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PERFORMANCE MODELS FOR
MULTIPROCESSOR COMPUTER SYSTEMS

David Wei-Luen Yen, Ph.D.
Coordinated Science Laboratory and
Department of Electrical Engineering
University of Illinois at Urbana-Champaign, 1980.

Multiprocessing is an effective architectural approach to enhance
the performance of computer systems. However, various problems involved

in multiprocessing may severely degrade system performance.

This research has mainly centered on the memory interference problem
in tightly coupled multiprocessor computer systems. Depending on the
nature of the memory-requesting mechanism, discussion is centered on two

important cases of such systems.

The memory interference in multiprocessor  systems with
time~division- multiplexed (TDM) busses is first discussed. The
discussion starts from Emer”s model for a multiple-instruction-stream
pipelined processor with a single fixed-cycle shared resource.
Generalizations of +that model for systems with multiple resources,
resources having more general cycle times, and/or unassigned time slots,
are discussed. Provisions for the application of the model to programs
with critical sections treated as software resources are also covered.
Measured performance data from the execution of matrix multiplication on

a local multiprocessor system is used to check the above model. T4o

other models for matrix multiplication execution are also presented for
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comparison. These two models model the imperfect Jjob sharing among

. processors at the end of a computation, which has not been previously

modeled.

A  general model for +the memory interference in synchronous
multiprocessor systems which allow arbitrary memory request rates,
non-uniform memory references, and unequal processor priorities is
presented next. For the case of uniform memory access, an improved model
based on a steady flow concept is discussed. With the aid of simulation
results, this model is compared to other models in the entire range of
memory request rate ( (0,1] ) to demonstrate its accuracy. This model is
further shown to be extendable to deal with multiprocessor systems where
different memory service priorities are associated with different

processor categories.

Several application examples which make use of the memory
interference models derived are presented. First, an algorithm is
proposed for the estimation of the execution time of a program running in
a multiprocessor system. Such an algorithm can be used +to pick a
computation decomposition which best utilizes the available computing
power. A case study of the effect of computation decomposition on the
performance of Gaussian Elimination is presented. The execution of
matrix multiplication in a multiprocessor system with virtual memory was
evaluated by simulation, in which a memory interference model capable of
dealing with priority was used to dynamically modify various job

execution times according to the number of processors and I/0 channels

active in the system.
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CHAPTER 1

Introduction

1.1 Problem Statement and An Overview of the Thesis

Very often in our lives we see tasks that are considered too big for
a single person to handle. Unless someone with extraordinary capability
is readily available, a team of people, perhaps with differing
specialties, is required {o accomplish it. Similarly, as  more
sophisticated and ambitious computer applications are attempted, it is
often difficult to build a single-processor computer system ‘which is
powerful enough to handle the problem. Advances in technology have so
far been driving computer performance upward. Although technology will
continue to improve the performance of computer systems, people can no
longer solely count on it since it has begun to approach certain physical
limits for the current technology used in computer systems.
Multiprocessing (in a loose sense including distributed processing),

therefore, becomes a natural and promising approach to explore.

Unfortunately, as in multi-person human teams, multiprocessing has
problens. It may not work at all, for which the deadlock phenomenon
[CES71], [IsM80] is a famous extreme example. While dinappropriate

algorithm or system design may be blamed for deadlock, there is also much

L N
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inherent overhead in multiprocessing which degrades performance.
Resource (memory, bus, function units, etc.) contention, precedence
synchronization, critical-section lock-out, processor intercommunication
cost, operating system overhead, etc. are all performance-degrading

factors for multiprocessing.

This <thesis mainly studies the memory interference problem (an
important kind of resource contention in multiprocessor systems) .
Precedence synchronization and critical-section lock-out overhead is
dealt with to a limited extent. The scope of the thesis 1is 1limited to
tightly-coupled mul tiprocessor systems with shared main memory.
Processor intercommwunication in these systems is mostly accomplished
through global variables stored in the shared memory; thus processor

intercomrunication cost is not a major concern in these systenms.

The remainder of this chapter surveys previous work on the memory
interference problem for both mul tiprocessor systens with
time-division-multiplexed (TDM) busses and synchronous multiprocessor
systems. Section 1.2 introduces Emer”s model for multiprocessor systems
with TDM busses and discusses various limitations of its applicability.
EBmer”s model is generalized in Chapter 2 to remove these 1limitations.
Section 1.3 discusses work by Skinner and Asher, Strecker, Ravi,
Bhandarkar, Baskett arnd Smith, Rau, and Hoogendoorn for synchronous
multiprocessor systems. A general model for the memory interference in
such systems which allow arbitrary memory request rates, non-uniform
memory references, and unequal processor priorities 1is presented in

Chapter 3. An improved model for the case of uniform access and equal
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processor priority is also discussed. This model is further shown to be
oxtendable %o deal with multiprocessor systems where different memory

service priorities are associated with different processor categories.

Chapter 4 presents several application examples which make use of
the memory interference models derived in Chapters 2 and 3. However, the
studies involved in these examples also have value in their own right.
Section 4.2 proposes an algorithm for the estimation of the execution
time of a program running in a multiprocessor system with and without
memory interference. Section 4.3 discusses an 1investigation of the
execution of matrix multiplication in a multiprocessor system with

virtual memory.

Conclusions and suggestions for future work are summarized in

Chapter 5.

Finally, an experiment for the effect of computation decomposition
on the performance of executing Gaussian Elimination on a
locally-designed and locally-built multiprocessor system, AMP-1 (see

section 2.7), is presented in the Appendix.




1.2 Previous Work for Multiprocessor Systems with Time-Division-

Multiplexed Bugses and An Overview of Chapter 2

1.2.1 Background and Assumptions

Figure 1.1 shows an s-segment pipelined processor with a single
fixed-cycle resource [Eme79]. At any time instant a distinct task is
assumed to be active in each of the s distinct segments. A task, the
schedulable entity for a pipeline, corresponds to one cycle of an

instruction. Once a task enters the pipeline, it flows from segment +to

segment until it exits from <the pipeline. Hence if we define each .

processor segment to take one segment time unit (STU) to perform its
operation, each task will take g STUs for execution and s STUs thus

compose one processor cycle time.

An instruction stream (i.e. a single program in execution) consists
of an ordered sequence of instructions each of which is a sequence of
pipeline tasks. At any given time the s tasks in the s distinct segments
of the pipeline are assumed to come from s distinct instruction streams.
The dinstruction streams could be totally independent of each other,
working on totally independent jobs, or locally independent of each other
while globally sharing some code and data. In the latter case, some
interstream interactions may be required to achieve cooperation on a
large multiprocessed job. The sharing and interaction mechanisms, if

necessary, would be implemented explicitly by software.

Therefore, only one task from each instruction stream is active in

- derrqe e
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Figure 1.1 An s-segment Pipelined Processor with a Single
Fixed-Cycle Resource




the pipeline at a particular {ime and all the tasks active simultaneously
in +the pipeline are independent 6f each other. This local independence
alleviates the problem of data dependency which occurs frequently between
tasks from the same instruction streanm. It should be noted at this
point, however, that a good decomposition of a complicated computation
into multiprocessible streams cannot easily be achieved in general
without deliberation. When a computation is not properly decomposed, the
need for synchronization to solve global data dependency between
instruction streams may become unnecessarily high. This shortens the
period during which all instruction streams run smoothly and

independently and thereby degrades performance.

Furthermore, the multiple-instruction-stream pipelined processor of
Figure 1.1 is assumed to generate all requests to the shared resource
from a particular segment. In other words, a task which requires the
resource must make its resource request while it passes <through that
particular segment, say segment i. Any results produced by an accepted
resource request will always be returned to the processor at segment i+j,
where Jj-1 is the resource access t;me in terms of STUs, just as the task
which originated the request arrives at that segment. No ©buffering is
used in the system. In Figure 1.1, for example, a resource request could
be generated at the end of segment 2 and the correspondin% result, if

any, will be returned by the resource to segment s if the request is

accepted. The resource thus has an access time of (s-3) STUs.

Since for the purpose of performance evaluation, given the

particular structure of the interconnection busses under consideration,
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there 1is no need to distinguish between the resource access time and the
resource cycle time, we will hereinafter call +this time period the
resource cycle time and denote it by c. Any request submitted to the
resource while it is busy serving a previously accepted request will be
rejected. No service once in oprocess by the resources under
consideration can be pre-empted. Since the multiple-instruction-stream
pipelined processor can generate at most one request per STU to the
resource, a resource request will only be rejected when the resource is

busy at the time the request is issued.

A rejected task simply takes 2 null pass through the pipeline and
resubmits its request when it reaches the request-issuing segment in the
next pass. This process must be repeated until the request is finally

.

accepted.

In addition to the assumptions made above, the following important
model assumption is imposed in order to obtain an analytic solution for
the performance of such a system: all the requests generated from the
pipelined processor, whether new or resubmitted, whether from different
instruction streams or from the same instruction stream, are independent
of each cther and, if the resource is divided into several identical

modules, are distributed uniformly among the modules.

When the resource models an interleaved memory with M memory
modules, the assumption of independence between successive requests from
the same instruction stream is, unfortunately, wrong in view of the
sequentiality of the instruction and data request sequences [Rau77],

especially those due %o program constructs such as 1iteration and
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recursion. However, as pointed out in [Bha75] and [Rau79]. the merging
of instruction and data request sequences tends to reduce the effects of
correlation between successive requests from <the same instruction
Stream. The merging of various instruction streams in our pipelined

processor further diminishes the effects of this correlation.

Tight iteration 1loops, which occur frequently in array computation
algorithms, could nevertheless result in‘serious memory conflicts for a
nul tiprogrammed computation | executed by multiple processors. The
independence assumption could be poor whenever this kind of conflict
occurs. One should consider avoiding tight iteration 1loops in a
multiprocessor program due to their adverse effect on performance. One
straightforward approach is +to unwind the tight loops by repetition so
that the resultant strings are stretched as far as possible across the
interleaved memory, as was done in [Leh66]. Conflict-free data array
access is possible for SIMD-type array processors when data arrays are
stored in a skewed fashion [BuK71], [Law?S]. However, for MIMD-type
multiprocessors in which processors do not work in a 1lock-step manner,
algorithm modifications to distribute data accesses may be the only

guideline available.

Furthermore, a resubmitted request is, of course, dependent on the
preceding rejected request from the same instruction stream. In fact
they are identical. However, since these two requests are separated by
uncorrelated requests from other instruction stireams and as long as the

congestion that caused the original rejection has subsided, the reissued

request would appear as if it were a new request. This assumption is
- - — - - S - - o epeeera—p— < =
h: i ettt st sl b Sttt
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particularly appropriate to requests generated by pipelined processors,
since a rejected request is not reissued until one pass (s STUs) after it
was rejected. The time between these requests should generally allow the
original congestion to subside and permit the returning request to be
viewed as a new request. In particular, these conditions should be
satisfied in systems with good performance, since good performance
implies few rejected requests. Because many rejections might tend to
sustain congestion at the resource, this assumption could be 1less valid
for systems with poor performance. Since we are mainly interested in
systems with reasonably good performance, the assumption of 1independence
within and among instruction streams will be followed throughout Chapter
2. Briggs[BrDa77] and Emer[Eme79] did show the robustness of this

assumption by simulationms.

Many researchers (e.zg., [Str?O], [Rav72], and [Bri77]), who studied
the memory interference problem for the case in which prdcessors' memory
request rates are equal to 1, ignored the rejectéd requests in their
modeling work. This 1is appropriate for the study of the memory
interference probliem for the particular case they dealt with, as long as
an instruction stream is considered as a sequence of independent
requests. However, for the case in which processors”™ memory request
rateé are less than 1, the independent request assumption with ignorance
of rejected requests can 1lead +to significant inaccuracies. If the
rejected requests are totally ignored, then the instruction stream will
not be perturbed and the memory request rate will be unchanged. The
model, equation 3.22, presented 1in section 3.3 for the synchronous

multiprocessor systems falls into this category. However, dAue to the
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resubmission of rejected requests, the memory request rate is indeed
changed even if the instruction stream is still considered as a sequence
of independent requests. One generally adjusts the memory request rate
to compensate for this fact, as did Strecker[Str?O] and
Hoogendoorn[Hoo77] (described in the next section) and Emer[Eme79]

T (described below).

1.2.2 Emer”s Model for a Multiple-Instruction-Stream Pipelined Processor

with a Single Fixed-Cycle Shared Resource

Based on above assumptions Emer derived his analytic model for the

performance of such a multiple-instruction-stream pipelined processor in

terms of the foilowing parameters: {, the probability that a task makes
a resource request, @ , the actual request rate seen by the resource
(which is wusually 1larger than ¥ due to the contribution of reissued

rejected requests), p , the number of passes the average task requires,

and PA’ the probability of acceptance for a resource request.

- The performance of &he system is expressed by the parameter p, the
number of passes the average task requires. This parametef is sometimes s
referred to as the interference factor for the system performance,
because when the resource cycle time is equal to the processor cycle time
it serves as a multiplicative factor for the program run time. Actually
the reciprocal of p can bYe viewed as the probability that a pass or

associated instruction stream is doing useful computation. -

Since +those tasks which do not request the use of the resource need
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only one pass through the pipeline while those +tasks which do make
resource requests may need more than one pass, the average number of

passes a task may require can be evaluated as

©
[

. - . - 2. LAY
(1-4)-1+¥[P, -1 +P, (1-B,) "2 +P, (1-P,) 3 +--*]

(1-¥) +¥E, a_('l_??A_) [(i-B,) +(1-1:A)2 +(1-pA)3 .

. 3 l-gA
A a(1-gA) 1-(1-?A)

(1-¥) +¢

1-¢ +¥ -Pl— ) (1.1)
A

The derivation of the probability of acceptance for a resource
request, PA' can be argued intuitively. Since requests submitted to the
resource are independent with a request rate of ¢ , as seen by the
resource, there will be an average of «(c-1) requests submitted +to the
resource during the c¢-1 STUs following an accepted request. All these
requests will have to be rejected since the resource is busy serving that
request. In other words, one request out of (1+ a(c-1)) requests will be

accepted. Hence

1
Py * Ta(e-D ° (1.2)

Equation 1.2 c¢an actually be derived rigorously. Emer EEme79]
refers to 3riggs (p.100 of [Bri77]) who derived it in a much more general

context. However, since Briggs” derivation is rather involved because of

its generality and yet the request rate is restricted to be 1 instead of
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¥ . a much simpler derivation based on the method of the imbedded Markov
chain is given in the following: Looking at the system only at the very
bezinning of every STU (before any request to be submitted in that STU is

presented), we define the system to be in state O if no request is in

service by ~the resource and otherwise in state i if i STUs of service
have been provided by the resource for the request in service. In Figure
1.2 1is a discrete Markov chain model of the system. The resource of the
system is or becomes idle in state O, and has a probability a of seeing
a request and accepting it. Once the service of a request is in
progress, the resource remains busy for c¢ STUs regardless what the
processors are doing in the system. The steady state probability of

state O becomes the probability that a submitted request is accepted.

If we use T to indicate the steady state probability of state i,

i=0,1,2,...,c-1, then we have
g = Ml + (lﬂz)ﬁo . (1.3)

Also, LA PR IR o SURE A o SR Lt

0 1 2 c-1

=7, + (C‘l)ﬂc_

0 1
=1, (1.4)

since nl = n2 = ... =1 .

Soiving equations 1.3 and 1.4, we get

1
Py "0 T THae-D °




Figure 1.2 State Diagram for a Multiple-Instruction-Stream Pipelined
Processor with a Single Shared Resource
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Finally, the actual request rate, @ , seen by the resource, can be
determined by considering <the total number of (identical) requests
submitted to the resource by a task during the average number of passes

f it requires. More specifically,

* - . - 2‘
_ VY[R, -14P, (1-B,) 24P, (1-B,) -3 + -]
p

E o

Vo
A

(1-9)+ 5+
A

1
l-l " . (1.5)
PG D

probability of acceptance can be obtained from equation 1.5. That is,

;

L L/e-1 _ ¢ l-o
By 141 o 1% (1.6)

Using equations 1.1 and 1.6, one can express p in terms of V¥ and

1y (1.7)

p= l-o

Finally, using equations 1.2 and 1.5 together, one can also derive a

closed-form expression for PA as a function of § and c.

Note that in terms of V¥ and @ a beautiful expression for the
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1.2.3 The Limitations of Emer”s Model and An Overview of Chapter 2

Emer”s model is of interest here because of the analogy between a
mul tiple-instruction-stream pipelined processor systenm and a
multiprocessor system with time~division-multiplexed Dbusses. Emer”s
model is simple and fairly accurately predicts <the results of several
simulations and some experimental data (section 2.8) taken from a real

mul%iprocessor system, but it has several limitations.

First, it only models a single shared resource. This makes the
model less useful for a system consisting of a number of different
resources. A  generalization which incorporates multiple distinct

resources into the model is presented in section 2.2.

Secondly, the model, at 1least imﬁlicitly, restricts the resource
c¢ycle time to be less than or equal to one processor cycle time, 1i.e.
the time a task requires to pass through the pipeline once (s STUs in
Figure 1.1). This restriction is probably reasorable for control stores
and main wmemory, but may be too restrictive for general funciion units
and other types of resources which could be modeled. Section 2.3 relaxes
this restriction on resource cycle times provided that the independent

request assumption still holds.

Thirdly, in order to apply Emer s model to a multiprocessor system
with time-multiplexed busses, all the bus time slots must be assigned to
active processors. This may not always be true. Some processors might

be deactivated and some might be assigned by the operating system or the

user to some other Jjobs totally unrelated to the activity we are
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considering. Hence such processors would not participate in the resource
usage which we are investigating. These processors should be considered
as non-existent as long as their existence does not interfere with the
activity we are considering in any way. The time slots they occupy

should be considered as vacant or inactive. However, if vacant or

inactive time slots do exist, some parameters in the model wilil have to

be modified since vacant time slots will never issue resource requests.
A model extension dealing with "effective" parameter values and a vacant

slot assigrment problem, the "SCP problem", are presented in section 2.4.

Section 2.5 is mainly concerned with model modifications needed in
order to include software resources as model resources. Some performance

analysis concerning speedup and overhead according to the model of

gection 2.5 is done in section 2.6.

A matrix multiplication program was run on AMP-1, the multiprocessor
machine to be described in section 2.7, and model-predicted values are
compared to measured run time data in section 2.8. Also shown are the
predicted values by two other methods - a deterministic model 2nd a
renewal-theory model - with and without modification by the memory

interference factor. Values predicted with the modification match very

well with the measured data.
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1.3 Previous Work for Synchronous Computer Systems and An Overview of

Chanter 3

In the scope of this thesis a synchronous computer system refers to
a system in which all memory modules are cycled simultaneously and all
processors are synchronized with the memory. The memory cycle time ¢ is
assumed to be 1. In other words, the operation of the system is assumed
to be synchronized to the cyclic operation of the memory. All memory
requests, if any, from all processors in the system are assumed to arrive
at the beginning of a memory cycle. All previous work reviewed in the

following is aimed at multiprocessor systems in this category.

1.3.1 Previous Work

Skinner and Asher[SKA69] proposed a discrete Markov chain model for
multiprocessor systems with request rates equal to '. Their analysis was
presented for a small number of processors(€2), and the model does
contain tie-breaking probabilities in the case of memory usage conflict.
However, for larger systems the complexity of the problem deterred the

authors from further pursuit of an exact analytic solution.

Strecker[Str70], as also reported in [WuB72], developed a set of
simple approximate models. For a system with N processors and ¥ memory
modules, the model corresponding ¢to the case with request rates equal 1o
1 yields the now widely used formula far BW, the memory system baniwiith:

BW = M(1l-(1- %)N) (1.8)
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Note that the memory bandwidth BW is the expected number of distinct

memory modules requested, given N requests to M médules.

Formula 1.8 can easily be obtained by argument. Based on the

assumption of N statistically identical processors and M identical memory

modules with memory requests uniformly and independently distributed.

among them, (1-1/M) is the probability that a processor is not addressinz
a particular memory module. Then (1-(1-1/M)N) is the probability that at
least one processor is accessing the particular memory module under
consideration and thus is the probability for it to be busy. Collecting
this probability for all M memory modules (multiplying the probability
for one module by M since they are all identical), we get formula 1.8.
The underlying assumption here is that the rejected requests are
discarded to opreserve the independence among requests. Another way of
looking at this assumption, however, is that it is equivalent to removing
the queued processors (those processors whose requests are rejected in
the current memory'cycle) from all the memory modules at the end of a
memory cycle and reassigning them randomly among all the memory modules
for possible service in the next cycle [Bha?S] along with new requests
from the nonqueued processors (those whose requests are accepted iA this

cycle).

Actually, it 1is this viewpoint that Strecker carried into the
derivation of the bandwidth formula for the case in which memory request

rates are allowed to be less than 1:

BW = M(1-(1- %)N) (1.9)

where a is the ad justed request rate because of interference.

e — e e ———— T
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The fact that the queued processors are removed from all the memory
modules and reassigned at the beginning of the next memory cycle
independently and randomly among all the memory modules makes the
bandwidth predicted by Strecker”s model overestimating, or optimistic.

This point is further explained in section 3.3.

Ravi[Rav?Z] presented a similar model for the case in which request
rates are equal to 1. He approached the memory interference problem by
treating it as a combinatorial problem and presented the memory bandwidth
in terms of the average number of distinct integers in a group of N
integers chosen wuniformly and independently from the integers 1 through
M. Again, rejectsad requests were dropped in the derivation. Ravi‘s
somewhat complicated result has been shown %to be exactly equal to formuls

1.8[ckn77].

By employing a rather nice algorithm to evaluate the transition
matrix of a Markov chain model, Bhandarkar[Bha75] was able to perform an
exact analysis of the memory interference problem for the case in which
request rates are equal to 1. Unfortunately, his algorithm is so
time-consuming that the job of finding the memory bandwidth for a systenm
with more than 16 processors and more than 16 memory modules becomes

formidable.

Nevertheless, Bhandarkar did find from the exect analysis that the
memory bandwiith is almost symmetric in N and M. Using this knowledge he

modified Strecker”s memory bandwidth formula (formula 1.8) and made it =2

more accurate empirical estimate. That is,
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BW = m[1-(1- :-l)n] (1.10)
H
where m = max(N,M) and n = min(N,M).

By viewing the memory modules as servers in a queueing system and
assuming that the memory requests, the customer arrivals, are binomially
distributed, Baskett and Smith[BaS?é] obtained an expression that is
asympto%ically exact (as either M and/or N tend to infinity) for the
system memory bandwidth. Although N and M were assumed to be very large
in the derivation to make the state transition ©probability
state~independent, the expression turned out to be fairly accurate even

for small values of N and M. Their expression for the bandwidth is

BW = M+N --;-- J o1 +x- %:)Z-ZMN (1.11)

The use of the binomial approximation was extended by Baskett and
Smith[BaS76] to cover the case in which memory request rates may be less
than 1. For this purpose they introduced the concept of "think time",
which represents the period of time after a CPU receives the memory
service previously requested and before it issues the next request. They
were not able to solve for the mean queue length observed by a customer
arriving at a memory module in this case, but they got around this by
giving an educated and experienced guess. The approximate expression for

memory bandwidth then becomes

(1.12)

- M I 1.2
W = B2aor- V2421 5% 81)

y
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where L = . (1.13)
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and T is the mean of the think time distribution in units of memory

service (cycle) time.

The accuracy of this result, as well as that of equation 1.9, is

compared with simulation data for memory request rate in the range of

(0,1] in section 3.3.

Recently, Rau[Rau79] used an approximation suggested by Baskett and

Smith[BaS76] and obtained a very accurate closed-form expression of the
memory bandwidth for the case in which request rates are equal to 1. The

"decomposition approximation" simply states the following/Rau79]:

A1l processors (totaling K) not queued at a given memory module
are distributed among the other (M-1) modules with precisely the
same distribution that would occur at equilibrium in a system

consisting of X processors and (M-1) modules.

The intuitive justification for +this assumption 1lies in the
independence between the requests made by the various processors and the
fact that each request has an equal and independent probability of being

directed to any module[Rau79].

Rau”s bandwidth expression is
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L-1
i M~1_ N-
£ 2P MhHEh
i=0
BW = =— (1.14)
L-1 21
T __(M'l)(N-l)
im0 FIU1 00 ,

where L = min(¥,M).

“Again, this expression is symmetric in Nand M, as is expression
1.11. As a matter of fact, expression 1.11 can Dbe obtained from
expression 1.14 via a further approximation[&au79], namely the
insensitivity of the memory bandwidth to the addition of one more module

to the system when the value of M is very large.

Rau”s result is the best compared to models 1.8, 1.10, and 1.11 for
the case in which request rates are equal to t. Actually model 1.14 is
about an order of magnitude more accurate (with respect to percentage

error).

Until Hoogendoorn[Hoo77] presented his work, almost no researcher
since Strecker and Ravi had attempted to attack the memory interference
problem in a multiprocessor system by using a probabilistic approach.
The probabilistic approach attacks the problem from observations of
component behaviors, does not preserve the deterministic structure
inherent in a closed queueing system, and hence does not usually produce
very accurate results, as, for example, compared to Rau”s result obtained
using a state-space approach. However, the probabilistic approach has
its strong points. Because of the assumption of independence among
memory requests made by the various processors, usually imposed in the

probabilistic approach, the entire system is essentially decomposed into
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individual components. The complexity of the problem is, therefore,
greatly reduced. Non-uniform request rates, request rates that are less
than 1, and even processor priorities in accessing memory can thus be
incorporated relatively easily into a probabilistic model without making

the problem unmanageable.

Hoogendoorn[ﬂoo77] took advantage of this fact and presented a

; "general” model for memory interference in multiprocessors. In terms of
a static access matrix, a dynamic access matrix, and the brobabilities

that particular processors are successfully accessing particular memory

modules, his model consists of a set of nonlinear equations which has to

be solved by iteration. Nevertheless, the model does allow arbitrary

i request rates for processors in the system. However, it is assumed that
f ) memory conflicts are resolved by an unbiased arbiter, so that when i

processors attempt to access the same memory, each has a probability 1/i

of success. PFurthermore, for the case of uniform access the model
reduces to model 1.9, which does not yield a very accurate estimate of
the memory bandwid th (see section 3.3).
1.3.2 An Overview of Chapter 3
. In section 3.1 the dependency class [CKL77] for the address streams
1 produced by processors is specified. The desire for allowing arbitrary

memory request rates and processor memory service priorities is also

motivated in the same section.

Carrying over the same philosophy used in Chapter 2, we present in
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section 3.2 a general model based on the probabilistic approach for
memory interference in synchromous multiprocessor systems. The model
could be viewed as a cleaner version of Hoogendoorn”s model with further

generalization, although the two were derived independently.

In section 3.3 an attempt is made to improve the accuracy of the
model by looking at the probdlem with the entire system in mind, as is
done in the state-space approach, while satill preserving the strong
points of the probabilistic approach. The resulting model turns out to
be fairly accurate over the entire range of request rates, except for
gystems with very few processors and memory modules. The predicted
values of the memory bandwidth for various multiprocessor systems are
compared with simulation data, together with predicted values derived

from other models.

Finally, the model presented in section 3.3 can be used iteratively
to deal with the memory interference problem in an environment where

processor priorities in accessing memories are unequal. This application

is presented in section 3.4.
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CHAPTER 2

Memory Interference and Resource Contention

in Computer Systems with Time-Division-Multiplexed Busses

2.1 Introduction

In this chapter, we consider the memory interference and resource
contention in time-division-multiplexed (TDM) systems. The system has p
identical processors. Time-multiplexed busses are used to interconnect
these p processors with any system resources they share. For example,
consider a common memory as a shared resource. Let it be attached to the
system via an address bus, a read data bus, and a write data bus, shared
by all the processors. A strict round-robin discipline is used to
schedule the usage of these busses. All the processors in the system
have the same processor cycle time, and a constant phase shift between
clocks for successive processors is used. Appropriate phase shifts also
exist between busses to account for the necessary processing delayz. For
example, Figure 2.1 shows the time slots assigned to processors for the
usage of the shared address bus and the shared read data bus. The number
indicated in each bus time slot is the processor number assigned to that
glot. Note that the time slot assigr~’ to a processor for the use of the
read data bus is one memory access time ter the time slot assigned to

it for the use of saddress bus. If the memory module addressed by a
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processor is idle, the memory content read by the processor is put onto
the read data bus at the next following read data bus time slot assigned
to that processor. That read data bus slot will be left unused if the
memory module addressed by this processor is busy. The write data bus
operates similarly. (A bidirectiomal data bus may be used without
conflict if the time between address and data bus time slots for a single
request is the same for read and write transactions, Unfortunately this

is usually not the case.)

Analytic tools will be refined in the following sections to evaluate
the performance of such a system. The derivation will start from a model
proposed by Emer [Eme79J for a multiple-instruction-stream pipelined
processor with a single fixed-cycle shared resource (see section 1.2).
Various generalizatiouns are performed to enlarge the applicability of the
model. These include generalizations for the number of shared resources
(section 2.2), the relative magnitude {with respect to a processor cycle
time) of the resource cycle times (section 2.3), the processor allocation
in the round-robin bus window (section 2.4) and the type of shared
resources (section 2.5). Model-based speed-up and overhead are analyzed
in section 2.6. Finally, run time data from AMP-1, a multiprocessor
computer system (see section 2.7), for a matrix multiplication program
was measured to check with the predicted values from the model in section

2.8.
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2.2 Generalization for A Multiple-Resource System

The concept of "resource” can be applied at many different levels in
a computer system. The computer itself is a resource to outside users
while, on the other hand, it is composed of various internal resources
wvhose cooperation accomplishes the work hemanded by the user. Whether a

hardware or software c¢cntity should be considered as a resource depends on

its participation in the activity under consideratioﬁ at the level at
which this activity is being modeled. When thé attributes of an entity
do not directly affect the activity that we are investigating, we will

not consider that entity as a rescurce for this particular activity.

For example, a p—to—mrcrossbar switch in a system ~f p processors
and m memory modules is not considered as a resource for the phenomenon
of memory access conflict, since the switch itself cannot cause any
conflict. The m memory modules should be considered as resources for the
study of memory access conflict. However, if a full crossbar were
replaced by a system with possible bus contention, then the bus entities

and the memory modules should be considered as resources.

A more elaborate example involves the execution of a program on a
mul tiprocessor system. Performance degradation could occur due to memory
interference, critical section 1lock-out, etc. Therefore, for the
performance evaluation of the multiprocessor system execuiing such a
program, both the hardware memory modules and the critical sections of

software should be considered as resources.

For above reasons the mode. derived in section 1.2.2 could be more
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useful if it would allow multiple resources in the system. This

generalization is derived in this section.

Assume there are m resources in the system as in Figure 2.2, where
resource i (14iém) has a cycle time ¢, no greater than the processor
cycle time. Each task has a probability *1 of requesting resource i.
Note that which particular segments are request-originating and
result-receiving for particular resources is irrelevant to the model. Ve
assume that the requests for distinet resources are independent and
mutually exclusive, hence the sum of all ¢i, 1£iém, should be no greater

than 1. The average number of passes a task would require now becomes

m m
p= (1= Z¥ )1+ Ty [P "1+P, (1-P, ):2+....]

i=1 i=l i i i
m m 1

=1-2‘l!i+ Ewi-P——, 2.1
i=1 i=1 Ai

where the probability of acceptance for a request submitted to resource i

is
PA = Tq:-—l-—-fs ’ l1<i<m, - 2.2)
i @ (ey

and the actual request rate seen by resource i is

¥, [P, "14P, (1-P, )2 +°°*]
S V) VR W

o =

i P

(2.3)
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From here on, we call the programmed request rate to a resource, V¥ ,
the static request rate to that resource. The actual request rate seen

by the resource during run time, @ , is called the dmamic request rate

to that resource. Note that the dynamic request rate to resource i, oy,
is now not only a function of the static request rate to that resource,
Wi, but also a function of the static request rates to the rest of the
resources as well. The requests and wusages of the resources in the

system by the instruction streams are now interrelated.

To get some flavor of such a system, an example is given in Table
2.1. In systems 2 and 3, the pipeline is assumed to have more than 100
segments. Notice that system 3 is actually a system which contains both
resources contained in system 1 and 2 and maintains the same static
request rates to these resources from tasks. Due to program blockage
caused by the rejection of a request to either resource, the dynamic
request rate seen by the other resource is lowered. In this example,
both « s are actually lower in System 3. The probabilities of
acceptance for requests to both resources are thus improved, but the
overall performance, as reflected by the average number of passes a task
requires, is worse, as should be expected. One may notice that the
values of some parameters in this example have been exaggerated to show
the coupling effect prominently, the performances of the systems are
terribly poor, and hence the accuracy of the model due to its
independence assumption is suspect in this case. It should be
understood, though, that the example was constructed only for

demonstration purposes.
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Table 2.1

An Example Showing the Effect of the
Existence of Multiple Resources

System 1
t =0.8, ¢c=5
o = 0.950515
RA = 0.208244
= 4,041647
System 2
¥y = 0.1, ¢ =100
o = 0.9101C0
PA = 0.010977
p = 10.009957
System 3
*1 H 0-8, cl =5
*2 = 0.1, ey = 100
@ = 0.11623, @, = 0.87989
PA1 = 0.68263, PA2 = 0.01135

10.082821

©
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2.3 Generalization for the Resource Cycle Times

Up to this point all the resource cycle times have been restricted
to be less than or equal to the processor cycle time. This restriction
seriously reduces the generality of the model, because it excludes, for
e;ample, the possibility of modeling cache miss penalty (if only one miss
can be processed at a time), complex function units, and critical
sections. Each of these resources normally requires more than one
proceséor cycle per access {c > s) and yet can only serve one request at
a time. In this section we generalize the model to allow the resource

cycle time to be longer than one processor cycle time.

Let n, be a positive integer such that

- <
(ni 1)s < e, Sns
where i = {1, 2, ..., m, m=the number of distinct resources in the

systen, n, *1, and s~the number of segments in the pipeline. Yote that

for resources modeled in previous sections, n,=1.

Furthermore, we denote the delay between the issuance of a rejected
request submitted to resource i and the issuance of the resubmitted
request for the next trial as d.l processor cycles. In other words,
di is not necessarily 1, as above. Allowing di to be greater than 1 is
essential for modeling software resources, e.g. when a programmed
request for accessing a critical section is rejected, it will usually

take more than one processor cycle to 1loop through a few machine

instructions and resubmit the request.

For this generalization, we have

P e o
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p=(- ¢ )1+ ¥ [P, °n +(1-P, )P, (d +ni)
i=1 i i=1 i Ai i Ai Ai i

2
+ (1-pAi) PAi(2d1+ni) + 1

m
-1-2*1"'

m
Y, (n,+d, (== ~-1)), (2.4)
gmp ¥ g P01

1
i(?A
i

. - 24(1-P y2p .
‘Ifi[PA 1+(1-p, )B, ( A.) P, 3+ 1

o, = i i i i i
i p
1
¢i PA
- i
P
*i
= — = , l<i<m . (2.5)
1
P, [(l-Z2¥%,+ ¥, (n,+d,(==-1))]
A j=1 3 j=1j | JPAj

Note that although the resource cycle time ny and the retry delay
di could be larger than 1, there will only be one request issued during
each of those periods. Als>, ¢ could now assume a value larger than !

even without resource contention.

Finally, the expression for the probability of acceptance for
requests to resource i can be obtained by using a discrete Markov chain

model (Figure 2.3) similar to that used in section 1.2.2. We thus have

1
P, *Too o 1<isSm . (2.6)
A, Ll4a(ey-1) ¢

JOTS
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Figure 2.3 State Diagram for a Multiple-Cycle Resource
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2.4 The SCP Problem

In this section we present a problem, which arises when the model
discussed in previous sections has inactive instruction streams or unused

time slots in a processor cycle.

The system we have been dealing with looks like the case in Figure
2.4 (a), where a cross signifies an occupied time slot by an active
processor. The entire processor cycle is fully filled with active time
slots. However, the resource cycle time ¢ is used in the model thus far
only to indicate that the next ¢-1 processors following an accepted
request are locked out of the resource which accepts the request. When
the processor cycle is fully filled, the number of processors locked out
of the resource following an accepted request coincides exactly with the

number of STUs the resource remains busy after it accepts the request.

Model modifications are required when there are vacant time slots
corresponding to inactive instruction streams in the processor cycle.
For example, in Figure 2.4 (b) only 4 out of the 12 processors are active
and their assigned time slots are spaced evenly over the processor cycle
as shown. The resource cycle time is still 3 STUs, as in {a). However,
no processor will be blocked even if all processors always request the
same resource. As far as resource access conflict is concerned, this
system is equivalent to a 4-processor system with c¢=1t and 4 STUs per
processor cycle, where the 3TU is 3 times as long as the STU in Fiéure

2.4 (v).

Therefore, in order to make Emer”s model applicable to this case, we
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Figure 2.4 TIllustrations for the SCP Problem
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define an "effective resource cycle time", C,s which assumes the role the
resource cycle time plays in the model. This modification changes the

relation between the c in Emer”s model and the physical time. In other

words, if we wuse the effective resource cycle time ce in lieu of the !

resource cycle time ¢ in the model, the model will be able to cover this

case.

More specifically, we define the effective resource cycle time,

Cqs to Dbe such that ce-1 is the average number of active processors a

processor could block. It should be noted that this simple averaging ]

operation, instead of a rigorous Markov-chain-based argument, could cause !

some error. However, because of the close match between experimentally

measured data and model-predicted values (see section 2.8), it is

S

believed that the error is pretty small.

In the general case we have s time slots in one processor cycle, a
physical resource cycle time of ¢ STUs, and p active processors in the
system. A brute-force approach for evaluating C, -1 proceeds by summing
up the total number of active processors which may be blocked by each
processor and dividing the sum by p. For example, ce-1 = (242+14242)/5 =

1.8 in Figure 2.4 (c).

No simple formulas have been found which give the effective resource

cycle time, Cq4y directly. This is due to the difficulty of quantifying

arbitrary allocations of the p active processors. Figure 2.5 gives an 7

example to show the effect of different placements of the p active

processors on the effective resource cycle time even with s, ¢, and p

fixed., There do exist, however, special cases for w#hich simple formulas
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Figure 2.5 An Example of the Effect of the Processor Placement
on the Effective Resource Cvcle Time (s = 12, ¢ = 5,
P=5)




exist for the effective resource cycle time.

For convenience, we will use the following definition:

Definition

A processor,'say A, is said to be covered by another processor, say
B, if the time slot assigned to processor A occurs less than one resource
cycle time after the time slot assigned to processor B. 1In other words,
processor A 1is covered by processor B if processor A is forbidden from

using the resource whenever processor B is using it.

Case ! p= 3 : c = ¢

Case

o
o

=8 3 C=p

Proof: Since each processor covers all other processors, ce-1 = p-t.

Cagse 3 p = s-1 : c, = a=((c-1)/p)

Proof: The placement pattern shown in TFigure 2.6 (a) is the only
feasible one (ignoring cyclically equivalent patterns). Then
each processor will cover c-t processors except the rightmost c-1
processors each of which covers one fewer because of the vacant

slot at the right end. Therefore
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T
e 1= 1215—11315-111 =c-1-((c-1)/p) . @2.7)
Case 4 s = 2c-1 : c, = (pr1)/2

Proof: For each processor we look at its assigned time slot and the time
period of length s with this time slot in the center (see Figure
2.6(b), where a time slot with a "-" sign means it is either
occupied by an active processor or vacant.). Note that s is an
odd 1integer in this case. A1l the active processors with
assigned time slots located to the right of this processor are
covered by this processor while this processor is covered by all
the active processors with assigned time slots located to its
left. Therefore, the contribution associated with this processor
to the total sum of covered processors by all processors is p-i.
This value actually includes the number of processors it covers
and the number of processors by which it is covered. Therefore,
multiplying p-! by the +total number of active processors, p,
yields the product p(p-1) which is really twice the sum over all

processors of the number of processors covered. Hence

ce-1 = (p(p-1)/2)/p = (p-1)/2.

It 1is interesting to note that in these cases Cq is independent of
the allocation of the p active processors to time slots. The last case
is of particular interest to us because +the AMP-1, wused 1in some

experiments (see section 2.7), has s*9 and ¢=5 and thus falls 1into this




43

category. Hence we can use the simple formula ce.(p+1)/2 without

worrying about the specific processor allocation.

Higher performance results from smaller effective resource cycle
times since fewer processors are blocked due to resource access conflict.
In general, Cq is a function of the particular allocation of active
processors to time slots. Thus it would be nice if we could find an
optimal allocation of active processors for any given s, ¢, and p. This
information could be useful for the design of an operating system for the
kind of machine we are considering. Unfortunately it turns out that
finding an optimal allocation for a given s, ¢, and p is not a +trivial

problem and no general algorithm has been found.

We do have a formula, though, for the packed allocation (all the
active processors are assigned consecutive time slots with the remaining

time slots, if any, left vacant). The formula is given in the following:

(1) pec

¢ - =(p-1)/2 + (1/2p)(p+tc-s)max(p+rc-1-s, 0)

(I1) p> ¢

c -1 = (e-1)(1-(c/2p)) + (1/2p)(pre-s)max(pre-1-s, 0)

The derivation of this formula is discussed in two parts:

(M) p+(c-1) £s

In this case processors in the packed time-sgslot chain can not cover

processors preceeding them in time.
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(i) pf e
(p=1)+(p=2)+...41%0 p(p-1)/2 p-1
ce -1 = - =
p P 2
(ii) p> ¢
(p-c)(c-1)+(c-1)+(c-2)+...+140
ce -1 = -
(p-e)(c-1) e{ec-1)/2
) P
c-1 c c
* e (p-—) = (c-1)(1=-=—)
P 2 2p

@2)p+(c=~1)>s

In this case processors in the tail of the packed time-slot chain do
cover processors at the head of the chain. Note that s-{ec-1) is the
number of processors at the head of the chain which do not cover any
processor preceeding them; p-{(s-(c-1)) is the number of processors in the

tail of the chain which do cover some processors preceding them.

(i) p% ¢ »
(p-1 J+ (p2)+. .o+ p-(s=(c=1))]+[p- (8= (c~1))]
ce -1 = -
t p(p1) [p-(s=(c-1))][p-(s-(c=1))-1]
I 2

2
+ [p-(o-(c-1N] ]

1 1 p-(s=(c=1))-1
-— (p-(s-(c-1 )] = {[p-(s-(c-1 N]- }
2 P 2




p-1 1
% e + e (prc-g)(ptc-1-8)

2 2p
(ii) p> ¢ 2
(p-c){c=1)+(e=1)+(c=2)+...+[ p~(3-(c-1))]}+[p-(8~(c-1))]
c,- 1=
¢ P
(p-e)(c-1) e(e-1)/2 1
= + + == (prc-s)(prc-1-3)
P P 2p

1
(0e1)(1= o= ) + — (pro-s)(pro-t-s)
2p 2p

The fommulas for cases (1) and {2) can be combined together and the

result is as given previously.

Before we present the optimality theorem for the packed allocation,

g

we need the following lemma:

Lemma

Given a system of k (O<k<s) active processors placed in a packed
allocation., If one extra processor is to be added to the system, then
the (k+1)-processor packed allocation yields, among all possible

: positions for oprocessor k+1, the minimum effective resource cycle time

for the case c > s/2, and yields the maximum effective resource cycle

time for the case ¢ ¢ g/2.
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If one extra processor is to be added to a k-processor system, the
sum of the total number of active processors which would be blocked by
other processors will be increased by two kinds of contributions: the sum
of those processors which would block this new processor and the sum of
those processors which this new processor would block. In Figure 2.7 the
former value is shown above in the potential time slot for this processor
and the latter is shown below. Figure 2.7 is valid for the k € c-1. The

case k ® ¢ will be discussed later.

Note that from left to right (increasing time) the values in the top
sequence remain at k first, start to decrease at time slot c+! with a
slope of -1 (decrease by 1 per time slot), and remain at O when the
values decrease to O. On the contrary, the values in the bottom sequence
remain at O first, start to increase at time siot s-(c-2) with a slope of
+1  (increase by 1 per time slot), and remain at k when the'values
increase to k. Thus the sum of the two sequences is one which assumes
the value k at both ends with values in the middle greater than, equal
to, or less than k depending on the relative magnitudes of c¢+1 and

s-(c-2).

When s-(c-2) < c+1, the bottom sequence starts to increase earlier
than the top sequence starts to decrease and it can be shown that the sum
of the two sequences assumes values greater than k in the middle (see
Figure 2.7(a)). When s-(c-2) = c+1, i.e. the two sequences change slope
simul taneously, the sum of the 4%two sequences assumes the value k
throughout the c-% time slots. This case actually corresponds to Case 4

above, which requires s = 2c-1. In either case, a packed (k+!)-processor

e S b cam e a T s




Figure 2.7 Contributions Due to an Extra Processor Added to a
k-processor Packed Allocation when k = c-1
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allocation yields the minimum effective resource cycle time (with the
minimum extra contribution k from processor k+1). Note that s-(c-2) £

c+1 corresponds to ¢ * (s+1)/2, which is exactly the comdition ¢ > s/2.

On the other hand, when s-(c-2) > c+1, i.e. the top sequence starts

to decrease earlier than the bottom sequence starts to increase, it can

_be shown that the sum of the two sequences assumes values less than k in

the middle (see Figure 2.7(b)). The condition of this case is exactly
the condition ¢ 4 s/2 and a packed (k+1)-processor allocation in this
case yields the maximum effective resource cycle time (with the maximum

extra contribution k from processor k+i).

Finally it cean be shown that similar argument with <trivial
modification holds for the case k ® ¢. The proof is thus omitted.

Q.E.D.

Finally, we have the following theorem:

Theorem

Given p £ c, the packed allocation of active processors yields the
minimum effective resource cycle time for the case ¢ > s/2, and yields

the maximum effective resource cycle time for the case ¢ ¢ s/2.

Proof':

The case of 1 processor is uninteresting. Thus, suppose we have 2

processors in the systenm. If ¢ > s/2, i.e. 2c > s, conflict between

o ey e

RS T
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processors can not be avoided and the packed allocation yields the
minimum effective resource cycle time. On the other hand, if ¢ < s/2,
i.e. 2c € 3, conflict can be completely avoided. The packed allocation

in this case yields the maximum effective resource cycle time.
Assume the theorem is valid for k processors, where 2 € k € c-1,

Now consider adding one extra processor to a k-processor system.
Let us concentrate on the contribution due to this new processor to the
sum of the total number of active processors which would be blocked by
other processors. If the k processors are placed in a packed allocation,
it is known from the lemma above that putting the new processor in such a
position to form a (k+1)-processor packed allocation will, among all
possible positions, achieve minimum contribution for the case ¢ > s8/2 and

the maximum contribution for the case c € s/2.

If the k processors are not placed in a packed allocation, we will
show in the following for the case k € c-1 that the new contribution due
to processor k+! will be at least the amount it contributes if it were
added to a k-processor packesd allocation for the case ¢ > 8/2 and at most
the amount it contributes if added to a k-processor packed allocation for
the case ¢ € s8/2. This fact together with the inductive assumption

yields the theorem for k+1 processors, provided k € c-1.

When ¢ > 8/2, we have 2c¢c-1 » g, Therefore, no matter where
processor k+! is placed into a k-processor allocation, the total number
of processors which it covers and which cover it will be at least k (see

Figure 2.8, where the shaded time slot indicates a potential position for
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(a) ¢ >s8/2
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(b) ¢ Ss8/2

Figure 2.8 An Extra Processor Added to a k-processor Unpacked Allocation
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processor k+1). On the other hand, when c € 3/2, we have 2¢c-1 € s-1.
Therefore, no matter where processor k+1 is placed into a k-processor
allocation, the total number of processors which it covers and which
cover it will be at most k (see Figure 2.8). Remember from the proof of
the lemma that k is the minimum and the maximum extra contribution for
\ the case ¢ > s/2 and c € s/2, respectively, for the case k € c-1 when

processor k+1 is added to a k-processor packed allocation. This extra

contribution k is achieved by the (k+1)-processor packed allocation in :

both cases.

Therefore, while k 4 ¢c-1, when an extra processor is added to a

! k-processor allocation, packed or un packed , the minimum extra é
1 contribution in the case ¢ > 8/2 and the maximum extra contribution in i.
§ i .
} the case ¢ ¢ s/2 are both k. Since by assumption the packed allocation 1
‘ i

of k active processors yields, among all possible Xk-processor
allocations, the minimum effective resource cycle time for the case ¢ >
. s/2 and the maximum effective resource cycle time for the case ¢ < g/2,

the theorem is apparently valid for k+! processors.

By mathematical induction the theorem is valid for any number of

processors smaller than or equal to c.

. : QoEo D-
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2.5 Generalization for Software Resources

In a multiprocessor program the execution of certain segments of the
program code must be controlled in order to protect data integrity and/or
to provide syachronization information. Very often protection is
provided by allowing only one processor at a time to execute these
segments and no preemption is allowed. Then such segments are usually
referred to as mutual-exclusion critical sections or, loosely, just
critical sections. Since processors have to compete to gain access to
these critical sections, they are essentially shared resources of the

system.

However, while a processor is executing program code, it also
accesses the memory - another shared resource in the system. In the
model discussed in section 2.3 a task needs service from at most one
resource in the system. When a resource i request from a task is
accepted, no request to any resource from the same task will be submitted
during the following ¢;~1 time slots. For a rejected resource i request,
on the other hand, the task under consideration must submit no resource
request during the di-1 processor cycles following a previously rejected
request. The last processor cycle in the di-cycle period is used to
resubmit the resource i request. Therefore, if we try ¢to model a
mutual-exclusion critical section as a resource of a multiprocessor
system, these constraints will have to be relaxed. However, when a
shared resource is indeed the kind of resource modeled in section 2.5, as
is often the case for a function unit, the previocus model should be left

intact. In the rest of this chapter, we will call shared software
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resources, like critical section code, Type-0O resources. The kind of
shared resource modeled previously is called a Type-1 resource hereafter.
The value of parameter 6i will be used to indicate the type of resource

i.

Without loss of generality, we will let resource O be the shared
common memory in this section and we assume there are T identical memory
modules in the memory. The requests to memory modules are assumed to be
distributed randomly and independently. This assumption may be closely
approximated in practice by fully interleaved addressing as discussed in

section 1.2.1.

Finally, let”s assume there are m non-memory shared resources and p

active processors in the system.

Note that in the particular cycle in which a processor requests a
non-memory resource, it is assumed not to be requestinz the memory
simul taneously. In other words, the events to which wi probabilities
are assigned are mutually exclusive. Hence if a non-memory resource i is
a Type-0 resource its resource cycle time ni will be expanded on the

average due to memory interference to be

1
L+ (n -1 (=¥ +¥ ) =)
0

since only the last n,-1 processor cycles could possibly expand due to

memory interference. If the non-memory resource i is a Type-1 resource,

however, the resource cycle time n, will not be affected by memory

interference. By means of the type parameter 61 , the two resource cycle

e et
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times can be combined and the resulting resource cycle time for resource

i becomes

L+ (ny=1) (8,+ (1= 8,) (1-¥ +¥ ;i—-))
0

Purthermore, it should be noted that since fully interleaved
addressing is assumed the memory reference behavior is assumed to be so
homogeneous that the memory request rates within and outside Type-0

resource cycles are the same.

The average number of passes a task ra2quires, p , now becomes

m
o= (1~ T ¥) 1+ [P, ~1+(1-P, JP, -2+ --- ]
0,1 0*"a, Ay TAg

: 1
+ § ‘hifl’A [1+(ni-1)(6i+(1-éi)(1-¢0+¢,0 EA—))]

i=1 i 0
+ (1-p, )P, [“““i'”*(di‘”)“’i+<1‘°1)<1'“’o+%;1“>>1
i i Ay
+ .00}
i 1
=1-%,- S +¥,
O umt OR

m ——
+ Z I (D) + (@D G - DG, (106 (bt 50))
1=1 A g
L 1 % 2.8

The request rate seen by the memory as a whole entity becomes
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bosht T u (B (n -D)¥(1-5 YE+1-P, 1P, [(n =D+ 1] (1-5 )5l s o T
°’A0 pep b AT A A A { 0t PAO
ao = 5
1
vl Ly ((n -0 DG SDIA-A)]
i=1 i i Ai
) B, o (2.9)
0
The request rate seen by a non-memory resource is
¥, [P, *1+(1-p, )P, 2++]
. » i Ai Ai Ai
i )
wi
=7 s i=1,2, ...,m . (2.10)
AP
1

The requests for memory are actually distributed among all T
modules. Hence for a particular module the request rate for it is one

Nth of the @, we obtained above.

The probability of acceptance for a memory request now becomes

P - l'_-
Ao l-F(do/n)(ce-l)

2.11)

while the probability of acceptance for a non-memory resource request is

1
P, = (2.12)

L 5y1p-
1*“1{“*(“1‘1)(51“(1‘61)“‘%““’0pA Nlp-1} ,
0

i=1,2, ...,m
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2.6 Speedup and Overhead

In +this section, we extract some performance information out of the

model discussed in the previous section.

An array computation program intended to run in a multiprocessor

environment often consists of sections each with the structure shown in

Figure 2.9[Che71]. There, a small segment of code at the beginning of
the section is usually devoted to initializing the process. This
initialization segment is then <followed by a good number of virtually
independent jobs of equal or unequal sizes. Some jobs in this job pool
may have precedence dependency among them, but the degradation effect of
the dependency could be implicitly removed by properly scheduling the

processors.

Bvery processor participating in executing this section of progran
code must either execute the initialization segment or wait in a
busy-wait loop while that segment is being executed. Thus the
initialization segment is not sharable. However, if there is more than
one processor in the system, they can share the 1load of executing the
following parallel jobs. ’Let Rs b the total number of programmed
processor cycles in the initislization segment. let R, be <the +total

0
number of programmed processor cycles in all the other jobs. Since the

number of jobs is usually large compared to the number of processors, we

. will optimistically assume that Ro can be evenly shared.

; Let 1 and °p be the average number of cycles a task requires in a

single processor and p-processor enviromment, respectively. Then the run
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Figure 2.9 Structure of a Program Section in a Multiprogrammed Computation
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time in processor cycles for the execution of the program section using a

single processor is

R1 = (Rs-bRo)p1 : (2.13)

On the other hand, the run time in processor cycles for the

execution of the program section using p processors is

Ry
= (R +— ) 2.1
R)= R+ )p, 2.14)

Therefore, the speed-up, S, for using p processors instead of one

can be calculated as

s=R—1= (Rg*Ry) 0, ) (Ry+R )0y _P @2.15)
R R P R +PR_)p A
PR+ 0 "sp
s p’'p
RS
+ —t——
chere 1 = 0" PRe)0p TRy 2.15
ere =(RO+R‘_,‘);:1 = R (2.15)
8
(1+R—)p1
0

If the initialization part takes a negligible amount of time
compared to the sharable part of the program, i.e. ‘PRS << RO' then the

"penalty factor” [Kun76], A , can be expressed approximately as

o)
A £, (2.16)




It may now be instructive to examine various overhead ingredients in
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the expression for the average number of pass:s required by a task, p ,

according to the model derived in section 2.5.

The general expression for p is (equation 2.8)

p=p(P, ,P, , i=1,2, ...,m)
Ao Ay

= 1-* - mé \y + \b L
Y i=1 i 0 PA
0

1

- L _1y- . 1
+ Ty {5+ [(ag -1 +(d -1 (G -Dil6+ (1-8 ) (1-¥ 5+ ¥ PA0)1}

P
i=1 Ai Ai

Bven with no resource contention at all, we have this

value for p :

Po = p(I{Ao = PA = 1, {=1,2, ...,m)

i
m m
=1-Z Wi + z ¢ini

i=] i=]

As before, resource O is wused to refer to memory.

overhead purely due to memory contention is

2.17)

no-overhead

(2.18)

Hence

the

O P R s A P P WY i 5 en e
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E,=p(P, <1, P, =1, i=1,2,...,m)=p
0 Ao Ai 0
1 m
- VG SDI+ TV, (D)1 2.19)
Ao i=1

This additive overhead is directly proportional +to *0, the
probability that a task makes a memory request. The second term in the
square bracket represents the overhead factor due to a processor
executing code during the execution of a software resource (e.gz. a

critical section).

The overhead due directly to non-memory resource contention can be

expressed as .
gj = p(PAO=1’ PAJ <1, PA. =1, i=1,2, ..., m, i#j) 'po
i
=¥.d. (=-1 ‘= (2.20)
j j(PA ) ] J 1)2’ REFY: | . ¢

]

Again, this overhead is proportional to the request rate, V. Note

3
that it is also proportional to the retry delay dj‘

It is interesting to note the existence of some coupled overhead
between memory contention and non-memory software resource contention.

This coupling is due to memory contention interfering with software

resource retrials.

The coupled overhead is
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m
0P -8, Z & -p
c0 0" 2 1P
‘ - ¥y D T i@ - D D a-s) 2.21)
AO i=]1 Ai

Finally, the interference factor p can thus be exjressed in terms

of the basic no-overhead value and various overheads:

m
=p +
. b=y +Ey+ 151 g +E - (2.22)

2.7 An Experimental Tool - the AMP-1 Machine

In this section we ©Dbriefly describe a 1locally-designed and
locally~implemented multiprocessor computer system, the AMP-1
machine[DavBO], [Hor78], [Kra77], which is used in the next section and
the Appendix of the thesis to study the inherent resource contention and

i job multitasking for parallel execution in a multiprocessor system.
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2.7.1 System Organization

A block diagram of the AMP-1 gsystem [Hor78], [Kra77] appears in

Figure 2.10. The following description is mainly taken from [Dav80].

The system employs eight Motorola 6800 microprocessors which access
memory over a shared bus.§ystem using a strict round-robin bus window
access discipline. The processor controller (see Figure 2.10) contains
the master clock which generates control signals for the processors and
their associated exiernal registers and drivers. The shared bus system
consists of an address bus, a read data bus and a write data bus. Shifyg
registers in the processor controller provide the necessary control
signal skew between successive processors, so the processors take turns
in using these busses in a strict round-robin fashion. For a particular
processor, appropriate time delay exists beiween its address bus window
and its read or write data bus window so that the memory has enough time

to process its request, if accepted.

The memory is organized as 64 modules of 1K bytes each. When
operating at full speed, the memory modules have a cyzle time of 5, i.e.
when a processor accesses a memory module <the next 4 processors in
sequence are forbidden from accessing that memory module. The busy
checker determines whether a memory access request is atvempting <to
access 3 busy module and if so, disables the clock for that processor for
one complete cycle. The design of the Motorola 6800 processor and the
clock disabie 1logic permit a rejected memory access request to be
resubmitted automatically on the next cycle. The busy checker permits an

extension of the memory cycle time bsyond 5 clock times to 6, 7, or 38

.
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clock times. It also allows reconfiguration of the memory system as 32

modules of 2K bytes each, 16 modules of 4K bytes each, and so forth down

to | module of the entire 64K bytes.

A memory interleaving plug is provided to allow an arbitrary
selection of the level of address interleaving. By selecting different
sets of address biis as <the memory module number, one can study

uninterleaved, two-way interleaved, up to fully interleaved addressing.

The BBX interface cnnnects this system to a DEC System 10 computer.
The DEC-10 can read and write any location in memory and can start, stop,
and reset arbitrary combinations of processors. If can also be

interrupted for message passing from the processors.

A set of special memory-mapped 1locations are designed and
impiemented to provide the test-and-set funciion for critinal sections in
the programs, interrupt indicator and status message box to the DEC-10,

and other functions not stherwise available.

The memory mapper allows each processor to have a small amount (256
bytes) of logically local memory. Local memory is used as temporary
#Working storage and to store enough of the processor state to permit
convenient reentrant programming so that the processors can share the

same code.

Finally, a hardware monitor {not shown in Figure 2.10) has been
designed and built vto collect performance information for programs
running on the system. Counters in the monitor can be clocked by wiring

in chosen system event signals. They can be individually reset and their
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contents can be latched for reading at any given point by special

instructions inserted in the program code.

2.7.2 Software and Computation Decomposition

Software for +this system is written in Motorola sssembly language.

The programs are assembled through a cross-assembler resident in DEC-10.

In order %o program a multiprocessor system like AMP-1, one must
decompose the work to be done so as o exploit inherent parallelism.
Because of the 1lack of system software suppart on AMP-1, computation
decompositions have to be done completely by the programmer and the
desired scheduling is explicitly programmed. Furthermore, because of
reliability and portability considerations, it is preferable to code
programs with no knowledge of the number of processors available in the

system.

Based on the above considerations, a segment of program code, called
the job queue, is used to store all jobs waiting to be processed. The
jobs are identified in <the job queue 1in terms of a small number of
parameters, and the Job queue itself is treated as a mutual-exclusion

critical section.

The jobs in the job queue may have precedence relations among them.
Thus any needed program code is provided at the beginning and the end of
job program code to che~k for satisfaction of precedence requirements and

indicate completion prior to atarting or finishing the job, respectively.
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Scheduling is <then accomplished simply by having an idle processor
interrogate the queue for its next job. When a processor finds an empty
job queue, it halts. The computation is complete when all the processors

have halted. Other schemes could, of course, be programmed.

2.8 Matrix Multiplication as An Experimental Check of the Model and

Two Models for Incorporating Imperfect Job Sharing

A matrix multipiication program, MXMC, has been writien and run on
the AMP-1 multiprocessor system described in the last section. Matrix
multiplication was chosen to focus on resource contention overhead only,
since it has a large number of independent Jjobs with no precedence

constraints among them.

The program multiplies two 32x32 matrices and stores the oproduct
matvrix into a third area. The program computation was divided into
independent jobs for scheduling by the job queue. Each job represents a
single inner product calculation. We therefore have 1024 independent and
identical jobs in the job pool of the progran. A mutual-exclusion
eritical section is used to control the access to the job queue. Only
one processor at a time is allowed to fetch a job so no <two or more
processors would get the same job. Fully-interleaved addressing with all
64 memory modules was used since it tends to distribute memory requests
among modules more evenly and ' dependently, and thus is preferred for

checking the model. Data on the effect of address interleaving on the
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performance of MXMC is presented in the Appendix.

Some pertinent dava is given in Table 2.2. The data was measured

when a single processor was used and thus are interference-free values.

The critical section length is noninteger since it is the mean value
of two different internal paths (one path to index through rows and the
other through columns) weighted by their corresponding frequency of
occurence in the trace. Likewise, job length is computed as an average
value. The fiuctuation in the execution time of inner-product jobs comes
from the floating-point arithmetic subroutines which are data-dependent
(requiring a variable number of normalization shifts). The 1lengthy
inner-product calculation time is due to the 5-byte floating point number
format used for each matrix element. For exampley the floating point
muitipiication routine requires an average of 4,669 cycles. Finally, for
modeling the critical section as a software resource, the semaphore retry
deiay, d , is <the time required +to reaccess the guarding semaphore

(during which a software countver for measurement purpose is incremented).

The measured run time data using fully-interleaved addressing are
shown in Table 2.3. All times are given in processor cycles. It can be
observed that the values predicted by the model (equations 2.1 through
2.3 with resource cycle times replaced by their effective values) are
extremely close to the measured data. However, since the job execution
time is so0 large compared to the critical section length, the effect of
modeling critical-section access conflict (by equations 2.8 through 2.12)
is insignificant (see predicted values of Tabie 2.3(b).). Nevertheless,

this insignificance is consistent with measured 4ata, since the




Table 2.2

Matrix Multiplication Program Data

: memory request rate ¥ = 0.7917 requests/cycle

in processor cycles

initialization cost 34,0 4
average critical section length 4g.34

. average inner-product job length 159432, 486

1 semaphore retry delay 18.0

e e e e
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total no. of
processors

N O AN N

Table 2.3

Matrix Multiplication Run Time Data

measured
time

163309473
82010795
55066514
41496157
33378226
28068356
24217492

predicted
time

163309473.0
82055137.6
54971038.9
41429493.8
33304965.8
27388942.8
24020633.7

predicted time

measured time

1. 000000000
1.000540690
0.998266186
0.9983%93510
0.997805151
0.993607989
0.991871236

(a) Results when only memory is considered as a resource

total no. of
processors

SO NN

measured
time

163309473
82010795
55066514
41496157
33378226
28068356
24217492

predicted
time

163309473,
82055143.
54971046.
41429501.
33304974,
27388951.
2402064 3.

nNO RO -~ OO0

predicted time

measured time

1. 000000000
1.000540760
0.998266317
0.998393706
0.997805413
0.993608315
0.991871627

(b} Results when both memory and the critical section are

considered as resources

69
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critical-section accesses rarely conflict in the real runs of our

experiment.

Predicting the matrix multiplication execution times using the above
models basically assumes a perfect sharing of the computation work load
RO among the processors. For comparison, the necessary run <time for
matrix multiplication is predicted by using two other méthods: a simple
deterministic model and a renewal-theory model. Both of these models
explicitly +tvake into consideration the effect of imperfect sharing of

RO at the end of the computation, which has not been previously modeled.

The simple deterministic model ignores memory interference and
treats job execution time and critical section length as constants. The
run time of matrix multiplication is calculated by considering the
nultiprocessing as a deterministic process. The modeled multiprocessing
of a2 3 x 3 matrix multiplication by 4 processors is shown in Figure 2.11.
The general expression for the run time Tp using p processors can easily

be obtained and given as follows:

(1) I, = (P"l)Cp

(i) p divides N

N 5 +c

T =S +pC_+
p - Sp TRt p ey

(11) p does not divide N

= X + N J +C 2.23)
Tp Sp+(N LPJP)CP FPW( p+ P) (

A,
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T2

2 o < (P"l)Cp

=5 + (N+p)C
'rp P (p)p

where N = total number of inner product jobs,
Sp = initialization time,
Jp = job execution time in a p-processor environment,
and Cp = critical section execution time in a p-processor

environment.

Run times predicted by the simple deterministic model for the matrix
multiplication are shown in Table 2.4(a). Although the predicted values
are very close to measured data, the discrepancy does increase 23 the
number of participating processors increases and memory interference gets

more severe. Memory interference is neglected in this model.

In order to recognize the effect of memory interference, the
interference factor p in equation 2.1 can be used to modify the various
execution <times in <the deterministic model. To be more specific, the
execution times Sp, Cp, and Jp in different parts of formula 2.25 are
multiplied by appropriate values of the interference factor p depending
on the number of actively parvicipating processors at the particular
moment. This results in a new "hybrid model”. Predicted values by the
hybrid model are shown in Table 2.4(b). The match between measuréd and
predicted times is the best among all models due to the fact that the
hybrid model considers both the end effect of Jjob sharing and memory

conflicts.

e e e — e — -

=




Table 2.4

Matrix Multiplication Run Time Data

total no. of measured

processors time
1 163309473
2 82010795
3 55066514
4 41496157
5 33378226
6 28068356
7 24217492

total no. of

predicted

time

163309473.0
81654827.6
54542867.8
40827578.8
32694005.7
27271623.6
23443961.1

predicted time

measured time

1. 000000000
0. 995659505
0. 990490661
0.9838881 90
0.979500998
0.971614569
0. 968059001

(a) Results from the simple deterministic model

measured

processors time

N OV AN

e —— e e e

163309473
82010795
55066514
41496157
33378226
28068356
24217492

(b) Results from the hybrid model

predicted
time

163309473.0
82055187.0
55076838, 2
41429643.3
33336852.5
27941986.5
24134032.9

predicted time

measured time

1.000000000
1.000541300
1.000187490
0.998397113
0.998760465
0.995497795
0.996553770
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Finally, the execution of matrix multiplication can be viewed from
another abstraction. Figure 2.12 (a) depicts the execution of N inner
product jobs by p processors with job times drawn independently from the
same distribution. If we use Tij to represent the execution time of
processor i”s jth job, ki the total number of jobs executed by processor
i, and ti the time instant when processor i finishes and halts, we get

the following se: of equations:

ki-l

and T T
j=1

The last equation in (2.24) is due to the way in which jobs are
scheduled by the job queue. It is desired to solve for the ti‘s given ¥

and p with the Tij’s characterized by a job time distribution (or at

least its first two moments). As indicated in Figure 2.12(a), the

maximum of all the t,”s is the run time of the total computation. This

13 s min(tl,tz, ces s tp) s i=1,2, ... ,p . (2.24)




PN e

21 t,

t
T P
total run time

= max(tl,tz,

min(tl,tz,...,tp)

(a) abstraction of the execution of matrix multiplication

process 1
T T
) t ] t ) !
process 2 : : . \ . ; . .
L4 T & —g——
' {s 1 [ LI ] ] [] L R »
process 3 ' :| . ' S ;!. .J
i erd o 1 ' ; ;: ' N
i (I3} t t [ § ' t] !
pooled output o " I T R
22t TS W I Lt s ) N SR SN Y 142 il
t (Nth renewal)
max
f
-p+ ewal
tmin ((N-p+1)th renewal)
. (b) superposition of renewal processes
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Figure 2.12 The Renewal-Theory Model for the Execution of Matrix
I Multiplication
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set of equations, if solvable, could be difficult to solve.

However, since the job times are random variables drawn
independently from <the same distributon, the execution history of each
processor can be viewed as the initial segment of a renewal process

[Cox62] if the time instants at which jobs are finished are interpreted

as renewals.

For convenience we use tmin and tmax to represent the minimum and
maximum, respectively, of all %;"s. Results are known for the pooled
output of several renewal processes [Cox62]. These results can be used
to determine the expected value of <tmin (see Figure 2.12(b)). 1In
particular, when N/p is large, we have (Figure 2.12(b) and formula (6) on
p-75 of [Cox62])

N (p-l)(w+a?)
P 2pu

E{tmin} ~ (2.25)

where ¥ and 02 are the mean and variance of the job

execution time, respectively.

After the time instant tmin, processors start to halt and hence tmax
cannot be found by using results for the pooled output of several renewal
processes. WNe can, however, find out the difference between tmax and
tnin by evaluating the expected residue life time, by considering <the
process at the time instant tmin. Again, when N/p is large, this

expected residue life time E{Vt} can be obtained as (formula (3) on p.54
of [Cox62])




4.\£{\;4-—M

2
1
E{Vt} 2 :—) . (2.26)

Therefore, the expression for the average run time becomes (see

Figure 2.12(1v))

e{e, = Ele 1 +E{v ]

Nu |.|.2+<72
Y + Zpu . (2.27)

Run time predictions based on equation 2.27 and data in Table 2.2
are shown in Table 2.5. Again, the discrepancy between measured and
predicted values increases as the number of participating processors
increases. If we modify by multiplication) the mean and variance of the
job execution time by the interference factor ¢ and p2 , respectively,
the match between measured and predicted values is again highly improved,

as shown in Table 2.5.

It is apparent that the memory interference is by far the dominating
degradation factor in this computation. Nevertheless, the hybrid model
intends to catch both the deterministic structure of the computation and
the effect of the memory interference. It does yield the best result
among all these models. For general computations this approach is
expected to be the most practical and satisfactory. In fact, tr:

algorithm proposed in section 4.2 assumes exactly the same flavor.

Oon the other hand, the renewal-theory model also catches the end

—
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Table 2.5

Matrix Multiplication Run Time Data

total no. of measured predicted predicted time
processors time time measured time
1 163309473 163389216.0 1.000488300
2 82010795 81694649.8 0.996145078
3 55066514 54463127.6 0.989042590
4 41496157 40847366.6 0.984365048
5 33378226 32677909.9 0.979013775
6 28068356 27231605.5 0.970188831
7 24217492 23341388.0

total no. of measured predicted predicted time

processors time time measured time
1 163309473 163389216.0 1.000488300
2 82010795 82095204.5 1.001029250
3 55066514 54997880.5 0.998753625
4 41496157 41449722.9 0.998881 002
5 33378226 33321227.5 0.998292344
6 28068356 27902559.6 0.994093119
7 24217492 24032361.4 0.992355500

0. 963823506

(a) Results based on renewal theory

ignoring memory interference

(b) Results based on renewal theory
modified by memory interference
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effect of job sharing and the effect of memory interference. It differs
from the deterministic model due to probabilistic job lengths (vs.
average values used in the deiferministic model). Further, for data
reported in  Table 2.5(b), <the interference factor p was not
appropriately ad justed during the Vt period at the end of the computation
according to the number of the remaining active processors. If one can
get a functional relationship between the expected value of tmin and <the
expectsed value of the i-th job finish since tmin a2s a function of i (e.g.
tmax is the (p-1)th job finish since tmin and V. is the period between
them), then one can use appropriate p to modify the mean and the
variance of the Jjob +time in the intervals between successive job
finishes. This will definitely improve the predicted values by the

renewal-theory model.

A model capable of handling the end effect of job sharing has the
potential of dealing with <the precedence structures of general

computations. This point needs further raesearch.

e s, e
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CHAPTER 3

Memory Interference in Synchronous Computer Systems

3.1 Introduction

Although the control logic for time-division-multiplexed (TDY)
busses is straightforward to design, the bus bandwidth required for TDM
busses may be too hizh in many cases. As an alternative, crossbar
switches are used in many small multiprocessor systems to interconnect
processors with memory modules. The cost for a crossbar switch in a
small system is not too expensive, and the pefformance is higher [Eme79]
compared to TDM busses. For large systems compromises (e.g. the
network [Law73] and the delta network [Pat79]), rather than the above two ?
extremes, are usually used. In Chapter 2 we discussed memory
interference models for systems with TDM busses, and we discuss in this b

chapter that problem for the other extreme, systems with crossbars.

Since the crossbar switch does not require explicit clock phase

shifts samong processors, rather the processors and/or memory modules are

actually cycled together. Thus in this chapter we discuss the memory
; interference problem in such synchronous computer systems. Previous work

on the memory interference problem for synchronous computer systems is

reviewed in section 1.3. !
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More specifically, we assume that the multiprocessor system contains
N processors and M memory modules. Note that N instead of p, will be
used in this chapter for the number of processors in the system in order
to conform to the nomenclature used in the synchronous system literature.
Neither the processors nor the memory modules need necessarily be
identical. A crossbar switch is used as the interconnection network
between processors and memory modules (Figure 3.1). All processors
present their requests, if any, at the beginning of a memory cycle,
conflicts are detected and resolved, and all M memory modules are then
cycled together. Again, since the only conflict is 2 or more processors
requesting the same memory module, as before without loss of generaliwy,

We assume memory access time is equal to memory cycle time here.

Chang, Kuck and Lawrie[CKL77] proposed four dependency classes
(Figure 3.2) for the address streams produced by processors. The choice
of <the appropriate class depends on program structure and the machine
architecture on which the programs are run. A dependency between any two
addresses .n the address stream is defined <to be that logical
reiationship between them such that the second address cannot be accessed
(written or read) until the first has been accessei. In Figure 3.2 each
node represents a memory address (request for access) and each link a

dependency.

Class A corresponds to the address stream generated by a
uniprocessor, monoprogrammed machine which has no capability for
detecting or bypassing dependencies. Class B corresponds to an array

machine (e.g., ILLIAC IV) and is a somewhat restrictive model for a

e T A e e e — | =
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Figure 3.2 Dependency Classes [CKL77]
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multifunction machine (e.g., CDC 6600). Address dependency Class C
corresponds to a multiprocessor machine and it is this kind of dependency
on which we will focus our attention in subsequent sections of this
chapter. Class D corresponds to a machine capable of instruction levél
multiprogramming (from a large number of jobs), or a machine with
sufficient lookahead and queueing hardware with respect to memory speed
to allow dependencies to be neglected in the model (e.g., IBM 360/91).
Various models and simulation studies for the memory interference in

these dependency classes of address streams is given in [CKL77].

Two remaining issues related to <the applicability of memory
interference models are the memory request rate as a function of both
processors and memory modules, and the priorities among processors for

accessing the memory moduies.

Randomness and independence are usually assumed to exist among
memory requests produced by processors for the interleaved addressing
case. However, a computer system with fully interleaved memory is
vulnerable to hardware failures in any single memory module. For certain
multiprocessor system applications 1like weather prediction, atom bomb
simulation, structural analysis, and fluid flow dynamics in which <the
function value of a particular point depends primarily on the values of
its immediately neighboring points, interleaved addressing introduces
unnecessary interference samong processors. (Of course, for the trivial
case in which processors deal with disjoint data, interleaved addressing
will be responsible for all the data access interference, should it be

used.)
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Smith[Smi77] proposed a "home memory page placement” scheme which
was considered a Dbetter data storage scheme for the aforementioned
applications. The basic idea is to assign one or more memory modules to
each processor in the system and to associate each memory module with at
most one processor at a time. Each processor <tries <to load the data
pages in the working set of its process into its own "home memory". Only
when overflow occurs do the extra data pages start to migrate to memory
modules belonging to other processors. When the home memory assigned to
each processor is sufficiently large and higher priority is given <to a
processor accessing any memory module other than its own home memory, the

"home memory page placement” scheme can actually yield better performance

(less interference) than interleaved memory.

Since the memory request rate is really a function of the assignment
of addresses among the memory modules, for wider applicability a memory

intverference model should allow module-dependent memory request rates.

Furthermore, the processors in a multiprocessor system may differ
either in physical characteristics (e.g., the PDP-11/20"s and PDP-11/40"s
used in C.mmp[01F78]) or in function (e.g., the arithmetic/ processors

and 1/0 processors in a multiprocessor system). BEither reason could make

their request rate to the shared memory be different.

A memory interference model, therefore, wili be more general if
provision for arbitrary request rate distribuvions from processors and

arbitrary request distributions among the memory modules is available.

Finally, what if several processors request a single memory module,

e e R A e - s M B Py A R etk - -




thereby causing conflict? In the case of arithmetic/logic processors,
which processor”s request is accepted and which request is rejected
probably does not matter too much. The rejected processors Jjust waste

one cycle and need to resubmit their requests in the next cycle.

However, with I/0 processors, the situation is differeni. Because
I/0 traffic often consists of transfers between main memory and
electromechanical peripheral devices which have a sequential rather than
a random access character, there is a relatively large time penalty
associated with a lost I/0 datum. It is conventional in such systems to
avoid any loss of I/0 data by granting I/0 processors memory service
priority over arithmetic/logic processors. Although with extra buffering
for I/0 data transfer and dynamic priority assigmment [Pir67], [Str79],
the performance degradation suffered by arithmetic/logic proceséors
because of I/0 data transfer could be reduced to be fairly insignificant,
a static priority discipline is simpler by far to implement. In view of
the typically lower transfer rate of I/0 devices, the interference of I/0
accesses with the arithmetic/logic processors is reasonably small in any

case.

In order vo insure wide applicability, under the above
considerations, the most general model presented in the following
sections for memory interference has provisions imbedded in the model to

handle both non-uniform request rates and alternative processor priority

schemes.




3.2 A General Model for the Memory Interference in Synchronous

Computer Systems

multiprocessor system. The memory acceas time and memory cycle time are

I Suppose there are N processors and M memory modules ir a
assumed to be equal and all M memory modules are cycled simultaneously.

Similarly, all processors are synchronized with the memory.

The N processors are divided into m categories with n, processors in

1 each category. Of course, we have

- m

z n, = N . 3.1)
- i=1
- In each memory cycle each processor in category i has a static request

rate with stationary probab lity ‘bij of requesting memory module j,

where 1 = 1,2,...,m. Note that

M

. T, S1. 3.2)

; Such a probability assigmment is equivalent <to assuming a geometric
distribution for the processing time between memory requests from a ' |
l particular processor. For convenience, we will sometimes refer to memory

requests from processors in category i as category-i requests, where i =

1425 000,M, b

We assume here that successive requests from a processor are
independently distributed among the memory modules according to some
distribution specified by the static request rates. Requests from

different processors are also assumed to be independent of each other.
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Now, for a processor in category i, i =1,2,...,m, the average

number of cycles needed per program cycle, py + can be expressed as

M M
o, =1- Ty + zwij;l- , 1=1,2, ..oom (3.3)
i =177 3=l 7 CAg,

vhere PAij is the probability of acceptance for a category-i request to

memory module j.

This parameter is referred to in <the following as the

o
interference factor for processors in category i, because it serves as a

mulviplicative factor for the interference-free run time.

Due <to the interference among memory requests from various
processors and the resulting resubmission of previously rejected
requests, the memory request rates seen by the memory modules are
actually higher <than the programmed request rates, or static request
rates. This fact can be reflected by the introduction of another
parameter dij , the dynamic category~i request rate for memory module j.
The dynamic, request rate aij can be calculated by noticing the
contribution of requests <to memory module j made by a processor in
category i to the average number of cycles needed per programmed cycle

for that processor. In other words,

1 1
P
o LYY H Ry, i=1,2, ...,m,
1j ) M M ’ (3.4)
i 1
1- E * + z * - j-l 2 oo M .
k=1 ik k=1 ik gAik 1° ’
EETOER N
e s -— - a._.’._-_—______ e -
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The expression for the probability of acceptance has to be derived with
the particular system structure in mind, as does the corresponding
expression for systems with TDM busses (equation 1.2). Thus before the
expreasion for the probability of acceptance is derived, it is convenient
to give the expression for the memory bandwidth firstv. We note thatv "1:]
as before is the dynamic request rate during the run time for a processor
in cavegory i as seen by memory module j. Then (1- aij) becomes the
probability <that that processor does not address memory module j. The
probability that none of the processors in category 1 addresses memory
module j is (1_aij )ni and hence the probability that at ieast one
processor in some category addresses memory module J is
1-;?_1111(1-0113. )ni. This last probability is actually the pro‘t;ability that
memory module j is busy, since each addressed module becomes busy for one
cycle. . Summing up for all memory modules we get the average number of

busy memory modules per memory cycle, which is by definition <the memory

bandwidth. That is,

M m ni
Bandwidth = BW = £ [1- 1[I (l-ai.) ] . (3.5)
je1 1=l J

Now the probability of acceptance for a category-i request to memory
module j can be obtained by determining the ratvio of accepted category-i
requests to memory module Jj versus <the total number of catvegory-i
requests <to memory module j per memory cycle. Since the total number of
requests accepted by memory module j per memory cycle, 1i.e. the

probability for memory module j to be busy, contains the contributions

PR

[ S NP
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from requests in all categories, the total number of accepted category-i
requests to memory module j per memory cycle can be found by subtracting
other contributions from the total number of requests accepted by memory

module j per memory cycle. Hence

[1-1 (1<, ,) ¥]-Sna P
e S MR N S
P
P = ’ (3'6)
Agy %%

where 1 = 1,2,...,m, and j = 1,2,...,M.

One may notice immediately that we do not really have a set of mM
independent equations for the mM probabilities of acceptance here. There
are only M independent equations in this set, one for each memory module.
In fact what we have for each memory module is an equation of
conservation of requests. More specifically, as mentioned above, the
total number of requests accepted by memory module j per memory cycle
(vhich is equal to the probability of memory module j being busy)
consists of contributions from all categories. In other words, for each

memory module we have

m m ni
Zna P =1- 1 (l'qij) s, J=1,2, ...,M . (3.7)

(=1 L1374 i=1

Unless we have more information about <the system to reduce the
number of unknowns( PAij’s), we need more equations to make the model a
complete set of equations. If the former approach is feasible, as for

the two special cases presented later in this section, it will usually

(=

o ey
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yield a fairly simple model. However, in general we have t0 supplement

the above model with some other equations.

A particular probability of acceptance is not just a function of the
number of processors in 1its category and their request rate. It also

depends on the system”s tie-breaking policy when memory conflicts occur.

Note that we have not yet indicated in <the model how memory
conflicts are to be resolved. Most previously published models do not
address this issue explicitly, because by their assumptions of identical
processors and identical memory modules with requests uniformly and
independently distributed among them, either an equal tie-breaking
priority is implied for all processors or the specific tie-breaking
policy Jjust does not affect the system performance indices they dealt

#ith.

In our general model, however, non-uniform "request rates are
allowed. Furthermore a specific processor catégory can be assigned a
particular priority for memory access. Therefore, it is necessary o
indicate explicitly the rule for resolving memory conflicts, referred to

as the "priority policy" in the sequel.

The priority policy is highly system-dependent. It can be expressed
through the relationship among the probability of acceptance, the various
dynamic request rates, and the number of processors in each category.
For the important specisl case in which the memory arbiter is unbiased,
for exampie, the equal-priority policy can be expressed by the following

relation:
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probability[given that one processor in category i references

memory module j, no other processor references memory module j]

+ % probability[given that one processor in catvegory i references

memory module j, one other processor also references memory module
J]

+ % probability[given that one processor in category i references
memory module j, two other processors in the system also reference
memory module j]

+

+1 probability[given that one processor in category i references
N
memory module j, all other processors in the system also reference

memory module j]

m b m r,-1 m r
k., 1 k h
I (e )" +3 Sra (1w ) I (1=, )
k=1 kj 2 k=1 k kj kj h=l hj
h#k
m m r, -1 r,~-lm
1 k h r
+2[Z I ra (l-a,.) r, (1< ) T Q= )8
3 kel hekty KKK R hj g=1 g]
g¥k,h
m r (r,~1) r -2 m r
k' 'k 2 k
+ o (1=, .) I (1-a g
T2 @) LA )
g¥k
I
L om o vhere r, = n , ki, k€{1,2,...,m} ,
+§ nakj s
k=1 and r, =n -1. (3.8)
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The above relation holds for i = 1,2,...,mand j = 1,2,...,M. Ve

also require

(1=, )‘ =0 whenever £ < 0 . (3.9

3

With proper translatior this expression has essenitially been derived
by Hoogendoorn[Hoo77] for a more restricted case. In fact, if there is
only one processor in each category equation 3.8 is reduced to equation
(1) in [Hoo77] except for some differences in the definitions of
parameters. Marthermore, if all the processors in the system have the
same request rate and the requests from any processor in the system are
uniformly distributed among all memory modules, both of these equations

reduce to equation 1.9.

g

BEquation 3.8 is complicatved. Since no special characteristics other
than <the request rates are associated with the categories, a cleaner
expression for the probability of acceptance can be obtained if one

.t classifies each processor as a distinct category. In other words, if we
use aij to represent the dynamic request rate for processor i (1 =

! 1,2,...,N) referencing memory module j, then we have an expression for

E the probability of acceptance Paij as
L N L N N -_
) ; P, = [l (l-a, )+ T a -0 (l-a, ,) i
i Ay ke1 KT 2 ey K pay hj |
ki k#i h#¥i,k {
i b
J ; + = a a, .’ (l1-a_.)
3 k=1 ® pagar B ogm 8]
i k#i h#i g#i,k,h
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L N N g N
+= Ta., % a,.- a .- 1 (1-a,.) (3.8")
4 qa1 9 paitl B gunt1 83 gm 43
k#i h#i g¥i L#i,k,h,g
N
1
+= ITa
N oy K
k#i

However, if unequal opriority is assigned o the processor
categories, equation 3.8 no longer applies. As an example, if we assume
a fixed category-priority scheme, i.e. processors in category 1 have the
highest priority, processors in category 2 have the second highest, and
so on, then processors in category ! only compete among themselves and
processors with lower opriority have a chance only if none of the
processors with higher priority sccesses the particular memory module.
P for catvegory opriority is defined by <the following set of m

Aij
equations:

n

1-(l-0y ) | ‘
—_— =
P = , §=1,2,...,M,
Alj nldij A
2
P = (lw,.) " ——— , j=1,2....,M,
A2j ij n2a2j
nm
PA = (1 (l-akj) ) _n_Q’-—— ’ j=1,2,...,M. (3.10) )
mj k=1 m mj
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It can easily be shown that equation 3.10 is compatible with

equation 3.7.

Finally, as mentioned above, we note that in many important cases it
is possible to use the information regarding the priority policy to
reduce the wninowns in equation 3.6 or 3.7 directly (so that the number
of unknowns is equal to the number of independent equations there)
without resort to incorporating explicit priority relations as in

equations 3.8 and 3.10. Two cases follow by way of example:

Spgcial Case I:

We assume that there are N identical processors and M identical
memory modules in this case. Memory requests from a processor are
umiformly and independently distributed among all modules. Memory

arbitration is unbiased.

In this case there 1is only one category of processors. Memory
request rates, static or dynamie, for all processors are the same and all

processors have the same probability of acceptance.

Hence by symmetry we have

T I R e O X s LT SR TV VR A

e e R ——
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M
= Yo =M
DI
and P, = p ,
A Alj
The memory interference model is thus reduced to
1
pP=l-¥+y¥ 3~ (3.12a)
A
'a
a = A1 = % (3.12b)
1-¢+¢ g 1+PA(€ -1)
o N
BW = M[1-(1- E) ] (3.12¢)
= M
and gA Ne ° (3.124)

Note that equations 3.12a and 3.12b are exactly the same as those in
Emer”s model. The expression for the probability of acceptance, however,
is different due to simultaneous multiple requests rather than the tvime

phased (TDM) requests of Emer”s model.

SEe cial Case II:

Now suppose there are two categories of processors in the systenm.
One category consists of Dy identical arithmetic/logic processors with
memory request rate Wp. The other category consists of an I/0 processor

or channel +#hich has a memory request rate *c when operating. The

oy
4 '
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parameter n, for the channel in equations 3.5 and 3.6 is equal to ! while
the channel is active and O otherwise. There are M identical memory
modules in the system with requests from any processor or channel, again,
uniformly and independently distribuved among them. As discussed in

section 3.1 a higher memory accessing priority is given to the channel.

Again, by symmetry we have for the arithmetic/logic processors:

z
wp ) j=1¢pj i} waj

M
a = o, =M,
P =1 PJ Pj

and P, =P . (3.13)
P pj

Furthermore, we know immediately that the probability of acceptance
for channel requesst, PAc , is 1. This value can therefore be substituted
into equation 3.6 and we obtain one equation for the single unknown

?Ap .

The memory interference model for this case thus becomes

£

7Y

P

p_=1-¥ +
P PRA

Pe =1 (3.14)

i
o eme mih . e A — ——
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1
Wp 7,
o = P 1 = 1
P 1
1=y +§y —— = .
*p *PPA 1+ B, (* 1)
o!c = *c
. np nc

BW = M[1-(1l- -ﬁp—) (1- F") ]

Bw-nc‘irc

P
A n o

P PP

and PAc = 1, where n, = 1 while the channel is active and O otherwise.

This model is used in a simulation study (to be presented in section
4.3) of the execution of matrix multipiication in a multiprocessor system

with virtual memory.

3.3 An Improved Model for the Case of Uniform Access ard Equal Priority

As we discussed in section 3.1, for the memory interference problem
both the probabilistic approach and the state-space approach have their
merits. The general model presented in the previous section is based on
a probabilistic argument. For the case of uniform access and equal
priority it¢ reduces to equation 1.9 and we Iknow equation 1.9

overestimates bandwidcth.

1
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As an attempt tO get a more accurate result we derive in this

section a model which looks at the problem from a different point of view
and employs bYoth probabilistic and stvate-space concepts. We restrict ;
ourselves in this section to dealing only with the case of uniform access
and equal prioritcy. The extension to the case of a fixed

category~-priority scheme will be discussed in the next section.

In Figure 3.3 a typical cycle trace of a processor is showm. The
blank cycles represent those cycles in which the processor 1is doing
internal computation with no generated memory request. The shaded cycle
represents a cycle in which the processor submits (or resubmits) a memory
request at the beginning and the request is served. The cross-hatched
c¢ycie, on the other hand, represents a cycle in which the processor
submits (or resubmits) a memory request at the beginning and the request
is rejected. For the amount of work which takes the processor T cycles
in an interference-free environment, it takes the processor T° cycles
(T°2) with memory access interference. Note that, in terms of the model
parameters discussed previously, the density of the memory-requesting
(shaded) part of the T-cycle segment is ¥, while the density of the
memory-requesting (shaded and cross-hatched) part of the T -cycle segment
is «o. Furthermore, in terms of the interference factor p we have T° =
pT. As in Chapter 2, the reciprocal of p (=T/T°) actually indicates
the factor of performance degradation. Since this factor will be used

frequently in the rest of this chapter, we give it a special name "the
degradation factor” and indicate it by the symbol "f". An interesting
expression for f can be obtained by equating the total number of blank )

cycles in the interference-free trace and in the trace with interfarence




100 t
e’
. '
interference-free trace )
r 1
7, // T
| /
! fa /
]
1
1
| !
trace with interference :
i
N v rfT'
% 278 X VA
I/ / ;/
RRRXY ;%
1 g '/ - i)

——
-—

memory cycle in which memory request is submitted and !
accepted

memory cycle in which memory request is submitted and
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Figure 3.3 A Cycle Trace of a Processor -
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in Pigure 3.3. In other words, T(1-¢ ) = T°(1-a ) and we get
-L‘l
T' 1w T
ence T 1oy @a.

Since, as ¥ is increased, @ approaches 1_ faster than ¥ does
(1*a¢dy 20), f is expected to have a less-than-! limiting value when ¥ =1
even though f=0/0 according to equation 3.15. This limiting value is the

amount of performance degradation whem V= 1.

Now for an N-processor multiprocessor system in equilibrium, we can
imagine N <traces with interference 1like that in Figure 3.3 being put
together. If in those cross-hatched cycles the corresponding processors
Jjuse Secome inactive insvead of submitting and resubmitting mémory
requests and getting rejectved, the sysvem will essentially appear to be
conflict~free. Then <the throughput of the system becomes Nf and at any
instant there are only Nf active processors in <the system. Thus Nf¥
requests are submitted to the memory each cycle and these requests will
all be accepted. In other words, the average number of busy mnemory
modules per cycle is NfYy , which is then the memory bandwidth of the
system. In view of Figure 3.3, since each of the N processors has TV
requests accepted during <the T -cycle period, the average number of

accepted requests per cycie, the memory bandwidth, is <thus NTY /T° =
NfY .

Now consider Figure 3.4, which depicts the stveady processor flow

when <the multiprocessor system is in equilibrium. It is assumed that
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. there is one queue associated with each memory module. In each cycle
each memory module will serve ome processor, if any, from the front of
the corresponding queue. In Figure 3.4, R 4is the <total number of
processors queued in the memory at the end of each memory cycle when the
system is in equilibrium, while r is the <total number of processors

queued in the front of <their respective queues. Note that r is also

equal to the total number of distinct memory modules in which some
processor is queued. Furthermore, r is always smaller than or equal to

R. Processors, “en not queued, have a memory request rate ¢ and the

requests, if any, will be presented at the beginning of a memory cycle.

The cyclic behavior of the system is thus pictured by the circulation of

those processors which are not queued.

Since the average number of busy memory modules per cycle is Nfy ,

- Sy g P

the average number of processors released from the memory at the end of

s

each memory cycle is also Nf¥ . In order tn make up the throughput (Nf),
there must be Nf(1-y ) processors each cycle which are doing internal
computation and do not deal with the memory. This is indicated by the
branch of <the flow which bypasses the memory. The average number of
processors queued (or retained) in the memory system at the end of each
memory cycle, R, can <then be found by using <the conservation of

- ' processors in the system. In other words, R = N - Nf = N(1-f). The Nfy

memory cycle will face these R processors queued at the memory from 1last

cycle.

We mentioned in section 1.3.1 <that the idea of Strecker”s

processors arriving at the memory system at the beginning of the current:
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formulation is essentially removing the queued processors from all the

memory modules at the end of a memory cycle and reassigning them among

all the memory modules at the beginning of the next memory cycie. In the
language of Figure 3.4 the total number of processors (or requests) the

memory system has tvo deal with atv the beginning of a memory cycle thus

becomes Nf¥ +R. We note here that

NE¥ + R = NE¥ + N(L-f)
= N - NE(1-¥) : |
=N - N(1-®) (£rom 3.15) 4

=N (3.16)

Thus, instead of using No as the average number of requests submitted to
the memory per cycle during the run time, if one interprets @ as the

probability for a processor making a request during the run time, one

LRt

obtains equation 1.9. This justifies the statement we made about that

© s

equation in section 1.3.1.

However, referring to Figure 3.4, we see that not all the queued

processors should be counted as contributing to the total number of busy

modules during a cycle. All the processors queued in the same module
contribute at most one busy module during a cycle. All the processors

queued in the memory but not in the front of <their respective queues

could be ignored.

Therefore, instead of using all the queued processors, as done by
Strecker, we should only take into account those processors queued in the
front of their respective queues. The total number of these processors

is r. Then, instead of using Nfy +R (i.e., No ) as the total number of ] i
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requests randomly and independently assigned to the M modules at the
beginning of a memory cycle, we use Nf{ +r in the exponent of bandwiith
formula 1.8. In other words, the total number of busy modules becomes

approximately

Nfy+r
M[1-(1- ﬁ) 1. (3.17)

The difficulty here is how to compute the value r. Fortunately
although we do not know the exact disvribution of the R queued processors
in the memory, the total number of memory modules which are going <to be
busy in <the next cycle because of these R queued processors is r.
Therefore, as a further approximation, we simply assume that the R queued
processors are distributed in éhe memory as if they were randomly and

independently assigned to the M memory modules. Then r can Dbe derived

from the formula 1.8. In other words,

R
r ~ M[1-(1- rla) ]

L NQ-£)
= M[1-(1- ] (3.18)

By substituting (3.18) into (3.17) and equating the memory bandwiith
Nf 1o the expression 3.17, we get the following equation for the single

umknown f:

e - <t
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1 NEY+r
NEy = M[1-(1- ﬁ) ]
1 N(1-£)
NEfy-M[1-(1- ﬁ) ]
= M[1-(1- ﬁ) ]

Equation 3.19 can be solved for f by iteration using Newton”s method
or one of its variants. An IMSL subroutine ZSYSTM based on Brown”s
method[Br069], [BrDe71] is used to solve noniinear equations of this kind
throughout <the <thesis. From equation 3.15 since § is a reasonable

initial guess for ¢, a reasonable initial guess for f is 1.

One may notice that we have been using meén values throughout the
above derivation. That is why fracticnal values appeared in the
exponents in several formulas. However, if we view the right-hand side
of equation 3.19 as a function and the exponent part of this function its
input argument, then the right-hand side of equation 3.19 essentially
gives the function value of the average of all feasible input arguments.
What we should really look for, though, is the average of the function
values of all feasible input arguments. These two may be close, but in
general are not necessarily equal. Therefore, instead of settling with
equation 3.19 which serves the purpose of providing intuition, we will in
the following derive a probabilis£ic version of equation 3.19 trying vo

getv the real average value that we want.

In order to do so, the meanings of several parameters have to be
interpreted differently. Instead of being considered as the "degradation

factor", f should now be interpreted as the probability of either doing
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internal computation or submitting a fresh request for a processor. In
other words, f is the probability for a processor to appear in the front
of the memory (see Figure 3.4) at the beginning of . memory cycle (before
possibly submitting any request). On the other hand, since 1-f is the
probability for each of the N processors to be queued in the current
memory cycle, the total number of distinet memory moduies occupied by

queued processors, r, should now be evaluated as

1-f N
r =~ M[1-(1- T) ] (3.20)

and r/M now becomes the probability for a memory moduie to have some

processor queued in it.

Referring to Figure 3.4, we can see that the requests which make the
memory modules busy come from two sources at the beginning of a memory
cycle: <the arriving processors and the processors queued in the memory
modules. In other words, we consider <the system comprising of N
processors, M memory queues, and M memory modules. The first two

compcnents both contribute to the number of busy modules.

Now <the probability that a processor issues a new request is the
probability that it is not blocked (=f) times the probability that it
generates a request (=¥ ). This probability is thus f¥ . This request
has a probability {/M of hitting any particular memory module. Hence for
a particular memory module not to be hit by any of the arriving

processors, the probability is

e ne B R

- m————

neabastinbbatnconse s amintdiinnio — = S -




108

fy N

Now consider the M memory queues. On average these queues issue r
distinct requests per cycle to memory. Thus the probability that a queue
makes a request is r/M, or

1-£ N
1-(1- —M—) (from equation 3.20) .
This request has a probability 1/M of hitting any particular memory

module. Hence the probability for a particular memory module not

referenced by any of the M queues is

-

e N
(1- ) .
M

Therefore, the probability for a memory module being referenced and
thus being busy, by a processor or a queue, is
- N

1
£} N 1-(1- T) M
1-(1~ ?) (1- —-—M———) .

By equating the bandwidth expression Nfy to the total number of

busy memory modules ucsing the above probability, we finally obtain the -

equation we are looking for. That is, )
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1-f N
£ N 1-(1- T) M
Nfy = M[1-(1~ 'M—) (1-—M—'—) 1 . (3.21)

Simulations of the memory interference phenomenon for 4 x 4, 4 x 8,
8 x 4, and 8 1x 8 multiprocessor systems have been done on CDC CYBER.
Note that when we refer to an N x M mulitiprocessor system, we mean a
multiprocessor system with N processors and M memory modules. The
program was written in the simulation 1language SIMULA 2and two random
number generators were used in the simuiation. The first random number
generator generates a uniformly-distributed real number in the range of
[0,1]. Every cycle a processor, if not queued, will submit a memory
request if this random number generator generates a value which is
smaller than or equal t0 ¥ . The memory module requested is selected
randomly among the M modules according to the number generated by <he
second random number generator. The processor s request will be queued

if not accepted.

Finalliy, for each system ten vaiues were chosen for ¢ (from 2.1 to
1.0) to span its entire feasible range. Each case was run for 45,000
memory cycles. Although regenerative simulation was not implemented, the
length of <the simulation was sufficiently long and our informal

observations indicated that steady state was reached in all cases.

Measured memory bandwidths from the simuiations are presented in

Figures 3.5 through 3.8. Also shown are the predicted memory bandwidths

from various models which allow less-than-one static request rate. The
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percentage differences of these values compared to the simulation results
are shown in Figures 3.9 through 3.12, where the Y-axis value is the
difference (analytical - simulation) relative to the simulation result.
The actual data for the information contained in above figures are also

summarized in Tables 3.1 through 3.4 for reference.

Por comparison, we also included a "transient” model in those
figures and tables. Notice that when the cyclic flow of Figure 3.4 just
starts (at the beginning of the first cycle), no processor is queued and
the probability for each processor to make a request in this first cycle

is § . The resulting memory bandwidth is exactly

y N
BN, = M[1-(1- D) ] (3.22)

for the first cycle. If one ignores all the rejected requests, then
every cycle becomes the first cycle! The memory bandwidth thus obtained
is actually the memory bandwidth for the first cycle, not the steady

state value.

Note that ¥ could be 1, which makes equation %.22 the same as
equation 1.8. Actually, when the request rate =1, as long as we assume
independence among requests it really does not matter whether the
rejected requests are discarded or reéubmitted, as far as the memory

bandwid th is concerned.

Equation 3.22 is included in the comparisons as Model 1. Model 2 is
Strecker and Hoogendoorn”s model (equation 1.9), Model 3 is Baskett and

Smith”s model (equations 1.12 and 1.13), Model 4 is equation 3.19, and
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Table 3.1
Comparison of Models in Predicted Bandwidth and Percentage Difference
with the Simulation Data for a 4 x 4 Multiprocessor system

Model 1 : Equation 3.22

Model 2 : Strecker-Hoogendoorn's model
Model 3 : Baskett-Smith's model

Model 4 : Equation 3.19

Model 5 : Equation 3.21

¥ SIM BW BW(1) BW(2) BW(3) BW(4) BW(5)

: .1 40004l ,385248 ,398419 463872 .402930 .398376
, .2 .790524 .741975 .786848 .917339 .804155 .786106
i .3 1.155800 1.071623 1.154589 1.324702 1.190184 1.150682
: .4 1.486711 1.375600 1.491864 1.663215 1.546017 1.479725

.5 1.TT4783 1.655273 1.791721 1.929536 1.858300 1.764247
.6 2.025400 1.911975 2.051170 2.133500 2.119215 2.001107
{ .7 2.224368 2.146998 2.271049 2.288949 2,328504 2.192962
. 8 2.389902 2.361600 2.454910 2.408427 2.U492066 2.346084
.9 2.521055 2.556998 2.607643 2.501626 2.618565 2.467839
0 2.621000 2.734375 2.734375 2.575571 2.716585 2.565052
¥ DIFF(1)% DIFF(2)% DIFF(3)% DIFF(4)% DIFF(5)%

.1 -3.698u8 -. 40621 15.95520 .T2145 -.41683
.2 =6.14137 -. 46506 16.04189 1.72431 -.55892
.3 -7.28297 -.10478  14.61346 2.97492 ~-. 44283

A4 =7.47361 .34660 11.87214 3.98908 -. 46991

-6.73376 .95438 8.71955 4.70579 ~.59367

. .
[} (82

-5.60013 1.27235 5.33722 4.63190 -1.19941
T -3.47827 2.09860 2.90336 4.68160 -1,41189
.8 =1.18423 2.72010 .T7513 4,27480 -1.83346
9 1.42573 3.43460 -.77066 3.86784  -2.11087
1.0 4.32564 4,32564 -1.73327 3.6u4688 -2.13460




| ¢ SIM BW
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Model 1

Table 3.2

: Equation 3.22

Model 2 : Strecker-Hoogendoorn's model
Model 3 : Baskett-Smith's model

Model 4 : Equation 3.19
Model 5 : Equation 3.21

BW(1)

.401000 . .392562

<T97600 .T770497

1.181667 1.134172

1.550044 1,483950

1.895844 1,820190

2.220000 2.143247

2.51927T 2.453469

2.798444 2,751200

3.046510 3.036781

3.265200 3.310547

DIFF(1)%
~2.10416
~3.39808
~4,01935
-4,26401
-3.99050
=3.45735
-2.61220
-1.68822

-.31935

1.38879

BW(2) BW(3)
.399230 .430106
.793727 .858707

1.178596 1.272853
1.549128 1.661009
1,901199 2.015014
2.231598 2.330858
2,538221 2.608245
2.820096 2.849466
3.077259 3.058210
3.310547 3.238644

DIFF(2)% DIFF(3)%
- 43131 7.25829
-.u8562 7.66138
-.25990 7.71671
-.05908 7.15883

. 28245 6.28585
.52242 4.99362
.75197 3.53150
77371 1.82324
1.00931 . 38405
1.38879 -.81330

BW(4)
U01486
.802037

1.195330
1.574854
1.934551
2.269463
2.576219
2.853228
3.100552
3.319553
DIFF(4)%
.12126
.55626
1.15623
1.60062
2.04168
2.22805
2.26024
1.95765
1.77389
1.66461

120

Comparison of Models in Predicted Bandwidth and Percentage Difference
with the Simulation Data for a 4 x 8 Multiprocessor System

BW(S)
.399220
.793559

1177722
1.546357
1.894567
2.218428
2.515359
2.78u256
3.025374
3.240030
DIFF(5)%

-. 44380

-.50669

~-.33382

-.23785

-.06736

-.07083

-.15553

-.50700

-.69379

-. 77084

v e
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Table 3.3
Comparison of Models in Predicted Bandwidth and Percentage Difference
with the Simulation Data for a 8 x 4§ Multiprocessor System

Model 1 : Equation 3.22
Model 2 : Strecker-Hoogendoorn's model
Model 3 : Baskett-Smith's model
Model 4 : Equation 3.19
Model 5 : Equation 3.21
y SIM BW  BW(1) BW(2) BW(3) BW(4) BW(5)
.1 .792000 .733393 .792144 .953279 .802093 .791889
.2 1.529444 1,346318 1,531565 1.813190 1.571086 1.526213
.3 2.136714 1.856153 2.159970 2.392435 2.229436 2.130140
U 02,561928 2.278131 2.640754 2.725727 2.T700363 2.556649
.5 2.826693 2.625564 2.978926 2.917761 2.981554 2.824302
.6 2.998511 2.910038 3.207368 3.035833 3.138008 2.98660G0
.7 3.104618 3.141596 3.361603 3.113703 3.228153 3.087839
.8 3.178651 3.328911 3.468076 3.168196 3.283874 3.15u4258
.9 3.232130 3.479437 3.543868 3.208180 3.320736 3.200107
1.0 3.265700 3.599548 3.599548 3.238644 3.346540 3.233196
¥ DIFF(1)% DIFF(2)% DIFF(3)% DIFF(4)% DIFF(5)%
1 -7.39990 .01822  20.36349 1.27438 -.01401
.2 =11,97335 . 13865 18.55221 2.72271 -.21123
.3 =13.13050 1.08842  11.96797 4.33948 -.30769
A4 «11,07747 3.07683 6.39356 5.40356 -.20607
.5 =T.11533 5.38554 3.2217C 5.47853 -.080,50
.6 -2.95057 6.96536 1.24469 4.65220 - 1y723
T 1.19107 8.27751 .29263 3.97908 -.54045
.8 b.72717 9.10526 -.32893 3.31030 -. 76739
.9 7.65151 9.64497 -.T4100 2.74142 -.99076
1.0 10,22287 10.22287 -.82848 2. 475u1 -.99532

e — - - v




Model 1
Model 2 :

Table 3.4
Comparison of Models in Predicted Bandwidth and Percentage Difference
with the Simulation Data for a 8 x 8 Multiprocessor System

: Equation 3.22
Strecker-Hoogendoorn's model
Model 3 : Baskett-Smith's model

Model 4 : Equation 3.19
Model 5 : Equation 3.21
¢ SIM BW  BW(1)  BW(2)  BW(3)  BW(4)
.1 .797867 .765861 .796300 .875346 .801022
.2 1.561889 1.466786 1.569215 1.744875 1.58704U
.3 2.278616 2.107550 2.294067 2.530219 2.329298
.4 2.919691 2.692637 2.949465 3.180252 2.998961
.5 3.469323 3.226244 3,522089 3.687605 3.5TU493
.6 3.911533 3.712305 4.008629 4.073387 4.047805
.7 4.270832 4.154499 4. 414196 4.366108 L.424686
.8 4.555731 4.556262 4.748819 4.590705 4.T713641
.9 4.772632 4.920807 5.024110 4,.765946 4.949594
1.0 4.947100 5.251129 5.251129 4.905190 5.129877
¥ DIFF(1)% DIFF(2)% DIFF(3)% DIFF(4)%
.1 -4,01139 -.19642  9.71072 .39545
.2 -6.08900 .46908  11.71568 1.61052
.3 =7.507ud .67810  11.04191 2.22u24
A4 =7.77666 1.01978  8.9227  2.71500
.5 =7.00652 1.52092  6.29177  3.03142
.6 -5.09334  2.48229  4.13787  3.u48386
.7 -2.72390  3.35682  2.22086  3.60245
.8 .01166  4,23835 .76768  3.59788
.9  3.10469  5.26916  =-.14009  3.70785
1.0  6.14559  6.14559  ~.BUT16  3.69462

— e —— e .

BW(5)
.T96246
1.568211
2.288494
2.931501
3.480439
3.931603
4,292944
4.578774
4. 804582
4,984079
DIFF(5)%
~.20316
LUouTH
. 43351
LUOu48
. 32042
.51309
51774
.50580
.66943
LTHTY9

122




123

finaily Model 5 1is equation 3.21. All these models are summarized in

Table 3.5.

We first note from Figures 3.5 through 3.12 that for a good range of
the atatic request rate § Model 1 underestimates the memory bandwidcth.
This is reasonable because contributions from resubmitted requests are
totaily ignored in Model 1. However, as ¥ approaches 1, even Model 1
starts o overestimate. This is because as the memory interference gets
more serious processors are more often queued in the same module. Thus
in reality many requests from queued processors do not actually increase
the total number of busy modules. Since in this region ¢ and o orly
differ sliightly, Model | overestimates the memory bandwidith even though

v is used.

On the other hand, since Model 2 is derived based oﬁ the assumption
that all the queued processors wiil be assigrned randomiy  and
independentiy <to the M modules in the next cycle, from our discussion in
gection 3.3 it is conjectured that Model 2 always yields an upper bound
for the memory bandwidth. This conjecture is not supported by the data
presented in above figures and tables, but the deviation is so small thatz

it could be due to the inaccuracies of the simulation results.

Model 3, interestingly enough, is pretty accurate when V approaches
1. However, its erratic behavior for smailer ¥ makes it a bad model in

this range.

The ©behaviors of Model 4 and 5, »n the other hand, are much more

stable over the entire range ((0,1]) of ¢ than those of the other three




e |

Table 3.5

Memory Interference Models for Synchronous Computer Systems

N
Model 1: BW = M[1l-(1- %) ]

o N
Model 2: BW = M[1l-(1- ﬁ) ]

where o = ———11—
1+P, (5 -1
N
M[1-(1- ) ]
and PA = _—N7_
/ 2

M W1 1
Model 3: BW =5 (2+2L-2- V(2+2L-35) -8L)

2
(141 Nolyp o oqere N2L N-1
(1+T m )+ /(1+T a ) +4¢( M)

where L =
2¢5h
and T = ‘1% -1
. N(1-£)
1 NEVM[1-(1- ) ]
Model 4: BW = Nfy = M[1-(l- v ]
N
gy N 1-Q1- I_M'f') M
Model 5: BW = Nf¥ = M[1-(1- 3p) A ]
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models. The accuracy of Model 5 (equation 3.21) makes it the best model

among 2il models investigatved.

3.4 The Application of the Improved Model in an Environment with Unequal

Processor Priorirties

One of <the strong points of <the probabilistic approach is its
capability of accommodating priorities without too much trouble. We will
show in this section by an exampie that the model 5 (equation 3.21)
presented in the previous section can also be appiied to deal with

priorities without too much effors.

Again, we assume m categories of processors with ny processoré in
each category. The total number of processors in the system is N. There
are M identical memory modules in the system with requests from any
processor uniformly and independently distributed among them. The memory
request rates for processors in the same category are assumed to be the
same. Priorities in accessing the memory are associated with the
processors” categories. Category 1 has the highest priority, category 2

the second highest, and so forth.

Although conservation of processors should apply to each of rthe m
categories when <the gystem is 1in steady state, processors in every
category except category ! canrot ignore the existence of processors in

other categories which have higher priorities.
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Nevertheless, we can apply equation 3.21 directly to processors in

category t:

n
f1‘#1
M

1-£, ™1
v > (3.23)

nlfllll1 = M[1-(1- ) (1-

For <the joint flow of processors in both category 1 and 2, the

left-hand side of equation 3.2! becomes
R AP A

This is Dbecause in a confiict-free environment the total number of busy
memory moduies is just the sum of memory requests submitvted from
processors in both categories. On the other hand, the probability that a
particular memory module is not requested by any of <the non-queued

processors in either category is

£y, M1 £4, ™
1¥1 2¥2
a- -5 a-50 .

The total number of distinct memory modules occupied by queued processors

in either category, r, is now {see equation 3.20)

1-£, b 1-£, oy
r =~ M[1-(1- ‘3;—) (1- -3;—) ] (3.24)

and, therefore, the probability that a queue makes a request (see section
3.3) is

1-£, ™ 1-£, n
[1-(1- =) (- =

2
) ]
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The probability that a particular memory moduie is nos busy because of

requests submitted from queued processors thus becomes

1.5, Ny 16 %2
1-(1- —) M1-—=5 " m
[1- LM i ]

Finally, combining all the above factors, the probability for a memory

module to be busy serving a request from processors in either category is

1-£, %1 1-£, M2 :
ey. ™ £w, "2 1-(1- —b - =% M |
"1 22 M ‘

1-(1- =) (- 5 (- - M- 5 . i

By means of this probability we get the following bandwidth equation for i

the joint flow of processors in both category 1 and 2:

n.f£.¥¢, +n, £, ¥
151%1 + mfrY Le B 1-f T

e, ™ £4. %2 1-(1- —3) (- —2) M
= o 11 .22 - M M
Mi-(1- =5 - 55 ” ) ]

(3.25)

Soiving for f1 in equation 3.23, we can substvitutve its value into
equation 3.25 to find f2.

This process can then be repeated m times until we find fm from




% m £9, 1 =1 M
n.f. ¢, =M[1-( I (1- ) )(1- )1. 3.26)
s B A 1 M M (

e e e e e =
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CHAPTER 4

Applications of the Memory Interference Models

4.1 Introduction

A good model of a phenomenon usially serves two purposes. On the
one hand, it serves as a concise description of the phenomenon. It
exposes the internal structure and relates the effects of various
parameters involved in the phenomenon. Thus insights could be gained and
useful predictions could be extrapolated from known results obtained

through a limited number of experiments.

On the other hand, a model can be used to produce the same net

effect as does the modeled phenomenon. The model of a lower-level
phenomenon can be incorporated in a study performed on a higher level to
take into account the effect of this lower-level phenomenon. This

process can be viewed as the application of a model. §

The derivations of various memory interference models presented in

Chapters 2 and 3 have already achieved the first purpose above.

As examples of the applications of the various memory interference

models previously derived, two cases are presented in the following. 1In

section 4.2 we propose an algorithm for the run-time estimation of a

A . mim3e e R
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program running in a multiprocessor system. WMemory interference models
are used to adjust the execution times of various Jjobs in the program
whenever the number of processors available in the system and/or the
amount of parallelism available in the program changes. A simulation
study of +the execution of matrix multiplication in a multiprocessor
system with virtuel memory is described in section 4.3. The size and
complexity of the problem forbid a gimulation below the page request
level. Therefore, a memory interference model has to be employed again
in the simulator to introduce the effect of memory interference on
various timing data involved, and thus make the simulation results more

realistic.

—— | e ———t et e it

Maltiprocessor System

The execution time is one of the most important, if not the most
important, performance indices of a computer program. The major purpose
of multiprocessing, in which multiple processors are engaged in the
execution of a single computation, is indeed to enhance this performance

index.

However, the effectiveness of multiprocessing depends crucially on
the way in which the computation is decomposed into various jobs.
Improper decomposition usually introduces unnecessary precedence

structures and/or unequal loads among processors, which often wastes
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available computing power by causing excessive processor waiting. (A
case study of this issue on AMP-1 for a specific algorithm - the Gaussian
Elimination is presented in the Appendix.) Since no clear criteria for
good decomposition are available, adoptving the decomposition with minimum
execution tvime through comparison of execution <times resultving from

alternative decompositions becomes the best criterion available.

The execution time of a computation can, of course, be found by

coding the program and then running it on the target machine. However,

the high cost of software development prohibits random trials without
some a priori ideas. An efficient method for the run-time estimation of
a. program 1is therefore desirable. This method cowid be used in the
initial phase of a program design to determine a good computation

decomposition.

S N e —

) Beizer[Bei70] proposed a Markov model for the purpose of
aralytically determining the execution time of a program. The model is a
directed graph in which each arc is characterized by a triple (pyu,v),
where p 1is the conditional probability that the fiow of conirol, if it
reaches the source vertex of the arc, will go through the arc; u is the
mean execution time of the arc; and v is the variance of this time. Once

. ‘ the graph model is constructed, the estimation of execution time can be

performei by the star-mesh <transformation methed [Fer78], which is

- adopted from electric circuit theory.

Unfortunately, Beizer”s model was proposed for the conventional

sirgie~-CPU machine. The steps in <the graph model are  performed

sequentially.
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We propose in <the following an algorithm for the purpose of
determining the execution time of a program running on a muitiprocessor
system. A system with a single CPU becomes a special case of the

muitiprocessor system for which the algorithm is designed.

The approach presented here is based on the fact that computational
processes can be modeled by graphs in which <the vertices (nodes)
represent single Jjobs and directed 1inks represent the precedence
reilations. (Hence nodes take time to execute but iinks do not.) A job
pointed to by a directed link can onliy start if the job at the source erd

Q of that link has been completed.

The graph {and <thus the computatior) can be represented in a
grap ‘ P

compugrer by means of a Connectivity Matrix, C [Ram66], [RaG69a]. let n
be the total rumber of decomposed jobs in the precedence graph. C is
then of dimension n x n such that cij is a "1" if ard ornly if there is a

directed lirnk from node i to node j, and it is "O" otherwise.

Ramamoorthy ard Gonzalez [RaG69b] proposed a connectivitvy-matrix-

basei technique for recogrizing paraliel processable streams in computer

programs. In short, their technique iterates between locating as many
all-zero columns (thus identifying nodes ready for processing) as
possible and deletving from the comnectivity matrix C <these coliumns and
the corresponding rows wntil no more columns or rows remain in C. By
associating each job in the precedence graph (and thus each coiumn in the
connectivity matrix) with its job execution time and modifying the
technique due to the finite number of processors available and <the <

unequal execution times among jobs, their technique can be adapted to
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determine the execution time needed by a computation on a multiprocessor
system. Furthermore, by employing one of the memory interference models
presented previously depending on the environment, the job times can be
dynamically adjusted <tvo reflect the tvimes needed for the execution more

realistvically.

For iliustration, the precedence grar. of the triangularization
phase of the Gaussian elimination algorithm (see Appendix) for a 4 x 4
mavrix is shown in Figure 4.1. Also shown is its associated connectivity
mavrix. We shall assume there are no 1loops or strongly connected
subgraphs [RaGG9b] in the precedence graphs under consideration in order
to insure the validity of our algorithm. (In fact if the precedence
graph does contain strongly connected subgraphs, the maximal strongly
cornected subgraphs can be found either by inspection or by a simpie
analysis of its connectivity matrix [Ram66]. Each maximal strongly
connected subgraph can then be corsidered 2s a single node, the
computation decomposition appropriately redefined, and <the resulting
precedence graph will contain no strongiy conrnected components Or 100ps.)
In addivion, ail the decomposed jobs in a precedence graph need to be
executed in one run, and ro job execution is preemptible. Irn cases where
it is 1indeed necessary to specify data-dependent altvernatives, we will
deal with one possibility atv a time and thus eliminate the data
dependency of <the precedence graph. The speed of the algorithm allows
one to repeat the analysis easily for every possibility. A probability

argument can be used tvo find out the mean executvion time in these cases.

The paragraphs which follow describe an algorithm for determining

the execution time of a program running on a multiprocessor system.

i
§
1




REDUCE 4, 1

REDUCE 3, 1

NORM 2

2
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(a) Precedence Graph

Figure 4,1 1Illustrations of the Run Time Estimation Algorithm




Col
Row 12 3 45 6 7T 8 9 10

1 0t 1 10 00 0 00O
2 6 0o 0 Gt 0 0 0 0 O
3 0 00 0 0 1 0 O0O0O0
i 0O 0p OO O 1T O OWDO
5 00 00 01 v 0 00
6 0 0000 00 1 0 O
7 0000 OO0OOO0OTI1TD0
8 0 00000 OO TYTO
9 0O 0o 00000 0 0 1
10 0 0 00 00 00 00O

(b)

Connectivity Matrix

Figure 4.1 Illustrations of the Run Time Estimation Algorithm
(continued)
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5 0 0 0 0 0 1 1 0 0 0
6 0 0 0 0 0 0 0 1 0 0 ]
7 0 0 0 0 0 0 0 0 1 0
8 0 0 0 0 0 0 0 0 1 0
9 0 0 0 0 0 0 0 0 0 1
10 0 0 0 0 0 0 0 0 0 0

(¢) Augmented Connectivity Matrix

Figure 4.1 Illustrations of the Run Time Estimation Algorithm
(continued)
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(1) The first step is to represent the computation (or program) in
terms of a precedence graph consisting of decomposed jobs as nodes and
precedence relations as directed links (Figure 4.1(a)). Number ail the
nodes and represent this precedence graph by means of its associated

connectivity matrix C (Figure 4.1(b)).

(2) Associate with each column of the connectivity matrix the
expected (interference-free) job execution time of its correspondirg job
in the precedence graph (Figure 4.1(c)). These job execution times could
be obtained for example by applyirg Beizer”s method [Bei70] to the
segments of sequential code corresponding to <those jobs. In Figure
4.1(c) the job execution times are expressed, for simpiicity, in verms of
the number of floating-point operations required for ‘the corresponding
Jjobs. S, M and D in the j&g time expressions stand for the execution
time of a fioating-point subtraction, multiplication, and divisiorn,
respectively. It should be emphasized, however, <that the number of
floating~point operations is used ornly to provide a relative scale for
comparison. The execution time of a job certainly does not consist soliy

of floating-point operation times.

(3) Locate no more than P columns, if any exist, containing only‘

zeroes in the comnectivity matrix C, where P is the number of processors
available in the system. Scheduling considerations coulid be involved as
this point. Find the minimum among all Jjob times in <this set and
subtract this mircimum from each job time in the set. One processor wilil
be assigred to execute each job in the set, and the execution proceeds

until the job with the minimum job time is finished.

wi m—————

e e - e e e
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(4) Depending on the nature of the multiprocessor system used and
the number of active processors participating in executing <this set of
jobs, we can get a value for the memory intverference factor P of the
system by employing one of the memory interference models developed in
Chapters 2 and 3, whichever is appropriate. If no account of memory

interference is desired, p will be set vo 1.

(5) Multiply the memory interference factor p by the minimum job
time found in (3), and then add the product to the total executior time

elapsed so far.

(6) Deiete from C both the columns and the rows correspording to
those jobs whose job times are now O. Mark those jobs which were begun
but not finished in this itveration, if any. These jobs will be assigned
the highest priority for the selection process indicated in (3) over
those newly-created all-zero columns because of the non-preemptibility

assumption.

(7) Repeat steps (3) through (6) wntili no more columns or rows

remain in the C matrix.

It can be shown +that this procedure is wvalid for cornectivity

matrices of graphs which contain no loops [RaG69b].

For the decomposition given in Figure 4.1(c), the total execution
times needed in a synchronous multiprocessor system with and without
memory interference with various numbers of processors available in the
system are shown in Table 4.1. The numbers enclosed in parentheses are

speed-ups relative to the execution time using a single processor. Tor

R
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Table 4.1

Execution Times and Speed-ups for the Problem in Figure 4.1

Using 4 Memory Modules

no. of processors

1 2 3 4
memo ry 144460ns 93360ns 93360ns 93360ns
interference
ignored (1.000) (1.547) (1.547) (1.547)
synchronous 144460ns 100650ns 100872ns 100872ns

‘ - multiprocessor
1 system (1.000) (1.435) (1.432) (1.432)
F /

e R
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convenience the execution <times of floating-point operations in Figure
4.1(c) were substituted with values for the Digital Equipment
Corporation”s floating-point processor FP11-C used in the DEp PDP11/70
system [Dig76] (i.e. S=1130ns, M=2520ps, and D=3540ms). Again, the
execution times of floating-point operations here are orly used to
provide a relative scale for comparison. We also assumed that there were
four memory modules in the system, addresses were fully interleaved, and
processors requested memory every cycie. A job whose precedence
requirements are satisfied will be scheduied immediately whenever there

is a processor availabie.

Note <that a speed-up of orly 1.435 is achieved, compared to an
irnterference-free value of 1.547, when two processors are used. Further,
it 1is interesting to note that the performance is not improved by usirg
more than two processors. Actually it takes even more time to execute
the probiem when three or more processors are used. Although the
additiorcal memory interference is partly responsible for <this aromaly,
the major reason is probably the inadequacy of the schedulirg strategy.
It is clear from Figure 4.1(a) that more <than 3 processors will rot
improve <the performance, since <there are at most 3 jobs that can be
executed in parallel. However, it is possible to improve the performance
with 3 processors by choosing a different scheduling strategy. It should
be pointed out <that <there are no known efficient algorithms for

scheduiing a task system such as ours for shortest execution time

[cot76].
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4.3 An Investigavion of vhe Execution of Mavrix Multiplicavion i

a

Multiprocessor Systvem with Virtual Memory

In many appiications of computers tvoday, especially in scientific
applications, huge matrices are frequently used to put data in a compact
form, to reflect the topological strucwure of a problem, and 8o on.
Linear-algebra operations are then used to manipulate these matrices. As
more and more complicated problems and ambitious approaches are
attempted, iv is not unusual to find that the sizes of matrices involved
Zrow beyond the size of available main memory in a system. In computers
with virtual memories, these data matrices will generally be stored in

the secondary storage and paged into malrn memory as needed.

As a typical example, an investigation of the execution of matrix
muitiplication in a mulitiprocessor system with virtual memnory is
presented in this section. Because of the lack of an existing

muitiprocessor virtual memory machire, the study was done by simuiation.

For simpiicity the muitiprocessor computer system  under
investigation is assumed to be mono-programmed. In other words, whenever
a page fault is encountered Dby a processor, that processor will waiv
until the page transfer is complete. One should notice, though, that in
a multiprocessor system with virtual memory there exist two kinds of page
faults. The first kind of page fault occurs when a processor attempis tTo
access a page which 1is neither present in the main memory nor being
loaded into the main memory by any other processor in the system. This
kind of page fauit will generate a page request to the secondary memory

system and thus wiil be referred to hereinafter as an "effective page

T
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fauit". On the other hand, it is possible for a processor to address a
page which is beipg brought in by another processor but is not yet
available for access. Since the loading process for that particular page
has already been initiated, no request should be issued to the secondary
memory system due to this faulw. Nevertheless, the processor which
encounters this kind of page fault still has <to wait until <the page

transfer is compiete before proceeding.

For economy the simuiation was done at the page request level. A
"global IRU page repiacement scheme" was used in the simulation. That
is, ar IRU svack of depth M is kept in the system, where M is the number
of page siots available in the main memory. The content in each level of
the IRY stvack is a page descriptor which contains a page number agd the
status of <the corresponding page. Overall, the IRU svack comsists of
page descriptors corresponding to those pages which are assigned vpage
slots 1in the main memory. These pages could, however, be in use by some
processor, just present in the main memory, or ir the process of being

loaded into the main memory.

Since the simulatvion was not done at the individual memory requesst
level, the order of page descriptors in the IRU stack at any instant did
not exactly refiect the order of the latest accesses to recent pages.
Wher a page is first accessed by a processor and thereafter brought into
that processor”s working set[Den70] (vo be expiained 1later), the
correspondirg page descriptor is updated and moved to the top of the
stack. All the page descriptors originally above this descriptor, if

any, are pushed downward a stack level. As long as the page stays in a
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processor”’s working set, its corresponding page descriptor Jjusi stays
where it is in the IRU stack or gets pushed downward due to other new
page accesses. When a page ceases to exist in any processor”s working
set, 1its corresponding page descriptor is removed from where it is,
updated, and put below the lowest page descriptor corresponding to a page
in use or being loaded by some processor. Hence all the pages being used
or loaded will have their page descriptors mainvained on the top portion
of <the IRU stack, followed by those descriptors corresponding to pages

simpiy present in the main memory arranged in an IRY fashion.

Since +the order of individual memory requests is not known, this
approach does not work if the main memory is so small that <vthrashing
[Den68] couid occur. Since thrashing is not interesting to study anyway
and not cost-effective even if memory is expensi&e, the size of the main
memory in the simulation study was always kept large enough (for the
execution of matrix muitiplicatvion using the block algorithm discussed

below) to eliminate the possibilitvy for thrashing to occur.

To be more specific, matrices A and B are to be muitiplied <vogether
and their product is matrix C. In order to reduce the number of page
faults, block paging [FiP79] was used for all three matrices invoived in
the muitiplication. Furthermore, for convenience, the size of a page
(and thus a data block) is assumed to be exactly equal to the capacity of
a memory module. Treating page blocks as elements, each of the three

matrices is of dimension N x N, where N is the number of blocks in a row

or colunn.

The computation decomposition of the matrix multiplicatvion proceeds
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as follows: The calcuiation of one product paze block, a "super inner
product”, is treated as a basic job. This job actually consists of N
submatrix muitiplications for the N pairs of data page blocks. Initially
all jobs are in a ready queue. Whenever a processor in the system
becomes available, it is assigred a job by the job queue routine unless
the queue is empty. BEach processor halts when it finds the queue empty.
(If processors cooperate on a super inner product instead, then whenever
new data pages are needed all the processors wiil be idle for most of the
page fault period. This is because the significant pagirg overhead is
usually much iarger than the individual job time when the computation is
so decomposed. It 4is feit, therefore, it shouid be a better scheme to
decompose the ccmputatior into liarger pieces so that while one processor

is waiting for a page <transfer all the other processors can still be

worikdng. By properly scheduling the jobs, significant data page sharing

can still be obtained.)

However, ir order to further reduce the paging overhead, the

least-recently-used feature of the page replacement scheme carn be taken
advantage of [Els74], [FiP79] vo reduce the amount of paging by
alternating the direction in which jobs are assigned (Figure 4.2). The
order in which the N block muitiplications within a job were performed
was also alternated to take advantage of the IRU replacement scheme
(Figure  4.2). More specifically, in terms of <the page block
multipiications, the way the jobs are assigned and the order the N block
muitipiications in a job are executed can be shown in <the foliowing

algorithm:
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FOR I := 1 STEP 1 UNTIL N DO

BEGIN
IF (I MOD 2) = 1
THEN BEGIN JL:=1; JH:=N; JSTEP:=t END
ELSE BEGIN JL:=N; JH:=1; JSTEP:=-1 END;
FOR J := JL STEP JSTEP UNTIL JH DO
BEGIN
IF (I+J MOD 2) = O
THEN BEGIN KL:=1; KH:=N; KSTEP:=1 END
ELSE BEGIN KL:=N; KH:=1; KSTEP:=-1 END;
¢(1,J) := 0; (4.1)
FOR K := XL STEP KSTEP UNTIL XH DO
c(r,J) :=c(1,J) + A(I,X) x B(K,J) (4.2)
END
END;
Yote that the assigrment, addition, and multiplicatiorn ir statements
4.1 and 4.2 above are matrix assignment, matvrix addition, and matrix
muitiplication, respectively. It 1is appafent that, except ir the

transition periods, each processor”s working set contains 3 pages, one

from each matrix.

The mulitiprocessor system studied consists of P identical
arithmetic/logic processors, M identical memory modules, 2 crosshar
interconnection network, and an I/0 channeil which <takes care of page
trangfers between main memory and secondary storage. For the reasons
mentioned in Chapter 3, the I/0 channel has a higher priority irn
accessing the memory. Since the algorithm is simple, the correspondirg
program code, although addressed frequently, does not consume much memory
space. Henrce a local memory is assumed for each processor to accommodate
its privave copy of the program code. The processors thus only compete
for the usually huge data storage. The request rate to the shared main

memory is thus reduced and the performance of the system is improved.

e
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A mutual-exclusion critical section is used in <the mnmulviprocessor
program to allocate Jjobs <to processors. It takes a finite amount of
time, Tcs, for a processor to execute this critical section code. A
processor couid be locked out of this critical section for certvain amount
of time, Tlock, if some other processor is executing the critical section

code when the processor attempts to access if.

A single first-in-first-out (FIFO) queueing facility is provided for
processors waiting for the service of the I/0 channel. A processor,
therefore, will spend a finite time Tq in this queue before the I/0
channel starts to serve it. The service time of the I/0 channel for each
page transfer basically consists of three time periods: the seek vime

Tseek, the latency time Tiat, and the page transfer time Tst.

- The simulation was done using event-driven techniques and the
relation among events and the time periods between events are shown in

Pigure 4.3. Notve that there are two event 1lists in the simulation.

Since <the I/0 channel has a higher priority for accessing the main
memory, the page transfer is free from any interference. Furthermore,
the sgeek time and latency time are characteristics only of the secondary
memory system. The queueing time in the paging queue, therefore, is also
interference-independent. However, all the other timing figures like the
critical-section lock-out time Tiock, the crivical-sectiorn execution time

Tes, and the computation time to multiply a pair of page blocks Tpair are

affected by the memory interference.

The degree of memory interference itself depends at any given time

or how many processors are competing for the main memory (not awaiting
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the pagze transfer, for example) and if the I/0 channel is transfering
data between main memory and the secondary storage. The memory
interference factor, which is used as a multiplicative factor tvo modify
those inverference-dependent <timing figures, has, <therefore, to be
evaluated from an appropriate memory intverference model whenever the
aforementioned conditions change. Because of this need for dynamically
modifying some timing figures, two event lists were provided to save the
cost of selecting modification targets and possibly reordering the
occurrences of events in the 1lists to maintain their ascending order in
time. One event 1ist, called the event queus, was used to queue those
events whose occurrences are interference-dependent and another event
iist, called the I/0 queue, was uged t0 queue those events whose
occurrences gre interference-}ndependent. The event queue is used for
activity outvside the dotted line in Figure 4.3 and the I/0 queue for

activity inside.

Simulations were done for several different secondary storage
systems. Various parameter values used in the simulation study are shown
in Table 4.2. The processors” timing characteristics are compatible <to
the IBM System/370 series[CaP78], and the timing charactveristvics of the
secondary storage system I are compatible to IBM 3330 disk storage unit
[Hay?B]. The secondary storage systems II, V, and X are just systems 2,
5, and 10 vimes faster <than system I, respectively. The secondary
storage system F, however, is identical to system I except a fixed head
is used for each track to eliminate the seek tvime. Note <that when we
refer to a secondary storage system, we also include the I/0 chanrel

dealing with that system. The timing data enclosed in the bdrackets in
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Table 4.2

Various Parameter Values Used in the Simulation Study

é page size = 1K words
Tpair = 100ms [2000]
Tes = 0.05ms [1]
processor's main memory request rate, Wp = 0.25
secondary
storage I II v X F
system
1 parameter
Tseek 30 15 6 3 0
} (ms) [600] (300] (120] [60] [ol
§ Tlat 8.4 4,2 1.68 0.84 8.4
J (ms) [168] [8u] £33.6] [16.8] [168]
Tt 5 2.5 1 0.5 5
y (ms) [100] {50 (20] (10] (100]
total overhead 43,4 21.7 8.68 4,34 13.4
per page miss [868] [u34] [173.6] [86.8] [268]
channel
trangfer rate 2 4 10 20 2
{x107 wordsa/s)

channel request

rate, V¢ 0.1 0.2 0.5 1.0 0.1
(when active)
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Table 4.2 are normalized values with respect to the critical-section
execution time Tcs. The model presented in section 3.2 Special Case II

was used to evaluate the memory interference factor.

In all the simulations, <two 64-page square data matrices were
muitiplied together to produce a third 64-page square matrix. Thus there
were a total of 192 pages in the virtual address space. The main memory,
however, has only 24 modules each capable of holding one page of data.
The number 24 was chosen because for <this particuiar computation even
without page sharing the main memory is able to hold the working page
sets of 8 processors, which is the maximum number of processors used in
the simulation. The number of processors available in the multiprocessor
system was varied from simuiation to simuiation to see <the amount of
speed-up achieved by increasing the number of available processors. This

result is shown in Figure 4.4.

Apparently the secondary storage system I is too slow to support
such a multiprocessor system with more than two processors for such a
computation. System II, although orly twice as fast, yielded much better
performance. On the other hand, system V apparently matched the needs of
the muitiprocessor systems with up to 8 processors very well for such a
computation. Hence doubling its speed did not improve the performance
much. System F”s high performance demonstrated the adverse effect of the
dominating factor in the paging overhead - the seek time. Removing seek
time here is almost as desirable as a five times overall speedup of the
disk system. The upturn from 7 to 8 processors in Figure 4.4 {(and alLso

irn Figure 4.5) is due to the fact that the number of decomposed j=uis for

\

- e ———— e e i T T




s 8 7
« P
4 €
E
0
U -
s 7.
5. -
1 T
4
j
K 4. -
/
3.
2.
1.
. . 3. S. 7.
. * 2. 4. 6. 8.
) NO. OF PRDCESSORS
Figure 4.4 Speedups 7s. No. of Processors )
[




153

this computation is more evenly shared by 8 processors than by 7

processors (the end effect mentioned in section 2.8).

A few insights can be gained by observations of other parameters as
functions of the number of processors used. For example: Figure 4.5
shows the average value of the memory interference factor, along the
entire course of a simulation, versus the number of processors used for
the computation. The resemblance of Figure 4.5 to 4.4 is probably not
surprising. The performance of the multiprocessor system is directly
related to the net computing power of the muitiple processors in the
system. Computing requires accesses to the shared main memory. Thus the
performance of the systvem varies proportionally to the magritude of the

nemory interference factor.

Figure 4.6 shows the ratio of the total number of effective page
fauits to the total number of all page fauits. The shapes of the curves
in the figure cleariy point out the fact <that the more seriously the
secondary storage aystem “"bottlenecks" the muitiprocessor system, the
larger the chance becomes for a processor to address a missing page whose

loading procedure has been initiated.

Finally, since all the processors in the system participate in the
execution of a known algorithm and the algorithm is so well designed that
relativeiy long page-fault-free periods exist between clusters of page
faults for any processor, it is interesting to look at the distridbution
of the intervals between page requests submitted to the secondary storage
system by the multiple processors. Figure 4.7-4.9 are the histograms of

such intervals for multiprocessor systems with secondary storage systems
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I, X, and F, respectively. In each figure there is a histogram for each
number of processors used (P). The toval number of requests (REQ) is
also indicated for each histogram. The horizontal axis is labelled by
the normalized time (with respect to Tes) and the vertical axis the
absolute number of occurrences. The average value of the intervals for

each histogram is indicated by a vertical arrow.

When only one processor is used for the matrix multiplication, there
are only two values for the inter-request intervals. One value 1is the
total overhead per page miss (see Table 4.2), which occurs when the
processor is establishing a new working set, ard the other value is <the
total overhead per page miss plus the execution time for the
multiplication of a page block pair (Tpair), which occurs when a new
working set is just estvablished. However, as the number of processors in
the system increases the lengths of the intervals between page requests
mostly decrease and assume more values. On the other hand, for P =6 in
Pigure 4.7 we do notice certvain very long inter-request intervals. These
invervals occur since when more processors are involved more distincst
pages are brought into the memory. It is then possible for a processor

to find its new working set already in the memory.

An interesting observation can be made from these histograms if we
consider the secondary storage system as a server and the page requests
as customers. The average length of inter-request time to the secorndary
storage can then be 1interpreted as the average interarrival time of
customers to the server. This time in terms of the normalized time unit

is indicated by the vertical arrow in each histogram. The total overhead
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per page miss given in Table 4.2 (wvhich does not include any overhead for
waiting in the channel queue) can be considered as the service time of
the server for each customer. Notvice that this service time is soon
approached by the average interarrival time in Figure 4.7 when the number
of processors increases. We recall from the queueing theory [Kleiﬁ] thatv
an open random flow system (e.g. a M/M/1 queue) could become unstable
when the customers” arrival rate approaches the server’s service rate.
It is actually the finite number of possible outstanding requests
(vecause of the finite rumber of processors irn the system) vwhich keeps

the system from going beyond saturation.

In corntrast, although the arrivai rate in Figure 4.8 for system X
increases (the average interarrival interval decreases) as the number of
processors increases, that rate never exceeds the maximal service rate of
the server for up to eight processors. The fact that the systvem is not
yet saturated actually guarantees further speed-up if even more

processors are used.

Finally, since the average interarrival tvime has approached the
service time of the server when eight processors are used in Figure 4.9
for system F, the speed-up curve in Figure 4.4 is expected to fiavten out
when more <than eight processors are used in the multiprocessor system

with secondary storage system F.

The above observation reveals informatvion not contained in the
speedup curves (Figure 4.4) and is helpful to system designers in

baiancing computer systems.

v e e o
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CHAPTER 5

Conclusions

5.1 Summary of Resuiis

Multiprocessor systems can save hardware cost or afford better
resources by sharing commor resources amouvg processors, but they pay for

- this saving by incurring access conflicts for resource usage. The idea

1 ) here is cost-effectiveness, which means that the performance and the
} ' economy- should be appropriateliy compromized. On the other hand, sonme

resources in a multiprocessor system have to be shared to achieve
~ synchronization. Thus performance degradavion due to resource contertion
and access interference becomes inevitable in these systems. Because of
the attractiveness of multiprocessing, it 1is, therefore, of great
interest to understand such degradavion in performance in order to

minimize its effect by using available architectural parameters.

We have mainly focused our attention in this thesis on the special
problem of memory interference in tightly coupied multiprocessor computer
systems. Depending on the nature of the memory-requesting mechanism,

discussion was centered on two important cases of such systems.

The memory interference in mulviprocessor systems with

time-division-multipiexed busses was first discussed in Chapter 2. The

G O O o S =) !
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discussion started from Emer s model for a multiple-instruction-stream
pipelined processor with a single fixed-cycle shared resource, which was
reviewed in section 1.2. Generalizations of that model for systems with
muitiple resources or resources with more general resource cycle times
were discussed. Provisions for the application of the model to programs
with crivical sectvions treatved as software resources were also covered.
Furthermore, as presented in Chapter 2 as "the SCP problem", an effective
resource cycle time was defined to replace the physical resource cycle
time for a TDM-bus multviprocessor system with unassigred time slots.
Finally, measured performance data from the execution of matrix
multipiication on AMP-1 was used 10 <check the above model. Matrix
muitipiicatior was chosen to focus on resource contention overhead only,
since iv has a 1large number of independent jobs with no precedence
constraints among them. Two other modeis for matrix ‘multiplication
execution with and without modification by the memory intverference factor
were aiso presented for comparison. Model-predicted values by the hybrid
model and the renewai-theory model with modification by the memory
interference factor both yield errors which are less than 0.8% with up to
7 processors. These two models also model the imperfect job sharirg asv
the end of the computatvion, which make them have the potential of dealing

with precedence structures in general computaticns. the measured data.

In Chapter 3, attention was shified to synchronous multiprocessor
systems #with crossbar as <the interconnection network. A general
probabiiistic model with provisions for both non-uniform memory request
rates and processor priorities was proposed. The model is superior 10

queue ing-theory-based modeis in the fact that it can easily accomodate
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these provisions. For the case of uniform memory access, an improved
model based on a steady flow concept was discussed. With the aid of
simulation results, this model was compared to other models in the entire
range of memory request rate ( (0,1] ) to demonstrate ivs accuracy. It
was also shown that the model could be used iteratively to accomodate

processor priorities.

Chapter 4 ©presents two application examples of the memory
interference models. An algorithm for the estimation of the execution
time of a program running on a multviprocessor system was proposed in
section 4.2. Appropriate m~aory interference model can be used vo
dynamicaliy ad just the job execution tvimes according to the actual number

of processors active at any given time 1in the systenm. Section 4.3
presents another example, vwhich is a case study on the execution of
matrix muitipiication in a mulviprocessor system with virtual memory. A
memory interference model was used to irtroduce the effect of memory
interference into the simuiation study, which was domne on the page

request levei.

5.2 Suggestions for Future Research

The effort in section 2.5 is intended tvo deal with the performance
overhead caused by critvical section code in mulviprocessor programs.
Although a mutual-exclusion critical secticr code is indeed a shared

resource in a multiprocessor system, the probabilisvic approach used in

P
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section 2.5 may notv work well if the critical sectiorn is nov frequently
accessed or the critvical section takes too much <time to0 execute. The
assumptvion of independence among requests could be poor in the latter
case because of potentially serious congestion. Further research is thus
required 1o explore more deeply more precise approaches to assess this

overhead.

Secondly, the importance of computation decomposition for a
multiprocessor algorithm is briefly mentioned in several ©places in the
thesis., However, not much investigation of this issue is found in the
literature and no good general guideline ‘or decomposing a computation
for multiprocessing is available. The algorithm proposed in section 4.2
is the first step toward attacking this problem systematically, but it
does not work .in all cases. For example, certain shared data in a
multiprocessor program may be protected by a mutual-exclusion critical
section to insure its integrity. Any job which needs access to this idnd
of critical section may be blocked temporarily by other jobs, but no
definite precedence relation exists. Since the performance degradation
of a multiprocessor system due to avoidable precedence relations in a
multitasked computation may very well exceed the overhead caused by
memory access interference, more research on the computation
decomposition is definitely necessary. The renewal-theory model
presented in section 2.8 may have the potential of dealing with the

precedence structures of general computations.

Finally, since a cache is effective in enhancing the performance of

the memory system and greatly reduces the traffic between processors and

!
i
|
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the main memory, it has been widely adopted in conventional uniprocessor
systems. However, the implementation of a8 cache or caches in a
multiprocessor system has its unique problems. The multiple-copy problem
occurs if a separate private cache is provided for each processor, while
serious interference could occur if the cache is shared among
processors. In view of all the potential advantages of using caches in

computer systems, this issue definitely deserves more research.
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APPENDIX

The Effect of Computation Decomposition on the

Performance of Executing Gaussian Eliminetion on AMP-1

Gaussian Elimination is a well-known classical algorithm for solving
simul taneous linear equations. In terms of the matrix form Ax = b, the

algorithm proceeds by triangularizing the A matrix first and then solving

for the unknowns by backward substitution.

A Gaussian Elimination program was developed for the AMP-1 to solve
a set of 14 linear equations of the form Ax = b[DavBO]. A 5-byte
floating-point format was wused for each matrix element. This format
provides for an 3-bit exponent and a 32-bit mantissa which allows

nunerical precision comparable to most large computers.

Three versions of the program were written for performance
evaluation. GAUSB decomposes the computation into three kinds of jobs:
normalization, NWORM i, which normalizes row i of the A matrix and bi
using Aii (assuming Aii¥3); reduction, REDUCE i,j (j¢i), which subtracts
the product of Aij and row j from row i of A and Aijbj from b, to make
the new AijaO; and back substitution, BKSUB i,j (i<i), which subtracts

the product Ajiby from b Job precedence for normalization jobs and

jo
eduction jobs is shown in Figure A.1 and that for back substitution jobs

2]

is shown in Figure A.2. No back substitution jobs can proceed until all

the normalization and reduction jobs are done. Job precedence is

controlled in GAUSB by the job-allocating critical section.

e
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GAUSY uses a separate semaphore for each of the decomposed jobs to
reduce semaphore congestion. GAUSZ eliminates all normalization jobs by
distributing the nommalizing divides into the reduction jobs and back

substitution jobs to reduce job precedence wait. All three versions

require exactly the same number of each type of floating-point operation.

Since the performance of GAUSY is close to GAUSB in Figure A.3, it
is seen that semaphore congestion is minimal. However, the normalization
jobs in GAUSB did cause significant job precedence wait as the number of
processors increased, as evidenced by the performance improvement of
GAUSZ over GAUSB. These data illustrate the utility of reordering and
revising +the computations of standard algorithms developed for single
processors when multitasking these algorithms, by proper decomposition,

for multiprocessing.

The values for I in Figure A.3 indicate the number of ways the
addresses are interleaved among the 64 memory modules in the system. The
program :~de and data span at least 8 modules when I=1 and all 64 when
I=64. .

Some experiments concerning the effect of address interleaving on
the performance were performed for GAUSZ, the version with the best
performance as far as job precedence constraints are concerned. Figure
A.4 displays the result. It should be noted that in these experiments,
the number of memory modules was always 64, regardless of the degree of
interleaving. Tﬁus the performance for no interleaving or a low degree

of interleaving as indicated is higher +than one would expect 4if the

number of modules were reduced to be equal to the degree of interleaving.
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It is interesting to note that even though so many modules of memory are

used with respect to the number of processors a high degree of memory
address interleaving among these modules is also required for high
performance. Performance improvements are still obtainable by increasing

I from 32 to 64 even when only 8 processors are used. The "Model"” curve

in PFigure A.4 indicates the expected speedup if memory access contention

were the only degradation from "Ideal” with I = 64. In fact the measured

A R

memory access contention is indistinguishable from the Model curve in
Figure A.4. It may be inferred from these data that memory access
contention 1is negligible when I = 64 and that job precedence and other
degradation factors account for the major differences between actual and
I ideal speedup in this region. Memory access contention becomes more

Q significant when I is reduced.

For comparison, similar experiments were done for the matrix
mul tiplication program MXMC, and the result is shown in Figure A.5.
Again, experiments always uvle 54 memory modules, regardless of I. High
degrees of interleaving result in a performance which comes remarkably
close to the ideal, despite the memory access contention due to shared
code as well as shared data space for the matrices. Al1so, the fairly
straight speedup curves indicate the lack of precedence constraints in

- the computation.
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