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PREFACE

This technical report is an invited chapter for the Handbook of Statiatics:

Nonpa' ametrio Aethod, Volume 4 in a series edited by P. R. Krishnalah and

P. K. Sen and to be published by North-Holland Publishing Company, Amsterdam.

Much of the material by the author used in the chapter was developed under

ONR-sponsored research at the Florida State University and earlier at the

Virginia Polytechnic Institute and State University. Some minor new gener-

alizations of earlier work are included here.

Ralph A. Bradley



Paired Comparisons

by

* - Ralph A. Bradley*
Department of Statistics
Florida State University
Tallahassee. FL 32306

1. Introduction

>. Interest in paired comparisons in statistics and psychometrics has

developed in the contexts of the design of experiments, nonparametric

statistics, and scaling, including multidimensional scaling. Applications

have arisen in many areas, but most notably in food technolog, marketing

research, and sports competition.- An extensive bibliography on paired

comparisons by Davidson and Farquhar (1976) contains some 400 references.

- Paired comparisons have been considered in design of experiments as

incomplete block designs with block size two by Clatworthy (195S) and others.

ScheffE (l9S2) developed an analysis of variance for paired comparisons

with consideration for possible order effects for the two treatments

within blocks. When the usuali parametric models of analysis of variance

are imposed, the analysis of such designs follows standard methods and

will not be discussed here. . -.

The emphasis in this chapter will be on paired comparisons as a

means of designing comparative experiments when no natural measuring
4

scale is available. The author's interest in paired comparisons arose

in consideration of statistical methods in sensory difference testing.

*The work of the author is supported in part by the Office of Naval
Research under Contract N00014-80-C-0093. Reproduction in whole or in
part is permitted for any purpose of the United States Government.
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When responses of individuals to item under comparison are subjective,

and particularly when sensory responses to taste, odor, color or sound

are involved, evaluation is easier when the mmber of items or samples

to be considered at one time is small and the effects of sensory fatigue

are minimized. Probabilistic models for paired comparisons may be devised

to represent the experimental situation and permit appropriate data analysis.

The models provide probabilities of possible choices of items or treatments

from pairs of items and hence depend on orderings. The statistical methods

devised are thus ranking methods and, while they are not literally non-

parametric methods, they are often so classified.

The basic paired comparsons experiment has t treatments, TI, . T..,

and nij 2 0 comparisons of Ti with T., n. nij, i j, I, j a 1, t.

For each comparison, preference or order is designated by aiae, ailja

if Ti is "preferred" to T. in the ath comparison of Ti and Ti, aij. 0

otherwise, aij, * ai a = 1. In further definition of notation, let

n i"

ai, = a' and a. ai., the total number of preferences for T.
aj Ol 13(1 1 i31

Jai

In sensory evaluations, responses may be preferences or attribute order

judgments on such characteristics as sweetness, smoothness, whiteness, etc.

We shall loosely refer to preference judgments.

Dykstra (1960) provides typical data on a paired comparisons preference

* taste test involving four variations of the same product. The data are

summarized in Table 1. Note that the experiment is not balanced: n12 - 140,

n 54, hi4 n 57, n2 3 * 63, n2 4  58, n3 4  0 0; treatments T3 and T4 were

* not compared. Unbalanced experiments are permissible as long as the de-

sign is connected: it is not possible to select a subset of the treatments

I-
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Table 1

Summary of Results of a Taste Test

T T T T ai
1 2 3 4

TI -- 28 15 23 66

T 112 -- 46 47 205

T3 39 17 S- - 6

T4 34 11 - 45

such that no treatment in the subset is compared directly with a treatment

in the complementary subset. Balanced experiments are more efficient when

* . there is equal interest in all treatments and treatment comparisons.

We shall return to analysis of the data of Table 1, which gives values

of ai,,. after discussion of models for paired comparisons and establishment

of basic procedures.

This chapter is organized in such a way as to give initial attention

to the analysis of basic paired comparisons data like those of Table 1.

Then extensions of the method are developed for factorial treatment

combinations and for multivariate responses, responses on several attri-

butes for each paired comparison. The emphasis is on the methodology and

applications, although properties of procedures are noted and references

given. We conclude with comments on additional methods of analysis.
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2. Models for Paired Comparisons

When t a 2, a paired comparisons experiment with treatments T1 and

T2 might be modelled as n12 • 0 independent Bernoulli trials with proba-

bilities of choices for T1 and T2 being wI and w2 , 2 i 0, jul.1, 2,

1 a w2 1. Then in some sense w and w are measures of "worth" of

T1 and T2. Binomial theory applies and the sign test may be used to

test the hypothesis, H0 : WIl a 72

Bradley and Terry (19S2a) proposed a basic model for paired compari-

sons, extended by Dykstra (1960) to include unequal values of the nij.

The approach was a heuristic extension of the special binomial when

t V 2. Treatment parameters, if1  V" it, Wi a 0, i - 1, ..., t, are

associated with the t treatments, T1, ..., Tt. It was postulated that

these parameters represent relative selection probabilities for the

treatments so that the probability of selection of Ti when compared

with T is

P(T i T,) a wi/(wI +r), i 0 J, i. j a 1, ... , t. (2.1)

Since the right-hand member of (2.1) is invariant under change of scale,

4 specificity was obtained by the requirement that

t
m "l. (2.2)

The model proposed imposes structure in that the most general model might

postulate binomial parameters wij and wji a I - Wij for comparisons of

Ti and T5 so that the totality of functionally independent parameters

is ( t) rather than (t-l) as specified in (2.1) and (2.2).

•2



The basic model (2.1) for paired comparisons has been discovered

and rediscovered by various authors. Zermelo (1929) seems to have pro-

posed it first in consideration of chess competition. Ford (1957) pro-

posed the model independently. Both Zermelo and Ford concentrated on

solution of normal equations for parameter estimation and Ford proved

convergence of the iterative procedure for solution.

The model arises as one of the special simple realizations of more

general models developed from distributional or psychophysical approaches.

Bradley (1976) has reviewed various model formulations and discussed them

under categories -- linear models, the Lehmann model, psychophysical

models, and models of choice and worth.

David (1963, Section 1.3) supposes that Ti has "merit" V., i = 1, ... ,

when judged on some characteristic, and that these merits may be represented

on a merit scale. He defined "linear" models to be such that

P (Ti T1)- H(Vi-Vj) ,  (2.3)

where H is a distribution function for a symmetric distribution,

H(-x) 1 - H(x). Model (2.1) is a linear model since it may be written

4 in the form,

P(T i*T j oi sech2y/2 dy Y i/(w i w), (2.4)• P(T Tj) -(log wi-log irj)

4 :

as described by Bradley (1953) using the logistic density function.

Thurstone (1927) proposed a model for paired comparisons, that is

4 also a linear model, through the concept of a subjective continuum, an

inherent sensation scale on which order, but not physical measurement,

4
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could be discerned. Mosteller (1951) provides a detailed formulation

and an analysis of Thurstone's important Case V. With suitable scaling,

each treatment has a location point on the continuum, say Pi for Tis

i - 1, ... , t. An individual is assumed to receive a sensation X, in

response to Tis with responses Xi normally distributed about ti. When

an individual compares Ti and T., he in effect is assumed to report the

order of sensations Xi and Xj which may be correlated; Xi > X may be

associated with Ti * Tj. Case V takes all such correlations equal and

the variances of all X. equal. The probability of selection may be

written

P(TeT/ P(X>X 2 dy. (2.5)

It is apparent from (2.4) and (2.5) that the two models are very similar.

'The choice between the models is much like the choice between logits and

probits in biological assay. The use of log w i as a measure of location

for Ti in the first model is suggested.

Models (2.4) and (2.S) give very similar results in applications.

.4 Comparisons are made by Fleckenstein, Freund and Jackson (19S8) with

test data on comparisons of typewriter carbon papers. In general, more

extensions of model (2.4) exist and we shall use that model in this chapter.

3. Basic Procedures

The general approach to analysis of paired comparisons based on the

4 model (2.1) is through likelihood methods. On the assumption of independent

responses for the nij comparisons of Ti and Tj, the binomial component

,4 . ' " ' - .. I
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of the likelihood function for this pair of treatments is
a.. a

Wi-i a ija ni

ties or no preference judgments not being permitted. The complete like-

lihood function, on the assumption of independence of judgments between

pairs of treatments, is

a. n..
Lu i/ n j ( ij) (3.1)

It is seen that a1, ..., at constitute a set of sufficient statistics

for the estimation of Wi, ..., t and that ai is the total number of

preferences or selections of T, i I , ... , t, for the entire experiment.

3.1. Likelihood Estimation

ML estimators, Pi for wi , i 1 1, ... , t, are obtained through maxi-

mization of log L in (3.1) subject to the constraint (2.2). After minor

simplifications, the resulting likelihood equations are

a. 0 -.

1 - 13ip ,1 2 t 32
Pi -JPiP

jagi

and

Pi . (3.3)

Solution of equations (3.2) and (3.3) is done iteratively. If p(k)

is the kth approximation to p.,

',4f m . . . . . . . I -'



(k) *P(k), '(k)

• .

where

'(k) a i/ ij/Pk-) P(k- lA, k 1 1, 2,....

j *

The iteration is started with initial specification of the p !0; one may

take pfo) = l/t, i = 1, ..., t, and this is adequate although Dykstra

(1956, 1960) has suggested better initial values.

We return to the example of Table 1. Values of a. are given in
i

the table and values of nij precede the table. Solution of equations

(3.2) and (3.3) was begun with p(O) a 1/4, i a 1, ..., 4. Results for

initial iterations are summarized in Table 2 along with final values

for pi; typically approximately 10 iterations are sufficient for four-

decimal accuracy in the final values. It is this iterative procedure

that Ford (1957) has shown to converge. The procedure is easy to program

on computers because of the symmetry of the equations to be solved.

Bradley and Terry (1952a) and Bradley (1954a) have provided tables giving

4 values of the pi for equal values of the nij a n, t = 3, n = 1, ..., 10;

t = 4, n - 1, ..., 8; t -S, n = .,

In small experiments, small values of the nij, perhaps with poorly

4 selected treatments, the estimates pi may define a point on a boundary

of the parameter space. These situations may be recognized from tables

like Table I and require special consideration. As an example, refer

to Table 1 and suppose that T2 and T3 are always preferred to T1 and T4
and Table 1 is unchanged otherwise. Then a 23 a2 a244, a3 =7and

&4 34. Treatments T2 and T3 dominate T, and T4 and information on the2 4

-4i
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Table 2

Values of the Estimators in the Iterative Solution

T. (0) (1) (2) (3) (4) pP5)Ti Pj Pj Pj Pi

I .25 .1371 .1188 .1137 .1112 .1101 .1082

2 .25 .4094 .4656 .4918 .5049 .5131 .5193

3 .25 .2495 .2413 .2357 .2327 .2290 .2294

4 .2S .2040 .1743 .1588 1512 .1478 .1431

relative values of T2 and T3 comes only from the direct comparisons of

T2 and T It follows that p1 = 0, P2 * 46/63 = .7302, P3 
= 17/63 = .2698,

and P4 = 0. But there is also information on the relative values of wI

and r4" We find pl/P4  23/34 a .4035/.5965 and can write p1 L .40356

and P4 = .59656, 6 infinitesimal. A formal analysis may be conducted

through minimization of log L with respect to w * , W2 , it2  3 + W

1 1, where 1 4 = 6w1 and 6 is small. Indeed, the maximum

value of log L may be found in this way and it is needed in the compu-

tation of likelihood ratios as discussed below. Bradley (1954a) provides

additional discussion of these special boundary problems. problems not

usually encountered in applications.

3.2. Tests of Hypotheses

(i) The major test proposed by Bradley and Terry (1952) was that

of treatment preference or selection equality. The null hypothesis is

HO: Wl 1 I2  "'. = l/t (3.4)

and the general. alternative hypothesis is
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Ha: w i W for some 1, i. i , , i, i - 1 ... t. (3.5)

If we designate the likelihood ratio as X1I it is easy to show that

-2 log X1 - 2N log 2 - 2B1, N = 
n ij

iij
(3.6)

B1  n . log(pj+pj) -j ai log Pi.i<j i

For large nij, -2 log X, has the central chi-square distribution with

(t-l) degrees of freedom under H0 . Values of B1 , together with exact

significance levels, were provided with the cited tables* of estimators

Pi. Comparison of significance levels for the large-sample test with

small-sample exact significance levels in the tables suggests that the

former may be used for modest values of the n i, a situation perhaps

comparable to use of the normal approximation to the binomial.

For the values of the ai of Table 1, the noted values of the n..

above that table, N = 372, and the values of the pi in Table 2, we have

B = 206.3214 and -2 log A = 103.06 with 3 degrees of freedom. There

is a clear indication that the it. are not equal and that treatment prefer-

4 ences differ.

(ii) It is always encumbent on statisticians to check the validity

of models used in statistical analyses when possible. We have noted

* above that a general "multi-binomial" model with ( ) functionally inde-

pendent parameters wij may be posed that ignores the structure of paired

comparisons in the sense that the same treatment is compared with more than

4

*Common logarithms were used to compute B in these tables. In

this paper, natural logarithms aro used througAout.

| 4- " . , - - .. .. " .. ... . . .. . |. ...
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one other treatment. The multi-binomial model fits the data of tables

like Table 1 perfectly. This permits a test of the more restrictive

model of (2.1).

The following likelihood ratio test was proposed by Bradley (1954b)

and extended by Dykstra (1960). Consider the null hypothesis,

H0:i = i/(Wi +) i j, i, j , ... , t, (3.7)

and the alternative hypothesis,

Ha: :ij ff. . for some i, J, i * j. (3.8)

Under Ha, the likelihood estimator of vtjis Pij = aij/nj when nij > 0

and the estimator is not needed when nij = 0. Under H0, Pi is the esti-

mator of Wi from equations (3.2) and (3.3). Designating A2 as the likeli-

hood ratio statistic, we have

-2 log X2 = 2(1 a.. log aij- In.. log n1 . B1). (3.9)i~j ij<ij n i  i

For large nij, -2 log X2 is taken to have the chi-square distribution with

t() - (t-l) - h(t-l)(t-2) degrees of freedom under HO. An alternative

statistic, asymptotically equivalent to that of (3.9), is

X-I (ai-a j)2 /a (3.10)ir i i i

where al. = nijpi/(pi.Pj) and aij = nijPij. This alternate form may be

rewritten,

X2 ijn (p ij  [Pi[PiiP/(Pi+p]. (3.11)

'4



12

Dykstra has noted that the test statistics may be distorted when some ni

are small. Since there is no basis for pooling terms in this case, he

suggested omitting term in (3.11) with very small values of n 1j (and

hence n ji) and deleting one degree of freedom for each pair of terms so

deleted.

For the data of Table 1, n 34 a 0 and the tests for the fit of the

model have h(3)(2) - I = 2 degrees of freedom. From (3.9), -2 log A 2 a 2.02

and there seems to be no reason to doubt the appropriateness of the model

(2.1). The statistic in (3.10) is evaluated also for illustrative pur-

poses. Values of the a!. are given in Table 3 and they may be compared
3

2
directly with the values of a. in Table 1. Computation yields x a2.00;

13

the close agreement of the two computations is typical.

Table 3
Estimated Frequencies for the Data of Table 1

T 3  T4 Row

4T 1  24.14 17.31 24.54 65.99

T2  11S.86 - 43.70 45.47 205.03

T 3 36.69 19.30 - S 5.99

T32.46 12.53 -- 44.99

In the author's fairly extensive experience in fitting model (2.1)

to data in food technology and consumer testing, the model is usually
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found to fit well. When the model does not fit, one or more treatments

are often found to possess a characteristic not found in the others,

possibly leading to preference judgments influenced by this attribute

when such treatments are in a comparison.

(iii) In some uses of paired comparisons, responses may be obtained

for several demographic groups, under different evaluation conditions,

or other criterion for grouping responses. The possibility of group

by treatment interaction or preference disagreement arises and this may

be tested.

Let u s 1, ... , g index groups of responses in paired comparisons,

let w. be the treatment parameter for Ti in group u, and suppose that

sufficient comparisons are made within each group to obtain pi, the

uestimator of 7r., i a Is ... t. Interest is in the hypotheses,

HO: w. = i, i - 1, ... , t; u 1 1, ... , g, (3.12)

se and

H : for some i and u. (3.13)a i

The likelihood ratio test depends on

-2 log A 3 a 2(B1 Blu) o

where Blu is computed from (3.6) for the data within group u and 8 is

computed similarly for the pooled data from all of the groups. For large

6 values of the niju, the number of comparisons of Ti and T. in group u,

-2 log A3 has the central chi-square distribution with (g-l)(t-l) degrees

of freedom under H0 of (3.12).

6J
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An omnibus test of treatment equality may be described:

.H0: Iu = I/t' i = , .. t; u= 9#..,g

H a: V l1t for some i and u.

-2 log A 4 = 2N log 2 - 21Blu, Ns Nu3 n iju*
U~l uai U i~j

The test statistic is taken to have the chi-square distribution with

g(t-l) degrees of freedom under H0 . An analysis of chi-square table

may be formed: -2 log A4 = -2 log X3 - 2 log A1, where -2 log A1 is

the test statistic of (3.6) based on the pooled data.

Bradley and Terry (1952a) gave a small example for two tasters

evaluating poTk Toasts from hogs with differing diets, t a 3, g a 2,

niju = S for all i, j. u, I 0 j. The data are summarized in Table 4

and Table S is the analysis of chi-square table. The large total

treatment effect is seen to be due to disagreement of the two judges

on preferences.

Table 4

Roast Pork Preference Data for Two Judges

Diet Judge I Judge 2 Pooled Data

Ti al) (1) a(2) p (2) a. Pi;Ti ail p(1)

1 1 .0526 7 .5324 8 .2479

2 7 .4737 S .2993 12 .4268

3 7 .4737 3 .1683 10 .32S3

B11 6.7166 B12 * 9.2895 B1
= 20.256S



Table S
Analysis of Chi Square, Roast Pork Data

Test Statistic d. . 2

Treatments, given agreement -2 log A1 2 1,07

Judge by Treatment Interaction -2 log A$ 2 8.30

Treatments -2 log X4 4 9.58

(iv) Tests for specified treatment contrasts, contrasts on the log

i ay be made by the method of Section S.

Bradley and Terry (1952a) proposed one additional test. It was assumed

that the treatments fell into two groups, say T1, ... , Ts and Ts+,, ..., Tt

with wI  Ws v r and ws = .. t a (l-s)/(t-s). The test is of

the equality of % and (l-sw)/(t-s), or equivalently of w* l/t, i 1, ..., to

against the two-group alternative of the assumption. The reader is referred

to the reference for details.

3.3. Confidence Regions

Large-sample theory may be used to obtain variances and covariances

* for the estimators PI' p t or their logarithms in paired comparisons.

Bradley (1955) considered this theory with each nlj = n and Davidson and

Bradley (1970), considering the multivariate model discussed in Section 6

obtained results for general ni, as a special case.

Let Bi a nii/N. Then "X(Pl-Wl), ..., A(pt-Wt) have the singular

* multivariate normal distribution of dimensionality (t-1) in a space of t
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dimensions with zero mean vector and dispersion matrix E - [oij such

that

j cofactor of X in (3.14)

where A = (..] , Vis the t-dimensional unit row vector, and
11

/iVi i = Is ...# t,

joi

and (3.15)

A /* 2 j, is iju ,.ij -"ij/( ij i j,,j=

In order to use these results in applications, a.. must be estimated;
1j

this is done through substitution of pi for wi in (3.15) to obtain the

Xij. and subsequent substitution in (3.14) yields the aijIs

For the data of Table 1, values of p1. ", P4 in Table 2 are used

to obtain

10.4963 -.9558 -1.2740 -2.4259

- .9558 .4304 - .3022 .3553

-1.2740 -.3022 .7441 0

S_-2.4259 -.3553 0 3.1237

from whence

I

.4
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.0800 -. 069 -. 0314 .0208

-.0695 .6644 -.4689 -.1260
: "(3.16)

-.0314 -. 4689 .6784 -.1781

.0208 -.1260 -.1781 .2833

Note that is singular, the row and colmum sums being zero.

Approximate confidence regions may be obtained. The confidence

interval on vi is developed from the fact that t&(pi-i)/ ii is standard

normal for large N. In the example, the .95-confidence interval for w1

is (.0795, .1369). Let te be a vector containing any subset of t* distinct

parameters of the set, t* < t. The (1-a)-confidence region for these t*

parameters is that ellipsoidal region of the parameter subspace for which

NC*--E*)'t w*--2O) s 2 (3.17)

In (3.17), 1' is the vector of estimates corresponding to ~, " is the

dispersion matrix for vg(p*-w ) obtainable from (3.16), and 2 is the
XQt*

(1-a)-percentage point of the central chi-square distribution with t*

degrees of freedom. As an example, let Z* a (is a 2)' and then

= (.1082, .5193),

F 0800 -.0695 .-1 13.7441 1.4372]
- and •*

.069S .6644 1.4372 1.6ss31

with a .01, t 2,. 01,2  9.210, it may be verified that (3.17) yields

the .99-confidence region,

13.7441(w1-.1082) 2 1.65S3(w2-.S193) 2 2.8744(w1-.1082)(w 2".5193) S .0248.
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Since it may be appropriate to regard log wt as the location parameter

for Ti, i 1. .,* t, in view of (2.4) and (2.5), confidence intervals or

regions on the log wi may be desired. It follows that tW(log pl-log w ) ,.

X(log Pt-log wt) have the singular sultivariate normal distribution with

zero mean vector and dispersion matrix ,, where Q is the diagonal matrix

with typical element l/w t . Estimated variances and covariances are as fol-

lows: est. var.(M log pi) = ai/p?, est. covar.(VW log Pi. AT log PJ)

- ij/pipj, 1 j. Confidence intervals or regions on the log wi may be

obtained analogously to those shown above for the wi. If a method of multiple

comparisons is to be used, the necessary variances and covariances may be

*obtained from the information given.

In the very special case when each nij a n, approximate variances and

covariances may be obtained if the treatments are not too disparate. Then,

on the assumption that wi • l/t, i a 1, ... , t, a a 2(t-l) 2/t 3 and

.F -2(t-l)/t 3 , i 0 j, while N a n(4). Like the binomial with its stable

variance for its parameter in a middle range, so are the variances and

covariances stable in paired comparisons when the wi are near l/t and the

ni • n. This can reduce computational effort for balanced experiments.

4

3.4. Asymptotic Relative Efficiency

It is well known that the asymptotic relative efficiency of the sign

4 test to the Student test is 2/w when assumptions for the latter apply and

appropriate data could be obtained. Bradley (195) showed that, under similar

conditions, the asymptotic relative efficiency of paired comparisons relative

4 to a randomized complete block design with the same number of treatment repli-

cations is t/r(t-l), when each nij u n. This result may be adjusted to show

. . . . .4 . . ' " . . . : ' ..
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that the relative efficiency of paired comparisons relative to the analysis

of variance for the similar balanced incomplete block design is 2/iT by the

methods of Raghavarao (1971, Sections 4.3 and 4.S).

While the asymptotic relative efficiency factor of 21 suggests loss

of efficiency through use of the ranking or proference designations of

paired comparisons.* the method is usually used because measurement scales

are not available for sensory or judgment evaluations.

4. Extensions of the Basic Model

- 4.1. Adjustments for Ties

The basic paired comparisons experiment forces decision on the part

* of the respondent and data like those of Table 1 result. Nevertheless.

ties or "non-selection" judgments often arise, for example, in consiumer

testing.

The treatment of ties in the sign test has received considerable at-

* tention. Hemelrijk (1952) demonstrated that the most powerful test of

* significance was obtained by omission of ties and use of a conditional

* binomial test on the sample results so reduced. But the treatment of ties

must depend on experimental objectives, see Gridgeman (1959), and estimation

of potential share of a consumer market surely must require other consid-

erations. Decisions for paired comparisons must be similar to those for the

sign test. Two formal methods for the treatment of ties in paired compari-

sons are available.

Rao and IKupper (1967) introduced a parameter 0 z 1 and adjusted proba-

*bilities associated with the comparison of T.i and T. to obtain
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PCT j -T 1iOW)j - sech2 y/2 dy,-(log wi-log W )+n

and

PCT-T -O (2-1lwiwjlV1r+07 ) (Ow i +V (4.1)

-(log Wi'jog j) n sech2 y/2 dy, i j.

-(log Iri-log I-

where n a log e. It is seen that the model extends the linear model of

(2.4) and that log 0 is, in a sense, a threshold parameter associated with

discriminatory ability.

Rao and Kupper extended the theory in parallel with that given above.

Unfortunately, they assumed that n.. • n, but the work is easily extended.

We summarize only the results leading to the test of treatment equality,

although they provide other asymptotic results including variances and co-

variances for their estimators. We use our notation. Let N * . ni and
i<j

bi, be the sum of the number of ties and the number of preferences for T.
4 in the nij comparisons of Ti and T j Lot hi  b and let b0 be the

jai

total number of ties in the experiment. The likelihood equations are:

b b b

Pi Pj i
jai jai

* " Pi -1, (4.2)

b -0  
bu

-i o. ,+p
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where Pi is the estimator of Wi and 0 of 0. The likelihood ratio test of

HO: i * lI/t, i = I ... , t, versus H : wi. l/t for some i, leads to thea IL

statistic,

-2 log X * 2N log 2N - 2 0 log 2b0 - 2(N-b0)log(N-b0) - 2BI, (4.3)

where

B b log(pi.ePj) - bI log pi" b0 log(e
2 " (4.4)

I i~j i

Again, for large N and under H0 , -2 log X has the central chi-square distri-

70 bution with (t-l) degrees of freedom. An iterative solution of equations

(4.2) is suggested by Rao and Kupper. They provided also a test of the

* hypothesis, 0 a 0P against the alternative, 0 e 0.

Davidson (1970) proposed probabilities corresponding to those of (4.1)

as

P(Ti.Tj)  A r (T T)

and (4.5)

4P(T.=T.)a v.' ir j w/wC t

v > 0. This model preserves the odds ratio, P(T. j)/P(Tj6Ti A

consistent with the Luce (1959) choice axiom. In addition, the probability

of a tie is a maximu, when w. v . and diminishes as vi and it. differ, an
1 3 3

intuitively desirable effect.

Let b , be the sum of the number of ties and twice the number of

preferences for Ti in the nj comparisons of Ti and Tj and let b= b
Ti ij3
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Davidson's likelihood equations are

P1 ij (2 p/7pi)/(piPj VpjP) O, i I
Pi jjoi

.Pi 1 , (4.6)
i

b0 /- np7T/(p-+pj+; p; -0.
V i~'j

where pi is the estimator of wi and ^ of v. The likelihood ratio statistic

corresponding to (4.3) is of the same form with B replaced by

B =* n log(pi Pj ;ipip, - .b? log Pi - bo log v. (4.7)
i<j i

Davidson also proposed an iterative solution for the equations (4.6) and

examined large-sample theory. He showed that the Rao-Kupper test and the

Davidson test for treatment equality are asymptotically equivalent.

The choice between the two methods for extending the basic paired

comparisons model to a model allowing for ties seems to be a matter of

intuitive appeal. Both give very similar results in applications.

4.2. Adjustments for Order

In paired comparisons, there is often concern for the effects of

order of presentation of the two items in a pair. Experiments are often

conducted so that, for each pair of treatments, each order of presentation

* is used equally frequently in an effort to "balance out" the effects of

order. Scheffd (19S2) addressed this problem in the analysis of variance.

*Beaver and Gokhale (1975) extended our basic model to allow for order effects.

I 4 . . . . . .. . .. ...
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Davidson and Beaver in an undated manuscript describe the Beaver-Gokhale

model as having additive order effects and discuss also a model with multi-

plicative order effects suggested by Beaver (1976). For the ordered pair

(T, T.), Beaver and Gokhale defined

PJ (T=1-- P( )T Ji (4.8)Pij (T 1 .T.) = - i .1 , p.. (Tj4Ti) . i-~L (.8

1j i3 ijri+ i i

and, for the ordered pair (Ti, Ti)

ir. -6.. ir . 8..

P p(Ti.+Tj) = I P (T.-*T.)-- (4.9)
" .*T. 1 ji i r.* .

1 1J

The corresponding probabilities for the model with multiplicative order

effects are

!8

P i.(T.iT.) = i . P (T *T ) 
=  i i

(4.10)

P.. (T.iOT.) 1 Pj (T+T.) 4-
31 1 3 6 ijrit 31 3 i i +0 e1 WTj

4

The model given by (4.8) and (4.9) requires that 6 ijI < max(ni , 7r.), an

awkward feature, while the model (4.10) only requires that ei > 0. Ad-

vantages of the multiplicative model (4.10) are:

(i) Preference probabilities depend on the worth parameters 7i and

it only through the ratio wi/ /.IY

(ii) Model (4.10) admits a sufficient statistic whose dimension is

that of the parameter space.
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(iii) Model (4.10) is a linear model and, for example,

2P.. CT..Tj) = 14S sech y/2 dy.
1 1 (T4T -(log Wi-log n.)-log 80ij

For these reasons, we limit further discussion to (4.10).

Explicit methodology for model (4.10) and its special cases does not

appear in the statistical literature, although it is implied by Davidson

and Beaver. Various likelihood ratio tests and associated estimation pro-

cedures can be developed easily when needed. We consider only the special

case when 8 j =0 for all i = j. Then the likelihood equations are

ai  ni3 n.8 t
--i 3. .p~p j. Ji 0 i " , ..

P ei J ( 3'' joi CI P3

- 0,C p?+u1,(411

0 iej (ep.p )
13.

where f is the total number of preferences for the first presented item

of a pair, p? is the estimator of i. and 6 of e, while n.. is the number
11 13

of judgments on the ordered pair (Ti., T.) and nji is the number of judgments

on the ordered pair T, i The likelihood ratio statistic for H0 : Wi = l/t,

i = I, ..., t, versus H a . I/t for some i in the presence of an order

effect is

. -2 log I* 2N log N -2f log f - 2(N-f)log(N-f) - 2B + (4.12)

1 Bb
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where

Bl = j niJ log(p+Pl) - ai log P " f log (4.13)
i;9j 1 11

Again, under H0 , -2 log A1 has the central chi-square distribution with

(t-l) degrees of freedom. A test for the presence of a common order effect,

Ho: e = 1 versus Ha: e * 1, follows immediately. For this test,

-2 log X4 = 2(BB1-B) (4.14)

has the central chi-square distribution with 1 degree of freedom when 8 = 1.

In (4.14), B1 is taken from (3.6).

Other tests could be developed. One of interest is the test for a

common order effect: H0: 0ij = 8 for all i * j, H a: 8ij * 8 for some i, j,

I i * j. Such a test could be described as a test of order by treatment

pair interaction.

Note that neither model for order effects suggests that an effort to

balance out the effects of order is exactly right. Note also that both

order effects and ties could be important and this is the situation addressed

by Davidson and Beaver in their unpublished manuscript.
I

4.3. A Bayesian Approach

Davidson and Solomon (1973) considered a Bayesian approach to the

estimation of the worth parameters wl, ., t of paired comparisons.

* Let t - [aj] and n = [n.], n a 0  , n? n They formulated
= 13 "ii " 0 ij ji*

a conjugate prior distribution for the parameters,

.4...
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a?. a.. ni0

0 0a. n..
- A P, .O) nF .1 / / ( .I ) 1 ,.

i i<j 1iJ

where 0a = : ai 0, i = 1, ... , o wi = 11. They restricted attentionii

to densities (4.15) for which aj a 0 and a.. + a.. o n0 They noted that,
ij 31 1 nij"

even with these restrictions, each (2 n°) determines a distinct prior

distribution and that the family of priors can represent a wide spectrum

:4 of prior beliefs. Davidson and Solomon suggested that the experimenter

think of his prior beliefs in terms of a conceptual experiment with ni0

responses to the pair (Ti, T.) with a.. of them being preferences for T

Choice of n° . is to be made as a measure of the strength of the experi-

menter's beliefs on the pair (Ti, T.).

It is noted that the selection of an estimator for the vector of worth

parameters t is of central interest. This is to be done on the basis of

the prior distribution (4.15) and the results of experimentation summarized

in the likelihood function conditioned on v,

I

a. n . -n..
H W n a j1)T. =. 13 (4.16)"' J i i aij 1

The estimator of w can be used to estimate pairwise preference probabilities

or to provide a ranking of the items or treatments in the experiment.

One estimator of y is the mode p* of the posterior distribution of r.

4 This mode is shown to be the solution of the set of equations,
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ail n'tp0, I a 1, ... ,
pi ~ (P*+P!J

jsi
(4.17)

ji

= where n!. = ni. j * ij and a! = a? + a., i < j, i, j = 1, ... , t. It is
1;, 13 13 an 1 1 3

seen that the choice of prior distribution led to a natural combination

of prior and experimental information as seen from the definitions of n!.
1j

and a!. Further, equations (4.17) have the form of equations (3.2) and (3.3).

Davidson and Solomon considered also the Bayes estimator of v under

a quadratic loss function, namely j, the mean of the posterior distribution

of w. While they did not obtain a closed expression for p, they did show

that, if n!. = n' for all i < j. the rankings determined by p* and ~ are

identical with the Bayes ranking determined by the posterior score a'.

4.4. Triple Comparisons

The basic model for paired comparisons can be extended to triple compari-

sons in at least two ways. Bradley and Terry (1952b) proposed the model,

P (Ti -TjT = /k ) (wj +wk)  (4.18)

for comparison of Ti, T. and Tk in a triplet, i * j # k, i, j, k = 1, ..., t.i3

Pendergrass and Bradley (1960) proposed the model,

2 2 2 2P(Ti4Tj4Tk) a win/[ w(wj k) w (ni+wk)+k(wi+wj) ]. (4.19)

In both models, the n's may again be regarded as worth parameters with . .= 1.

Both models have some desirable properties as discussed in the second referencc.

Model (4.18) is consistent with the Luce choice axiom and can be written as
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a Lehmann model (see Bradley (1976)). Model (4.19) has the property that

the set of treatment rank sums constitutes a set of sufficient statistics

for the estimation of wl, ... , wt . Basic methodology for the second model

is well developed including estimation procedures, tests of hypotheses

including goodness of fit, and asymptotic theory.

We show only the estimating equations and the basic test for model

(4.19). If Plo ... Pt are the estimators of it, "". wt' they result

from solution of the equations,

ai  n~i[2Pi (Pj +Pk).*PP 2 ]
1 1 n - 0, i = 1, ... ,t

Pi j<k Dijk(P)

(4.20)

Pi

where

2 22

Dijk(p) =p(j+p k) + (pi Pj) (4.21)

and n.Jk is the number of repetitions or rankings on the triplet (Ti,. T k)
i < j • k. The quantity a. in (4.20) is such that a. = 3 n - R

1 1 <ck ijk 1
jk4

where R. is the total sum of ranks for Ti in the experiment. Pendergrass

and Bradley suggest iterative means of solution of the equations (4.20)

although they held each nijk  n for all i < j < k.

The likelihood ratio test of HO: Wi - l/t, i • 1, ... , t, versus

H :w. 1 l/t for some i, is based ona i

-2 log A5 S 2N log 6 + 2 1 ai log Pj - 2 nijklog Dijk(P), (4.22)
i i<j<k
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where N n nijk. Under H0, -2 log X. has the central chi-square

distribution with (t-I) degrees of freedom for large N.

Park (1961) applied the Pendergrass-Bradley procedures to experimental

data and compared the results with those from companion experiments using

paired comparisons. He found good model fits and estimator agreement.

S. Treatment Contrasts and Factorials

It became apparent very early in applications of paired comparisons

to sensory experimentation that there was need for special analyses when

the treatments represented factorial treatment combinations. Abelson and

* Bradley (1954) attempted to address this need with very limited success

* and it remained an open problem until solved by Bradley and El-Helbawy

(19761. They considered factorial treatment combinations in the more

general framework of specified treatment contrasts. This simplified both

notation and theory.

In Table 6, we show paired comparisons data for treatments representing

a 23factorial set of treatment combinations. The data are taken from

Bradley and El-Helbawy (1976) and arise from a consumer preference taste

test on coffees, whore the factors are brew strength, roast color and coffee

orand, each at two levels. Twenty-six preference judgments were obtained

on each of the 28 distinct treatment comparisons. Note that it is convenient

to replace the typical treatment Ti by TOG e. a3 = 1 or 0, i = 1, 2, 3,

so that the subscripts indicate the chosen levels of the factors. We shall

return to these data to illustrate use of the general method explained

below with factorials.
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Table 6
Preference Data in Coffee Testing

Treatment not preferred, T
Treatment

preferred, Ta  000 001 010 011 100 101 110 111 a 2

000 -- 15 15 16 19 14 19 16 114

001 11 -- 10 15 15 14 IS 12 92

010 11 16 -- 15 IS 14 18 15 104

011 10 11 11 -- 14 11 15 13 85

a 100 7 11 11 12 -- 9 14 13 77

101 12 12 12 15 17 -- 16 18 102

110 7 11 8 11 12 10 -- 12 71

111 10 14 11 13 13 8 14 -- 83

1
a ilPi - iJ) 0, i - ,... t,

(5.4)

. log Pj 0,
i

where p - (p ""Pt )

4

Pi j ) Ej (p) __,(5.5)

j*pj pi j D..
jei joi

4

Ei(p) a ai - nijPi/(Pi.P.), (5.6)

jai

i = 1, ... , t, and Dij is the typical element of

I It - (5.7)

-4 . . . . . .1| ..
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Di > 0, the t-square identity matrix. Note the similar forms in (5.6)

and (3.2). If m a 0, the estimation process involves solution of (3.2)

replaced by (S.3).

Iterative solution of equations (5.4) is discussed briefly by Bradley

and El-Helbawy (1976) and in detail by El-Helbawy and Bradley (1977). In

the latter reference, it is shown that the proposed iterative procedure

converges and yields a maximum of the likelihood function over the parameter

space (w: i > 0, i * 1, ... , t, I log w a O B0.
i

A class of likelihood ratio tests may be developed. Let , , and

% -'a 1

:lB be matrices like B, 0 5 ma, mI < MO S (t-l), 0  m mI

* With the condition that . log wi a 0, we test

H0 : B log = 0 (5.8)
0

* against

H: B log =0. (5.9)

Sa

4 The test statistic is

-2 log A = 2[B,(pn)-B,(pa)], (5.10)i mo,ma

where BI is defined in (3.6), and, for large N n.. and under H0 in
i<j

(S.8), the statistic has the central chi-square distribution with mI degrees

of freedom. In (5.10), P. is the solution of (5.4) where B A B and Pa,

the solution when A m Basically, the test involves the assumption that
a

4-
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log 0 a +a

and a test of the additional constraints,

Am log W o

B consisting of mI orthonormal rows orthogonal to those of B-m1 
a

The test procedure is illustrated with the data of Table 6. Treatments

T. have subscripts in the lexicographic order of T in the table. Suppose1
that we wish to test the hypothesis that there are no two-factor interactions

on the ac-sumption that thero is no three-factor interaction. Then t a 8,

ma = 1, i= 3, = 4 with

and

.4 
Aml I 1 1 1 1

Necessary calculations yield:

!0 a (1.300, 1.275, 1.060, 1.040, 0.962, 0.944, 0.784, 0.769),

Ea u (1.515, 1.060, 1.342, 0.855, 0.790, 1.193, 0.647, 0.890),

B1(p) 497.81, B (Pa) = 490.14,

-2 log Xm m 2(497.81-490.14) 15.34.
"0 a
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The statistic, -2 log A O0ma has the central chi-square distribution with

3 degrees of freedom and is large. It is possible also to partition this

chi-square into three chi-squares, each with I degree of freedom, as is

done in Table 7.

The general test procedure for hypothesis (5.8) versus (5.9) based on

the statistic (5.10) may be used repeatedly to produce an analysis of chi-

square table. Two such analyses are given in Tables 7 and 8 for the data

of Table 6. Rows in these tables correspond to rows of the usual analysis

of variance table for a 23 factorial and similar descriptive terms have

been used. In order to preserve orthogonality of the various chi-squares,

they must be sequenced properly; each row requires that certain conditions

be assumed, equivalent to the specification of B . Both Tables 7 and 8
aare shown to illustrate two different sequencings of the rows and to suggest

that the choice of sequencing does not have substantial effects on the in-

ferences that may be made. Additional details on computations for Tables 7

and 8 are given by Bradley and El-Helbawy (1976).

The analyses below were done through recognition of the factorial

structure of the treatments. Factorial parameters may be introduced for-

43mally, although it is not necessary to do so. We illustrate with the 2

* factorial. Let v replace ni for the treatment T 2 Ti. where

( G' a 2' a3), ar 0 or 1, r 1 1, 2, 3. We reparameterize by writing

3 (r) (rs) (123)V H 7r * 0 s) ( * (5.11)
ral *r r<s ar 12 3

The parameters on the right-hand side of (5.11) are new factorial parameters.

The transformation is linear if logarithms are taken; the logarithms of the

4
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new factorial parameters are subject to the usual linear constraints for

factorial parameters in the analysis of variance in order to make the trans-

formation one-to-one. Estimators o! the factorial parameters are functions

of the estimators p. A full explination of these procedures is given by

El-Helbawy and Bradley (1976).

Special treatment contrasts may be of interest in paired comparisons.

Suppose that, in a coffee taste test experiment with t a 4, T4 represents

an experimental coffee produced by a new process while the other treatments

came from a standard process. One may wish to compare T4 with the other

4three treatments. Two approaches are possible. The first assumes nothing,

m a O, and takes

a1

ii  1 (1 , 1 , 1 , -3 ) .

The second approach assumes that 7r1 = 7r2 = Ir V ma 2,

- °2/r01
Ba / _I 11r 21

and retains the same B . With these matrices defined, the general test

procedure of this section is used.

We have presented a method for the examination of specified treatment

contrasts and the analysis of factorial paired comparison experiments to-

gether with examples. These methods provide much new flexibility.

I

4
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6. Multivariate Paired Comparisons

Multivariate responses to paired comparisons are often obtained. For

example, this happens in consumer testing where, on paired samples, prefer-

ences on a number of characteristics are solicited.

Davidson and Bradley (1969) extended the paired comparisons model to

the multivariate case. Let = ( , . ),s ior j, be the response
p

vector on attributes a = 1, ... , p for the treatment pair (Ti, T.) s. = i

indicating preference for Ti on attribute a. The probability of response

s on (Ti, T.) is

1(3
P~sjij) = p(1(si~j)h(sji~j), (6.1)

where

(1) p
p (sli,j) H w as /(f a (6.2)

aul a 1 j

and

-6(i,s a)/2 -8(i,s )/2h(~,i,j) 1. I 6(ss . )OaBCi/ far) a (wBi/lre ) , (6.3)

a<0 a i ajS

4 for all s, i < j, i, j = 1, ... , t. Notation is as follows: 7r is the

* worth parameter for T. on attribute a, i = 1, Pa is a "correlation"

parameter for attributes a and B assumed constant for all tr-tment pairs,

and 6(s, s = 1 or -1 as the two arguments of the indi. -r function agree

or disagree. Note that p z 0 implies independence of responses on attributes;

p has typical element pa0. It is necessary to restrict the parameter space

so that va 0, a = 1, ... , p, i = 1, ... , t, and h(sli,j) a 0 for each of

the 2p cells associated with each of the () treatment pairs.

42
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Let

B(W) = - I B1 (W (6.4)
aml

and

CC!, p) = I f(sJi,j) log h(sji,j), (6.5)

i<j s
th

where has typical element w and w is the h row of ~t. The quantity

B(2) is the function B of (3.6) with pi there replaced by n i and ai

replaced by a , the total number of preferences for Ti on attribute a.

In addition, f(Cjij) is the number of times the preference vector s occurs

among the nij responses to the pair (Ti, T.). We may express the logarithm

of the likelihood function as

log L = C(Q, 2) * B(V. (6.6)

Consider first a test for independence: H0 : P = 0 versus Ha: pOa o 0

for some a < at a, 8 = 1, ..., p. Under Ho, the likelihood equations reduce

to equations (3.2) and (3.3) for each a 1,..., p. If pis the solution

th th 0s0for the a set of equations and becomes the a row of P PO estimates w

under H0 . Under Ha, the equations to be solved are:

I f(~.iu)h 1Cjiii)6(s '6(i,s )/2 -6(i,s)/2 0,
i~j T'raipjBiB

p=p
a < , a, 81,..., p,

(6.7)
*. ai-Ri  n..PalP ' =0,

a d. piPagj

i =I, ..,t, a =1, S.p

4 t Pai I, a a I, ..., p,
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where

R = f( i,j)h' (li) x
j g

(6.8)

-6(is )/2 -6(is 8 )/2
(ial/iaj) 5(i,s )pa (ci/ fir)•

Solutions of equations (6.7) is discussed by Davidson and Bradley (1969).

If we let E and P be the estimators of w and p from equations (6.7), the

likelihood ratio test statistic is

-2 log X6 = 2{B(p)-B(p ).C(p,})) (6.9)

and, under HO, it has the central chi-square distribution with hp(p-1)

degrees of freedom.

If it is assumed that p = Q, tests on the parameters w may be made

* separately as in the univariate case for each a = 1, ..., p.

An overall test of no treatment preferences may be made in the presence

of correlations. Then we have H0: W a [l/t] and H : wi /t for some aa oi*

and i. Under Ha, the estimators from equations (6.7) are again p and~°

Under HO, the estimators of ff and p are [1/t] and the latter obtained

from solution of (6.7) with p = [1/t]. The test statistic is

-2 log X7  2(B()+ C(p,$+) pN log 2- C(l/t, 0)} (6.10)

with the central chi-square distribution with p(t-1) degrees of freedom

under HO.

A likelihood ratio test of the fit of the model (6.1) is given by

Davidson and Bradley. An alternative test may be based on
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x= {fs~llj)-f(;Iij)1 Cf(li~i) (6.11)
i<j s

and. uniir tho model. has the central chi-square distribution for large N

with {(2P-l)(t)-p(t-l)-(P)} degrees of freedom. The estimators p and 6

are substituted in (6.1) to obtain expected cell frequencies

(sIij) a nij kali,j).

Davidson and Bradley (1970) examine large-sample properties of procedures

discussed above. Davidson and Bradley (1971) examine regression relationships

among the characteristics in the multivariate problem.

We conclude this section with one of the examples given by Davidson

and Bradley (1969). Table 9 shows the observed and expected cell frequencies,

the latter in parentheses, for a chocolate pudding test with t = 3, p = 3,

the treatments being brands, and the attributes being taste, color and

texture.

Table 9

Observed and Expected Cell Frequencies
for a Chocolate Pudding Test

Treatment Cell Frequencies f(s i,j) Frequency

Pair

i, j Cells s ni

(iii) (iii) (iji) (jji) (iii) (jij) (ijj) (jjj)

1, 2 8 1 1 1 0 2 0 9 22
(7.93) (1.09) (1.1S) (1.69) (0.76) (0.97) (0.37) (8.03)

1, 3 6 0 1 1 1 0 1 9 19
(6.25) (0.60) (1.24) (0.92) (1.12) (0.62) (0.64) (7.61)

2, 3 7 1 1 1 3 1 1 6 21
(6.92) (0.37) (1.26) (0.60) (1.70) (0.75) (1.10) (8.31)
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Details on calculations are not given. However, as a possible check

on computer programming, the solution of (6.7) is as follows:

032 0.360 0.328 P12 = 0.675

p .37 0.321 0.372 Pl - 0.654

0.38 0.288 0.374 p 23 = 0.588.

Tests are summarized in Table 10. It is seen that the major effects are

the high correlations among responses on attributes.

Table 10
Test Statistics for Hypotheses
for the Chocolate Pudding Data

Test Statistic Ref. No. Value d.f.

Test of Independence -2 log A 6 (6.9) 62.665 3

Test of Equal Inferences -2 log A 7  (6.10) 2.362 6

Test of Model Fit X2 (6.11) 7.557 12

As a final comment on the example, cell frequencies are small and

asymptotic theory must be regarded only as approximate. The tests do,

however, seem to work well and be adequately indicative.

7. Other Methods of Paired Comparisons

Our efforts in this chapter have concentrated on one method of paired

comparisons and its extensions. This was done because it has been most

fully developed and has been found to work well in applications. Even so,

it has been necessary to be brief and applications require computer programs

that are easily developed after review of pertinent references for additional

detail.
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We have seen that the Thurstone model is very similar to the one used

here. It has had less attention. However, three papers do extend the

Thurstone model: Harris (1957) generalized the model to allow for possible

order effects, Glenn and David (1960) allowed for ties, and Sadasivan (1982)

permitted unequal numbers of judgments on pairs.

Other approaches to the analysis of paired comparisons exist. Kendall

and Babington Smith (1940) considered the count of circular triads as a

measure of consistency of judgments and also developed a coefficient of

concordance as a measure of agreement of judgments by several judges.

Guttman (1946) developed a method of scaling treatments in paired comparisons,

the objective of Zermello. Saaty (1977) proposed a consensus method through

evaluation by group discussion to provide treatment or item scores on a

ratio scale. Bliss, Greenwood and White (1956) used "rankits" in the analysis

of paired comparisons. Mehra (1964) and Puri and Sen (1969) extended the

idea of signed ranks to paired comparisons. Wei (1952) and Kendall (1955)

i have proposed an iterative scoring system that takes into account not only

direct comparisons but also roundabout comparisons involving other items.

No attention has been given here to the design of tournaments. There

is an extensive literature on this subject included in the Davidson-Farquhar

bibliography.

a" .n ii " -I I I i I Ii
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