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PREFACE

This technical report is an invited chapter for the Handbook of Statistics:

Nomparametric Methods, Volume 4 in a series edited by P. R. Krishnaish and
P. K. Sen and to be published by North-Holland Publishing Company, Amsterdam.
Much of the material by the author used in the chapter was developed under
ONR-sponsored research at the Florida State University and earlier at the
Virginia Polytechnic Institute and State University. Some minor new gener-

alizations of earlier work are included here.

Ralph A. Bradley
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1. Introduction

"™ Interest in paired comparisons in statistics and psychometrics has
developed in the contexts of the design of experiments, nonparametric
statistics, and scaling, including multidimensional scaling. Applications
have arisen in many areas, but most notably in food technology, marketing

research, and sports competition. An extensive bibliography on paired

'kcompansons by Davidson and I-‘arqm\ar (1976) contains some 400 references.

~Paired comparisons have been considered in design of exper{ments as
incomplete block designs with block size two by Clatworthy (1955) ;nd others.
Scheffé @developed an analysis of variance for paired comparisons
with consideration for possible order effects for the two treatments
within blocks. When the usual parametric models of analysis of variance
are imposed, the analysis of such designs follows standard methods and
will not be discussed here. \"' L e T T

The emphasis in this chapter will be on paired comparisons as a
means of designing comparative experiments when no natural measuring
scale is available. The author's interest in paired comparisons arose

in consideration of statistical methods in sensory difference testing.

*The work of the author is supported in part by the Office of Naval
Research under Contract N00014-80-C~0093. Reproduction in whole or in
part is permitted for any purpose of the United States Government.
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When responses of individuals to items under comparison are subjective,
and particularly when sensory responses to taste, odor, color or sound
are involved, evaluation is easier when the number of items or samples
to be considered at one time is small and the effects of sensory fatigue
are minimized. Probabilistic models for paired comparisons may be devised
to represent the experimental situation and permit appropriate data analysis.
The models provide probabilities of possible choices of items or treatments
from pairs of items and hence depend on orderings. The statistical methods
devised are thus ranking methods and, while they are not literally non-
parametric methods, they are often so classified.

The basic paired compar.sons experiment has t treatments, Tl‘ vees Tt’
and nij 2 0 comparisons of Ti with Tj’ "ji s “ij' i=j,i,j=1, ..., t.
For each comparison, preference or order is designated by aija' aiju =1

if T1 is "preferred" to 'l‘j in the ath comparison of Ti and T 0

i’ #ja °

otherwise, aija * ajia = 1. In further definition of notation, let
ns
855 * a£1aij“ and a, = ] 8;5» the total number of preferences for T;.

j=i
In sensory evaluations, responses may be preferences or attribute order

judgments on such characteristics as sweetness, smoothness, whiteness, etc.
We shall loosely refer to preference judgments.

Dykstra (1960) provides typical data on a paired comparisons preference
taste test involving four variations of the same product. The data are

summarized in Table 1. Note that the experiment is not balanced: n,, = 140,

12
n3 " 54, n,® 57, Ny = 63, Ny, ® 58, Ngy ® 0; treatments ‘l'3 and T4 were
not compared. Unbalanced experiments are permissible as long as the de-

sign is connected: it is not possible to select a subset of the treatments
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Table 1
o Summary of Results of a Taste Test
- T, T T3 T | 3
.
T, -~ 28 15 23 66

'l‘2 112 -- 46 47 205

TS 39 17 -- -- 56

T, 3 11 .- - 45
such that no treatment in the subset is compared directly with a treatment

in the complementary subset. Balanced experiments are more efficient when
there is equal interest in all treatments and treatment comparisons.
A : We shall return to analysis of the data of Table 1,which gives values
of 350 after discussion of models for paired comparisons and establishment
of basic procedures.
This chapter is organized in such a way as to give initial attention
to the analysis of basic paired comparisons data like those of Table 1.

Then extensions of the method are developed for factorial treatment

_ combinations and for multivariate responses, responses on several attri-
o butes for each paired comparison. The emphasis is on the methodology and
applications, although properties of procedures are noted and references
4
- given. We conclude with comments on additional methods of analysis.

]

‘
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2. Models for Paired Comparisons

When t = 2, a paired comparisons experiment with treatments 'l'l and
T, might be modelled as n,>0 independent Bernoulli trials with proba-
bilities of choices for Tl and Tz being LY and Ty W5 20,1i=1, 2,
e, 1. Then in some sense L and 7, are measures of "worth'" of
'l'l and Tz. Binomial theory applies and the sign test may be used to
test the hypothesis, HO: "

l=ﬂ2.

Bradley and Terry (1952a) proposed a basic model for paired compari-
sons, extended by Dykstra (1960) to include unequal values of the nij'
The approach was a heuristic extension of the special binomial when
t = 2. Treatment parameters, Tys cees Tep My 20,i=1, ..., t, are
associated with the t treatments, Tl’ cers Tt. It was postulated that
these parameters represent relative selection probabilities for the
treatments so that the probability of selection of 1'i when compared

with Tj is
P(Ti*Tj) = "i/(ﬂi*ﬂj), i=zj,i,j=1, ..., t. (2.1)

Since the right-hand member of (2.1) is invariant under change of scale,

specificity was obtained by the requirement that

§ L 1. (2.2)
i=1

The model proposed imposes structure in that the most general model might

postulate binomial parameters T and LT 1- "ij for comparisons of

Ti and Tj so that the totality of functionally independent parameters

is (;) rather than (t-1) as specified in (2.1) and (2.2).
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The basic model (2.1) for paired comparisons has been discovered
and rediscovered by various authors. Zermelo (1929) seems to have pro-
posed it first in consideration of chess competition. Ford (1957) pro-
posed the model independently. Both Zermelo and Ford concentrated on
solution of normal equations for parameter estimation and Ford proved
convergence of the iterative procedure for solution.

The model arises as one of the special simple realizations of more
general models developed from distributional or psychophysical approaches.
Bradley (1976) has reviewed various model formulations and discussed them
under categories -- linear models, the Lehmann model, psychophysical
models, and models of choice and worth.

David (1963, Section 1.3) supposes that Ti has "merit" Vi, i=1, ..., ¢,
when judged on some characteristic, and that these merits may be represented

on a merit scale. He defined "linear" models to be such that
P(T&*Tj) = H(Vi-Vj), (2.3)

where H is a distribution function for a symmetric distribution,
H(-x) = 1 - H(x). Model (2.1) is a linear model since it may be written
in the form,
P(T,*T,) = ! sech’y/2 dy = m;/(mom.), (2.4)
3 - . 17
(log w;-log "j)
as described by Bradley (1953) using the logistic density function.
Thurstone (1927) proposed a model for paired comparisons, that is
also a linear model, through the concept of a subjective continuum, an

inherent sensation scale on which order, but not physical measurement,




could be discerned. Mosteller (1951) provides a detailed formulation
and an analysis of Thurstone's important Case V. With suitable scaling,
each treatment has a location point on the continuum, say u, for Ty
i=1, ..., t. An individual is assumed to receive a sensation xi in
responsce to Ti’ with responses xi normally distributed about Yy When
an individual compares Ti and Tj’ he in effect is assumed to report the
order of sensations xi and xj which may be correlated; xi > xj may be
associated with Ti »> Tj' Case V takes all such correlations equal and

the variances of all xi equal. The probability of selection may be

written

P(TST,) = POXpX,) = # i oY 23. (2.5)
n -(ui-uj)
It is apparent from (2.4) and (2.5) that the two models are very similar.
The choice between the models is much like the choice between logits and
probits in biological assay. The use of log ; as a measure of location
for 'I'i in the first model is suggested.
Models (2.4) and (2.5) give very similar results in applications.

Comparisons are made by Fleckenstein, Freund and Jackson (1958) with
test data on comparisons of typewriter carbon papers. In general, more

extensions of model (2.4) exist and we shall use that model in this chapter.

3. Basic Procedures

The general approach to analysis of paired comparisons based on the
model (2.1) is through likelihood methods. On the assumption of independent

responses for the nij comparisons of ‘l‘1 and Tj' the binomial component




of the likelihood function for this pair of treatments is
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ties or no preference judgments not being permitted. The complete like-
lihood function, on the assumption of independence of judgments between

pairs of treatments, is

a. n..
1,0 (n.en,) 27, (3.1)

L=0In
i i<j i

i

It is seen that 815 -ees 8y constitute a set of sufficient statistics

for the estimation of Tes ceen My and that a, is the total number of

preferences or selections of Ti’ i=1, ..., t, for the entire experiment.

3.1. Likelihood Estimation

ML estimators, P; for LAY i=1}, ..., t, are obtained through maxi-
mization of log L in (3.1) subject to the constraint (2.2). After minor

simplifications, the resulting likelihood equations are

a. n..
‘—1- —-I'L‘i 0, i - 1, s e t. (3'2)
P § Pi’Pj ’
=i
and
g pi a ], (3.3)

Solution of equations (3.2) end (3.3) is done iteratively. If p(*)

is the kth approximation to p,,
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pfk) = p;(k)lg p;(k),

-2

where

* (k) (k-1), (k-

pi = ai/ § [nij/(pi P. 1))13 k=1, 2, ....

J
j=i

The iteration is started with initial specification of the p§°); one may
take p{® = 1/t, 1 = 1, ..., t, and this is adequate although Dykstra
(1956, 1960) has suggested better initial values.

We return to the example of Table 1. Values of a; are given in
the table and values of nijprecedethe table. Solution of equations
(3.2) and (3.3) was begun with pgo) =1/4, i =1, ..., 4. Results for
initial iterations are summarized in Table 2 along with final values
for P typically approximately 10 iterations are sufficient for four-
decimal accuracy in the final values. It is this iterative procedure
that Ford (1957) has shown to converge. The procedure is easy to program
on computers because of the symmetry of the equations to be solved.
Bradley and Terry (1952a) and Bradley (1954a) have provided tables giving
values of the P; for equal values of the ny oM t=3n=1, ..., 10;
t=4,n=1, ...,8 t=5n=1, ..., 5.

In small experiments, small values of the nij’ perhaps with poorly
selected treatments, the estimates p; may define a point on a boundary

of the parameter space. These situations may be recognized from tables

like Table 1 and require special consideration. As an example, refer

to Table 1 and suppose that T2 and TS are always preferred to Tl and T4
and Table 1 is unchanged otherwise. Then a = 23, a, = 244, a, = 71 and

a, = 34. Treatments '1'2 and TS dominate Tl and T4 and information on the




Table 2
Values of the Estimators in the Iterative Solution

(0) (1) (2) 3) 4) (S)
T, | P P P Py P P; P;
1 .25 371 1188 L1137 L1112 .1101 .1082
2 .25 .4094  .4656  .4918  .5049  .5131 .5193
3 .25 .2495  .2413  .2357  .2327  .2290 .2294
4 .25 .2040  .1743  .1588  .1512  .1478 .1431

relative values of T2 and T, comes only from the direct comparisons of

Tz and T It follows that P = o, P, = 46/63 = .7302, P; * 17/63 = ,2698,

30

and Py ® 0. But there is also information on the relative values of LY

and 7,. We find P,/Py = 23/34 = .4035/.5965 and can write p, * .40355
and Py = .596568, 8 infinitesimal. A formal analysis may be conducted
through minimization of log L with respect to n;, Tys Moy "2' Lo T 1,

™ ¢+ %* = 1, where n, = én* & an and § is small. Indeed, the maximum

1* " 1 1’ "
value of log L may be found in this way and it is needed in the compu-
tation of likelihood ratios as discussed below. Bradley (1954a) provides
additional discussion of these special boundary problems. problems not

usually encountered in applications.

3.2. Tests of Hypotheses

(i) The major test proposed by Bradley and Terry (1952) was that

of treatment preference or selection equality. The null hypothesis is
Ho: T Em, RN = 1/t (3.4)

and the general alternative hypothesis is

Seandnssstoe -—-n—-——————-—n—J
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Ha: LA "j forsome i, j, i = j, i, j=1, ..., t. (3.5)

If we designate the likelihood ratio as A,, it is easy to show that

13

-2 log A, = 2N log 2 - 2B;, N = _Z ng5e
i<j
(3.6)
B, = Z n,. log(p.+p;) - 2 a, log p,.
1 1<j ij i*j i 1 i

For large nij’ -2 log Al has the central chi-square distribution with
(t-1) degrees of freedom under Ho. Values of Bl’ together with exact
significance levels, were provided with the cited tables* of estimators
p;- Comparison of significance levels for the large-sample test with
small-sample exact significance levels in the tables suggests that the
former may be used for modest values of the “ij’ a situation perhaps
comparable to use of the normal approximation to the binomial.

For the values of the a; of Table 1, the noted values of the nij
above that table, N = 372, and the values of the P; in Table 2, we have
B, = 206.3214 and -2 log A
is a clear indication that the m, are not equal and that treatment prefer-

= 103.06 with 3 degrees of freedom. There

ences differ.

(ii) It is always encumbent on statisticians to check the validity
of models used in statistical analyses when possible. We have noted
above that a general "multi-binomial" model with (;) functionally inde-
pendent parameters "ij may be posed that ignores the structure of paired

comparisons in the sense that the samc treatment is compared with morc than

*Common logarithms were used to compute B, in these tables. In
this paper, natural logarithms arc used throughout.
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one other treatment. The multi-binomial model fits the data of tables
like Table 1 perfectly. This permits a test of the more restrictive
model of (2.1).

The following likelihood ratio test was proposed by Bradley (1954b)

and extended by Dykstra (1960). Consider the null hypothesis,
Ho: "ij = ﬂi/(ﬂi*ﬂj), i=2j,4i, =1, ..., ¢, (3.7)

and the alternative hypothesis,

H_: LT wi/(wiowj), for some i, j, 1 = j. (3.8)

Under Ha’ the likelihood estimator of ’ij is P;; - aij/nij when nij >0
and the estimator is not needed when nij = 0. Under Ho, P; is the esti-
mator of LA from equations (3.2) and (3.3). Designating Az as the likeli-
hood ratio statistic, we have

-2 log A, = 2( ] a,

. 1 - P | .+ B.). 3.9
RY 3 og a1j Z nIJ og niJ 1) (3.9)

i<j

For large nij’ -2 log xz is taken to have the chi-square distribution with
0 An alternative
statistic, asymptotically equivalent to that of (3.9), is

(;) - (t-1) = %(t-1)(t-2) degrees of freedom under H
2 v Y2700
X iEj(aij-aﬁ) /350 (3.10)

where aij = nijpi/(piopj) and 85 = nijpij‘ This alternate form may be

rewritten,

X2 = izjnij{Pij - [Pi/(Pi*Pj)]}z/[Pi/(Pi*pj)]. (3.11)

LY. UL . Y S S ¥
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Dykstra has noted that the test statistics may be distorted when some D5

are small. Since there is no basis for pooling terms in this case, he
suggested omitting terms in (3.11) with very small values of nij (and
hence nji) and deleting one degree of freedom for each pair of terms so
deleted.

For the data of Table 1, ng, =0 and the tests for the fit of the

model have %(3)(2) - 1 = 2 degrees of freedom. From (3.9), -2 log A, = 2.02

2
and there seems to be no reason to doubt the appropriateness of the model
(2.1). The statistic in (3.10) is evaluated also for illustrative pur-
poses. Values of the aij are given in Table 3 and they may be compared
directly with the values of aij in Table 1. Computation yields x2 s 2.00;

the close agreement of the two computations is typical.

Table 3
Estimated Frequencies for the Data of Table 1

Row

T T, Ts T, Sums
T, - 24.14  17.31  24.54 65.99
T, | 115.86 - 43.70  45.47 | 205.03
T, 36.69  19.30 . - 55.99
T, 32.46  12.53 - - 44.99

In the author's fairly extensive experience in fitting model (2.1)

to data in food technology and consumer testing, the model is usually
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&!’ found to fit well. When the model does not fit, one or more treatments

o

are often found to possess a characteristic not found in the others,

ey
Bl

possibly leading to preference judgments influenced by this attribute

when such treatments are in a comparison.

(iii) In some uses of paired comparisons, responses may be obtained
for several demographic groups, under different evaluation conditions,
or other criterion for grouping responses. The possibility of group
by treatment interaction or preference disagreement arises and this may
be tested.

Let u =1, ..., g index groups of responses in paired comparisons,
let n? be the treatment parameter for 'l‘i in group u, and suppose that
sufficient comparisons are made within each group to obtain p:, the

estimator of n:, i=1, ..., t. Interest is in the hypotheses,
Ho: w: =T, i=1, ..., tbu=1, ..., 8, (3.12)
and
u
Ha' L for some i and u. 3.13)

The likelihood ratio test depends on

-2 log 13 = 2(Bl - g Blu)’
u=l

where B, is computed from (3.6) for the data within group u and B, is

1
computed similarly for the pooled data from all of the groups. For large

1u

J
-2 log As has the central chi-square distribution with (g-1)(t-1) degrees

values of the L P the number of comparisons of 'l'i and Tj in group u,

of freedom under H, of (3.12).

0

e . v o L , .
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An omnibus test of trcatment equality may be described:
HO: ng =1/t,i=1, ..., t;us=s1l, ..., g,

Ha: n: = 1/t for some i and u,

-2 log A, = 2N log 2 - 2 E By, Ne E N =J Tn..
4 u=1 lu usl ¥ u i<j iju

The test statistic is taken to have the chi-square distribution with
g(t-1) degrees of freedom under H,. An analysis of chi-square table

0

may be formed: -2 log A, = -2 log 13 - 2 log Al, where -2 log Al is

4
the test statistic of (3.6) based on the pooled data.

Bradley and Terry (1952a) gave a small example for two tasters
evaluating pork roasts from hogs with differing diets, t = 3, g = 2,
“iju = 5 for all i, j, u, 1 # j. The data are sumarized in Table 4
and Table S is the analysis of chi-square table. The large total
treatment effect is seen to be due to disagreement of the two judges

on preferences.

Table 4
Roast Pork Preference Data for Two Judges

Diet Judge 1 Judge 2 Pooled Data
1) (1) (2 (2)
T ay Py 8y Py a; P
1 1 .0526 7 .5324 8 .2479
2 7 .4737 5 .2993 12 .4268
3 7 .4737 3 .1683 10 .3253
By, = 6.7166 By, ® 9.2895 By =20.2565

o - Adenand -‘-n-i-n---------llllllillllllllllilililililllll.
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Teble S
Analysis of Chi Square, Roast Pork Data

Test Statistic d.f. xz

Treatments, given agreement -2 log Al 2 1.07

I Judge by Treatment Interaction «2 log 13 2 8.50
Treatments -2 log A 4 9.58

(iv) Tests for specified treatment contrasts, contrasts on the log
LT be made by the method of Section §.

Bradley and Terry (1952a) proposed one additional test. It was assumed
Tt’
= .= (1-sw)/(t-8). The test is of

that the treatments fell into two groups, say Tl’ cees Ts and Ts#l’ ceny

with LSRRI and ool
the equality of = and (1-s%)/(t-s), or equivalently of LA /¢, 121, ..., ¢,
against the two-group alternative of the assumption. The reader is roferred

to the reference for details.

3.3. Confidence Regions

Large-sample theory may be used to obtain variances and covariances
for the estimators Pys cees Py OT their logarithms in paired comparisons.

Bradley (1955) considered this theory with each n,=n and Davidson and

b
Bradley (1970), considering the multivariate model discussed in Section 6
obtained results for general ng 3 as a8 special case.

Let by = nﬁm. Then 'ﬁ(pl-wl), /ﬁ'(pt-ut) have the singular

multivariate normal distribution of dimensionality (t-1) in a space of ¢t
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dimensions with zero mean vector and dispersion matrix I = [°ij] such

that

Al

A1
aij s cofactor of 1ij in // , (3.14)

1' 0

ro
where A = [Aij], 1'is the t-dimensional unit row vector, and

1 2 .
‘ii = ;;- } uijnj/(nitnj) s i=1, ..., ¢,
j=i

and (3.15)
Aoy 3 ougSlren), 234, d, 31 t
ij ij ij ’ » 3y 9 cosp Lo

In order to use these results in applications, Uij must be estimated;
this is done through substitution of P; for LY in (3.15) to obtain the
iij’ and subsequent substitution in (3.14) yields the Gij’s.

For the data of Table 1, values of Pys +-s Py in Table 2 are used

to obtain

ﬁo.«wﬁs -.9558 -~1.2740 -2.4259
- .9558 .4304 - ,3022 - .3553

=24
[ ]

-1.2740 -.3022 .7441 O

-2.4259 -.3553 0 3.1237,

from whence
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[~ .0800 -.0695 -.0314 .0208

-0“95 066‘4 ..‘689 -.1260
(3.16)

3 B
u

-.0314 -.4689 .6784 -.1781|

| .0208 -.1260 -.1781 .2833

Note that £ is singular, the row and column sums being zero.

Approximate confidence regions may be obtained. The confidence
interval on w, is developed from the fact that /ﬁtpi-ni)//5;; is standard
normal for large N. In the example, the .95-confidence interval for "
is (.0795, .1369). Let z* be a vector containing any subset of t* distinct
parameters of the set, t* < t. The (l-a)-confidence region for these t*

parameters is that ellipsoidal region of the parameter subspace for which

2
a,t*’

N(z*-p*) ' 51 (n*-p*) < x (3.17)

In (3.17), p* is the vector of estimates corresponding to x*, i‘ is the

dispersion matrix for YN(p*-1*) obtainable from (3.16), and x2

ot is the
»

(1-a)-percentage point of the central chi-square distribution with t*
degrees of freedom. As an example, let 1* = (ul, nz)' and then
B' = (.1082, .5193),

. .0800 -.0695 ~1 13.7441 1.4372

L* = and I* = ’
~-.0695 .6644 1.4372 1.6553

2

with a = 01, t* = 2, Xo12" 9.210, it may be verified that (3.17) yields

the .99-confidence region,

13.7441(#1-.1082)20-1.6553(ﬂ2-.5193)20'2.8744(ﬂ1-.1082)(wz-.5193) < ,0248.
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Since it may be appropriate to regard log w, 8s the location parameter
for Ti’ i=1, ..., t, in view of (2.4) and (2.5), confidence intervals or
regions on the log n, may be desired. It follows that /N(log py-log wll. cens
/N(log pt-log 't) have the singular multivariate normal distribution with
zero mean vector and dispersion matrix DID, where D is the diagonal matrix
with typical element llwi. Estimated variances and covariances are as fol-
lows: est. var. (/N log py) = Gii/pi, est. covar. ("N log N log pj)
= aij/pipj’ i = j. Confidence intervals or regions on the log 7, may be
obtained analogously to those shown above for the LI I1f a method of multiple
comparisons is to be used, the necessary variances and covariances may be
obtained from the information given.

In the very special case when each “ij = n, approximate variances and
covariances may be obtained if the treatments are not too disparate. Then,
on the assumption that LI /¢, i=1, ..., ¢t, % ® 2(t-l]z/t3 and
035 = -2t-1)/t%, 1 = j, while N = n(}). Like the binomial with its stable
variance for its parameter in a middle range, so are the variances and
covariances stable in paired comparisons when the m; 8re near 1/t and the
n.. = n. This can reduce computational effort for balanced experiments.

1J

3.4. Asymptotic Relative Efficiency

It is well known that the asymptotic relative efficiency of the sign
test to the Student test is 2/v when assumptions for the latter apply and
appropriate data could be obtained. Bradley (1955) showed that, under similar
conditions, the asymptoiic relative efficiency of paired comparisons reiative
to a randomized complete block design with the same number of treatment repli-

cations is t/n(t-1), when each nij = n., This result may be adjusted to show
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that the relative efficiency of paired comparisons relative to the analysis
of variance for the similar balanced incomplete block design is 2/m by the
methods of Raghavarao (1971, Sections 4.3 and 4.5).

While the asymptotic relative efficiency factor of 2/m suggests loss
of efficiency through use of the ranking or proference designations of
paired comparisons, the method is usually used because measurement scales

are not available for sensory or judgment evaluations.

4, Extensions of the Basic Model

4.1. Adjustments for Ties

The basic paired comparisons experiment forces decision on the part
of the respondent and data like those of Table 1 result. Nevertheless,
ties or '"non-selection" judgments often arise, for example, in consumer
testing.

The treatment of ties in the sign test has received considerable at-
tention. Hemelrijk (1952) demonstrated that the most powerful test of
significance was obtained by omission of ties and use of a conditional
binomial test on the sample results so reduced. But the treatment of ties
must depend on experimental objectives, see Gridgeman (1959), and estimation
of potential share of a consumer market surely must require other consid-
erations. Decisions for paired comparisons must be similar to those for the

sign test. Two formal methods for the treatment of ties in paired compari-

sons are available.
Rao and Kupper (1967) introduced a parameter 6 2 1 and adjusted proba-

bilities associated with the comparison of Ti and Tj to obtain
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(-]
P(TAT,) = w/(ny+0m.) = k { sech? y/2 dy,
J ) -(log ui-log nj)tn

and
P(Ty=T,) = (62-1)«inj/(ni+an)(e«ionj) (4.1

-(log n,-log n.)%n 2
= J sech® y/2 dy, 1 = 3,
-(log w, -log nj)-n

where n = log €. It is seen that the model extends the linear model of
(2.4) and that log 6 is, in a sense, a threshold parameter associated with
discriminatory ability.

Rao and Kupper extended the theory in parallel with that given above.
Unfortunately, they assumed that nij = n, but the work is easily extended.
We summarize only the results leading to the test of treatment equality,
although they provide other asymptotic results including variances and co-

variances for their estimators. We use our notation. Let N = Z nij and
i<j
bij be the sum of the number of ties and the number of preferences for Ti

in the n,, comparisons of T; and T;. Lot b, = § b, and let by be the

ij
j=i
total number of ties in the experiment. The likelihood equations are:

b b,. b

1 i - i .

pi JZ E-i—’i-’q JZ a-i’;-’?l’—j= 0, 1 1, ..., ¢,
j

j=i j=i

e =1, (4.2)

-
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where p; is the estimator of w, and 8 of 6. The likelihood ratio test of
Ho: LI 1/, i =1, ..., t, versus Ha: L 1/t for some i, leads to the

statistic,
-2 log A} = 2N log 2N - 2b, log 2b, - 2(N-by)10g(N-by) - 2B}, (4.3)

where

BY = 1?:!5 by log(piOapj) - )1: b, log p, - b, log(82-1). (4.4)
Again, for large N and under Ho, -2 log li has the central chi-square distri-
bution with (t-1) degrees of freedom. An iterative solution of equations
(4.2) is suggested by Rao and Kupper. They provided also a test of the
hypothesis, 8 = eo, against the alternative, 6= 60.
Davidson (1970) proposed probabilities corresponding to those of (4.1)

PCTi‘Tj) a wil(ni¢nj*v¢§;§;)

P(Ti=Tj) = vlninj/(wi+ﬂj+v/ninj),

v 2 0. This model preserves the odds ratio, P(TieTj)/P(TjaTi) = “i/"j’
consistent with the Luce (1959) choice axiom. In addition, the probability
of a tie is a maximum when L "j and diminishes as " and "j differ, an
intuitively desirable effect.

Let b;j be the sum of the number of ties and twice the number of
preferences for Ti in the "ij comparisons of Ty and Tj and let b; - Z bi"

j i
j=i




Davidson's likelihood equations are

b?
1 " [——7—— S ) = s
Fi_ - JZ nij(2+v pj pi)/(Pi"’Pj"VVPin) 0,i=1, ..., ¢,

j=i
Ip =1, (4.6)
i
b, R
'-G' - igj “ij'Pin/(Pi’Pj"‘\"Pin) =0,

where P; is the estimator of LfY and v of v. The likelihood ratio statistic
corresponding to (4.3) is of the same form with B; replaced by
By = 1§j nij log(pi+pj+vlpipj) - X g b; log P; - bo log v. (4.7)

Davidson also proposed an iterative solution for the equations (4.6) and
examined large-sample theory. He showed that the Rao-Kupper test and the
Davidson test for treatment equality are asymptotically equivalent.

The choice between the two methods for extending the basic paired
comparisons model to a model allowing for ties seems to be a matter of

intuitive appeal. Both give very similar results in applications.

4.2. Adjustments for Order

In paired comparisons, there is often concern for the effects of
order of presentation of the two items in a pair. Experiments are often
conducted so that, for each pair of treatments, each order of presentation
is used equally frequently in an effort to 'balance out" the ef}ects of
order, Scheffé (1952) addressed this problem in the analysis of variance.

Beaver and Gokhale (1975) extended our basic model to allow for order effects.
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Davidson and Beaver in an undated manuscript describe the Beaver-Gokhale
model as having additive order effects and discuss also a model with multi-
plicative order effects suggested by Beaver (1976). For the ordered pair

(Ti, Tj), Beaver and Gokhale defined

"i’ai' ﬂ.-Ci
Pi Ty = o= Py (TTy) = 555 (4.8)
i’ i
and, for the ordered pair (Tj’ Ti)’
ni-d.. w.#éi.
pji(Ti*Tj) ° " ’ Pji(Tj*Ti) = me . (4.9)

The corresponding probabilities for the model with multiplicative order

effects are

Bi'"i .
s P..(T»T.) =
173 1 eij"i’"j

Pij(Ti*Tj) = eij"i*"j

(4.10)

0..7m.

m,
P..(T.+T.) @ ——toe , P, . (T.,oT.) = —ad-d . |
Jitij "i*eij"j S § S B 3 “i*eij"j

The model given by (4.8) and (4.9) requires that 'Gijl < max(m,, "j)’ an
awkward feature, while the model (4.10) only requires that eij > 0. Ad-
vantages of the multiplicative model (4.10) are:

(i) Preference probabilities depend on the worth parameters LAY and
"j only through the ratio "i/"j'

(ii) Model (4.10) admits a sufficient statistic whose dimension is

that of the parameter space.
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LAl A > S gy u on o

(iii) Model (4.10) is a linear model and, for example,

-

(-]
Py (TPT,) = & { sech’y/2 dy.

-(log ﬁi-log nj)-log eij

For these reasons, we limit further discussion to (4.10).

Explicit methodology for model (4.10) and its special cases does not
l;' appear in the statistical literature, although it is implied by Davidson
and Beaver. Various likelihood ratio tests and associated estimation pro-

cedures can be developed easily when needed. We consider only the special

case when aij = © for all i = j. Then the likelihood equations are

a n. .6 n,
_é.- p 2 .y 3 _-o0,ia1,...,1¢,
p; 3 (epi*+p})  j  (pj*ep3)

j=i j=i

Ipr=1, (4.11)
ria 8

1
£ n; ;P§
-1 —L2—=0
® izj (8pjepy)

»

where f is the total number of preferences for the first presented item
of a pair, p; is the estimator of LA and 6 of @, while nij is the number
of judgments on the ordered pair (Ti’ Tj) and "ji is the number of judgments

on the ordered pair (Tj, Ti)' The likelihood ratio statistic for Hy: LI 1/%,

i=1, ..., t, versus Ha: LA # 1/t for some i in the presence of an order

effect is

L4

-2 log x{ = 2N log N - 2f log £ - 2(N-f)log(N-f) - 2B,

(4.12)
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P‘x where

* ~ ~
B1 = iZj nij log(epzopg) - E a; log p; - £ log 6. (4.13)

Again, under HO‘ -2 log A;

(t-1) degrees of freedom. A test for the presence of a common order effect,

has the central chi-square distribution with

HO: 6 = 1 versus Ha: 8 21, follows immediately. For this test,

-2 log A, = z(al-sp (4.14)

4

has the central chi-square distribution with 1 degree of freedom when 6 = 1,
In (4.14), B1 is taken from (3.6).

Other tests could be developed. One of interest is the test for a
common order effect: Hy: eij =6 for all i = j, Ha: ]
i 2 j. Such a test could be described as a test of order by treatment

i = 0 for some i, j,
pair interaction.

Note that neither model for order effects suggests that an effort to
balance out the effects of order is exactly right. Note also that both
order effects and ties could be important and this is the situation addressed

by Davidson and Beaver in their unpublished manuscript.

4.3. A Bayesian Approach

Davidson and Solomon (1973) considered a Bayesian approach to the
estimation of the worth parameters Tys cees Ty of paired comparisonms.
o o o _ ;.0 0
Let 2~ = [aij] and n = [“ij]’ n,, =a;e® O, n,. = n.,. They formulated

a conjugate prior distribution for the parameters,
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o o o

a;. a.. n,
¢(n) = A(éo, go) n niljn.JI/(ﬂiow.) lj, meq, (4.15)
i‘j J J

o o
a. Y
=A%, Q) Mg/ T (memy P,
i i<j J
where @ = {m: n, 20,i=1, ..., ¢, ) m; = 1}. They restricted attention
i

o o]

to densities (4.15) for which agj z 0 and ag + aji = nij’ They noted that,

j
even with these restrictions, each (go, go) determines a distinct prior
distribution and that the family of priors can represent a wide spectrum

of prior beliefs. Davidson and Solomon suggested that the experimenter
think of his prior beliefs in temrms of a conceptual experiment with n:j
responses to the pair (Ti, Tj) with agj of them being preferences for Ti‘
Choice of ngj is to be made as a measure of the strength of the experi-
menter's beliefs on the pair (Ti, Tj)'

It is noted that the selection of an estimator for the vector of worth
parameters 5 is of central interest. This is to be done on the basis of
the prior distribution (4.15) and the results of experimentation summarized
in the likelihood function conditioned on 1,

e@lp =1« 1 (:i%)(inﬂj)-nij. (4.16)
i i<j "ij
The estimator of n can be used to estimate pairwise preference probabilities
or to provide a ranking of the items or treatments in the experiment.

One estimator of 1 is the mode p* of the posterior distribution of 1.

This mode is shown to be the solution of the set of equations,
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a! n!.
i i R
Fi; § Ei'.—";?)-=0,1 1, ..., t,
j=i
(4.17)
Z p? =1,
i 1

where n}, = ngj + n;; and a} = ag va,i<j, i,j=1, ..., t Itis
seen that the choice of prior distribution led to a natural combination
of prior and experimental information as seen from the definitions of nij
and ai. Further, equations (4.17) have the form of equations (3.2) and (3.3).
Davidson and Solomon considered also the Bayes estimator of 7 under
a quadratic loss function, namely é, the mean of the posterior distribution
of 1. While they did not obtain a closed expression for é, they did show
that, if nij = n' for all i < j, the rankings determined by g* and 2 are

identical with the Bayes ranking determined by the posterior score a'.

4.4. Triple Comparisons

The basic model for paired comparisons can be extended to triple compari-

sons in at least two ways. Bradley and Terry (1952b) proposed the model,
P(Ti*Tj*Tk) = winj/(ﬂi+nj+nk)(wj+wk) (4.18)

for comparison of Ti, Tj and Tk in a triplet, i = j =k, i, j, k=1, ..., t.

Pendergrass and Bradley (1960) proposed the model,
P(T, T AT,) = won./[n2(n on Yonl(n, +n YouZ(m on.)] (4.19)
i3k S ML Tl B SRS R B SO S SN M '

In both models, the n's may again be regarded as worth parameters with Z T, = 1.
i

Both models have some desirable properties as discussed in the second referencc.

Model (4.18) is consistent with the Luce choice axiom and can be written as
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a Lehmanr model (see Bradley (1976)). Model (4.19) has the property that
the set of treatment rank sums constitutes a set of sufficient statistics
for the estimation of Tys cees Ty Basic methodology for the second model
is well developed including estimation procedures, tests of hypotheses
including goodness of fit, and asymptotic theory.

We show only the estimating equations and the basic test for model
(4.19). If Py» +:-» P, are the estimators of Tys coes Tes they result

from solution of the equations,

2 2
3 g “1jk[?f;fpj’pk)’pj’pk] co.ie1, ..t
Py  j<k Dy;k )
i k=i (4.20)
Ip =1,
ii
where
D, (P) = P2(p,*py) + P2(D;+P,) *+ P2 (D, *P;) (4.21)
ijkp Pi pj Pk Pj Pi pk pkpi Pj .

and nijk is the number of repetitions or rankings on the triplet (Ti. Tj' Tk),

i <j < k. The quantity a, in (4.20) is such that a, = 3 I n
j<k
jok=i

where Ri is the total sum of ranks for Ti in the experiment. Pendergrass

ijk - Ry

and Bradley suggest iterative means of solution of the equations (4.20)
although they held each nijk =n for all i < j < k.
The 1likelihood ratio test of HO: P 1/t, i=1, ..., t, versus

Ha: LA # 1/t for some i, is based on

=2logA. =2N1log 6 ¢+ 2 ) a, logp, - 2 n, .. log D,.. (p), (4.22)
S g i i i<§<k ijk ijkx
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where N= ] n,.. . Under H), -2 log A_ has the central chi-square
i<j<k ijk 0 S

distribution with (t-1) degrees of freedom for large N.
Park (1961) applied the Pendergrass-Bradley procedures to experimental
data and compared the results with those from companion experiments using

paired comparisons. He found good model fits and estimator agreement.

S. Treatment Contrasts and Factorials

It became apparent very early in applications of paired comparisons
to sensory experimentation that there was need for special analyses when
the treatments represented factorial treatment combinations. Abelson and
Bradley (1954) attempted to address this need with very limited success
and it remained an open problem until solved by Bradley and El-Helbawy
(1976). They considered factorial treatment combinations in the more
general framework of specified treatment contrasts. This simplified both
notation and theory.

In Table 6, we show paired comparisons data for treatments representing
a 23 factorial set of treatment combinations. The data are taken from
Bradley and El-Helbawy (1976) and arise from a consumer preference taste
test on coffees, where the factors are brew strength, roast color and coffee
orand, each at two levels. Twenty-six preference judgments were obtained
on each of the 28 distinct treatment comparisons. Note that it is convenient
to replace the typical treatment Ti by T“1“2°3’ a; = loro,i=1, 2, 3,
so that the subscripts indicate the chosen levels of the factors. We shall
return to these data to illustrate use of the general method explained

below with factorials.
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ii! Table 6
A Preference Data in Coffee Testing
o Treatment not preferred, ?5
p Treatment 8
' preferred, T 000 001 010 Ol 100 101 110 111 | a
! 00| -- 15 15 16 19 14 19 16 | 114
@I 001 | 11 -- 10 15 15 14 15 12 92
- 010 | 11 16 -- 15 15 14 18 15 | 104
. 011 | 10 11 11 -- 14 11 15 13| 8s
a | 100 7 11 11 12 -- 9 14 13| 77
101 | 12 12 12 15 17 -- 16 18| 102
110 7 11 8 11 12 10 -- 12| 7
1mm| 100 14 11 13 13 8 14 --{ 83

ailpi - ¢i(g) =0,i=1, ..., ¢,

(5.4)
log p; =0,
J 106 v,
where p = (py, ..., P.)>
¢ (p) = Z—nij—-ii Ecp)iii (5.5)
1'%~ j pi*pj P; j I~ Dii’ )
j=i j*i
j=i
i=1, ..., t, and Dij is the typical element of
R=1, - BB (5.7
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Dii >0, Lt’ the t-square identity matrix. Note the similar forms in (5.6)
and (3.2). If m = 0, the estimation process involves solution of (3.2)
replaced by (5.3).

Iterative solution of equations (5.4) is discussed briefly by Bradley
and El-Helbawy (1976) and in detail by El-Helbawy and Bradley (1977). 1In
the latter reference, it is shown that the proposed iterative procedure
converges and yields a maximum of the likelihood function over the parameter

space {x: w2 0,i=1, ..., ¢, 2 log LA 0, B, log n = Qm}.

i
A class of likelihood ratio tests may be developed. Let Em R gm , and
B a 1
™ .
Em = be matrices like gm, 0 < o, m < m, s (t-1), my °m, ¢+ m,.

oﬁml

With the condition that | log m, = 0, we test

i
Ho: Emb log =0 (5.8)
against
Ha: Em log x = 0. (5.9
a
The test statistic is
-2 log AmO’ma = 2[81(20)-81(23)], (5.10)

where B, is defined in (3.6), and, for large N = ) n,; and under Hy in
i<j

(5.8), the statistic has the central chi-square distribution with m_ degrees

1

of freedom. In (5.10), Py is the solution of (5.4) where gm = gmo and ga,
the solution when gm = gm . Basically, the test involves the assumption that

a
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i
log =0 1
2y
a3

and a test of the additional constraints,

B logrn=90 ,
~m, ~m,

'_'i'ﬂ—‘m‘ S

B consisting of m, orthonormal rows orthogonal to those of B .
~m,y 1 .,

The test procedure is illustrated with the data of Table 6. Treatments

Ti have subscripts in the lexicographic order of T“ in the table. Suppose
that we wish to test the hypothesis that there are no two-factor interactions
on the assumption that thero is no three-factor interaction. Then t = 8,

ma =1, m = 3, n, = 4 with

(lp ‘1: '1: 1: '11 1’ 1’ '1)

and

1 1 -1 -1 -1 -1 1 1
§m=—1-1-1 1 -1 -1 1 -1 1.
7]

Necessary calculations yield:

Po * (1.300, 1.275, 1.060, 1.040, 0.962, 0.944, 0.784, 0.769),

P, ® (1.515, 1.060, 1.342, 0.855, 0.790, 1.193, 0.647, 0.890),

By(pg) = 497.81, B,(p,) = 490.14,

-2 log A = 2(497.81-490.14) = 15.34.
mO’ma

o e v e —a — e he dinnnd da i4.-i-i-i-t-i---ili-i-i.ﬁlil-lilll
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"! The statistic, -2 log A, _ has the central chi-square distribution with
D 0’ a
- 3 degrees of freedom and is large. It is possible also to partition this

_ chi-square into three chi-squares, each with 1 degree of freedom, as is
p done in Table 7.

The general test procedure for hypothesis (5.8) versus (5.9) based on
ﬁ' the statistic (5.10) may be used repeatedly to produce an analysis of chi-
¢ square table. Two such analyses are given in Tables 7 and 8 for the data

of Table 6. Rows in these tables correspond to rows of the usual analysis

of variance table for a 23 factorial and similar descriptive terms have
been used. In order to preserve orthogonality of the various chi-squares,
they must be sequenced properly; each row requires that certain conditions
be assumed, equivalent to the specification of gm . Both Tables 7 and 8
are shown to illustrate two different sequencingsaof the rows and to suggest
that the choice of sequencing does not have substantial effects on the in-
ferences that may be made. Additional details on computations for Tables 7
and 8 are given by ﬁradley and El-Helbawy (1976).

The analyses below were done through recognition of the factorial
structure of the treatments, Factorial parameters may be introduced for-
mally, although it is not necessary to do so. We illustrate with the 23

factorial. Let "g replace LY for the treatment Té S Ti’ where

as= (°l' a,, “3)' a, = Oorl, r=1, 2, 3, We reparameterize by writing

3
r = I ugr) « 1 'n(r:) . ":lisc): . (5.11)
2 ge1 % r<$ r S 17273

2

The parameters on the right-hand side of (5.11) are new factorial parameters.

The transformation is linear if logarithms are taken; the logarithms of the




R\
R

‘puexq st 4 ‘anotod iseox st %y ‘y28usIls maaq sy ﬁm«
8562 7 QUON §309339 juawIrol <Y
29'0 1 SUOTIOLIIIUT J0IOBF~-OM} OU ‘S3D3FFa utew ON uoT3IdRIAJUY nmmmﬁm oz.
20 1 suotyoexaiur Z4%3 ‘%414 ou ‘s3oezze ujsm oN uot3oezayur £4%4 on
L b1 I uorzdeaout S35 ou ‘$339330 uvem oy uor3sexaquy 374 oy
910 1 s33333e utew oN uot3sexauy 3y on
A £ $133339 uTe® ON suoroezaduy 4% E4'5 Cyly on
v0°0 I 5100330 ¢4 T3 on 139335 £1 on
4 1 29339 ~m ON 309339 Nm ON
PAMK I 2UON 309335 ‘4 ON

axenbs wopaaiy paumsse +PoISO]
-1y Jo saaadaq SUOT3ITPUO) stsoyjod4Ay
BIBQ 993FO0D 9Y3 103 3xenbs-TY) Jo STSATRUY SATIBUIIITV UY
8 a1qel
3 ‘puelq ST nn_ ‘INOJ0d 3Seox SY Nm ‘y3duaxys mo1q St ~m.

86°62 L QUON $320339 jusmIBSi} ON

£9°0 1 auoN voryoeaaur £4%4%4 on

SI°0 I SUOTIOBIIIUT nmmuﬁm €04 .mmﬁm oN uoOTIdeIIJUT Nuﬂm ON

96° ¥1 1 SUOT3OBIIIUT nmmmﬁm £4%5 ox UOT3OBIIIUY nunu ON

22°0 1 uoT3oRISIUT £24%4 on UOTIOBIIIUT nmum oN

bs° ST g worzoezagur $5%3%4 oy | suoroezejur S4%y «Fily <C4ls on

$0°0 1 SUOTIDBIAIUT ON 339339 £5 on

62"t 1 SUOT30BIPIUT Ou €4 oN 109339 lj oN

82°6 1 SUOT3DBISIUT OU .nu Nm ON 3009339 ﬁm ON

oxenbs wopodxJ paunsse +Po3893
-1Y) Jo so99aBaqg SUOT3ITPUO) stsayyodAy

-

JF PPN )

BIRQ 093307 9yl X03 arenbs-Ty) Jo SsTsATRUY UY

{ 91qel




W Tv_vv,'v,
) PPN S

36

new factorial parameters are subject to the usual linear constraints for
factorial parameters in the analysis of variance in order to make the trans-
formation onc-to-one. Estimators of the factorial parameters are functions
of the estimators P,- A full explanation of these procedures is given by
El-Helbawy and BradIey (1976).

Special treatment contrasts may be of interest in paired comparisons.
Suppose that, in a coffee taste test experiment with t = 4, T, represents
an experimental coffee produced by a new process while the other treatments
came from a standard process. One may wish to compare T4 with the other
three treatments. Two approaches are possible. The first assumes nothing,
m = 0, and takes

1
= —(1, 1, 1, -3).
Em1 V12

The second approach assumes that Ty =Ty Ty W, = 2,

1/V2 -1/v27 0 O
B =
M2 /8 1 -2/ o

and retains the same gml. With these matrices defined, the general test
procedure of this section is used.

We have presented a method for the examination of specified treatment
contrasts and the analysis of factorial paired comparison experiments to-

gether with examples. These methods provide much new flexibility.

O - . 4g---i--h---uI;---lI-Il-.lllllll.l.ll.llilllllllllll.li
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6. Multivariate Paired Comparisons

Multivariate responses to paired comparisons are often obtained. For

example, this happens in consumer testing where, on paired samples, prefer-

ences on a number of characteristics are solicited.
Davidson and Bradley (1969) extended the paired comparisons model to

the multivariate case., Let § = (sl, R = i or j, be the response

p)s S
vector on attributes a = 1, ..., p for the treatment pair (Ti‘ Tj), S, ° i
indicating preference for Ti on attribute a. The probability of response

s on (Ti, Tj) is

P(s|i,5) = pM (s]i,i)n(s]iL ), 6.1)
where
Wope s P
P oUGslig) e W ow S/ (n em ) (6.2)
asl a i 75
and
-6(i,s,)/2 -8(i,s5)/2
hglig) = 1e [ 8(s,-sg)egg(my /m, ) (rg3/7g) » (6.3)

a<f

for all s, 1 < j, i, j=1, ..., t. Notation is as follows: = . is the

ai
worth parameter for Ti on attribute a, g Tai = 1, Pap is a "correlation"
parameter for attributes a and g assumed coastant for all trc-tment pairs,
and 6(50, sB) = 1 or -1 as the two arguments of the indic -* 'r function agree
or disagree. Note that o= 0 implies independence of responses on attributes;
[ has typical element Pag* It is necessary to restrict the parameter space
sothat#  20,a=1,..,p,i=1,...,¢, and h(s|i,j) 2 0 for each of

the 2P cells associated with each of the (g) treatment pairs.

oot -----4-------------------------lini-lillli




B = - 1 B, (1)
a=zl

C(m, o) = ] ) £(sli,j) log h(sli,i), (6.5)
i<j s

where m has typical element L and s is the ath row of n. The quantity

Bl(gu) is the function B

of (3.6) with P; there replaced by L and a;

1
replaced by 3,40 the total number of preferences for Ti on attribute a.

Y

In addition, £(g|i,j) is the number of times the preference vector s occurs

among the nij responses to the pair (Ti, Tj)' We may express the logarithm

of the likelihood function as

log L = C(x, g) + B(xm). (6.6)

Consider first a test for independence: Ho: o= 0 versus Ha: Pap 20

for some a < B, a, 8 =1, ..., p. Under Ho, the likelihood equations reduce
to equations (3.2) and (3.3) for eacha=1, ..., p. If 22 is the solution
for the o™ set of equations and becomes the o*® row of go, BO estimates 1
under Ho. Under Ha’ the equations to be solved are:

| o -6(i,sa)/2 -6(1,38)/2
‘ 1§j £(s]i, 00" (gli,3)8(s s 0) (/v ) (mg3/gs)
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where

R, =% [ I £Gsli,n (gl x

ax

8
j=i
(6.8)
-6(i,su)/2 ) -6(1,58)/2
LA % 8(i,50)P 5 (7gs/Tgs) :
Bza

Solutions of equations (6.7) is discussed by Davidson and Bradley (1969).
1f we let P and ¢ be the estimators of n and p from equations (6.7), the

likelihood ratio test statistic is
-2 log A = 2{3(2)-5(2°)+C(g.§)} (6.9)

and, under Hy» it has the central chi-square distribution with Mp(p-1)
degrees of freedom.

If it is assumed that = 0, tests on the parameters 71 may be made
separately as in the univariate case for eacha =1, ..., Pp.

An overall test of no treatment preferences may be made in the presence
of correlations. Then we have H,: 7 = {1/t] and Ha: LIPS 1/t for some a
and i. Under Ha’ the estimators from equations (6.7) are again g and é.
Under H,, the estimators of g and p are [1/t] and EO’ the latter obtained

0
from solution of (6.7) with p = [1/t]. The test statistic is

~

-2 log A, = 2{B(p) +C(p,p) + PN log 2- C(1/t,5y)} (6.10)

with the central chi-square distribution with p(t-1) degrees of freedom
under Ho.
A likelihood ratio test of the fit of the model (6.1) is given by

Davidson and Bradley. An alternative test may be based on
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= 1T el 9)-Rsli 0 R ].9) (6.11)
i<j s
and, undcr the model, has the central chi-square distribution for large N
with {(Zp-l)(;)-p(t-l)-(g)} degrees of freedom. The estimators P and E
are substituted in (6.1) to obtain expected cell frequencies 7
B(sli,3) = ny; PeeliLi).

Davidson and Bradley (1970) examine large-sample properties of procedures
discussed above. Davidson and Bradley (1971) examine regression relationships
among the characteristics in the multivariate problem.

We conclude this section with one of the examples given by Davidson
and Bradley (1969). Table 9 shows the observed and expected cell frequencies,
the latter in parentheses, for a chocolate pudding test with t = 3, p = 3,

the treatments being brands, and the attributes being taste, color and

texture.
Table 9
Observed and Expected Cell Frequencies
for a Chocolate Pudding Test
Treatment < .
Pai Cell Frequencies f(s]i,j) Frequency
air ~
i, j Cells s n;;
(iii) (jid) (i5i) (j5i) (@iij) (Gij) @i Gid
1, 2 8 1 1 1 0 2 0 9 22
(7.93) (1.09) (1.15) (1.69) (0.76) (0.97) (0.37) (8.03)
1, 3 6 0 1 1 1 0 1 9 19
(6.25) (0.60) (i,24) (0.92) (1.12) (0.62) (0.64) (7.61)
2, 3 7 1 1 1 3 1 1 6 21
(6.92) (0.37) (1.26) (0.60) (1.70) (0.75) (1.10) (8.31)
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Details on calculations are not given. However, as a possible check

on computer programming, the solution of (6.7) is as follows:

0.312 0.360 0.328 612 = 0.675
p = |0.307 0.321 0.372], 613 = 0.654
0.338 0.288 0.374 523 = 0,588 .

Tests are summarized in Table 10. It is seen that the major effects are

the high correlations among responses on attributes.

Table 10

Test Statistics for Hypotheses
for the Chocolate Pudding Data

Test Statistic Ref. No. Value d.f.
Test of Independence -2 log 16 (6.9) 62.665 3
Test of Equal Inferences -2 log A, (6.10) 2.362 6
Test of Model Fit X% (6.11) 7.557 12

As a final comment on the example, cell frequencies are small and
asymptotic theory must be regarded only as approximate. The tests do,

however, seem to work well and be adequately indicative.

7. Other Methods of Paired Comparisons

P T W S TPy

Our efforts in this chapter have concentrated on one method of paired
comparisons and its extensions. This was done because it has been most
fully developed and has been found to work well in applications. Even so,
it has been necessary to be brief and applications require computer programs
that are easily developed after review of pertinent references for additional

detail.

2 et ande i deenienestsesineisensinstesbesensenhesiemineniusnaineieing
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We have seen that the Thurstone model is very similar to the one used
here. It has had less attention. However, three papers do extend the
Thurstone model: Harris (1957) generalized the model to allow for possible
order effects, Glenn and David (1960) allowed for ties, and Sadasivan (1982)
permitted unequal numbers of judgments on pairs.

Other approaches to the analysis of paired comparisons exist. Kendall
and Babington Smith (1940) considered the count of circular triads as a
measure of consistency of judgments and also developed a coefficient of
concordance as a measure of agreement of judgments by several judges.

Guttman (1946) developed a method of scaling treatments in paired comparisons,
the objective of Zermello. Saaty (1977) proposed a consensus method through
evaluation by group discussion to provide treatment or item scores on a

ratio scale., Bliss, Greenwood and White (1956) used "rankits' in the analysis
of paired comparisons. Mehra (1964) and Puri and Sen (1969) extended the

idea of signed ranks to paired comparisons. Wei (1952) and Kendall (19S5)
have proposed an iterative scoring system that takes into account not only
direct comparisons but also roundabout comparisons involving other items.

No attention has been given here to the design of tournaments. There
is an extensive literature on this subject included in the Davidson-Farquhar

bibliography.
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