D-A123 925 SEMANTICS OF INHERITANCE AND ATTRIBUTIONS IN THE) 171 .
DESCRIPTION SYSTEN_OMEGA. . (U) HﬁSSRCHUSETTS INST OF
AMBRIDGE ARTIFICIAL INTEL E CE L..
UNCLASSIFIED G RTTRRDI ET AL." JAN 82 RI-M-642-RE F/G 5/7

311 -y NN Sl p—— q e e v o v
FA e e SR P PR d B O .) TR
...... - - . s eo s B R i YA

. DA 3 CEENCE g0 LSt h Bt FCEIN - ! AR T
- h-h I slhl(.> !- - v‘t\.l-ol.-..‘-‘v -...n.»v<. .- -» :) ’ . . . " ‘ ¥ : o M ' i ~ .x

UG, WOl Y UL WP . W

S -

Y 2o b

K ol ~i Ol o E <]
- 2_ 2E o~ _ 2t 2 E y
: == —— © =
.. = = .—Mm. ’
ol ooz
‘ dAaa g
O Z < K
- ECETTI l_____ 5 s }
EEEFEPPTE 36) 1
— QS
== o= .
e & T
O. —_) r® o
: — —|ift <~ 8% .
X _— — =l gz
. — ——— WN .,.
w....
g
1..

A

o WATI23925

h Al Memo # 642Kev8201

47 TR (and Suteisie)

Semantics of Inheritance and Attributions in
Description System Omega,

ha E/Oj e 75

! Gluseppe turdid lhrh imi “\

' 77 -

Artificial Intelligence hbontory

5AS -Technology Squere

Cacbr idge, Massachusetts 02139

1L CONTROLLING OFMCE NAant AND ADDRESS
Advancad Ressarch Projocts Agency
100 Wilson 8ilvd
Ar! ingtos, vn-gtnu 22209
4w

Office of Nevel u.sarcu : g E Vv uncussmu D
information Systems ° R § D S C -
Arlington, Virginia 22217 a Sl . TR

'C. ST N . STA T (ol ile - {/‘L j

c—— . SRS e e -

Dsstrihutnon of this docunont ls unl l-ltd./ V‘BJ

. unamnamvﬁumw.munﬁmh
B 118 supm, EndnT ARy NGTES : . et
o o (W /4&4 /0 4 7 ;é “' o
b . v:. T -
;" T T o reverce side 'Tm-nur“-ﬁ‘
-4 Description. . Attribute
= Inheritance ' Knowledge Iq:nscnution
2 Semntic Network Logic
- Mode) M‘sm’ . . S
- B Ao TRAET fhs o ;T'_W ot
i;_"_ - . . 88 mmcmbass Bam beoa .2
L
=
o
[

..............................

N \APPROVED FOR PUBLIC RELEASE
By T IMISIRIBUTION WVLIMITED

' MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.J. Memo No. 642p . 8001 Revised, January 1982

Semantics of Inheritance and Attribut:ons in the Description System Omeg

Giuseppe Attardi and Maria Simi

Abstract

~Omega is a description system for knowledge embedding which incorporates some of the attractive modes of -
cxpression in common sense reasoning such as descriptions, inheritance, quantification, negation, attributions
and multiple viewpoints. A formalization of Omega is developed as a framework for investigations on the
foundations of knowledge representation. As a logic, Omega achicves the goal of an intuitively sound and
consistent theory of classes which permits unrestricted abstraction within a powerful logic system. Description
abstraction is the construct provided in Omega corresponding to set abstraction. Attributions and inheritance
are the basic mechanisms for knowledge structuring. To achieve flexibility and incrementality, the language
allows descriptions with an arbitrary number of attributions, rather then predicates with a fixed number of
arguments as in predicate logic. This requires a peculiar interpretation for instance descriptions, which in turn
provides insights into the usc and meaning of scveral kind of attributions. The formal treatement consists in
presenting semantic models for Omega, deriving an axiomatization and establishing the consistency and
completeness of the logic. =

g , Keywords and Phrases: description, attribute, inheritance, knowledge represcftau(ﬁrmanm network, loglc,
' modcl consistency. ARAUEY PP ,. (
§ ix. L3 ‘, ; :
CR Categories: 3.64, 5.21, 5.24. | 1 sre '
. 4 e 106 3 R f
k ‘(S Sena.qy
- This report describes research done at the Artificial Intelligence Laboratorjf-of the Massaémfstﬁs Ilquoj
X Technology. Support to the laboratory’s artificial intclligence rescarch is provided in part by the"Advance

Research Projects Agency of the Departinent of Defense under Office of Naval Rexcarc{\ C})mnuNOOQI‘f-
80-C-0505 and in part by the Office of Naval Rescarch under Office of Naval Rcwmh comradi ’NDGOMH
C-0522. YItitcaiomn |
This research was supported in part through a grant from Olivetti to lhc I\mﬁ(.ldl lnte}hgcﬁéé !ﬁburamry ;of
MI | ! X F i

The second author has been supported in part by a fellowship of the Cnnsq,lm Nazionale delle Ricerche.

D"c Fi.: COPY 88 01 28"”'078

\am Ae an e as g aseeng

..........................

..............................

Table of Contents

1. Introduction
1.1. The Need for Structuring Knowledge
1.2. The Need for a Logic Foundation
1.3. Outline of the paper

2. Descriptions and Predications

3. Syntax

4. Semantics
4.1, Definition of Value of a Description
4.2. Definition of Truth Value

. waiomatization
_-.\’ 8-1. Axioms for Descriptions

o % - *" 5\ Axioms for Statements

R "{ xioms for Attributions
@ ¢ 5% Perence Rules
G st

hcorems and Derivation

SouBacss and Completeness
.y 61 Jonstruction of the Complete Henkin Extension

% 6:2. Proof of Main Lemma
soonsistency

8. Non Primitive Attributions
8.1. Independent Attributions
8.2. Constraincd attributions
8.3. Projective attributions

8.5. Data Dependencies
9. Omega and other Formal Logic Theories
10. Language and Metalanguage
11. Conclusion
12. Acknowledgments

seeess

Netrvecie/

vall amd/er
18% '”.i.\\

Wi

Tas

8.4. Relationship between WithEvery, WithUnique, With and Of

4

AR YR

L e

Sa e la el e e elle a8e e

R e ———

1. Introduction

The need for formalisms for representing knowledge arises in several arcas of computer science, for instance:

- problem solving and rcasoning;
- program specification, synthesis and proving;

- natural language understanding.

. Program specification is an area where the nced for a large body of knowledge is immediately apparent. This

is so because all the relevant knowledge has to be spelled out in complete detail and since most program
dornains arc totally artificial, there is relatively little common or previous knowledge to build upon.

1.1. The Need for Structuring Knowledge
Predicate Logic is the most widely known formalism for cxpressing knowledge, but has also been extensively
criticized cither for being too general or too inflexible.

General deductive procedures for predicate logic easily go out of control. There have been a few attempts to
design systems which include facilities for (looscly) controlling the rcasoning process 8, 6, 14, 15]. ‘They have
provided significant insights in the control patterns used in deductions but very limited performance
improvements.

Most of the systems based on predicate logic rely on the implicit assumption that the smartness of the system
can be concentrated in its deductive capabilities. Research efforts have been devoted to devise algorithms
that would avoid making irrelevant or redundant deductions and following non promising paths. Such kind
of rcasoning systems were expected to be able to reach the appropriate conclusions from the facts supplied,
even though these facts were expressed in a totally disorganized way. '

At the other side of the spectrum one could conceive a system where all valid facts are explicitly represented
and organized for case of retricval. The reasoning process could then be based just on matching and retrieval
capabilitics. This suggests that the complexity of the deductive procedures might be traded for a richer. more
structured base of knowledge with less sophisticated deduictive capabilities.

Predicate logic provides little help in structuring knowledge. Its uniform notation docs not allow 1o exprass
which facts are related to each other.

1.2. The Need for a Logic Foundation

In recent years the lack of a satisfactory reasoning system has cncouraged some experimentation with
knowledge representation languages which require cach deductive step to be explicitly user programmed.
‘T'his cnables different reasoning processes or heuristics to be devised or wilored to cach domain [2, 3, 25).

Since the deductive knowledge inside these systems is procedurally defined, it is very difficult to understand
how knowledge is used. Furthermore the possibility of building a system which examines itself is completely

e m' A e A m om m A oa Mt P

out of question. Therefore while these systems are very useful as tools for experimentation or production,
some intercsting research issues are not addressed by them, like structuring and rcorganization of knowledge,
knowlcdge acquisition and introspection.

Some other knowledge representation systems embed deductive mechanisms of their own, most often
procedurally defined [9,25]. Such deductive mechanisms are not formally investigated, so their logical
soundness can be questioned. It is in fact the case that some of these systems perform deductions which are
not logically sound. Such is the case for Fahlman's NET1. system [9]. which is affected by the so-called “copy
confusion"” problem.

Fahlman’s system has also both expressive and deductive limitations [23}. Its deductive capabilitics are
mainly oriented towards the associative retricval of information, while the rest of the reasoning process must
be performed outside the system. NETIL. most significant contribution is in showing that the network
structurc can be exploited by fast parallel scarch algorithms which perform marker propagation. Fahiman
suggests that these algorithms could be embedded into a special purpose hardware architecture, built out of
thousands of processing elements. The idea is appealing and we think that it can be developed even further.
For instance, if a fully deductive mechanism can similarly be realized as the concurrent activities of a large
number of very simple agents, then it would be possible to design a homogeneous architecture where a single
type of component would provide memory .apabilities and also perform reasoning activities. Once again, to
design such a system, the basic rule, of the reasoning process need to be carcfully investigated.

A well understood logic formalism is still the most appropriate foundation for knowledge representation and
rcasoning. In a logic formalism, the basic deductive mechanisms are isolated from he intricacies of specific
programming languages or implementations. Its power, its properties or its deficiencies can be more easily
established. If a proof procedure is proposed for implementing the logic, results such as the corrcctness or the
completencss of such algorithm can be stated or established only with respect to the theory.

We conclude that a knowledge representation formalism should:

- have a sound logic foundation

-- provide mechanisms for useful modularization of knowledge, to help focusing the attention
during reasoning

- have deductive rules which are simple, general, explicit, and accessible (to the system itself)

One approach to the structuring and modularization of knowledge is that which has evolved from the work on
semantic networks. Knowledge is arranged in a network, where nodes represent concepts and links connect
related concepts.

Omega embodies two ideas for structuring knowledge that are distilled from semantic networks: inheritance
and attributions. Inheritance provides a way for grouping or partitioning knowledge. Attributions are used to
build associative memory structures, The semantics provided in this paper fully characterizes these concepts
and clarifics scveral issues related to the use of attributions, so that the semantic ambiguitics and some of the

— el ante ot e PPNy PR : R ot A et et

P S P S D TN

TV e Tev v v A AN) Dl M N] TR N s T T A e T T e e T N Y T T TR T T

inadcquacies of scmantics networks [4] are resolved.

Omicga is based on descriptions, which are a generalization of the notion of type as used in programming
languages [26, 16, 12] and in program specification formalisms [, 10]. Descriptions are also closely related to
sets, indeed their semantics is given in tenn of sets of individuals.

Omega is a calculus of descriptions rather then a calculus of predicates as ordinary logic. The concept of
description in logic, and in particular of definite descriptions, can be traced back to the work of Frege and
Russell [21]. Logicians have always been bothered by the semantic problems raised by definite descriptions
when none or more than one individual meets the description. Therefore they have favored their climination
by showing how descriptions can be contextually replaced by means of other constructs [22]. In Omega we
deal with indefinite descriptions such as the description "(an [nteger)"”.

Omega is a type free system, in the sensc that a single logical type is admitted, namely descriptions. Omega is
an intuitively sound and consistent theory of classes which permits unrestricted abstraction within a powerful
logic system. Description abstraction is a construct provided in Omega that is similar to set abstraction.
Abstraction adds considerable expressive power to the language. Neverthcless, to avoid inconsistencies or

paradoxes, the rules for abstraction had to be carefully designed. The proof of consistency that is provided in
the paper is necessary to substantiate this claim.

Omega gains expressive power by providing the following features, some of which lack to other knowledge
representation languages:

1. variables: this enables to express complex general relations, rather then isolated assertions as in
most semantic network formalisms;

2. quantification over descriptions which encompasses quantification over both individuals and
classes. This feature in itself produces a more expressive system then first order predicate logic;

3. negation: this removes the major limitation of systems like PROLOG, [8] based on the use of
Homn clauses;

4. abstraction: allows description of classes of individuals in terms of their properties.

We expect that reasoning systems based on Omega would exploit parallel deduction strategics, possibly on
some parallel hardware. Many simple deductions in Omega can be performed by searching through the
knowledge network, where the span of the search can be circumscribed by the grouping of descriptions and
by exploiting ncgative information. In general, the capabilities of parallel problem solving systems such as
FEther [14) appear promising as a support for the reasoning mechanisms demanded by a rich system such as
Omega. For instance the ability to process concurrently proponents and skeptics of the same goal enables
sentences containing negations to be dealt with properly. Conversely, it is the provision of negative facts that
makes the proponents/skeptics metaphor profitable and effective. So far the limitations on the use of
negation scem to have been dictated mainly by considerations related to sequential proof algorithms.

e Togic system of Omega is similar to that presented by Richard Martin in [17), cven though we started with

different aims and motivations. Martin's system is proposed as a system of mathematical foundation, in
alternative to the classical theory of sets. Martin does not present a proof of consistency for his system,

The present discussion of the semantics of Omega does not cover some other features of the system as
metadescriptions, higher order capabilities, and the viewpoint mechanism.

An experimental system of active office forins has been implemented on the MIT LISP Machine by the
authors in which Omega has been used to describe the underlying base of knowledge [1}. A second
implementation of a reasoning system based on Omega is currently under develcpment by Gerald R. Barber.
A subset of Omega is being used to describe two dimensional objects within the SBA system by Peter de Jong

71

In our expericnce the axiomatization of the logic has proven to be an cxtremely valuable ghideline for
developing an implementation.

1.3. Outline of the paper

A bricf introduction to the logic theory Omega is presented in section 2. Section 3 describes the syntax of the
language. In section 4 the models for the logic are presented and its semantics is defined. From this
semantics, an axiomatization of the logic is derived in section 5. The complctencss and consistency of the
system is proved in sections 6 and 7. Section 8 is concerned with a discussion of attributions: the language is
extended by introducing syntactic notations for four different kinds of attributions which are defined in terms
of a single primitive kind of attribution. A number of properties arc derived for each kind of attribution.

2. Descriptions and Predications

This section is an informal introduction to the language and the logic of Omega, to aid the reader in
understanding section 4.

The simplest kind of description is the constant description, like:
Boston

or
3

Here the names Boston and 3 are names describing individual entities.

An instance deseription is a way to describe a collection of individuals. For instance
{a City)

or
(an Wnteger)

represant the cotlection of individuals in the class of cities or ol integers.

The most elamentary sentence in Ormega is a predication A predication relates a sabject W0 a predicare by the

L S S N I A S P N N .

9.

LT T et W T AR T AT ST TN T R S T N N e T T L T .Y W O " X %

relation is. For instance the predication
R Roston is (a City)
! - isunderstood to assert that the individual named Boston belongs to the class of citics.

-l Predication can be used to relate arbitrary descriptions. For instance the sentence:
(a Human) is (@ Mortal)

states the fact that any individual of class human is also an individual of class mortal.

One of the fundamental properties of the relation is is transitivity, that allows for instance to conclude that
Socrates is (a Mortal)

‘from
Socrates és (@ Human) and (¢ Human) is (@ Mortal)

The description operators and, or and not allow us to build more complex descriptions, like in the following
examples:
(a Boolean) is (true or false)

(a Positive-Number) is (not (a Negative-Number))

Descriptions form a boolean lattice, determined by the partial ordering relation is. The bottom of the lattice
is the description Nothing, a special constant playing the role of description of the null entity. The top of the
fattice is the description Somerhing, another special constant which represents the less constrained, most

generic description.

More complex statements can be built by combining statements with the logical connectives A, V, = and
=, asin: |

(Tom is ((a Cat) or(a Dog))) A — (Tom is (a Dog)) = Tom is (a Cat)
The difference between description operators and statement connectives is illustrated by the following

examples:
. (true A false) is false

(true and false) is Nothing

Autributions are attached to instance descriptions and serve the purpose of specializing a class by describing
some of its properties. Alternatively, one can think of instancc descriptions with attributes as parameterized
descriptions.

Properties or attributes are always rclative to a class. An individual may have some attributes when it is
considered as an instance of a class and different attributes as instance of another class. 1t follows that
altributes do not nccessarily migrate (are not inhcerited) from one concept to another as is the case with many
knowledge representation systems [9, 25, 18).

Attributions arc a way of relating descriptions, as for instance in:

e Ta e _ P R - .o X .
PSP TR WY W W W D S, N R T N N W P A L R T L L L

[l

my-car is {(a Car {with owncr (an Italian)))
where "owner” is an attribute name for the concept "car”, with attribute the description (an Italian). The
attribute named "owner" cstablishes a relationship between my-car and an lalian who is its owner. It is also a
way to state the existence of some Italian who is the owner of my-car without explicit use of existential
quantifiers,

Predicate logic expresses relationships of this kind by means of predicates. The relational data base model in
computer science uses a similar concept of relations indexed by attribute names. Note that the semantics of
both Predicat> Logic and relational data bases depend on the fact that relations or predicates have a fixed
number of arguments. In Omcga attributes can be added or omitted from a description, with no a priori limit.
By adding an attribution one gets a further specified description; omitting an attribution onc obtains a more
gencral description. So for instance:

(a Car (with owner (an [talian)) (with make YW))

is more specific than (aCar (with owner (anItalian))). Attributions act like constraints that restrict the
extension of a description.

The semantics that we will describe clarifies a number of problems connected with the use of attributions. In
fact attributions have sometimes been used for expressing different incompatible ideas:

- binary relations (like whole/part relations);
- functional relations;

- general n-ary relations.

To illustrate some nf the ambiguities in the use of attributions, consider the following example:
6 is (a Quotient (of dividend 12) (of divisor 2))

Here 12 is related to 6, the result of the quotient, and 2 also is related to 6. However, the values 12 and 2 are
also related with one another as the arguments of a quotient. In fact, given the valuc of the quotient and
cither onc of them, the other one is uniqucly determined. Because of such dependency between 12 and 2, it
does not scem appropriate to talk about 12 or 2 as attributes of the number 6 in the same sensc as in the
previous exataples. In this case attributions are used to express relations among attributes themselves, besides
expressing a relation between cach of them and the whole description.

We usc a different syntax to reflect the different nature of astributions. More preciscly we use with when the
attribute is solely related to the objects denoted by the description, as in:
(an Object (with color {red or green)) (with shape round))

(a Car (with passcnger John) (with passenger Jane))
Instead we will use of when that is not the case. For example in:
{a Quotiemt (of dividend 12) (of divisor 2))

the attribute named "dividend” deoends on the munbers that we are describing but also on the deseription of

the other attribute. The same is true for the "divisor” attribute. Another exampic is:
(a Segment (of origin 3.5) (of angle 45°) (with length 20))

In fact the same segment can be described in two ways by giving the origin of the segment and its dircction
(the angle between the line starting at the origin of the segment and the cartesian axes). Given the segment
there are two possible origins and the angle depends on the the origin chosen to describe the segment. For
cxample:

(a Segment (of origin 3.5) (of angle 0°) (with length 2)) same
(a Segment (of origin 5.5) (of angle 180°) (with length 2))

f It is not allowed to form a description of the same segment by cxtracting attribution from these two
descriptions. In fact

b : (aScgment (of origin 3.5) (of direction 180) (with length 2))

[conccivably describes a different scgment.

The length of the segment instead is an independent attribute in that it is uniquely determined by the segment
(or each of the segments) being described.

ﬂ One of the goals in the design of Omega has been the possibility to allow for partial descriptions and
- incremental refinement of description. For example suppose we know that Peter has a child whose name is
John:

Peter is (a Person (with child John))
Later on we learn that Peter has also a daughter:
Peter is (a Person (with child (a Female)))

Then we can deduce:
Peter is ((a Person {with child John)) and (a Person (with child (a Female))))

From this we would like to conclude that:
Peter is (a Person (with child John) (with child (a Female)))

However we do not want the same possibility of merging for of attributions. For example it is true that:
6 is (a Quoticnt (of dividend 12)) and (a Quotient (of divisor 3))

but not
6 is (a Quoticnt (of dividend 12) (of divisor 3))

because:
(aQuoticnt (of dividend 12) (of divisor 3)) is 4 . |

and by transitivity of is we would get: ‘
6is4

Another way of looking at this, is by considering how these examples would be expressed in Predicate Logic:
Bx.6=12/x)A(Ix.6 =x/3)

which is difterent from saying that:

L ool s g aat g o 2 od
i il i § T
RSN 3 » [i
. . o oo
PR el YIS
. . P ot

re
l.

-

-

P q —— —
PP .-_,.. R
P .

. . 7. . e

3o e iall e

A o
.Anl
T ‘A‘

.........

PO

AR S St Tl At Ve S Mt Y e A e R i et S et e S e

6 =12/3
In a sense, attributions replace Skolem functions, in this case the functions divide and multiply:
6 = 12/divide (12, 6) A 6 = multiply (6, 3)/3

Note that in general scveral individual descriptions arc allowed as attributes for the same attribute name, as
in:
(a Car (with driver John) (with driver Jane))

As a consequence it scems convenient to introduce a notation for attributions allowing a unique individual
attribute like it is for example the relation mother for a person. We will express this fact by using the kind of
attribution with unique. So we will say:

(a Person (with unique mother Sarah))
In addition a notation will be introduced for the possibility to describe any individual attributc having the
same attribute name, like for example when we want to describe a person who owns just american cars. For
this purpose we will introduce the with every kind of attributions.

(a Driver (with every car (an American-car)))

It turns out however that the only primitive kind of attribution is of. For this reason it will be enough to give
a formal semantics to of. The other kind of attributions (with, with every and with unique) will be defined in
terms of of and propertics for each one of them derived as theorems.

The use of universally quantified description variables enables gencral facts to be asserted about descriptions.
Such variables are written as an identificr prefixed by an equal sign symbol. For example we can say that:

(a Teacher (with subject =x)) is (an Expert (with field =x))
from which we can deduce, by instantiation:
(a Teacher (with subject music)) is (an Expert (with field music))

Description abstraction is a construct that we introduce in Omega to extend the expressive power of the
system. An example of description abstraction is the following:

AAny =x such that (Carl is (a Teacher (with student =x))))
which denotes the set of individuals for which the predication (Carl is (a Teacher (with student =x))) is true,
i.c. all the students of Carl.

An extensive discussion on the inference rules for description abstraction will be found in section 5.4.

Omcga can be used as a type system. For example it allows to express in a natural way enumecrative types and
subtypcs as shown in the following examples:

- . & B s+ 2w e e

......

-y

z'.':

oy e oryvryy
I |

R PR

T p— q

(aColor) is (red or green or yellow)
(a Scason) is (winter or spring or suinmer or autuuin)
(a Positive-Integer) is ((a Natural-Number) and (not 0))

(an Ordercd-Pair (with first =x) (with second =y))
is (a Pair (with first (=x and (a Number))) (with second (=y and (a Number (with > =x))))

A description system should be able to express the distinction among the facts that information is missing,
that something does not cxist or that inconsistent information has been supplied.

The following examptles show how Omega deals with these three situations.

A person who has a telephone number will be described as:
(a Person (with telephone # Something))

Somcone who docs not have a telephone:
not (a Person (with telephone # Something))

A person whose telephone number has been described inconsistently:
(a Person (with telephone # Nothing))

In the TAXIS data fnodc] [20] a special constant is provided for each onc of these situations (UNKNOWN,
NOTHING, INCONSISTENT respectively).

3. Syntax

The language of the thcory Omega is presented here using the well cstablished conventional notation of
denotational semantics. The syntactic catcgories of the language are listed below. The rules are presented
about how to form elements of such categories from elements of other catcgories and an infinite class of
identifiers. For cach catcgory we also show our choice of metavariables ranging on the elements of that
category, that we will use in the rest of the exposition.

Category Syntax Meta-variables

Ie * identifier individual constants (i, iy, iy .)

\Y =identifier variables (v, v, V3 ..)

Cc identifier class constants or concepts (c, €. C2.)
A identifier attribute names (ag, a; ... by, by)

Ats (of 1y 8)) ... (ofa, 6,0, n 2 0 ateribution sequences (a, ay, a3 ...)

10

z sce below statements (o, ¢y, 03 ...)

A sce below descriptions (8, 8, 85 ...)

Descriptions and statements are built from constants and variables according to the following syntax:

Descriptions Statements
i, Nothing, Somecthing true, false
v v
(ac(ofay 8))...(of2,8,.)),n >0 3,58y
(Anyv such that o) Vv.o
(8y0rd) (o, V 0y
(8, and 5,) (0 A o)
(not §) (mo)
o (0)= 0)

Nothing, Something arc two special constants. true and false are individual constants, which are used as truth

values.

Note that each statement is also a description, specifically a description of a truth value. Descriptions and
statements are mutually recursively defined. Because of this unusual situation, the proof of consistency
cannot be done normally by induction on the structure of statements, but is rather performed by induction on
the structure of descriptions.

4. Semantics

The method we follow in this work is to define validity semantically. We first characterize a class of models
for Omega and define the notion of truth in a model. This provides an intuitive and immediate semantic
interpretation for our theory.

We then look for an axiomatization for valid formulas of the theory. The modcls provided carlicr are useful
in this stage for providing a guidclinc and a criterion for suitability of the axiomauzation.

By proving the completeness thcorem, we show that the axiomatization is adequate. Furthennore the
conpleteness result tells that our theory is consistent if and only if it has a model Fherefore the evistence of

models prescnted in this section implics the consistency of Omega.

T ——r -

e~ e

':;.'.‘

‘The structure of the interpretation is
A=<DR,IC

where I is a non empty set of individuals; D is a family of sets over I, which includes all singletons over [and
is closed under the operations of union, intersection and complement; and

RCPUZ, Ix(AxDY)
Jile—1

C:Cc—=R

C is a function, that given a concept returns a set of tuples. Each tuple has an individual as its first
component, while the remaining components are name-value pairs representing attributes. The names in
such pairs are taken from the set A of attribute names, values arc individuals from the domain of
interpretation.

This representation has been chosen to express that:

- an individual might have more then one value for the same attribute (1 ¢. attributes may represent
relations rather thcn functions);

- attributes can have interrelated values (i.e. relations of arity greater then two);

- each individual might have a different set of attributions from other elements in the same class.

We also require that D has the following additional closure properties, needed to model selection by
 attributes and description abstraction:

Vr€R,s,,..s, €D, ay..a, € A, 4y
{x€1|3 ypyp€LtEr.V1i<i<n. t =<x..<qy> .>Ay; €53} €D

x| P({x})} €D ()
where P is a formula built using predicate symbol C, the standard logical connectives and quantifiers and
variables ranging over elements of D.

4.1, Definition of Value of 2 Description
The value of a description containing free variables can be determined once a value is assigned to cach of
those varibles. An environment is a mapping that defincs an association between variables and clements of
D. The domain of environments is:

E:V=~D

We will use the meta-variable p for denoting environments.

TR —— e

e p—— —r———
S e e ' pee,

" 4
Y

3 AALCa R 2om & mau)

12

The value of a description can be defined as a mapping from descriptions and environments into D,
Y:A—E—-D

Value of constant descriptions:
a. T[ilp = {3 [il}
b. Y[Nothing]p = {}
¢. Y] Something]lp =1
Tlvle = p(

T(ac(ofa; §)... (of 3, 8 D]p =
{x€1At€C ey Yy €L.VI<i<n.t = <x . <2y > A y; € T[5,]p}

T{(Any v such that o)]lp = {x € 1| k=4 [o]pl{x}v]}!
Y1(810r8)]p = V8,10 U ¥[3,]p

118, and 8,)]p = T[6,]p N Y800

Tl(not 8)]p = 1- ¥[8]p

Tlolp = Y{truelp if = 4 [o]lp, Tfalse]p if b= 4 [o]p

The dcfinition of an instance description says that all tuples from the class associated to ¢ are considered
which have, for each attribution, a component which has the name of that attribution as a tag and a value
which satisfies the correspunding description of the attribute. The sct of the first clements of such tuples is
the valuc of the instance description.

As an example we show how to determinc the value of the instance description (a Product (of factor, 2)). Let
us suppose that:
C [Product] =
{<0 <factor, 0> <factor, 0>>, <0 <factor, 0> <factor; 1>>, <0 <factor, 0> <factor, 2>>, ...,
<1 <factory 1> <factory 1>,

<2 <factory 2> <factory 1>, €2 <factor; 1> <factor, 2>>,
<3 <factor; 3> <factor; 1>, <3 <factor, 1> <factory 3>, ..}

¥'[a Product (of factory 2)] = {x €D |3y, ..., ¥, €D, t € C [Product] .
t=<x..actor; y> > Ay €2} ={0,2.4,6..}

Note that an attribution named a, in an instance description § implics that for any individual i described by 6
there cxist sume individual which is the value for the attribute ay of i. The exception is when the attribute is

! Lo .
pln/v] s the same environment as p but for vanable v 1o which it associates x

: 13
-
o Nothing. n this case the whole instance description reduces to Nothing. When a partial description is forined
G omitting some of the attributes, its interpretation is that omitted attributes range over all possible valucs.
:‘ The interpretation of the description abstraction Anmy is the set of individuals which, substituted for v in the
statement o, make the statement true. The notation
k=4 lole
. means that the statcment o in the environment p is truc relative to the structure A, and it is completely
_ defined in the next section.

4.2, Definition of Truth Value
1. k= 4 [true]p, b= _4 [false]p

2. Variables

a. =4 [v]p iff p(v) = Vtrue]p

b. =4 [v]p iff p(v) = T[[false]p
3. (5 is8)]p iff T[8,0p C T[82]p
4.1= 4 [(5, same 8)]p iff V[S:0p = V[62]p
5. k=4 [(Yv. 0)]p iff forall x €D, = 4 [o]plx/v}
6. =4 [(01 V 09]p iff =4 [o1]p or = 4 [o,]p
7.1 4 [(o1 A o)l it 1= 4 [oy]p and = 4 [ad
8. k= [o]p iff not =4 Jo]p

9. =4 (o1 = 0)]p iff =4 [o]p implies = 4 [o2]lp

The truth of 4 statement relative to a structure A is defined as:
Definition 1: (Truth) E 4o iff Vpl= 4 lelp

Given the definition of truth, validity is defincd as follows:
Definition 2; (Validity) Eo ilf VAE (0

5. Axiomatization

We turn now to the question of finding an axiomatization of the universally valid formulas.

‘e method that we follow in deriving the axiomatization, is based on noting Tules that preserve validity of

MPLELEL I A I

g

T T ——

formulac and turning them into axioms or inference rules.

We present the axioms of the system in the form of natural deduction inference rules [13]. As a matter of
notation we write

Ofe e O

(]

meaning that from the premises o, , ..., 6, we can derive the consequence o and that from the premise o we
can derive any of the consequences o, , ..., ;. We omit the line when the sct of premises is empty.

The inference rules will be written as
(oo
Olseey Oy
c

with the meaning that o can be derived from o0, , ..., 0., and if o was used as a premisc in deriving any one
of @y, ..., oy, it will not appear as a premise for the conclusion o.

5.1. Axioms for Descriptions
‘The notion of "sameness” between descriptions is defined as follows:

Definition 3: (Sameness)
(8, same §;) iff ((8,is8)) A (8, is 8y))

In the following we will also use the following abbreviation:

Individual [8§] tostand for (& is Nothing) A Y v . (v is §) => (8 isv) V (v is Nothing)

Individuals are those descriptions who arc not Nothing and are at the lowest level in the lattice of
descriptions: only Nothing is below them. Intuitively, the notion of individual corresponds to description that
cannot be further specified. In our set theoretical interpretation, individuals correspond to singletons, i.e. sets
consisting of a single clement.

el ST - . T Al s T LR S - T—p v
L N Tt oL - . P B - Py - n o —— —

15

Axioms for Descriptions

DI 81 is8 = (Y v.(Individuallv] A v is §;) => v is §,)
D2 . ' 4 is Something
n3: Nothing is §
Id: Something is (8 or(not 5))
Ds: (8 and (not 8)) is Nothing
8)isdy,8,is 8,4
Dé:
81 is (82 dlldﬁ;)
0y is 83, 8,is 84
[V IK e
as (8 0rdy) is8y
o 8, is 8y
. D§: =
. not 8, is not 8;
[ny: not (not 8) is §
x D10: 8 is not (not §)
4

~ Axiom DI is a version of the axiom of extensionality for sets, phrased in a way to take into account that only

. sets consisting of individuals are being considered.
b

¢

ot

- 5.2. Axioms for Statements

L

4

1

e TGS PSS ST S

16

Axioms for Statements

SL true

S2: - false

S3: o = true
S4: Jalse=> ¢

Ss: true=>gV "o
S6: a A\ Mo => false

0= 030,=>03

S7.

o= oy A 03

0] = 03,07 03

S8:

oV 0, => 0y

0= 0y

S9:

Tgy = Moy
S10: = (Te)=>0
S1l: o => " (7o)
S12: o = o same true
S13: o = o same false

Note that this axiom set is not minimal, since for instance S1-S2, S3-S4 and S5-S6 are pairwisc derivable from
one another. A similar remark applies to the axioms for descriptions presented before.

We have choscen this set of axioms so that there is an almost complete symmetry between the axioms for
statements and the axioms for descriptions. In this way any thcorem about descriptions has a corresponding
dual theorem about statements. A single proof procedure will work for both descriptions and statements.

Axioms S12 and S13 are nccessary in our assumption that statements are descriptions. The first one for
cxample allows a statement to be asserted whenever it describes the truth value fwe.

There is a strict correspondence between statements and descriptions, which is cxpressed in the following

A e e bt N iy - PSP PO " PR SR | P adhe o

2

PP Yy - c
. IO S S S

T ——— —p

femma:
{ emma 4;
1. Nothing same (Any v such that false)

2. Something same (Any v such that true)

3.(8, or§;) same(Any v such that (v is §,) V (v is §;))
4.(8, and 5,) same (Anyv such that (v is ;) A (v is §,))
5. (not 8) same (Any v such that — (v is §))

Actually these statements could have as well been given as an alternative axiomatization for description

. operators. We prefer however the set of axioms presented above since they do not involve explicitly

description abstraction. As we will see, the inference rules for description abstraction had to be restricted to
apply only on individuals, With the axioms we have choscn, the use of abstraction rules and extensionality
{axiom D1) can often be avoided.

5.3. Axioms for Attributions
It is easy to verify that the following axioms of Commutativity, Omission, Monotonicity and Striciness hold
under the interpretation given for of attributions.

'The axiom of Commutativity cxpresses the fact that the order of attributions is irrclevant, and can be stated as
follows:

(ac a; (of 2y §)) ap) is(ac (ofa; §;) ay ay) (Commuativity)

For example:

(a Quecue (of front (an Integer)) (of rear (a List-of-Integers))) is
(a Queue (of rear (a List-of-Integers)) (of front (an Integer)))

The axiom of omission states the fact that if we omit an attribution we get a more general description:

(ac(ofa; 8) a)is(ac a) {Omission)
For example
(a Student (of curriculum Fngineering) (of year 2)) is (a Student (of curriculum Engincering))
The axiom of Monetonicity is stated as follows:
8, is 8y => (ac(ofay 8;) a) is(ac (ofa; §,) a) (Monotonicity)

For example:

18

John is (an Artist) => ((a Person (of child John)) is (a Person (of chfld (an Artist))))

(a Factorial (of arg 0)) is 1 = (a Product (of arg, (a Factorial (of arg 0)))) is (a Product (of arg, 1))

——

The axiom of Strictness corresponds to the intuitive notion that when an inconsistent description is given for !
an attribute then the whole description is inconsistent, ie. it does not describe anything. The formal
statement of the axiom is as follows:

(a ¢ (of ay Nothing)) is Nothing (Strictness)

For example:
(a Square (of arg (6 and (not 6)))) is (a Square (of arg Nothing))

(a Square (of arg Nothing)) is Nothing

5.4. Inference Rules
It is easy to verify that these two transitivity rules preserve the truth according to our interpretation;

01 = 03, 07= 03 811'882. 821.583
o] = 03 8‘ is 83 o
‘ .
The ordinary rule of Modus Ponens can be derived from transitivity by letting o, be true. T
We necd a rule for = introduction:
[o4]
02
0= 0y
Next note that the rule of generalization is sound:
olv]
Vv.olv]
where v is a new variable, or at least onc that does not appear in any assumption on which o depends.
- Also sound is the corresponding instantiation rule:
_:7' : Vv.olv]
- of8]
&l - , : . -
o I'he most natural formulation of the abstraction rule for descriptions would be: -_—
-
-
=
4

19

old]
Al
0 is (Any v such that o[v])
and the corresponding concretion rule:
8 is(Anyv such that olv))
. C1
2 o{6]
- Unrestricted abstraction and concretion rules lead to a number of problems with the interpretation of
& descriptions given above. Let us consider for example
John is (@ Human)

With (a Human) for §, by Al, we get:

(@ Human) is (Any v such that (John isv))
but if also

Paul is (a Human)
then by transitivity:

Paul is (Any v such that (John isv)) -

and by C1:
(John is Paul)
which might not be true.

A restricted form of the abstraction principle that avoids such problems is the following:

ﬁ;;i o[8] A Individual[§]

t:: A2
% 8 is(Any v such that o[v])

&

1 where v is a new -variable. Similar problems arise with an unrestricted concretion rule. Let
r o[v] = Individual[v] and suppose:

k- Individual[John)

E‘.‘ Individual{Paul]

e then by A2

- John is (Anyv such that Individualv])

o Paul is (Any v such that Individual[v])

E‘ From the axiom D6, which introduces the or description, we get:

P

" - (John or Paul) is (Any v such that Individual[v])

E:: R and from this and C1:

i

!

PPy
M2 . e

1, a"rl"""" Ay + u .. ::
.. PR R FERS P SN
- . R . » ' . - .t . .

g oo s
1t

i e e gvad e ——
R . RO
e e s ae B e e

' oy

tRaE
1

O}

. e

)

.rr-r ,,rf
MMM B 1A P AL

" 1 .'_.-.‘a__'- e

™

? '*.Tw, e

v

Individual {John or Paul]

We solve this problem by restricting C1 analogously to what we did for Al:

8 is(Any v such that ofv]) A Individual[§]
C2

ofél

With this restriction to individuals, it is casy to verifv that the abstraction and concretion rules are sound.

Note that with this form of the concretion principle we avoid Russell’s paradox. Supposc that z is the
following description:
2 = (Any v such that — (v is v))
If we allow C1, since z is z is true by reflexivity of is, we would derive the paradoxical consequence:
Wz isz)
We can show however that:
z same Nothing
because
(Any v such that — (v is v)) same(Any v such that false) same Nothing

Therefore rule C2 cannot be applied because Nothing is not an individual, as it follows from the definition of
individual.

W
[

The complete set of inference rules is summarized in the following table.

g "{ Ch] ket ‘f N EEREREN
. 3 » N . .o
. R A ol e

B IR

CIrLoEY

b .ﬂﬂ"f-.' il

b A 2)

. B A .
e S YL I PN W N . W e . N N

D Y

21

Inference Rules
Statements Descriptions
lo 1]
o2
o) =0,
01 = 03 07> 03 8| is&z. 82(3’83

gy = 03 8, is 53

o[v] o[6] A Individual{§]
Vv.alv] 8 is(Any v such that o[v])
Vv.olv) 8 is (Any v such that o[v]) A Individual{6]

o[6] ofd]

§.5. Theorems and Derivation
A derivability relation b is defined as usual, so that I i— ¢ mcans that the statement ¢ can be derived from

the statements in T and from the axioms by applying the rules of inference.

We list herc some theorems of Omega that are needed in later proofs and give an example of a derivation.
Lemma §:

1.8is8

T Ty RARALIGS St e el T A b 3 AU GEbe At Sen i Sver e, 2y , w—— - T ,-1
. R . - L. W . oo B

2.(8, and §,) same not (not 8, or not §,)
3.(8, or8,) same not (not 8, and not §,)

4.(8,isU(6; or §;) and not 8,)) = (8 is §3)

S
e
PR

R 8 i&"‘,“f?“’f‘r'—“‘

]
v
.
-

M e o et et et S 2O 20
LA NS

o

el

— o —R——r———— e Y vy e w . T e b A Bt A O EERaA i R

22

5. 78, is Nothing) = (8, is not §, = —(d, is §,))

6. Individual [§] = (8 is (8, ord,) = (8 is8)) V (8 is §5)
7. Individual [8] => ((8 is (mot 8,)) = —(8 is 6,))
8.0,=>0,Vo,

9. Individual [8,] A — ((8, and §,) is Nothing) = (8, is §,)

The second and third statements correspond to the deMorgan’s laws. As an example of deduction in Omega
we prove the first of the De Morgan’s laws, namely statement 2.

Proof: From reflexivity we have:
1. (8,andd,)is(8,and$,)
By applying axiom D7 to this, we get:
2. (8,andé,)isé,
‘Then, by complementation (axiom 1J9):

3. (noté,)is not(8, and §,)

-

In a completely similar way we get also:
4. (not§,)is not(8,and$,)

Then, from 3 and 4 we can introduce the or, using axiom D8;
5. (not &, or not §) is not (8, and §,)

and finally, again by complementation:
6. (8, and$,) is not (not 8, or not §,)

The inclusion in the other direction is proved similarly.

6. Soundness and Compleicness

‘The first result to be proved about the axiomatization is its soundness:
Theorem 6. (Soundncess) For every closed statement A T'EFA=>TEA
W arc using the notation T = A as an abbreviation for:

VM(Vao€l=>F=“0)=P=“A

23

The soundness theorem states that whenever a statement can be derived from the set of premises I then it is
true in every model that satisfies the statements in I,

Proof: Omitted since the argument is straightforward.

We next turn to prove the completencss theorem for the theory of Omega.

‘Q
5
b
.
l

"The completeness theorem gives us a measure of the adequacy of our axiomatization. In fact it asserts that the
set of valid formulas coincides with the set of theorems of our theory. In this way it provides a bridge between
what is established as scmantically valid, and what is established by syntactic symbolic manipulations.

More important, this result is the fundamental step in showing the consistency of our formal theory.

The completeness theorem can be formulated as follows:

Theorem 7: (Completcness) For every closed statement A, TF A= T HA
which means thai any formula true in every model that satisfics the set of premises I', can be derived from I'
by the rules of Omega and vice versa,
We present the general outline of the proof, which follows the lines of a Goedel-Henkin argument {24].
Sketch of the proof. The implication T' = A = I' = A corresponds to the soundness theorem. The other
dircction of the implication is cquivalent to saying:

TH¥-A =3IM Ty A
If A cannot be derived from I then there exists a model of ' in which A does not hold.
In order to find such a model, for a given closed formula A, we build a complete Henkin extension of theory
T, called T, having the property that:

THA=>T, KA , (3)

Bcing a complete, T, will have the property:
Vclosed g eitherTyb=oc or Ty "o C))

That T, is a Henkin theory means that:

For every statement o[v], there is a constant c, such that: T, - (efc] = V v. o[v}) (5)

Morcover, since there is an implicit existential quantifier in the attribution notation, our definition of a

Henkin theory will also require that:

For every statement of the form (8 is (a ¢ (ofa, §)) ... (of a, 5)), (6)
there exist n individual constants v , ... , ¥, such that:

[\ 8 is(ac(ofa 8;) ... (of a, 8,)) A Individual [§] =
Sistac(ofa;yy) .. (ofa, Y DAy isSP) A . (yais 8y)

— Next we will prove the following lemma in order to obtain a model for [5:

1.emma 8; (Main lemma)

i

oo ooy
'.D.A-I'A
B ete te

Ty
A
.

L
'

24

IMYo(T\Foe=T,Fyo)
Given such a model b for T, we assume that I’ b~ A and note that from property 3 it follows that [’y - A.
Then:
TAEfA
Since a modcl of T can be restricted to a model of T, we have proved that:
F-A=3IM.TEyA

and the completeness theorem.

6.1. Construction of the Complete Henkin Extension
We will assume from now on that ' K~ A. As a conscquence we are assuming that I is consistent.
We build a Henkin theory I as the limit of an inductive serics of theories defined as follows:

Iy = I'. The special constants of level 0 arc defined as the empty set.
T, .1 is obtained by adding to [';:

- the statement ofy] => V v. o[v], where y is a ncw constant, for each statement of the form
V v. o[v], with occurrences of special constants of level n.

- the statement

8 is(ac(afa; §)) ... (of ay §;)) A Individual[6] =
é lS(d c (ofal ‘Yl) e (ofak Yk» A (‘Yl is 81) A.. (Yk is Gk)

where y;, .. 7y, arc new constants, for each statement of the form

(8 is(ac (ofa; vy) ... (of 2y v,))). with occurrences of special constants of level n. All the
constants added during this step constitute the special constants of level n+ 1.

Definition9: T" = U T,
Lemma 10: I' is a conservative extension of I, i.e.

If o contains no constants but thoseinFand I - o, thenT ¢)
Proof: Supposc I'" - o, and the proof uscs just onc premise from I'" that is not in T, namely o’.
ThenT' b ¢’ = a. The statement o can be in one of these two forms:

Case 1. o' =oyly]=Vv.olv]

F@lyl=Vv.ov)=0
F(@lZl=Vv.oh)=>0
since y is a constant not present in I" and z is a new variable.
FTE(Vz.al7}=Vv.ov])=0
Butsince '+ ¥ z. oyf7) = V v. o4[+]. by Modus PonensT o

Case 2. o' =dis(ac(ofa; 8)) ... (of 4 §,)) A Individualld] => § islac (of 4| v)) ... (of

‘‘‘‘‘‘‘

LA

—— PP ——— .- P P— - Y " Ol

25

QYDA (Y iSSP A A (yy is &)

We note that

o' =@y . Y=YV, ¥ 07V e v D

where

o"[vy. ... vl = (S is(ac(ofa) v)) ... (of 3y vy))) V — Individual{8] V
= (V] is&l) V.V~ (Vk iSGk)

‘Therefore this case reduccs to case 1.

The general case when g is proved in I'" by using n premiscs not in T, can be proved by applying
inductivcly the argument above,

To obtain the complete extension of I' we arc looking for, we exploit a known result:

Theorem 11: (Lindenbaum) If T is consistent, then [has a complcte simple extension.

Since I’ b+ A, we can now define I, as follows:
Definition 12: T is any complete simple extension of I’ U {— A}.
Lemma 13: T, has properties 3, 4, S, 6.

Proof: It follows from the definition of T 5, and lemma 10.

6.2. Proof of Main Lemma
We will prove the main lemma by building a model b such that:

Vol,lFo=T,F po

© M will be a term model built out of syntactic material. More precisely equivalencg classes of individual

descriptions will be the elements of the domain of interpretation. Let us dcfine the equivalence relation ~ as:
§~8=T,F (6 samed’)

We will denote as || the equivalence class of 8 according to ~.

We will call Ind = {8 € A | T, t= Individual[8]}, and I = Ind/~, the quotient of the set Ind with respect to
the equivalence relation ~. Finally,letD = {{|5]€ 1|, - (8’is8) }| 8’ € A}.

The model b is defined as: M = <], D, R, 3, C> where
3Tl = I

Clc] = {<I81<ay 184> ... <2, |8,P> 18, &y, ... 5, € Ind, 2y, ...a, €A,
Iy 8is(ac(ofay 8y) .. (of 2, 8,))}

R = {C[c]|c€Cc}

It is not difficult to show that this model has the required closure properties:

Lemma 14: 1) contains all singletons of 1, is closed with respect to union, intersection, complement
and has propertics 1 and 2 with respect to R.

AR IO L TR D W WOW S W G SRy S A S S PSP U -y . - PO WO USSR S pr O .1

@
. 26

3 With the following lemma we reduce our problem to a property of our the model just defined.
L Lemma 15: If¥[o] = {|6'||6° €Ind, T, = (8" iso)} thenT o =T\ g0
Eﬂ Proof: Assume first that T, i~ ¢. By axiom S12, it is also I'y b= (o is true). Using this fact and
transitivity in the premise of the lemma, we have
Tlo] C{18'|18° € Ind, T = (8 is true)} = {|truel}
But by the definition of ¥:
Tlo] = {ltruel} ifand only if Ty = g, @
On the other hand, if we assume that I’ F=_y, o then
Yol = {ltruel} = {|6°118’ €Ind and T, (&’ is o)}

This means that Ty = (¢rue is o). Since T, is complete, then either Ty o or 'y = 7 0. Butthe
latter case is impossible because, by applying axiom S13, we would get T, b= (o is false), and by
transitivity T’ b (true is false), and since both true and false are individuals (axiom DJ2)
T, = (true same false), and, by axiom S12, I,k false, which contradicts the consistency
assumption for [5.

The model we have defined has the following significant property, which cstablishes the conncction between
the semantics (value of descriptions) and the syntax (derivability of predications):

Lemma 16: For every closed description é:
716] = {1818 €Ind, T, I~ (8’ is 8)}
Proof: The proof is done by induction on the structure of descriptions.
1L.é§=i.
i) = {lil} = {16'118" € Ind, T, - (8" isi)}

since i € Ind by axiom ID2. Note that this case takes care also of the individual constants true

and false.
2. 6 = Nothing
- ' [Nothing] = {} = {|8'|| 8’ € Ind, T, b~ (8" is Nothing)}

since Nothing is not an individual.

3. & = Something
V[Something] = Ind/~ = {|6'| | 8" € Ind, ', b= (8" is Something)}

since 8’ is Something can be proved of any description §°.

4.8 = (ac(ofa; §;) ... (of 3y §))).

-

27

Y[ac(ofa; 8))...(of 5, 8)] = (by definition of ¥)

{16118 €Ind,3t€C(c), §),..8', €Ind.
Vi.l<ign. t=<8[<..<4l8P..>A {8 € ¥8:0} =
(by definition of € and induction hypothcsis)
{16]18 €Ind, 38’ €A,8,..8,€Ind.
CoHd8isd,
Vi.l1<i<n® =(ac..(of3;8") ..)AT, - &8is§} C
(by Monotonicity and Omission)
{16118 € Ind, T, - &8 is(ac(ofa, 8y) ... (of 3y §y))}

We can show the inclusion in the other direction by considering two cases:

2) T, - (8, is Nothing) V .. V' (8y is Nothing)

In this case, by Monotonicity and Strictness:.
{16118 €Ind, T, = S is(ac(ofa 8))..(of 3, 5} C
{18118 € Ind, T 5 & is Nothing} = {}
(since no individual is Nothing)

b) T, b= (8, is Nothing) A ... A —(8y is Nothing)

{16118 €Ind, T - 8 is(ac (of 2, 8)) ... (of 3 5,))} C

(by property 6 of ') |
{16116 €1nd, 36", ... ' € Ind . |
T, 8 is(ac(ofa) 87) ... (of 2,). (81 is8) A .. A8y is 8} C

Tlac(of2 8y) ... (of 3, 8))] |

v Attt p LI ol at Sulg -
A oS P OROONARE £ TR R

5.8= (5, ordy).
T[6;0r8,] = (by definition of ¥)
T[5;,) U s = (by induction hypothcsis)

{1616 €1nd, T~ (8is8)} U {|8]16 €Ind, Ty - (8 is 5} =
{18118 €d. T, (Sisd)orTy - (8iss)} =

. (by Lemma 5.8 and the completencss of I')
{18186 €nd, T\ (8isd)V(8isdy)} = . (by Lemma 5.6)
{18118 €1nd, T, I (8 is (8, or§y))}

6.o= (81 1'86;).

P LA

e e - P P . . T T . .

o g . Lt L . LT et o W e el RS - . .. - - . . .

L = ~ PPN g 1 PO I PO WL . I 2Pl JPUR DU T ISP o L et ol m_ e .. N
a P . -

..........
B S

- Assume first that: V[8,] C 118,]

T
BN
.

{15118 € nd, T, - (3 is 3,)} C {18113 € Ind, T, - (8 is 8,)}

t‘ (by induction hypothesis)
SEId, TyH8isd =T\ H8iss,
[\t 08,is8, (by axiom D1)
Fp b (8,is8y) istrue (by axiom S12)
e {I6]18 €Ind, Ty - (8 is(8,is 8,)} C {18]18 € Ind, T, = (& is true)}
F (by transitivity)
- {16118 € Ind, T, (8 is true)} = {|truel} = Y[5,is 8, (by definition of 1)

The proof is similar under the hypothcsis that = ¥{8,] C ¥18,].

Py

Tlo=(o, Vo).
Assume first that: Ty l=_g, 0, 0r Ty = _4, 0,
FabFoyorTy oy (by ind. hyp. and lemma 15)
Fab(o0;V o0y (by completeness of ')
FpF (o, V 0y istrue (by axiom S12)

{I6/18 €EInd, Ty (8 is(a, V a))} C{|6]]8 € Ind, ', I~ (8 is true)}
(by transitivity)
{16118 € Ind, T (8 is true)} = {ltruel} = Yo, V 0,] (by definition of)

The proof is similar under the hypothesis that I'y ¥ _g, 0y and ', & 4, 05.

We leave out the rest of the proof as it is similar.

Once lcmma 16 has been established we can prove the main lemma. In fact from lemma 15 we can deduce
the following:

IfVo.V[c] ={I6118 €d, T\ (8iso)}thenVo.TyFoe= T kg0

The main lemma follows from this and lemma 16.

7. Consistency

The consistency of Omega can be established by means of the following result:

‘Theorem 17: If an Omega theory T has a model, then it is consistent.

Proof: Suppose I' has a model M, then T &y, false. From the completeness result it follows that
I by false which proves the consistency of T,

8. Non Primitive Attributions

In this section we will introduce three kind of attributions formally defining them in terms of the primitive
attribution of.

I T N T R N Iy S S A T L T . T T T T Y e L P e T "R -;L-.-J

S riﬁr_y _r‘Y E; CA

8.1. Independent Attributions
Fach with attribution is an independent relation from all other attributions in an instance description.

A with attribution represents a binary relation between attributions and the objects of the description. As
such, the with kind of attribution can be defined as a special casc of the of attributions, as stated by the
following definition: '

Definition 18:

(acay (witha, 8) ay) same(ac (ofay 8)) and(ac a; ay)

‘This definition cnables us to isolate an attribution in an instance description. In this way that attribution is
turned into a binary rclation. This binary relation cannot normally be further merged into an n-ary relation, as
the following examples illustrate:

(a Product (of factor; 2) (of factor, 3)) is 6

(a Product (with factory 2) (with factor, 3)) same
(a Product (of factor; 2)) and (a Product (of factor;, 3)) same
(a Product (of factor, 6))
As a direct consequence of the definition, with attributions have the following property of merging:
((a c (with a; 8)) and(ac a)) is(a c (witha, §) a) (Merging)

However it is easy to verify (by counter cxamplc) that merging does not hold for of attributions.

8.2. Constrained attributions
Sometimes one wants to express constraints on the value of an attribute or describe properties that each value
of an attribute must satisfy. For example we use with every when we want to describe a person who only has
male children or specify the type of arguments of a function. For this purpose we introduce the notation with
every. For example: '

(a SquarcRoot) is (a SquareRoot (with every arg (a PositiveReal)))
expresses the fact that each argument to the square root function must be a positive real number. Another
example is:

(a Person (with every child (a Male)))

which describes persons whose children are all male.
Formally we can introduce with every attributions with the following definition:

Definition 19:

(ac(with everya, §y) a) same
(a C (Wit’l 4 8]) a) and
-(Any v such that ¥ v; . Individuallv] A v is (a c (with ay v))) = (v, is §y))

For the with every kind of attributions the following propertics hold:

‘Theorem 20: (Fusing)

s Y) g ’
L . . RPN
PR T e .

RIS i ald

OSSP Dl NCORa O
L . Y . ror L s t . - . « . e .
. e (RN U S S A . .. P A

i@

-

(a c (with every ay 8,) (with every a, §,)) same (a ¢ (with every 2y (8, and §,)))

(a c (with every ay 8,) (with ay 8,)) is (a c (with a, (8, and 8,)))

(a c (with every ay 8,) (of 2, 8,) a) is(ac (of ay (8, and §,)) @)
These axioms allow to fuse descriptions in a with every attribution with any other attribute for the same

attribute name. The type of attribution that participates in the fusion becomes the type of the resulting
attribution.

The following theorem is needed to establish the properties of weak fusing.
Theorem 21:

(ac(ofay 8,)) same
(Any v such that = Y v, . ~(Individual[v;] A (v; is §)) A (vis(ac(ofa; v{))))

We could prove this thcorem by a reasoning analogous to that used in the proof of lemma 10. A simpler
proof can given by exploiting the completeness result, i.e. by showing that the statement is truc in all
interpretations A = <I, D, R, 3, C>.

It can be shown that the with every kind of attribution is subject to all the other axioms given above for
attributions.

8.3. Projective attributions
Another non primitive kind of attribution that is often useful is with unique. The with kind of attributions
imply the existence but not the uniqueness of an individual being the value of the attribute. with attributions
can be merged but cannot he fused. We introduce with unigue as the kind of attribution to use when there is
just onc individual as value for that attribute. For example:

(a Person (with unique father (a Doctor)))
A version of fusing, called unique fusing, holds for with unique attributions. For example:

(a Person (with unigue father (@ Doctor)) (with father Paul))
is (a Person (with unigque father ((a Doctor) and Paul)))

Notc that unless this description reduces to Nothing, we can conclude that Paul is (a Doctor) (Iemma 5.9).
'The kind of attribution with unigue is not primitive and can be defined in terms of other constructs as follows:
Deflinition 22;

(a c (with unique a; §,) a) same

(ac(witha, §,) a) and

(Anyv such that ¥V &4, &5 . Individual [5,] A Individual[84] A :

(v is ((a c (with ay 5,)) and(a c (with ay 53)))) => (8, same §3) A\ (8, is §y))

‘The property of unique fusing can be formulated as follows:
Theorem 23: (Fusing)
(@ ¢ (with unique ay 8y) (of 2y 8))) is(a ¢ (with unique ay (8, and § ,)) a)

<

LAt
.

AP \Xraonean

T

3

Note that the difference between with every and with unique also reflects in a different formulation of Fusing;
for example:

(a Driver (with unigue car (a Datsun)) (with car (a Blue-car))) is
(a Driver (with unique car ((a Datsun) and (a Blue-car))))

(a Driver (with every car (an American-car)) (with car (a Ford))) is

{a Driver (with car ((an American-car) and (a Ford))))

8.4. Relationship between WithEvery, WithUnique, With and Of
Let us summarize the propertics of the four kinds of attributions that we have discussed.

with unique with every with of
Commuiativily Commutativity Commutativity Commutativity
Omission Omission Omission Omission
Monotonicity " Monotonicity Monotonicity Monotonicity
Strictness Strictness Strictness Strictness
Merging Merging Merging

Unique Fusing Weak Fusing

One would cxpect that changing with every or with unigue into with would give a more general description,
and similarly changing with into of. In fact it can be shown that:

Theorem 24:
1. (a c (with unique a, §,) a) is (a ¢ (with every 2, 8;) a)
2. (ac(with everya, §)) a) is(ac (witha, §,) a)
3. (a c (Wl.th 4 8|)) I.S(a c (ofal 81»
However the following does not hold, when a is not empty:
(ac(witha; 8;) a) is(ac (of a; 8;) a)
For example;
(a Product (with a, 2) (of a, 3)) same (a Product (of a, 2)) and (a Product (of a; 3))

and it is not the case that: . '
((a Product (of a, 2)) and (a Product (of a; 3))) is (a Product (of a; 2) (of a3 3))

8.5. Data Dependencies

The literature on data bases has investigated the issue of dependencics among data represented in a data base.
When such dependencics exist among data, care must be placed when modifying some portion of the data in
order to avoid invalidating or destroing meaningful information. Dependencies in fact usually convey
semantic or integrity constraints. It is therefore uscful to be able to express where such dependencies occur
and possibily scparate them one from another, Normal forms of data base have been developed as proper

j k)
structuring of data which avoid such conflicts.

One kind of data dependencies that have been examined in the literature are functional dependencics. In
Omega, we can express that an attribute is not functionally dependent on any other oncs, by using the with

notation, as the following result shows:
Theorem 25:

Forall §;, §;,...,8,

(ac(ofa, §,) ... (ofa, 8,)) same(ac (ofa, 8,)) and(ac (of 2y 89) ... (of 2,)
if and only if

(ac(ofa,; 8)) ... (of a, 8,)) same(ac (with a, §,) (of2; §,) ... (of 3, §)))

“‘an‘-"”h-

Tn N
R G e e
P PR AP

YT

The interpretation of the above statement is that when the attribute a; does not depend on the other attributes
2y, ..., 2, then with may be uscd as well for a,.

—— T Y
. . IR

For example:
(a Complex (of real 3) (of imag 5)) same (a Complex (with real 3) (of imag 5))

In fact:

(a Complex (of real 8;X of imag §,)) same

(a Complex (of real 8,)) and (a Complex (of imag &)
The real and imaginary part for a complex number uniguely depend on the complex number being described,
in the same way as, given a point in the plan, its cartesian coordinates are uniquely determined.

9. Omega and other Formal Logic Theories

Omega is a more powerful formalism then First Order Predicate Logic, since it allows variables ranging over
descriptions (i.e. classes). This provides enough power to express for instance Peano arithmetic with a finite
number of axioms. Since there is no layering of descriptions as there is in the hierarchy of sets, Omega is as
general as it can be in this respect.

The version of Omega presented here is a first order theory. We are investigating extending the
axiomatization to higher orders. In [11] we presented examples of the use of higher order capabilities.

Omcga is a Sct Theory. However Omecga relies on constructors for building new descriptions. In set theory,
pairs for instance are built by means of sct formation alone. In Omega a Pair constructor can be used to
describe pairs of objects. A Pair of two individuals will be an individual itself, therefore separating the
inheritance relationship from the component relationship. Omega is a constructive set thcory and has no
axiom corresponding to the powerset axiom of classical set theory.

10. Language and Metalanguage

The distinction between language and mctalanguage has been often overlooked in the literature on

B AL I R — .t A et Ll -~ Mle B B PR - I WY G W - - o - - WY WY Wl - ‘ - - - "N ") i

L

OCEREKL L
DANRARIIA

"
13
.

R ST

r——— v

knowledge representation.

W believe that issucs largely debated like the distinction between a description and its referent, mention and
use of a concept, quotation, opaque operators, belicf structures can be resolved if the two levels are clearly
understood.

Consider for instance the issue of the distinction between mention and use. The following two statements,
both involving the word "Multisyllabe™, are respectively examples of mention and use of a concept:

"Multisyllabe” is (@ Multisyllahe)
Multisyllabe is (@ WordProperty)

‘The relation between the uses of "Multisyllabe"” in these sentences is apparent if we move at the metalevel,
where the subject of the sccond sentence (Multisyllabe) can be described as:

(an Individual-constant (with name "Multisyllabe"))

In Omega there is also a further way of using the same word, as in:
(a Multisyllabe) is (a Word)

The context of quotations and the context of believes or knowledge are instances of opaque contexts. When
we cite a statemnent, like in:

Cantor's theorem says that the power set of natural numbers is a non numerable set

we don't refer to the value of the statement. In fact we don’t want to say that Cantor’s theorem is true, which
1s the value of the statement

The power set of natural numbers is a non numerable set

We really intend to cxpress the form of the statement, i.e. we want to give a metadescription of the statement.

The situations in the case of believes is very similar. In
Pat knows that 323-7817 is a phone-number of subscriber Mike

a metadescription for Mike’s telephone number is involved, not Mike’s telephone number itself. Suppose we
denote such metadescription as ‘(e Phone-number (of subscriber Mike)). Such metadescription refers to the
description (@ Phone-number (of subscriber Mike)), which in turns rcfers to 323-7817. Even if it is the case
that (@ Phone-number (of subscriber Mike)) same (@ Phone-number (of subscriber Fred)), we cannot substitute
the metadescription ‘(@ Phone-number (of subscriber Fred)) for ‘(a Phone-number (of subscriber Mike)) in the
above sentence, since these two descriptions arc definitcly not same. So it is not possible to derive the
paradoxical conclusion that Pat knows Fred’s phone number.

McCarthy presents a quite similar solution to this problem [19], without connecting his notion of "concepts as
objects” to metadescriptions.

A detailed discussion of the issue and uses of metadescriptions remains outside the scope of this paper.

........

- a ‘A YL w e R L a " a . . N L. P - - - - . (- - - O - P

LA A Ve O
S L P

11. Conclusion

Many intcresting ideas about knowledge representation have been obscured by the lack of a comprehensive
formalism. We have discussed the logic Omega as a proposal for filling this gap. Omega provides most of the
attractive features of the formalisms that have been used in representing knowledge: predicate logic, semantic
networks, set theory, relational calculus. These features are combined in a simple and unificd description
system. The results of this paper cstablish Omega as a solid basis on which to build a theory of knowledge
representation.

Inhcritance and attributions are two major structuring mechanism in Omega. Though inheritance is used in
other formalisms as well, the axiomatization of Omega gives a precisc account of the semantics and the
propertics of such concept.

The scmantics presented in the paper also allows to address and clarify a number of issues rclated to the use of
attributions: interaction between attributions, merging and inheritance; functional dependencies among
attributions; different kinds of attributions for different purposes: with attributions to express part-of
relations, of attributions to express arguments-value relations.

Despite the richness of the system, Omega is still a simple system, where the number of primitive concepts is
quite small and the axiomatization quite compact.

12. Acknowledgments

Car] Hewitt has been the leading force in the devclopment of Omega. He proposed to provide an
axiomatization for Omega and devcloped with us the first formulation of the axioms [11]. He contributed the
idea of scparating with and of attributions and introduced the concept of with every attributions. He also
suggested the title for this paper. We are greatly indebted to Albert Meyer and Yuri Gurevich for pointing
out that the class of models we had originally provided for Omega was too restricted. Luca Cardelli and
Giuscppe Longo thoroughly discussed our ideas in the early stages of this work. William Clinger has
provided constructive criticism and encouragement. Mike Brady has given scveral useful suggestions and
comments. Charles Brown, William Kornfeld, David McAllester and Renzo Orsini have suggested
improvements to the presentation.

s

T T rrrery LS RN i). 4 i
P s PR -‘b'.‘ S

35

References

1. Attardi, G., Barber, G. and Simi, M. "Towards an Integrated Officc Work Station". Strumentazione e
Automazione (March 1980).

2. Bobrow, D. G. and Winograd, T. “An Overview of KRL, a Knowledge Representation Language”.
Cognitive Science 1, 1(1977).

3. Brachman, R.J., Ciccarelli, E., Greenfeld, N, and Yonke, M. "KI.ONE Reference Manual”. Report 3848,
BBN, 1978. '

4. Brachman, R. J. "A Structural Paradigm for Representing Knowledge”. Report 3605, Bolt Beranck and
Newman Inc., May, 1978.

5. Burstall, R. and Goguen, J. "The Semantics of Clear, a Specification L.anguage”. In Lecture Notes in
Computer Science, Spring Verlag, 1980. Proc. of Advanced Course on Abstract Software Specifications

6. de Klcer, J., Doyle, 1., Rich, C., Steele, G. L.. and Sussman, G. J. AMORD: a Deductive Procedure
System. Al-Memo 435, MIT, January, 1978,

7. De Jong, S.P. and Byrd, R.J. "Intelligent Form Creation in the System for Business Automation (SBA)".
Research Report RC 8529, IBM T.J. Watson Research Center, 1980.

8. Dcliyanni, A., Kowalski, R.A. "Logic and Semantic Networks". Comm. ACM 22, 3 (1979), 184-192.
9. Fahlman, S. "NETL: A System for Representing and Using Real-World Knowledge". MIT Press, 1979.

10. Goguen, J. and Tardo, J. "An Introduction to OBJ: a Language for Writing and Testing Algebraic
Specifications”. Proc. of Conference on Specifications of Reliable Software, IEEE Computer Society, 1979,
pp. 170-189.

11. Hewitt, C., Attardi, G. 2nd Simi, M. "Knowledge Embedding with the Description System OMEGA"™.
Proc. of First National Annual Conference on Artificial Intelligence, Stanford University, August, 1980, pp.
157-163.

12. Ichbiah,). D. et al. Reference Manual for the AD A Programming Language. Honcywell Systems, 1980.

. 13. Kalish and Montague. “Logic: Techniques of Formal Reasoning". Harcourt, Brace and World, 1964.

14. Kornfeld, W. A. "Using Parallel Processing for Problem Solving”. Al-Memo 561, MIT, December, 1979.

158. Kornfeld, W.A. and C. Hewitt. "The Scientific Community Mctaphore". - IEEE Systems Man &
Cybemnetics 11, 1 (January 1981).

16. Liskov, B.ctal. CLU Reference Manual. MIT/1.CS, 1979. TR-225.

17. Martin, R. M. "A homogeneous system for formal logic”. The Journal of Symbolic Logic 8,1 (1943).

Ty

-
L
L
A
k
)
9
L
4
{
-
]
4
4
b
d
4
q
1
4
o
1
|
1
{

36

¥k SIS b aras
' [}

-.Idr" M CaT

. PATSNGY A

R R oot PR

P PP e A
f

18. Martin, W. "Descriptions and Specialization of Concepts”, In Patrick H. Winston and Richard
H. Brown, Ed., Artificial Intelligence: An MIT Perspective, MIT Press, Cambridge, Massacausctts, 1979,

19. McCarthy, John. Epistemological Problems of Artificial Intelligence. Proc. of Fifth International Joint
Conference on Artificial Intelligence, 1IJCAI 1977, pp. 1038-1044.

20. Mylopoulos, J. and Wong, H. "Some Features of the Taxis Data Model". Proc. of the Conference on
Very Large Data Bases, IEEE Computer Socicety, 1980, pp. 399-410.

21. Russell, B. "On Denoting”. Mind 14 (1905), 479-493.

22. Scott, D. "Existence and Description in Formal Logic". In Bertrand Russell: Philvosopher of the Century,
R. Schoenman, Ed., G. Allen & Unwin Ltd., London, 1969,

23, Shapiro, S.C. "Review of NETL: A System for Representing and Using Real-World Knowledge, by S.E.
Fahlman". American Journal of Computational Linguistics 6, 3-4 (July-December 1980).

24. Shoenfield, J. R. "Mathematical Logic". Addison Wesley, 1967.

?! 25. Stecls, I.. "Reasoning Modeled as a Society of Communicating Experts”. Al Lab Technical Report 542,
' MIT, June, 1979.

26. Wirth, N. "The Programming Language PASCAL". Acta Informatica,1(1971), 35-63.

YT T——
e T L

R SRR

v S
L

R

