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FOREWORD

This report to the Office of Naval Research is the concluding final

report for a two-year theoretical and experimental effort carried out under

Contract N00014-80-C-0498, and covers the period May 13, 1981 to September 31,

1982. The program was carried out at the Rockwell International Science

Center and was managed by Dr. Paul R. Newman. The Principal Investigators

were Mr. Mark D. Ewbank and Dr. Newman. Prof. Walter A. Harrison of Stanford

University was a consultant on the theoretical aspects of this program. Valu-

able contributions were also made by Prof. Eltan Ehrenfreund of the Technion

Institute of Israel, and Dr. Pochi Yeh, Mr. Randolph L. Hall and

Dr. M. Khoshnevisan of the Science Center. The Contract Monitor for the

Office of Naval Research was Dr. George Wright.
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1.0 INTRODUCTION

1.1 Program Objectives

The long-range goal of this program was to theoretically investigate

the microscopic physical origins of the linear dc electro-optic effect. A

secondary objective was to use the formalism resulting from that investigation

to develop a general methodology with predictive capabilities that requires

only atomic structure and elemental composition as input.

Additionally, as new increasingly high-performance materials are

required by electro-optic device technology, an experimental effort was

carried out, not only to provide feedback for the theoretical studies, but to

provide data on new and potentially interesting Pockel's electro-optic

materials.

1.2 Previous Work

The previous year's work was first devoted to separating the physical

sources of the electro-optic effect into those which result primarily from

electronic effects, and those associated with lattice dynamics or "ionic-

displacive" effects. The Bond Orbital Modell was then modified so that the

electronic contribution to the electro-optic effect could be calculated simply

and straightforwardly using "universal atomic" parameters and numerical sums

over chemical bonds in the crystallographic unit cell. This theory was then

tested against TeO 2 and predicted an identically zero electronic contribution

to the electro-optic tensor in agreement with Kleinman's 2 symmetry relations.

The effort next focussed on the ionic displacive part. Here a
further distinction was made between relative motions between ions which do

not result in a change in the unit cell dimensions and those which do. The

approach, which had not been completely evolved at the conclusion of the first

year's effort was to seek a mechanism to calculate the microscopic atomic
"spring constants" and relate these to measurable bulk properties such as the

Reststrahl frequency or elastic constants.

1
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Finally, the experimental portion of the program was directed towards

two compounds: TeO2 and T13AsSe3. Measurement on TeO2 yielded the original

characterization3 of the linear electro-optic effect in terms of the single

non-zero component r4 1. Preliminary measurements of the electro-optic effect

in Tl3AsSe 3 experienced experimental difficulties associated with the

semiconducting nature of the material.

1.3 Accomplishments

Significant original results towards understanding the electro-optic

effect have been made during this period. The theoretical work, utilizing

tight-binding theory ind Harrison's "universal atomic parameters"1 has suc-

cessfully yielded a formalism for quantitatively calculating both the elec-

tronic and ionic contributions to the electro-optic second-order suscepti-

bility. This formalism predicts the electro-optic tensor coefficients util-

izing atomic matrix elements, and term values, together with crystallographic

coordination and elemental composition, but without any adjustable parameters.

As was indicated above, the electronic contribution is calculated in a

straightforward manner using tight-binding formalism and bond sums taken over

the crystallographic unit cell. Calculations of the contributions due to lat-

tice dynamics has also been successfully reduced to practice and applied to

TeO2 . The formalism involves modelling interatomic forces (springs) in terms

of a bond-stretching force and a bond-bending force. These interactomic

forces can then be used to calculate normal acoustic and optical lattice

phonon modes. The calculated frequencies, at zone-center, can then be com-

pared with data derived from optical measurements.

Experimental measurements of the rc electro-optic tensor component of

T13 AsSe 3 (TAS) have also been completed. The measurement was complicated by

the semiconducting nature of TAS. When several kilovolts were applied to the
sample, appreciable current was observed. This resulted in joule heating of

the sample and a distortion of the physical dimensions of the crystal as well

as concurrent strain-optic effects. This problem was eliminated by using high

2
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voltage pulses instead of a dc voltage and yielded the "unclamped"4 value for

rc.

1.4 Technical Issues

Although we have demonstrated the utility of our approach to calcula-
tions of the electro-optic effect in a specific case, TeO 2, the generality of

the method remains untested. Further work on a variety of crystal structures

and elemental composition needs to be carried out.

1.5 Report Summary

The remainder of this report is concerned with the technical details

for both the theoretical and experimental aspects of this program. The
material contained within will provide the basis of at least three future

publications, which are currently being completed. Finally, a brief summary

of the technical progress, along with some projections for a continuation of

work in this general area, will be provided.

3
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2.0 TECHNICAL APPROACH

2.1 Theoretical

First, the connection between the experimental electro-optic coeffi-

cients and the theoretical second-order susceptibility tensor is developed.

Then a detailed formulation for the dielectric susceptibilities is made in

terms of tight-binding theory. Initially, the linear susceptibility is

treated and subsequently the model is extended to higher-order suscepti-

bilities. In particular, the electro-optic susceptibility is examined and a

technique for evaluating the lattice contribution is presented. Finally, a

specific application of the theory is carried out on tellurium dioxide.

2.1.1 Second-Order Susceptibilities and Electro-Optic Coefficients

Experimentally, the determination of the change in refractive index

of a crystal due to an applied dc electric field provides a mechanism of

measurement of the electro-optic effect. The electro-optic coefficient, rijk,

is defined by the relation
4 6

A(B)ij rijkE k  (1)

where ABij is the change in the relative optical dielectric impermeability and

Ek is the applied electric field. The impermeability is related to the

inverse dielectric tensor, c-1, and the refractive index, n, by the expression

BIj = ( ' )ij  (n " (2)

A change in impermeability can be expressed in terms of an index change as

AB = -2an/n3  (3)

4.4
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and explicit relationships between An and ABij have been derived for optically

isotropic, uniaxial and biaxial crystals with the light propagating in an

arbitrary direction.
6

The principal dielectric constant or refractive index can in turn be

related to the susceptibility, x, as

n r v= /1 +47xr (4)

in CGS units. To define higher-order susceptibilities, the induced

polarization, Pi, is expanded in terms of increasing powers of electric field'

as

( Q)E j +) EjEk + X(3 ) EjEkE + (5)j jk jkl

where X(1) is the linear or first-order susceptibility, X is the second-

order susceptibility, etc. This form does, however, neglect any frequency

dependence. More specifically, the induced, second-order polarization at any

given frequency is a function of all three wave-mixing combinations which

contribute to that frequency, i.e., integrate the product of the second-order

susceptibility with two electric fields over frequency. 7 By considering three

special cases in the frequency domain, three distinct second-order suscepti-

bilities have been defined:
8

Pi (2w) = (2 ) (2.)Ej(w)Ek(,) (6)
jk

P1 (W 0) = X2 (O)Ej(w)Ek() (7)
jk ik i kw

5
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Pi ( '  = (2 )

Pk(w) xikj(w) E (w) Ek(O) (8)
jk

which correspond to second harmonic generation, optical rectification and the

linear electro-optic effect, respectively. The electro-optic, second-order

susceptibility, as defined in Eq. (8), must be symmetric in he indices i and j

in order that the total optical susceptibility tensor, Xij) + x(2) Ek remain

symmetric. This contrasts with the second harmonic generation and optical

rectification susceptibilities which are symmetric in all three indices (i, j

and k). Keeping these symmetry relations straight is important when dealing

with "condensed" notation5 for the indices because the condensing always

occurs on the two symmetric indices. We shall be concentrating on the

electro-optic second-order susceptibility, which can be directly related to

the electro-optic coefficient, 7,9 ,10 in CGS units, by

i = (2) (9)rijk = =ikj/ ii/Ejj

where . n. = 1 + 4x1) is an optical dielectric constant. Note that both
ij (2)1 ii

rk an ikj are symmetric in indices i and j which correspond to the

dielectric constants appearing in Eq. (9). The theory 6eveloped below derives

expressions for Xikj(w) and therefore Eq. (9) will serve as the connection toi kj
experiment.

2.1.2 Tight-Binding Calculations of the First-Order Susceptibility

For nominal optical electric fields, the linear susceptibility is

usually related to the interband absorptions. These chsorptions contribute to

an imaginary component of the susceptibility which corresponds to a polariza-

tion density that is out of phase with the driving electric field. This

absorptive component can be written as

6
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Imn (I,=" Z ('eh) ( i) (eh a

V,C , Z

S(E (') - E (Zt) . hw) (10)

where e is the electronic charge, m is the mass of electron and h is Planck's

constant divided by 2IT. The dipole matrix element is represented by the

gradient operator, 1, coupling the occupied (valence) wave function,

1 v (i)>, with the unoccupied (conduction) wave function, hic (Pt)>. The delta-

function gives a contribution only when the photon energy (h,) equals the

energy difference between the coupled states. Finally, the summation is over

wave-vectors of all valence and conduction states in a volume, .

The real part of the linear susceptibility is related to the

imaginary component via the Kramers-Kronig relations.1 By assuming that the

dipole matrix elements are independent of frequency, the real part of X I  can

be written as

X(1) _4e2h4  < a()l-il ax> ( l- lc()
i = 4e m-.-3 (11)

v,c,k (Ec(i,) . Ev(i)) 3

in the limit that the photon frequency is much less than the energy difference

between coupled states or zero-frequency limit, (i.e., hw is much less than

the lowest absorption energy but still greater than the Reststrahl vibrational

energies). An extra factor of two has been included in Eq. (11) to account

for the two spins associated with each state and the summation over wave-

vector, Z', has been omitted by considering only "vertical transitions."

Also, note that the designation of the real part is not explicitly shown in

7
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Eq. (11) since only the real components of the susceptibilities will be

considered in the rest of the formalism that follows.

2.1.2.1 Tight-Binding Theory

In the context of tight-binding theory, the dipole matrix elements in

Eq. (11) can be expanded in terms of localized Wannier functions, which in

turn are written as a summation of Bloch functions. Specifically, the

valence-band state, *.(), can be expressed as

"v L av(Am)>e m (12)
Arm

where av( m) is the valence Wannier function located at site, m' in the m-th

primitive cell and the summation is over N primitive cells. The conduction-

band wave function is represented in an analogous fashion. By carrying out

this expansion of the dipole matrix elements in Wannier functions, the double

summation over sites in each of N primitive cells reduces to N times a single

summation. This is because for any particular dipole matrix element involving

two Wannier functions there are only N identical matrix elements of Wannier

functions on nearest neighbor sites which are non-negligible. Then, the

summation over N primitive cells becomes a summation over nearest neighbors.

Finally, the dipole matrix element in Eq. (11) is written in terms of Wannier

functions as

(nn 4i(em(1)
m I

where ki specifies a "central" primitive cell conduction-state site and the

summation Is over only those valence-state sites m which are nearest neigh-

bors (nn) to this conduction-state site 4, (including the valence states on

the same site).

8
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Furthermore, when this dipole matrix element is substituted back into

the expression for the linear susceptibility, it is recognized that the wave-

vector dependence of the energy difference denominator is negligible (since

the energy variation with Z is small compared to the energy separation between

valence and conduction states). Also, the summation over wave-vector can be

eliminated because the sinusoidal factor integrated over Z contributes only at

a single, localized valence-state site. Then the linear susceptibility can be

expressed as

(a ( ><a ac (f)>
4e , 1 (14)mia v'c'm (E c - Ev)3

where the summation includes only those nearest neighbor valence and

conduction Wannier functions, located at sites k and k1, respectively.

Typically, the Wannier functions have been chosen by incorporating

nature of the chemical bonding of the particular crystal under

consideration. For example, the tetrahedral semiconductors have four bond

orbitals per primitive cell from which four valence-band Wannier functions are

derived from the four antibond orbitals. By focusing on only those dipole

matrix elements of the gradient between bonding orbitals, b>, and antibonding

orbitals, ja>, in the same bond, the summations over nearest neighbor valence

and conduction states became a summation over bonds. For ionic compounds,

such as the alkali halides, the valence- and conduction-band Wannier functions

are adequately represented by the halide-p and alkali-s atomic orbitals,

respectively. In this case, the summation over band states became a summation

of spa couplings over the six nearest neighbors.

However, it is not necessary to specify the chemical bonding of the

crystal at this point in the formalism. Nothing is lost in generality by

representing the Wannier functions by a complete set of valence-electron

atomic orbitals: Is>, Ipx>, lpy>, Ipz>, etc. For example, in the above case

9
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of the tetrahedral semiconductors, hybrid sP3 bonding and antibonding orbitals

(and corresponding matrix elements) are simply derived from the appropriate

linear combinations of atomic orbitals. Then, from Eq. (14), the dipole

matrix elements are between atomic orbitals and the summation over nearest

neighbor valence and conduction Wannier functions becomes a sum over all

nearest neighbor pairs of atomic orbitals in the primitive cell.

2.1.2.2 Simplified Evaluation of the Dipole Matrix Element

The dipole matrix element involving atomic orbitals, ja> and IB>, on

neighboring atoms can be approximated in a very simple forn in terms of

known1'11 parameters. These known parameters are the atomic term values (c.

and cB, corresponding to each atomic orbital) and the matrix element of the

crystal Hamiltonian between the two atomic orbitals (VaB = <IHIB>). In

addition, the two atomic orbitals are assumed to be orthogonal: <aIB> = 0.
To obtain the desired dipole matrix element, the eigenstates in the LCAO

context of this isolated pair of atomic orbitals will first be constructed.

Then, the molecular dipole matrix will be related back to the dipole matrix

element between two atomic orbitals.

The eigenvalues are simply given by

c = (cc, + c)/2 t :(e - EB)1I4 + VB (15)

where the subscript c and v are refer to the conduction and valence, respec-

tively. The eigenstates are written

Iv> = Uv.> + UIB>

Ic> = Uc .> + uc L> (16)

10
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and the LCAO coefficients are given by

V v +C =

UV _ - p (17)

where

a [42/( )2 + i]Y1 1 2  (18)

and represents the "polarity" of the coupling.

Making use of a general relation12 among matrix elements between

eigenstates,

<vi--ic> = (m/A 2 )(C~ - C )<vlx1 Ic> (19)

the dipole matrix element with a gradient operator is replaced by a matrix

element with a position operator. The position matrix element of the two

elgenstates is immediately expressed as

<vlx1ilc> = Y'(1 + ap~)(I - ap) (<O1xi18> - <cilxilcz>)/2 + 5<aj(xix1I> (20)

where ja> and Is> are assumed to be real which implies that <Bixila>=
<ajxiIB>. This last term vanishes if the atomic energies of the states are

11
C4663Afbw



9ll Rockwell InterntionlIScience Center

SC5266.2FR

the same (i.e., ap = 0) or if the two states are symmetric about the midpoint

between them. (Note that since the two atomic states are orthogonal, this

matrix element in the last term is independent of the origin of coordi-

nates.) As in early treatments,1 this term is assumed to be zero (the only

step in the derivation of the dipole matrix element of two atomic orbitals

that is not rigorously justified). Then the first term in Eq. (20) is

proportional to the i-th component of the interatomic distance vector, a,

di = <BlxiI > - <Ilxjl a> (21)

permitting Eq. (20) to be written as

<vfx i1 c> = / di/2 (22)

The gradient matrix element of two eigenstates in Eq. (19) is expanded, in a

similar fashion to Eq. (20), as

<VILl> =VI- a ($I o> <iaJgxJa>)12 + OIIIo (23)
axip 3x ax 1

1  ax1

where a partial integration has been used to show that <B0a/axila> 2

-<aIa/axilB> in the last term. Additionally, the same partial integration

shows that both <ala/axila> and <ola/axilB> vanish, so Eq. (23) becomes

(vt--Ic> 2<QI--I0> .(24)

12
C4663A/bw

-- - -- -~



I RoCkwell ItiflratIoa

SC5266.2FR

Substituting Eqs. (22) and (23) back into Eq. (19) and solving for the dipole

matrix element between atomic states gives

2 - %)v'- dt/2 (25)

This expression further simplifies by using Eqs. (15) and (18) to give

(Pc - cv) = 2V BV ----M which yields

< 1a1 S> = -(m/ 2 )V Bdi  (26)

for the final form of the dipole matrix element involving two atomic orbitals.

2.1.2.3 Simplified-Linear Susceptibility Formula

This form for the dipole matrix elements (Eq. (26)) can be utilized

in the tight-binding formulation of the first-order susceptibility (Eq. (14))

when atomic orbitals are substituted for the Wannier functions. The energies

in the denominator of Eq. (14) can be adequately represented by the eigen-

values of a pair of coupled states in Eq. (15) and the resulting linear sus-

ceptibility is written

2 (nn) V2  did
(1). 4e i i (27)csi jZ2 (27)

O's [( - Ca)2 + 4V 2

where the summation is over nearest neighbor atomic orbitals.

13
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2.1.2.4 Applications

This formula is directly applicable to any specific material with all
the necessary parameters known once the crystal geometry has been determined.

The only complication is the possibility of a large number of terms entering

the summation over atomic orbitals. Even further simplifications can result

if assumptions about the electronic band structure for the particular

compounds of interest are incorporated at this point.

Consider, for example, the alkali-halides. First, note that the

covalent energy is always much less than the polar energy for all pairs of s

and p states. Consequently, the VaO term in the denominator of Eq. (27) is

negligible. Also, the only important atomic states which enter are the s-

state on the alkali atom and the p-state on the halide atom. This is because

the energy difference between other pairs of nearest neighbor atomic states is

significantly larger. Finally, in a principle axis coordinate system, the

interatomic distance vectors are directed along one of the principle axes

which means that did j = d2 = a2/4 only when I = j. Since there are six

nearest neighbors surrounding each of the two atoms in the primitive cell,

4 2,64 2
(1) = 4e, Tspa (28)
ii m2d5(e s  Cp )3

where sl = 2d3 has been used and numerical values for the coefficient, nspo,

are given in Ref. 1. This prediction has been compared to experiment

elsewhere.
1

The case of the binary semiconductors is almost as simple. Here,

hybrid orbitals are formed and the interatomic matrix element, which is

replaced by the covalent energy (V2), is no longer negligible and gives

(1) 2 (29)
Xi 64d(V2 + V3) / 29

14
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with = 2a 3 = 128 d3 /31T for four hybrid bonds and where V2 = -3.22 ti2/(md 2)

and = (C + 3 - a - 3Ea)/8 are the covalent and polar energies,

respectively, as previously defined. 11

2.1.2.5 Dipole Moments

Harrison has utilized the concept of a dipole moment of a chemical

bond when considering the susceptibility of tetrahedral semiconductors. The
tth vector component of this dipole moment has been written as

P1 = editp (30)

where p V3 /vVi + VJ is the polarity of the bond. Then, the total induced

polarization density is just the summation over bonds of each dipole moment

averaged over the volume occupied by the bonds. This dipole moment concept

can also be employed within the context of the above formalism. Here, the

"dtpole moment" represents the induced coupling between two atomic orbitals

and can be written as in Eq. (30) but with the "polarity" given by Eq. (18).

The connection between the bond dipole mir'ent and the susceptibility can be

established rigorously as follows. As before, the total induced polarization

d'&.nsity is

P Pi (31)
cs

where a is the volume occupied by the coupled states. Now, with reference to

Eq. (5), each dipole moment is written as a Taylor's series expansion of the

electric field and Eq. (31) becomes

"' Ej +s1Lj I a2p 'EjEk+.] (32)
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where api/3Ej is the i-th component of the contribution to the first-order

susceptibility from each dipole moment. After interchanging the summation

over coupled states with summations over vector components in Eq. (32) and

comparing back to Eq. (5), the first-order susceptibility is then identified

as

-') = p (33)

To verify this expression, one can carry out the differentitation according to

the chain-rule:

a =l adVap av ap ac1 ap,

3E ja + (-r )(3V +

-2V 00 3 adm  3Pt

d m=1 j

where the independent variables are di, Va ~ 1/d2 and c,= - CO).  if

the frequency of the an optical electric field is above the Reststrahl

vibrational frequencies, the atoms do not respond and hence the change in the

m-th component of the interactomic distance vector with respect to this

optical field, (adm/aEj), is zero. Consequently, only the last term in Eq.

(34) is nonzero. Note that the energy difference, c.0, is modified by the

dipole energy, -e&.t, when the optical field is applied. This last term is

easily evaluated and the resulting linear susceptibility is, of course,

identical to Eq. (27).
I
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2.1.3 Higher-Order Susceptibilities

The various second- and third-order susceptibilities can be treated

in a similar fashion to the linear susceptibility in Eq. (33). As a note of

caution, the particular Taylor's series expansion (as used in Eq. (32)) must

reflect the experiment being considered. For example, in second harmonic

generation, there is only one electric field which is the optical field and

the Taylor's series expansion in three independent variables (the three

components of this optical field) as written in Eq. (32) is appropriate.

Then, the second harmonic susceptibility is immediately recognized as

SHG 1 2 Pi(
Xijk 0217a cs aE i Ek (5

where the full tensor notation has been explicitly retained. Again, perform-

ing the differentiation is relatively trivial when the change in interatomic

distance vector is zero, as it is for the case of second harmonic genera-

tion. The result can be written

SHG = 6e3 (nn) (*c " € )V2 ddjdk
Xijk W 2 2 5 /2

as [(N - C ) +4Va

and is obviously symmetric in indices, i, j and k which is consistent with

Kleinman's symmetry condition.
2

2.1.4 Electro-Optic Susceptibility

As another example, consider the linear dc (Pockel's) effect. The

electro-optic susceptibility is related to the changes induced in each dipole

moment by both the optical and dc electric fields. This can be seen mathema-

tically by writing out the Taylor's series expansion for the i-th vector

17
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component of the dipole moment in terms of the six independent variables

(which correspond to the three components of both the optical and dc electric

fields):

Pi (goPtdc) Pi (opt O,fdc = 0) 3 3)OPt + dc

+ 3 3 2 _2p I  Eptopt + 1 3 3 _2pl )Edcdc
I= I= jE. 0 )E Ek I I (--- .)ETF k

j= k1 E PtaEo~ j=1 k=1 3E a@E[

j k --

3 3 a2pi
+ (1) [ ( ptpt dC + opt (37)

j=1 k=1 AEtE p

The contributions from each dipole moment to the electro-optic susceptibility

arise from terms proportional to EoPt d e the last summation in Eq. (37).

Consequently, the electro-optic susceptibility can be written

EO = 12pi (38)Xikj -- opBEtEc

Xik 9cs a ~aE dc
j k

where the summation is over all nearest-neighbor coupled atomic states. The

derivative in Eq. (38) can be expressed in terms of a set of known parameters

by carrying out the differentiation on Eq. (30) as follows. The i-th com-

ponent of the dipole moment in Eq. (30) is a function of the variables di, Vaa

and S., We apply the chain rule to convert the derivative with respect

to Eopt into separate derivatives with respect to these three variables.j

Noting that di and go are constant in the presence of a high frequency

18
C4663A/bw

- 1



Rockwell Intemational

Science Center

SC5266.2FR

opt

optical field, Eop we find that the optically-induced change in the dipole

moment is
I

apr P )( = 4e2di.d 2
=P aP I ) 2  + 4 2 3/2 (39)

a•~ + 4V )

This represents the contribution of each dipole moment to the first-order

susceptibility. By contrast, the dc electric field induces an additional

change in the dipole moment, involving terms in which include the lattice

response. Using the chain rule with four variables (di, dj, Va, and Ea,),

this second-order effect becomes

a Fad. ad. av ac ]a P Fd i  a +___ L) a + s a + s

)J

4e2did. -2V 8 3 am(€2 2 '32 2  : dm (- ) (40)
2 3 _____1/ 2

(a + 4V as d2  M= k

The evaluation of the lattice response to the dc electric field (i.e., the

,dn/Ekc will be treated as a separate problem in Section 2.1.5.

Then, the remaining derivatives in Eq. (40) can be expressed entirely in terms

of known parameters, assuming the crystal structure has been specified.

Performing these differentiations yields

EO 4 2 (nn) V23 a=O 4e + m ) (c2 + 4V2 s)12 2 5/2 3ed iddka + a aa's8 (Ca 4 s m=1 aE k

(d 6jm) + dj6im + 4(2V2- C2)did dm/d2] (41)

19
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where 61m is the Kronecker delta, c = (Ca - 2 and the first summation is
over coupled nearest-neighbor atomic orbitals.

2.1.5 Lattice Contribution to the Electro-Optic Effect

First, the dynamical matrix method will be used to describe the lat-

tice equations of motion in three dimensions for a generalized crystal struc-

ture. This method will employ only nearest-neighbor bond-stretching and bond-

bending force constants1 for simplicity. Only the phonon modes at zero wave-

vector will enter the calculation of the electro-optic effect; however the

entire lattice spectrum is investigated in order to test this force-constant

model. Then the force on each atom in the unit cell, due to the dc electric

field, will be quantified by assigning an effective charge to each atom.

Hence, the displacement, in response to the dc electric field, of every atom

in the unit cell will be determined.

2.1.5.1 Lattice Equations of Motion

Consider a crystal consisting of N atoms per unit cell. When the

lattice is perturbed (by a dc electric field, for example), each atom in the

unit cell will undergo elastic motion in response to this perturbation. This

elastic motion can be modelled using a nearest-neighbor formalism similar to

that used in Eq. (41). In this model each atom in the unit cell experience

two types of forces when it is displaced from its equilibrium position. The

first is a bond-stretching force and is simply due to the radial change in

interatomic distance between the m-th atom in the unit cell and each of its

nearest neighbors (atom t), as shown in Fig. la. The second type force is a

bond-bending force and is due to the change in bond angles. For each atom in

the unit cell, there are two different kinds of bond angles to consider; one

involves two first-neighbors (atoms i and n) while the other involves a first-

nearest neighbor (atom n) and a second-nearest neighbor (atom m'). These two

contributions to the elastic motion of the m-th atom in the unit cell are

illustrated in Figs. Ib and Ic, respectively.

20
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Fig. 1 Equilibrium and non-equilibrium atomic configurations of nearest
neighbor atoms for: (a) bond-stretching forces, (b) bond-bending
forces with two first-nearest neighbors, and (c) bond-bending forces
with a first- and a second-nearest neighbor.
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The potential energy associated with the bond-stretching between

atoms n and I can be written

1 2C2 (42)te CO Ad Co n/dtn (2

where CO is defined
1 as the radial force constant, AdIM is the change in

magnitude of the interatomic distance and dxm is the equilibrium Interatomic

distance. Similarly, the potential energy associated with the bond-bending

between atom m and nearest neighbor atoms x and n is

1 A92  (43)Rmn= T C1 A xmn 3

where C1 is defined
I as the angular force constant and, ABRm is the change in

the bond angle. Finally, the potential energy associated with the bond-

bending between atom m, first-nearest neighbor atom n and second-nearest

neighbor atom m' can be written in a fashion analogous to Eq. (43).

Using these three contributions to the potential energy, the total

force on the m-th atom in the unit cell becomes

)1d 2 2 1 2C)n(~n

~(Co)IM (Ad A)m T (C (A n n

iii

£ £ n*9. Rum n*x n

2i

(Ci)mnm (O 2  -)
- A Omnm' mnm ) (44)
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where the summation for the bond-stretching contribution is over all nearest

neighbor atoms (1), the summation for the first bond-bending contribution is

over all combinations of nearest-neighbor pairs (t and n) and the summation

for the second bond-bending contribution includes each first-nearest neighbor

atom (n) paired with all of its first-nearest-neighbor atoms (m') excluding

atom m. The gradient in Eq. (44) is with respect to the displacement vector

associated with atom m. Note that there is only one set of angular force

constants for (C1)Xmn and (Ci)mnm.. The differentiations indicated in

Eq. (44) can be carried out in a straight-forward manner. First, for the

bond-stretching contribution, the change in magnitude of the interatomic

distance can be written explicitly as a function of the displacement vector,

u of atom m:
m!

Adm : "jm (4m "u1m)/d m (45)

where a binomial expansion has been used and only terms up to first order in

the displacements were kept. Here and throughout a short-hand notation is

used for the difference between two vectors, e.g., the displacement vectors in
+ +

Eq. (45) enter as U -ut - um. Then the gradient of Ad is simply

expressed 
as

(d2 )/ 2  _2+( 4
A _2aA (42 u. n)/dpn (46)

The bond-bending contributions are considerably more complicated, mainly due

to the algebra. The change in bond angle can be related to the displacement

vectors, Um, as follows. In the equilibrium configuration, the cosine of the

bonding angle is
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cos n =(d ( " &nm)/(ddnm) (47)

written in terms of the interatomic distance vectors. For the perturbed

configuration, the cosine of the bonding angle becomes

cose~U~ld - &n( -a / d d'u05 /dmn = " * nm * nm nm

(j U'nm & Tnm •- u RM]/(d I nm) (8

again using the binomial expansion and discarding terms second order or higher

In the displacements. The small change in bond angle is related to the

difference in the two cosines (Eqs. (47) and (48)) via the definition of the

derivative for the cosine. This change in angle can then be written as

AOwn = "[(nm " d cos OeXin) • U m/djum + (dm - dnm cos Ojmn )

unmd nm/sin 8 mn  (49)

where dm and dnm are unit vectors directed between nearest-neighbor atoms.

Finally, the two gradients with respect to the displacement vector, U+,m of the

square of the change in bond angle (after a fair amount of algebra) becomes
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= 2 2+2 n(r a 2 n(,& an 27- mCos elm - - fn+ anm) Cos Bansin edudd an dnm dfi i

+ i~mno Ow 1 &n l + r4 Am 11- Im

din ti d2  u u~ d. 2

- m mCos e 1(anin - +R +i +nn +[dr cos e6
nin fin +an nm nin an

dn m) ~

ITnm-2m+ nm) Cos Ow~n SmCos2 jun]n *nn 50

for the case of two first-nearest neighbors to atom in and

2p d
2-2 d2 n 2 dinj -(J *

= (m 2 227 m o imnm' _4-csBn (m +sin einindindm n din in S i T nn O mnn inn inn

F d.
m on

+ in n __n n Cos Binmi.(&in-n -in+ 4mn i Mn

CO2d 1
+~coM- ~~!!a mnCos 0 -J(dm*:r

(51)
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for the case of one first-nearest neighbor and one second-nearest neighbor to

atom m.

By substituting Eqs. (46), (50), and (51) back into Eq. (44), the

generalized equation of motion for the m-th atom in the unit cell is obtained.

While this equation of motion appears to be rather complicated on the surface,

closer inspection reveals that most of the factors (e.g., and dem, OWn and

emnm,) are directly related to the unperturbed crystal geometry and also

that this equation is nonlinear in the displacements. The only parameters

which are not immediately in hand are the set of bond-stretching and bond-

bending force constants ((Co)jm and (Ci) mn respectively). For simple crys-

tals, such as the binary semiconductors, the bonds are all identical (or

nearly so) and only a single pair of numbers is needed for CO and C1. In more

complex crystal structures, the bonds are no longer equivalent and the

degeneracy in the force constants is broken. Methods for determining these

force constants have been, and are still being, investigated.13 Consequently,

for the problem being addressed here, it is assumed that these force constants

are known.

2.1.5.2 Lattice Dispersion Curves

Now consider the complete set of equations of motion for each x-y-z

component, of each m-th atom in the unit cell. By assuming that all of these

motions can be described by Hooke's law (and that each atom undergoes simple

harmonic motion in response to any perturbation), the force on the m-th atom

in the unit cell can be written as

-m m W2um (K)

where Mm is the mass of the m-th atom, w is the frequency of vibration and

um is the displacement vector of the m-th atom from its equilibrium position,
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as before. Equating these components of the force with those derived from the

equations of motion (Eq. (44)) gives a set of 3N coupled linear equations in

the terms of the 3N components of the atomic displacement vectors. Here N is

the number of atoms in the unit cell.

There is perhaps, one additional complication to the equations of

motion that has been omitted up to this point. That is the constraint imposed

by the periodic boundary conditions associated with the crystal lattice. These

boundary conditions dictate that the vector displacements, um and U , of twom m
atoms located at equivalent lattice sites in two different unit cells must be

related by a phase factor corresponding to the periodicity of the lattice,

i.e., Um , = um exp (ut . ). One simple procedure for assigning the phase

factors properly is to multiply each component of the displacement vectors,
+m' by exp (it. r )where + , is the vector distance from some fixed origin

to the m-th atom in the appropriate unit cell.

The lattice dynamical matrix, with dimensions of 3N x 3N, correspond-

ing to the right-hand side of Eq. (44) can be expressed in terms of the

coefficients given in Eqs. (46), (50), and (51) along with the phase factors

discussed in the preceeding paragraph. The matrix element, 0m k,' is defined,'3
as the coefficient of the j-th component of the k-th displacement vector as-

sociated with the i-th component of the force on the m-th atom in the unit

cell. It can be written

i~r i~r ir*m I
Imi,k 3 = - 1i~m e r Ami dfj (6mke m- 6 Ike

B n n ICimni d j (6 e  6 nke i  m)
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+ Dtnvdmnj (6eke 6rakem )

+ tmnidnmj 1nke  rk

n M)
. d ne

Imnim nj(6mke k e
Imn A mK nk %k)

mnm .id.n(6.mke - 6 nke )

+ Kmnmid mnj (.ke - anke (53)

where 61m is the Kronecker delta and the overall normalization,

exp (-lI • r)/Mn, is the mass and phase factor associated with Eq. (52). The
various coefficients in Eq. (53) are defined by:

Abmi =-(C0) bmdbml/d 
4  (54)
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Bin +(OVn(in d2 d2 )(55)

Ctnni E 2. m O28J - dn (dim dnmi) Co 8lm dnm o w

C =nm ti=- d 1 cOI,, - c
in

(56)

D .F .d *+ d d nm d Cos 8~ d-- d.Cos 0 (57)
Rnni Fnni Ainmi T- Wi in d nmi m

TOn nm

Gm - (Ci)mm-(sin2  A d (58)

H d2nd Co 2 e -m' cosO 6 (59)

dmn m

mnnm'i = Knm i = dm' ~dni COSmn %m (0

mn
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where the triple subscript notation represents one specific component of the

vector difference (e.g, d 3 ) = (a) - = .-). The equations of

motion can now be written in matrix notation as

N 3

m ,k.(k)j -m W )(U m)i (62)
k=1 j=1 1l j

which has the form of an eigenvalue equation where (-Mm 2 ) is the eigenvalue and

(Um) i is one component of the eigenvector. This eigenvalue problem can be solved

by numerically diagonalizing the dynamical matrix at any given wavevector and the

solution results in a set of lattice dispersion curves (w vs K) associated with

the 3N eigenvalues. In addition, the 3N normal vibrational modes correspond to

the 3N eigenvectors found during the diagonalization process. The dynamical

matrix elements (Eq. (53)) could be divided by IWW instead of -Mm to put them k
eigenvalue equation in Hermitian form; then the eigenvectors must be multiplied

by m to obtain the components of the actual displacement vectors associated

with the normal modes. It should be emphasized that this procedure is applicable

to any arbitrary crystal geometry, with the only limitation being a computational

one due to an unreasonably large number of atoms per unit cell.

The above formalism has been tested on GaAs, a zincblende semicon-

ductor. Using values for the force constants of CO = 47.4 eV and C1 = 2.3 eV

gives the dispersion curves shown in Fig. 2. This result appears to exactly

reproduce Fig. 9-2 of Reference 1. A more detailed application was performed on

the wurtzite semiconductor, CdS, with CO = 40 eV and C1 = 1 eV. First, the

forces and motion were assumed to be constrained to the x-direction exclu-

sively. The resulting dispersion curves are given in Fig. 3. Analytical

expressions have been derived at K = 0 in order to check these curves: w = 0 for

the acoustical mode and

2 1 (63)+ + ) (CO+ C
1 2
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Fig. 2 Lattice dispersion curves for GaAs.
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Fig. 3 Lattice dispersion curves for CdS with displacements only along x.
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1 1 13 9M1 M2

1 ( 2rc (MI + H2 )

w2 . 9C1/(MI + M2 ) (65)

for the optical modes. The appearance of this low frequency optical mode,

involving only the C1 force constant, corresponds to pairs of adjacent planes of

CdS atoms shearing with respect to each other. Finally, the complete dynamical

matrix for CdS, allowing all three degrees of freedom, was diagonalized for the

same set of force constants (CO = 40 eV and C1 = 1 eV) and the resulting

dispersion curves are given in Fig. 4.

2.1.5.3 Lattice Response to a dc Electric Field

The same dynamical matrix, which was used to determine the lattice

dispersion curves (Eq. (62)), can be manipulated to give the response of the

crystal lattice to an external dc electric field. The dc field implies using the

dynamical matrix at zero wave-vector (K = 0). In order to find the perturbed

crystal geometry, the component of force on the right-hand-side of Eq. (40) is

replaced with the i-th component of the force exerted by the dc electric field on

the m-th atom in the unit cell. The resulting set of linear equations can be

written as

N 3
S k mi (Uk) =e(e*)m Ei  (66)

k 11j i I, kj (k T i

where again e Is the electronic charge, (e.*)m is the transverse effective charge

corresponding to the mi-th normal lattice vi4 ational mode and Ei is the i-th

component of the applied dc electric field. This results in only 3N-3

independent equations with 3N-3 independent unknown rel. -- displacements. By
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Fig. 4 Lattice dispersion curve for CUS with general (x, y, and z)
displacements.
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defining these relative displacements to be with respect to the first atom in the
unit cell (k=l), Eq. (66) becomes

N 3
U(k) e(eu)miE (67)

k ~ m= i,j ,

where the quantity [(k-()j corresponds to the 3N-3 unknown relative dis-
placements. This above equation is a consequence of

N
S k. m. 1. (68)

k=2 i, j ,

for each combination of m, I and j which can serve as a convenient computation
check. Equation (67) still represents a set of 3N linear equations but they are
not all independent; for example, the three equations with m=l can be expressed
as a simple linear combination of the remaining 3N-3 equations. The solution to
Eq. (67), which will yield the perturbed crystal geometry, can be written
analytically in determinant notation as

P" (UI)jf. = det[Om . kj + {e(e)miEi - m ,]/det[ m

(69)

where again 6k,k, and 8j'j, are Kronecker delta functions. For N>2, this
solution becomes unwieldy and a numerical technique such as the Gauss-Jordan
elimination method is more appropriate. The implementation of this numerical
procedure is currently in progress using the standard and widely available
mathematical subroutine packages. Consequently, results utilizing this
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technique are not complete at present and the general application of this

method is still speculative.

One final note concerning the lattice response of a crystal to an

applied dc electric field is a reminder that the tight-binding formalism for

the electro-optic effect (Eq. (41)) depends on the change in th,. interatomic

distance with respect to the applied dc field. This change can be expressed

using the notation of Eqs. (41) and (67) as

di [(Um)i - (1)] [(+n)i - (+I)t) Umni (70)
kE E Edc
k~d Ed k k

in the limit of Edc
in te lmitofk approaching zero for being the interatomic distance

between atoms m and n.

2.1.5.4 Transverse Effective Charge

The only missing ingredient in the above formalism for the lattice

response of a crystal to an applied dc electric field (Eqs. (67) and (70) is

the transverse effective charge, (e )m . Traditionally, the transverse effec-

tive charge has been introduced in order to account for the local polarization

induced by relative displacements I such as those described above in Eq. (62).

Experimentally, there is a splitting of the optical mode frequencies for polar

crystals, even at zero wave-vector (K=0). This splitting 14 is a consequence

of the added rigidity in longitudinal (but not transverse) lattice modes

resulting from the local polarization density induced by the relative dis-

placement of a pair of neighboring atoms with unequal charges. Additionally,

this same charge quantifies the coupling between the transverse lattice

vibrations and light (i.e., optical electro-magnetic waves) leading to the

name: transverse effective charge.

36
C4663A/bw

i,~



Rockwell International
Science Center

SC5266.2FR

The well-known Lyddane-Sachs-Teller relation can be expressed in

terms of a transverse effective charge as follows. Let the optical dielectric

constant be

c. 1 + 4 wte  (71)

and the static dielectric constant becomes

C = + 4wXe + 4x i = c. + 4 nxi  (72)

where xe is the electronic susceptibility and Xi is the ionic susceptibility.

Now consider two atoms with charges of +q and -q vibrating against each other,

with a lattice coupling spring constant, K. The equation of motion for this

system is

K(u2 - ul) = q(AE) = q(AP)/xi (73)

where (u2 - u1) is the relative displacement of the two atoms, AE is the

induced change in the dipole electric field. The induced change in

polarization density, AP, is

&0= qui/1 = q(u 2 - ul)/% 0  (74)
i
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where 0 is the volume occupied by the two atoms. Then, the ionic suscepti-

bility becomes

Xi = q2  = q2 /(%uW) (75)

where U = is the reduced mass. Finally, the Lyddane-Sachs-Teller

relation 14 is

2 L-= 1 + 4 Txie. (76)
CM/

using Eq. (72). This can be rewritten as

2 2 2
4 2T= 4rq2 /(wr-) (77)

i.e., the difference in the square of the longitudinal and transverse optical

mode frequencies is proportional to the effective charge, q, squared.

The concept of transverse effective charge can now be generalized to

accommodate a crystal of N atoms per unit cell. The vibrational motion of

each atom in the unit cell has been previously described in Eq. (62).

However, this equation treats the eigenfrequency of each normal mode without

accounting for the change in local polarization density induced by the

relative displacements of the atoms. The i-th component of this extra force

on the m-th atom in the unit cell is

Fm -4 e 2(e*)m (e*)ki[(uk~ i- (UmJ1J (78)
m i C kz I I T ki-(ml
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and it should be added to the lattice equation of motion (i.e., Eq. (62)).

Here, there is an effective transverse charge associated with each normal

(lattice vibrational) mode of the crystal. Then, if the approximation that

the elgenvectors for the longitudinal optic modes are invariant to this

additional perturbation is made, a generalized form of Eq. (77) is obtained:

47re2(e*T)mi N
- + ()i/(U )i (79)

where Mm is the mass of the m-th atom in the unit cell.

For simple crystal systems, it is possible to use Eq. (79) to infer

values for the various transverse effective charges from experimental Lyddane-

Sachs-Teller splittings in the optical modes of the lattice vibrational

spectrum. However, an approach more aligned with the philosophy of the Bond

Orbital Model would be to develop a formalism to predict these transverse

effective charges from first principles. The predicted values could then be

compared directly to experiment via Eq. (79). In either case, the numerical

values for (e*)m could then be substituted back into Eq. (67) to give the

lattice responseiof the crystal to an external dc electric field. Finally,

this result would permit the numerical evaluation of the ionic contribution to

the electro-optic susceptibility (Eq. (41) to be completed.

2.1.6 The Electro-Optic Effect in TeO2

The chemical bonding in tellurium dioxide can be characterized as a

mixed tetrahedral complex in which the tellurium atoms have fourfold coordi-

nation while the oxygen atoms have only twofold coordination. In this respect

it belongs to the class of materials X02, containing compounds such as S1O 2 ,

TiO 2 , and A12PO4 , which has received considerable attention.
1 In this class

of complexes, an atom X is covalently bonded to four oxygen atoms approxi-

mately in a tetrahedral configuration. However, in order to describe the
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electronic and lattice features of crystals from this class in a simple bond

picture, it is more appropriate to choose as a molecular bonding subunit an X-

O-X structure comprised of two X hybrid orbitals and the atomic orbitals of an

intervening oxygen.1 Such subunits are analytically coupled so that effects

such as susceptibility may be approximately calculated by adding the effects

of independent bonding units. It is a generalization of the Bond Orbital

Model of tetrahedral semiconductors. This choice of bonding subunit greatly

simplifies the calculations in the relatively complex crystal structure of

this class of materials, and yields a reasonable estimate of various optical

properties like the electric susceptibility. Although the crystal structure

of TeO2 contains a large number of atoms in the unit cell and the detailed

structure of the Te-O bonding is in fact more complicated than that in S10 2,

similar aspects of the bonding structure suggest a parallel approach to cal-

culating the susceptibility. Therefore a simplified bond scheme will be

applied to TeO2 in order to calculate a specific second-order susceptibility:

the linear dc electro-optic effect.

TeO 2 is an optically anisotropic (positive uniaxial) crystal and is

commonly used as an acousto-optic material. 15'16 The linear dc electro-optic

coefficient,17 other nonlinear optical properties,18"22 and elastic, dielec-

tric and piezoelectric properties,2 3 have been experimentally determined.

Consequently, a comparison of the Bond Orbital Model prediction for the

electro-optic effect will be made with the experimental result.

2.1.6.1 Crystal Structure

Tellurium dioxide has the point group symmetry 422, consistent with

the space group P41212.
24 The lattice constants are a = 4.796A and

c - 7.626A, with four tellurium atoms and eight oxygen atoms per unit cell.

Each tellurium has four oxygen nearest neighbors. Each oxygen has two

tellurium nearest neighbors at different distances 1.92A and 2.09A while the

Te-O-Te bond angle is 140.80. The properties considered here vary as the

square of the distance and an average of 2.00 A will be used. The crystal-

lographic unit cell is shown schematically in Fig. 5.
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• 22
e

(c)

Fig. 5 TeO2 unit cell with nearest neighbor bonds: (a) 30 perspective,
(b) viewed down the x-axis, and (c) viewed down the z-axis.
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2.1.6.2 First-Order Susceptibility

Following the Bond Orbital Model formalism presented for S102,1 the

linear susceptibility of TeO 2 can be obtained by calculating the polariz-

ability of each Te-O-Te molecular unit and then summing the eight resulting

dipole moments over the unit cell (normalized by the volume of the unit cell).

As an approximation, the electronic structure of a symmetric Te-O-Te

subunit may be determined by considering an atomic p-state on each tellurium

atom to be spatially directed toward the oxygen atom. This atomic p-state

must, in the real system, be some sort of s-p hybridized orbital since each

tellurium atom has four nearest neighbor oxygen atoms while only three

p-states are available for these four bonds. The two unoccupied tellurium p-

states in the Te-O-Te subunit will only significantly interact with the two

occupied oxygen p-states in the x-z plane, as illustrated in Fig. 6a. (The

oxygen s-state is ignored because its energy is considerably lower than any

tellurium state. The s-state on the tellurium is not included since it is

occupied and the only unoccupied states are orthogonal tellurium p-states.

Lastly, the py-state on the oxygen is also orthogonal to these tellurium

s-states). To further simplify the calculation, only the ppo coupling will be

included since it is a factor of four larger than the ppn contribution.

Referring to the states identified in Fig. 2a, the bonding (Bx and Bz) and

antibonding (Ax and Az) states for the symmetric Te-O-Te unit in the x and z

directions, respectively, are:
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Bx = a v x (IPl> + IP2> ) + 2+ x  p>

Bz = [ "-z ('IPI> + IP2>) + /2 + 2Bx IPz>]

(80)

Ax = /r OxK'" (Ipl> + IP2>) -/r2- Tx Ipx>3

Az = 'l + Oz (-Ip1> - Ip2>) + V2 2 8z Jpz>]

where

ax = V3 //V3 + 2Vpp sin

(81)

= V3 /VU + 2Vp cos z

The polar energy for Te02 is

Te 0

V3 = - 2 = 3.59 eV (82)

while the Vpp, plays the role of a covalent energy for the symmetric subunit,
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h 2
V =-2.22 - = 4.22 eV (83)

PPO md1

using the parameters introduced in Ref. (11).

To calculate the polarizabilities of the Te-O-Te subunit, the

perturbation of the polar energy, in response to the optical electric field,

is considered. This perturbation is eExx or eEzz for the x and z directions,

respectively. Writing out the x and z bonding wavefunctions in a first-order

perturbation-theory expansion of the antibonding wavefunction gives a

polarizability of

2e2 <BiI xi l A i >2
Ci (84)

where LBi and cAi are the bonding state and antibonding state energies given

by

(C~ + C4IV 3,i .(85)

Evaluating the dipole matrix elements in the usual fashion, 1 the

polarizabilities become

Cx = 2V3  [0z(1 - 02) + 0 (1 02)] (86)

2 e2 d2 cos 2 0 (1 - OXOz) O.Oz
Iz V 3  1 - 0X  + z
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Numerical evaluation of Eq. (86) for TeO2 yields

x = +0.533 A
3

(87)

az = +5.04 A3

The first-order susceptibility tensor component, x() is defined by

Pi = .X( )Ej (88)
3

where Pi is the induced polarization density and Ej is the optical electric

field. We could obtain a susceptibility by averaging the effect of each unit

over angle, giving (ax + cz)/3 (since ay = 0 in our description) and multiply

Ci by the density of bonding units No = 8/(a
2c) (or oxygen atoms):

(1) = N0 (ax + a z )/3 = 0.085. (89)

As another alternative, the tensor Xij for the real crystal is determined from

the bonding subunit polarizabilities by summing over the eight subunits in the

unit cell as follows. The electric field along the j-th crystal coordinate

axis must be transformed into an electric field vector in the coordinate

system of each Te-O-Te subunit. The x and z components of this transformed

electric field induce a dipole moment

,a Ex x + Ez  (90)
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in the Te-O-Te subunit coordinate system. This dipole moment then must be

transformed back into the crystal coordinate system. Finally, x( is

calculated by summing up the i-th components of the transformed dipole moments

from each of the eight Te-O-Te subunits and dividing by the volume of the unit

cell. Note that the transformation between the crystal axes and each Te-O-Te

subunit coordinate system is different (see Table 1).

In a coordinate system of the crystallographic axes, the calculated

linear susceptibilities are

()= X(1) = 0.09211- 22

((9)

X()= 0.071x33-

Note that these first-order susceptibilities are simply the sum of the

individual bond polarizabilities and do not include any corrections due to

bond-bond interactions or local field effects. Corrections of this type are

sometimes semiempirically taken into account by introdyuing a scaling factor,

yl This scaling factor enters in x!1) as y and it is used to match the

calculated values of with those derived from the experimentally measuredcalclatd vauesof ij

refractive indices using the relation

n=V + 471) (92)

Comparison with the experimental values for the ordinary and extraordinary

indices, no = 2.26 and ne = 2.41 respectively, 18 yields an average y = 2.1.

The significance of this value is that it can now be used for the calculation

of the second-order susceptibility without introducing additional scaling
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parameters. It should be pointed out that the calculated sign of the bire-

fringence, an = ne - not is predicted incorrectly. Within the context of the

Bond Orbital Model, the sign of the birefringence is specified strictly by

crystal geometry. These differences in the ordinary and extraordinary indices

are perhaps be due to the bond-bond coupling or anisotropic local field

effects.

2.1.6.3 Second-Order Susceptibility

The second-order susceptibility, Xikj , may be divided into two

parts: an electronic part and an ionic displacive one. The electronic

contributions arise from the changes in the first-order electronic polariz-

ability due to the application of a dc electric field while keeping all atomic

positions fixed. Calculations in TeO 2 (point group symmetry 422) show that this

electronic contribution vanishes in accordance with the Kleinman's symmetry

criterion. 2 The ionic displacive contribution is determined by perturbing the

crystal geometry with a dc electric field, as described below, and then recal-

culating the first-order susceptibility using the formalism given in Sec-

tion 2.1.6.2. We hold the crystal surfaces rigid or clamped and then do not

include any distortion arising from the piezoelectric effect. The second-

order susceptibility, and hence the "clamped"4 electro-optic coefficient, is

then proportional to the difference between the two linear susceptibilities

associated with the perturbed and unperturbed geometries.

In determining the ionic displacive contribution in the clamped case,

the only important degrees of freedom for the electro-optic effect correspond

to the IR-active optical modes in which the displacement of an atom gives rise

to a net change in the electrical dipole moment. Since the ratio of the Te

mass to the 0 mass is about eight, one can, in principle, decouple the problem

of finding the acoustical modes from that of the optical modes. Therefore,

only the vibrations of the oxygen atoms in an immobile tellurium lattice will

be considered and any coupling between the various local oxygen modes will be

neglected. (Note: a detailed description of the vibrational modes in
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paratellurite has been given elsewhere.25 ) Thus, again consider a bonding
subunit Te-O-Te as in Fig. 6 and now distinguish the two bond lengths which

were neglected in the preceding. Letting the elastic motion of the oxygen be

characterized by a "bond-stretching* force constant, Co, which describes the

change in Te-O interatomic distance, and a "bond-rocking" force constant, C1,
which describes the tilt of the Te-O-Te unit out of the x-z plane, the elastic

energy can be written

E -d2 (d2  2 2 (93)

where d'1 and d'2 are the time-dependent Te-O bonding distances, d1 and d2 are

the corresponding equilibrium distances and S& is the angular tilt. Here, the
"bond-bending" force for the Te-O-Te bond angle has been neglected because it

is much smaller than the "bond-stretching" force and any oxygen displacement

in the x-z plane causes changes in bond length. For the coordinate system

shown in Fig. 6b, the equations of motion for the oxygen atom (to first-order

in the displacement) are

(X2  X2ox z Xo Xoz
Ax C 0 (-, V- + -.-- ) AX 4 +- -- T-) A 

2 x~ x z
d 1toe 2  d1  d2

CI
- MW2aY Ay (94)

X
o

- McW 2A.Z = C- 01 0 o2 + (- z2
o 4 + -T- A

do 1  d Xo 2  d ZI  d2

where z, and z2 specify the tellurium positions and xo gives the location of

the oxygen atom. (Note that the motion in the y-direction is completely
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uncoupled from the x and z motions.) In the approximation of a symmetric

Te-0-Te unit where d, = d2 and z1= z2 , the three normal vibrational modes are

purely along the x, y and z axes with the eigenfrequencies given by

2 C sin 29

X M d2
1

2 C1 (95)
y; M x2

0

2 CO cos
2

M d2
1

respectively, where e = ( - 8')/2 and 9' is the Te-O-Te bond angle. For the

unsymmetric case, the equations of motion can also be obtained in closed form

and the resultant set of vibrational modes and frequencies only deviate a

small amount from the symmetric case.

The three local mode frequencies wx, wy and wz will be the same for

all the oxygen atoms in the unit cell. Allowing for some small frequency

distribution for the various oxygen atoms due to coupling between different

modes through the tellurium atoms in the real crystal, this local mode

approximation leads to three sets (or bands) of optical frequencies, each

centered at the local mode frequency given by Eq. (95). Indeed the experi-

mental infrared reflectivity data 26 show distinct bands which can be inter-

preted as arising from the oxygen local modes. This predicts immediately a

ratio ux/w z = tan e = 0.36. Assigning the centers of the two highest bands to

the frequencies of exp't = 0.70 x 1014 sec -1 and Wzexp't = 1.45 .101 4 sec-1

for the bond-stretching local modes and the third one with a frequency

of expt = 0.33 x 1014 sec"1 for the rocking mode of the Te-O-Te subunit, we

find = 0.48. The following estimates for CO and C1 are obtained from

Eq. (95):
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Co = 110 eV
(96)

C1 = 8.0 eV

e't , exp't

where Co was determined from the average fit to ex t and ex "

The magnitude of these values for CO and C1 are in reasonable agreement with

estimates for bond-stretching and bond-bending force constants in semicon-

ductors.1 It is worth mentioning here that due to the 'decoupling of the bond-

stretching modes (wx and wz above) from the Te-O-Te bond-rocking mode (uy),

the frequency of the latter is determined by C1 only and is therefore "softer"

than the bond-stretching modes. As it turns out, this softer mode makes the

major contribution to the electro-optic coefficient since it is most affected

by the dc electric field.

In order to estimate the motion of the oxygen atoms in response to an

applied dc electric field, we introduce a transverse effective oxygen charge

eT* associated with each mode.1  It is defined to be the electric dipole

interaction by a single oxygen, divided by the displacement. Expressions to

determine these effective charges in terms of the Bond Orbital Model

parameters already introduced have previously been derived1 for the Si-O-Si

unit. Using the same expressions for Te-O-Te:

(e*)y = Z*= + Bz (97)

(e=) x  Z* + (3 sin 2 e -1) B(1 - 12) + 3 sin 2e 8z(1 - B2)

(e) z  Z* + (3 cos 2 0e - 1) az(1 82) + 3 cos2e a8(1 - 2)
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where Ox and Oz are given in Eq. (81). Numerically evaluating the parameters

for a symmetric Te-O-Te subunit gives

(e. ) x = 1.40

(e)y = 1.42 (98)Ty

(e*) z = 2.60.

Experimentally, these tranverse effective charges give the local

polarization induced by the relative oxygen displacements and hence the

splitting between the transverse and longitudinal optical modes. For each

mode, the transverse effective charge is shown, in Section 2.1.6.5 below, to

be given by a Lyddane-Sachs-Teller14 relation

20 "2= 0 = 41t(e*) 2 e2/3mloc (99)

where e is the electronic charge, M is the mass of the oxygen, 6 is the

average volume per oxygen atom and £i(= e=) is the optical dielectric con-

stant. Using this relation along with the approximate experimental splittings

of 2 2 = .093, .028 and .326 sec-2 for the x, y and z modes respec-
WL -TO)

tively, we obtain experimental transverse effective charges of
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(e*)x = 1.75

(e*)y = 0.96 (100)

(e*)z = 3.27

which can be directly compared with the theoretical estimates given in

Eq. (98).

The force, Fi, in the i-th direction on an oxygen atom is given by

dc 11
F. : e(e) i Ei  (101)

where Edc is i-th component of the dc electric field in the coordinate system
1

of the Te-O-Te subunit. Finally, substituting this force into Eq. (94) gives

the components of the displacements, which can simply be written as

-e(e*)i E dc(12
Axi z MT2 1(102)

for the symmetric Te-O-Te subunit. (The displacements for the unsymmetric

" subunit can also be obtained in an exact (but more complicated) closed form.)

These displacements can now be used to generate a perturbed crystal geometry

for an appropriate dc electric field and the first-order susceptibility can be

recalculated, as in Section 2.1.6.2.
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The defining relation for the second-order (electro-optic)

susceptibility, ( is

Pik

P X (1 + 1 (2) Edc) EoPt' = ~T E opt(13
P i x ik k th i rs (3 k

where, as before, Pi is the induced polarization density, X is the first-

order susceptibility, EPt is the optical electric field, EK is the dc elec-
T " 

k
tric field and xij represents the "total" susceptibility. The electro-optic

susceptibility tensor is then obtained from the difference:

T T(EdCo) _T .dc() 2 ) E dc (104)
= 13- 1 k Xi = = k ikj k

where each particular component of the tensor is determined by considering a

specific direction for

The procedure for predicting this electro-optic susceptibility is

somewhat similar to that used for the unperturbed linear susceptibility.

First, a dc electric field, Edc is applied in the crystal coordinate system

of each Te-O-Te subunit and the relative vector displacement of each oxygen,

induced by this dc field, is calculated according to Eq. (102). Next, the

vector displacement of each oxygen, given in the Te-0-Te subunit coordinate

system, must be transformed back into the crystalline axes thus determining

the perturbed crystal geometry. The new linear susceptibility can now be

calculated and the electro-optic susceptibility obtained from the difference.

The process was carried out numerically for fields in each of the three

crystal directions for Edc One computational difficulty was encountered
dc dcinvolving the magnitude of Ek . If Ek was too small, then the change in

linear susceptibility was less than the computer round-off error in the

calculation. On the other hand, if Ede was too large, third-order effectsk
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began to appear. Realizing this problem and choosing an appropriate value fordc
the magnitude for Ek gave a 3 x 3 x 3 tensor for the electro-optic

susceptibility, in which all components are zero except for

X213 X312 ' -X123 = -X321 = 0.37 x 10- 7  cm (105)

consistent with the symmetry of point group 422. In this numerical

evaluation, the result listed in Eq. (105) has been scaled by y2 as discussed

in Section 2.1.6.2. Finally, the clamped electro-optic coefficient is given

by

41  2 0.15 x 10 statvolt - 0.51 x 10" 2m/v (106)
ne no

where the values fir ne and no are theoretical values calculated from Eq. (92)

with the linear susceptibility also scaled using the same y.

An alternative to using the Te-O-Te subunits for calculating the

linear and nonlinear susceptibilities is to employ the bond-by-bond approach,

as has been typically done with the tetrahedral semiconductors. 11 There, the

first-order susceptibility can be written

() 2 V2 d d(1) .e ~ ~~ 2 (17Xi ' / (107)
Xij bonds (V2 + V3)

where e is the electronic charge, y, V2 and V3 are defined in terms of sp3

hybridization in Ref. 11, d. is the m-th component of the interatomic distance

vector between the bonding atoms, v is the volume of the unit cell and the
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summation is over all bonds in the unit cell. Applying this method to the

sixteen bonds in the TeO 2 unit cell gives first-order susceptibilities of

X(1) 1 = 0.316
11" 22

(108)

X( )- 0.23233

which can be compared with Eq. (91) after accounting for the use of a slightly

different y = 1.77 as listed in Ref. 12.

The electro-optic susceptibility and electro-optic coefficient can

then be detemined within the context of this bond-by-bond method by using

Eqs. (103), (104) and (105). The results are

(2) X (2) v (2) X (2) = 0.17 x 10-7  cm (109)

213 312 123 321 statvolt

and

r -0.11 x 10 7 cm_ 037 x 0-12 m (110)
41 statvolt =

which compare reasonably well with Eqs. (105) and (106) even though the

assumptions about tetrahedral coordinate that went into Eq. (107) are somewhat

dubious for TeO 2.

2.1.6.4 Discussion

The relatively close agreement in the results of the molecular

Te-O-Te subunit approach and the bond-by-bond approach suggests that the

details of the electronic structure may not be as important as the crystal
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geometry. This is because the non-zero tensor elements of the susceptibility

arise when the components of the dipole moments do not exactly cancel when

summed over the unit cell. The extent of the cancellation is strictly a

geometrical effect and the results are relatively insensitive to the

parameters that represent the electronic structure.

An experimental value for the "unclamped" or constant stress electro-

optic coefficient, r 1 , in TeO2 has previously
17 been determined to be

rl - 0.76 x 10" 2 m/V , (111)41

The above calculations predicted the "clamped" or constant strain

coefficient, rsl, which can be related to the "unclamped" coefficient by5

1= r 1 - P44 d14  (112)

where P44 is a shear photoelastic constant and d14 is the piezoelectric

constant. The magnitudes of both P44 and d14 have previously been

measured: 15,27 IP44 1 = 0.17 and Id14 1 = 0.81 x 10 
11 C/N .

Substituting in these numbers into Eq. (112) yields two possible

experimental values for the "unclamped" electro-optic coefficient, depending

on the sign of the product (P44 d14 ). For (P44 d14 ) negative,

S -12r41 = + 0.62 x 10 2 m/V (113)

and for (P44 d14 ) positive,
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r = - 2.14 x I0"12 m/V (114)

This pair of numbers can now be directly compared with Eqs. (106) or (110).

If (p44 d14 ) is less than zero, then the magnitude of the predicted electro-

optic coefficienL agrees remarkably well with experiment but a discrepancy

exists in the sign. The theory determines this sign solely from the crystal

geometry. On the other hand, if (P44 d14 ) is greater than zero, then the sign

agrees but the magnitude of the prediction is approximately a factor of four

too small. The theory predicts, then, that P44 and d14 have the same sign.

2.1.6.5 The Lyddane Sachs Teller Relation For TeO,

The optical vibrational modes for TeO 2 can be rather well separated

into three distinct sets, with frequencies wx, wy, and wz" If there were no

dipoles associated with them, these oscillators would be treated as identical,

with No modes per unit volume, where No is the number of oxygen atoms per unit

volume.

To understand the small shifts in frequencies due to electrostatic

forces, consider a particular set of oscillators, say those of frequency,

wz. These are degenerate vibrational modes, one for each oxygen, and could be

equivalently written as modes with well-definedi fvpnumbery giving each

local oscillator a displacement amplitude of ue , r, where i is the

atomic position, and this will in fact give the modes which interact with

infrared optical fields of a corresponding wavenumber.

As a first problem, assume that every oscillator moves in a direction

exactly parallel to the wave-vector, t, which has been chosen. (This will

never be the case, but will make the calculation clear for the interesting

case.) If the dipole moment is given by (e*)z times the displacement of the

atom (this is the definition of the transerse charge (e*) ), then the
+ i(k.r - +t)

polarization density is = No(e) z u e where u is the vector

amplitude parallel to k. The electric field is obtained from the charge
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accumulation, -i. , through Poisson's Equation. By dividing by the

electronic dielectric constant, the net field, and hence the force on each atom

given by e(e )z times the electric field, is determined and leads to a shift

in frequency. This gives the familar Lyddane-Sachs-Teller result for the

difference between the longitudinal frequency, wLz, and the transverse

frequency, wTz, (for which there is no charge accumulation and therefore no

shift in frequency). It is

2 2z = 4i(e) e2 N/Mc

If we now examine the relevant case for TeO2 where the orientation of

the polarization vector for the wz mode is different for each different

oxygen, similar charge-polarization-modulated modes result which, without

coupling, all have the same frequency. However, in this case, the dipole of

each mode makes an angle Gj with so its contribution to the polarization

density is reduced by a factor of cos ej. Furthermore, the force felt by the

dipole along its direction of motion due to the field of all other dipoles is

reduced by cos ej so it behaves exactly as if it were aligned with the field

but had its effective charge reduced by a factor of cos j. If every dipole

had the same B., the Lyddane-Sachs-Teller relation given above would be valid
.2 r  .2 2but with (T) z replaced by (T) Cos . Clearly in our averaged treatment of

butT wih( z relae by cosli-
the local modes, cos 2 a should be re-laced by its average, one third, for the

case of random orientations.

The distinction between longitudinal and transverse modes in this

scheme must be clarified. The phase for each local mode was chosen so that

the sign of the polarization along was the same for neighboring atoms,

corresponding to a longitudinal mode. Had a particular transverse direction

been selected and the sign In that direction chosen to be the same for neigh-

boring atoms, a mode with transverse polarization would have been obtained but

the longitudinal components would have cancelled on average, and there would
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have been no shift in frequency. Clearly, at long wavelengths, there are

longitudinal and transverse optical modes just as there are longitudinal and

transverse acoustic modes. There is no difficulty for the long wavelengths of

interest here and the relation for our system becomes

2 2 2 () 2
.(16

'LZ~ ~ - zz(* e N /(3ME0.)(16

The corresponding expressions, with the same factor of one third, may be

written for the x- and y-modes.

2.2 Experimental

2.2.1 The Electro-Optic Effect in TIVAsSe1;

We have completed measurements of the linear electro-optic tensor

component (rc = +1.5 x 1012m/V) for the chalcogenide salt T13AsSe3 (TAS). TAS

crystallizes28 the trigonal space group R3m, with the point group 3m. This

implies the electro-optic tensor has the following form:4

rll 0 r13

-r11 0 r13

0 0 r33
rij = (117)

0 r51  0

r51  0 0

0 -rII 0

The dc electric field was applied along the crystallographnic z axis. With
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the light propagating along x, polarized 450 from z towards L., and the dc
field applied along z, the dielectric impermeability tensor4 has the form

_ 1
1 0 0

2
0

"" 1 (118)

B) = 1 +  r1 EE3  0

n

p~ 01 1) 0 I

= (- + r 13 E3 + 2 + r 33E3)

B B0 +AB (119)

D0
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which implies that

AB =1 (r 13 + r 33 )E3  (120)

For this propagation direction, the effective index is:

2ne no
n= eo (121)
e ,12(n z + nz)

o e

If we assume the incident wave is linearly polarized at 450 to the

optical axis upon entry into the crystal, the propagating wave can be

decomposed into the two orthogonal modes (ordinary and extraordinary) in the

crystal. As the wave travels through the crystal, these two modes get out of

phase with one another due to their different propagation velocities. The

accumulated phase difference r at the exit surface of the crystal is given by:

r=..1(n - no) (122)

where £ = the crystal length and Xo = the free-space wavelength. Thus the

emerging beam will, in general, be elliptically polarized due to the arbitrary

phase between the energy in each of the two modes. Experimentally, we may

quantify the ellipticity through the use of a Babinet Compensator and a final

linear polarizer analyser. The application of a transverse dc electric fiel

may affect this propagating beam In three ways. First because TAS is also

piezoelectric, the electric field may change the physical dimensions of the

sample due to electrically induced mechanical strain:
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E - dijE i  (123)

In this case Ei = E3 so we have

£1 = d31E
3

£2 = d31E3  (124)

£3 = d33E 3

The two strain components £2 and E3 do not produce a direct mechanical effect

on the sample which effects our measurement. However £1 which is a contrac-

tion (or expansion) of the crystal along x, will change the physical length of

the sample. This in turn will produce a change in the phase at the exit

surface. Although no direct experimental measurement of the piezoelectric

effect in TAS exists, we can assume that it is small consistent with similar

semiconducting materials like GaAs. Thus the direct mechanical perturbation

will be ignored and the measurement will provide only the "unclamped" value

for the electro-optic coefficient. There Is, however, a second-order indirect

effect often referred to as the converse piezo-optic effect in which the

electrically induced strain couples to the refractive index via the strain-

optic effPct. The strain-optic effect produces on index change:

3
n n (125)1n 7 " Pij C

where pij is the strain-optic coefficient and ej is the strain component as

before. Then

3
n= n PijdkjEk (126)
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or we may define an effective converse-piezoelectric electro-optic tensor

component:

rk kjeff - -
(127)

= Pijdkj .•17

The photo-elastic tensor for the point group 3m is given by:

P11 P12 P13 P14 0 0

P12  P11  P13  P14 0 0

P31 P31 P33 0 0 0

Pij :(128)

P41 -P4 1  0 P41  0 0

0 0 0 0 P44  P41

0 0 0 0 P14 112 (P11 P12)

Again taking Ek = E3, and noting the non-zero elements of both the pij tensor

and the dkj tensor, we find the remaining non-zero components are:

33

n3

(An) 1 = .-- (P1ld31 + P12d32 +P1d3E

( " ". ((P11 + P12 )d31  P13d33 )E3  (129)
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n3
(n)2 - (P21d31 + P22d32 + P23d33)E3

3n2
= - n- ((P12 + P22)d31 + P13d3 3)E3

3

(&n) 3  'r ~ (P31d31 * P32d32 +P 33d33)E3

n3

nL (2(P 3 1 d 31 ) + P33 ' 33 )E 3  (130)

Thus we note that both the I and z components of the index (ordinary and

extraordinary respectively) will be affected by the dc elecric field. At

present, data for the magnitude of pl1 and P33 have been taken at this

laboratory under company sponsored IR&D program, but no data exists for the

remaining photoelastic components or the piezoelectric tensor components.

Thus although, as shown below, we were able to measure a value for the
"electro-optic" effect, it is at present not possible to quantitatively

separate out effect due to the piezoelectric effect and the converse piezo-

optic effect.

2.2.2 Measurement of the Electro-Opic Effect in TAS

A single crystal boule of TAS was grown from the melt using the

vertical Brldgman-Stockbarger technique.29  An experimental sample of dimen-

sions 1.27 cm x 0.54 cn x 0.56 cm was wire sawed from the boule, aligned using

back reflection Laue photographs, and mechanically polished. The sample geom-

etry is as shown in Fig. 7. In our early experiments a wire grid polarizer

was used as an analyzer after the crystal. A compensator was placed between

the sample and the analyzer. The compensator and analyzer were then adjusted

so that essentially no light was transmitted through the analyzer to the
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SC81 -13290
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- - Y<010>

OPTICAL
FACE

Fig. 7 T13AsSe3 crystal orientation for rc electro-optic measurement.
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detector. As the dc electric field was slowly Increased, a series of oscil-

lations in the signal level at the detector das observed (see Fig. 8). How-

ever, further experiments showed that these preliminary results were the

result of joule heating of the sample due to an excessive current flowing

through the sample when high voltage was applied. Indeed it was possible to

reproduce the oscillating transmission by blowing hot air from an electric

heat gun across the sample with no applied dc voltage. This excessive current

was produced by a low value for the bulk resistivity in the sample. Rather

than pursue the traditional methods to remove impurities and defects to obtain

intrinsic resistance, which tend to be extremely costly and time consuming, we

have chosen an altrnative approach. A high voltage pulser, 27 shown in Fig. 9,

was used to apply pulses of high voltage to the sample. The pulse width was

kept short and the repetition rate correspondingly low so that the duty cycle

was reduced and consequently heating effects were reduced if not eliminated.
The average power dissipated in the sample was typically of the order of

1 nW. A high-speed (150 Mtz) turrent-to-voltage amplifier was used in

conjunction with a small area InSb photodiode to observe the change in optical

transmission produced by the applied high voltage pulse. It should be pointed

out, however, as shown in Fig. 10, the pulse was sufficiently long as to allow

time for mechanical response of the sample. That is to say, the measurement

was made under constant stress conditions (unclamped). The signal from the

amplifier was then fed to one channel of an oscilloscope and displayed simul-

taneously with the high voltage pulse. The process of taking data consisted

of (1) setting the amplitude of the high voltage pulse, (2) reading the ampli-

tude of the optical signal as a function of analyzer angle (over 90' of rota-

tion) and (3) then repeating this process at several peak pulse voltages. One

can show that for propagation of light polarized at an angle, m, relative to

the optical axis, through a birefringent medium and through an analyzinghI
polarizer oriented at an angle, 8, (relative to the optical axis), the

resulting transmission will be:
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Fig. 8 Intensity modulation as a function of applied dc electric field in
T13AsSe 3 ,
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Fig. 9 Circuit diagram for high voltage pulser.
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Fig. 10 High voltage pulses applied to Ti 3AsSe~ and resulting modulation of
analyzed light intensity transmitted tfirough Tl3AsSe3.
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I(9,a) = 1 sin2 asin2e + cos2 cos20 + 2sinacosesin8cos

(131)

If the propagating medium is an electro-optic material oriented similar to our

sample, then an applied dc electric field will modify the term containing an

via the electro-optic effect. The difference in intensities with the electric

field on and off is

2wX no eff E
AI(e,at,E) = I0 sina cosat sine cose 1cos (An + n ef

Cos (2. An) (132)

This change in transmitted intensity as a function of analyzer angle, e, for a

given "dc" electric field is precisely the data we have obtained

experimentally. The data can then be numerically fitted to the above

expression to yield a value for reff. Figure 11 shows a fit to the

experimental data. This process yields a value of r12

T = 300K and A = 3.39 on. As previously indicated, more data is needed to

explicitly solve for each of the various contributions to this value. Future

studies on TAS hopefully will supply this information.

e
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# Fig. 11 Intensity difference between mdc" field applied and zero field as a
function of analyzing polarizer angle.
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3.0 CONCLUSION

In summary, the microscopic understanding of the electro-optic effect

has progressed substantially during the course of this program. A tight-

binding theory for dielectric susceptibilities has been specifically applied

to the linear dc (Pockel's) effect. The distinction between electronic and

ionic contributions was explicitly maintained. A formalism to address the

generalized lattice dynamic problem, associated with the ionic contribution to

the electro-optic effect, has been developed using a method which should be

applicable to all materials, e.g., ferroelectric crystals that exhibit large

electro-optic coefficients.
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