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SUMMfARY

s 2 22 2Let X "N(M1) p a 3, where Zu diag(a1 2 . 2) and let
p I Op

5/ X (i w 1, ... , p), independent of X. This paper obtains

a class of minimax estimators 6 for M subject to the loss fumc-

tion (. - ,)Q(- - ),)/tr(QE) where Q is a p H p diagonal matrix

with unknown positive diagonal elements. It is assumed that an

independent estimator Q of Q is available which satisfies cer-

tain conditions. The new minimax estimator is a function of

Ss i , and , and takes a form similar to the minimax estimator

obtained by Berger and Bock (Ann. Statist. 4 (1976), 642-648) for

the case when Q is known. A class of minimax estimators for p is

also obtained for the special case when 2a . -
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duction in whole or in part is permitted for any purpose of the
United States Government.
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1. INTRODUCTION

Let X a (X, ... , Xp) be a 2 riate normal random vector

with mean and covariance matrix E. This paper considers the

ainimax estimation of y by A relative to a certain quadratic loss

function with unknown weights. To the best of our knowledge, this

is the first time in the literature a loss function of this type

is considered in estimating . The minimax estimation of(Y rela-

tive to other types of quadratic loss functions has been ostensively

studied since Stein (19S6) showed that the maxim likelihood esti-

mator, X, is inadmissible, when p a 3, relative to the loss fimc-

tion given by ' -4-'., .5 -

LI( , z. ) a (g-j . Z . - . . (1.1)

In particular, minimax estimators for t relative to (1.1) are ob-

tained by Baranchik (1970) when z is known, by Strawderman (1973)

when Z = a 21, and by Lin and Tsai (1973) and Efron and Morris (1976)

when E is unknown, among other authors. In the 1970's, researchers

shifted their concern to the minimax estimation of u relative to

the loss function given by

L2 (Q; ', ) = ( - )Q( - y)/tr(QE), (1.2)

where Q a diag(qI, ... , qp) under the assumption that q1, """, are

known positive constants. Successful results are reported by Berger

(1976a, b), Berger and Bock (1976), Berger et al (1977), and
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Gleser (1979), among others. Recently, Lin and Mousa (1981a, b),

in studying the minimax estimation under both loss functions, take

a convex combination of (1.1) and (1.2) as the loss function mid

obtain classes of minimax estimators for J under the assumption

that Z is an unknown positive definite diagonal matrix.

In this paper we will obtain a class of minimax estimators

for V relative to the loss function given by (1.2) where q0 ...

are unknown positive weights. These positive weights should re-

flect the relative importance of the parameters to be estimated in

such a way that the more important the component to be estimated

is, the more weight should be placed on that component in the loss

function. Usually, the parameters to be estimated are not equally

important and, quite often, their relative importance is not con-

pletely known, resulting in an unknown assignment of weights. Since

the real weight matrix Q is unknown, we will assume that an estimator

Q of Q (or - of Q-I) is available and that & is independent of the

Sunderlying distribution. Examples in which Q is unknown are

(1) Let Z1 , ... , be a random sample taken from Np(1, r) where

both j and r are unknown. Consider the problem of estimating j with
n

respect to the loss LI(A; , r). Let Xu (1/n) I .. It is well

n
known that W a I - - has a ishart distribution with

parameters n - I and r, independent of the Zi's. Thus, W(n - 1)

is an unbiased estimator of r.

. 0..
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(2) Let X, ... , X be a random saple taken from NpI(j, E).

Partition , ., and E as in Stein (1960), i.e.,

1" = and I= a

where Yi, n and A are 1 1, , £ and B are p x I vectors, and r is

an unknown p x p positive definite matrix. Then,

E(Yilzi) " '.i a. 1, .... p,

where

r B and a

Now, consider the problem of estimating the regression vector

with respect to the loss

E) ()/(A - Br- (1.3)

Note that r/(A - B) is unknown and it may be estimated by

MV/T -rv .), where

.::. iml I

(3) Consider the problem of estimating the means I, "'"p

(p a 3) of certain products. Let ql, '"1 qp be the demands for

the products which are unknown but which may be estimated, e.g.,

by some leading economic index or by some other method. The larger
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the demand is for a product the more important it will be to

estimate the mean product accurately so that its unit price may

be fairly adjusted in the market. The use of loss function (1.2)

with unknown weights in this context is not uncommon; in fact. it

also can be foumd in psychology, education, and social research

in which an independent source of information, that reflects the

relative importance of the parmeters to be estimated, is available.

The above examples suggest that, inpractice, the matrix Q

need not be known rather that it can be estimated by Q which

has finite second moments.

In the following section, a new class of minimax estimators

will be obtained for y, when the covariance matrix

2 adgO -00 a , with unknwn a is ***N p. The special

ase when a 2 will be treated in Section 3.
1 p

.. cae he .o . . .
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2. MINIMAX ESTIMATION WME Z DIAG(a, 2 .. a)2
p

Let (X1, ... , X p) be a p-variate normal vector (p a 3)

with unknown mean vector j = (u. ..., u ,)' and unknown diagonal
covarianoe matrix I a diag(o 2 2 ). Assume that si/ 2 2 2

dga1, O.. Aswn s17 X,
1

i " 1, ... , p, and s1 , ..., sp are mutually independent, and are

independent of X. It is desired to estimate the mean vector u

under the loss (1.2) where Q is a p x p diagonal matrix with un-

known diagonal elements, qi > 0, i = 1, ... , p. Let Qbe a p x p

diagonal random matrix with diagonal elements qi# 1 = 1, ... , p,

independent of X and si t such that for i a 1, ..., p.

E(qilqi) C Cis (2.1a)

and

E(qi/qi)2  di, (2.1b)

with c1 and di being known positive constants. Lot

C u diag(cl, ..., Cp) (2.2a)

and

D - diag(d1 , ..., dp). (2.2b)

Assume that

chmaxC(Q" 1 (2.3)
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is known. Define wi = si/(n1 - 2), i 1, ... , p, and let

- dag(wI, ...,w). Then W is independent of X andQ.
p

For an estimator A(, N, 4) let R(A; E, E) a EWI,&L2 (g; , )

denote the risk function. It is easily verified that the maximum

likelihood estimator, X, is minimax relative to the loss function

given by (1.2) with constant risk equal to 1. Thus an estimator

A , W, Q) will be minimax if and only if R(i; 1, E) : 1 for all

y and 1. In this section, the estimator .(6. W, Q) given by (2.4)

will be shown to be minimax by proving that R(Q; y, E) - R(9; Q, E) 0

for all P and E. The following lemmas are useful in evaluating the

difference in risks; they are stated here without proof.

Lemma 2.1. [Stein (1974, 1981)]. Let Y u N(O, 1) and let g

be an absolutely continuous function, g: R * R such that
g(y)exp(-y2/2) 2 0 as y . +-. Then

E,,[ g'(Y) y e[Yg(Y)).

2
Lemma 2.2. (Efron and Morris (1976)]. Let U xn and let

g be an absolutely continuous function, g: -I e such that

g(u)u/2 exp(-u/2) -o0 as u-0 or as u -. Then

Eu[Ug(U)] - nEU[g(U)) + 2E uug,(u)] .

Corollary 2.2.1. [Berger and Dock (1976)]. Let U and g be

as defined in Lemma 2.2. Let Z • cU/(n - 2), c > 0, and

h(Z) = g[(n - 2)Z/c]. Then

Ez[(n - 2)Zh(Z)/c] -nEz(h(Z)] 4 2Ez(Zh'(Z)].



Lemma 2.3. [Lehmann (1966)]. Let S be any random variable,

and let pl(S) and P2 (S) map the real line into itself. If pI(S)

and P2 (S) are either both nonincreasing in S or both nondecreasing

in S, then

ES[Pl(S)P 2CS)1 Z ES[p(S)1Es [P2(S)].

The above lemmas have been frequently used to establish the

minimaxity of an estimator for a multivariate normal mean; they

are included here for ease of reference.

The following theorem will prove the minimaxity of S(X, W, Q)

given by (2.4). In the theorem we will use tr(A) and ch max(A)

(or chin(A)) to denote the trace and the maximm (or minimum)

characteristic root of a square matrix A. As in Berger and Bock

2
(1976), let T =mi n/ni) and i T(n1 , ... ip) = E(T).

Theorem 2.4. The estinator

la W. ) a [I - r(x, W)IIxt I21 'w]x. (2.4)

where I11l * Xi/v,, is minimax for 2, provided that
4

(i) 0 £ r(A, W) : 2(tr(C) - 2-r ch (C)]/
max

with tr(C) a 2r ch max(C),

(ii) rQX, W) is nondecreasing in 1Xi, 1, ... , p,

(iii) r(X, W) is nonincreasing in wi, I - 1, ... , p, and

(iv) r(X, W)IIxll- 2 is nondecreasing in wi, -a, ... p.
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Proof. Write r u r( , W, Q). Then the difference between

the risk of X and that of g, except for the factor 2/tr(Qt), is

EW Q 
211 X 11 ll_1

Fr P X x-iq r 2  P X2  1
pl X 2 d

EW r X.(.- 3. r (2.5)

i, I~zt i1111 -L~ i

The minimaxity of W V, Q) will be established if we can show that

7 (2.5) 0. To evaluate the expectation in (2.5) we proceed as

follows. The first term in the last expression of (2.5) becomes

a' i i 2r) i
iEW{B' I[ ir - + X

i -1l - 1- w-2 (2.6)
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The equality in (2.6) is obtained by an application of Lemmna 2.1

with y. = (X. - v.)/cy and y)=rIX (i *P/ s

and the inequality follows from Assumption (ii). Now let
2 2/IXIw)

U1 * (ni - 2)w ./oj and h(wi) -a/ w) i -a .*a p. Then

by an application of Corollary 2.2.1, it follows that

22-

°.w

r c ar H
C."- 2 ) - 2 114 1 (

Note that identity (2.7) is similar to (2.3) of Berger and Bock

(1976) with their .a qqi = 1.

Substituting (2.6) and (2.7) into (2.S) and noting that

U(r/awi) 0 for i - 1, ..., p, by Assumption (iii), the last

expression of (2.5) is bounded by

P n) a 2r nX2c r2  p X2 d
EW 2ricii ir I iI

' HOci ni -2:) 1111 II ". ci.7:

i Hte hatidniyC.)ssi la 1o 2.oZIreranIB

C17)4t hi q ' p = I

4 usiuig(.)ad(.)it 2$ n oigta
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S
2 r chm(C) [ * I ,2 p X2d

L4ril vC-Pq1.

"1Z 4 niaXi11 1 wher gOa) =  a i ounra l w i i 211 I, p,

2rg (Wf) ch (C2

,.. liip I (nj'2)wj "'

~~andB8=h (haxDQ'l).

maxCmx

Now (2.5) > 0 if we can show that (2.8) > 0. But Laea 2.3

implies that the last expression of (2.8) is further boituded below

by

Ex {E ( CI~I~) [tr() -hma 2.(WCh) 2 . 8)

which is nonnegative by Assumption Ci) of Theorem 2.4. This esta-

mmax

Nowbiheta (2) 0 an ho that (2.8) zed 0BtLm 23

imple that the latexresswion of (2.8)ous urhes boude below/hx

The values of r can be calculated from a formula, due to Berger

• and Dock (1976), if the nisare even. Recall that r = B Lax (hli/Xnj)J

bb

-j! : : : ::: i.-. -: . _ , , . - - .- . . -,. . . . . . " -: -
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Then,
;:: si-~) (m-J(k)-2)1,M

i M

where Mi  n n1/2 , m I mi . J~k) = j~i), and the inner summa-

irl isk

tion is over all combinations [j(l), j(2), ..., j(k-l), j(k+l), ... ,

j(p)] where the j(i) are integers between I and m., inclusive.

Onthe other hand, for the important special case when C = cIv. c > 0,:p'

tr(C)/[2ch maxCC)] = p/2. In this case, 2-r < p, which has been

shown by Berger and Bock (1976) to hold when p a 3 and ni z N for

some large positive integer N.

Remark. The assumption that B a ch max(DQ-1) is known seems

undesirable. However, since the loss (1.2) is invariant with res-

pect to a same positive scale change on all elements of Q, we may

without loss of generality assume that chmin(Q) - 1 in (1.2). Thus

B s cham CD) and Assuption (i) of Theorem 2.4 may be replaced by

(i) 0 S -(Q, W) . 2[tr(C) - 2Tch max(C)]/ch m(D), with

tr(C) • 2rch max().

!- . " " . . . .. .: . , . . .- - - _ . _ -. , _ : ... , . .. .. . .•
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!: 3. MINIMAX ESTIMATION WHEN E = 21.
P

In this section we will cosider the special case when

2 o2  o2 . I,  p)
a 1 ... W a say. Specifically, let X a ( ...,

be a p-variate normal vector (p z 3) with unknown mean vector

} and unknown covariance matrix E o 2I . Assume that

2 X (n z 3), independent of X. It is desired to estimate
5/ n n

the mean vector k under the loss (1.2) where Q is a p x p diagonal

matrix with unknown diagonal elements qi > 0, i a 1, ..., p.

Let Q be as defined in Section 2 satisfying conditions (2.1) and

(2.2). Define w a s/(n-2). Then w is independent of X and Q.

In the following theorem, an estimator 6 which is a function of

X, w, andQ is shown to be minimax with R(A; 2, :2) 1 1 for all

and a2 .

Theorem 3.1. The estimator

where IlIxl2, - x w2, is minimax for the mean vector , provided

that

(i) 0 5 r(X, w) 2( ] [tr(C) - 2 ChmaxCQ]/0 with

tr(C) 2 2 chmax(C), n 2 3. and 0 - ch max(D ),

(ii) r(X, w) is nondecreasing in jxil. i • 1. ... , p,

(iii) r(x, w) is nonincreasing in w, and

(iv) r(x, w)l1x!1 2 is nondecreasing in w.
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Proof. Write r M r( , w). Then the difference between the

risk of X and that of .6, except for the factor 2/tr(QZ), is

EwXl[.l ! l-x

P 22
Xi(Xi'P)qi 2-

E - Xi(i' lii. - , (3.1)
WXq [2~~wu 2Itw i., i

which is sim~ilar to (2.5). To prove that 6 is minimax, it is

sufficient to show that (3.1) is 0, for all 1 and o2. This may

be established by simply mdifying the proof of (2.5). The details

are omitted. 0

The rmiark given at the end of Section 2 applies to this

case as well. Thus Assumption (i) of Theorem 3.1 may be replaced

by

" (in 0 + r(X, w) < (tr(C) - 2 Chmax(C)]/Chmax(D),

where tr(C) a 2 ch m (C) and n 3.

The theorem is not vacuous since for the special case when

. C a cl, c > 0, the upper bound of t(X, w) reduces to

2[(n-2)/(n*2)]c(p-2)/ch (D) which is nonnegative for all n a 3

and p a 3.

4
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