
AD-A123 988 
ESTIMATING OPTIMAL 

TRANSFORMATIONS 
FOR MULTIPLE

BeREGRESSION AND CORRELATION(U) CALIFORNIA UNIV BERKELE '

DEPT OF STATISTICS L BREIMRN ET AL. JUL 82 TR-9

UNCLASSIFIED N98814-82-K -8854 F/G 12/1 MLmh0 hhh1E

mEEE~hhEEEEE



1j.2.

11111 '* 1.8

MICROCOPY RESOLUTION TEST CHART

* ~NATIONAL BUJREAU OF STANUARDS-1963-A . -

4.A



ESTIMATING OPTIMAL TRANSFORMATIONS FOR

*MULTIPLE REGRESSICI AND CORRELATION

-BY
Ott LEO BREIMAI 1  JFEFRI 4N2

TECHNICAL REPORT NO. 9

JULY 198

SEaRCH SUPPORTED IN PART
BY

jFFICE OF NAVAL RESEARCH COTffRACT N(W014-82-K-0054
2OFFICE OF NAVAL RESEARCH CONTRACT N00014-81-K-03LO

DUiC
_ DEPARTMENT OF STATISTICS D T C
-" SELECTE
-,.. UNIVERSITY OF CALIFORNIA JAN.81983

BERME , CALIFOTNIA
D

a 4 ,-



Aoeession For

NTIS GRA&I
DTIC TAB
UnannounC94 13
Just'fiCat ton. -..4

By _______ ESTIMATING OPTIMAL TRANSFORMATIONS FOR
Distribution/ MULTIPLE REGRESSION AND CORRELATION
Availability Codes

Aviil ,,ndlor
Dist pecial Leo Breiman

Department of Statistics
t University of California

Berkeley, California 94720

DTiC and

Jerome H. Friedman

Stanford Linear Accelerator Center
and

Department of Statistics
Stanford University

Stanford, California 94305

Abstract

In regression analysis the response variable Y and the predictor

variables X1,... ,X p are often replaced by functions O(Y) and

, p (X p). We discuss a procedure for estimating those functions

8* and €{,...,cp that minimize1 p

E{[(Y) - (X

e 2 _ j = l1
VarLe(Y)j

given only a sample {(Ykxkl,...,xkp), 1 <k<N} and making minimal

assumptions concerning the data distribution or the form of the solution

functions. For the bivariate case, p =l, e* and 4* satisfy

p= p(e*,o*) = max p[e(Y), (X)] where p is the product moment corre-
40

lation coefficient and p* is the maximal correlation between X and

Y. Our procedure thus also provides a method for estimating the maximal

correlation between two variables.

Work supported by Office of Naval Research under contracts N00014-82-K-0054
and NO0014-81 -K-0340.
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1. Introduction

------- Nonlinear transformation of variables is a commonly used practice

in regression problems. Two common goals are stabilization of error

* . variance and symmetrization/normalization of error distribution. A more

comprehensive goal, and the one we adopt, is to find those transformations

that produce the best fitting additive model. Knowledge of such trans-

formations aid in the interpretation and understanding of the relation-

ship between the response and predictors.

Let Y,Xl,... ,X be random variables with Y the response and
p

X,...,Xp the predictors. Let e(Y),¢l(X1 ),...,¢ (X ) be arbitrary
P~p p

measurable functions of the corresponding random variables. The fraction

of variance not explained (e2) by a regression of e(Y) on - Xi)

is
p

E{[e(Y) -i=l i(Xi)] 2

'. p) Var[e(Y)j

Then define optimaZ transformations as functions e ,4I,...,¢p that

minimize (1.1): i.e.

(1.2) e2 * min e2

We show in Section 5 that optimal transformations exist and satisfy

a complex system of integral equations. The heart of our approach is

that there is a simple iterative algorithm using only bivariate condi-

tional expectations which converges to an optimal solution. When the

conditional expectations are estimated from a finite data set, then use

of the algorithm results in estimates of the optimal transformations.

4
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This method has some powerful characteristics. It can be applied in

situations where the response and/or the predictors involve arbitrary

mixtures of continuous ordered variables and categorical variables (ordered

or unordered). The functions , are real valued. If the

original variable is categorical, the application of 0 or 0i assigns

a real valued score to each of its categorical values.

The procedure is nonparametric. The optimal transformation estimates

are based solely on the data sample {(Ykxkl ,...,Xkp), I <k <N} with

minimal assumptions concerning the data distribution and the form of the

optimal transformations. The principal distributional assumption is that

the data are i.i.d. In particular, we do not require the transformation

functions to be from a particular parameterized family or even monotone.

(We illustrate below situations where the optimal transformations are not

monotone.)

For the bivariate case, p =l, the optimal transformations e*(Y),

0*(X) satisfy

(1.3) p*(X,Y) = p(e*,O*) = max p[e(Y),O(X)]
e,O

where p is the product moment correlation coefficient. The quantity

p*(XY) is known as the maximal correZation between X and Y, and is

used as a general measure of dependence (Gebelern [1947]; see also Renyi

[1959] and Sarmanov [1958A,B]). The maximal correlation has the follow-

ing properties (Renyi [1959]):

(a) 0 < p*(X,Y) < 1

(b) p*(X,Y) = 0 if and only if X and Y are independent

4
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(c) if there exists a relation of the form u(X) = v(Y) where u

and v are Borel-measurable functions with var[u(X)] > 0,

then p*(XY) = 1.

Therefore, in the bivariate case our procedure can also be regarded as a

method for estimating the maximal correlation between two variables,

providing as a by-product estimates of the functions 6", 0* that achieve

the maximum.

In the next section, we describe our procedure for finding optimal

transformations using algorithmic notation, deferring mathematical

justifications to sections 5 and 6. We next illustrate the procedure in

Section 3 by applying it to a number of simulated data sets where the

optimal transformations are known. The estimates are surprisingly good.

Our algorithm is also applied to the Boston housing data of Harrison and

Rubinfeld [1978] as listed in Belsey, Kuh and Welsch [1980]. The trans-

formations found by the algorithm generally differ from those applied in

the original analysis. (A FORTRAN implementation of our algorithm is

listed in Appendix 2). Section 4 presents a general discussion and relates

this procedure to other empirical methods for finding transformations.

Sections 5, 6, and Appendix 1 provide some theoretical framework for

4 the algorithm. In Section 5, under weak conditions on the joint distribu-

tion of Y,Xl,...,Xp, it is shown that optimal transformations exist and

are generally unique up to a change of sign. The optimal transformations

are characterized as the eigenfunctions of a set of linear integral equa-

tions whose kernels involve bivariate distributions. We then show that

our procedure converges to optimal transformations.

Section 6 discusses the algorithm as applied to finite data sets.

The results are dependent on the type of data smooth employed to estimate
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the bivariate conditional expectations. Convergence of the algorithm is

proven only for a very restricted class of data smooths. However, in over

a thousand applications of the algorithm on a variety of data sets using

three different types of data smoothers only one (very contrived) instance

of non convergence has been found.

Section 6 also contains proof of a consistency result. Under fairly

general conditions, as the sample size increases the finite data trans-

formations converge in a "weak" sense to the distributional space optimal

transformations. Finally, Appendix 1 contains a brief discussion of the

needed consistency properties of bivariate smooths.

This paper is laid out in two distinct parts. Sections 1-4 give a

fairly non-technical overview of the method and discuss its application to

data. Sections 5 and 6 are, of necessity, more technical, presenting the

theoretical foundation for the procedure.

.4
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2. The Algorithm

Our procedure for finding e ' I" is iterative. Assume a known

distribution for the variables Y,X1,-..X. Without loss of generality,

let var[e(Y)] = 1, and assume that all functions have expectation zero.

To illustrate, we first look at the bivariate case;

(2.1) e2 (6,0) = E[6(Y)-O(X)]
2

Consider the minimization of (2.1) with respect to 8(Y) for a given

function ¢(X). The solution is

(2.2) e'(Y) = E[0(X)IY]/1E[0(X)tY]1

with 1- 1 [E(-) 2 ] /2. Next, consider the minimization of (2.1) with

respect to O(X) for a given e(Y). The solution is

(2.3) '(X)= E[6(Y)iX]

Equations (2.2) and (2.3) form the basis of an iterative optimization

procedure involving alternating conditional expectations (ACE):

BASIC ACE ALGORITHM

set 6(Y) = Y/IYI;

ITERATE UNTIL e2 (6,) fails to decrease:

0'(X) = E[e(Y)IX];

replace (X) with '(X);

6'(Y) = E[0(X)jY]/IIE[ (X)jY]II;

replace e(Y) with V'(Y);

END ITERATION LOOP;

6 and 0 are the solutions 8* and 0*;

END ALGORTHM;
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This algorithm decreases (2.1) at each step by alternatingly mini-

mizing with respect to one function holding the other fixed at its

previous evaluation. Each iteration (execution of the iteration loop)

performs one pair of these single function minimizations. The process

begins with an initial guess for one of the functions (6 = Y/YI above)

and ends when a complete iteration pass fails to decrease e2  (2.1). In

Section 5, we prove that the algorithm converges to optimal transformations

Now consider the more general case of multiple predictors X1,...,Xp.

We proceed in direct analogy with the basic ACE algorithm; we minimize

(2.4) e2 (,,, ...,) = E[e(Y) - 1I (X 2
j=l j

2holding EO =1, E6 = E0, =.-. =Ecp = 0, through a series of single

function minimizations involving bivariate conditional expectations. For

a given set of functions ¢l(Xl),...,¢p(Xp) minimization of (2.4) with
p p'

respect to e(Y) yields

(2.5) 0'(Y) = E[ li(Xi)IY]/E[i (x )jYJ

The next step is to minimize (2.4) with respect to (X '  (X )

given o(Y). This is obtained through another iterative algorithm.

Consider the minimization of (2.4) with respect to a single function

Ok(Xk) for given 6(Y) and a given set 0l''"'¢k-l'¢k+l"'" p* The

solution is

(2.6) 0(Xk) = E[O(Y) - k i (xi )]Xk]

* The corresponding iterative algorithm is then:

-4 -
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set ol(X 1 ),..., p (Xp) = 0;

ITERATE UNTIL e2(O,¢l,...,4p) fails to decrease;
FOR k=l TO p DO;

Ok(Xk) = E[e(Y) ik i(Xi)lXk];

replace Ok(Xk) with O (Xk);

END FOR LOOP;

END ITERATION LOOP;

,. are the solution functions;

Each iteration of the inner FOR loop minimizes e2  (2.4) with respect to

the function 0k(Xk), k=l,...,p with all other functions fixed at

their previous evaluations (execution of the FOR loop). The outer loop

is iterated until one complete pass over the predictor variables (inner

FOR loop) fails to decrease e2  (2.4).

Substituting this procedure for the corresponding single function

optimization in the bivariate ACE algorithm gives rise to the full ACE

algorithm for minimizing e2  (2.4):

ACE ALGORITHM:

set e(Y) = Y/1YU1 and l(Xl), .... X) = 0;

ITERATE UNTIL e2(e,¢l,...,p) fails to decrease;

ITERATE UNTIL e2(e,€i,...,€) fails to decrease;

FOR k=l TO p DO:

(Xk) = E[e(Y) -ik"i(Xi)iXk];

replace 4k(Xk) with OYXk);

END FOR LOOP;

END INNER ITERATION LOOP;

e'(Y) = E[. Ii(Xi)jY]/UE[ oi(XY] I

replace B(Y) with '(Y);

END OUTER ITERATION LOOP;
,0 9 . .90 are the solutions e*,0,..

END ACE ALGORTHM;

[° , - S - --------.--.--.---
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In Section 5, we prove that the ACE algorithm converges to optimal trans-

formations.

4"
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3. Applications

In the previous section, the ACE algorithm was developed in the con-

text of known distributions. In practice, data distributions are seldom

known. Instead, one has a data set {(YkxXkl ...,Xkp), 1 <k<N} that is

presumed to be a sample from Y,XI,...,X p . The goal is to estimate the

* optimal transformation functions e(Y),l(Xl),...,p (X p) from the date.

This can be accomplished by applying the ACE algorithm to the data wi'

the quantity e2, 11 1, and the conditional expectations replaced by

suitable estimates. The resulting functions e*, l,..., are then

taken as estimates of the corresponding optimal transformations.

The estimate for e2  is the usual mean squared error for regression,

= N p 2

If g(y,xl,...,x p) is a function defined for all data values, then llgH 2

is replaced by

Hg2 N _ 1 g2(yX 1  x)-g I " "1 •
N Nk=1 l xl k

For the case of categorical variables, the conditional expectation estimates

are straightforward:

E[AIZ=z] = A./ I 1
z. =z z. =z

* where A is a real valued quantity and the sums are over the subset of

observations having (categorical) value Z =z. For variables that can

assume many ordered values, the estimation is based on smoothing techniques.

4 Such procedures have been the subject of considerable study (see, for

example, Gasser and Rosenblatt [1979], Cleveland [1979], Craven and

a



Wahba [1979]). Since the smoother is repeatedly applied in the algorithm,

high speed is desirable, as well as adaptability to local curvature. We

use a smoother employing local linear fits with varying window width

determined by local cross-validation ("super smoother", Friedman and

Stuetzle [1982]).

The algorithm evaluates 8* '*, ^* at all the corresponding data
values, i.e. *(y) is evaluated at the set of data values

k=l,...,N. The simplest way to understand the shape of the transforma-

tions is by means of a plot of the function versus the corresponding data

values, that is, through the plots of *(yk) versus Yk and p

versus the data values of xl ,...,x p respectively.

In this section, we illustrate the ACE procedure by applying it to

various data sets. (A FORTRAN subroutine implementing our procedure is

listed in Appendix 2.) In order to evaluate performance on finite samplec,

the procedure is first applied to simulated data for which the optimal

transformations are known. We then apply it to the boston housing data of

Harrison and Rubinfeld [1978] as listed in Belsey, Kuh and Welsch [1980],

contrasting the ACE transformations with those used in the original

analysis.

Our first example consists of 200 bivariate observations {(YkXk),

1 <k <200} generated from the model

Yk = exp[sin(xk) +ek/
2]

with the xk sampled from a uniform distribution U(0,2k) and the

drawn independently of the xk from a standard normal distribution

N(0,l). Figure la shows a scatterplot of these data. Figures lb-ld show

the results of applying the ACE algorithm to the data. The estimated

4
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optimal transformation g*(y) is shown in the plot lb of 0*(yk) versus

1 < k < 200. Figure Ic is a plot of 0*(xk) versus xk. These

plots clearly suggest the transformations e(y) = log(y) and O(x) =

sin(x) which are optimal for the parent distribution. Figure Id is a

plot of *(yk) versus $*(Xk). This plot indicates a more linear rela-

tion between the transformed variables than that between the untransformed

ones.

The next issue we address is how much the algorithm overfits the

data due to the repeated smoothings, resulting in inflated estimates of

the maximal correlation p* and of R.2 = 1 - e*2 . The answer, on the simulated

data sets we have generated, is surprizing little.

To illustrate this, we contrast two estimates of p* and R.2

using the above model. The known optimal transformations are e(Y) =

log Y, O(X) = sin X. Therefore, we define the direct estimate for p*

given any data set generated as above by

=, 1 N ___

P = N, (log Yk -log y)(sin xk -sin x)
k=l

and ,2 = The ACE algorithm produces the estimates

N

fk~l g(Yk)^*(Xk)

-*2 1 _-* = ^* .*

and R = = , In this model p* = .8165 and R = .6667.

For 100 data sets, each of size 200, generated from the above model,

the means and standard deviations of the p* estimates are

mean s.d.

P* direct .814 .022

ACE .808 .031
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Figure Ic
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The means and standard deviations of the R estimates are

mean s.d.

R.2 direct .664 .031

ACE .654 .050

We also computed the differences p* -p* and R,2 _k,2 for the 100

data sets. The means and standard deviations are

mean s.d.

P -.006 .015
- -.010 .024

The above experiment was duplicated for smaller sample size N =100.

In this case we obtain

mean s.d.

p* -P* -.005 .027
,2 - ,2 -.007 .044

Our next example consists of a sample of 200 triples {(Yk,XklXk2),

1 <k<200} drawn from the model Y = X1X2 with X and X2 generated

independently from a uniform distribution U(-l,l). Note that e(Y) =

log(Y) and j(Xj) = log Xj (j =1,2) cannot be solutions here since Y,

X and X2 all assume negative values. Figure 2a shows a plot of

6*(yk) versus Yk' while Figures 2b and 2c show corresponding plots of

Al(Xkl) and $(xk2) (1 <k <200). All three solution transformation

functions are seen to be double valued. The optimal transformations for

this problem are e*(Y) = logjYj and ot(X.) = log IxjI (j =1,2). The

* estimates clearly reflect this structure except near the origin where the

smoother cannot reproduce the infinite discontinuity in the derivative.
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Figure 2a
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Figure 2c
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For our final example, we apply the ACE algorithm to the Boston

housing market data of Harrison and Rubinfeld [1978]. A complete listing

of these data appear in Belsey, Kuh and Welsch [1980]. Harrison and

Rubinfeld used these data to estimate marginal air pollution damages as

revealed in the housing market. Central to their analysis was a housing

value equation which relates the median value of owner-occupied homes in

each of the 506 census tracts in the Boston Standard Metropolitan

Statistical Area, to air pollution (as reflected in concentration of

nitrogen oxides) and to 12 other variables that are thought to effect

housing prices. This equation was estimated by trying to determine the

best fitting functional form of housing price on these 13 variables. By

experimenting with a number of possible transformations of the 14 varia-

bles (response and 13 predictors), Harrison and Rubinfeld settled on an

equation of the form

log(MV) = a1 + a2(RM) + a3 AGE

+ 4 log(DIS) + a5 log(RAD) + a6 TAX

+ a7 PTRATIO + a8 (B-0.63)
2

+ a 9 log(LSTAT) + al0 CRIM + all ZN

+ a12 INDUS + a13 CHAS + a14 (NoX)P + e

A brief description of each variable is given in Table 1. (For a more

complete description, see Harrison and Rubinfeld [1978], Table IV.) The

4coefficients ala...,al4 were determined by a least squares fit to mea-

surements of the 14 variables for the 506 census tracts. The best value

for the exponent p was found to be 2.0, by a numerical optimization

* (grid search). This "basic equation" was used to generate estimates for

the willingness to pay for and the marginal benefits of clean air.

i4
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TABLE 1

Variables Used in the Housing Value Equation
of Harrison and Rubinfeld (1978)

Variable Definition

MV Median value of owner-occupied homes

RM Average number of rooms in owner units

AGE Proportion of owner units built prior to 1940

DIS Weighted distances to five employment centers in the Boston
region

RAD Index of accessibility to radial highways

TAX Full property tax rate ($/$10,000)

PTRATIO Pupil-teacher ratio by town school district

B Black proportion of population

LSAT Proportion of population that is lower status

CRIM Crime rate by town

ZN Proportion of town's residential land zoned for lots greater
than 25,000 square feet

INDUS Proportion of nonretail business acres per town

CHAS Charles River dummy: = 1 if tract bounds the Charles River;
= 0 if otherwise

NOX Nitrogen oxide concentration in pphm

4"
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Harrison and Rubinfeld note that the results are highly sensitive to the

particular specification of the form of the housing price equation.

We applied the ACE algorithm to the transformed measurements (using

p =2 for NOX) appearing in the basic equation. To the extent that these

transformations are close to the optimal ones, the algorithm will produce

results close to linear functions O(Z) =01 (Z) .... =013 (Z) = cZ+a.

Departures from linearity indicate transformations that can improve the

quality of the fit.

Figure 3a shows a plot of the solution response transformation

*(log y). This function is seen to have a positive curvature for

central values of y, connecting two straight line segments of different

slope on eithee side. This suggests that the logarithmic transformation

may be too severe. Figure 3b shows the transformation 6*(y) resulting

when the ACE algorithm is applied to the original untransformed census

measurements. This indicates that, if anything, a very mild transforma-

tion, involving positive curvature, is most appropriate for the response

variable.

Figures 3c-3o show the ACE transformations ^*,... for the. i,..., 13 fo th

(transformed) predictor variables. The standard deviation a($ ) is

4 indicated in each graph. This provides a measure of how strongly each

(x.) enters into the model for &*(y). (Note that a(e*) = 1.) The

two terms that enter most strongly involve the number of rooms (Figure 3c)

and the fraction of population that is of lower status (Figure 3j). The

nearly linear shape of the latter transformation suggests that the original

logarithmic transformation was appropriate for this variable. The trans-

formation on the number of rooms variable is far from linear, however,

indicating that a quadratic does not adequately capture its relationship

4 . . . . . .. .. .. "
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to housing value. For less than six rooms, housing value is roughly

independent of room number, while for larger values there is a strong

increasing linear dependence. Among the next three variables (in order

of their contribution to the model), log DIS (Figure 3e), CRIM

(Figure 3k), and INDUS (Figure 3m), only CRIM has a solution close to a

straight line. The plots for the remaining variables indicate that

several of them could, as well, benefit from transformations substantially

different from those used to define the basic equation.

The marginal effect of (NOX) 2 on median home value, as captured by

this model, can be investigated by studying $*[(NOX) 2]  in Figure 3o.

This curve is a nonmonotonic function of NOX2  not well approximated by

a linear (or monotone) function. This makes it difficult to formulate a

simple interpretation of the willingness to pay for clean air from these

data. For low concentration values, housing prices seem to increase with

increasing (NOX)2 , whereas for higher values this trend is substantially

reversed.
13

Figure 3p shows a scatterplot of 6*(yk) versus 1 $j(Xkj). This
j=l i

plot shows no evidence of additional structure not captured in the model

13*(Y) = $(x) + e

j=l J

The e*  resulting from the use of the ACE transformations was 0.11 as

compared to the e2 value of 0.20 produced by the Harrison and Rubinfeld

[1978] transformations.
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Figure 3a
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Figure 3c
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Figure 3k
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Figure 3m
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Figure 3o
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4. Discussion

The ACE algorithm provides a fully automated method for estimating

optimal transformations in multiple regression. It also provides a

method for estimating maximal correlation between random variables. It

differs from other empirical methods for finding transformations (Box and

Tidwell [1962]; Anscombe and Tukey [1963]; Box and Cox [1964]; Kruskal

[1965); Draper and Cox [1969]; Fraser [1967]; Linsey [1972]; Box and Hill

[1974]; Linsey [1974]; Wood [1974]; Mosteller and Tukey [1977]; and Tukey

[1982]) in that the "best" transformations of the response and predictor

variables are unambiguously defined and estimated without use of ad hoc

heuristics, restrictive distributional assumptions, or restriction of the

transformation to a particular parametric family.

The algorithm is reasonably computer efficient. On the Boston housing

data set comprising 506 data points with 14 variables each, the run took

12 seconds of CPU time on an IBM 3081. Our guess is that this translates

into 2.5 minutes on a VAX 11/750 with FP. To extrapolate to other problems,

use the estimate that running time is proportional to (number of variables)

x (sample size).

A strong advantage of the ACE procedure is the ability to incorporate

* variables of quite different type in terms of the set of values they can

assume. The transformation functions ((y),x(Xl),.. .,p(X ) assume

values on the real line. Their arguments can, however, assume values on

* any set. For example, ordered real, periodic (circularly valued) real,

ordered and unordered categorical variables can be incorporated in the

same regression equation. For periodic variables, the smoother window

need only wrap around the boundaries. For categorical variables, the

procedure can be regarded as estimating optimal scores for each of their
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values. (The special case of a categorical response and a single cate-

gorical predictor variable is known as canonical analysis--see Kendall

and Stuart [1967], p.568--and the optimal scores can, in this case, also

be obtained by solution of a matrix eigenvector problem.)

In some problems the analyst may wish to restrict e(y) to be

monotone. For example, 9(y) monotone allows the unique specification of

y given a value of 9(y). There is an option in the program (Appendix 2)

that allows this using Kruskal's method of finding closest monotone fits

(see Kruskal [1964], pp. 126-128). However, we advise running the regular

algorithm first, since lack of monotonicity in §*(y) can provide

valuable insight into the structure of the data.

The solution functions *(y) and '(x ),.. .,*(x ) can be stored

as a set of values associated with each observation (Ykxkl,...,xkp),

1 <k <N. However, since 6(y) and c(x) are usually smooth (for

continuous y, x),-they can be easily approximated and stored as cubic

spline functions (deBoor [1978])with a few knots.

As a tool for data analysis, the ACE procedure provides graphical

output to indicate a need for transformations, as well as to guide in their

choice. If a particular plot suggests a familiar functional form for a

transformation, it can be substituted for the empirical transformation

estimate and the ACE algorithm can be rerun using an option which alters

only the scale and origin of that particular transformation. The resulting

e 2 can be compared to the original value. We have found that the plots

themselves often give surprising new insights into the relationship between

the response and predictor variables.

As with any regression procedure, a high degree of association between

predictor variables can sometimes cause the individual transformation
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estimates to be highly variable even though the complete model is reasonably

stable. When this is suspected, running the algorithm on randomly selected

subsets of the data, or on bootstrap samples (Efron [1979]) can assist in

assessing the variability.

The ACE method has generality beyond that exploited here. An imme-

diate generalization would involve multiple response variables Yl,...,Y

The generalized algorithm would estimate optimal transformations

elt ...,eq, l ,... , lp that minimize

E[Z =I6(Y Z) - zP= 0j(X)A 2
e1-e Z j I

subject to EeO = 0, Z=l,...,q, E =O,j=l,...,p

and IZl6 Z (Y Z)II2

This extension generalizes the ACE procedure in a sense similar to

that in which canonical correlation generalized linear regression.

The ACE algorithm (Section 2) is easily modified to incorporate

this extension. An inner loop over the response variables, analagous

* to that for the predictor variables, replaces the single function

minimization.

0

!0
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5.0 Optimal Transformations in Function Space

Introduction

Define random variables to take values either in the reals or in a

finite or countable unordered set. Given a set of random variables

Y,XI,... Xp , a transformation is defined by a set of real valued

measurable functions (6,, ... , p ) = (6,1), each function defined on the

range of the corresponding random variables, such that

(5.1) Ee(Y) = 0 , E4j(X.) = 0 , j =l,...,p

E 2(Y) < - , E02(Xj) < , j =1,...,p
3 J

Use the notation

(5.2) $(X) = Y'.p (X)

Denote the set of all transformations by F.

(5.3) DEFINITION. A transformation (*,*) is optimal for regression

if E()*) = 1, and

.2= E*(Y)-*(X)]2 = inf {E[9(Y)-$(X)]2;Ee 2=I}

(5.4) DEFINITION. A transformation (3"*, **) is optimal for

correlation if E(O**)2 = 1, E(**)2 = 1,

p* = E[e**(Y)$**(X)] = sup {E[e(Y)$(X)]2 ; E($) 2 = I,E02=I}
F

(5.5) THEOREM. If is optimal for correlation, then 9* =**

*= *** is optimal for regression and conversely. Furthermore

e* 2 = -Q* 2
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PROOF. Write

2 2
E(6-$) = 1 - E6$ + E$

= 1 - 2E(1)- + E 2

where t = $/vi . Hence

22(5.6) E(e- ) > 1 - 2p*Yf + E 2

with equality only if EO$ = p*. The minimum of the right side of (5.6)

over E$2  is at E$2 = (p*)2 where it is equal to 1- (p,)2. Then

(e*)2 = I- (p,)2 and if (e**, **) is optimal for correlation, then

=** = =, p** is optimal for regression. The argument is

reversible.

5.1 Existence of Optimal Transformations

To show existence of optimal transformations, two additional

assumptions are needed:

AI. There is no non-zero set of functions satisfying (5. 1) such that

e(Y) + j e.(xj) = 0 a.s.

To formulate the second assumption, define

(5.7) DEFINITION. Define the Hibert spaces H2 (Y),H 2(X ),.. .H 2(Xp)

as the sets of functions satisfying (5. 2) with the usual inner product,

i.e., H2 (Xj) is the set of all measurable j such that Eoj(X.) = 0,

E2 (Xj) < - with , =E[,3(Xj)j(X)].

333 3
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AII. The conditional expectation operators

E(4j(X.)JY): H2(X j -- H2 (Y)

E(O (Xy)Xi): H2(Xij)  H 2(Xi)  i #j

E(e(Y)IXj): H2 (Y) -- H2 (Xj)

are all compact.

Condition All is satisfied in most cases of interest. A sufficient

condition is given by: let X, Y be random variables with joint density

fXY and marginals fx9 fY" Then the conditional expectation operator on

H2 (Y)--H 2(X) is compact if

(5.8) .f[ffy/fxfy]dxdy <

(5.9) THEOREM. Under AI and AII optimal transformations exist.

Some machinery is needed.

(5.10) PROPOSITION. The set of all functions f of the form

f(Y,X) = (Y) + Jjej(Xj) , e E H2(Y), j E H2(Xj

with the inner product and norm

(g,f) = E[gf] , 11f112 = Ef2

is a Hilbert space denoted by H2 . The subspace of all functions ¢ of

the form

j(X) j E H2(Xj)

is a closed linear subspace denoted by H2 (X). So are H2(Y),H 2 (X),..,H 2(Xp
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(5.10) follows from:

(5.11) PROPOSITION. Under AI, AIl there are constants 0 < c < C2 <0

such that
c1(DeO 2 +II0 11 2) < Ile + pj 2 < C (Be1ii2 + IPHO 12)

PROOF. The right hand inequality is immediate. If the left side does

not hold, we can find a sequence fn = 6n +1n,j such that

10nl 2 + illnIJH2 = 1, but lifnl 2 --O. There is a subsequence n' such

that One I wO, 0' . j in the sense of weak convergence in

H2(Y),H 2(Xl),...,H 2 (Xp) respectively.

Write

EC n.(X )(ni(Xi)] = E[n,.j(Xj)E(ni(xX i  )]

to see that AII implies E0 n n-o- E0 i p, i t j and similarly for

EOn nj. Furthermore II < im llHnNig, OOH lienO. Thus,

defining f = e+ 1jj

Ifil2 = O+ .(pH < lim llf1n, 2 = 0

which implies, by AI, that e = ... p = 0. On the other hand,

f 2 =e 2 2 e c .(
if n I = KBe'.2 + jl oilH + Z (en" n",J) + Zi(Oj(¢ n'ni)

Hence, if f = O, then lim Hf In > 1.

(5.12) COROLLARY. If n w_- f in H2, then n w 6 in H2 (Y),

w i0n -+C in H2(Xj) = 1,... ,P, and converseey.

PROOF. If fn = en + j --- e +Ijoj, then by (5.11), Tim Ben 11 <

Ti njl < . Take n' such that n, w 0' wn'

-'-'0' j n e
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f= 8' + Then for any g E H2 , (g"f,)--(g',f'), so (g,f) =

(g,f') all g. The converse is easier.

(5.13) DEFINITION. In H2- let Py, P. and PX denote the projection

operators on H2(Y), H2(X ) and H2(X) respectively.

On H2(Xi), Pj, j i, is the conditional expectation operator, and

similarly for other subspaces.

(5.14) PROPOSITION. Py is compact on H2(X)--.H 2(Y) and P is compact

on H2(Y)--H 2 (X).

4 PROOF. Take $n E H2(X), n This implies, by (5.12), that
n,-- " By All, PYn,j --L Py so that Py~n -L Py$. Now take

a E H2 (Y), E H2(X), then (O,Py ) = (e,$) = (Px e,). Thus,

PX: H2(Y) -H 2(X) is the adjoint of Py and hence compact.

Now to complete the proof of Theorem 5.9. Consider the functional

1e- n2 on the set of all (e,$) with 11e02 = 1. For any e, $

HO-$I2 n He-PxOR2

If there is a 8* which achieves the minimum of R1-Px8e2  over 1ll2 = 1,

0 then an optimal transformation is 8*, PXe .. On 11112 = 1

ie- PxN 2 = 1 -RPxe1l

0 Let s = {sup UP xei; lie1 =1}. Take en such that nenii2 = 1, en - e,

and IPXenI--'i. By the compactness of PX' IP Xen1 - = s"

Further, 1i0 < 1. If leg < 1, then for 8'= 8/11811, we get the

contradiction IPxO'l > i. Hence NO1 = 1 and (0, PXO) is an optimal

transformation.

0L
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5.2 Characterization of Optimal Transformations

Define two operators U: H2(Y) --H2 (Y) and V: H2(X) -+H2(X) by

Ue = x, =PxPy

(5.15) PROPOSITION. U and V are compact, self-adjoint and non-negative

definite. They have the same eigenvalues and there is a 1-1 correspondence

between eigenspaces for a given eigenvalue specified by

= Pxe/IIPxI , 0 = Py/lPy$11

PROOF. Direct verification.

Let the largest eigenvalue be denoted by X, x = INU = lIVe. Then

(5.16) THEOREM. If 6*, p* is an optimal transformation for regression,

then
= ue*o

Conversely, if e satisfies Xe = U6, Nll1 = 1, then 0, P e is optimal

for regression. If $ satisfies Xp = V$, then 0 = Py1/PyIl, and

XO/ Pyh are optima- for regression. In addition

2(e*) = I -X

PROOF. Let e*, * be optimal. Then = e* . Write

ue*-s*ii 2 = 1 - 2(6*,*) + Ii*i 2

Note that (6*,$*) = (6*,P y*) <. lPy $* with equality only if

0* = ePy$*, e constant. Therefore, 0* = Py*/HPy$*l. This implies

a
lIp $*1 6* = U*, 1IPy4,~ll = VW ,
V
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so that IP*N is an eigenvalue X* of U, V. Computing gives

6** 2 = I-X*. Now take e any eigenfunction of U corresponding to

X, with liel = 1. Let @ = P e , then Ile-ill = 1-X. This shows that

6", $* are not optimal unless X* = X. The rest of the theorem is

straightforward verification.

(5.17) COROLLARY. If X has multiplicity one, then the optimal trans-

formation is unique up to a sign change. In any case, the set of optimal

transformations is finite dimensional.

It appears that uniqueness is the general case.

5.3 Alternating Conditional Methods

Direct solution of the equations X6 = Ue or = V$ is

formidable. Attempting to use data to directly estimate the solutions

is just as difficult. In the bivariate case, if X, Y are categorical,

then Xe = U6 becomes a matrix eigenvalue problem and is tractable. This

is the case treated in Kendall and Stuart [1967].

The ACE algorithm is founded on the observation that there is an

iterative method for finding optimal transformations. We illustrate this

22
i in the bivariate case. The goal is to minimize 116(Y) XI with

Hell = 1. Denote PXO = E(eIX), Py0 = E(0IY). Start with any first

guess function 60(Y). Then define a sequence of functions by

0 = Pxeo

61 = Pyo/llPy~ol

01 = PXe1
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and in general 4 n+l = Px6 n9 en+1 = Yn+I/IIP yn+Il" It is clear that

at each step in the iteration iie- i 2  is decreased. It is not hard to

show that in general, en. 9n converge to an optimal transformation.

The above method of alternating conditionals extends to the general

multivariate case. The analogue is clear; given en' n then the next

iteration is

$n+1 = P xn 9 8 n+l = PY~n+I/'PY~n+ll

However, there is an additional issue: How can PXe be computed using

only the conditional expectation operators P., j =1,...,p? This is done

by starting with some function 0 and iteratively subtracting off the

projections of 0-$n on the subspaces H2(X1 ),... ,H2 (Xp) until we get a

function such that the projection of 0-4 on each of H2 (Xj ) is zero.

This leads to

The Double Loop Algorithm

The Outer Loop

1. Start with an initial guess eo(Y).

2. Put n+1 = PX~n' e n+1 = PYn+I/lipyn+III and repeat until

convergence.

Let PE6O be the projection of e0 on the eigenspace E of U

corresponding to X. Then

(5.18) THEOREM. If lIPEO0 11  0 0, define an optimal transformation by

6* = PEeO/IIPEO011, * e Then Ile*ll --0, I1$ - $*11 -00.

* PROOF. Notice that en+1 = Ue n/llUenI. For any n, en = ne +gn9 where

gn LE. Because, if it is true for n, then

IA



-41-

en+ 1 = (nxe +ugn)/ aJe* +Ugnl

and Ugn is to E. For any gJ.E, HUg1l < rllg where r < X. Since

n /Un '9 g Ugn/lUen 1, then

gn+l /an+ 1 = hUgnhl/an < (r/)Ngni/ n •

Thus lgn l/an < c(r/X) n. But lien 11 = 1, n +gn = 1, implying

a2 --1. Since aO > 0, then 1 > , so an-*l. Now use =

(1-a )2 +Ugnl2 to reach the conclusion. Since In+1 lpXenpXe*l

< ien-e 11, the theorem follows.

The Inner Loop

1. Start with functions e, q0.
(m) te

2. If, after m stages of iteration, the functions are 0i then

define, for j =1,2,...,p,

= P.(e -.e 0. m) -

Sj >J i<j 1

(5.19) THEOREM. Let m = yj (m). TH - .

PROOF. Define the operator T by

T = (I-P p )(I-Pp_). (I-P1)

Then the iteration in the inner loop is expressed as

4 (5.20) e -¢m+1 = T(e- m)

= Tm(e-O )

Write -$0 = e'Px 6+Px " O" Noting that T(e-Px6) = e-Pxe,  (5.20)

becomes

m P e +Tm(Pe6-)

4
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The theorem is then proven by

(5.21) PROPOSITION. For any $ E H2 (X), HT' -H 0.

PROOF. li(I-Pj) II2  = I iI2 -  II 2  ii$II2. Thus 1IT11 < 1. There is no

$ 0 such that TR1 = 1WgI. If there were, then HP. B = 0, all j.

Then for $' =

= ) =( Pj, = 0

The operator T = I +W, where W is compact. Now we claim that

IITmWH -0 on H2(X). To prove this, let 0 < y < 1 and define

G(y) = sup {ITWQ1I/OIW$; 1$l1 <1, IW$I1 >y}

Take $nW RnIn < 1, kW$ I > y so that IITW n/RW nII--.G(y). Then
nn - n The

<1p0 < 1, 1W41 > y and G(y) = ITW4/lW¢ll. Thus G(y) < 1, for all

0 < Y < 1 and is clearly non-increasing in y. Then

TITmW = HITWTm-I1l _ G(_ITm-Iw$1I)1ITm'IwsH

Put Y0= IWI, Ym = G(Ym)YnI' then 1TmWII < ym But clearly ym -+0.

The range of W is dense in H2(X). Otherwise, there is a 4' $ 0

such that ($',W$) = 0, all $. This implies (W*$',$) = 0 or W*$' = 0.

Then BT*h'II = 1'I and a repetition of the argument given above leads

to $' = 0. For any $ and e > 0, take W$1 so that II-W 1 11 <E.

* Then Tm l < c +ITmW1 11, which completes the proof.

There are two versions of the double loop. In the fi.'st, the initial

functions 0 are the limiting functions produced by the preceding

iinner loop. This is called the restart version. In the second, the
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initial functions are $0 0. This is the fresh start version. The

main theoretical difference is that a stronger consistency result holds

for fresh start. Restart is a faster running algorithm, and is embodied

in the ACE code.

The Single Loop Algorithm

The single loop algorithm combines a single iteration of the inner

loop with an iteration of the outer loop. Thus, it is summarized by

1. Start with eO, 0 = 0.

2. If the current functions are en pn' define 'n+i by

en "@n+l = T(e n-n)

3. Let en+1 = Py.n+l/IlPy~n+111. Run to convergence.

This is a cleaner algorithm than the double loop and its implementa-

tion on data runs at least twice as fast as the double loop and requires

only a single convergence test. Unfortunately, we have been unable to

prove that it converges in function space. Assuming convergence, it can

be shown that the limiting e is an eigenfunction of U. But giving condi-

tions for e to correspond to X or even showing that e will correspond

to X "almost always" seems difficult.

6

6

6
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6.0 The ACE Algorithm on Finite Data Sets

Introduction

The ACE algorithm is implemented on finite data sets by replacing

conditional expectations, given continuous variables, by data smooths.

In looking at the convergence and consistency properties of the ACE

algorithm, the critical element was the properties of the data smooth

used. The results are fragmentary. Convergence of the algorithm is proven

only for a very restricted class of smooths. In practice, in over 1000

runs of ACE over a wide variety of data sets and using three different

types of smooths, we have seen only one instance of failure to converge.

A fairly general, but weak, consistency proof is given. We conjecture the

form of a stronger consistency result.

6.1 Data Smooths

Define a data set D to be a set {xl,...,xN} of N points in p

dimensional space, i.e. xk = (Xkl,.. .9xkp). Let V N be the collection

of all such data sets. For fixed D, define F(x) as the space of all

real-valued functions ¢ defined on D, i.e. € E F(x) is defined by

* the N real numbers {(0X), ...,(X N)l. Define F(xj), j =1,...,p as

the space of all real-valued functions defined on the set {xnj

(6.1) DEFINITION. A data smooth S of x on x. is a mapping

S: F(x) --.F(xj) defined for every D in Dn' If G F(x) denote the

corresponding eZement in F(x.) by S(@Ixj) and its vaZues by S(Olxkj).

Let x be any one of xl,... ,x p . Some examples of data smooths are

4
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1. Histogram: Divide the real axis up into disjoint intervals (I }. If

xk eI., define

S(Ixk) = nx

2. Moving Average: Fix M < N/2. Order the xk getting x1 <x2 < ... <x N

(assume no ties), and corresponding (xl),...,c(xn). Put

1 M

S( Ixk) =- 00OM 0(4+m
)

If M points are not available on one side, make up the deficiency on the

other side.

3. Kernel: Take K(x) defined on the reals with maximum at x = 0. Then

S(OIxk) = ¢(xm)K(xm'xk) /1 K(xZ-xk)
m t

4. Regression: 'Fix M and order xk as in (2) above. At xk, regress

the values of 0(XkM),.. .,(Xk+M) excluding 0(Xk) on XkM,... ,xk+M

excluding xk, getting a regression line L(x). Put S(OIxk) = L(xk).

If M points are not available on each side of xk make up the deficiency

on the other side.

5. Supersmoother: See Friedman and Stuetzle [1982].

Some properties that are relevant to the behavior of smoothers are given

below. These properties hold only if they are true for all D E Dn'

Linearity. A smooth is linear if

S( 1 + B02)  cts 1 + S 2

for all ¢1, ¢2 E F(x) and all constants e, .

-6
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Constant Preserving. If 0 E F(x) is constant, 0 c, then So E c.

To give a further property, introduce the inner product )N on

F(x) defined by

(O'O')N = n Ik 0( k)O'(xk )

and the corresponding norm I 1N.

Boundedness. S is bounded by M if

ASOU N S MH'IIN , all 0 e F(x)

In the examples of smooths given above, all are linear, except

supersmoother. This implies they can be represented as an N xN matrix

operator varying with D. All are constant preserving. Histograms and

moving average are bounded by one. Regression is unbounded due to end

effects, but in the appendix we introduce a modified regression smooth

that is bounded by 2. Supersmoother is bounded by 2. The bound for

kernel smooths is more complicated.

6.2 Convergence of ACE

Let the data be of the form (YkXk) = (Ykxk1,...,xkp), k=l,...,N.

Assume tha- y = i1 = ... =Rp = 0. Define smooths Sysi,...,Sp where

Sy: F(y,x)--F(y) and S.: F(y,) -F(x Let H2 (y x) be the set of

all functions in F(y,x) with zero mean and H2(y), H2(xj ) the corres-

ponding subspaces.

It is essential to modify the smooths so that the resulting functions

have zero means. This is done by subtracting the mean; thus the modified
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S. is defined by

(6.2) S 0 =

Henceforth, we use only modified smooths and assume the original smooth

to be constant preserving, so that the modified smooths take constants

into zero.

The ACE algorithm is defined by

(0) ( )1. O.
Yk z k' 0j (xkj) 0

The Inner Loop

2. At the n stage of the outer loop, start with e(n) ,(O)

For every m > 1 and j =1,...,p define

,(m+1) = S (e(n) - 'i
i <j i >j

Keep increasing m until convergence to j.

The Outer Loop

3. Set e(n+1) = S y(Ijj)'/Sy(lj j) N , go back to the inner loop

with ¢0) = Cj, Continue until convergence.

To formalize this algorithm, introduce the space H2(e,O) with
elements (e,0i,..., ), e E H2(y), 0j E H 2(x) , and subspaces H2(e)

with elements (,0,0,...,0) = e and H2 (4) with elements (0,qi,... ,€)
=,

For f = (fo,f 1 ,.. .fp) in H2(eJ) define S.: H2 (9,_t)--H 2(8,1)

by

S : f. +Sj( , fi ) I j =i
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Starting with e = (e,O,O,...,O), , (m) : (O,1) ,...,4 m)) one complete

cycle in the inner loop is described by

(6.3) e= (IS )(iSp(iSl)(6_1W

Define T on H2 (e,o)-H H2(6,p) as the product operator in (6.3). Then

(6.4) O(m) = f(20))

If, for a given 8, the inner loop converges, then the limiting

satisfies

(6.5a) S (e-0) = 0 , j =1,...,p

That is, the smooth of the residuals on any predictor variable is zero.

Adding

(6.5b) e = S y/IISy N

to (6.5a) gives a set of equations satisfied by the estimated optimal

transformations.

Assume, for the remainder of this section, that the smooths are

linear. Then (6.5a) can be written as

(6.6) S = Sje , = ,...,p

Let sp(Sj) denote the spectrum of the matrix S. Assume 1 sp(S.).

(For constant preserving smooths 1 is always in the spectrum, but not

for modified smooths.) Define matrices A. by A. = S.(I-S.) and

the matrix A as JjAj. Assume further that -1 I sp(A). Then (6.6)

has the unique solution

(6.7) = A (I+A)' 1e , j =1,...,p
L3
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The element = (0,i,..., given by (6.7) will be denoted by P8.

Rewrite (6.3) using (I-T)(e-Pe) = 0 as

(6.8) (m) =p

Therefore, the inner loop converges if it can be shown that Tmf--0 for

all f E H2 (0). What we can show is

(6.9) THEOREM. If det[I+A] 0 and if the spectral radii of SI,...,Sp

are all less than one, a necessary and sufficient condition for "f --0

for all f E H2(4) is that

(6.10) det[,I -II(I-Sj/X)" (I-Sj)

1

have no zeroes in JXi > 1 except X = 1.

PROOF. For Tmf -O, all f E H2(4), it is necessary and sufficient

that the spectral radius of T be less than one. The equation Tf = Xf

in component form is

(6.11) f. = -S.(X I f ' + i f i ) ' j =1,...,p
3 ~ i<j 1>3

Let s = Ifi and rewrite (6.11) as
i

(6.12) (XI-S.)fj = S.((l-X) f -s)
i<j

If X = 1, (6.12) becomes (I-S.)fj =-Sjs or s =-As. By assumption,

this implies s = 0, and hence f. = 0, all j. This rules out X = 1

as an eigenvalue of T. For X t 1, but X greater than the maximum of

the spectral radii of the S., j =1,...,p, define a= (1- )f.-s.

Then fj = (gj+ 1-gj)/(1-X), so 1(3

(XI-S.)(gj+1-gj) = (1-X)Sjgj
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or

(6.13) gj+ (I-S / )-1(I-S)g.

Since gp+1= -As, = -s, then (6.13) leads to

(6.14) Xs = (I-S /X)'(I-S).(I-S -I(I-S)s

If (6.14) has no non-zero solutions, then s = 0, gj = 0, j =1,...,p,

implying all f. = 0. Conversely, if (6.14) has a solution s 0 0, it

leads to a solution of (6.11).

Unfortunately, condition (6.10) is difficult to verify for general

linear smooths. If the S. are self-adjoint, non-negative definite,

such that all elements in the unmodified smooth matrix are non-negative,

then all spectral radii of S. are less than one, and (6.10) can be shown

to hold by verifying that

P 1
J>XJ < ITI(I-Sj/X)- (I-Sj)11

1

has no solutions A with JXl > 1, and then ruling out solutions with

[A I- 1.

The only common type of smooth satisfying the above conditions is

the histogram smooth, a poor smooth to use in implementing ACE.

Assuming that the inner loop converges to Pe , then the outer loop

iteration is given by

(n+1) = Pe(n )

- ((S ( n ) j,

y-2 N

Put the matrix S yP U, so that
€y

I
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(n~l e n)
(6.15) (n+l) =

iue (n)lN

if the eigenvalue X of U having largest absolute value is real

and positive, then 0(n+1) converges to the projection of 0(0) on the

eigenspace of A. The limiting e, P6 is a solution of (6.5a,b).
* (n)

However, if X is not real and positive, then e oscillates and does

not converge. If the smooths are self-adjoint and non-negative definite,

then S P is the product of two self-adjoint non-negative definite
y

matrices, hence has only real non-negative eigenvalues. We are unable to

find conditions guaranteeing this for more general smooths.

Thus, in spite of the fact that ACE has invariably converged (with

one exception) we cannot give a general convergence proof. We conjecture

that convergence holds only for "most" data sets in a sense made explicit

in the following section.

6.3 Consistency of ACE

For 0,,...,p any functions in H2(Y),H 2(X1),...,H 2 (Xp), and

any data set D E N, define functions P.(¢ilxj) by

(6.16) Pj(¢ifXkj) = E( i(Xi)IX j =xkj)

Let ¢i in H2(xj) be defined as the restriction of €i to the set of

data values {xlj,...,XNj} minus its mean value over the data values.

Assume that the N data vectors (ykXk) are independent samples

from the distribution of (Y,XI....,X).

-4-
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(6.17) DEFINITION. Let S( N ) be any sequence of data smooths. They
y -

are mean square consistent if

EIIS(.N)( I 4)Ixj) - p.(4Ix.) N 03 ij 1  j ij 1jN

for all 0 ' .. s as above, with the analogous definition for Sy .
p y

The m.s. consi tency of some smooths is discussed in the next section.

Whether r not the algorithm converges, a weak consistency result

can be given under general conditions. Start with 60 6 H2 (Y). On each

data set, run the inner loop iteration m times, that is, define

4(n+1) = O(n) ._m(,(n)_.,(n))

-m -m

Then set

_(n+1) = y ( n+1) /1 py(n+1)II
2m y -m y m N

Repeat the outer loop Z times getting the final functions 9N(y;mZ),

0jN(xj;mk). Do the analogous thing in function space starting with 80,

getting functions whose restriction to the data set D are denoted by

e(y;mi), 4)(xj;m,Z). Then

(6.18) THEOREM. If the smooths S(N) (N) are m.s. consistent and
yj

uniformly bounded as N -% then

ElleN(Y;mX)-e(Y;,m,01 2___- 0 , EUojN(xj;m,z )-,tj(xj;m,Z)ll2 -+0

If 8* is the optimal transformation PEeo/HPE8011, * = PX8., then as

m, .-. o in any way, for the fresh start algorithm

3 3 0

RO(.;m, )- - -+O-,- -(.;m, -- ----
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PROOF. First note that for any product of smooths SN).sN),

P~ 1 i 12.Es(N) ... s(N)eo-P •I 0

1 i 1 N

(N) 2NThis is illustrated with Si  Sj 0O, i #j. Since E s1N)0- Pj o N--).O,

then S N)O0 = Pje O +@j ,N where E110N NN2*-. Therefore

S(N)(S(N)e ) = 5(6 +)P e0
i i *j,N

By assumption (Is N)¢j,NRN < MII4jN 1N, where M does not depend on N.

Therefore EISN)oj12-0. By assumption EjIS N)pjeO-PiPj2O.-+o so

that EJIS N)S N)e - P 6 0112 _.

(6.19) PROPOSITION. If eN is defined in H2 (y) for aUl data sets D,

and e E H2 (Y) such that

E16N(y)-O(y)12 -_ 0

NN
then Ej'~lIN( y ) _ y)1 ,0

Ree E" NII N  111 N --

PROOF. Write /11ll = 0/0 11 N + e(1/Iell -I/IeN). So two parts are

needed. First, to show that

E eN .1 2 __,. 0
eN  N

Second, that E16( 0- )II --+o. For the first part, let

N k NTn 1 NN(YRi e(Yk) t 2( N' Nt e t N0

dThen S <4, so it is enough to show that s P to get ES2 --*O
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Let

v= N j(6 N~k)-O(yk))2
Ak

= Ie 11 2 + lleil - 2 (oN,e)N

= (0I N 9-I1eIIN)2 + 2(061 NIINI N-(6N,9)N)

Both terms are positive, and since EV2-)O, E(ONI-IeiN)2-0,

E(HO NHeININ-N(e N,)N) - -0. By the law of large numbers ElIeI2-IeI 2 1 --+0,

resulting in s2P.

Now look at

W 2=1 6 ( 1 1,2
Ne N 6

2 1 1)2-N TeN(TeT

li8% 2

Then EWN--+O follows from E1161 2 --)0.

Using Proposition 6.19 it follows that EleN(Y;m,t)-(y;m,Z)12-0

and in consequence, that Eloj,N(xj;mZ)- j(xj;m,k)12

In function space, define

* p(m) = 6-TmO
x

Um = pyp(m)

Then k

mO0* e(. ;m,i,) iiU= O1

The last step in the proof is showing that

U 0'lUM01 - 0l-Ilm'i



as m, Z go to infinity. Begin with

(6.20) PROPOSITION. As m--w, U --U in the uniform operator norm.

KPROOF. WU6-Ue = 1PyTmPxe6 < ITmPx01. Now on H2(Y), 1TmPx1 -0-O. If

not, take em, NOmI 1 such that 1TmPx m > 6, all m. Let BmI-'+we,

then Pxem sP xe, and

, m'1x4m,' < ITm'Px(em,-6)1 + UTm'PX el

IPx(eme-) + ITm'PXell

By Proposition (5.21) the right hand side goes to zero.

The operator Um  is not necessarily self-adjoint, but it is

compact. By (6.18), if O(sp(U)) is any open set containing sp(U),

then for m sufficiently large sp(Um) C O(sp(U)). Suppose, for sim-

plicity, that the projection E, corresponding to the largest eigenvalue

A of U is one-dimensional. (The proof goes through if E is higher-

dimensional but is more complicated.) Then for any open neighborhood 0

of A, and m sufficiently large, there is only one eigenvalue Am of

U in 0, Xm -- and the projection p(m) of U corresponding tommE m crepnigt
xm converges to P in the uniform operator topology. Also, Xm can
be taken as the eigenvalue of UM  having largest absolute value. If

A' is the second largest eigenvalue of U, and A' the eigenvalue of

Um  having the second highest absolute value, then (assuming Ex, is

one-dimensional) X --'

Write

Wm = Un p m) W U-P

so again IIWM-WA --0. Nowmn



-56-

621)U e =Lp(m) 8  + w

(6.21) e m E 0 +m o

We0  E E 0 +W

For any e > 0 we will show that there exists mo , to such that for

m > m o l l > Z 0

(6.22) IIWz6eo0IX , W eoiIx 2. < E

Take r = (X+X')/2 and select m0  such that r > max(X',JXJ, m>mo).

Denote by R(X,W m)  the resolvent of Wm . Then

2. 1
I1 I XZ R(X,.d

Wm =ri X =r

and

< I r2.  ! r R(X,W )1diX Jm -7 r m

where dIXfis arc length along Ixl = r. On JI = r, for m > mO ,
IIR(X,W )H is continuous and bounded. Furthermore IR(X,W )I--']R(X,W)I

m m
uniformly. Letting M(r) = max IR(X,W)I, then

IN 2IIW11I< rz M(r)(l+6mAm

m m m

where Amm-O as m--. Certainly
M0 2

1W I < r M(r)

Fix 6 > 0 such that (1+6)r < X. Take m6 such that for

m >max(mo,m6), Xm > (1+6)r. Then

HWmII/Xm < ( -) M(r)(1+6m)

and

IW /X < -)M(r)
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Now choose a new m0 and X such that (5.6) is satisfied.

Using (5.6)

where m,--,O as m,2.- . ThusU 6 E 0

and the right side goes to zero as m

The term weak consistency is used above because we have in mind a

desirable stronger result. We conjecture that for reasonable smooths, the

set CN = 1(Yi),...,(YNN); algorithm converges} satisfies P(CN)--1

and that for eN the limit on CN starting from a fixed 60,

E[IC iBN-e*UN]---+O
N

We also conjecture that such a theorem will be difficult to prove.
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APPENDIX 1

Most Reasonable Sequences of Uniformly Bounded Smooths are M.S. Consistent

If the window size goes to zero at the right rate as N--, then

most "reasonable" smooths which utilize local smoothing are m.s. consis-

tent. There is a substantial literature on consistency, usually in

higher dimensional spaces. Stone's pioneering paper [1977] established

consistency for k-nearest neighbor smoothing. Devroye and Wagner [1980]

and independently Spiegelman and Sacks [1980] gave weak conditions for

consistency of kernel smooths. See Stone [1977] and Devroye [1981] for a

review of the literature.

The common definition of consistency is: given a set of N-l inde-

pendent copies (XI,Y 1),...,(XN-1,YNI), of (X,Y) drawn from the same

bivariate distribution, and 0 6 L2 (Y), call S(N) L2-consistent if

E[S N)(X)-E(0(Y)jX)]2 -- 0. To see that our definition is equivalent, put

down the fixed point (x,y) and then the other N-1 random points

(xlY 1 ),...,(xN _1,yN 1). Now compute E[S(N)(x)-E(YIx)]2 = gW(x). Our

definition of m.s. consistency is then

E[k Ik gN(xk)] -- 0

or EgN(X) -*O.

Uniform boundedness is a critical condition for consistency proofs.

A key element in Stone's proof is (put in different form)

(A.l ) PROPOSITION. Take data sets drawn from a bivariate distribution

(X,Y), S(N) a uniformly bounded sequence of smooths on x, PX the

conditional expectation operator. If, for a set of functions {¢}

dense in H2(Y) ,

LI _ __ _
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EjS(N)(Ojx)-Px(O1x)1 - 0

then the S(N) as m.s. consistent. If, for a set of functions {h}

dense in H2(X)'

(A.2 ) EIS(N)(hlx)-h(x)l 1 -12 0

then (A.2 ) holds for all h E H2 (X).

The proof is simple and is omitted.

Assume S(N) is linear. Then

(A.3) EIS(N) -Px 2 X 2ES(N)(O-PxO)H + 2ENS(N)PxO-Px4 N N

If it can be shown that EIIS N)h-hIN-O for all continuous h E H2 (X)

vanishing ofl at finite intervals, and if the first term on the right

in (A.3 ) goes to zero for all 0 such that ION., < -, then (A.l)

implies that S(N ) is m.s. consistent. This strategy works for a wide

variety of smooths.

To illustrate, because Stone's results [1977] do not seem immediately

applicable to bivariate regression smooths, m.s. consistency is proven

for a modified regression smooth similar to supersmoother. For x any

point, let J(x) be the indices of the M points in {xkI directly

above x plus the M below. If there are only M' < M above (below)

then include the M+(M-M') directly below (above). For a regression

smooth

rx (Ox)
(A.4) S(xx) = +

x

where , x  are the averages of ¢(yk) , xk over the indices in J(x),

x o
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er(0x), 2 the covariance between xk and the variance of xk
~over the indices in J(x).

Write the second term in (A.3 ) as

L rx( ,x) (X-Vx

x x

If there are M points above and below in J(x), it is not hard to show
~thatn

X- x

rx

This is not true near endpoints where (x-ix )/ax  can become arbitrarily

large as M gets large. This endpoint behavior keeps regression from

being uniformly bounded. To remedy this, define a function

fx , Ix _

[x]t = 1 sgn(s) , lxl > 1

and define the modified regression smooth by

(A.5) S(OIx)= Sx a t

This modified smooth is bounded by 2.
4

(A.6 ) THEOREM. If, as N--)w, M-- ,MlogN/N--+O and P(dx) has no

atoms, then the modified regression smooths are m.s. consistent.

PROOF. Assume 110. < - and use the inequality (A.3 ) with g(x) =

P x(Olx). Ther
I ~ ~(x.-x)X t

S(-gjx) - 1r(- lx)(+(yj)-gxj)) I + Lx -t
x " at
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The conditional expectation of ES(O-gjx) 2 given {xk} is

1 l xEE (¢(yj)-g (xj))2, (xj-4Xx x1

Mx ]0 + x

10 c

Thus, the first term in (A.3) is asymptotically zero. Now look at

S(hlx) -h(x), h e H2(X), h continuous and zero outside a finite

interval;

(x.-i ) x-x
S(hlx) -h(x) = 2 j(x)(h(xj)-h(x)){l + a L a

Then, for H(6) = max{(h(x')-h(x")I; Ix'-x"I <61,

r "[S(hlx)'Lh(x)] 2 < [21 lj(=j(x)(h(xj)'h(x))2 ]"2

< 2H( max Ix.-xI)
jEJ(x)

Then to get E[S(hlx)-h(x)]2 --0, it is enough to show that A

AN = max{Ixj-xI; x EJ(x)} converges in probability to zero. Take x

to be a point such that P[(x,x+t)] > 0, PC(x-e,x)] > 0 for all e > 0.

The set S of all such points has P(S) = 1. Then

{AN > } C {at most 2M-1 of {xk} in (x-e,x)}

U {at most 2M-1 of {xk} in (x,x+c)}

Using the Binomial distribution gives the bound

P(AN >) < 2N {(l -P[(x,x+)]) N-M +(l -PE(x-e,x)]) N M I

Holding e fixed with N-- and M = o(N/log N) results in

* P(AN >)--0, proving the theorem.

I



-62-

References

Anscombe, F.J. and Tukey, J.W. (1963). The examination and analysis of

residuals. Technometrics 5, 141-160.

Belsey, D.A., Kuh, E. and Welsch, R.E. (1980). Regression Diagnostics,

John Wiley and Sons.

Box, G.E.P. and Tidwell, P.W. (1962). Transformations of the independent

variables. Technometrics 4, 531-550.

Box, G.E.P. and Cox, D.R. (1964). An analysis of transformations. J.R.

Statist. Soc. B 26, 211-252.

Box, G.E.P. and Hill, W.J. (1974). Correcting inhomogeneity of variance

with power transformation weighting. Technometrics 16, 385-389.

Cleveland, W.S. (1979). Robust locally weighted regression and smoothing

scatterplots. J. Amer. Statist. Assoc. 74, 828-836.

Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline

functions. Estimating the correct degree of smoothing by the method

of generalized cross-validation. Nwnerische Mathematik 31, 317-403.

deBoor, C. (1978). A Practical Guide to Splines, Springer-Verlag.

Devroye, L. (1981). On the almost everywhere convergence of nonparametric

regression function estimates. Ann. Statist. 9, 1310-1319.

Devroye, L. and Wagner, T.J. (1980). Distribution-free consistency

results in nonparametric discrimination and regression function

estimation. Ann. Statist. 8, 231-239.

Draper, N.R. and Cox, D.R. (1969). On distributions and their transfor-

mations to normality. J.R. Statist. Soc. B 31, 472-476.

Efron, B. (1979). Bootstrap methods: another look at the jackknife.

Ann. Statist. 7, 1-26.

4



-63-

Fraser, D.A.S. (1967). Data transformations and the linear model. Ann.

math. Statist. 38, 1456-1465.

K Friedman, J.H. and Stuetzle, W. (1982). Smoothing of scatterplots. Dept.

of Statistics, Stanford University, Tech. Report ORIONOO6.

Gasser, T. and Rosenblatt, M. (eds.) (1979). Smoothing Techniques for

Curve Estimation, in Lecture Notes in Mathematics 757, New York:

Springer-Verlag.

Gebelein, H. (1941). Das statitistiche problem der korrelation als

variations und eigenwert problem und sein Zusammenhang mit der

Ausgleichung-srechnung. Z. Angew. Math. Mech. 21, 364-379.

Harrison, D. and Rubinfeld, D.L. (1978). Hedonic housing prices and the

demand for clean air. J. Environ." Econ. Mngmnt 5, 81-102.

Kendall, M.A. and Stuart, A. (1967). The Advanced Theory of Statistics,

Volume 2, Hafner.

Kruskal, J..B. (1964). Nonmetric multidimensional scaling: a numerical

method. Psychometrika 29, 115-129.

* Kruskal, J.B. (1965). Analysis of factorial experiments by estimating

monotone transformations of the data. J.R. Statist. Soc. B 27,

251-263.

.4 Linsey, J.K. (1972). Fitting response surfaces with power transformations.

J.R. Statist. Soc. C 21, 234-237.

Linsey, J.K. (1974). Construction and comparison of statistical models.

J.R. Statist. Soc. B 36, 418-425.

Mosteller, F. and Tukey, J.W. (1977). Data Analysis and Regression,

Addison-Wesley.

Renyi, A. (1959). On measures of dependence. Acta. Math. Acad. Sci.
4 !Hunqar. 10, 441-451.



-64-

Sarmanov, O.V. (l958a). The maximal correlation coefficient (symmetric

case). Doki. Acad. Nauk. SSSR 120, 715-718.

Sarmanov, 0.V. (1958b). The maximal correlation coefficient (nonsymmetric

case). Doki. Acad. Nauk. SSSR 121, 52-55.

Spiegelman, C. and Sacks, J. (1980). Consistent window estimation in

nonparametric regression. Ann. Statist. 8, 240-246.

Stone, C.J. (1977). Consistent nonparametric regression. Ann. Statist. 7,

139-149.

Tukey, J.W. (1982). The use of smelting in guiding re-expression, in

Modern Data Analyeis, Laurner and Siegel (eds.), Academic Press.

Wood, J.T. (1974). An extension of the analysis of transformations of

Box and Cox. Appi. Statist. (J.R. Statist. Soc. C) 23.

4

4,
4



-65-

TABLE 1

Variables Used in the Housing Value Equation
of Harrison and Rubinfeld (1978)

Variable Definition

MV Median value of owner-occupied homes

RM Average number of rooms in owner units

AGE Proportion of owner units built prior to 1940

DIS Weighted distances to five employment centers in the Boston
region

RAD Index of accessibility to radial highways

TAX Full property tax rate ($/$10,000)

PTRATIO Pupil-teacher ratio by town school district

B Black proportion of population

LSAT Proportion of population that is lower status

CRIM Crime rate by town

ZN Proportion of town's residential land zoned for lots greater
than 25,000 square feet

INDUS Proportion of nonretail business acres per town

CHAS Charles River dumy: = 1 if tract bounds the Charles River;
= 0 if otherwise

NOX Nitrogen oxide concentration in pphm

-.
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. Appendix 2

FORTRAN Implementation of ACE Algorithm

This section presents a listing of a FORTRAN program implementing the

ACE algorithm. It consists of six subroutines. The first two are called

by the user to perform functions (ACE,ACEMOD), the next is a BLOCK DATA

subprogram in which the values of several internal parameters are initialized,

and the last three provide utilities used by the first two subroutines. The

user interface is through FORTRAN subroutine calls. The data and various

input parameters are supplied as arguments in the calling sequence. The

optimal transformation estimates and other output quantities, as well as

required scratch storage are also passed as subroutine arguments. In order

to employ these routines it is necessary to write a main or calling program

that reads the input data into appropriate arrays, to declare additional

arrays for output and scratch storage, and then to execute a call to the

*appropriate subroutine (ACE or ACEMOD).

SUBROUTINE ACE computes the optimal transformation estimates using the

-. double loop restart version of the ACE algorithm (see Sections 2 and 5.3).

These estimates are stored as a set of transformed values, one value for

each observation, for the response and each predictor variable. Upon return

from SUBROUTINE ACE these values are stored in the arrays specified in the

subroutine call. This information can then be passed to appropriate graphics

routines for display, or to function approximation routines for summarization.

SUBROUTINE ACEMOD can (optionally) be called to estimate new response values

given a set of predictor values and the optimal transformation estimates from

SUBROUTINE ACE.
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As written, this program is intended to be used in conjunction with a

particular smoothing subroutine ("super-smoother") which is listed in

Friedman and Stuetzle (1982). Our experience so far with the ACE procedure

has been gained in this context. It is possible to employ other smoothing

routines by properly interfacing them with the ACE code. ACE calls for the

smooth by the FORTRAN statement

CALL SUPSMU (N,X,Y,Wi,L,ALPHA,RESPAN,IBIN,SMO,SCR)

where the parameters have the following meaning:

N: number of observations (X,Y) pairs.

X(.. .N): ordered abscissa values.

Y(I... N): corresponding ordinate values.

W(I... N): weight for each observation.

L: abscissa variable flag - L = 1 ordered variable.

L = 2 periodic (circular) variable.

ALPHA,RESPAN,IBIN: miscellaneous parameters (can'be set through

COMMON/PAR?.S/).

SMO(I... N): output smoothed ordinate values.

SCR(.. .N,1...3): scratch array.
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SUBROUTINE ACE (P,N,X,Y,W,L,DELRSQ,TX,TY,RSQ,IERR,M,Z)
C-------------------------------------------------------------------------
C
C OPTIMAL TRANSFORMATIONS FOR CORRELATION AND MULTIPLE REGRESSION
C BY ALTERNATING CONDITIONAL ESTIMATES.i C
cC (BREIMAN AND FRIEDMAN, 1982).
C
C CODED BY: J. H. FRIEDMAN
C DEPARTMENT OF STATISTICS AND
C STANFORD LINEAR ACCELERATOR CENTER
C STANFORD UNIVERSITY
C STANFORD, CA. 94305
C
C INPUT:
c
C N : NUMBER OF OBSERVATIONS.
C P : NUMBER OF PREDICTOR VARIABLES FOR EACH OBSERVATION.
C X(P,N) : PREDICTOR DATA MATRIX.
C Y(N) : RESPONSE VALUE FOR EACH OBSERVATION.
C W(N) : WEIGHT FOR EACH OBSERVATION.
C L(P+1) : FLAG FOR EACH VARIABLE.
C L(1) THROUGH L(P) : PREDICTOR VARIABLES.
C L(P+l) : RESPONSE VARIABLE.
C L(I)=O => ITH VARIABLE NOT TO BE USED.
C L(I)=1 => ITH VARIABLE ASSUMES ORDERED VALUES.
C L(I)=2 => ITH VARIABLE ASSUMES CIRCULAR (PERIODIC) VALUES.
C L(I)=3 => ITH VARIABLE TRANSFORMATION IS TO BE MONOTONE.
C L(I)=4 => ITH VARIABLE TRANSFORMATION IS TO BE LINEAR.
C L(I)=5 => ITH VARIABLE ASSUMES CATEGORICAL VALUES.
C DELRSQ : TERMINATION THRESHOLD. ITERATION STOPS WHEN
C RSQ CHANGES LESS THAN DELRSQ IN NTERM
C CONSECUTIVE ITERATIONS (SEE BELOW - DEFAULT, NTERM=3).
C

C OUT'IUT:
C
C TX(NP) : PREDICTOR TRANSFORMATIONS.
C TX(J,I) = TRANSFORMED VALUE OF ITH PREDICTOR FOR JTH OBS.
C TY(N) = RESPONSE TRANSFORMATION.
C TY(J) = TRANSFORMED RESPONSE VALUE FOR JTH OBSERVATION.

* C RSQ = FRACTION OF VARIANCE(TY<Y>)
C P
C EXPLAINED BY SUM TX(I)<X(I)>
C I=l
C IERR : ERROR FLAG.
C IERR = 0 : NO ERRORS DETECTED.

* C IERR > 0 : ERROR DETECTED - SEE FORMAT STATEMENTS BELOW.
C
C SCRATCH:
C
C M(N,P+I), Z(N,7) : INTERNAL WORKING STORAGE.
C (Z(J,1), J=I,N) CONTAIN (TRANSFORMED) RESIDUALS AS OUTPUT.

* C
C NOTE: THIS ROUTINE USES AS A PRIMITIVE THE 'SUPER SMOOTHER'
C SUPSMU (SEE - FRIEDMAN AND STUETZLE (1982). SMOOTHING OF
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C SCATTERPLOTS. STANFORD UNIVERSITY STATISTICS DEPARTMENT

*C REPORT ORIONOO6.)
C
C-------------------------------------------------------------------------

INTEGER P,PP1,M(N,1),L(I)
REAL Y(N) ,X(P,N) ,W(N) ,TY(N) ITX(NI P) ,Z(N, 7) ,CT(1O)
COMMON /PARMS/ ITAPE,MAXIT, NTERM,ALPHA, RESPAN, IBIN
DOUBLE PRECISION SM, SV, SW
IERR=O
221=2+1
SM=0.0
Sv=SM

* SW=SV
IF (L(PP1).GT.0) GO TO 10
IERR=4
IF (ITAPE.GT.0) WRITE (ITAPE,360) P21
RETURN

10 NP=0
DO 20 1=1,2
IF (L(I).GT.O) bIP=NP+1

*20 CONTINUE
IF (NP.GT.O) GO TO 30
I ERR=5

4 IF (ITA2E.GT.0) WRITE (ITAPE,370) P
RETURN

30 DO 40 J=1,N
SM=SM+W(J)*Y(J)
SV=SV+W(J) *y(J )**2
sW=sW+W(J)
M(J,PPl)=J
z (J, 2 )=Y(J)

40 CONTINUE
IF (SW.GT.0.0) GO TO 50
IERR1l
IF (ITAPE.GT.0) WRITE (ITAPE,330)
RETURN

50 SM=SM/SW
SV=SV/SW-SM**2
IF (SV.LE.0.0) GO TO 60
SV=1 . /DSQRT (SV)
GO TO 70

*60 IERR=2
IF (ITAPE.GT.0) WRITE (ITAPE, 340)
RETUJRN

70 DO 80 J=1,N
Z (J, 1)= (Y(J)-SM)*SV

80 CONTINUE
4 CALL SORT (z(1,2),M(1,PPl),1,N)

DO 100 1=1,P
IF (L(I).LE.0) GO TO 100
DO 90 J=1,N
TX(J, I)=0 .0
M (J, I )=J
Z (J, 2 )=X (I ,J)

90 CONTINUE
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CALL SORT (Z(1,2),M(1,I),1,N)
100 CONTINUE

RSQ=0.0
ITER=0
NTER?4=MINO(NTERM, 10)
NT=0
DO 110 I=1,NTERM
CT(I)=100.0

110 CONTINUE
120 ITER=ITER+1

DO 130 J=1,N
TY(J)=Z(J, 1)

130 CONTINUE
NIT=O

140 RSQI=RSQ
NIT=NIT~l
DO 200 1=1, P
IF (L(l).LE.0) GO TO 200
DO 150 J=1,N
K=M(J, I)
Z(J, 1)=TY(K)+TX(K, I)
Z (J, 2 )=X (I,K)

I Z(J,7)=W(K)
150 CONTINUE

CALL SMOTHR (L(I),N,Z(1, 2),Z,Z(1,7) ,z(1,6),Z(1, 3))
SMO0.0
DO 160 J=1,N
SM=SM+Z (J,7) *Z(J, 6)

160 CONTINUE
SM=SM/SW
DO 170 J=1,N
Z(J, 6)-Z(J,6)-SM

170 CONTINUE
sv=0.0
DO 180 J=1,N
SV=SV+Z(J,7)*(Z(J,1)-Z(J,6))**2

180 CONTINUE
sv=1 0-sv/sw
IF (SV.LE.RSQ) GO TO 200
RSQ=SV
DO 190 J=1,N
K=M(J, I)
TX(K, I)=Z(J,6)
TY(K)=Z(J, 1)-Z(J, 6)

190 CONTINUE
200 CONTINUE

IF ((NP.NE.1).AND.((RSQ-RSQI.GT.DELRSQ).AND.(NIT.LT.MAXIT))) GO TC.

1 140
IF (RSQ.NE.0.0.OR.ITER.NE.1) GO TO 230
DO 220 1=1,P
IF (L(I).LE.0) GO TO 220
DO 210 J=1,N

421 CONTIUE,
210 CONTINUE

'422 

OT I 
NUEI,



230 DO 250 J=1,N
K=M(J, PP1)
z (J, 2 )=Y(K)
Z (J, 7) =w (K)
z(J,1)=0.0
DO 240 I=1,P
IF (L(I) .GT.0) Z(J, 1)=Z(J, 1)+TX(K,I)

240 CONTINUE
250 CONTINUE

CALL SMOTHR (L(PP1),N,Z(1,2),Z,Z(1,7),Z(1,6),z(1,3))
SM=0.0
SV=SM
DO 260 J=1,N
K=M(J, PP1)
SM=SM+W(K)*Z(J, 6)
SV=SV+W(K)*Z(J,6)**2
Z(K, 2)=Z(J, 1)

260 CONTINUE
SM=SM/SW
SV=SV/ SW-SM **2
IF (SV.LE.0) GO TO 270
SV=1.O/DSORT(SV)
GO TO 280

270 IERR=3
IF (ITAPE.GT.0) WRITE (ITAPE,350)
RETURN

280 DO 290 J=1,N
K=M(J, PP1)
TY(K)=(Z(J, 6)-SM) *SV

290 CONTINUE
SV=0. 0
DO 300 J=1,N
Z(J, 1)=TY(J)-Z(J,2)
SV=SV+w(J) *Z(J,1 )**2

300 CONTINUE
RSQ=1 .0-SV/SW
IF (ITAPE.GT.0) WRITE (ITAPE,32o) ITER,RSQ
NT=MOD (NT, NTERM)+l
CT (NT)=RSQ
CMN=100.0

4 CMX=-100.0
DO 310 I=1,NTERM
CMN=AMIN1(CMN,CT(I))
CMX=AMAX1(CMX,CT(I))

310 CONTINUE
IF ((CMX-CMN.GT.DELRSQ).AND.(ITER.LT.MAXIT)) GO TO 120

4 RETURN
320 FORMAT( 1i1i ITERATION 12, 23H R**2 =1 -E**2 =G12.4)
330 FORMAT( 41H IERR=1: SUM OF WEIGHTS (W) NOT POSITIVE.)
340 FORMAT( 29H IERR=2: Y HAS ZERO VARIANCE.)
350 FORMAT( 30H IERR=3: TY HAS ZERO VARIANCE.)
360 FORMAT( 118 IERR=4: L(12, 19H) MUST BE POSITIVE.)

4370 FORMAT( 29H IERR=5: AT LEAST ONE L(l)-L(12, 19H) MUST BE POSI'.
lIVE.)
END
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SUBROUTINE ACEMOD (V,PN,X,Y,L,TX,TY,M,YHAT,IERR)
C---------------------------------------------------------------------------
C
C COMPUTES RESPONSE ESTIMATES FROM THE MODEL
C -1 P

C YHAT = TY ( SUM TX(I)<V(I)>
C 1=1
C USING THE TRANSFORMATIONS CONSTRUCTED BY SUBROUTINE ACE.
C
C INPUT:
C
C V(P) : VECTOR OF PREDICTOR VALUES.
C P,NX,Y,L : SAME INPUT AS FOR SUBROUTINE ACE.
C TX,TYM : OUTPUT FROM SUBROUTINE ACE.
C
C OUTPUT:
C
C YHAT : ESTIMATED RESPONSE VALUE FOR V.
C IERR : ERROR FLAG.
C IERR=O: NO ERROR DETECTED.
C IERR=l: ERROR DETECTED - SEE FORMAT STATEMENT BELOW.
C
C NOTE: THIS ROUTINE REQUIRES THAT THE RESPONSE TRANSFORMATION TY IS A

C STRICTLY (INCREASING OR DECREASING) MONOTONE FUNCTION OF Y, THAT
C IS L(P+l) = 3 OR 4 IN THE CALL TO SUBROUTINE ACE.
C
C--------------------------------------------------------------------------

INTEGER P,PP1,M(N,1),L(1),LOW,HIGH,PLACE
REAL V(P),X(P,N),Y(N),TY(N),TX(N,P)
COMMON /PARMS/ ITAPE,MAXIT,NTERM,ALPHA, RESPAN, IBIN
PP1=P+1
IERR=0
IF (L(PPI).EQ.3.OR.L(PPl).EQ.4) GO TO 10
IERR=1
IF (ITAPE.GT.0) WRITE (ITAPE,140) PPI
RETURN

10 YH=0.0
DO 80 I=1,P
IF (L(I).LE.0) GO TO 80
VI=V(I)
IF (VI.GT.X(I,M(1,I))) GO TO 20

PLACE=I
GO TO 70

20 IF (VI.LT.X(I,M(N,I))) GO TO 30
PLACE=N
GO TO 70

30 LOW=O

HIGH=N+I
40 IF (LOW+1.GE.HIGH) GO TO 60

PLACE=(LOW+HIGH)/2
XT=X(I,M(PLACE, I))

IF (VI.EQ.XT) GO TO 70
IF (VI.GE.XT) GO TO 50

HIGH=PLACE
GO TO 40
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50 LOW=PLACE
GO TO 40

60 JL=M(LOW,I)
JH=M(HIGH, I)
YH=YH+TX(JL,I)+(TX(JH,I)-TX(JL,I))*(VI-X(I,JL))/(X(I,JH)-X(I,JL))
GO TO 80

70 YH=YH+TX(M(PLACE,I),I)
80 CONTINUE

IF (YH.GT.TY(M(1,PP1))) GO TO 90
YHAT=Y(M(1,PPI))
RETURN

90 IF (YH.LT.TY(M(N,PP1))) GO TO 100
YHAT=Y(M(N, PP1))
RETURN

100 LOW=O
HIGH=N+1
XT=TY(M(N,PP1))-TY(M(1,PP1))
XT=XT/ABS (XT)

110 IF (LOW+1.GE.HIGH) GO TO 130
PLACE=(LOW+HIGH)/2
IF (XT*YH.GE.XT*TY(M(PLACE,PP))) GO TO 120
HIGH=PLACE
GO TO 110

120 LOW=PLACE
GO TO 110

130 JL=M(LOW,PP1)
JH=M(HIGH,PPI)
YHAT=Y(JL)+(Y(JH)-Y(JL))*(YH-TY(JL))/(TY(JH)-TY(JL))
RETURN

140 FORMAT( 11H IERR=1: L(12, 55H) MUST EQUAL 3 OR 4 - MONOTONE
iRESPONSE TRANSFORMATION.)
END
BLOCK DATA
COMMON /PARMS/ ITAPE,MAXIT,NTERM,ALPHA, RESPAN, IBIN

C------------------------------------------------------------------------
C
C THESE PROCEDURE PARAMETERS CAN BE CHANGED IN THE CALLING ROUTINE
C BY DEFINING THE ABOVE LABELED COMMON AND RESETTING THE VALUES WITH
C EXECUTABLE STATEMENTS.
C
C ITAPE : FORTRAN FILE NUMBER FOR PRINTER OUTPUT.
C (ITAPE.LE.0 => NO PRINTER OUTPUT.)
C MAXIT : MAXIMUM NUMBER OF ITERATIONS.
C NTERM : NUMBER OF CONSECUTIVE ITERATIONS FOR WHICH ESTIMATED
C CORRELATION MUST CHANGE LESS THAN DELCOR FOR CONVERGENCE.
C ALPHA, RESPAN, IBIN : SUPER SMOOTHER PARAMETERS.
C (SEE - FRIEDMAN AND STUETZLE, REFERENCE ABOVE.)
C
C------------------------------------------------------------------------

DATA ITAPE,MAXIT,NTERM,ALPHA,RESPAN,IBIN /6,20,3,0.1,0.25,1/
END
SUBROUTINE SMOTHR (L,N,X,Y,W,SMO,SCR)
REAL X(N),Y(N),W(N),SMO(N),SCR(N,3)
COMMON /PARMS/ ITAPE,MAXIT,NTERM,ALPHA, RESPAN, IBIN
DOUBLE PRECISION SM,SW
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IF (L.LT.5) GO TO 50
J-1

10 JO-J
SM=W(J)*Y(J)
SW=w(J)
IF (J.GE.N) GO TO 30

20 IF (X(J+1).GT.X(J)) GO TO 30
J=J+ 1
SM=SM+W(J)*Y(J)
sw=Sw+w(J)
IF (J.LT.N) GO TO 20

*30 SM=SM/SW
DO 40 I=JO,J
SMO(I)=SM

40 CONTINUE
J =J+ 1
IF (J.LE.N) GO TO 10
GO TO 240

50 IF (L.NE.4) GO TO 80
SMO0.0
SW=SM
DO 60 J=1,N
SM=SM+W(J)*X(J)*Y(J)
SW=SW+W(J)*X(J)**2

60 CONTINUE
A=SM/SW
DO 70 J=1,N
SMO(J)=A*X(J)

70 CONTINUE
GO TO 240

80 CALL SUPSMU (NX,Y,W,L,ALPH-A,RESPAN, IBIN,SMO,SCR)
IF (L.NE.3) GO TO 240
DO 90 J=1,N
SCR(J 1 )=SMO(J)
SCR(N-J+1, 2)=SCR(J, 1)

90 CONTINUE
CALL MONTNE (SCR,N)
CALL MONTNE (SCR(1,2),N)
SM=0.0
SWS
DO 100 J=1,N
SM=SM+(SMO(J)-SCR(J, 1) )**2
SW=SW+(SMO(J)-SCR(N-J+1,2) )**2

100 CONTINUE
IF (SM.GE.SW) GO TO 120
DO 110 J=1,N
SMO(J)=SCR(J, 1)

110 CONTINUE
GO TO 140

120 DO 130 J=1,N
SMO(J)=SCR(N-J-1, 2)

130 CONTINUE
140 J-1
150 J0-J7

IF (J.GE.N) GO TO 170
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160 IF (SMO(J+1).NE.SMO(J)) GO TO 170
J-J+ 1
IF (J.LT.N) GO TO 160

170 IF (J.LE.JO) GO TO 190
A=0. 0

IF (JO.GT.1) A=0.5*(SM0(J0)-SMO(J0-1))
B=0.0
IF (J.LT.N) B=0.5*(SMO(J+1)-SMO(J))
D=(A+B)/(J-JO)
IF (A.EQ-.0QoR.B.EQ.0.o) D=2.0*D
IF (A.EQ.0.0) A=B
DO 180 I=JO,J

SMO(I)=SMO(I)-A+D* (I-JO)
180 CONTINUE
190 J=J+1

IF (J.LE.N) GO TO 150
J=1

200 JO=J
SM=SMO (J)
IF (J.GE.N) GO TO 220

210 IF (X(J+1).GT.X(J)) GO TO 220
J-J+ 1
SM=SM+SMO(J)
IF (J.LT.N) GO TO 210

220 SM=SM/ (J-J0+1)
DO 230 I=J0,J
SMO(I )=SM

230 CONTINUE
J=J+1
IF (J.LE.N) GO TO 200

240 RETURN
END
SUBROUTINE MONTNE (X,N)
REAL X(N)
INTEGER BB,EB,BR,ER,BL,EL
BB=O
EB=BB

10 IF (EB.GE.N) GO TO 110
BB=EB+ 1
EB=BB

20 IF (EB.GE.N) GO TO 30
IF (X(BB).NE.X(EB-1)) GO TO 30
EB=EB4-1
GO TO 20

30 IF (EB.GE.N) GO TO 70
IF (X(EB).LE.X(EB+1)) GO To 70
BR=EB+l
ER=BR

40 IF (ER.GE.N) GO TO 50
IF (X(ER-.1).NE.X(BR)) GO TO 50
ER=ER+1
GO TO 40

50 PMN=(X(BB)*(EB-BB+1)+X(BR)*(ER-BR+I.))/(ER-BB+1)
EB=ER
DO 60 I=BB,EB
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X (I) )=PMN
60 CONTINUE
70 IF (BB.LE.1) GO TO 10

IF (X(BB-1).LE.X(BB)) GO TO 10
BL=BB- 1
EL=BL

80 IF (BL.LE.1) GO TO 90
IF (X(BL-1).NE.X(EL)) GO TO 90
BL=BL- 1
GO TO 80

90 PMN=(X(BB)*(EB-BBi1)+X(BL)*(EL-BL+1) )/(EB-BL+l)
BB=BL
DO 100 I=BB,EB
X( I)=PMN

100 CONTINUE
GO TO 30

110 RETURN
END
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SUBROUTINE SORT (V,A,II,JJ)
C
C PUTS INTO A THE PERMUTATION VECTOR WHICH SORTS V INTO
C INCREASING ORDER. ONLY ELEMENTS FROM II TO JJ ARE CONSIDERED.
C ARRAYS IU(K) AND IL(K) PERMIT SORTING UP TO 2**(K+I)-I ELEMENTS. "C

C THIS IS A MODIFICATION OF CACM ALGORITHM #347 BY R. C. SINGLETON,
C WHICH IS A MODIFIED HOARE QUICKSORT.
C

DIMENSION A(JJ) ,V(1),IU(2o), IL(20)
INTEGER T,TT
INTEGER A
REAL V
M=1
I=II
J=JJ

10 IF (I.GE.J) GO TO 80
20 K=I

IJ=(J+I)/2

T=A(IJ)
VT=V(IJ)
IF (V(I).LE.VT) GO TO 30
A(IJ)=A(I)
A(I)=T
T=A(IJ)
V(IJ)=V(I)
V ( I ) VT
VT=V(IJ)

30 L=J
IF (V(J).GE.VT) GO TO 50
A(IJ)=A(J)
A(J)=T
T=A(IJ)
V(IJ)=V(J)

v(J)=vr
VT=V(IJ)
IF (V(I).LE.VT) GO TO 50
A(IJ)=A(I)
A(I)=T
T=A( IJ)
V(iJ)=V(I)
V(I)=VT
VT=V(IJ)
GO TO 50

40 A(L)=A(K)
A (K) =TT
V(L)-V(K)
V(K)-VTT

50 L=L-1
IF (V(L).GT.VT) GO TO 50
TT-A(L)
VTT-V(T,)

60 K-K+I
IF (V(K).LT.VT) GO TO 60
IF (K.LE.L) GO TO 40
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IF (L-I.LE.J-K) GO TO 70
IL(M)=I
IU(M)=L
I-K
M=M+1
GO TO 90

70 IL(M)=K
IU (M)=J
J=L
M=M+1

80 GOTO 90
80 =M-1

IF (M.EQ.0) RETURN
I=IL(M)
J=IU(M)

90 IF (J-I.GT.10) GO TO 20
IF (I.EQ.II) GO TO 10
I=I-1

100 1=1+1
IF (I.EQ.J) GO TO 80
T=A( 1+1)
VT=V( 1+1)
IF (V(I).LE-VT) GO TO 100
K=I

110 A(K+1)=A(K)
V(K+1 )=V(K)
K=K-1
IF (VT.LT.V(K)) GO TO 110
A(K+1)=T
V(K-1 )=VT
GO TO 100
END

..........


