participating processors

increases. If we modify (by multiplication) the mean and variance of the

job execution time by the interference factor p and p 2, respectively,

the match between measured and predicted values is again highly improved,

as shown in Table 2.5.

It is apparent that the memory interference is by far the dominating

degradation factor in this computation. Nevertheless, the hybrid model

intends to catch both the deterministic structure of the computation and

the effect of the memory interference. It does yield the best result

among all these models. For general computations this approach is

expected to be the most practical and satisfactory. In fact, tli.

algorithm proposed in section 4.2 assumes exactly the same flavor.

On the other hand, the renewal-theory model also catches the end

78

Table 2.5

M4atrix kltiplication Run Time Data

total no. of measured predicted predicted time
processors time time measured time

1 163309473 163389216.0 1.000488300
2 82010795 81694649.8 0.996145078
3 55066514 54463127.6 0.989042590
4 41496157 40847366.6 0.984365048
5 33378226 32677909.9 0.97901-3775
6 2S068356 27231605.5 0.970188831
7 24217492 23341388.0 0.963823506

(a) Results based on renewal theory
ignoring memory interference

total no. of measured predicted predicted time
processors time time measured time

1 163309473 163389216.0 1.000488300
2 S2010795 82095204.5 1.001029250
3 55066514 54997880.5 0. 998753625
4 41496157 41449722.9 0.998881002
5 33378226 33321227.5 0. 998292344
6 28068356 27902559.6 0.994093119
7 24217492 24032361.4 0.992355500

(b) Results based on renewal theory
modified by memory interference

. . . .--.-............

79

effect of job sharing and the effect of memory interference. It differs

from the deterministic model, due to probabilistic job lengths (vs.

average values used in the deterministic model). Fuirther, for data

reported in Table 2.5(b), the interference factor p was not

appropriately adjusted during the V. period at the end of the computation

according to the number of the remaining active processors. If one can

get a functional relationship between the expected value of tmin and the

expected value of the i-th job finish since tmin as a function of i (e.g.

tinax is the (p-li)t job finish since tmin and Vt. is the period between

them), then one can use appropriate p to modify the mean and the

variance of the job time in the intervals between successive job

finishes. This will definitely improve the predicted values by the

renewal-theory model.

A model capable of handling the end effect of job sharing has the

potential of dealing with the precedence structures of general

computations. This point needs further research.

I.Z

so

CHAPTER 3

Memory Interference in Synchronous Computer Systems

3.1 Introduction

Although the control logic for time-division-multiplexed (Tm)

busses is straightforward to design, the bus bandwidth required for TDm

busses may be too high in many cases. As an alternative, crossbar

switches are used in many small multiprocessor systems to interconnect

processors with memory modules. The cost for a crossbar switch in a

small system is not too expensive, and the performance is higher rme79]

compared to TDM busses. For large systems compromises (e.g. the

network [Law73] and the delta network rPat79i), rather than the above two

extremes, are usually used. In Chapter 2 we discussed memory

interference models for systems with TDM busses, and we discuss in this

chapter that problem for the other extreme, systems with crossbars.

Since the crossbar switch does not require explicit clock phase

shifts among processors, rather the processors and/or memory modules are

actually cycled together. Thus in this chapter we discuss the memory

interference problem in such synchronous computer systems. Previous work

on the memory interference problem for synchronous computer systems is

reviewed in section 1.3.

More specifically, we assume that the multiprocessor system contains

N processors and M4 memory modules. Note that N instead of p, will be

used in this chapter for the number of processors in the system in order

to conform to the nomenclature used in the synchronous system literature.

Neither the processors nor the memory modules need necessarily be

identical. A crossbar switch is used as the interconnection network

between processors and memory modules (Figure 3.1). All processors

present their requests, if any, at the beginning of a memory cycle,

conflicts are detected and resolved, and all M memory modules are then

cycled together. Again, since the only conflict is 2 or more processors

requesting the same memory module, as before without loss of generality,

we assume memory access time is equal to memory cycle time here.

Chang, Kuck and LawriefjCKQ7]1 proposed four dependency classes

(Figure 3.2) for the address streams produced by processors. The choice

of the appropriate class depends on program structure and the machine

architecture on which the programs are run. A dependency between any two

addresses nthe address stream is defined to be that 'Logical

relationship between them such that the second address cannot be accessed

(written or read) until the first has been accessed. In Figure 3.2 each

node represents a memory address (request for access) and each link a

dependency.

Class A corresponds to the address stream generated by a

uniprocessor, monoprogrammed machine which has no capability for

detecting or bypassing dependencies. Class B corresponds to an array

machine (e.g., ILLIAC IV) and is a somewhat restrictive model for a

82

N processors

p p

p p
r r

*. I
.9.Q•

r r

interconnection network

Mem 1 Mem Mem Mem

M memory modules

F
Figure 3.1 A Multiprocessor System

I
I

A A 23 943 PERFORMANCE MODELS FOR MULTPROCESSOR COMPUT ER SYSTEMS

()ILND IS UNIV AT URR ANA COORDINATED SCIENCE LAR
Y EN OCT 80 R- 894 NOOO14-79-C 0424

UNCLASSIID _FG/2 N

1&6

A118jg1.25 ~ I .

MICROCOPY RESOLUTION TEST CHART

r NATIONAL BUR[AU OF STANDARDS 1963-A

83

CLASS A CLASS B

CLASS C CLASS D

90 0 000

00 0

Figure 3.2 Dependency Classes [CKL77]

t~

84j

multifunction machine (e.g., CDC 6600). Address dependency Class C

corresponds to a multiprocessor machine and it is this kind of dependency

on which we will focus our attention in subsequent sections of This

chapter. Class D corresponds to a machine capable of instruction level

multiprogramming (from a large number of jobs), or a machine with

sufficient lookahead and queueing hardware with respect to memory speed

to allow dependencies to be neglected in The model (e.g., IBM 360/91).

Various models and simulation studies for the memory interference in

these dependency classes of address streams is given in I:0KL77].

Two remaining issues related to the applicability of memory

interference models are the memory request rate as a function of both

processors and memory modules, and the priorities among processors for

accessing the memory modules.

Randomness and independence are usually assumed to excist among

memory requests produced by processors for the interleaved addressing

case. However, a computer system with fully interleaved memory is

vulnerable to hardware failures in any single memory module. For certain

multiprocessor system applications like weather prediction, atom bomb

simulation, structural analysis, and fluid flow dynamics in which the

function value of a particular point depends primarily on the values of

its immediately neighboring points, interleaved addressing introduces

unnecessary interference among processors. (Of course, for the trivial

case in which processors deal with disjoint data, interleaved addressing

will be responsible for all the data access interference, should it be

used.)

85

Smiith[Smi77] proposed a "home memory page placement" scheme which

was considered a better data storage scheme for the aforementioned

applications. The basic idea is to assign one or more memory modules to

each processor in the system and to associate each memory module with at

most one processor at a time. Each processor tries to load the data

pages in the working set of its process into its own "home memory". Only

when overflow occurs do the extra data pages start to migrate to memory

modules belonging to other processors. When the home memory assigned to

each processor is sufficiently large and higher priority is given to a

processor accessing any memory module other than its own home memory, the

"home memory page placement" scheme can actually yield better performance

(less interference) than interleaved memory.

Since the memory request rate is really a function of the assignment

of addresses among the memory modules, for wider applicability a memory

interference model should allow module-dependent memory request rates.

Furthermore, the processors in a multiprocessor system may differ

either in physical characteristics (e.g., the PDP-11/20's and PDP-11/40's

used in C.mmp[OlF78]) or in function (e.g., the ariThmetic! processors

and 1/0 processors in a multiprocessor system). Either reason could make

their request rate to the shared memory be different.

A memory interference model, therefore, will be more general if

provision for arbitrary request rate distributions from processors and

arbitrary request distributions among the memory modules is available.

Finally, what if several processors request a single memory module,

86

thereby causing conflict? In the case of arithmetic/logic processors,

which processors request is accepted and which request is rejected

probably does not matter too much. The rejected processors just waste

one cycle and need to resubmit their requests in the next cycle.

However, with I/0 processors, the situation is different. Because

1/0 traffic often consists of transfers between main memory and

electromechanical peripheral devices which have a sequential rather than

a random access character, there is a relatively large time penalty

associated with a lost 1/0 datum. It is conventional in such systems to

avoid any loss of 1/0 data by granting I/0 processors memory service

priority over arithmetic/logic processors. Although with extra buffering

for 1/0 data transfer and dynamic priority assignment [Pir67], [Str79],

the performance degradation suffered by arithmetic/logic processors

because of I/0 data transfer could be reduced to be fairly insignificant,

a static priority discipline is simpler by far to implement. In view of

the typically lower transfer rate of 1/0 devices, the interference of I/0

accesses with the arithmetic/logic processors is reasonably small in any

case.

In order to insure wide applicability, under the above

considerations, the most general model presented in the following

sections for memory interference has provisions imbedded in the model to

handle both non-uniformA request rates and alternative processor priority

schemes.

j 87

3.2 A General Model for the Memory Interference in Synchrono u

Computer Systems

Suppose there are N processors and N memory modules in a

multiprocessor system. The memory access time and memory cycle time are

assumed to be equal and all M memory modules are cycled simultaneously.

Similarly, all processors are synchronized with the memory.

The N processors are divided into m categories with ni processors in

each category. Of course, we have

mSn -N • (3.1)

In each memory cycle each processor in category i has a static request

rate with stationary probab-*ity *ij of requesting memory module j,

where i - 1,2,...,m. Note that

M

4 i * 1. (3.2)

Such a probability assignment is equivalent to assuming a geometric

distribution for the processing time between memory requests from a

particular processor. For convenience, we will sometimes refer to memory

requests from processors in category i as category-i requests, where i -

1,2, ...,m.

We assume here that successive requests from a processor are

independently distributed among the memory modules according to some

distribution specified by the static request rates. Requests from

different processors are also assumed to be independent of each other.

p.0

88

Now, for a processor in category i, i - 1,2,...,m, the average

number of cycles needed per program cycle, Pi can be expressed as

M 1 L,, ...,(3.3)
P - E *- + Ej

nJ i J. ik J

where PAi j is the probability of acceptance for a category-i request to

memory module j.

This parameter pi is referred to in the following as the

interference factor for processors in category i, because it serves as a

multiplicative factor for the interference-free run time.

Due to the interference among memory requests from various

processors and the resulting resubmission of previously rejected

requests, the memory request rates seen by the memory modules are

actually higher than the programmed request rates, or static request

rates. This fact can be reflected by the introduction of another

parameter cij , the dynamic category-i request rate for memory module j.

The dynamic. request rate oj can be calculated by noticing the

contribution of requests to memory module j made by a processor in

category i to the average number of cycles needed per programmed cycle

for that processor. In other words,,

ij P A i j i1 ,2,

lj " i = M M (.)
-i + E .i._kI J-1,2, ...,Mk-l k- ik'l PA k

i.

4, [

89

The expression for the probability of acceptance has to be derived with

the particular system structure in mind, as does the corresponding

expression for systems with TD1 busses (equation 1.2). Thus before the

expression for the probability of acceptance is derived, it is convenient

t to give the expression for the memory bandwidth first. We note that iJ

as before is the dynamic request rate during the run time for a processor

in category i as seen by memory module j. Then (I- rij) becomes the

probability that that processor does not address memory module j. The

probability that none of the processors in category i addresses memory
li

module j is (1 ij i and hence the probability that at least one

processor in some category addresses memory module j is

m nl
1 (1-aij -)hi

. This last probability is actually the probability that- il-

memory module j is busy, since each addressed module becomes busy for one

cycle. Summing up for all memory modules we get the average number of

busy memory modules per memory cycle, which is by definition the memory

2bandwidth. Thar is,

M m n.
Bandwidth - BW Z [I- (l-ij) (. (3.5)

A J.1 imi

I
I Now the probability of acceptance for a category-i request to memory

module j can be obtained by determining the ratio of accepted category-i

requests to memory module j versus the total number of category-i

requests to memory module j per memory cycle. Since the total number of

5 requests accepted by memory module j per memory cycle, i.e. the

3 probability for memory module j to be busy, contains the contributions

I

II

90

from requests in all categories, the total number of accepted category-i

requests to memory module j per memory cycle can be found by subtracting

other contributions from the total number of requests accepted by memory

module j per memory cycle. Hence

m)nk] E o
[1 - I (1 - kkl 1% k kj

Au .(3.6)PA ij -n i'ij i(36

where i - 1,2,...,m, and j = 1,2,...,M.

One may notice immediately that we do not really have a set of mM

independent equations for the mM probabilities of acceptance here. There

are only M independent equations in this set, one for each memory module.

In fact what we have for each memory module is an equation of

conservation of requests. More specifically, as mentioned above, the

total number of requests accepted by memory module j per memory cycle

(which is equal to the probability of memory module j being busy)

consists of contributions from all categories. In other words, for each

memory module we have

m m n
E niijP - n (1-a i) J P -l,2, ...,M • (3.7)
i-l ij i-l ii

Unless we have more information about the system to reduce the

number of unknowns(PAijs) , we need more equations to make the model a

complete set of equations. If the former approach is feasible, as for

the two special cases presented later in this section, it will usually I

[

91

yield a fairly simple model. However, in general we have to supplement

* the above model with some other equations.

A particular probability of acceptance is not just a function of the

number of processors in its category and their request rate. It also

depends on the system's tie-breaking policy when memory conflicts occur.

Note that we have not yet indicated in the model how memory

conflicts are to be resolved. Most previously published models do not

address this issue explicitly, because by Their assumptions of identical

processors and identical memory modules with requests uniformly and

independently distributed among them, either an equal tie-breaking

priority is implied for all processors or the specific tie-breaking

policy just does not affect the system performance indices they dealt

A th.

In our general model, however, non-uniform request rates are

allowed. Furthermore a specific processor category can be assigned a

particular priority for memory access. Therefore, it is necessary to

indicate explicitly the rule for resolving memory conflicts, referred to

as the "priority policy" in the sequel.

The priority policy is highly system-dependent. It can be expressed

through the relationship among the probability of acceptance, The various

dynamic request rates, and the number of processors in each category.

For the important specisl case in which the memory arbiter is unbiased,

for example, the equal-priority policy can be expressed by the following

relation:

- ~---............-

92

PA,; probability[given that one processor in category i references

memory module j, no other processor references memory module j]

+ 1 probability[given that one processor in category i references
2

memory module J, one other processor also references memory module

j]
+ 1 probability[given that one processor in category i references

3
memory module j, two other processors in the system also reference

memory module j]

I probability[given rhat one processor in category i references
N

memory module j, all other processors in the system also reference

memory module j]

m r m r-i m rh
rli k)+ .Zrk k k(Tk)) h

k-1i k j 2 1 kkj hul l h j

h#k

m m rk-I rh-im r
3y Z rk k(-o.kj) rh(l-ahj) .I g

k-i h-k+l g=1
g#k,h

m rk(rI) r-2 m r
+ E k O2 (-) k 1 (i--a) g]

k-1 2 kj kj g1 gj
g#k

-4"........

m r kwhere rk - nk , k#i, kE[i,2,...,m}
+l ri k 'r
Nk.i kj and ri n - (3.8)

1
I

93

The above relation holds for i 1,2,...,m and J = 1,2,...,M. We

also require

(loOkJ)' - 0 whenever I < 0 . (3.9)

With proper translation this expression has essentially been derived

by Hoogendoorn[Hoo77] for a more restricted case. In fact, if there is

only one processor in each category equation 3.8 is reduced to equation

(1) in [Hoo77] except for some differences in the definitions of

parameters. Furthermore, if all the processors in the system have the

same request rate and the requests from any processor in the system are

uniformly distributed among all memory modules, both of these equations

reduce to equation 1.9.

Equation 3.8 is complicated. Since no special characteristics other

than the request rates are associated with the categories, a cleaner

expression for the probability of acceptance can be obtained if one

classifies each processor as a distinct category. In other words, if we

use a to represent the dynamic request rate for processor i (i =

1,2,...,N) referencing memory module j, then we have an expression for

the probabIlity of acceptance Paij as

N N NP 11 (1-a) + - E a a."-
Aij k-1 k k= kj (i"ahj

k~i k~i h~i,k

N N N
+- Za E a fl (i-a

3 k=1 kj hmk+ hj g=l gj

k#i h~i g#i,k,h

I

94

N N N N
+- a a a E E (i-aL) (3.8')

k-i h-k+l g-h+1 gj t-i

k#i hki g#i Z#i,k,h,g

N a k

N k-i kj

k i

However, if unequal priority is assigned to the processor

categories, equation 3.8 no longer applies. As an example, if we assume

a fixed category-priority scheme, i.e. processors in category I have the

highest priority, processors in category 2 have The second highest, and

so on, then processors in category 1 only compete among themselves and

processors with lower priority have a chance only if none of the

processors with higher priority accesses the particular memory module.

P for category priority is defined by the following set of m

equations:

nl

P j=1,2,...,M,
PAij niij

n I A- (I) n o

2j 2 2j

nrn-I nk) l_(l.rm) m

p = (I-o k) n j1,2,...,M. (3.10)
mj k-i nm mj

,4

L

95

It can easily be shown that equation 3.10 is compatible with

equation 3.7.

Finally, as mentioned above, we note that in many important cases it

is possible to use the information regarding the priority policy to

reduce the unknmowns in equation 3.6 or 3.7 directly (so that the number

of uanowns is equal to the number of independent equations there)

without resort to incorporating explicit priority relations as in

equations 3.8 and 3.10. Two cases follow by way of example:

Special Case I:

We assume that there are N identical processors and M identical

memory modules in this case. Memory requests from a processor are

uniformly and independently distributed among all modules. Memory

arbitration is unbiased.

In this case there is only one category of processors. Memory

request rates, static or dynamic, for all processors are the same and all

processors have the same probability of acceptance.

Hence by symmetry we have

I
*IzII

96
M

j=1 ij ij

and P. PA j

The memory interference model is thus reduced to

Pi - +* (3.12a)
PA

= PA 1 (3.12b)

i-L 4 1+PA(! -1)
PA

N
BW , M[1-(1-)] (3.12c)

M

and PA j (3.12d)

Note that equations 3.12a and 3.12b are exactly the same as those in

Emer's model. The expression for the probability of acceptance, however,

is different due to simultaneous multiple requests rather than the time

phased (TDM) requests of Emer's model.

Special Case II:

Now suppose there are two categories of processors in the system.

One category consists of n identical arithmetic/logic processors with
p

memory request rate 4t The other category consists of an I/0 processor
P

or channel which has a memory request rate *c when operating. The

97

parameter n for the channel in equations 3.5 and 3.6 is equal to I while
C

the channel is active and 0 otherwise. There are M identical memory

modules in the system with requests from any processor or channel, again,

uniformly and independently distributed among them. As discussed in

section 3.1 a higher memory accessing priority is given to the channel.

Again, by symmetry we have for the arithmetic/logic processors:

M

p j=l P lpj

M

P j= PJ Pi

and PA p A (3.13)
p P J

Furthermore, we know immediately that the probability of acceptance

for channel request, PAc I is 1. This value can therefore be substituted

into equation 3.6 and we obtain one equation for the single unknown

PAp "

The memory interference model for this case thus becomes

p A

P

PC (3.14)

98

PAp +
s1 -

P P A PP

A n
C C

BW-n *

Ap n a
Pp

and PAc = 1, where nc 1 while the channel is active and 0 otherwise.

This model is used in a simulation study (to be presented in section

4.3) of the execution of matrix multiplication in a multiprocessor system

with virtual memory.

3.3 An Improved Model for the Case of Uniform Access and Equal Priority

As we discussed in section 3.1, for the memory interference problem

both the probasilistic approach and the state-space approach have their

merits. The general model presented in the previous section is based on

a probabilistic argument. For the case of uniform access and equal

priority it reduces to equation 1.9 and we know equation 1.9

overestimates bandwidtch.

[

, * - -_ _

99

As an attempt to get a more accurate result we derive in this

section a model which looks at the problem from a different point of view

and employs both probabilistic and state-space concepts. We restrict

ourselves in this section to dealing only with the case of uniform access

and equal priority. The extension to the case of a fixed

category-priority scheme will be discussed in the next section.

In Figure 3.3 a typical cycle trace of a processor is shown. The

blank cycles represent those cycles in which the processor is doing

internal computation with no generated memory request. The shaded cycle

represents a cycle in which the processor submits (or resubmits) a memory

request at the beginning and the request is served. The cross-hatched

cycle, on the other hand, represents a cycle in which the processor

submits (or resubmits) a memory request at the beginning and the request

is rejected. For the amount of work which takes the processor T cycles

in an interference-free environment, it takes the processor T' cycles

(T'-%T) with memory access interference. Note that, in terms of the model

parameters discussed previously, the density of the memory-requesting

(shaded) part of the T-cycle segment is *, while the density of the

memory-requesting (shaded and cross-hatched) part of the T-cycle segment

is a. Furthermore, in terms of the interference factor p we have T' -

p T. As in Chapter 2, the reciprocal of p (=T/T') actually indicates

the factor of performance degradation. Since this factor will be used

frequently in the rest of this chapter, we give it a special name "the

degradation factor" and indicate it by the symbol "f". An interesting

expression for f can be obtained by equating the total number of blank

cycles in the interference-free trace and in the trace with interference

100

interference-free trace

TI

trace with interference
T T'

II

V memory cycle in which memory request is submitted and
accepted

Smemory cycle in which memory request is submitted and
rejected

U internal computation cycle

Figure 3.3 A Cycle Trace of a Prucessor

iil

101

in Figure 3.3. In other words, T(1-4) - T'(1 -a) and we get

T' " " T

Hence f , 1_(3.15)
T' 1-* (315)

Since, as 4 is increased, O approaches I faster than 4 does

(4 I 0), f is expected to have a less-than-1 limiting value when 4-1

even though f-0/O according to equation 3.15. This limiting value is the

amount of performance degradation when = 1.

Now for an N-processor multiprocessor system in equilibrium, we can

imagine N traces with interference like that in Figure 3.3 being put

together. If in those cross-hatched cycles the corresponding processors

just become inactive instead of submitting and resubmitting memory

requests and getting rejected, the system will essentially appear to be

conflict-free. Then the throughput of the system becomes Nf and at any

instant there are only Nf active processors in the system. Thus NO4

requests are submitted to the memory each cycle and these requests will

all be accepted. In other words, the average number of busy memory

modules per cycle is Nf4 , which is then the memory bandwidth of the

system. In view of Figure 3.3, since each of the N processors has T*

requests accepted during the T'-cycle period, the average number of

accepted requests per cycle, the memory bandwidth, is thus NT* /T'

Now consider Figure 3.4, which depicts the steady processor flow

• when the multiprocessor system is in equilibrium. It is assumed that

._ __........_ _,_.... .

102

Memory Queues

Nf*

make ra

memory

Nf unblocked processors

Figure 3.4 A Steady-Flow Model of the Multiprocessor System

103

there is one queue associated with each memory module. In each cycle

each memory module will serve one processor, if any, from the front of

the corresponding queue. In Figure 3.4, R is the total number of

processors queued in the memory at the end of each memory cycle when the

system is in equilibrium, while r is the total number of processors

queued in the front of their respective queues. Note that r is also

equal to the total number of distinct memory modules in which some

processor is queued. Furthermore, r is always smaller than or equal to

R. Processors, "'en not queued, have a memory request rate * and the

requests, if any, will be presented at the beginning of a memory cycle.

The cyclic behavior of the system is thus pictured by the circulation of

those processors which are not queued.

Since the average number of busy memory modules per cycle is Nf*,

the average number of processors released from the memory at the end of

each memory cycle is also Nf* . In order to make up the throughput (Nf),

there must be Nf(1-*) processors each cycle which are doing internal

computation and do not deal with the memory. This is indicated by the

branch of the flow -which bypasses the memory. The average number of

processors queued (or retained) in the memory system at the end of each

memory cycle, R, can Then be found by using the conservation of

processors in the system. In other words, R = N - Nf -N(1-f). The Nf*

processors arriving at the memory system at the beginning of the current

memory cycle will face these R processors queued at the memory from last

cycle.

We mentioned in section 1.3.1 that the idea of Strecker's

..............

104

formulation is essentially removing the queued processors from all the

memory modules at the end of a memory cycle and reassigning them among

all the memory modules at the beginning of the next memory uycle. In the

language of Figure 3.4 the total number of processors (or requests) the

memory system has to deal with at the beginning of a memory cycle thus

becomes Nf* +R. We note here that

NfO + R - Nf* + N(l-f)

N - Nf(l-*)

N - N(l-a) (from 3.15)

MY . (3.16)

Thus, instead of using Na as the average number of requests submitted to

the memory per cycle during the run time, if one interprets a as the

probability for a processor making a request during the run time, one

obtains equation 1.9. This justifies the statement we made about that

equation in section 1.3.1.

However, referring to Figure 3.4, we see that not all the queued

processors should be counted as contributing to the total number of busy

modules during a cycle. All the processors queued in the same module

contribute at most one busy module during a cycle. All the processors

queued in the memory but not in the front of their respective queues

could be ignored.

Therefore, instead of using all the queued processors, as done by

Strecker, we should only take into account those processors queued in the

front of their respective queues. The total number of these processors

is r. Then, instead of using Nf* +R (i.e., Na) as the total number of

I

105

requests randomly and independently assigned to the M modules at the

beginning of a memory cycle, we use Nf* r in the exponent of bandwidth

formula 1.8. In other words, the total number of busy modules becomes

approximately

Nf#+t
M[-(- 1]f •t (3.17)

The difficulty here is how to compute the value r. Fortunately

although we do not know the exact distribution of the R queued processors

in the memory, the total number of memory modules which are going to be

busy in the next cycle because of these R queued processors is r.

Therefore, as a further approximation, we simply assume that the R queued

processors are distributed in the memory as if they were randomly and

independently assigned to the M memory modules. Then r can be derived

from the formula 1.8. In other words,

R

1

M[I-(l- 1 (3.18)
M

By substituting (3.18) into (3.17) and equating the memory bandwilth

Nf to the expression 3.17, we get the following equation for the single

unlkown f:

I

106

1Nf*+r
NO = M[1-(1- i

1 N (1-f)
1Nf4M[1- (1- -)]

= M[1-(1- H 1 (3.19)

Equation 3.19 can be solved for f by iteration using Newton's method

or one of its variants. An IHSL subroutine ZSYST based on Brown's

methodrBro69], EBrDe71] is used to solve nonlinear equations of this kind

throughout the thesis. From equation 3.15 since * is a reasonable

initial guess for of, a reasonable initial guess for f is 1.

One may notice that we have been using mean values throughout the

above derivation. That is why fractional values appeared in the

exponents in several formulas. However, if we view the right-hand side

of equation 3.19 as a function and the exponent part of this function its

input argument, then the right-hand side of equation 3.19 essentially

gives the function value of the average of all feasible input arguments.

What we should really look for, though, is the average of the function

values of all feasible input arguments. These two may be close, but in

general are not necessarily equal. Therefore, instead of settling with

equation 3.19 which serves the purpose of providing intuition, we will in

the following derive a probabilistic version of equation 3.19 trying to

get the real average value that we want.

In order to do so, the meanings of several parameters have to be

interpreted differently. Instead of being considered as the "degradation

factor", f should now be interpreted as the probability of either doing

i..

107

internal computation or submitting a fresh request for a processor. En

other words, f is the probability for a processor to appear in the front

of the memory (see Figure 3.4) at the beginning of c. memory cycle (before

possibly submitting any request). On the other hand, since 1-f is the

probability -for each of the N processors to be queued in the current

memory cycle, the total number of distinct memory modules occupied by

queued processors, r, should now be evaluated as

N
r A M[1-(l- -) (3.20)

and rIM now becomes the probability for a memory module to have some

processor queued in it.

Referring to Figure 3.4, we can see tchat the requests which make the

memory modules busy come from Two sources at The beginning of a memory

cycle: the arriving processors and the processors queued in the memory

modules. in other words, we consider the system comprising of N

processors, M memory queues, and M memory modules. The first two

components both contribute to the number of busy modules.

Now the probability that a processor issues a new request is the

probability that it is not blocked (-f) times the probability that it

generates a request (a .This probability is thus f* . This request

- has a probability 1/M of hitting any particular memory module. Hence for

a particular memory module not to be hit by any of the arriving

processors, the probability is

108

-LN

Now consider the M memory queues. On average these queues issue r

distinct requests per cycle to memory. Thus the probability that a queue

makes a request is r/M, or

I-f NI-(1- -)N (from equation 3.20)

This request has a probability 1/M of hitting any particular memory

module. Hence the probability for a particular memory module not

referenced by any of the M queues is

-fN
M

(-
M

Therefore, the probability for a memory module being referenced and

thus being busy, by a processor or a queue, is

-fN
f* N 1-(l- 1_-)N M

By equating the bandwidth expression Nf* to the total number of

busy memory modules using the above probability, we finally obtain the

equation we are looking for. That is,

- ~- ----

109

1-f NfN '-(l---) H
NfO " M[1-(I- -L-) (1- M) (3.21)

Simulations of the memory interference phenomenon for 4 x 4, 4 x 8,

8 x 4, and 8 x 8 multiprocessor systems have been done on CDC CYBER.

Note that when we refer to an N x M multiprocessor system, we mean a

multiprocessor system with N processors and M memory modules. The

program was written in the simulation language SIMULA and two random

number generators were used in the simulation. The first random number

generator generates a uniformly-distributed real number in the range of

[0,i]. Every cycle a processor, if not queued, will submit a memory

request if this random number generator generates a value which is

smaller than or equal to # • The memory module requested is selected

randomly among the M modules according to the number generated by the

second random number generator. The processor's request will be queued

if not accepted.

Finally, for each system ten values were chosen for $ (from 0.1 to

1.0) to span its entire feasible range. Each case was run for 45,000

memory cycles. Although regenerative simulation was not implemented, the

length of the simulation was sufficiently long and our informal

observations indicated that steady state was reached in all cases.

Measured memory bandwilths from the simulations are presented in

Figures 3.5 through 3.8. Also shown are the predicted memory bandwidths

from various models which allow less-than-one static request rate. The

110

percentage differences of these values compared to the simulation results

are shown in Figures 3.9 through 3.12, where the Y-axis value is the

difference (analytical - simulation) relative to the simulation result.

The actual data for the information contained in above figures are also

summarized in Tables 3.1 through 3.4 for reference.

For comparison, we also included a "transient" model in those

figures and tables. Notice that when the cyclic flow of Figure 3.4 just

starts (at the beginning of the first cycle) , no processor is queued and

the probability for each processor to make a request in this first cycle

is .The resulting memory bandwidth is exactly

N
BWt = M[l-(1- M. (3.22)

for the first cycle. Tf one ignores all the rejected requests, then

every cycle becomes the first cycle! The memory bandwidth thus obtained

is actually the memory bandwidth for the first cycle, not the steady

state value.

Note tha't *could be 1, which makes equation 3.22 the same as

equation 1.8. Actually, when the request rate *-I , as long as we assume

independence among requests it really does not matter whether the

rejected requests are discarded or resubmitted, as far as the memory

bandwidth is concerned.

Equation 3.22 is included in the comparisons as Model 1. Model 2 is

Strecker and Hoogendoorn's model (equation 1.9), Model 3 is Baskett and J

Smith's model (equations 1.12 and 1.13), Model 4 is equation 3.19, and

-IY

'II

w

ai m~

Im m

cu \\ L.

I~t- x V

112

-

-LUJ

CnwU

C.)

0-

cu~

M<Zc~~ :9HT)*qt c

113

UU

-n LUJ

0

M)

cuw
co < z :x H *'4.,

114

*41

-44l

*0-

Ln w

00

to

ccu

a) Z :ItH C *co-.

115

020

L)II u

A.1.

Ic -'
I'm

OW 4)

Ln 61

r4 Ln 14

0-wX WZ -OW C U-LWC-WZUW "rA

116

IUU'I

'~ Lo
a)0

4) c

4)0

Lil in
cuL

*j 0i)t

L6JXL)WZ f<C CH*IJ=ZU *VX

117

cc

UU

*1.1
'F P -

Un

go 02

" oo

H o

/ \ -C,,I- u-'
cu4

(L6:jm(.)WZ -<UW1- CHLLM Z W *O~

118

clii

LUO

ow44

Ln 90

OI'- Muz0C HLLWWU C

119

Table 3.1
Comparison of Models in Predicted Bandwidth and Percentage Difference

with the Simulation Data for a 4 x 4 Multiprocessor system

Model I : Equation 3.22
Model 2 : Strecker-Hoogendoorn's model
Model 3 : Baskett-Smith's model
Model 4 : Equation 3.19
Model 5 : Equation 3.21

* SIM BW BW(1) BW(2) BW(3) BW(4) SW(5)

.1 .400044 .385248 .398419 .463872 .402930 .398376

.2 .790524 .741975 .786848 .917339 .804155 .786106

.3 1.155800 1.071623 1.154589 1.324702 1.190184 1.150682

.4 1.486711 1.375600 1.491864 1.663215 1.546017 1.479725

.5 1.774783 1.655273 1.791721 1.929536 1.858300 1.764247

.6 2.025400 1.911975 2.051170 2.133500 2.119215 2.001107

.7 2.224368 2.146998 2.271049 2.288949 2.328504 2.192962

.8 2.389902 2.361600 2.454910 2.408427 2.492066 2.346084

.9 2.521055 2.556998 2.607643 2.501626 2.618565 2.467839

1.0 2.621000 2.734375 2.734375 2.575571 2.716585 2.565052

* DIFF(1)% DIFF(2)% DIFF(3)% DIFF(4)% DIFF(5)%

.1 -3.69848 -.40621 15.95520 .72145 -.41683

.2 -6.14137 -.46506 16.04189 1.72431 -.55892

.3 -7.28297 -.10478 14.61346 2.97492 -.44283

.4 -7.47361 .34660 11.87214 3.98908 -.46991

.5 -6.73376 .95438 8.71955 4.70579 -.59367

.6 -5.60013 1.27235 5.33722 4.63190 -1.19941

.7 -3.47827 2.09860 2.90336 4.68160 -1.41189

.8 -1.18423 2.72010 .77513 4.27480 -1.83346

.9 1.42573 3.43460 -.77066 3.86784 -2.11087

1.0 4.32564 4.32564 -1.73327 3.64688 -2.13460

- - - -- - - -- - - -- - -

120

Table 3.2
Comparison of Models in Predicted Bandwidth and Percentage Difference

with the Simulation Data for a 4 x 8 Multiprocessor System

Model 1 : Equation 3.22
Model 2 : Strecker-Hoogendoorn's model
Model 3 : Baskett-Smith's model
Model 4 : Equation 3.19
Model 5 : Equation 3.21

4 SIm BW BW(1) BW(2) BW(3) BW(4) BW(5)

.1 .401000 .392562 .399230 .430106 .401486 .399220

.2 .797600 .770497 .793727 .858707 .802037 .793559

.3 1.181667 1.134172 1.178596 1.272853 1.195330 1.177722

.4 1.550044 1.483950 1.549128 1.661009 1.574854 1.546357

.5 1.895844 1.820190 1.901199 2.015014 1.934551 1.894567

.6 2.220000 2.143247 2.231598 2.330858 2.269463 2.218428

.7 2.519277 2.453469 2.538221 2.608245 2.576219 2.515359

.8 2.798444 2.751200 2.820096 2.849466.2.853228 2.784256

.9 3.046510 3.036781 3.077259 3.058210 3.100552 3.025374

1.0 3.265200 3.310547 3.310547 3.238644 3.319553 3.240030

' DIFF(1)% DIFF(2)% DIFF(3)% DIFF(4)% DIFF(5)%

.1 -2..10416 -.44131 7.25829 .12126 -.44380

.2 -3.39808 -.48562 7.66138 .55626 -.50669

.3 -4.01935 -.25990 7.71671 1.15623 -.33382

.4 -4.26401 -.05908 7.15883 1.60062 -.23785

.5 -3.99050 .28245 6.28585 2.04168 -.06736

.6 -3.45735 .52242 4.99362 2.22805 -.07083

.7 -2.61220 .75197 3.53150 2.26024 -.15553

.8 -1.68822 .77371 1.82324 1.95765 -.50700

.9 -.31935 1.00931 .38406 1.77389 -.69379

1.0 1.38879 1.38879 -.81330 1.66461 -.77084

121

Table 3.3
Comparison of Models in Predicted Bandwidth and Percentage Difference

with the Simulation Data for a 8 x 4 Multiprocessor System

Model 1 : Equation 3.22
Model 2 : Strecker-Hoogendoorn's model
Model 3 : Baskett-Smith's model
Model 4 : Equation 3.19
Model 5 : Equation 3.21

4 SIM BW BW(1) BW(2) BW(3) BW(4) BW(5)

.1 .792000 .733393 .792144 .953279 .802093 .791889

.2 1.529444 1.346318 1.531565 1.813190 1.571086 1.526213

.3 2.136714 1.856153 2.159970 2.392435 2.229436 2.130140

.4 2.561928 2.278131 2.640754 2.725727 2.700363 2.556649

.5 2.826693 2.625564 2.978926 2.917761 2.981554 2.824302

.6 2.998511 2.910038 3.207368 3.035833 3.138008 2.986600

.7 3.104618 3.141596 3.361603 3.113703 3.228153 3.087839

.8 3.178651 3.328911 3.468076 3.168196 3.283874 3.154258

.9 3.232130 3.479437 3.543868 3.208180 3.320736 3.200107

1.0 3.265700 3.599548 3.599548 3.238644 3.346540 3.233196

4 DIFF(1)% DIFF(2)% DIFF(3)% DIFF(4)% DIFF(5)%

.1 -7.39990 .01822 20.36349 1.27438 -.01401

.2 -11.97335 .13865 18.55221 2.72271 -.21123

.3 -13.13050 1.08842 11.96797 4.33948 -.30769

.4 -11.07747 3.07683 6.39356 5.40356 -.20607

.5 -7.11533 5.38554 3.22170 5.47853 -.08ioO

.6 -2.95057 6.96536 1.24469 4.65220 ,723

.7 1.19107 8.27751 .29263 3.97908 -.54045

.8 4.72717 9.10526 -.32893 3.31030 -.76739

.9 7.65151 9.64497 -.74100 2.74142 -.99076

1.0 10.22287 10.22287 -.82848 2.47541 -.99532

122

Table 3.4

Comparison of Models in Predicted Bandwidth and Percentage Difference

with the Simulation Data for a 8 x 8 Multiprocessor System

Model 1 : Equation 3.22
Model 2 : Strecker-Hoogendoorn's model
Model 3 : Baskett-Smith's model
Model 4 : Equation 3.19
Model 5 : Equation 3.21

SIM BW BW(1) BW(2) BW(3) BW(4) BW(5)

.1 .797867 .765861 .796300 .875346 .801022 .796246

.2 1.561889 1.466786 1.569215 1.744875 1.587044 1.568211

.3 2.278616 2.107550 2.294067 2.530219 2.329298 2.288494

.4 2.919691 2.692637 2.949465 3.180252 2.998961 2.931501

.5 3.469323 3.226244 3.522089 3.687605 3.574493 3.480439

.6 3.911533 3.712305 4.008629 4.073387 4.047805 3.931603

.7 4.270832 4.154499 4.414196 4.366108 4.424686
4.292944

.8 4.555731 4.556262 4.748819 4.590705 4.719641 4.578774

.9 4.772632 4.920807 5.024110 4.765946 4.949594 4.804582

1.0 4.947100 5.251129 5.251129 4.905190 5.129877 4.984079

DIFF(1)% DIFF(2)% DIFF(3)% DIFF(4)% DIFF(5)%

.1 -4.01139 -.19642 9.71072 .39545 -.20316

.2 -6.08900 .46908 11.71568 1.61052 .40474

.3 -7.50744 .67810 11.04191 2.22424 .43351

.4 -7.77666 1.01978 8.92427 2.71500 .40448

.5 -7.00652 1.52092 6.29177 3.03142 .32042

.6 -5.09334 2.48229 4.13787 3.48386 .51309

.7 -2.72390 3.35682 2.23086 3.60245 .51774

.8 .01166 4.23835 .76768 3.59788 .50580

.9 3.10469 5.26916 -.14009 3.70785 .66943

1.0 6.14559 6.14559 -.84716 3.69462 .74749

123

finally Model 5 is equation 3.21. All these models are summarized in

Table 3.5.

We first note from Figures 3.5 through 3.12 that for a good range of

the static request rate * Model 1 underestimates the memory bandwidth.

This is reasonable because contributions from resubmitted requests are

totally ignored in Model 1. However, as 1t approaches 1, even Model I

starts to overestimate. This is because as the memory interference gets

more serious processors are more often queued in the same module. Thus

in reality many requests from queued processors do not actually increase

the total number of busy modules. Since in this region * and ot only

differ slightly, Model 1 overestimates the memory bandwidth even though

$ is used.

On the other hand, since Model 2 is derived based on the assumption

that all the queued processors will be assigned randomly and

independently to The M modules in the next cycle, from our discussion in

section 3.3 it is conjectured that Model 2 always yields an upper bound

for the memory bandwidth. This conjecture is not supported by the data

presented in above figures and tables, but the deviation is so small that

it could be due to the inaccuracies of the simulation results.

Model 3, interestingly enough, is pretty accurate when * approaches

1. However, its erratic behavior for smaller * makes it a bad model in

this range.

The behaviors of Model 4 and 5, on the other hand, are much more

stable over the entire range ((0,1]) of i than those of the other three

. - . .. "7 I o n . .

124

Table 3.5

Memory Interference Models for Synchronous Computer Systems

N
Model 1: BW "M[I-(l-M]

Model 2: BW - M[l-(I- 2)M

where = - I
1+ pA -1)

a N
M[1-(l- -)]

an d PA Nff a

M1 / 12
Model 3: BW - M (2+2L--j- /(2+2L- 2 -8L)

-1)+ ,(l+T- 2 N-i
where L 2 N

1
and T I

N N(I-f)
1Nf*,-M[1-(1-

Model 4: BW Nf' M[I-(l- 1)]

- N
N l-(i-) M

Model 5: BW = NfO - M[I-(I- L (1- M)

,, M

125

models. The accuracy of Model 5 (equation 3.21) makes it the best model

among all models investigated.

3.4 The Application of the Improved Model in an Environment with U-equal

Processor Priorities

One of the strong points of the probabilistic approach is its

capability of accommodating priorities without too much trouble. We will

show in this section by an example that the model 5 (equation 3.21)

presented in the previous section can also be applied to deal with

priorities without too much effort.

S

Again, we assume m categories of processors with n. processors in

each category. The total number of processors in the system is N. There

are M identical memory modules in the system with requests from any

processor uniformly and independently distributed among them. The memory

request rates for processors in the same category are assumed to be the

same. Priorities in accessing the memory are associated with the

processors- categories. Category I has the highest priority, category 2

the second highest, and so forth.

Although conservation of processors should apply to each of rlie m

categories when the system is in steady state, processors in every

category except category I cannot ignore the existence of processors in

other categories which have higher priorities.

. . . . IkI m . ..z, . -- i. . .i / - r _ : - T : - . .

126

Nevertheless, we can apply equation 3.21 directly to processors in

category 1:

nf l-f 1 n l
fjr M[-(1 1-(1- -- .-) H

nf1*1 = M)M (3.23)

For the joint flow of processors in both category I and 2, the

left-hand side of equation 3.21 becomes

n1f 1 1 + n2 f2 2

This is because in a conf"lict-free environment the total number of busy

memory modules is just the sum of memory requests submitted from

processors in both categories. On the other hand, the probability that a

particular memory module is not requested by any of the non-queued

processors in either category is

fi t i n f 2 *2
n 2

(l--jTj) (1-).

The total number of distinct memory modules occupied by queued processors

in either category, r, is now (see equation 3.20)

1-f nl -f 2 2

r u M[1-(1- "T) (1- -)] (3.24)

and, therefore, the probability that a queue makes a request (see section

3.3) is

1-f I n1 1-f 2 n2

1 2

I.

T 127

The probability that a particular memory module is not busy because of

requests submitted from queued processors thus becomes

1-f l n I -f2 n2i -(i) I(1" _) M
- M M

Finally, combining all the above factors, the probability for a memory

module to be busy serving a request from processors in either category is

l-fl n1 l-f2 n 2

(-) [-) H1-
M M

By means of this probability we get the following bandwidth equation for

the joint flow of processors in both category 1 and 2:

+ n2f2 2 1-f nl 1-f n 2

fl l f22 2 1-(1- ') (1- 2) M

SM[1-(- T) (1- Tj~j) (1- M M)

(3.25)

Solving for f in equation 3.23, we can substitute its value into

equation 3.25 to find f2"

This process can then be repeated m times until we find f from

-- - -

128

m f n i i- a -f

i-i1

f t 1 -/(- -)mI j (.6

129

CHAPTER 4

I Applications of the Memory Interference Models

1 4.1 Introduction

A good model of a phenomenon usuially serves two purposes. On the

one hand, it serves as a concise description of the phenomenon. it

jexposes the internal structure and relates the effects of various

parameters involved in the phenomenon. Thus insights could be gained and

1* useful predictions could be extrapolated from knxown results obtained

2 through a limited number of experiments.

* On the other hand, a model can be used to produce the same net

effect as does the modeled phenomenon. The model of a lower-level

phenomenon can be incorporated in a study performed on a higher level to

take into account the effect of this lower-level phenomenon. This

* process can be viewed as the application of a model.

The derivations of various memory interference models presented in

Chapters 2 and 3 have already achieved the first purpose above.

As examples of the applications of the various memory interference

I models previously derived, two cases are presented in the following. In

section 4.2 we propose an algorithm for the run-time estimation of a

130

program running in a multiprocessor system. Memory interference models

are used to adjust the execution times of various jobs in the program

whenever the number of processors available in the system and/or the

amount of parallelism available in the program changes. A simulation

study of the execution of matrix multiplication in a multiprocessor

system with virtual memory is described in section 4.3. The size and

complexity of the problem forbid a simulation below the page request

level. Therefore, a memory interference model has to be employed again

in the simulator to introduce the effect of memory interference on

various timing data involved, and thus make the simulation results moreIrealistic.

4.2 An Algorithm for the Run-Time Estimation of a Program in a

Multiprocessor System

The execution time is one of the most important, if not the most

important, performance indices of a computer program. The major purpose

of multiprocessing, in which multiple processors are engaged in the

execution of a single computation, is indeed to enhance this performance

index.

However, the effectiveness of multiprocessing depends crucially on

the way in which the computation is decomposed into various jobs.

Improper decomposition usually introduces unnecessary precedence

structures and/or unequal loads among processors, which often wastes

131

available computing power by causing excessive processor waiting. (A

case study of this issue on AMP-I for a specific algorithm - the Gaussian

Elimination is presented in the Appendix.) Since no clear criteria for

good decomposition are available, adopting the decomposition with minimum

execution time through comparison of execution times resulting from

alternative decompositions becomes the best criterion available.

The execution time of a computation can, of course, be found by

coding the program and then running it on the target machine. However,

the high cost of software development prohibits random trials without

some a priori ideas. An efficient method for the run-time estimation of

a program is therefore desirable. This method could be used in the

initial phase of a program design to determine a good computation

decomposition.

Beizer[Bei70] proposed a Markov model for the purpose of

analytically determining the execution time of a program. The model is a

directed graph in which each arc is characterized by a triple (p,u,v),

where p is the conditional probability that the fl-ow of control, if it

reaches the source vertex of the arc, will go through the arc; u is the

mean execution time of the arc; and v is the variance of this time. Once

the graph model is constructed, the estimation of execution time can be

performed by the star-mesh transformation method [Fer781, which is

adopted from electric circuit theory.

Unfortunately, Beizer's model was proposed for the conventional

single-CPU machine. The steps in the graph model are performed

sequentially.

- ---i---------- - *

132

We propose in the following an algorithm for the purpose of

determining the execution time of a program running on a multiprocessor

system. A system with a single CPU becomes a special case of the

multiprocessor system for which the algorithm is designed.

The approach presented here is based on the fact that computational

processes can be modeled by graphs in which the vertices (nodes)

represent single jobs and directed links represent the precedence

relations. (Hence nodes take time to execute but links do not.) A job

pointed to by a directed link can only start if the job at the source end

of that link has been completed.

The graph (and thus the computation) can be represented in a

computer by means of a Connectivity Matrix, C [Ram66], [RaG69a]. Let n

be the total number of decomposed jobs in the precedence graph. C is

then of dimension n x n such that C.. is a "I" if and only if there is a

iirected link from node i to node j, and it is "0" otherwise.

Ramamoorthy and Gonzalez ERaG69b] proposed a connectivity-matrix-

based technique for recognizing parallel processable streams in computer

programs. In short, their technique iterates between locating as many

all-zero columns (thus identifying nodes ready for processing) as

possible and deleting from the connectivity matrix C these columns and

the corresponding rows until no more columns or rows remain in C. By

associating each job in the precedence graph (and thus each column in the

connectivity matrix) with its job execution time and modifying the

technique due to the finite number of processors available and the

unequal execution times among jobs, their technique can be adapted to

I.

1 133

determine the execution time needed by a computation on a multiprocessor

system. Furthermore, by employing one of the memory interference models

jpresented previously depending on the environment, the job times can be

dynamically adjusted to reflect the times needed for the execution more

I realistically.

1 For illustration, the precedence grar. of the triangularization

phase of the Gaussian elimination algorithm (see Appendix) for a 4 x 4

matrix is shown in Figure 4.1. Also shown is its associated connectivity

matrix. We shall assume there are no loops or strongly connected

subgraphs [RaG69b] in the precedence graphs under consideration in order

to insure the validity of our algorithm. (In fact if the precedence

graph does contain strongly connected subgraphs, the maximal strongly

connected subgraphs can be found either by inspection or by a simple

analysis of its connectivity matrix [Ram661. Each maximal strongly

connected subgraph can then be considered as a single node, the

computation decomposition appropriately redefined, and the resulting

precedence graph will contain no strongly connected components or loops.)

In addition, all the decomposed jobs in a precedence graph need to be

executed in one run, and no job execution is preemptible. In cases where

it is indeed necessary to specify data-dependent alternatives, we will

deal with one possibility at a time and thus eliminate the data

dependency of the precedence graph. The speed of the algorithm allows

one to repeat the analysis easily for every possibility. A probability

argument can be used to find out the mean execution time in these cases.

The paragraphs which follow describe an algorithm for determining

the execution time of a program running on a multiprocessor system.

134

I1

NOR 1o

(a) Precedence Graph

Figure 4.1 Illustrations of the Run Time Estimation Algorithm

I.

135

Col
Row 1 2 3 4 5 6 7 8 9 10'

1l 0o11 10 00 00 0

2 0 0 001 0 00 00

3 0 0 000 10 00 0

4 0 0 00 00 1 0 00

5 0 00 00 11 00 0

6 000 0 0 0o01o0

7 0 00 0 000 01 0

0 0 00 00 0 0010

9 0 00 00 00 00 1

10 0 0 0 0 0 0 0 0 0 0

(b) Connectivity Matrix

Figure 4.1 Illustrations of the Run Time Estimation Algorithm
(continued)

136

Col 1 2 3 4 5 6 7 8 9 10

Job 5S 5S 5S 4S 4S 3S
Time 5D +e +i + 4D + + 3D + 2D

Row 5M4 514 5M4 4M 4M4 3M

1 0 1 1 1 0 0 0 0 0 0

2 0 0 0 0 1 0 0 0 0 0

3 0 0 0 0 0 1 0 0 0 0

4 0 0 0 0 0 0 1 0 0 0

5 0 0 0 0 0 1 1 0 0 0

6 0 0 0 0 0 0 0 1 0 0

7 0 0 0 0 0 0 0 0 1 0

8 0 0 0 0 0 0 0 0 1 0

9 0 0 0 0 0 0 0 0 0 1

10 0 0 0 0 0 0 0 0 0 0

(a) Augmented Connectivity Matrix

Figure 4.1 Illustrations of the Run Time Estimation Algorithm

(continued)

137

(1) The first step is to represent the computation (or program) in

terms of a precedence graph consisting of decomposed jobs as nodes and

precedence relations as directed links (Figure 4.1(a)). Number all the

nodes and represent this precedence graph by means of its associated

connectivity matrix C (Figure 4.1(b)).

(2) Associate with each column of the connectivity matrix the

expected (interference-free) job execution time of its corresponding job

in the precedence graph (Figure 4.1(c)). These job execution times could

be obtained for example by applying Beizer's method [Bei7O] to the

segments of sequential code corresponding to those jobs. In Figure

4.1(c) the job execution times are expressed, for simplicity, in terms of

the number of floating-point operations required for the corresponding

jobs. S, M and D in the job time expressions stand for the execution

time of a floating-point subtraction, multiplication, and division,

respectively. It should be emphasized, however, that The number of

floating-point operations is used only to provide a relative scale for

comparison. The execution time of a job certainly does not consist soly

of floating-point operation times.

(3) Locate no more than P columns, if any exist, containing only

zeroes in the connectivity matrix C, where P is the number of processors

available in the system. Scheduling considerations could be involved at

this point. Find the minimum among all job times in this set and

subtract this minimum from each job time in the set. One processor will

be assigned to execute each job in the set, and the execution proceeds

until the job with the minimum job time is finished.

1

138

(4) Depending on the nature of the multiprocessor system used and

the number of active processors participating in executing this set of

jobs, we can get a value for the memory interference factor P of the

system by employing one of the memory interference models developed in

Chapters 2 and 3, whichever is appropriate. If no account of memory

interference is desired, p will be set to 1.

(5) Multiply the memory interference factor p by the minimum job

time found in (3), and then add the product to the total execution time

elapsed so far.

(6) Delete from C both the columns and the rows corresponding to

those jobs whose job times are now 0. Mark those jobs which were begun

* but not finished in this iteration, if any. These jobs will be assigned

the highest priority for The selection process indicated in (3) over

those newly-created all-zero columns because of the non-preemptibility

assumption.

(7) Repeat steps (3) -through (6) until no more columns or rows

remain in the C matrix.

It can be shown that this procedure is valid for connectivity

matrices of graphs which contain no loops lRaG69b].

For the decomposition given in Figure 4.1(c), the total execution

times needed in a synchronous multiprocessor system with and without

memory interference with various numbers of processors available in the

system are shown in Table 4.1. The numbers enclosed in parentheses are

speed-ups relative to the execution time using a single processor. For

139

Table 4.1

Execution Times and Speed-ups for the Problem in Figure 4.1

Using 4 Memory Modules

no. of processors

1 2 3 4

memory 144460ns 93360ns 93360ns 93360ns
interference
ignored (1.000) (1.547) (1.547) (1.547)

synchronous 144460ns 100660ns 100872ns 100872ns
multiprocessor
system. (0.000) (1.435) (1.432) (1.432)

140

convenience the execution times of floating-point operations in Figure

4.1(c) were substituted with values for the Digital Equipment

Corporation's floating-point processor FP11-C used in the DEC PDP11/70

system [Dig76] (i.e. S=l13Ons, M=252Ons, and D=3540ns). Again, the

execution times of floating-point operations here are only used to

provide a relative scale for comparison. We also assumed that there were

four memory modules in the system, addresses were fully interleaved, and

processors requested memory every cycle. A job whose precedence

requirements are satisfied will be scheduled immediately whenever there

is a processor available.

Note that a speed-up of only 1.435 is achieved, compared to an

interference-free value of 1.547, when two processors are used. Further,

it is interesting to note that the performance is not improved by using

more than two processors. Actually it takes even more time to execute

the problem when three or more processors are used. Although the

additional memory interference is partly responsible for this anomaly,

the major reason is probably the inadequacy of the scheduling strategy.

It is clear from Figure 4.1(a) that more than 3 processors will not

improve the performance, since there are at most 3 jobs that can be

executed in parallel. However, it is possible to improve the performance

with 3 processors by choosing a different scheduling strategy. It should

be pointed out that there are no known efficient algorithms for

scheduling a task system such as ours for shortest execution time

[Cof76].

141

4.3 An Investigation of the Excecution of Matrijx M~ultiplication in a

Multiprocessor System with Virtual Memory

In many applications of computers today, especially in scientific

applications, huge matrices are frequently used to put data in a compact

form, to reflect the topological structure of a problem, and so on.

Linear-algebra operations are then used to manipulate these matrices. As

more and more complicated problems and ambitious approaches are

attempted, it is not unusual to find that the sizes of matrices involved

grow beyond the size of available main memory in a system. In computers

with virtual memories, these data matrices will generally be stored in

the secondary storage and paged into ma..n memory as needed.

As a typical example, an investigation of the execution of matrix

multiplication in a multiprocessor system with virtual memory is

presented in this section. Because of the 'Lack of an existing

multiprocessor virtual memory machine, the study was done by simulation.

For simplicity the multiprocessor computer system under

investigation is assumed to be mono-programmed. In other words, whenever

a page fault is encountered by a processor, that processor will wait

until the page transfer is complete. One should notice, though, that in

a multiprocessor system with virtual memory there exist two kinds of page

faults. The first kind of page fault occurs when a processor attempts to

access a page which is neither present in the main memory nor being

loaded into the main memory by any other processor in the system. This

kind of page fault will generate a page request to the secondary memory

system and thus will be referred to hereinafter as an "effective page

142

fault". On the other hand, it is possible for a processor to address a

page which is being brought in by another processor but is not yet

available for access. Since the loading process for that particular page

has already been initiated, no request should be issued to the secondary

memory system due to this fault. Nevertheless, the processor which

encounters this kind of page fault still has to wait until the page

transfer is complete before proceeding.

For economy the simulation was done at the page request level. AL

global 1IRJ page replacement scheme" was used in the simulation. That

is, an IRU stack of depth 14 is kept in the system, where M is the number

of page slots available in the main memory. The content in each l evel of

the IRUJ stack is a page descriptor which contains a page number and the

status of the corresponding page. Overall, the IRU stack consists of

page descriptors corresponding to those pages which are assigned page

slots in the main memory. These pages could, however, be in use by some

processor, just present in the main memory, or in the process of being

loaded into the main memory.

Since the simulation was not done at the individual memory request

level, the order of page descriptors in the IRU stack at any instant did

not exactly reflect the order of the latest accesses to recent pages.

When a page is first accessed by a processor and thereafter brought into

that processor Is working set[Den7O] (to be explained later), the

corresponding page descriptor is updated and moved to the top of the

stack. All the page descriptors originally above this descriptor, if

any, are pushed downward a stack level. As long as the page stays in a

143

processor s working set, its corresponding page descriptor just stays

where it is in the IRU stack or gets pushed downward due to other new

page accesses. W~hen a page ceases to exist in any processor's working

set, its corresponding page descriptor is removed from where it is,

updated, and put below the lowest page descriptor corresponding to a page

in use or being loaded by some processor. Hence all the pages being used

or loaded will have their page descriptors maintained on the top portion

.of the IRU stack, followed by tchose descriptors corresponding to pages

simply present in the main memory arranged in an IRTJ fashion.

Since the order of individual memory requests is not known, this

approach does not work if the main memory is so small that thrashing

[Den68] could occur. Since thrashing is not interesting to study anyway

and not cost-effective even if memory is expensive, the size of the main

memory in the simulation study was always kept large enough (for the

execution of matrix: multiplication using -the block algorithm discussed

below) to eliminate the possibility for thrashing to occur.

To be more specific, matrices A and B are to be multiplied together

and their product is matrix C. In order to reduce the number of page

faults, block paging [FiP79] was used for all three matrices involved in

the multiplication. Furthermore, for convenience, the size of a page

(and thus a data block) is assumed to be exactly equal to the capacity of

a memory module. Treating page blocks as elements, each of the three

matrices is of dimension N x N, where N is the number of blocks in a row

or column.

The computation decomposition of the matrix multiplication proceeds

144

as follows: The calculation of one product page block, a "super inner

product", is treated as a basic job. This job actually consists of N

submatrix multiplications for the N pairs of data page blocks. Initially

all jobs are in a ready queue. Whenever a processor in the system

becomes available, it is assigned a job by the Job queue routine unless

the queue is empty. Each processor halts when it finds the queue empty.

(if processors cooperate on a super inner product instead, then whenever

new data pages are needed all the processors will be idle for most of the

page fault period. This is because the significant paging overhead is

usually much larger than the individual job time when the computation is

so decomposed. It is felt, therefore, it should be a better scheme to

decompose the computation into larger pieces so that while one processor

is waiting for a page transfer all the other processors can still be

working. By properly scheduling the jobs, significant data page sharing

can still be obtained.)

However, in order to further reduce the paging overhead, the

least-recently-used feature of the page replacement scheme can be taken

advantage of 1Es741, [FiP79] to reduce the amount of paging by

* alternating the direction in which jobs are assigned (Figure 4.2). The

order in which the N block multiplications within a job were performed

was also alternated to take advantage of the LRU replacement scheme

(Figure .4.2). More specifically, in terms of the page block

multiplications, the way the jobs are assigned and the order the N block

multiplications in a job are executed can be shown in the following

algorithm:

I
145

C., - - - I

-4.

C.~ >~

0

4.'

U
-4

III -

x
C.,

a - 1.J
-4 * '1 ' -. :j*
.- , .~...

-4-J.-....4> ~ '-I
hlr

- U-'

-- I-
_ 1 -

I,
0

- - *..t _ -
U

-4

x
-I C',

N

"4:'' I
-H---

-4 H

ri

II

.- i S

- -- ~-

146

FOR I : I STEP 1 UNTIL N DO

BEGIN
IF (I MOD 2) - 1

THEN BEGIN JL:-I; JH:-N; JSTEP:-1 END
ELSE BEGIN JL:-N; JH:-1; JSTEP:--I END;

FOR J :- JL STEP JSTEP UNTIL JH DO
BEGIN

IF (I+J MOD 2) - 0
THEN BEGIN KL:-I; KH:-N; KSTEP:-1 END
ELSE BEGIN KL:-N; KH:-I ; KSTEP:--1 END;

C(I,J) : 0; (4.1)

FOR K : KL STEP KSTEP UNTIL KH DO
C(I,J) :- C(I,J) + A(I,K) x B(K,J) (4.2)

END
END;

Note that the assignment, addition, and multiplication in statements

4.1 and 4.2 above are matrix assignment, matrix addition, and matrix

multiplication, respectively. It is apparent -hat, except in the

transition periods, each processor's working set contains 3 pages, one

from each matrix.

The multiprocessor system studied consists of P identical

arithmetic/logic processors, X identical memory modules, a crossbar

interconnection network, and an I/0 channel which takes care of page

transfers between main memory and secondary storage. For the reasons

mentioned in Chapter 3, the I/O channel has a higher priority in

accessing the memory. Since the algorithm is simple, the corresponding

program code, although addressed frequently, does not consume much memory -

space. Hence a local memory is assumed for each processor to accommodate I
its private copy of the program code. The processors thus only compete

for the usually huge data storage. The request rate to the shared main 5
memory is thus reduced and the performance of the system is improved. I

147

A mutual-exclusion critical section is used in the multiprocessor

program to allocate jobs To processors. It takes a finite amount of

time, Tcs, for a processor to execute this critical section code. A

processor could be locked out of this critical section for certain amount

of time, Tlock, if some other processor is executing the critical section

code when the processor attempts to access it.

A single first-in-first-out (FIFO) queueing facility is provided for

processors waiting for the service of the I/O channel. A processor,

therefore, will spend a finite time Tq in this queue before the I/0

channel starts to serve it. The service time of the I/O channel for each

page transfer basically consists of three time periods: the seek time

Tseek, the latency time Tlat, and the page transfer time Tt.

The simulation was done using event-driven techniques and the

relation among events and the time periods between events are shown in

Figure 4.3. Note that there are two event lists in the simulation.

Since the I/O channel has a higher priority for accessing the main

memory, the page transfer is free from any interference. Furthermore,

the seek time and latency time are characteristics only of the secondary

memory system. The queueing time in the paging queue, therefore, is also

interference-independent. However, all the other timing figures like the

critical-section lock-out time Tiock, the critical-section execution time

Tcs, and the computation time to multiply a pair of page blocks Tpair are

affected by the memory interference.

The degree of memory interference itself depends at any given time

on how many processors are competing for the main memory (not awaiting

It

148

d one
initialization

th crte los parcintes hb

Figre4.TectEventDie Simlai cal

ICJ
chane

149

the page transfer, for example) and if the i/O channel is transfering

data between main memory and the secondary storage. The memory

interference factor, which is used as a multiplicative factor to modify

those interference-dependent timing figures, has, -herefore, to be

evaluated from an appropriate memory interference model whenever the

aforementioned conditions change. Because of this need for dynamically

modifying some timing figures, two event lists were provided to save the

cost of selecting modification targets and possibly reordering the

occurrences of events in the lists to maintain their ascending order in

time. One event list, called the event queue, was used to queue those

events whose occurrences are interference-dependent and another event

list, called the I/O queue, was used to queue those events whose

occurrences 4re interference-independent. The event queue is used for

activity outside the dotted line in Figure 4.3 and the I/O queue for

activity inside.

Simulations were done for several different secondary storage

systems. Various parameter values used in the simulation study are shown

in Table 4.2. The processors' timing characteristics are compatible to

the IBM System/370 series[CaP78], and the timing characteristics of the

secondary storage system I are compatible to IBM 3330 disk storage unit

[Hay78]. The secondary storage systems II, V, and X are just systems -,

5, and 10 times faster than system I, respectively. The secondary

storage system F, however, is identical to system I except a fixed head

is used for each track to eliminate the seek time. Note that when we

refer to a secondary storage system, we also include the I/O channel

dealing with that system. The timing data enclosed in the brackets in

-_ _- - --ll " - -- • -"1 |- i-

150

Table 4.2

Various Parameter Values Used in the Simulation Study

page size = 1K words
Tpair = 100ms [2000]
Tcs = O.05ms [1]

processor's main memory request rate, P 0.25p

secondary
storage I II V X F

system
parameter

Tseek 30 15 6 3 0
(ms) [600] [300) [120] [60] £0]

Tlat 8.4 4.2 1.68 0.84 8.4
(ms) [168] [84] £33.6) [16.8) [168)

Tt 5 2.5 1 0.5 5
(ms) [100] £50] £20) £10] [100]

total overhead 43.4 21.7 8.68 4.34 13.4
per page miss [868] £434] [173.6] [86.8] [268]

channel
trangfer rate 2 4 10 20 2
(x O words/s)

channel request
rate, *c 0.1 0.2 0.5 1.0 0.1
(when active)

I
Ii

V.. .Vi

I, -m

151

Table 4.2 are normalized values with respect to the critical-section

execution time Tcs. The model presented in section 3.2 Special Case II

was used to evaluate the memory interference factor.

In all the simulations, two 64-page square data matrices were

multiplied together to produce a third 64-page square matrix. Thus there

were a total of 192 pages in the virtual address space. The main memory,

however, has only 24 modules each capable of holding one page of data.

The number 24 was chosen because for this particular computation even

without page sharing the main memory is able to hold the working page

sets of 8 processors, which is the maximum number of processors used in

the simulation. The number of processors available in the multiprocessor

system was varied from simulation to simulation to see the amount of

speed-up achieved by increasing the number of available processors. This

result is shown in Figure 4.4.

Apparently the secondary storage system I is too slow to support

such a multiprocessor system with more than two processors for such a

computation. System II, although only twice as fast, yielded much better

performance. On the other hand, system V apparently matched the needs of

the multiprocessor systems with up to 8 processors very well for such a

computation. Hence doubling its speed did not improve the performance

much. System Fs high performance demonstrated the adverse effect of the

dominating factor in the paging overhead - the seek time. Removing seek

time here is almost as desirable as a five times overall speedup of the

disk system. The upturn from 7 to 8 processors in Figure 4.4 (and also

in Figure 4.5) is due to the fact that the number of decomposed jybs for

1.52

IDEAL
S

E / V

0F

5. 7

5.- -.

Z.7

NO. OF PROCESSORS

Figuare 4.4 Speeiups 'Is. No. of Processors

17 153

this computation is more evenly shared by 8 processors than by 7

processors (the end effect mentioned in section 2.8).

A few insights can be gained, by observations of other parameters as

functions of the number of processors used. For example, Figure 4.5

shows the average value of the memory interference factor, along the

entire course of a simulation, versus the number of processors used for

the computation. The resemblance of Figure 4.5 to 4.4 is probably not

surprising. The performance of The multiprocessor system is directly

related to the net computing power of the multiple processors in the

system. Computing requires accesses to the shared main memory. Thus the

performance of the system varies proportionally to the magnitude of the

memory interference factor.

Figure 4.6 showes the ratio of the total number of effective page

faults to the total number of all page faults. The shapes of the curves

in the figure clearly point out the fact that the more seriously the

secondary storage system "bottlenecks" the multiprocessor system, the

larger the chance becomes for a processor to address a missing page whose

loading procedure has been initiated.

Finally, since all the processors in the system participate in the

execution of a kniown algorithm and the algorithm is so well designed that

relatively long page-fault-free periods exist between clusters of page

faults for any processor, it is interesting to look at the distribution

of the intervais between page requests submitted to the secondary storage

system by the multiple processors. Figure 4.7-4.9 are the histograms of

such intervals for multiprocessor systems with secondary storage systems

154

1-4

0 0

03

>5.4

ca0

a a'
aa

C>LU~~ ~ ~ 00"MLWCZU te.H

155

0

0

'II

"..

0

4.4

156

- Se----2>E.

400 ___

.210

-4~~ ____M__41

.2eeZ

4-0 -. --- ---.. -

Igo
fps- - -- - - - - --

T 157

ff-~

10

7 - 1i-

7 7

I" ____-r

o 0 r2" if 0 .0 .. 12" W; a4

Figure 4.8 Histograms of inter-page-request Intervals with Secondary
Storage System X

158

lee

lee

3*

0OI 6if 1i.29 400 240 0 $00 glee 18*. .24o.

Figure 4.9 Histograms of Inter-page-request Intervals -,ith Secondary
Storage System F

159

I, X, and F, respectively. In each figure there is a histogram for each

number of processors used (P). The total number of requests (REQ) is

also indicated for each histogram. The horizontal axis is labelled by

the normalized time (with respect to Tcs) and the vertical axis the

absolute number of occurrences. The average value of the intervals for

each histogram is indicated by a vertical arrow.

When only one processor is used for the matrix multiplication, there

are only two values for the inter-request intervals. One value is the

total overhead per page miss (see Table 4.2), which occurs when the

processor is establishing a new working set, and the other value is the

total overhead per page miss plus the execution time for the

multiplication of a page block pair (Tpair), which occurs when a new

working set is Just established. However, as the number of processors in

the system increases the lengths of the intervals between page requests

mostly decrease and assume more values. On the other hand, for P - 6 in

* Figure 4.7 we do notice certain very long inter-request intervals. These

intervals occur since when more processors are involved more distinct

pages are brought into the memory. It is then possible for a processor

to find its new working set already in the memory.

An interesting observation can be made from these histograms if we

consider the secondary storage system as a server and the page requests

as customers. The average length of inter-request time to the secondary

storage can then be interpreted as the average interarrival time of

customers to the server. This time in terms of the normalized time unit

is indicated by the vertical arrow in each histogram. The total overhead

160

per page miss given in Table 4.2 (which does not include any overhead for

waiting in -he channel queue) can be considered as The service time of

the server for each customer. Notice that this service time is soon

approached by the average interarrival time in Figure 4.7 when the number

of processors increases. We recall from the queueing theory [Kle15] that

an open random flow system (e.g. a M/M/I queue) could become unstable

when the customers' arrival rate approaches the server's service rate.

It is actually the finite number of possible outstanding requests

(because of the finite number of processors in the system) which keeps

the system from going beyond saturation.

In contrast, although the arrival rate in Figure 4.8 for system X

increases (the average interarrival interval decreases) as the number of

processors increases, that rate never exceeds the maximal service rate of

the server for up to eight processors. The fact that the system is not

yet saturated actually guarantees further speed-up if even more

processors are used.

Finally, since the average inierarrival time has approached The

service time of the server when eight processors are used in Figure 4.9

for system F, the speed-up curve in Figure 4.4 is expected to flatten out

when more than eight processors are used in the multiprocessor system

with secondary storage system F.

The above observation reveals information not contained in the

speedup curves (Figure 4.4) and is helpful To system designera in

balancing computer systems.

I

T 161

CHAPTER 5

Conclusions

5.1 Summary of Results

Multiprocessor systems can save hardware cost or afford better

resources by sharing common resources among processors, but they pay for

this saving by incurring access conflicts for resource usage. The idea

here is cost-effectiveness, which means that the performance and the

economy-should be appropriately compromized. On the other hand, some

resources in a multiprocessor system have to be shared to achieve
/

synchronization. Thus performance degradation due to resource contention

and access interference becomes inevitable in these systems. Because of

the attractiveness of multiprocessing, it is, therefore, of great

interest to understand such degradation in performance in order to

minimize its effect by using available architectural parameters.

j We have mainly focused our attention in this thesis on the special

problem of memory interference in tightly coupled multiprocessor computer

I systems. Depending on the nature of the memory-requesting mechanism,

discussion was centered on two important cases of such systems.

The memory interference in multiprocessor systems with

time-division-multiplexed busses was first discussed in Chapter 2. The

I

162

discussion started from Emer's model for a multiple-instruction-stream

pipelined processor with a single fixed-cycle shared resource, which was

reviewed in section 1.2. Generalizations of that model for systems with

multiple resources or resources with more general resource cycle times

were discussed. Provisions for the application of the model to programs

with critical sections treated as software resources were also covered.

Furthermore, as presented in Chapter 2 as "the SCP problem", an effective

resource cycle time was defined to replace the physical resource cycle

time for a TDM-bus multiprocessor system with unassigned time slots.

Finally, measured performance data from the execution of matrix

multiplication on AMP-I was used to check the above model. Matrix

multiplication was chosen to focus on resource contention overhead only,

since it has a large number of independent jobs with no precedence

constraints among them. Two other models for matrix multiplication

execution with and without modification by the memory interference factor

were also presented for comparison. Model-predicted values by the hybrid

model and the renewal-theory model with modification by the memory

interference factor both yield errors which are less than 0.8% with up to

7 processors. These two models also model the imperfect job sharing at

the end of the computation, which make them have the potential of dealing

with precedence structures in general computations. the measured data.

In Chapter 3, attention was shifted to synchronoua multiprocessor

systems with crossbar as the interconnection network. A general

probabilistic model with provisions for both non-uniform memory request

rates and processor priorities was proposed. The model is superior to

queueing-theory-based models in the fact that it can easily accomodate

163

*these provisions. For The case of uniform memory access, an improved

model based on a steady flow concept was discussed. With the aid of

simulation results, this model was compared to other models in the entire

range of memory request rate ((0,1]) to demonstrate its accuracy. It

was also shown that the model could be used iteratively to accomodate

processor priorities.

Chapter 4 presents two application examples of the memory

interference models. An algorithm for the estimation of the execution

Time of a program running on a multiprocessor system was proposed in

section 4.2. Appropriate m-'.1ory interference model can be used to

* dynamically adjust The job execution Times -according to the actual number

of processors active at any given time in the system. Section 4.3

presents another example, which is a case study on the execution of

matrix multiplication in a multiprocessor system with virtual memory. A

memory interference model was used to introduce the effect of memory

interference into the simulation study, which was done on the page

request level.

5.2 Suggestions for Future Research

The effort in section 2.5 is intended to deal with the performance

overhead caused by critical section code in multiprocessor programs.

Although a mutual-exclusion critical section code is indeed a shared

resource in a multiprocessor system, the probabilistic approach used in

164

section 2.5 may not work well if the critical section is not frequently

accessed or the critical section takes too much time to execute. The

assumption of independence among requests could be poor in the latter

case because of potentially serious congestion. Further research is thus

required to explore more deeply more precise approaches to assess this

overhead.

Secondly, the importance of computation decomposition for a

multiprocessor algorithm is briefly mentioned in several places in the

thesis. However, not much investigation of this issue is found in the

literature and no good general guideline for decomposing a computation

for multiprocessing is available. The algorithm proposed in section 4.2

is the first step toward attacking this problem systematically, but it

does not work in all cases. For example, certain shared data in a

multiprocessor program may be protected by a mutual-exclusion critical

section to insure its integrity. Any job which needs access to this kind

of critical section may be blocked temporarily by other jobs, but no

definite precedence relation exists. Since the performance degradation

of a multiprocessor system due to avoidable precedence relations in a

multitasked computation may very well exceed the overhead caused by

memory access interference, more research on the computation

decomposition is definitely necessary. The renewal-theory model

presented in section 2.8 may have the potential of dealing with the

precedence structures of general computations.

Finally, since a cache is effective in enhancing the performance of

the memory system and greatly reduces the traffic between processors and

p4

165

the main memory, it has been widely adopted in conventional uniprocessor

systems. However, the implementation of a cache or caches in a

multiprocessor system has its unique problems. The multiple-cory problem

occurs if a separate private cache is provided for each processor, while

serious interference could occur if the cache is shared among

processors. In view of all the potential advantages of using caches in

computer systems, this issue definitely deserves more research.

*1

166

REFERENCES

[BaS76] Baskett, F., and A.J. Smith, "Interference in Multiprocessor
Computer Systems with Interleaved Memory," Communications of the
ACM, vol. 19, no. 6, pp.327-334, June 1976.

[Bei70] Beizer, B., "Analytical Techniques for the Statistical
Evaluation of Program Running Time," AFIPS Conference
Proceedings 37 (FJCC), pp.519-524, 1970.

[Bha75] Bhandarkar, D.P., "Analysis of Memory Interference in
altiprocessors," IEEE Transactions on Computers, vol. C-24,
pp.897-908, September 1975.

[BrDa77] Briggs, F.A., and E.S. Davidson, "Organization of Semiconductor
Memories for Parallel-Pipelined Processors," IEEE Transactions
on Computers, Vol. C-26, pp.1 62-1 69, February 1977.

[BrDe71] Brown, K.M., and J.E. Dennis, Jr., "On the Second Order
Convergence of Brown's Derivative-free Method for Solving
Simultaneous Nonlinear Equations," Yale University Department of
Computer Science Technical Report, pp.71-77, 1971.

[Bri77] Briggs, F.A., "Memory Organizations and Their Effectiveness for
Multiprocessing Computers," CSL Report R-768, University of'
Illinois, May 1977.

[Bro69] Brown, K.M., "A Quadratically Convergent Newton-like Method
Based upon Gaussian Elimination," SIAM Journal on Numerical
Analysis, pp.560-569, 6(4)1969.

[BuK71] Budnik, P.P., and D.J. Kuck, "The Organization and Use of
Parallel Memories," IEEE Transactions on Computers, vol.2C,
pp.1566-1569, 1971.

[CaP78] Case, R.P., and A. Padegs, "Architecture of the IBM System/370,"
Communications of the ACM, vol.21, no.1, pp.73-95, January 1978.

CCES711 Coffman, E.G., Jr., M.J. Elphick, and A. Shoshani, "System
Deadlocks," Computing Surveys, 3, no.2, pp.67-78, June 1971.

[Che71] Chen, T.C., "Parallelism, Pipelining, and Computer Efficiency,"
Computer Design, pp. 6 9-74, 1971.

[CKL77] Chang, D.Y., D.J. Kuck, and D.H. Lawrie, "On the Effective
Bandwidth of Parallel Memories," IEEE Transactions on Computers,
pp.480-489, May 1977.

'Cof76I Coffman, E.G., Computer and Job/Shop Scheduling Teory, John

Wiley A Sons, Inc. New York, 1976.

[Cox62] Cox, D.R., Renewal Theory, John Wiley I Sons Inc., 1962. [

167

[Dav8O] Davidson, E.S., "A Multiple Stream Microprocessor Prototype
System : AMP-I ," Proceedings of the 7th Annual Symposium on
Computer Architecture, vol.8, no.3, pp.9-16, May, 1980.

[Den68] Denning, P.J., "Thrashing: Its Causes and Prevention,"
Proceedings, AFIPS 1968 Fall Joint Computer Conference, vol.33,
pp.915-922, 1968.

[Den70] Denning, P.J., "Virtual Memory," Computing Surveys, vol.2, no.3,
September 1 970.

[Dig76] Digital Equipment Corporation, PDP11/70 Processor Handbook,
1976.

[Els74] Elshoff, J.L., "Some Programming Techniques for Processing
Multi-dimensional Matrices in a Paging Environment," National
Computer Conference, pp.185-193, 1974.

[Eme79] Emer, J.S., "Shared Resources for Multiple Instruction Stream
Pipelined Processors," CSL Report R-838, University of Illinois,
July 1979.

[Fer78] Ferrari, D., Computer Systems Perfo rmance Evaluation,
Prentice-fall, Inc. 1978.

[FiP79] Fischer, P.C., and R.L. Probert, "Storage Reorganization
Techniques for Matrix Computation in a Paging Environment,"
Communications of the ACM, vol.22, no.7, pp.405-415, July 1979.

[Fu0761 Fuller, S.H., and P. Oleinick, "Initial Measurements of Parallel
Programs on a Multi-mini-processor," Proceedings, Computer
Conference, pp.358-363, 1976.

[Hay78] Hayes, J.P., Computer Architecture and Organization, McGraw-Hill
Book Company, p.344, 1978.

[H0o771 Hoogendoorn, C.H., "A General Model for Memory Interference in
Multiprocessors," IEEE Transactions on Computers, vol.C-26,
no.10, pp.998-1005, October 1977.

[HoR77] Hon, R.W., and D.R. Reddy, "The Effect of Computer Architecture
on Algorithm Decomposition and Performance," Proceedings of the
_mposium on High Speed Computer and Algorithm Organization,
Ur ,ersity of Illinois, Urbana, Illinois, pp.411-422, April,
1977.

[Hor78] Horst, R.W., "The Design and Implementation of a Synchronous
Multiple Microprocessor System: Part I," M.S. thesis,
Department of Electrical Engineering, University of Illinois,
Urbana, Illinois, 1973.

[IsMSO] Isloor, S.S., and T.A. Marsland, "The Deadlock Problem: An
Overview," Computer, vol.13, no.9, pp.58 -73 , September 1980.

168

[KaD79] Kaminsky, W.J., and E.S. Davidson, "Developing a
Maltiple-Instruc tion-Stream Single-Chip Processor," Computer,
pp.66-76, December 1979.

[Kle75] Kleinrock, L., Queueing Systems, Volume 1: Theory, John Wiley &
Sons, Inc., 1975.

[Kra77] Kravitz,.R.H., "The Design and Implementation of a Synchronous
Mltiple Microprocessor System: Part II," M.S. thesis,

Department of Electrical Engineering, University of Illinois,
Urbana, Illinois, 1977.

[Kun76] Kung, H.T., "Synchronized and Asynchronous Parallel Algorithms
for Multiprocessors," Algoriths and Complexity: New Directions
and Recent Results, J.F. Traub, Ed., Academic Press, New York,
1 976.

[Law73] Lawrie, D.H., "Memory-Processor Connection Networks," Ph.D.
thesis, Department of Computer Science, Technical Report 73-557,
University of Illinois, Urbana, Illinois, February 1973.

[Law75] Lawrie, D.H., "Access and Alignment of Data in an Array
Processor," IEEE Transactions on Computers, vol.C-24, no.12,
pp.1145-1155, December 1975.

[Leh66] Lehman, M., "A Survey of Problems and Preliminary Results
Concerning Parallel Processing and Parallel Processors,"
Proceedings of the IEEE, vol. 54, pp.1 889-l901, December 1966.

[01F78] Oleinick, P.N., and S.H. Fuller, "The Implementation and
Evaluation of a Parallel Algorithm on C.mmp," Technical Report
CMU-CS-78-1 25, Department of Computer Science, Carnegie-iellon
University, June 6, 1978.

[Pat79] Patel, J.H., "Processor-Memory Interconnections for
Multiprocessors," Conference Proceedings of 6th Annual Symposium
on Computer Architecture, Philadelphia, Pa., pp.168-177, April
1979.

[Pir67] Pirtle, M., "Intercommunication of Processors and Memory," Fall
Joint Computer Conference, pp. 621- 6 33, 1967.

[RaG69a] Ramamoorthy, C.V., and X.J. Gonzalez, "Recognition and
Representation of Parallel Processable Streams in Computer
Programs - II (Task/Process Parallelism) ," 1969 National ACM
Conference, 1969.

[RaG69b] Ramamoorthy, C.V., and M.J. Gonzalez, "A Survey of Techniques
for Recognizing Parallel Processable Streams in Computer
Programs," Fall Joint Computer Conference, pp.1-15, 1969.

169

[Ram66] Rammoorthy, C.V., "Analysis of Graphs by Connectivity
Considerations," Journal of ACM, vol.13, no.2, pp.211-222, April
1966.

[Rau77] Rau, B.R., "Program Behavior and the Performance of Memory
Systems," Ph.D% dissertation, Stanford University, Stanford,
CA, July 1977.

[Rau79] Rau, B.R., "Interleaved Memory Bandwidth in a Model of a
Multiprocessor Computer System," IEEE Transactions on Computers,
vol. C-28, pp.678-681, September 1979.

[Rav72] Ravi, C.V., "On the Bandwidth and Interference in Interleaved
Memory Systems," IEEE Transactions on Computers, vol. C-21,
pp.899-901, August 19"72.

[Smi77] Smith, A.J., "Multiprocessor Memory Organization and Memory
Interference," Communications of the AC, vol.20, no.10,
pp.754 -76 1, October 1977.

[Str7O] Strecker, W.D., "Analysis of the Instruction Execution Rate in
Certain Computer Structures," Ph.D. dissertation,
Carnegie-Mellon University, Pittsburgh, Ph, 1970.

[Str79] Strecker, W.D., "An Analysis of Central Processor - Input-Output
Processor Contention," 1979 Conference on Simulation,
Measurement and Modeling of Computer Systems, pp.27-40, August
1979.

[WaB72] Wulf, W.A., and C.G. Bell, "C.mmp - A Multi-Mini-Processor,"
Fall Joint Computer Conference, pp.765-777, 1972.

I

~1

1
i '

170

APPENDIX

The Effect of Computation Decomposition on the

Performance of Executing Gaussian Eliminetion on AMP-I

Gaussian Elimination is a well-known classical algorithm for solving

simultaneous linear equations. In terms of the matrix form Ax - b, the

algorithm proceeds by triangularizing the A matrix first and then solving

for the unknowns by backward substitution.

A Gaussian Elimination program was developed for the AMP-1 to solve

a set of 14 linear equations of the form Ax - b[DavSO]. A 5-byte

floating-point format was used for each matrix element. This format

provides for an S-bit exponent and a 32-bit mantissa which allows

numerical precision comparable to most large computers.

Three versions of the program were written for performance

evaluation. GAUSB decomposes the computation into three kinds of jobs:

normalization, NORM i, which normalizes row i of the A matrix and b.

111using A ii (assuming A iikO); reduction, REDUCE i,j (j<i), which subtracts

the product of Aij and row j from row i of A and Aijbj from bi to make

the new A -0; and back substitution, BIOUB i,j (.<i), which subtracts
ij

the product A. b. from b. Job precedence for normalization jobs and

reduction jobs is shown in Figure A.1 and that for back substitution jobs

is shown in Figure A.2. No back substitution jobs can proceed until all

the normalization and reduction jobs are done. Job precedence is

controlled in GAUSB by the job-allocating critical section.

1.
L

171 I
4

A
I0

-

- 0 V
- 4.1

- 1.3 g
o

*0
4'

*0

0

0
.0
0

* I-,
* .

* . 0
* 4.4

0
N

-4

- 0
M -

. 4
4 - -

1.2 Z
U U

y Li

1.2 1.2 1.3 0
11.4

- 4'

/
U

.4'4'

U)
N N U

N N N * U)
-

Li
4 sf1 - -

N N 1.3 1.3 1.3 1.3

- U U U .0= 0
1.3 1.2 N 1.2 1.3

z N
-4

.ss~

U)'.4

- - - - 00
N - 4 Sf1 - - .4.4

- 1.3 1.3 N 1.2 1.3 N
1.3 U U U ~.2 U

S
o 1.2 0 1.3

2.2 1.2N 1.2

5'' -~

I

41.
17

10

rAC

173

GAUSY uses a separate semaphore for each of the decomposed jobs to

reduce semaphore congestion. GAUSZ eliminates all normalization jobs by

distributing the normalizing divides into the reduction jobs and back

substitution jobs to reduce job precedence wait. All three versions

require exactly the same number of each type of floating-point operation.

Since the performance of GAUSY is close to GAtSB in Figure A.3, it

is seen that semaphore congestion is minimal. However, the normalization

jobs in GAUSB did cause significant job precedence wait as the number of

processors inceased, as evidenced by the performance improvement of

GAUSZ over GAUSB. These data illustrate the utility of reordering and

revising the computations of standard algorithms developed for single

processors when multitasking these algorithms, by proper decomposition,

for multiprocessing.

The values for I in Figure A.3 indicate the number of ways the
addresses are interleaved among the 64 memory modules in the system. The

program -de and data span at least 8 modules when I-i and all 64 when

1-64.

Some experiments concerning the effect of address interleaving on

the performance were performed for GAUSZ, the version with the best

perfurmance as far as job precedence constraints are concerned. Figure

A.4 displays the result. It should be noted that in these experiments,

the number of memory modules was always 64, regardless of the degree of

interleaving. Thus the performance for no interleaving or a low degree

of interleaving as indicated is higher than one would expect if the

number of modules were reduced to be equal to the degree of interleaving.

--- - -_- - - -

174

-GSB (I= 64)
~~GSZ (I= 1)

-~ 6 -GSB3(I:i)

Cn

2 5-

2

4 5 6 7 8

Processors -4S

Figure A.3 Gaussian Elimination Performance

175

8 I0

Ideal J7-Model /
- =64

I16,32 J#

*.-

100

3--

2 3

Proessors

Figure A.4 GAUSZ Performnce

i

176

It is interesting to note that even though so many modules of memory are

used with respect to the number of processors a high degree of memoryIaddress interleaving among these modules is also required for high

performance. Performance improvements are still obtainable by increasing

I from 32 to 64 even when only 8 processors are used. The "Model" curve

in Figure A.4 indicates the expected speedup if memory access contention

were the only degradation from "Ideal" with I = 64. In fact the measured

memory access contention is indistinguishable from the Model curve in

Figure A-4. It may be inferred from these data that memory access

contention is negligible when I -64 and that job precedence and other

degradation factors account for the major differences between actual and

ideal speedup in this region. Memory access contention becomes more

significant when I is reduced.

For comparison, similar experiments were done for the matrix

multiplication program M)C4C, and the result is shown in Figure A.'5.

Again, experiments always ivie 64 memory modules, regardless of I. High

degrees of interleaving result in a performance which comes remarkably

close to the ideal, despite the memory access contention due to shared

code as well as shared data space for the matrices. Also, the fairly

straight speedup curves indicate the lack of precedence constraints in

the computation.

177

8I. I

I= Degree of Interleaving
(Program and Data Spread
Over >22 Banks)
(Average Bank Lockout

next 9 Processors)
6 - ~./. -

6-
--- Ideal--- 1:64 "; " /

- I:= 32
-

d) I=8 .'.
:4

- I2

-4..-

2--

- -1 I"

1 2 3 4 5 6 7
Processors P"5o

Figure A.5 MXMC Performance

178

VI TA

David Wdei-Luen Yen was born in Taiwan, Republic off China on

September 24, 1951. He received the B. S. degree in Electrical

Engineering from National Taiwan University, Taiwan, China, in 1973 and

the X4. S. degree in Electr5al -Engineering from the University of

Illinois in 1977. At the University of Illinois he was employed as a.

teaching assistant in the Department of Electrical Engineering worki~ng on

PLATO programming in the fall -'f 1975, a research assistant in the

Control Systems Research Laboratory from 1976 to 1977, a teaching

assistant in the Microcomputer laboratory of the Electrical Engineering

Department in 1978, and a research assistant st the Coordinated Science

Laboratory from 1979 to 1980.

