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Abstract

-- Omega is a description system for knowledge embedding which incorporates some of the attractive modes of
Sexpression in common sense reasoning such as descriptions, inheritance, quantification, negation, attributions

and multiple viewpoints. A formalization of Omega is developed as a framework for investigations on the
foundations of knowledge representation. As a logic, Omega achieves the goal of an intuitively sound and
consistent theory of classes which permits unrestricted abstraction within a powerful logic system. Description
abstraction is the construct provided in Omega corresponding to set abstraction. Attributions and inheritance
are the basic mechanisms for knowledge structuring. To achieve flexibility and incrementality, the language
allows descriptions with an arbitrary number of attributions, rather then predicates with a fixed number of
arguments as in predicate logic. This requires a peculiar interpretation for instance descriptions, which in turn
provides insights into the use and meaning of several kind of attributions. The formal treatement consists in
presenting semantic models for Omega, deriving an axiomatization and establishing the consistency and
completeness of the logic. (-

Keywords and Phrases: description, attribute, inheritance, knowledge represelffiriiimantic n.twork, logic,
model, consistency. "- 'Ic,

CR Categories: 3.64, 5.21, 5.24. 1 ,: , .'

This report describes research done at the Artificial Intelligence Laborato. of the W a f tK o
Tcchnology. Support to the laboratory's artificial intelligence research is provided in part by -th-Advance
Re.earch Projects Agency of the I)epartinent of Defcnse under Office oCPaval Rc.carb C9ntracw.N014-
80-C-0505 and in part by the Office of Naval Research under Office of Naval Rseagh conra6N' 17$-
C-0522.
'his research was supported in part through a grant from Olivetti to the Artificial lntej1gefV4c11. ratory .f
M F '.
The c cond audior has been supported in part by a fclhowship of the Consiplio Nazionalcdelle Ricerchc.

DI'C F: . c p Y O 2 ... "O 8
." ... -



V7 .. -- 77 ~

Table of Contents

1. Introduction I
1.. The Need for Structuring Knowledge I

1.2. The Need for a Logic Foundation I
1.3. Outline of the paper 4

E.. 2. Descriptions and Predications 4
3. Syntax 9
4. Semantics 10

4.1. Definition of Value of a Description 11
4.2. Definition of Truth Value 13

xiomatization 13
!A J.1. Axioms for Descriptions 14

&5Axioms for Statements 15
ioms for Attributions 17

-"' 5J rence Rules 18
i'heorems and Derivation 21

* So n. ess and Completeness 22
, 1. l nstniction of the Complete t-enkin Extension 24

Proof of Main Lemma 25
.ronsistency 28

8. Non Primitive Attributions 28
8.1. Independent Attributions 29
8.2. Constrained attributions 29
8.3. Projective attributions 30
8.4. Relationship between WithEvery, WithUnique, With and Of 31
8.5. Data Dependencies 31

9. Omega and other Formal Logic Theories 32
10. Language and Metalanguage 32
1. Conclusion 34
12. Acknowledgments 34

--4

•~ ~~~~~~'t is ...-..-.. ..



1. Introduction

- : The need for formalisms for representing knowledge arises in several areas of computer science, for instance:

- problem solving and reasoning;

- program specification, synthesis and proving;

- natural language understanding.

* Program specification is an area where the need for a large body of knowledge is immediately apparent. [his
is so because all the relevant knowledge has to be spelled out in complete detail and since most program
domains are totally artificial, there is relatively little common or previous knowledge to build upon.

1.1. The Need for Structuring Knowledge

Predicate Logic is the most widely known formalism for expressing knowledge, but has also been extensively
*criticized either for being too general or too inflexible.

General deductive procedures for predicate logic easily go out of control. There have been a few attempts to
* design systems which include facilities for (loosely) controlling the reasoning process 18, 6, 14, 15). They have
- provided significant insights in the control patterns used in deductions but very limited performance

-. improvements.

Most of the systems based on predicate logic rely on the implicit assumption that the smartness of the system
can be concentrated in its deductive capabilities. Research efforts have been devoted to devise algorithms
that would avoid making irrelevant or redundant deductions and following non promising paths. Such kind
of reasoning systems were expected to be able to reach the appropriate conclusions from the facts supplied,
even though these facts were expressed in a totally disorgani7ed way.

At the other side of the spectrum one could conceive a system where all valid facts are explicitly represented
and organized for ease of retrieval. The reasoning process could then be based just on matching and retrieval
capabilities. ibis suggests that the complexity of the deductive procedures might be traded for a richer. mre
structured base of knowledge with less sophisticated deductive capabilities.

Predicate logic provides little help in structuring knowledge. Its uniflorm notation does n t allo ti ('1i.o

which facts are related to each other.

1.2. The Need for a Logic Foundation

* "In recent years the lack of a satisfactory reasoning system has encouraged come experimentation with
*knowledge representation languages which require each deductive step to be explicitly user programmed.

This enables different reasoning processes or heuristics to b. devised or tailored to each domain [2, 3. 251.

Since the deductihe knowledge inside these systems is procedurally defined, it is very difficult to understand
how knowledge is used. Furthermore the possibility of building a system whicO examines itself is completely
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out of question. Thercfore whilc these systems are very useful as tools for experimentation or production,
some interesting research issues are not addressed by them, like structuring and reorganization of knowledge,
knowledge acquisition and introspection. -

Some other knowledge representation systems embed deductive mechanisms of their own, most often
procedurally defined [9, 251. Such deductive mechanisms are not formally investigated, so their logical
soundness can be questioned. It is in fact the case that some of these systems perform deductions which are
aot logically sound. Such is the case for Fahlman's NETI. system [9], which is affected by the so-called "copy
confusion" problem.

Fahlman's system has also both expressive and deductive limitations [23]. Its deductive capabilities are
mainly oriented towards the associative retrieval of information, while the rest of the reasoning process must
be performed outside the system. NTE'1 most significant contribution is in showing that the network
structure can be exploited by fast parallel search algorithms which perform marker propagation. Fahlman
suggests that these algorithms could be embedded into a special purpose hardware architecture, built out of
thousands of processing elements. The idea is appealing and we think that it can be developed even further.
For instance, if a fully deductive mechanism can similarly be realized as the concurrent activities of a large
number of very simple agents, then it would be possible to design a homogeneous architecture where a single
type of component would provide memory ,apabilities and also perform reasoning activities. Once again, to
design such a system, the basic rule. of the reasoning process need to be carefully investigated.

A well understood logic formalism is still the most appropriate foundation for knowledge representation and

reasoning. In a logic formalism, the basic deductive mechanisms are isolated from te intricacies of specific .
programming languages or implementations. Its power, its properties or its deficiencies can be more easily
established. If a proof procedure is proposed for implementing the logic, results such as the correctness or the
completeness of such algorithm can be stated or established only with respect to the theory.

We conclude that a knowledge representation formalism should:

- have a sound logic foundation

• -provide mechanisms for useful modularization of knowledge, to help focusing the attention
during reasoning

- have deductive rules which are simple, general, explicit, and accessible (to the system itself)

One approach to the structuring and modularization of knowledge is that which has evolved from the work on
semantic networks. Knowledge is arranged in a network, where nodes represent concepts and links connect
related concepts.

Omega embodies two ideas for structuring knowledge that are distilled from semantic networks: inheritance
and altribuions. Inheritance provides a way for grouping or partitioning knowledge. Attributions are used to

build associative memory structures. The semantics provided in this paper fully characterizes these concepts
and clarifies sevcral issues related to the use ofaitributions, so that the semantic ambiguilies and some of the
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. .inadequacies of semantics networks 141 are resolved.

Omega is based on descriptions, which are a generalization of the notion of type as used in programming

languages [26, 16, 121 and in program specification formalisms [5, 101. Descriptions are also closely related to
sets, indeed their semantics is given in term of sets of individuals.

Omega is a calculus of descriptions rather then a calculus of predicates as ordinary logic. The concept of
description in logic, and in particular of definite descriptions, can be traced back to the work of Frege and
Russell [21]. Logicians have always been bothered by the semantic problems raised by definite descriptions
when none or more than one individual meets the description. Therefore they have favored their elimination
by showing how descriptions can be contextually replaced by means of other constructs [221. In Omega we
deal with indefinite descriptions such as the description "(an Integer)".

Omega is a type free system, in the sense that a single logical type is admitted, namely descriptions. Omega is

an intuitively sound and consistent theory of classes which permits unrestricted abstraction within a powerful
logic system. Description abstraction is a construct provided in Omega that is similar to set abstraction.
Abstraction adds considerable expressive power to the language. Nevertheless, to avoid inconsistencies or
paradoxes, the rules for abstraction had to be carefully designed. The proof of consistency that is provided in
the paper is necessary to substantiate this claim.

Omega gains expressive power by providing the following features, some of which lack to other knowledge
representation languages:

1. variables: this enables to express complex general relations, rather then isolated assertions as in
most semantic network formalisms;

2. quantification over descriptions which encompasses quantification over both individuals and
classes. This feature in itself produces a more expressive system then first order predicate logic;

3. negation: this removes the major limitation of systems like PROLOG, [8] based on the use of
Horn clauses;

4. abstraction: allows description of classes of individuals in terms of their properties.

We expect that reasoning systems based on Omega would exploit parallel deduction strategies, possibly on

some parallel hardware. Many simple deductions in Omega can be performed by searching through the
knowledge network, where the span of the search can be circumscribed by the grouping of descriptions and
by exploiting negative information. In general, the capabilities of parallel problem solving systems such as
Fther 1141 appear promising as a support for the reasoning mechanisms demanded by a rich system such as
Omega. For instance the ability to process concurrently proponents and skeptics of the same goal enables

sentences containing negations to be dealt with properly. Conversely, it is the provision of negative facts that
makes the proponents/skeptics metaphor profitable and effective. So far the limitations on the use of

.- . liegalion seem to have been dictated mainly by considerations related to sequential proof algorithms.

'he logic system of Omega is similar to that presented by Richard Martin in 1171, cven though we started with
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different aims and motivations. Martin's system is proposed its a system of mathenmlical foiundation, in

'alternative to the classical theory of sets. Martin does not present a proof of consistency for his system.

The present discussion of the semantics of Omega does not cover some other features of the system as

metadescriptions, higher order capabilities, and the viewpoint mechanism.

*. An experimental system of active office forms has been implemented on the MIT LISP Machine by the

authors in which Omega has been used to describe the underlying base of knowledge [l]. A second
implementation of a reasoning system based on Omega is currently under deveklpment by Gerald R. Barber.

A subset of Omega is being used to describe two dimensional objects within the SBA system by Peter de Jong

(71.

In our experience the axiomatization of the logic has proven to be an extremely valuable gideline for

developing an implementation.

1.3. Outline of the paper

A brief introduction to the logic theory Omega is presented in section 2. Section 3 describes the syntax of the

language. In section 4 the models for the logic are presented and its semantics is defined. From this

semantics, an axiomatization of the logic is derived in section 5. The completeness and consistency of the
system is proved in sections 6 and 7. Section 8 is concerned with a discussion of attributions: the language is

extended by introducing syntactic notations for four different kinds of attributions which are defined in terms

of a single primitive kind of attribution. A number of properties are derived for each kind of attribution.

2. Descriptions and Predications

This section is an informal introduction to the language and the logic of Omega, to aid the reader in

understanding section 4.

The simplest kind of description is the constant description, like:

Boston

or

". 3
lere the names Boston and 3 are names describing individual entities.

An in 'wc dlcscription is a way to describe a collection of individuals. For instance

(a City)

or

(an I,,ger)

rcpik, a hc o llcciW i o1 tindi; idu,ik in the clss ot cities or o1' integers.

I li a f:,i.I,,ar scntcnc in Omega is a prcdiction A prcdication iclates.a !,l'l cc to a pidlic',i by the



5

relation is. For instance the predication

, Boston is (a City)
is understood to assert that the individual named Boston belongs to the class of cities.

Predication can be used to relate arbitrary descriptions. For instance the sentence:

(a ulman) is (a Mortal)

states the fact that any individual of class human is also an individual of class mortal.

One of the fundamental properties of the relation is is transitivity, that allows for instance to conclude that

Socrates is (a Mortal)

from

Socrates is (a Human) and (a Human) is (a Mortal)

The description operators and, or and not allow us to build more complex descriptions, like in the following

examples:

(a Boolean) is (true or false)

(a Positive-Number) is (not (a Negative-Number))

Descriptions form a boolean lattice, determined by the partial ordering relation is. The bottom of the lattice

is the description Nothing, a special constant playing the role of description of the null entity. The top of the

lattice is the description Something, another special constant which represents the less constrained, most

generic description.

More complex statements can be built by combining statements with the logical connectives A, V, -' and

=,as in:

(Tom is ((a Cat) or(a Dog))) A -- (Tom is(a Dog)) =s Tom is (a Cat)

The difference between description operators and statement connectives is illustrated by the following

examples:
• (true A false) is false

(true and false) is Nothing

Auributions are attached to instance descriptions and serve the purpose of specializing a class by describing

some of its properties. Alternatively, one can think of instance descriptions with attributes as parameterized

descriptions.

Properties or attributes are always relative to a class. An individual may have some attributes when it is

considered as an instance of a class and different attributes as instance of another class. It follows that

attributes do not necessarily migrate (are not inherited) from one concept to another as is the case with many

knowledge representation systems 19, 25, 181.

Attributions are a way of relating descriptions, as for instance in:
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my-car is (a Car (with oviner (an Italian)))

where "owner" is an attribute name for the concept "car", with attribute the description (an Italian). The

attribute named "owner" establishes a relationship between my-car and an Italian who is its owner. It is also a
way to state the existence of some Italian who is the owner of my-car without explicit use of existential

quantifiers.

Predicate logic expresses relationships of this kind by means of predicates. The relational data base model in

computer science uses a similar concept of relations indexed by attribute names. Note that the semantics of

both Predicate 1A)gic and relational data bases depend on the fact that relations or predicates have a fixed
number of arguments. In Omega attributes can be added or omitted from a description, with no a priori limit.

By adding an attribution one gets a further specified description; omitting an attribution one obtains a more

general description. So for instance:

(a Car (with owner (an Italian)) (with make VW))

is more specific than (a Car (with owner (an Italian))). Attributions act like constraints that restrict the

extension of a description.

The semantics that we will describe clarifies a number of problems connected with the use of attributions. In

fact attributions have sometimes been used for expressing different incompatible ideas:

- binary relations (like whole/part relations);

- functional relations;

-general n-ary relations.

To illustrate some of the anioiguities in the use of attributions, consider the following example:

6 is (a Quotient (ofdividend 12) (ofdivisor 2))

Here 12 is related to 6, the result of the quotient, and 2 also is related to 6. However, the values 12 and 2 are
also related with one another as the arguments of a quotient. In fact, given the value of the quotient and

either one of them, the other one is uniquely determined. Because of such dependency between 12 and 2, it

does not seem appropriate to talk about 12 or 2 as attributes of the number 6 in the same sense as in the
previous exa,,,iples. In this case attributions are used to express relations among attributes themselves, besides

expressing a relation between each of them and the whole description.

We use a different syntax to reflect the different nature of astributions. More precisely we use with when the

attribute is solely related to the objects denoted by the description, as in:

(an Object (with color (red or green)) (with shape round))

(a Car (with passenger John) (with passenger Jane))

Instead %ke %ill use of when that is not the case. For example in:

(a Quot itnt (of diividend 12) (of divisor 2))

the attribute iwianed "di% idend" decends on the numbers that wre are describing btalso on the description ol

i . .i~ ~~~~~ -- - - - - -_ . _ . . . . , . .. ---. .
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the other attribute. '1 he same is true for the "divisor" attribute. Another example is:

(a Segment (of origin 3.5) (of angle 450) (with length 20))

In fact the same segment can be described in two ways by giving the origin of the segment and its direction
(the angle between the line starting at the origin of the segment and the cartesian axes). Given the segment

there are two possible origins and the angle depends on the the origin chosen to describe the segment. For

example:

(a Segment (of origin 3.5) (of angle 00) (with length 2)) same
(a Segment (oforigin 5.5) (of angle 1800) (with length 2))

It is not allowed to form a description of the same segment by extracting attribution from these two

descriptions. In fact

(a Segment (of origin 3.5) (of direction 180) (with length 2))

conceivably describes a different segment.

The length of the segment instead is an independent attribute in that it is uniquely determined by the segment

(or each of the segments) being described.

One of the goals in the design of Omega has been the possibility to allow for partial descriptions and

incremental refinement of description. For example suppose we know that Peter has a child whose name is
John:

Peter is (a Person (with child John))

Later on we learn that Peter has also a daughter:

Peter is (a Person (with child (a Female)))

Then we can deduce:

Peter is ((a Person (with child John)) and(a Person (with child (a Female))))

From this we would like to conclude that:

Peter is (a Person (with child John) (with child (a Female)))

However we do not want the same possibility of merging for ofattributions. For example it is true that:

6 is (a Quotient (of dividend 12)) and(a Quotient (ofdivisor 3))

but not

6 is (a Quotient (ofdividend 12) (ofdivisor 3))

because:

(a Quotient (of dividend 12) (of divisor 3)) is 4

and by transitivity of is we would get:

6is4

Another way of looking at this, is by considering how these examples would be expressed in Predicate Logic:

(3 x. 6 = 12/x) A (3 x. 6 = x/3)

- - which is different from sa)ing that:
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6 = 12/3

In a sense, attributions replace Skolem functions, in this case the functions divide and multiply: ". .

6 = 12/divide (12, 6) A 6 = multiply (6, 3)13

Note that in general several individual descriptions are allowed as attributes for the same attribute name, as
::': in:

" "(a Car (with driver John) (with driver Jane))

* As a consequence it seems convenient to introduce a notation for attributions allowing a unique individual
attribute like it is for example the relation mother for a person. We will express this fact by using the kind of
attribution with unique. So we will say:

(a Person (with unique mother Sarah))

In addition a notation will be introduced for the possibility to describe any individual attribute having the
same attribute name, like for example when we want to describe a person who owns just american cars. For
this purpose we will introduce the with every kind of attributions.

(a Driver (with every car (an American-car)))

It turns out however that the only primitive kind of attribution is of For this reason it will be enough to give
a formal semantics to of The other kind of attributions (with, with every and with unique) will be defined in
terms of of and properties for each one of them derived as theorems.

The use of universally quantified description variables enables general facts to be asserted about descriptions.
Such variables are written as an identifier prefixed by an equal sign symbol. For example we can say that:

(a Teacher (with subject = x)) is (an Expert (with field =x))

from which we can deduce, by instantiation:

(a Teacher (with subject music)) is (an Expert (with field music))

Description abstraction is a construct that we introduce in Omega to extend the expressive power of the
system. An example of description abstraction is the following:

(Any =x such that(Carl is(a Teacher (with student =x))))

which denotes the set of individuals for which the predication (Carl is (a Teacher (with student = x))) is true,
i.e. all the students of Carl.

An extensive discussion on the inference rules for description abstraction will be found in section 5.4.

Omega can be used as a type system. For example it allows to express in a natural way enumcrative types and
subtypes as ihown in the following examples:
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(a Color) is (red or green or yellow)

(a Season) is (winter or spring orsummer orautunin)

(a Positive-Integer) is ((a Natural-Number) and(not 0))

(an Ordered-Pair (with first =x) (with second =y))
is (a Pair (with first (= x and(a Number))) (with second (=y and(a Number (with = x))))

A description system should be able to express the distinction among the facts that information is missing,

that something does not exist or that inconsistent information has been supplied.

'he following examples show how Omega deals with these three situations.

A person who has a telephone number will be described as:

(a Person (with telephone# Something))

Someone who does not have a telephone:

not (a Person (with telephone# Something))

A person whose telephone number has been described inconsistently:

(a Person (with telephone# Nothing))

In the TAXIS data model [20] a special constant is provided for each one of these situations (UNKNOWN,

q NOTHING, INCONSISTENT respectively).

3. Syntax

The language of the theory Omega is presented here using the well established conventional notation of

denotational semantics. The syntactic categories of the language are listed below. The rules are presented

about how to form elements of such categories from elements of other categories and an infinite class of

identifiers. For each category we also show our choice of metavariables ranging on the elements of that

category, that we will use in the rest of the exposition.

Category Syntax Meta-variables

Ic identifier individual constants (, |I2 ...)

V = identifier variables (v, v1, v2 ...)

Cc identifier class constants or concepts (c, c1, c2 ...)

4 A identifier attribute names (a1, a2 ... bt, h2)

Ats (of 1 1) ... (Ofan 6), n >_ 0 airribution sequences (a, ap a2 ... )

4
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sec below statements (a. 0 1, 2 ...)

A see below descriptions (8,8 1, 82.)

Decriptions and statements are built from constants and variables according to the following syntax:

Descriptions Statements

i, Nothing, Somethiag true fase

(a e (ofq 81) ... {ofa. 8.) ) , n > 0 (a1 is 8z)

(Anyv such that a) Vv.0

(81 or":) (Ol V 02)

(S, and 2) (a, A o2)

(not8) (-n O)

a (01 02)

Nothing, Something are two special constants. tre and flse are individual constants, which are used as truth

values.

Note that each statement is also a description, specifically a description of a truth value. Descriptions and
statements are mutually recursively defined. Because of this unusual situation, the proof of consistency
cannot be done normally by induction on the structure of statements, but is rather performed by induction on

the structure of descriptions.

4. Semantics

The method we follow in this work is to define validity semantically. We first characterize a class of models

for Omega and define the notion of truth in a model. This provides an intuitive and immediate semantic
interpretation for our theory.

We then look for an axiomati.ation for valid formulas of the theory. The models prorided earlier are usefulL in this stage for providing a guideline and a criterion for suitability of the axiomautzation.

1l%, pro% inP the completeness theorem, we show that the axiomatization is adequale. Furthermore the

C" 111110ccncss result IClls that our theory is consistent if and only if it has a molcl I'herefore the exiktence of
, inod,'ls prv- zcd in this section implies the consistcnc% ol Omega.
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The structure of tie interpretation is

A = (1, D, R, 5, C>

where I is a non empty set of individuals; D is a family of sets over I, which includes all singletons over I and

is closed under the operations of union, intersection and complement; and

9R C (U0 0 I x (A x I)n)

5 : Ic--* I

C Cc -4 R

C is a function, that given a concept returns a set of tuples. Each tuple has an individual as its first

component, while the remaining components are name-value pairs representing attributes. The names in
such pairs are taken from the set A of attribute names, values are individuals from the domain of
interpretation.

1'his representation has been chosen to express that:

an individual might have more then one value for the same attribute (i.e. attributes may represent
relations rather then functions);

0 ' -attributes can have interrelated values (i.e. relations of arity greater then two);

- each individual might have a different set of attributions from other elements in the same class.

We also require that D has the following additional closure properties, needed to model selection by
attributes and description abstraction:

VrE R, s],...,s E D,al,...,an EA, (1)
{xEl13 Yj,...,.. El, tEr. Vl<i<n.t=<x ... <aiyi> ... >A yi Ei} D

Ix E I I P({x})} E D (2)

where P is a formula built using predicate symbol C. the standard logical connectives and quantifiers and

variables ranging over elements of D.

4.1. Definition of Value of a Description

The value of a description containing free variables can be determined once a value is assigned to each of
those varibles. An environment is a mapping that defines an association between variables and elements of

D. The domain of environments is:

SF: V-4 D

We will use the mrcta-variable p fir denoting environments.
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The valuc of a description can be defined as it mapping from descriptions and environments into D.

': A-+ E -4D

Value of constant descriptions:

* a. IliJlp 15 { Ij

b. r~lNothingip = I

C.i i sonvjp~ =I(,

ri(a c(ofa18 ) ... (ofak 8k))P=

ri(Anyv such tlaa)Jp = Ix Ei I II' o]pII/vj}

'i(8I Or6)IP = rII1811P U r[82P

ru(81 and8j2Jjp =rg 1 p n r~s~jp

' (not 8)]p I -. fl8p

'TI~Oj = itrueb~ if I=A4 Ik']p, r~falselp if W=A~ ROD 6

The definition of an instance description says that all tuples from the class associated to c are considered
which have, for each attribution, a component which has the name of that attribution as a tig and a value
which satisfies the corresponding description of the attribute. The set of the first elements of such tuples is
the value of the instance description.

* As an example we show how to determine the value of the instance description (a Product (of factor1 2)). Let
us suppose that:

C iProduct]
1(0 (factor1 0> (factor2 0>), (0 (factor1 0> (factor2 W), (0 (factor1 0) (factor 2 2W,..
<1 <factor, 1) <factor 2 W),
(2 (factor1 2> <factor 2 M , (2 <factor1 1) (factor 2 2),
(3 (factor1 3> (actor 2 1 , (3 (factor1 D) (factor 2 3>), ...l

'4 lga Product (of factor1 2)1 Ix{ E D 1 3 yi. ... , yn E 1), t E C gProductD.
t = (x ...(factor, yj>... >A yjE 4211 = 10, 2. 4,6 ...)

Note that an attribution namcd a1 in an instance description 8 implies that for any individual i described by 8
there exist somre individual which is the value for the attribute a1 of i. The exception is whcn the attribute is

pI"l i ne.IILvc1vir(nmcfll asp but for ~ai iablcv to which it iissodites
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Nothing. In this case the whole instance description reduces to Nothing. When a partial description is formed
. omitting some of the attributes, its interpretation is that omitted attributes range over all possible values.

The interpretation of the description abstraction Any is the set of individuals which, substituted for v in the

statement a, make the statement true. The notation

means that the statement a in the environment p is true relative to the structure .A, and it is completely

defined in the next section.

4.2. Definition of Truth Value

-* 2. Variables

a. I=A vIp iff p(v) = Vftrue]p

b. PI=A - v]p iff p(v)= rLfalsep

3. It 10i is 82 ip iff rl8d1P r Pflp

4. I'{ 1(61 same 82)1p iff r'(1 p = iJ82 p

5. I=A I(Vv. o)jp iff for all x E D, I=A 1 o1jpx/vl

6. l'=A P01~ V 02)]P iff I'=. I1'iip or I- 10'211P

7. I=A.. [(a, A or2)p iff I'=A Jp and l.A Iou2]P

8. P=A 1-1 Op iff not 1IA 101p

9. )=-- A(0 =: o)p iff l=.A Ioi]p implies O=A 1021p

The truth of a statement relative to a structure A is defined as:

Definition I: (Truth) l.,. 0 iff V p I'j [alp

Given the definition of truth, validity is defined as follows:
.4 Definition 2: (Validity) 1 a iff V A I=A 9

5. Axiomatization

We turn now to the question of finding an axiomatization of the universally valid formulas.

I'he method that we follow in deriving the axioniatiiation, is based on noting rules that preserve validity of
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formulae and turning them into axioms or inference rules.

We present the axioms of tie system in the form of natural deduction inference rules [131. As a matter of

notation we write

meaning that from the premises a1 ..... on we can derive the consequence a and that from the premise a we

can derive any of the consequences o ,.... an. We omit the line when the set of premises is empty.

The inference rules will be written as
[o01

with the meaning that a can be derived from 1, ... , a, and if ao was used as a premise in deriving any one

of al . it will not appear as a premise for the conclusion a.

5.1. Axioms for Descriptions

The notion of "sameness" between descriptions is defined as follows:

Definition 3: (Sameness)

(S1 same8 2) iff ((8 1is8 2)A(8 2is81 ))

In the following we will also use the following abbreviation:

Individual [8] to stand for -(8 is Nothing) A V v. (v is 8) = (5 isv) V (v is Nothing)

. Individuals are those descriptions who are not Nothing and are at the lowest level in the lattice of

descriptions: only Nothing is below them. Intuitively, the notion of individual corresponds to description that

cannot be further specified. In our set theoretical interpretation, individuals correspond to singletons, i.e. sets

consisting of a single clement.

..
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Axioms for Descriptions

1)1: 81 is 82 (V v .(Individualiv) A v is 81) 8 v is 82)

1D2: 8 is Something
1)3: Nothing is 8

D4: Something is (8 or(not 8))
)5: (8 and(not 8)) is Nothing

81 is 82, 81 is 8 3~~1)6: .

81 is(8 2 and83)

81 is is 83
Ahf D7: . ,

(81 or 2) is 3

81 is 82
DS:

not 8 2 is not a,

1)9: not (not 8) is 8
DI0: 8 is not(not 8)

Axiom DI is a version of the axiom of extensionality for sets, phrased in a way to take into account that only

sets consisting of individuals are being considered.

5.2. Axioms for Statements
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Axioins for Statements

SSi: fte
.- $2: 'fise

S3: a = true
S4: false 20 or

$5: true a q V - 0
S6: A-' a false

' '01 = '02, 01 03

S7:
01 u '2 A 03

0r1 = 03, 02 =: 03

58:
01 V 02 :  03

01 = 2
-9:

"-a2 = - 19'1

SIO: " a (a) a
SII: a = " ("a)

S12: 0 0 same rue
S13: -o - c same false

Note that this axiom set is not minimal, since. for instance S1-S2, S3-S4 and S5-S6 are pairwise derivable from

one another. A similar remark applies to the axioms for descriptions presented before.

We have chosen this set of axioms so that there is an almost complete symmetry between the axioms for
statements and the axioms for descriptions. In this way any theorem about descriptions has a corresponding

dual thcorem about statements. A single proof procedure will work for both descriptions and statements.

...:Axioms S12 and S13 are necessary in our assumption that statements are descriptions. The first one for

example allws a statement to be asserted whenever it describes the tnith value hue.

''lhere is a strict correspondence between statements and descriptions, which ii xpresed in the 1i1loi(m i1g

ei
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lemma:

I emma 4:

1. Nothing same (Any v such that fase)

2. Something same (Any v such that true)

3. (81 or 82) same(Anyv such that(v is 51) V (v is 82))

4. (81 and 62) same (Any v such that(v is 81) A (v is 8

5. (not 8) same (Any v such that -1 (v is 8))

Actually these statements could have as well been given as an alternative axiomatization for description

operators. We prefer however the set of axioms presented above since they do not involve explicitly

description abstraction. As we will see, the inference rules for description abstraction had to be restricted to

apply only on individuals. With the axioms we have chosen,. the use of abstraction rules and extensionality

(axiom D]) can often be avoided.

5.3. Axioms for Attributions

It is easy to verify that the following axioms of Commutativily, Omission, Monolonicity and Strictness hold

under the interpretation given for of attributions.

The axiom of Commutativity expresses the fact that the order of attributions is irrelevant, and can be stated as

follows:

(a c a, (ofa1 81) a2) is (a c (ofa1 81) a, a2) (Commutativity)

For example:

(a Queue (of front (an Integer)) (of rear (a List-of-Integers))) is
(a Queue (of rear (a List-of-Integers)) (offront (an Integer)))

The axiom of omission states the fact that if we omit an attribution we get a more general description:

(a c (ofal 8) a) is (a c a) (Omission)

For example

(a Student (ofcurriculum Engineering) (ofyear 2)) is (a Student (ofcurriculum Engineering))

The axiom of Monotonicity is stated as follows:

a I is O 2 (a c (ofa1 S 1) a) is (a c (ofa 82) a) (Aonoivniciiy)

For example:
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John is (an Artist) ((a Person (ofchild John)) iv (a Person (ofchild (an Artist))))

(a Factorial (of arg 0)) is I == (a Product (of arg, (a Factorial (of arg 0)))) is (a Product (ofarg1 1))

The axiom of Strictness corresponds to the intuitive nlotion that when an inconsistent description is given for

an attribute then the whole description is inconsistent, i.e. it does not describe anything. The formal
statement of the axiom is as follows:

(a c (of a, Nothing)) is Nothing (Strictness)

For example:
(a Square (ofarg (6 and(not 6)))) is (a Square (ofarg Nothing))

(a Square (of arg Nothing)) is Nothing

* 5.4. Inference Rules
It is easy to verify that these two transitivity rules preserve the truth according to our interpretation:

01 '2 CF2902 1' 03 1 is 82 - 82 is 83

Cr 173 81 is 83

rhe ordinary rule of Modus Ponens can be derived from transitivity by letting a, be true.

We need a rule for introduction:

ICril

Next note that the rule of generalization is sound:

V V . 171V1

where v is a new variable, or at least onc that does not appear in any assumption on which a deens

Also sound is die corresponding instantiation rule:

V V . OFIVJ

The most niatural firnulation of the abstraction rule fo~r descriptions would be:
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.- Al8 is (Any v such thatolvD

and the corresponding concretion rule:

8 is (Any v such that a[vD
Cl

Unrestricted abstraction and concretion rules lead to a number of problems with the interpretation of

descriptions given above. Let us consider for example

John is (a Human)

With (a Human) for 6, by Al, we get:

(a Human) is (Any v such that (John is v))

but if also

Paul is (a Human)

then by transitivity:

Paul is (Any v such that(John is v))

Q:_, and by Cl:

(John is Paul)

which might not be true.

A restricted form of the abstraction principle that avoids such problems is the following:

cS161 A Individual[6]
A2

8 is (Any v such that o[vD

where v is a new variable. Similar problems arise with an unrestricted concretion rule. Let
o4[v = Individualiv] and suppose:

Individual[John]
Individual[Paul]

then by A2

John is (Any v such that IndividualV])
Paul is (Any v such that Individual[v])

From the axiom D6, which introduces the ordescription, we get:

(John or Paul) is (Any v such that Individuallv])

and from this and Cl:

4\
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Individual (John or Paul]

We solve this problem by restricting CI analogously to what we did for Al:

8 is (Any v such that orvi) A Individual[8l
C2

• alai

With this restriction to individuals, it is easy to verify that the abstraction and concretion rules are sound.

Note that with this form of the concretion principle we avoid Russell's paradox. Suppose that z is the

, following description:

z (Any v such that "' (v is v))

If we allow C1, since z is z is true by reflexivity of is, we would derive the paradoxical consequence:

-'(z is z)

We can show however that:

z same Nothing

because

(Any v such that (v is v)) same (Any v such that false) same Nothing

Therefore nMle C2 cannot be applied because Nothing is not an individual, as it follows from the definition of

individual.

The complete set of inference rules is summarized in the following table.

4 :-•-
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Inference Rules

Statements Descriptions

loul

02

0 a2, 02 03 81 i$8 2, 82 iS8 3

a, = 0'3 81 is 83

qlv'] v181 A Individual[B1

V v. 0vi 8 is (Any v such that o[vi)

V v. 0lv) 8 as (Any v such that olvl) A Individual[]

5.5. Theorems and Derivation
A derivability relation I- is defined as usual, so that r I- a means that the statement a can be derived from

the statements in r and from the axioms by applying the rules of inference.

We list here some theorems of Omega that are needed in later proofs and give an example of a derivation.

Lenmma 5:

1.8 isa

2. (81 and 82) same not (not 81 or not 82)

3. (81 Or8 2) sane not (not 81 and not 82)

4. (81 is082 or83) and not82)) (81 is83)
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5. -(81 is Nothing) = (81 is notS2 -17(81 is 82))

6. Individual [8] = (8 is (81 or 82) (8 is 8 1) V (8 is 82))

7. Individual [81 = ((8 is (not 81)) -1(8 is 81))

8. a I = : Ca V a 2

9. Individual [81] A -' ((81 and 82) is Nothing) = (81 is 82)

The second and third statements correspond to the deMorgan's laws. As an example of deduction in Omega
we prove the first of the De Morgan's laws, namely statement 2.

Proof: From reflexivity we have:

1. (81 and82) is(8 1 and82)

By applying axiom I)7 to this, we get:

2. (81 and82) is 81

[hen, by complementation (axiom 139):

3. (not 81) is not (81 and 82)
D

In a completely similar way we get also:

4. (not 82) is not (81 and 82)

Then, from 3 and 4 we can introduce the or, using axiom DS:

5. (not 81 ornot82) is not(8 and8 2)

and finally, again by complementation:

6. (S I and 82) is not (not 81 or not 62)

'The inclusion in the other direction is proved similarly.

6. Soundness and Complekeness

'[he first result to be proved about the axiornatization is its soundness:

'heoren 6: (Soundness) For every closed statement A, r I- A F F = A

We arc using the notation r 1= A as an abbreviation for:

V N. (V o IEl' -==x a = . A
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The soundness theorem states that whenever a statement can bc derived from the set of premises F then it is

tne in every model that satisfies the statements in r.

Proof: Omitted since the argument is straightforward.

We next turn to prove the completeness theorem for the theory of Omega.

The completeness theorem gives us a measure of the adequacy of our axiomatization. In fact it asserts that the

set of valid formulas coincides with the set of theorems of our theory. In this way it provides a bridge between

what is established as semantically valid, and what is established by syntactic symbolic manipulations.

More important, this result is the fundamental step in showing the consistency of our formal theory.

The completeness theorem can be formulated as follows:

Theorem 7: (Completeness) For every closed statement A, r 1= A r F I- A

which means that any formula true in every model that satisfies the set of premises F, can be derived from F
by the rules of Omega and vice versa.

We present the general outline of the proof, which follows the lines of a Goedel-Henkin argument [24].

Sketch of the proof. The implication F - A => r 1== A corresponds to the soundness theorem. The other

direction of the implication is equivalent to saying:

Moodr -A = -3M m Fr W.A

If A cannot be derived from F then there exists a model of F in which A does not hold.

- In order to find such a model, for a given closed formula A, we build a complete Henkin extension of theory

F, called FA, having the property that:

r b- A =* FA I/- A (3)

Being a complete, FA will have the property:

V closed a either FA -- a or FA F- -1 i (4)

4 Th.it rA is a Henkin theory means that:

For every statement o[vJ, there is a constant c, such that: FA F- (VIc) V v. o[vJ) (5)

Moreover, since there is an implicit existential quantifier in the attribution notation, our definition of a

lHenkin theory will also require that:

For every statement of the form (8 is (a c (ofal 8 1) ... (ofan 8n))), (6)
there exist n individual constants y. Yn such that:

FA l- 8 is(a c (ofa 81) ... (of an 8n)) A Individual 181 =
8 is (a c (ofal 1 ) .. W(fan Y)) A (y is 81) A ... (Yn is 8n)

Next we will prove the fillowing lemma in order to obtain a model for rA:
L.emma 8: (Main lemma)
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3 m v, (rA l C "A .M a)

Given such a model A for rA, we assume that r IV- A and note that from property 3 it follows that rA 10- A.

Then:

FA A) A
Since a model of rA can be restricted to a model of r, we have proved that:

r W A *-3 m .r hibm A

and the completeness theorem.

6.1. Constnction of the Complete Henkin Extension
We will assume from now on that F 611- A. As a consequence we are assuming that r is consistent.

We build a Hcnkin theory F' as the limit of an inductive series of theories defined as follows:

0= F. The special constants of level 0 are defined as the empty set.

n+ 1 is obtained by adding to Fn:

- the statement o[y] =, V v . alv], where y is a new constant, for each statement of the form
V v. [v], with occurrences of special constants of level n.

- the statement

8 is (a c(ofa1 81) ... (fak k)) A Individual[8] =
i~-.8 is (a c(ofa ")tl."" (o/ak 70) A (y1 is81) A ... (7k ifSO)

where yl, ... yk are new constants, for each statement of the form
(8 is(a c (ofa1 Y7) ... (ofak ))), with occurrences of special constants of level n. All the
constants added during this step constitute the special constants of level n + 1.

Definition 9: r' = U F0.

Lemma 10: F' is a conservative extension of r, i.e.

If a contains no constants but those in r and F' F- a, then I I- a (7)

Proof: Suppose F' - a, and the proof uses just one premise from F' that is not in F, namely a'.
.hen r i- a' cr . The statement o' can be in one of these two forms:

Case 1. a' a ly] V v. lV]

r H (aib') V v. allv]) =' a
r - (aIlzi v v . a1[%1) a

since y is a consunt not present in r and z is a new variable.
::.. r I-- (v z. a II/ =:> v v. a Ilvl)

iBut since r F- V z. allI =*V v . lci. by Aods ionens F - a

Use 2. a* 8 iv (aL (ofaI S1) ... (ofak 6 )) A lndividulIS S 8 is (a c (ofa i ) ... (of
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k Yk)) A (y is 81) A ... A (k S S8 k)

We note thata' (0"[Ytl ... J]= V vlt ...vk.O"[vl, ...vkD
where
91vl ..... Vk] -" (8 is(a c (ofat v1) ... (ofak v))) V -- Individual[8] V

-(VI 'Sal) V ... V _n (N iS 0

Therefore this case reduces to case 1.

ilie general case when a is proved in F' by using n premises not in F, can be proved by applying
inductively the argument above.

To obtain the complete extension of r we are looking for, we exploit a known result:

'Ilicorein 11: (Lindenbaum) If r is consistent, then r has a complete simple extension.

* Since F' -A, we can now define rA as follows:

Definition 12: FA is any complete simple extension of r' u 1- A).

Lemma 13: rA has properties 3, 4. 5. 6.

Proof: It follows from the definition of fA, and lemma 10.

6.2. Proof of Main Lemma

0, We will prove the main lemma by building a model A such that:

V a F4 -- a r rA :=.A

,A will be a term model built out of syntactic material. More precisely equivalence classes of individual

descriptions will be the elements of the domain of interpretation. Let us define the equivalence relation - as:

8 8 = rA I- (8 SMe 8)

We will denote as 181 the equivalence class of 8 according to ~.

. We will call Ind = {8 E A I FA -- Individual[81}, and I = Ind/-, the quotient of the set Ind with respect to

the equivalence relation -. Finally, let D = {181 E I I rA l-- (8' is 8) 18' E A).

"fihe model A is defined as: A = VI, D, R, 5, C> where

.111i1 = I

C 1c] = 1<181 <a, 1811> ... <an 18l>> I 8, 81 ... an E Ind, a, ... an E A.
-A I- 8 is(a c (ofan 81) ... (ofa, 8j))

R = {ce I c E Ccl

It is not difficult to show that this model has the required closure properties:

Lenuna 14: I) contains all singletons of I, is closed with respect to union, intersection, complement
and has properties I and 2 with respect to R.

.............
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With the following lemma we reduce our problem to a property of our the model just defined.

Lemma 15: If'Iira = {18' 18' E lnd, FA l'- (S' so)} then A  O A  .A=A

Proof: Assume first that rA l"- 0. By axiom S12, it is also rA H (a is true). Using this fact and

transitivity in the premise of the lemma, we have

rfllc g 418'118' E lad, rA - (8' is true)}- {Itruel}

But by the definition of '

'ilal= {ntrueII if and only if rA '_A

On the other hand, if we assume that rA =A ai then

or[ = 4loue} = 118'I 18' E Ind and rA - (8' is

This means that rA l'- (true is a). Since FA is complete, then either FA F- a or FA F_-- a. But the
latter case is impossible because, by applying axiom S13, we would get rA - (a isfalse), and by
transitivity rA F- (true is false), and since both true and false are individuals (axiom )2)
rA F- (true samefalse), and, by axiom S12, rAF-false, which contradicts the consistency

assumption for rA.

The model we have defined has the following significant property, which establishes the connection between

the semantics (value of descriptions) and the syntax (derivability of predications):

Lemma 16: For every closed description 8:

'Q8j = {18'118' E lnd, FA - (8' is 8)j

Proof: The proof is done by induction on the structure of descriptions.

1. 8-i.

rli] = {Iil} = {18'l 8' E Ind, rA - (8' is i))

since i E Ind by axiom D2. Note that this case takes care also of the individual constants true

and false.

2. 8 = Nothing

*iNothing] = {} = {18'1I 18' E Ind, rA - (8' is Nothing))

since Nothing is not an individual.

3. 8 = Something

f'lSmething] = Ind/- = {18'I 18' E Ind, rA - (8' is Something)}

since 8' is Something can be proved of any description 8'.

4.8 -(ac(ofa 81)... (Ofak 8k)).

- - - - -
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'[ja c (ofat 61) ... (ofak 8k) = (by definitini ofir)

418118 E Ind, 3 t E C3 (c), 8', .. E' Ind.

V i. I < i n. t =<11 < ... <a 1'1>... > A 18'1Ii'i } =

(by definition of C and induction hypothesis)
11811 E Ind, 3 'EA, ' .... '0 EInd.

rA l' S s"5V i.1 < i <n 8' (a c... (ofa, S'j) ... )A rA F- a iisail C

(by Monotonicily and Omission)

11118 E Ind, I A I-- 8 is(ac(ofal 81) ... (ofak 8k))

We can show the inclusion in the other direction by considering two cases:

a) rA l- (S1 is Nothing) V ... V (Sk is Nothing)

In this case, by Monotonicity and Strictness:
{18118 E Ind, rA -- 8 is(ac (ofa 8 1 ) ... (ofak 8))} _

118118 E Ind, FA I- 8 is Nothing} = {}
(since no individual is Nothing)

b) rA -- '"(81 is Nothing) A ... A -'( 8 k is Nothing)

fIS 1 )8 C Ind, FA 8-- r (a c (ofat 81).- (°fak Sk))} C

(by property 6 of rA)
118118 E Ind, 3 'l, .... S'kE Ind.
.A I- 8 is (a c (ofa1 S'1) ... (ofak 89k)), (891 is 81) A ... A (Wk is 8k)} C

""ij c (ofa1 8 1)... (ofak 8k)1

5. a = (a, da8 .

rS 1 or82J = (by definition of ')

'18111 U ' ]J = (by induction hypothesis)

1118 E Ind, rA F- (S is 61)) U 1181185 E Ind, rA l'- (S 'S 82)1
11I1 E Ind, A I- (8 is 1I) or rA -- (8 iss)} =

(by Lemma 5.8 and the completeness of rA)
41118 E Ind, I A -- (8 is 81) V (a is 82)} = (by Lemma 5.6)

118115 E Ind, "A I-(8 is(a1 or8)

6. s (81 is 8).

4j

_= .
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Assume first that: SII8 l 111 821

" : {I115I 5 E m td, rA 1-- (8 is 51)} C_ 11118 5 End, r'A I- ((5 as 82)}
1(by 

induction hypothesis)
8' E Ind, rA F- 8, is ,=F I- 8' S 82
rA F- 81 IS 82 (by axiom 1I))
FA I- (81 S 8l2)s true (by axiom S12)
{1118 E lnd, rA '- (8 is(81 is 8))) C{11811 E lnd,A I-- (istre)}

(by transitivity)
5la 18 E Id, rA i- (8 is true) = e} = T18 1 is 82 (by definition of T)

The proof is similar under the hypothesis that -- 1 Ti1 C 1621.

7. a- (a, ve2).
Assume first that: rA 'A 'Ac orA ̂ . O2

'A I-- aI or FA I- 02 (by ind. hyp. and lemma 15)
rA -- (o1 V v2) (by completeness of rA)
rA I- (71 V o2)is tre (by axiom S12)
(18118 E Ind, rA l- (8 is(a V 72))} 1A 18118 E Ind, rA F- (S is te)}

(by transitivity)
118118 E Ind, FA I- (S is true)) = {Itruel} = r~u V v9 (by definition of )

The proof is similar under the hypothesis that rA IA 9 and rA MCA '72.

We leave out the rest of the proof as it is similar.

Once lemma 16 has been established we can prove the main lemma. In fact from lemma 15 we can deduce

the following:

IfV a. Vial = {18'1 18'E Ind, rA -- (8'iso)} then V a. FA I-- a A I=A

The main lemma follows from this and lemma 16.

7. Consistency

The consistency of Omega can be established by means of the following result:

,cTheorem 17: If an Omega theory r has a model, then it is consistent.

Proof: Suppose r has a model M, then r *M false. From the completeness result it follows that
r I7LN- false which proves the consistency of r.

8. Non Primitive Attributions

In this section we will introduce three kind of attributions formally defining them in terms of de primitive
attribution of
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8.1. lndcpendent Attributions
" |ch with mttribution is an independent relation f1rom all other attributions in an instance description.

A with attribution represents a binary relation between attributions and the objects of the description. As

such, the with kind of attribution can be defined as a special case of the of attributions, as stited by the

following definition:

Definition 18:

(a c a, (with a, 8) a2) same(a c (ofa1 8)) and(a c a, a)

'hbis definition enables us to isolate an attribution in an instance description. In this way that attribution is
turned into a binary relation. 'his binary relation cannot normally be further merged into an n-ary relation, as

the following examples illustrate:

(a Product (of factor 1 2) (of factor 2 3)) is 6

(a Product (with factor 2) (with factor z 3)) sme
(a Product (of factor1 2)) and(a Product (offactor% 3)) sawe

*. (a Product (offactor1 6))

As a direct consequence of the definition, with attributions have the following property of merging:

((a c (with a, 8)) and(a c a)) is (a c (with a, 8) a) (Merging)

*- However it is easy to verify (by counter example) that merging does not hold for ofattributions.

8.2. Constrained attributions

Sometimes one wants to express constraints on the value of an attribute or describe properties that each value
of an attribute must satisfy. For example we use with every when we want to describe a person who only has

male children or specify the type of arguments of a function. For this purpose we introduce the notation with

every. For example:

(a SquareRoot) is (a SquareRoot (with every arg (a PositiveReal)))

expresses the fact that each argument to the square root function must be a positive real number. Another

exainple is:

(a Person (with every child (a Male)))

which describes persons whose children are all male.

Formally we can introduce with every attributions with the following definition:

Definition 19:

(a c (with every a 8,) a) same
(a c (with at 81) a) and
(Anyv such that V Vj . Individuallvii A v is(ac (with a v1)) = (vi is 81))

For the with every kind of attributions the following properties hold:

* . 'Theorem 20: (Iusing)
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(a c(with every a, 81) (with every a, 82)) same (a c (with everya: (81 and 82)))

(ac(with every a1 81)(witha t 82)) is(ac(witha! (81 and 82)))

(a c (with every a, 81) (ofal 82) a) is (a c (ofaI (81 and 82)) a)

These axioms allow to fuse descriptions in a with every attribution with any other attribute for the same

attribute name. The type of attribution that participates in the fusion becomes the type of the resulting

attribution.

The following theorem is needed to establish the properties of weak fusing.

Theorem 21:

(a c (ofal 81)) same
(Any v such that" V vt . -,(Individual[VlJ A (v, is 81) A (v is (a c (ofaI vl)))))

We could prove this theorem by a reasoning analogous to that used in the proof of lemma 10. A simpler

proof can given by exploiting the completeness result, i.e. by showing that the statement is true in all

interpretations .A = I, D, R, 3, C>.

It can be shown that the with every kind of attribution is subject to all the other axioms given above for

attributions.

8.3. Projective attributions
Another non primitive kind of attribution that is often useful is with unique. The with kind of attributions
imply the existence but not the uniqueness of an individual being the value of the attribute, with attributions

can be merged but cannot be fused. We introduce with unique as the kind of attribution to use when there is

just one individual as value for that attribute. For example:

(a Person (with unique father (a Doctor)))

A version offfusing, called unique fusing, holds for with unique attributions. For example:

(a Person (with unique father (a Doctor)) (with father Paul))
is (a Person (with unique father ((a Doctor) and Paul)))

Note that unless this description reduces to Nothing, we can conclude that Paul is (a Doctor) (lemma 5.9).
The kind of attribution with unique is not primitive and can be defined in terms of other constructs as follows:

Definition 22:

(a c (with uniqueal 81) a) same
(a c (with a1 81) a) and
(Any v such that V 62, 8. . Indi idual 1 2] A Jndividuall 3J A

(v is ((a c (with a, SA2)) and(a c (with a, 83)))) = (82 same 63) A (82 is 81))

'The properly of uniquefising can be formulated as follows:

T"heorem 23: (Fusing)

(a c (with unique a, 81)(oJa l 8)) a) is(a c (with uniqueal (81 and8.C) a)
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Note that the difference between with evey and with unique also reflects in a dilterent formulation of F'tuing:

for example:

(a Driver (with unique car (a Datsun)) (with car (a Blue-car))) is
(a Driver (with unique car ((a Datsun) and(a Blue-car))))

(a Driver (with every car (an American-car)) (with car (a Ford))) is
(a Driver (with car ((an American-car) and(a Ford)))

8.4. Relationship between WithEvery, WithUnique, With and Of

Let us summarize the properties of the four kinds of attributions that we have discussed.

with unique with every with of

Commuiativily Commutativily Commutativity Commulativity
Omission Omission Omission Omission
Monotonicily Monotonicily Afonotonicity Monotonicity
Strictness Strictness Strictness Strictness
Merging Merging Merging
Unique Fusing Weak Fusing

One would expect that changing with every or with unique into with would give a more general description,
and similarly changing with into of In fact it can be shown that:

6! V.Theorem 24:

1. (a c (with unique a, 81) a) is (a c (with every a1 81) a)

2. (a c (with every a1 81) a) is(a c (with a1 81) a)

3. (a c (with a 81)) is(a c (ofa1 81))

However the following does not hold, when a is not empty:

(ac(witha, 81) a) is(ac (ofa1 81) a)

For example:

(a Product (with a1 2) (ofa2 3)) same(a Product (ofa1 2)) and(a Product (ofa2 3))

and it is not the case that:

((a Product (ofa1 2)) and(a Product (ofa2 3))) is (a Product (ofa1 2) (ofa2 3))

8.5. Data Dependencies

he literature on data bases has investigated the issue of dependencies among data represented in a data base.
When such dependencies exist among data. care must be placed when modifying some portion of the data in

order to avoid invalidating or destroing meaningful information. Dependencies in fact usually convey
semantic or integrity constraints. It is therefore useful to be able to express where such dependencies occur

and possibily separate them one from another. Normal forms of data base hve been developed as proper
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structuring of data which avoid such conflicts.

One kind of data dependencies that have been examined in the literature are functional dependencies. In
Omega, we can express that an attribute is not functionally dependent on any other ones, by using the with

notation, as the following result shows:

Theorem 25:

For all 81, 82 ,..., 8m

(a c (ofal 81) ... (of a, 8J)) same (a c (ofa1 81)) and(a c (ya2 8) ... (ofa. 8)
if and only if

(a c (ofa 81) ... (ofau 8.)) same (a c (with a1 81) (oja,80) .. (fa. 8))

The interpretation of the above statement is that when the attribute a, does not depend on the other attributes

az  a0 then with may be used as well for a.

For example:

(a Complex (of real 3) (of imag 5)) same (a Complex (with real 3) (ofimag 5))

In fact:

V 81 2 .
(a Complex (of'real ,Xof'imag 82)) same
(a Complex (ofreal 81)) and(a Complex (ofimag 85))

The real and imaginary part for a complex number uniquely depend on the complex number being described,

in the same way as, given a point in the plane, its cartesian coordinates are uniquely determined.

9. Omega and other Formal Logic Theories

Omega is a more powerful formalism then First Order Predicate Logic, since it allows variables ranging over

descriptions (i.e. classes). This provides enough power to express for instance Peano arithmetic with a finite
number of axioms. Since there is no layering of descriptions as there is in the hierarchy of sets, Omega is as

general as it can be in this respect.

4 The version of Omega presented here is a first order theory. We are investigating extending the
axiomatization to higher orders. In [11] we presented examples of the use of higher order capabilities.

Omega is a Set Theory. However Omega relies on constructors for building new descriptions. In set theory,

pairs for instance are built by means of set formation alone. In Omega a Pair constructor can be used to
describe pairs of objects. A Pair of two individuals will be an individual itself, therefore separating the
inheritance relationship from the component relationship. Omega is a constructive set theory and has no
axiom corresponding to the powerset axiom of classical set theory.

4l 10. Language and Nietalanguage

''he di0InIL0ti ,II hciceii lingtkige antd nictalanguage has been often o~erlo)ked iii thc litceratue on
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knowledge representation.

We believe that issues largely debated like the distinction between a description and its referent, inctiu and

use of a concept, quotation, opaque operators, belief structures can be resolved if the two levels are clearly

understood.

Consider for instance the issue of the distinction between mention and use. 'The following two statements,
both involving the word "Multisyllabe", are respectively examples of mention and use of a concept:

"Multisyllabe" is (a Multisyllabe)

Multisyllabe is (a WordProperty)

The relation between the uses of "Multisyllabe" in these sentences is apparent if we move at the metalevel,
where the subject of the second sentence (Multisyllabe) can be described as:

(an Individual-constant (with name "Multisyllabe"))

In Omega there is also a further way of using the same word, as in:

(a Multisyllabe) is (a Word)

The context of quotations and the context of believes or knowledge are instances of opaque contexts. When
we cite a statement, like in:

Cantor's theorem says that the power set of natural numbers is a non numerable set

iwe don't refer to the value of the statement. In fact we don't want to say that Cantor's theorem is true, which
is the value of the statement

"The power set of natural numbers is a non numerable set

We really intend to express 'he form of the statement, i.e. we want to give a metadescription of the statement.

The situations in the case of believes is very similar. In

Pat knows that 323-7817 is a phone-number of subscriber Mike

a metadescription for Mike's telephone number is involved, not Mike's telephone number itself. Suppose we
denote such metadescription as '(a Phone-number (of subscriber Mike)). Such metadescription refers to the
description (a Phone-number (of subscriber Mike)), which in turns refers to 323-7817. Even if it is the case

that (a Phone-number (of subscriber Mike)) same (a Phone-number (of subscriber Fred)), we cannot substitute
the metadescription '(a Phone-number (of subscriber Fred)) for '(a Phone-number (of subscriber Mike)) in the

above sentence, since these two descriptions arc definitely not same. So it is not possible to derive the

paradoxical conclusion that Pat knows Fred's phone number.

McCarthy presents a quite similar solution to this problem 119], without connecting his notion of "concepts as

"' objects" to metadescriptions.

. A detailed discussion of the issue and uses of metadescriptions remains outside the scope of this paper.

-
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11. Conclusion

Many interesting ideas about knowledge representation have been obscured by the lack of a comprehensive

formalism. We have discussed the logic Omega as a proposal for filling this gap. Omega provides most of the

attractive feaures of the formalisms that have been used in representing knowledge: predicate logic, semantic

networks, set theory, relational calculus. These features are combined in a simple and unified description

system. The results of this paper establish Omega as a solid basis on which to build a theory of knowledge

representation.

Inheritance and attributions are two major structuring mechanism in Omega. Though inheritance is used in

other formalisms as well, the axiomatization of Omega gives a precise account of the semantics and the

properties of such concept.

. The semantics presented in the paper also allows to address and clarify a number of issues related to the use of

attributions: interaction between attributions, merging and inheritance; functional dependencies among
attributions; different kinds of attributions for different purposes: with attributions to express part-of

relations, of attributions to express arguments-value relations.

Despite the richness of the system, Omega is still a simple system, where the number of primitive concepts is

quite small and the axiomatization quite compact.
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