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MINIMAX ESTIMATION OF A MULTIVARIATE NORMAL MEAN
UNDER A QUADRATIC LOSS FUNCTION WITH UNKNOWN WEIGHTS

by
Pi-Erh Lin! and Amany M. Mousa

Florida State University

SUMMARY
Let X ~ Np(g. ), p23, vhere £ = diag(ai, cens o;) and let
’i/": ~ x]Z' (i=1, ..., p), independent of X. This paper obtains
i

a class of minimax estimators § for y subject to the loss func-
tion (§ - ¥)“Q(S - p)/tr(QL) where Q is a p % p diagonal matrix
with unknown positive diagonal elements. It is assumed that an
independent estimator G~ of Q! is available which satisfies cer-
tain conditions. The new minimax estimator is a function of

X, sy, and 6'1, and takes a form similar to the minimax estimator

obtained by Berger and Bock (Ann. Statist. 4 (1976), 642-648) for

the case when Q is known. A class of minimax estimators for y is

also obtained for the special case when oi 2 ... ":'

1'l'hi.s work was supported by the Army, Navy and Air Force under
Office of Naval Research Contract No. N00014-80-C-0093. Repro-
duction in whole or in part is permitted for any purpose of the
United States Government.

AMS 1970 subject classifications: Primary 62C07; Secondary 62F10,
62H99

Key words and phrases. Minimax, unknown variances, quadratic loss
with unknown weights, risk function.
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1. INTRODUCTION

Let X = (xl. cees xp)' be a p)snate normal random vector
with mean y and covariance matri’;{cdz. This paper considers the
minimax estimation of\g by s i;el(étive to a certain quadratic loss
function with unknown weights. To the best of our knowledge, this
is the first time in the literature a loss function of this type
is considered in estimating(y. The minimax estimation of y rela-
tive to other types of quadratic loss functions has been extensively
studied sinc/q Stein (1956) showed that the maximum likelihood esti-

= CALL

mator, _)5; is inadmissible, when p 2 3, relative to the loss func-

- '1:(' L dua "I‘c(v.x ,
5; ~

tion given by -
Ly(8 e B = (8- 07T (8 - - (1.1

In particular, minimax estimators for y relative to (1.1) are ob-
tained by Baranchik (1970) when § is known, by Strawderman (1973)
when = azlp, and by Lin and Tsai (1973) and Efron and Morris (1976)
when I is unknown, among other authors. In the 1970's, researchers
shifted their concern to the minimax estimation of u relative to

the loss function given by
Ly ¥, 2) = (8 - W g - w/tr(QD), 1.2)

where Q = diag(ql. csey qp) under the assumption that Qs eees qp are

known positive constants. Successful results are reported by Berger

(1976a, b), Berger and Bock (1976), Berger et al (1977), and
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Gleser (1979), among others. Recently, Lin and Mousa (198la, b),
in studying the minimax estimation under both loss functions, take
a convex combination of (1.1) and (1.2) as the loss function and
obtain classes of minimax estimators for} under the assumption
that I is an unknown positive definite diagonal matrix.

In this paper we will obtain a class of minimax estimators
for y relative to the loss function given by (1.2) where Qo oo qp
are unknown positive weights. These positive weights should re-

flect the relative importance of the parameters to be estimated in
such a way that the more isportant the component to be estimated
is, the more weight should be placed on that component in the loss
function. Usually, the parameters to be estimated are not equally
important and, quite often, their relative importance is not com-
pletely known, resulting in an unknown assignment of weights. Since
the real weight matrix Q is unknown, we will assume that an estimator
G of Q (or 4™ of Q1) is available and that § is independent of the
underlying distribution. Examples in which Q is unknown are

(1) Let 3-1' coes Z-n be a random sample taken from Np(s, I') where
both § and T are unknown. Consider the problem of estimating g with

n
respect to the loss L (§; g, ). Let Z=(1/n) ] Z,. Itiswell

isl
n — —
known that W -igl(zd - 2)(Z; - 2V has a Wishart distribution with

parameters n - 1 and ', independent of the gi's. Thus, W/(n - 1)

is an unbiased estimator of T.

~ e
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(2) Let Xy coes _)_(ﬂ be a random sample taken from Npu(i’ ).
Partition li’ E,» and £ as in Stein (1960), i.e.,

Y, n A B’
X, = . = and L = ,
Sl P I P I BT

vhereYi.nnndAareIXI,z_‘,gandgarepxlvectors, and T is

an unknown p x p positive definite matrix. Then,
E(Yilgi) =gz ¢+ a, i=1, ..., p»
where
g-r'lg and a=n- 8¢

Now, consider the problem of estimating the regression vector g

with respect to the loss

LGB, ) = (& - ©T(E - p/(A - BT ). (1.3)

Note that T'/(A - g’r'lg) is unknown and it may be estimated by

V/(T - ¥V W, where

S AT T )
=) X - 0K - X)) X = (1/n) .
P R b

(3) Consider the problem of estimating the means Bps oo "p
(p 2 3) of certain products. Let Qs ooos qp be the demands for
the products which are unknown but which may be estimated, e.g.,

by some leading economic index or by some other method. The larger




the demand is for a product the more important it will be to
estimate the mean product accurately so that its unit price may
be fairly adjusted in the market. The use of loss function (1.2)
with wnknown weights in this context is not uncommon; in fact, it
also can be found in psychology, education, and social research
in which an independent source of information, that reflects the
relative importance of the parameters to be estimated, is available.

The sbove examples suggest that, inpractice, the matrix Q'1
need not be known rather that it can be estimated by 6'1 which
has finite second moments.

In the following section, a new class of minimax estimators
will be obtained for y when the covariance matrix
1= diag(ci. csep o:) with unknown ai, i=1, ..., p. The special

2 2

case when oy = oo ® op will be treated in Section 3.

) Pl Senn tth Abten AN . WO W Tow T T -
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and

i

and

Assume that

8= ch _(DQ

2. MINIMAX ESTIMATION WHEN I = DIAG(0, ..., 0°)
1 P

independent of X. It is desired to estimate the mean vector y

independent of X and $s» such that fori =1, ..., p,

E(qi/qi) = ci’
~ .2
with 4 and d, being known positive constants. Let

Cs diag(cl. cees cp)

D= diag(dl. ey dp).

)

Let X = (xl. vees X p)‘ be a p-variate normal vector (p 2 3)
with unknown mean vector p = (u_‘. cees up)‘ and unknown diagonal

. . 2 2 2 2
covariance matrix I = dxag(al. R ap). Assume that ’i/"i " xni,

i=1l, ..., p, and Sys cees sp are mutually independent, and are

under the loss (1.2) vhere Q is a p x p diagonal matrix with un-
known diagonal elements, q; > 0,i=1, ..., p. Let 6 be ap xp

diagonal random matrix with diagonal elements ﬁi. i=l1, ..., P,

(2.1a)

(2.1b)

(2.2a)

(2.2b)

(2.3)

e S et
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is known. Define w = s:l/(ui -2),i=1, ..., p, and let
W= diag(vl, cess vp). Then W is independent of X and 6

For an estimator §(X, W, Q) let R(§; , L) = E".K.QLZ(Q; g D)
denote the risk function. It is easily verified that the maximum
likelihood estimator, X, is minimax relative to the loss function
given by (1.2) with constant risk equal to 1. Thus an estimator
S(X, W, Q) will be minimax if and only if R(§; u, I) < 1 for all
§ and I, In this section, the estimator §(X, W, Q) given by (2.4)
will be shown to be minimax by proving that R(X; u, £) - R(§; p, £) 20
for all ¥ and L. The following lemmas are useful in evaluating the
difference in risks; they are stated here without proof.

Lemma 2.1. [Stein (1974, 1981)]. Let Y ~ N(0, 1) and let g
be an absolutely continuous function, g: R + R such that

8(y)eXP(-y2/2) +0asy-+ =, Then
Ey[g’m] = EY[Yg(Y)].

Lemma 2.2. [Efron and Morris (1976)]. Let U~ x: and let
g be an absolutely continuous function, g: R* + R® such that

unlzexp(-uIZJ +0asu+0"orasu+w® Then

g(u)
EU[UG(U)] = nEu[g(U)] + 2E,(uz"(0)].

Corollary 2.2.1. [Berger and Bock (1976)]. Let U and g be

as defined in Lemma 2.2, Let 2 = ¢U/(n - 2), ¢ > 0, and
h(Z) = g[{(n - 2)Z/c]. Then

Bz[(n - 2)Zh(2)/c] = nEz[h(Z)] + ZBZ[Zh‘(Z)].
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g ' Lemma 2.3. |[Lehmann (1966)]. Let S be any random variable,

; and let pl(S) and pz(S) map the real line into itself., If pl(S)

2 and pz(S) are either both nonincreasing in S or both nondecreasing

in S, then

Eglp, (S)p,(S)] 2 Eglp, (S)1ES[P,(S)].

The above lemmas have been frequently used to establish the
ninimaxity of an estimator for a multivariate normal mean; they
are included here for ease of reference.

The following theorem will prove the minimaxity of §(X, W, &)
given by (2.4). In the theorem we will use tr(A) and chm“(A)

{(or ch mi“(A)) to denote the traeé and the maximum (or minimum)
characteristic root of a square matrix A. As in Berger and Bock

2 ~1
(1976), let T 12}21)&%/“1) and 1= t(n;, ..., “p) E(T 7).

'i'heorem 2.4. The esi:inator

SCL W, @ = 11, - T8 WIXIG 2.4)

where || &ll: -iﬁlxilwi, is minimax for y, provided that
L J

(i) 03 rQ, W s 2[tr(C) - 2r ch  (C)]/8

with tr(C) 2 2t chm(C),
(ii) r(X, W) is nondecreasing in lxil, i=1, ..., p»
(iii) =r(X, W) is nonincreasing in wis i=1, ..., p, and

vy (X, W)Ilfll;,z is nondecreasing inw., i = 1, ..., p.
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Proof. Write r = r(X, W, 6). Then the difference between

the risk of X and that of §, except for the factor 2/tr(Q), is

) Em' E)'Q&d';ll _ r"’;‘w'IQ‘IQQ’lwd;]
®,%.Q

lixi3 2013018

2 P y?

r B X(5-ude o X{q;

P x%g
.5, [ rz Exi(xi'"_ir)ci _ r24.2 11]. 2.5)
A LIy 51 ™ 2113l 31 %1%

The minimaxity of §(X, W, 6) will be established if we can show that
(2.5) 2 0. To evaluate the expectation in (2.5) we proceed as

follows. The first term in the last expression of (2.5) becomes

P
oicixi

Ew,x ——T’ ) -
S 15 ¢/ IR T i

P 2 2

g,¢c 2rX,
ar
"EwExw.z“L%'_‘[“"‘ﬂ"z"'1 *X X
piLI AN 112, TR 1 9%,

1{’ c{f‘:1 2rxf
Z - - T - .
EW.L i=] "5"3'1 "5""5‘,5 (2.6)
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The equality in (2.6) is obtained by an application of Lemma 2.1
. -2
with y, = (X, - y;)/0; and g(y,) = 1‘"?_‘,",' AACR AR ST
and the inequality follows from Assumption (ii). Now let
2 2 .
U; = (g - 2)w; /o5 and h(w,) = r/(||§||wwi), i=1, ..., p. Then
by an application of Corollary 2.2.1, it follows that

2
F." l: rojc.
X
||X||"

l: re, ) 4rq’, ci 1 ~
T2 3
WXL ISNE oy - DX IRw

2

e (]
2.7
(n - z)llxnw

Note that identity (2.7) is similar to (2.3) of Berger ard Bock

(1976) with their q = ... = q_p = 1.

Substituting (2.6) and (2.7) into (2.S5) and noting that
(ar/awi) S0 fori=1, ..., p, by Assumption (iii), the last
expression of (2.5) is bounded by

P 2.2 P 2
E" rtr(C) _ _2r i_ul)(i.c1 i l,2 2 xidi
, 2z ) L 4 2
LIS, gl i=1 g-20w]  2lixlly 5.y wie




24yp 2 2
- m,(?_- 2r ¢h  (C) m[ no; 7 X -2 IX) X;d,
S [T T e (COL PHRC RITLEC
> E" . -ﬂ"(gl ) zrg(")d‘m(c) ) l‘2
X Hixily lIsg 203117
" By x {(rllzll;zl. r(C) - 2g(W)ch__ (C) - ’{[} (2.8)
2
(555 ] 1 mntoerstos i v 1 - 3
where g(W) 11:::? ("1‘2)"1 $ nonincreasing in w,, i » sees Py
-1
and B = ch _ (DQ" ).

Now (2.5) 2 0 if we can show that (2.8) 2 0. But Lemma 2.3
implies that the last expression of (2.8) is further bounded below

by

B {EacrlBD [er@) - memnen, © - S o]}

= gx{ E"(rllyl;vz) tr(C) - 2tch  (C) - -:-E"(r):[}

which is nonnegative by Assumption (i) of Theorem 2.4. This esta-
blishes that (2.5) 2 0 and the theorem is proved. 0

Note that the theorem will be vacuous unless 2t < tr(C)/chmu(C).
The values of t can be calculated from a formula, due to Berger

and Bock (1976), if the n.'s are even. Recall that t = E| max (n./ 2 )
i 1<i<p i xni

PV e . N DU LA S G WY Dt - - e detdndtndentadusstnmus




(m-J(k)-1 {*

P (m; -3 (1)) oo 1o K
r-)j)jl:nmimi '[(m.uk)z)!mk
kel |L

i 7IOD! | @ 1)1

P
where m, = n,/2, m = ) m, J(K) = ] j(i), and the inner summa-
i=l i=k

tion is over all combinations [{j(1), §j(2), ..., j(k-1), j(k+1), ...,

j(p)] where the j(i) are integers between 1 and o, inclusive.
On the other hand, for the important special case when C = pr, c>0,
tr(C)/[Zchm(C)] = p/2. In this case, 2t < p, which has been

shown by Berger and Bock (1976) to hold when p 2 3 and n; 2N for
some large positive integer N.

Remark. The assumption that g = chnu(DQ-l) is known seems
undesirable. However, since the loss (1.2) 1s invariant with res-
pect to a same positive scale change on all elements of Q, we may
without loss of generality assume that ch nin(Q) = 1 in (1.2). Thus
8 < chm(D) and Assuption (i) of Theorem 2.4 may be replaced by

(i) 0 s =(X, W) < 2{tx(C) - 2tchm(C)]/chw(D), with
tr(C) 2 Ztchm(t‘.).
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3. MINIMAX ESTIMATION WHEN L = azlp.

In this section we will consider the special case when
oi = .., = a: = az, say. Specifically, let X = (xl’ veey xp)'
be a p-variate normal vector (p 2 3) with unknown mean vector
3 and unknown covariance matrix I = azlp. Assume that
s/cz ~ Xi (n 2 3), independent of X. It is desired to estimate
the mean vector M under the loss (1.2) where Q is a p x p diagonal
matrix with unknown diagonal elements q; > 0,i=1, ..., p.
Let Q be as defined in Section 2 satisfying conditions (2.1) and
(2.2). Define w = s/(n-2). Then w is independent of X and 6

In the following theorem, an estimator § which is a function of

X, w, and Q is shown to be minimax with R(S; u, az) <1 for all
B and 02.

Theorem 3.1. The estimator

8% v, O = 11, - x(8 WX,

where || _)_(,II: = 5‘5/\'2, is minimax for the mean vector j, provided
that

(i) 0sr(X,w) <2 [% [tr(C) - 2 chmax(C)]/s, with
tr(C) 22¢ch (O, n23, andg=ch (0Q)),

(ii) r(X, w) is nondecreasing in |Xi|. i=l, oo, po

(1ii) »(X, w) is nonincreasing in w, and

(iv) r(X, w) ||_)g|l;2 is nondecreasing in w.




Proof. Write r = r(X, w). Then the difference between the

risk of X and that of §, except for the factor 2/tr(Qr), is

"1 2 ﬁ"l .'1
- [ZX-p0Q X _ rXQ X
Bw,X,Q [ -Iel R ]

v 21g 13w

2

P - P
sk Al I X ymudey 42 ) 9
, p) ~ 3 2
B fxlite & 20|xl? o &

’ 2 P xid..'
b 3 T i
" Bex e ) OGS - o 1 A4, e

which is similar to (2.5). To prove that $ is minimax, it is
sufficient to show that (3.1) is > 0, for all " and qz. This may
be established by simply modifying the proof of (2.5). The details
are omitted. J

The romark given at the end of Section 2 applies to this
case as well., Thus Assumption (i) of Theorem 3.1 may be replaced
by

(i) 05 r(x W) s z[:;§ [er(C) - 2 e (C))/ch (D),
where tr(C) > 2 Chmax(c) and n » 3.

The theorem is not vacuous since for the special case when
Cs= clp. ¢ > 0, the upper bound of :(5. w) reduces to
2[(n-2)/(n02)]c(p-Z)/chm(D) which is nonnegative for alln 2 3

and p 2 3.
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