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FOREWORD

This report to the Office of Naval Research is the concluding final
report for a two-year theoretical and experimental effort carried out under
Contract NO0014-80-C-0498, and covers the period May 13, 1981 to September 31,
1982, The program was carried out at the Rockwell International Science
Center and was managed by Dr. Qggl_g,vﬂeuman. The Principal Investigators
were Mr, Mark D. Ewbank and Dr. Newman. Prof. Walter A. Harrison of Stanford
University was a consultant on the theoretical aspects of this program. valu-
able contributions were also made by Prof. Eitan Ehrenfreund of the Technion
Institute of Israel, and Dr. Pochi Yeh, Mr, Randolph L. Hall and
Dr. M. Khoshnevisan of the Science Center. The Contract Monitor for the
Office of Naval Research was Dr. George Wright.
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1.0 INTRODUCTION

1.1 Program Objectives

The long-range goal of this program was to theoretically investigate
the microscopic physical origins of the linear dc electro-optic effect. A
secondary objective was to use the formalism resulting from that investigation
to develop a general methodology with predictive capabilities that requires
only atomic structure and elemental composition as input.

Additionally, as new increasingly high-performance materials are
required by electro-optic device technology, an experimental effort was
carried out, not only to provide feedback for the theoretical studies, but to

provide data on new and potentially interesting Pockel's electro-optic
materials,

1.2 Previous Work

The previous year's work was first devoted to separating the physical
sources of the electro-optic effect into those which result primarily from
electronic effects, and those associated with lattice dynamics or "ionic-
displacive" effects. The Bond Orbital Model! was then modified so that the
electronic contribution to the electro-optic effect could be calculated simply
and straightforwardly using "universal atomic" parameters and numerical sums
over chemical bonds in the crystallographic unit cell. This theory was then
tested against Te0, and predicted an identically zero electronic contribution
to the electro-optic tensor in agreement with Kleinman's2 symmetry relations.

The effort next focussed on the ionic displacive part. Here a
further distinction was made between relative motions between ions which do
not result in a change in the unit cell dimensions and those which do., The
approach, which had not been completely evolved at the conclusion of the first
year's effort was to seek a mechanism to calculate the microscopic atomic
"spring constants" and relate these to measurable bulk properties such as the
Reststrahl frequency or elastic constants.

1
C4663A/bw




——

‘l‘ Rockwell International

Science Center

. ‘ $C5266.2FR

Finally, the experimental portion of the program was directed towards
two compounds: TeO, and T1jAsSej. Measurement on Te0; yielded the original
characterization3 of the linear electro-optic effect in terms of the single
non-zero component rg;. Preliminary measurements of the electro-optic effect
in T1jAsSeq experienced experimental difficulties associated with the
semiconducting nature of the material,

i 1.3 Accomplishments

Significant original results towards understanding the electro-optic
effect have been made during this period. The theoretical work, utilizing
tight-binding theory and Harrison's "universal atomic parameters"l has suc-
cessfully yielded a formalism for quantitatively calculating both the elec-
tronic and fonic contributions to the electro-optic second-order suscepti-
bility. This formalism predicts the electro-optic tensor coefficients util-
izing atomic matrix elements, and term values, together with crystallographic
coordination and elemental composition, but without any adjustable parameters.
As was indicated above, the electronic contribution is calculated in a
straightforward manner using tight-binding formalism and bond sums taken over ‘
the crystallographic unit cell. Calculations of the contributions due to lat- 1
tice dynamics has also been successfully reduced to practice and applied to
Te0,. The formalism involves modelling interatomic forces (springs) in terms ]
of a bond-stretching force and a bond-bending force, These interactomic ;
forces can then be used to calculate normal acoustic and optical lattice
phonon modes. The calculated frequencies, at zone-center, can then be com- i
pared with data derived from optical measurements. i

Experimental measurements of the r. electro-optic tensor component of
Ti;AsSey (TAS) have also been completed. The measurement was complicated by

the semiconducting nature of TAS. When several kilovolts were applied to the
sample, appreciable current was observed, This resulted in joule heating of

the sample and a distortion of the physical dimensions of the crystal as well

. as concurrent strain-optic effects. This problem was eliminated by using high

2
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voltage pulses instead of a dc voltage and yielded the "unc'lamped“4 value for

Fce

1.4 Technical Issues

Although we have demonstrated the utility of our approach to calcula-
tions of the electro-optic effect in a specific case, Te0,, the generality of
the method remains untested. Further work on a variety of crystal structures
and elemental composition needs to be carried out.

1.5 Report Summary

The remainder of this report is concerned with the technical details
for both the theoretical and experimental aspects of this program., The
material contained within will provide the basis of at least three future

| publications, which are currently being completed. Finally, a brief summary
of the technical progress, along with some projections for a continuation of
work in this general area, will be provided,

3
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2.0 TECHNICAL APPROACH

2.1 Theoretical

First, the connection between the experimental electro-optic coeffi-
cients and the theoretical second-order susceptibility tensor is developed.
Then a detailed formulation for the dielectric susceptibilities is made in :
terms of tight-binding theory. Initially, the linear susceptibility is
treated and subsequently the model is extended to higher-order suscepti-
bilities. In particular, the electro-optic susceptibility is examined and a
technique for evaluating the lattice contribution is presented. Finally, a
specific application of the theory is carried out on tellurium dioxide.

2.1.1 Second-Order Susceptibilities and Electro-0Optic Coefficients

[;i Experimentally, the determination of the change in refractive index

j& of a crystal due to an applied dc electric field provides a mechanism of

b measurement of the electro-optic effect. The electro-optic coefficient, ijko

:) is defined by the relation®-€ '-
A(B),ij = E rijkEk (1) i

where ABij is the change in the relative optical dielectric impermeability and
Ex is the applied electric field. The impermeability is related to the
> inverse dielectric tensor, e‘l, and the refractive index, n, by the expression

Bjj = (5-1 )13 = (n-z)ij . (2) ‘

RS R

A change in impermeability can be expressed in terms of an index change as

USRI P

or
Rk

8 = -2an/n3 (3)

4
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and explicit relationships between an and ABij have been derived for optically
isotropic, uniaxial and biaxial crystals with the light propagating in an
arbitrary direction,b

The principal dielectric constant or refractive index can in turn be
related to the susceptibility, x, as

n =J/e=/T+8ny (4)

in CGS units. To define higher-order susceptibilities, the induced
polarization, P;, is expanded in terms of increasing powers of electric fieldl
as

= (1) (2) (3)
P J{ Xij'Ey + jE Xijk EjE * jg] Xiji1E5EcEy * e (5)

where Xg}) is the linear or first-order susceptibility, xg?g is the second-
order susceptibility, etc. This form does, however, neglect any frequency
dependence. More specifically, the induced, second-order polarization at any
given frequency is a function of all three wave-mixing combinations which
contribute to that frequency, i.e., integrate the product of the second-order
susceptibility with two electric fields over frequency.7 By considering three
special cases in the frequency domain, three distinct second-order suscepti-
bilities have been defined:8

Py(2a) = 15 (2elE o)y (u) (6)
2
Pife=0) = ] X{3) (0 (w)E, (w) (1)
5
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: ZCR; X)) E5(s) £, (0) (8)

which correspond to second harmonic generation, optical rectification and the
linear electro-optic effect, respectively. The electro-optic, second-order
susceptibility, as defined in Eq. (8), must be symmetric in he indices i and j
in order that the total optical susceptibility tensor, x§§) + 7 xgsg Ek remain
symmetric, This contrasts with the second harmonic generation and optical
rectification susceptibilities which are symmetric in all three indices (i, j
and k). Keeping these symmetry relations straight is important when dealing
with "condensed" notation® for the indices because the condensing always
occurs on the two symmetric indices. We shall be concentrating on the
electro-optic second-order susceptibility, which can be directly related to
the electro-optic coefficient,7’9’10 in CGS units, by

- a..(2)
ik T 4™ e 5 (9)
where €5 = nf =1 + 4nx$}) is an optical dielectric constant. Note that both
rijk and xgi;(m) are symmetric in indices i and j which correspond to the

dielectric constants appearing in Eq. (9). The theory uaveloped below derives
expressions for x$§;(m) and therefore Eq. (9) will serve as the connection to

experiment,

2.1.2 Tight-Binding Calculations of the First-Order Susceptibility

For nominal optical electric fields, the linear susceptibility is
usually related to the interband absorptions. These ghsorptions contribute to
an imaginary component of the susceptibility which corresponds to a polariza-
tion density that is out of phase with the driving electric field., This
absorptive component can be written as

6
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m -3 1w ®@E e (<, (D1 (D) 15;-|w (£-)> !
v,C,Kk”
x S(E_(R') - E (K) - hu) (10)

where e is the electronic charge, m is the mass of electron and h is Planck's
constant divided by 2n. The dipole matrix element is represented by the
gradient operator, ¥, coupling the occupied (valence) wave function,

va(f)>, with the unoccupied (conduction) wave function, lwt(f')>. The deita-
function gives a contribution only when the photon energy (hw) equals the
energy difference between the coupled states. Finally, the summation is over
wave-vectors of all valence and conduction states in a volume, Q.

The real part of the linear susceptibility s related to the
imaginary component via the Kramers-Kronig relations,] By assuming that the
dipole matrix elements are independent of frequency, the real part of x(l) can
be written as

'4 K by 2
(1) st B bl (R <y, (R) bl v (D> "
N mR e,k (Ec(k) - Ev(k))

in the 1imit that the photon frequency is much less than the energy difference 1
between coupled states or zero-frequency limit, (i.e., hw is much less than
the lowest absorption energy but still greater than the Reststrahl vibrational
energies). An extra factor of two has been included in Eq. (11) to account
for the two spins associated with each state and the summation over wave-
vector, K“, has been omitted by considering only "vertical transitions."

Also, note that the designation of the real part is not explicitly shown in j

7
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. Eq. (11) since only the real components of the susceptibilities will be
considered in the rest of the formalism that follows.

2.1.2.1 Tight-Binding Theory

In the context of tight-binding theory, the dipole matrix elements in
Eq. (11) can be expanded in terms of localized Wannier functions, which in
turn are written as a summation of Bloch functions. Specifically, the
4 valence-band state, wv(f), can be expressed as

Ila,(R e " (12)
m

where av(ﬁh) is the valence Wannier function located at site, ﬁh, in the m-th
primitive cell and the summation is over N primitive cells, The conduction-
band wave function is represented in an analogous fashion. By carrying out
this expansion of the dipole matrix elements in Wannier functions, the double
summation over sites in each of N primitive cells reduces to N times a single
summation. This is because for any particular dipole matrix element involving
two Wannier functions there are only N identical matrix elements of Wannier
functions on nearest neighbor sites which are non-negligible. Then, the
summation over N primitive cells becomes a summation over nearest neighbors.

Finally, the dipole matrix element in Eq. (11) is written in terms of Wannier
functions as

Eope

S A

: (n K.(R -R.)

> ) > n) ﬁ 9 g i m
Y A ( (E) = 17 (B bla, (R, )>e (13)

where ﬁl specifies a "central" primitive cell conduction-state site and the

summation is over only those valence-state sites ﬁh which are nearest neigh-
bors (nn) to this conduction-state site ﬁl (including the valence states on

the same site).

8
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Furthermore, when this dipole matrix element is substituted back into
the expression for the linear susceptibility, it is recognized that the wave-
vector dependence of the energy difference denominator is negligible (since
the energy variation with K is small compared to the energy separation between
valence and conduction states). Also, the summation over wave-vector can be
eliminated because the sinusoidal factor integrated over K contributes only at
a single, localized valence-state site, Then the linear susceptibility can be
expressed as

(1) .
i

alet (%n) <ac(§1)|-§-i-|av(§m)><av(§m)|733-|ac(ﬁl)>

X (14)
)3

mQ v,c,m (Ec - Ev

where the summation includes only those nearest neighbor valence and
conduction Wannier functions, located at sites ﬁﬁ and ﬁl’ respectively.

Typically, the Wannier functions have been chosen by incorporating
nature of the chemical bonding of the particular crystal under
consideration. For example, the tetrahedral semiconductors have four bond
orbitals per primitive cell from which four valence-band Wannier functions are
derived from the four antibond orbitals. By focusing on only those dipole
matrix elements of the gradient between bonding orbitals, |b>, and antibonding
orbitals, |a>, in the same bond, the summations over nearest neighbor valence
and conduction states became a summation over bonds. For ionic compounds,
such as the alkali halides, the valence- and conduction-band Wannier functions
are adequately represented by the halide-p and alkali-s atomic orbitals,
respectively, In this case, the summation over band states became a summation
of spo couplings over the six nearest neighbors.

However, it is not necessary to specify the chemical bonding of the
crystal at this point in the formalism. Nothing is lost in generality by
representing the Wannier functions by a complete set of valence-electron
atomic orbitals: |s>, |p,>, |py>, |p,>, etc. For example, in the above case

9
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of the tetrahedral semiconductors, hybrid sp3 bonding and antibonding orbitals
(and corresponding matrix elements) are simply derived from the appropriate
linear combinations of atomic orbitals. Then, from Eq. (14), the dipole
matrix elements are between atomic orbitals and the summation over nearest
neighbor valence and conduction Wannier functions becomes a sum over all
nearest neighbor pairs of atomic orbitals in the primitive cell.

2.1.2.2 Simplified Evaluation of the Dipole Matrix Element

The dipole matrix element involving atomic orbitals, |« and |8>, on
neighboring atoms can be approximated in a very simple form in terms of
known 1,11 parameters. These known parameters are the atomic term values (ea
and eg, corresponding to each atomic orbital) and the matrix element of the
crystal Hamiltonian between the two atomic orbitals (V g = <a|H|B>). In
addition, the two atomic orbitals are assumed to be orthogonal: <a|8> = 0.
To obtain the desired dipole matrix element, the eigenstates in the LCAO
context of this isolated pair of atomic orbitals will first be constructed.
Then, the molecular dipole matrix will be related back to the dipole matrix

element between two atomic orbitals.

The eigenvalues are simply given by

€

€
v

= (e, % Q)2 £ e - €8 + V2, (15)

where the subscript ¢ and v are refer to the conduction and valence, respec-
tively. The eigenstates are written

v v
[v> = U | + UBIs>

le> = US|a> + US|8> (16)
a 8
10
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and the LCAO coefficients are given by
V. o€ -
Ua = +UB 1+ o, 2 !
j
u‘é = ¢ - T =72 (17) 5
!
3
where }
ay = (V2 / (e, - 62 + 1071/2 (18) |

and represents the "polarity" of the coupling.

Making use of a general relation12 among matrix elements between
eigenstates,

Wlg-le> = (/A2 (e, - €, )<vx; o> (19)
1

the dipole matrix element with a gradient operator is replaced by a matrix
element with a position operator. The position matrix element of the two
eigenstates is immediately expressed as

<v|x1|c> = /{1 + qp)(l - ab) (<B|xi|3> - <a|x1|a>)/2 + °p<“|xi|8> (20) i
where |a> and |B> are assumed to be real which implies that <g|x;|a> =
Calx4[B>. This last term vanishes if the atomic energies of the states are

11
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the same (i.e., ap = 0) or if the two states are symmetric about the midpoint

between them, (Note that since the two atomic states are orthogonal, this
matrix element in the last termm is independent of the origin of coordi-
nates.) As in early treatments,! this term is assumed to be zero (the only
step in the derivation of the dipole matrix element of two atomic orbitals
that is not rigorously justified). Then the first term in Eq. (20) is
proportional to the i-th component of the interatomic distance vector, 3,

d; = <Blx;|® - <alx; | (21)
permitting Eq. (20) to be written as

<wixgle> = /i"."zgai/z (22)

The gradient matrix element of two eigenstates in Eq. (19) is expanded, in a
similar fashion to Eq. (20), as

<v|-£:|c> - T2 (<8l 8> - <a|-a-%'-|c>)/2 + <°‘"axii" B (23)
1

where a partial integration has been used to show that <8|3/ax1|a> =
-<a|a/axi|5> in the last term, Additionally, the same partial integration
shows that both <a|3/3x;|® and <8|3/ax;|8> vanish, so Eq. (23) becomes

<v|§-1-|c> - <u|-3%i—| B . (28)

12
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Substituting Eqs. (22) and (23) back into Eq. (19) and solving for the dipole
matrix element between atomic states gives

<a|.a-}i-| B = (m/h%)(c, - e WT - o2 Zd2 . (25)

This expression further simplifies by using Eqs. (15) and (18) to give
(e - &) = ZVQBJT - qg which yields

Calg| 8> = -(mA7 W 4, (26)
1

for the final form of the dipole matrix element involving two atomic orbitals.

2.1.2.3 Simplified Linear Susceptibility Formula

This form for the dipole matrix elements (Eq. (26)) can be utilized
in the tight-binding formulation of the first-order susceptibility (Eq. (14))
when atomic orbitals are substituted for the Wannier functions. The energies
in the denominator of Eq. (14) can be adequately represented by the eigen-
values of a pair of coupled states in Eq. (15) and the resulting linear sus-
ceptibility is written

d.

2
(1), a2 () Vg 91
X{j = g ) 7——9—-2—372-+ w3 (27)

a, B [(SB - ea) 8

where the summation is over nearest neighbor atomic orbitals.

13
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2.1.2.4 Applications

This formula is directly applicable to any specific material with all
the necessary parameters known once the crystal geometry has been determined.
The only complication is the possibility of a large number of terms entering
the summation over atomic orbitals., Even further simplifications can result
if assumptions about the electronic band structure for the particular
compounds of interest are incorporated at this point.

Consider, for example, the alkali-halides. First, note that the
covalent energy is always much less than the polar energy for all pairs of s
and p states. Consequently, the V g term in the denominator of Eq. (27) is
negligible., Also, the only important atomic states which enter are the s-
state on the alkali atom and the p-state on the halide atom. This is because
the enerqgy difference between other pairs of nearest neighbor atomic states is
significantly larger. Finally, in a principle axis coordinate system, the
interatomic distance vectors are directed along one of the principle axes
which means that d.d: = d2 = a2/4 only when i = j. Since there are six

)
nearest neighbors surrounding each of the two atoms in the primitive cell,

spo (28)

where @ = 2d3 has been used and numerical values for the coefficient, "$p o
are given in Ref., 1. This prediction has been compared to experiment
elsewhere, ! ‘

The case of the binary semiconductors is almost as simple. Here,
hybrid orbftals are formed and the interatomic matrix element, which is
replaced by the covalent energy (Vz), is no longer negligible and gives

Be?v2
(1), -2 (29)

x =
o ead(v2 + v2)%/2
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with o = 2a3 = 128 d3/315 for four hybrid bonds and where V, = -3.22 £2/(md2)
and Vy = (eg + 3e; - eg - 3e;)/8 are the covalent and polar energies,
respectively, as previously defined,!!

2.1.2.5 Dipole Moments

Harrison has utilized the concept of a dipole moment of a chemical
bond when considering the susceptibility of tetrahedral semiconductors. The
E ith vector component of this dipole moment has been written as

Py = ed, a, (30)

where ay = V3//V%_I—V§ is the polarity of the bond, Then, the total induced
polarization density is just the summation over bonds of each dipole moment
averaged over the volume occupied by the bonds. This dipole moment concept
can also be employed within the context of the above formalism. Here, the
“dipole moment" represents the induced coupling between two atomic orbitals
and can be written as in Eq. (30) but with the “"polarity" given by Eq. (18).
The connection between the bond dipole mument and the susceptibility can be
established rigorously as follows. As before, the total induced polarization
dunsity fis

Lp, (31)
S

where 2 is the volume occupied by the coupled states. Now, with reference to
) Eq. (5), each dipole moment is written as a Taylor's series expansion of the
L . electric field and Eq. (31) becomes

f 1 gly Wy 1 g 3291
P 2 o= E + E E + en e 32
I IR P AR AP st A (32)
15
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where 391/3Ej is the i-th component of the contribution to the first-order
susceptibility from each dipole moment. After interchanging the summation
over coupled states with summations over vector components in Eq. (32) and
comparing back to Eq. (5), the first-order susceptibility is then identified
as

p
21 i

To verify this expression, one can carry out the differentitation according to
the chain-rule:

i e Vo DA i B O i B
an an ad,l éfj aV“B 855 3ea8
{
A—/\”\
-2V 3 ap
i
— 1 G, o) (34)
d m=l J aB

where the independent variables are d;, V,g ~ 1/d2 and €ap = (e - €g)s If
the frequency of the an optical electric field is above the Reststrahl
vibrational frequencies, the atoms do not respond and hence the change in the
m-th component of the interactomic distance vector with respect to this
optical field, (adm/an), is zero. Consequently, only the last term in Eq.
(34) is nonzero. Note that the energy difference, €qp? is modified by the
dipole energy, -edf, when the optical field is applied. This last term is
easily evaluated and the resulting linear susceptibility is, of course,
identical to Eq. (27).

16
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2.1.3 Higher-Order Susceptibilities

The various second- and third-order susceptibilities can be treated
in a similar fashion to the linear susceptibility in Eq. (33). As a note of
caution, the particular Taylor's series expansion (as used in Eq. (32)) must
reflect the experiment being considered., For example, in second harmonic
generation, there is only one electric field which is the optical field and
the Taylor's series expansion in three independent variables (the three
components of this optical field) as written in Eq. (32) is appropriate.
Then, the second harmonic susceptibility is immediately recognized as

(35)

where the full tensor notation has been explicitly retained. Again, perform-
ing the differentiation is relatively trivial when the change in interatomic
distance vector is zero, as it is for the case of second harmonic genera-
tion. The result can be written

2

i e 25 36)
‘ Xijk 2 .8 [(eB - ea)2 + 4638]572 (

and is obviously symmetric in indices, i, j and k which is consistent with
Kleinman's symmetry condition,?

2.1.4 Electro-Optic Susceptibility

- As another example, consider the linear dc (Pockel's) effect. The
electro-optic susceptibility is related to the changes induced in each dipole
f“ moment by both the optical and dc electric fields. This can be seen mathema-
g ’ tically by writing out the Taylor's series expansion for the i-th vector

17
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component of the dipole moment in terms of the six independent variables
{which correspond to the three components of both the optical and dc electric
fields):

3 p.
py (EOP,£9°) = p, (£ = 0,8% = 0) ] (Pt T ()
je1 of j=1 aES
i i
2 2
3 3 ap 3 3 3 p
1 i opt -opt 1 i dc.dc
+ (3) (——FE"ET + () 1 I ¢ JESE
77 55 ke) aEOPEREOPET I K 70 k1 ae%Cqde Tk
J k j Tk
2
3 3 3°p.
(1) 3T (%Pt . L, (37)

oy WL opt.-opt’"j "k
j=1 k=1 an ok,

The contributions from each dipole moment to the electro-optic susceptibility
arise from terms proportional to EgptEgc’ i.e., the last summation in Eq. (37).

Consequently, the electro-optic susceptibility can be written

2
B0 1 37Dy

Xin: = = {-—7- (38)
k@ cs aEgptaEkc

where the summation is over all nearest-neighbor coupled atomic states. The
derivative in Eq. (38) can be expressed in terms of a set of known parameters
by carrying out the differentiation on Eq. (30) as follows. The i-th com-
ponent of the dipole moment in Eq. (30) is a function of the variables d;, Vag
and e,5. We apply the chain rule to convert the derivative with respect

to Egp into separate derivatives with respect to these three variables.
Noting that d; and V.4 are constant in the presence of a high frequency
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optical field, Egpt, we find that the optically-induced change in the dipole
moment is!

2 2
opt opt /' 3¢ *
BEJ- an aB (EaB + 4va8)

This represents the contribution of each dipole moment to the first-order
susceptibility. By contrast, the dc electric field induces an additional

change in the dipole moment, involving terms in which include the lattice

response. Using the chain rule with four variables (d;, dj, Vqg and EaB)'
this second-order effect becomes

2y - [ S 2+ S Sy 2 ) 2
o ) . €
aEk an aEk 1 aEk J 3Ek af BEk 8
m—— g’
2 P
) v di:j 372 -ZV;B % dm (adzc) (40)
(2, + ave,) ¢“ m=1 ™ eSS

The evaluation of the lattice response to the dc electric field (i.e., the
factors, adn/aE:C will be treated as a separate problem in Section 2.1.5.
Then, the remaining derivatives in Eq. (40) can be expressed entirely in terms
of known parameters, assuming the crystal structure has been specified,
Performing these differentiations yields

2

2 (nn) v 3 o
E0 4e af m . 2 2
Xins = 3ed,d.d e , + ] ) [(e + 4V°© )
ikj Q o B (62 + 4V2 )5/2 { ik aB m=1 aEac af af

aB af k
2 2 2
(dicjm) + djaim) + 4(2VmB - eae)didjdm/d ] % (41)
19
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2 and the first summation is

where 8, is the Kronecker delta, €og = (ea - eB)

over coupled nearest-neighbor atomic orbitals,

2.1.5 Lattice Contribution to the Electro-Optic Effect

First, the dynamical matrix method will be used to describe the lat-
tice equations of motion in three dimensions for a generalized crystal struc-
ture, This method will employ only nearest-neighbor bond-stretching and bond-
bending force constants! for simplicity. Only the phonon modes at zero wave-
vector will enter the calculation of the electro-optic effect; however the
entire lattice spectrum is investigated in order to test this force-constant
model, Then the force on each atom in the unit cell, due to the dc electric
field, will be quantified by assigning an effective charge to each atom.
Hence, the displacement, in response to the dc electric field, of every atom
in the unit cell will be determined,

2.1.5.1 Lattice Equations of Motion

Consider a crystal consisting of N atoms per unit cell, When the
lattice is perturbed (by a dc electric field, for example), each atom in the
unit cell will undergo elastic motion in response to this perturbation. This
elastic motion can be modelled using a nearest-neighbor formalism similar to
that used in Eq. (41). 1In this model each atom in the unit cell experience
two types of forces when it is displaced from its equilibrium position. The
first is a bond-stretching force and is simply due to the radial change in
interatomic distance between *the m-th atom in the unit cell and each of its
nearest neighbors (atom 2), as shown in Fig. la. The second type force is a
bond-bending force and is due to the change in bond angles. For each atom in
the unit cell, there are two different kinds of bond angles to consider; one
involves two first-neighbors (atoms £ and n) while the other involves a first-
nearest neighbor (atom n) and a second-nearest neighbor (atom m“), These two
contributions to the elastic motion of the m-th atom in the unit cell are
illustrated in Figs. 1b and 1c, respectively.
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Equilibrium and non-equilibrium atomic configurations of nearest
neighbor atoms for: (a) bond-stretching forces, (b) bond-bending
forces with two first-nearest neighbors, and (c) bond-bending forces
with a first- and a second-nearest neighbor.
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The potential energy associated with the bond-stretching between
; atoms m and £ can be written

_ 1 2 ,.2
€on =7 COAdzm/dtm (42)

é where Cq is defined! as the radial force constant, Ad g, is the change in

E magnitude of the interatomic distance and d . is the equilibrium interatomic
E distance., Similarly, the potential energy associated with the bond-bending
i between atom m and nearest neighbor atoms & and n is

_1 2
€ -'2-CA9

Zmn 1%%mn (43)

where C; is defined! as the angular force constant and, A8, is the change in
the bond angle. Finally, the potential energy associated with the bond-
bending between atom m, first-nearest neighbor atom n and second-nearest
neighbor atom m” can be written in a fashion analogous to Eq. (43).

e —
B A

Using these three contributions to the potential energy, the total
force on the m-th atom in the unit cell becomes

.
fm=-Z§sm-ZZ6emn-'§Z§emnm,

£ n#g m-°#4

»

< 7 1 (C) g8V /a5 = 3 T L (Cy) gu W0y)

L

n

- %'2 gm (Cl)mnm‘§(Ae;nm‘) (44)

m‘
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where the summation for the bond-stretching contribution is over all nearest
neighbor atoms (%), the summation for the first bond-bending contribution is
over all combinations of nearest-neighbor pairs (2 and n) and the summation
for the second bond-bending contribution includes each first-nearest neighbor
atom (n) paired with all of its first-nearest-neighbor atoms (m“) excluding
atom m. The gradient in Eq. (44) is with respect to the displacement vector
associated with atom m. Note that there is only one set of angular force
constants for (Cy)ym, and (Cy)pnm-. The differentiations indicated in

Eq. (44) can be carried out in a straight-forward manner, First, for the 1
bond-stretching contribution, the change in magnitude of the interatomic

distance can be written explicitly as a function of the displacement vector,
Gﬁ, of atom m:

sd, =dv -d = (d

m am am (45)

> 2
m * Yem)/ o

where a binomial expansion has been used and only terms up to first order in
the displacements were kept. Here and throughout a short-hand notation is

used for the difference between two vectors, e.g., the displacement vectors in

Eq. (45) enter as U, = U, - Gﬁ. Then the gradient of ad,. is simply

L

mm
expressed as

W Va2 = 2d, (@, -, dy (46)

The bond-bending contributions are considerably more complicated, mainly due
. to the algebra. The change in bond angle can be related to the displacement
vectors, Gﬁ, as follows., In the equilibrium configuration, the cosine of the

bonding angle is
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cos 0, = (dy Jnm)/(dmdnm) (47)

written in terms of the interatomic distance vectors. For the perturbed
configuration, the cosine of the bonding angle becomes

> 2
unm/dnm)

cos 82 =[d,_+d (1-4d

mn am nm

> 2
am " Yan/%m = o

tdy Unm * o Jm]/(dmdnm) (48)

again using the binomial expansion and discarding terms second order or higher
in the displacements. The small change in bond angle is related to the
difference in the two cosines (Eqs. (47) and (48)) via the definition of the
derivative for the cosine, This change in angle can then be written as

- d cos 9

- >
Y d s U/ + (dop am ann)

ann = ~C{dpp = g oS By00) am’ 9 am

>

eu_d J/sin o

nm nm (49)

umn

where &m“ and énm are unit vectors directed between nearest-neighbor atoms.
Finally, the two gradients with respect to the displacement vector, Gﬁ, of the
square of the change in bond angle (after a fair amount of algebra) becomes
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2 +2 don 2 4m
¥(aely,) = (— )| == 4y, cose, - g (@, + 3 ) cos 8 4
sin BMndmdnm dm m
+ 3 €08 e amn (amn ) * amn + anm - g cos 8 m
m
dy 1 s . a2
oo dmocos 8y | (o =0y, + & * Un) * z J cos? 8 omn
m
; 1
- afg-(a + J n) €OS 8, + J cos e (Jﬁm . Jnm)g (50)

for the case of two first-nearest neighbors to atom m and

42

d

_ -2 m-n 2 m'n .3

§(A mnm‘) - (Siﬁzg' ‘E?’dZ ) dzmn aﬁn cos emnm" amn m-n<0S emnm‘ (aﬁn umn)
mnm“ mn m’n

+1d. - EFLJl d_cos o (d

mn ! ‘n
L mn mnm m

2 mn
+ - ——
aﬁn cos @ me T “n cos ©
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for the case of one first-nearest neighbor and one second-nearest neighbor to
atom m,

By substituting Eqs. (46), (50), and (51) back into Eq. (44), the
generalized equation of motion for the m-th atom in the unit cell is obtained,
While this equation of motion appears to be rather complicated on the surface,
closer inspection reveals that most of the factors (e.g., and doms Ogmn and
°mnm') are directly related to the unperturbed crystal geometry and also
that this equation is nonlinear in the displacements, The only parameters 1
which are not immediately in hand are the set of bond-stretching and bond- f
bending force constants ((Cy)gy and (Cy)gm, respectively). For simple crys-
tals, such as the binary semiconductors, the bonds are all identical (or
nearly so) and only a single pair of numbers is needed for Co and Cy. In more
complex crystal structures, the bonds are no longer equivalent and the
degeneracy in the force constants is broken. Methods for determining these
force constants have been, and are still being, investigated.13 Consequently,
for the problem being addressed here, it is assumed that these force constants
are known,

i “'“‘.m*‘ B e

2.1,5.2 Lattice Dispersion Curves

Now consider the complete set of equations of motion for each x-y-z
component, of each m-th atom in the unit cell, By assuming that all of these
motions can be described by Hooke's law (and that each atom undergoes simple
harmonic motion in response to any perturbation), the force on the m-th atom
in the unit cell can be written as

ot s

l-’m = -mezl;m (52)

where M, is the mass of the m-th atom, w is the frequency of vibration and
Gﬁ is the displacement vector of the m-th atom from its equilibrium position,
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as before. Equating these components of the force with those derived from the
equations of motion (Eq. (44)) gives a set of 3N coupled linear equations in
the terms of the 3N components of the atomic displacement vectors, Here N is
the number of atoms in the unit cell.

There is perhaps, one additional complication to the equations of

* motion that has been omitted up to this point. That is the constraint imposed
by the periodic boundary conditions associated with the crystal lattice. These
boundary conditions dictate that the vector displacements, Jﬁ and Jﬁ., of two
atoms located at equivalent lattice sites in two different unit cells must be
related by a phase factor corresponding to the periodicity of the lattice,

e, U .= Jﬁ exp (i€ - aﬁm,). One simple procedure for assigning the phase
factors properly is to multiply each component of the displacement vectors,
G,» by exp (iR - Fﬁ) where Fﬁ, is the vector distance from some fixed origin
to the m-th atom in the appropriate unit cell,

The lattice dynamical matrix, with dimensions of 3N x 3N, correspond-
ing to the right-hand side of Eq. (44) can be expressed in terms of the
coefficients given in Eqs. (46), (50), and (51) along with the phase factors
discussed in the preceeding paragraph. The matrix element, °hi,k-' is defined
as the coefficient of the j-th component of the k-th displacement vector as-
sociated with the i-th component of the force on the m-th atom in the unit
cell, It can be written

-ik.F ik.r. i.f
1 *m ‘m . )
¢ = - e JA, .d (6 ,e - 6,0 )
m1,kj H; g mmivamj Cmk 2k
; : nt.?l nt.r’m)
4 + B C d 6 . e -5 e
§ neg M0 " gmnt - amj Rk mk
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+D

m
+ Fzmnidzmj(énke - & )

d

Z Gmnm‘ mnm * i mnj(smke

ik.f ik
+ Imnn“idm'nj(cmke

* Jmnm‘idm‘nj(cm‘ke - Snk® )

ke, L8

+ K d "oose ) (53)

mnm “i mnj(am‘ke

where 6, 1s the Kronecker delta and the overall normalization, : !
exp (-iK o Fﬁ)/Mn, is the mass and phase factor associated with Eq. (52). The 1
various coefficients in Eq. (53) are defined by:

Aomi = ‘(co)zmdm/dzm (54)
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B = +(C,) . /(sinZe,_ d2 42 ) (55)
£mn 1/ amn amn- am T nm
d2
_ _nm 2 nm 2
Comni = Enmei = ra domi €05 Ogmn - T (dgmi * dpmi) €05 Ogmy * dpng €O Oppq
am
(56)
D = F =d +d LA cos 9 dJ’-ﬂd cos 8 (57)
mni anni ami nmi 3; mi won T d o nmi mn
) .2 2 2
Gmnm -~ = '(Cl)mnm‘/(sm emnm‘dmndm‘n) (58)
2
d d
_ m”n 2 m’n
Honm-i ~ :1'2_ doni €5 Cnam- = T Ym-ni €5 Cnnm- (59)
on mn
= - mn
Tonm-i = Knam=i = 9m-ni - amn doni €05 Snnm- (60)
J = d cosze - dm" d cos 8 (61)
mnm“j mni mnm~ a‘m,n m’ni mnm*
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where the triple subscript notation represents one specific component of the

vector difference (e.g, d, . = d, - ah)j = (az)j - (aa)j). The equations of
motion can now be written in matrix notation as

3
BERACN AT (M) (i) (62)

which has the form of an eigenvalue equation where (-Mmm?) is the eigenvalue and
(Gﬁ)i is one component of the eigenvector. This eigenvalue problem can be solved
by numerically diagonalizing the dynamical matrix at any given wavevector and the
solution results in a set of lattice dispersion curves (w vs K) associated with
the 3N eigenvalues, 1In addition, the 3N normal vibrational modes correspond to

. the 3N eigenvectors found during the diagonalization process. The dynamical #
% matrix elements (Eq. (53)) could be divided by Jﬂ;ﬁ; instead of -M, to put the
9 eigenvalue equation in Hermitian form; then the eigenvectors must be multiplied H

by Jﬁ; to obtain the components of the actual displacement vectors associated
with the normal modes. It should be emphasized that this procedure is applicable
to any arbitrary crystal geometry, with the only limitation being a computational
one due te an unreasonably large number of atoms per unit cell.

4 The above formalism has been tested on GaAs, a zinchblende semicon-
ductor. Using values for the force constants of Cy = 47.4 eV and Cy = 2.3 eV
gives the dispersion curves shown in Fig, 2. This result appears to exactly
reproduce Fig. 9-2 of Reference 1. A more detailed application was performed on
the wurtzite semiconductor, CdS, with Cy = 40 eV and Cy = 1 eV, First, the
forces and motion were assumed to be constrained to the x-direction exclu-
sively. The resulting dispersion curves are given in Fig. 3. Analytical
expressions have been derived at K = 0 in order to check these curves: w = 0 for

the acoustical mode and

W2 = (‘%'T s %,;)(c0 + 8, )
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Fig. 2 Lattice dispersion curves for GaAs.
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9M, M
oo vl + B, - ____l_Z__Z ¢, ) (64)
ﬁ; ﬂ; 0 71 (M1+M2) 1
P~ 9C, /(M + M,) (65)

for the optical modes. The appearance of this low frequency optical mode,
involving only the C, force constant, corresponds to pairs of adjacent planes of
CdS atoms shearing with respect to each other. Finally, the complete dynamical
matrix for CdS, allowing all three degrees of freedom, was diagonalized for the
same set of force constants (CO =40 eV and € =1 eV) and the resulting
dispersion curves are given in Fig, 4.

2.1.5.3 Lattice Response to a dc Electric Field

The same dynamical matrix, which was used to determine the lattice
dispersion curves (Eq. (62)), can be manipulated to give the response of the
crystal lattice to an external dc electric field, The dc field implies using the
dynamical matrix at zero wave-vector (K = 0). In order to find the perturbed
crystal geometry, the component of force on the right-hand-side of Eq. (40) is
replaced with the i-th component of the force exerted by the dc electric field on
the m-th atom in the unit cell. The resulting set of linear equations can be
written as

N

3
bty BT e e

where again e is the electronic charge, (e?)m js the transverse effective charge
corresponding to the my-th normal lattice viblational mode and E; is the i-th
component of the applied dc electric field. This results in only 3N-3
independent equations with 3N-3 independent unknown rel. ‘= displacements. By
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Fig. 4 Lattice dispersion curve for CdS with general (x, y, and z)
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defining these relative displacements to be with respect to the first atom in the
unit cell (k=1), Eq. (66) becomes

N 3
kzz JV o"‘i kJ.(Jk)j = e(e,‘f)miEi (67)

where the quantity [(Jk)j'(ai)j] corresponds to the 3N-3 unknown relative dis-
placements. This ahove equation is a consequence of

(68)

for each combination of m, i and j which can serve as a convenient computation
check. Equation (67) still represents a set of 3N linear equations but they are
not all independent; for example, the three equations with m=1 can be expressed
as a simple linear combination of the remaining 3N-3 equations. The solution to
Eg. (67), which will yield the perturbed crystal geometry, can be written
analytically in determinant notation as

[0 )50- (U))503 = det (e, ( * {e(e.‘f)miEi - o, kj}sk’k.cj’j.]/detumi kj]

(69)

where again Gk,k’ and Gj’j, are Kronecker delta functions. For N>2, this
solution becomes unwieldy and a numerical technique such as the Gauss-Jordan
elimination method 1s more appropriate. The implementation of this numerical
procedure is currently in progress using the standard and widely available
mathematical subroutine packages. Consequently, results utilizing this
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technique are not complete at present and the general application of this
method is still speculative.

One final note concerning the lattice response of a crystal to an
applied dc electric field is a reminder that the tight-binding formalism for
the electro-optic effect (Eq. (41)) depends on the change in th. interatomic
distance with respect to the applied dc field. This change can be expressed
using the notation of Eqs. (41) and (67) as

dy D)y - @] L)y - )] vy (70)
d d d c
3Ekc Ekc E E Ekc

in the limit of E:c approaching zero for d being the interatomic distance
between atoms m and n,

2.1.5.4 Transverse Effective Charge

The only missing ingredient in the above formalism for the lattice
response of a crystal to an applied dc electric field (Eqs. (67) and (70) is
the transverse effective charge, (ef o Traditionally, the transverse effec-
tive charge has been introduced in ordér to account for the local polarization
induced by relative disp1acements1 such as those described above in Eq. (62).
Experimentally, there is a splitting of the optical mode frequencies for polar
crystals, even at zero wave-vector (K=0). This splitting14 is a consequence
of the added rigidity in longitudinal (but not transverse) lattice modes
resulting from the local polarization density induced by the relative dis-
placement of a pair of neighboring atoms with unequal charges. Additionally,
this same charge quantifies the coupling between the transverse lattice
vibrations and light (i.e., optical electro-magnetic waves) leading to the
name: transverse effective charge,
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The well-known Lyddane-Sachs-Teller relation can be expressed in
terms of a transverse effective charge as follows. Let the optical dielectric
constant be

e, = 1+ dmyy (711)

and the static dielectric constant becomes

€ = 1+ 41rxe + 4"Xi =gt 4"xi (72)

where x, is the electronic susceptibility and x; is the ionic susceptibility.
Now consider two atoms with charges of +q and -q vibrating against each other,
with a lattice coupling spring constant, x. The equation of motion for this
system is

(uy - u)) = a(&) = a(#)/x; (73)

where (up - “1) is the relative displacement of the two atoms, AE is the
induced change in the dipole electric field. The induced change in
polarization density, aP, is

W = 12 Q,u;/% = aluy - uy)/9 (74)
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where Qg is the volume occupied by the two atoms. Then, the ifonic suscepti-
bility becomes

x; = /(%) = a¥/(ggudd) (75)

where u = K/m% is the reduced mass. Finally, the Lyddane-Sachs-Teller
relation14 is

€0
= E-- 1+ 4'nx1./€°° (76)

FrdeEro

using Eq. (72). This can be rewritten as

of - of = ang’/(gque,) (77

j.e., the difference in the square of the longitudinal and transverse optical
mode frequencies is proportional to the effective charge, q, squared.

The concept of transverse effective charge can now be generalized to
accommodate a crystal of N atoms per unit cell, The vibrational motion of
each atom in the unit cell has been previously described in Eq. (62).
However, this equation treats the eigenfrequency of each normal mode without
accounting for the change in local polarization density induced by the
relative displacements of the atoms. The i-th component of this extra force
on the m-th atom in the unit cell is

N
Fmi = ;;2“ kzl ez(e$ mi(e¥)k1[(ak)1 - (Jﬁ)il (78)
38
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and it should be added to the lattice equation of motion (i.e., Eq. (62)).
Kere, there is an effective transverse charge associated with each normal
(lattice vibrational) mode of the crystal. Then, if the approximation that
the eigenvectors for the longitudinal optic modes are invariant to this
additional perturbation is made, a generalized form of Eq. (77) is obtained:

2 4mez(e*T)m. N
(f -y, = o O C DR CANICAY (79)

1

where M, is the mass of the m-th atom in the unit cell,

For simple crystal systems, it is possible to use Eq. (79) to infer
values for the various transverse effective charges from experimental Lyddane-
Sachs-Teller splittings in the optical modes of the lattice vibrational
spectrum. However, an approach more aligned with the philosophy of the Bond
Orbital Model would be to develop a formalism to predict these transverse
effective charges from first principles. The predicted values could then be
compared directly to experiment via Eq. (79). In either case, the numerical
values for (eir')m1 could then be substituted back into Eq. (67) to give the
lattice response of the crystal to an external dc electric field. Finally,
this result would permit the numerical evaluation of the ionic contribution to
the electro-optic susceptibility (Eq. (41) to be completed.

2.1.6 The Electro-Optic Effect in Te0,

The chemical bonding in tellurium dioxide can be characterized as a
mixed tetrahedral complex in which the tellurium atoms have fourfold coordi-
nation while the oxygen atoms have only twofold coordination., In this respect
it belongs to the class of materials X0p, containing compounds such as 5i0,,
T102, and AIZPO4, which has received considerable attention.1 In this class
of complexes, an atom X is covalently bonded to four oxygen atoms approxi-
mately in a tetrahedral configuration. However, in order to describe the
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electronic and lattice features of crystals from this class in a simple bond
picture, it is more appropriate to choose as a molecular bonding subunit an X-
0-X structure comprised of two X hybrid orbitals and the atomic orbitals of an
intervening oxygen.1 Such subunits are analytically coupled so that effects
such as susceptibility may be approximately calculated by adding the effects
of independent bonding units, It is a generalization of the Bond Orbital
Model of tetrahedral semiconductors, This choice of bonding subunit greatly
simplifies the calculations in the relatively complex crystal structure of
this class of materials, and yields a reasonable estimate of various optical
properties like the electric susceptibility. Although the crystal structure
of Te0, contains a large number of atoms in the unit cell and the detailed
structure of the Te-0 bonding is in fact more complicated than that in Si0,,
similar aspects of the bonding structure suggest a parallel approach to cal-
culating the susceptibility. Therefore a simplified bond scheme will be
applied to TeO, in order to calculate a specific second-order susceptibility:
the linear dc electro-optic effect.

Te0, is an optically anisotropic (positive uniaxial) crystal and is
commonly used as an acousto-optic material.1%:16 The linear dc electro-optic
coefficient,17 other nonlinear optical properties,m'22 and elastic, dielec-
tric and piezoelectric properties,23 have been experimentally determined.
Consequently, a comparison of the Bond Orbital Model prediction for the
electro-optic effect will be made with the experimental result.,

2.1.6.1 Crystal Structure

Tellurium dioxide has the point group symmetry 422, consistent with
the space group P41212.24 The lattice constants are a = 4,7964 and
¢ = 7,626A, with four tellurium atoms and eight oxygen atoms per unit cell,
Each tellurium has four oxygen nearest neighbors. Each oxygen has two
tellurium nearest neighbors at different distances 1.92A and 2.09A while the
Te-0-Te bond angle is 140.8°, The properties considered here vary as the
square of the distance and an average of 2.00 A will be used. The crystal-
lographic unit cell is shown schematically in Fig, 5.

40
C4663A/bw

AR A o PR L ool . 3 s oo i <en e EE————




‘l‘ Rockwell International

Science Center
$C5266.2FR

DN

/ (b)

(a)

o~ —

-
. \

NN
QA 4

AN
f—& ) \‘\:;\\‘2‘—\

\
/

R

{c)

TeO, unit cell with nearest neighbor bonds: (a) 3D perspective,

Fig. 5
(b) viewed down the x-axis, and (c) viewed down the z-axis.
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2.1.6.,2 First-Order Susceptibility

Following the Bond Orbital Model formalism presented for SiOz,1 the
Tinear susceptibility of TeO, can be obtained by calculating the polariz-
ability of each Te-0-Te molecular unit and then summing the eight resulting
dipole moments over the unit cell (normalized by the volume of the unit cell).

As an approximation, the electronic structure of a symmetric Te-0-Te
) subunit may be determined by considering an atomic p-state on each tellurium
atom to be spatially directed toward the oxygen atom. This atomic p-state
must, in the real system, be some sort of s-p hybridized orbital since each
tellurium atom has four nearest neighbor oxygen atoms while only three
p-states are available for these four bonds. The two unoccupied tellurium p-
states in the Te-0-Te subunit will only significantly interact with the two

occupied oxygen p-states in the x-z plane, as illustrated in Fig, 6a. (The

S

oxygen s-state is ignored because its energy is considerably lower than any
tellurium state. The s-state on the tellurium is not included since it is
occupied and the only unoccupied states are orthogonal tellurium p-states.

- g g

Lastly, the py-state on the oxygen is also orthogonal to these tellurium
s-states). To further simplify the calculation, only the ppo coupling will be
included since it is a factor of four larger than the ppw contribution.
Referring to the states identified in Fig. 2a, the bonding (Bx and Bz) and
antibonding (A, and A,) states for the symmetric Te-0-Te unit in the x and z

-

directions, respectively, are:
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Fig. 6 Te0, molecule subunit: (a) atomic orbital assignments and
(b) coordinate system for unsymmetric subunit,
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1
B, =5 [T =8 (lpy> + Ipy>) + /Z+728 |p,>]
1
B, =5 [T -8, (-lpp> + Ipp>) + 2 +728 [p,]
(80)
1
A =5 /T8 (lp> + Ipy>) - /Z7-28 [p,>]
1
A, =% [T+ B, (-lpy> = Ipp>) + V2 - 28, |p,>]
where
§ B, = V3/l\T§ + Z\FSDO sin‘ ¢
(81)
7
' B, = V3/N3Z+ ngpo cos* ¢ .
The polar energy for Te0, is
eTe . t:0
Vy = BB = 3,59 eV (82)
while the Vppc plays the role of a covalent energy for the symmetric subunit,
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using the parameters introduced in Ref. (11).

To calculate the polarizabilities of the Te-0-Te subunit, the
perturbation of the polar energy, in response to the optical electric field,
is considered. This perturbation is eExx or eEzz for the x and z directions,
respectively. Writing out the x and z bonding wavefunctions in a first-order
perturbation-theory expansion of the antibonding wavefunction gives a
polarizability of

2 2
i 2e2 By |x; A
‘A, ~ B,

1 1

o (84)

where 881 and eAi are the bonding state and antibonding state energies given

e ]
B.
11_ 1 (ETe . eg)s-}v3/81 . (85)

is 7 {+

Evaluating the dipole matrix elements in the usual fashion,1 the
polarizabilities become 1

. - ez d2 Sinz 2 2
R SRRV

. 2e2d2% cos?y (1-8.8,) 88
z Vi B .+ B ’
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Numerical evaluation of Eq. (86) for Te0O, yields
a = +0.533 A°
(87)
a, = +5.04 B,

The first-order susceptibility tensor component, x$§)» js defined by

where P; is the induced polarization density and Ej is the optical electric
field. We could obtain a susceptibility by averaging the effect of each unit
over angle, giving (a, + a,)/3 (since ay = 0 in our description) and multiply
by the density of bonding units N, = 8/(a2c) (or oxygen atoms):

-

-/ ML N, (@ + a)/3 = 0,085, (89)

As another alternative, the tensor Xi j for the real crystal is determined from
the bonding subunit polarizabilities by summing over the eight subunits in the
unit cell as follows. The electric field along the j-th crystal coordinate
axis must be transformed into an electric field vector in the coordinate
system of each Te-0-Te subunit. The x and z components of this transformed
electric field induce a dipole moment

B=a E x+aEz
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- in the Te-0-Te subunit coordinate system., This dipole moment then must be
transformed back into the crystal coordinate system. Finally, xgl) is
calculated by summing up the i-th components of the transformed dipole moments
from each of the eight Te-0-Te subunits and dividing by the volume of the unit
cell, Note that the transformation between the crystal axes and each Te-0-Te
subunit coordinate system is different (see Table 1),

In a coordinate system of the crystallographic axes, the calculated
; linear susceptibilities are

(1. (1) _ .
X1 = X' = 0.092

\ {91)
l x( ). 0.071
1 33 7 *
X
4
Note that these first-order susceptibilities are simply the sum of the

individual bond polarizabilities and do not include any corrections due to
bond-bond interactions or local field effects. Corrections of this type are

sometimes semiempirically taken into account by introdyuing a scaling factor, :
y! This scaling factor enters in x(;) as 72 and it is used to match the f

calculated values of st) with those derived from the experimentally measured

refractive indices using the relation

1
ny =yl + 41rx$1 ) (92)

Comparison with the experimental values for the ordinary and extraordinary
indices, n, = 2,26 and n, = 2,41 respectively.l8 7ields an average vy = 2.1,
The significance of this value is that it can now be used for the calculation
of the second-order susceptibility without introducing additional scaling
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- parameters, It should be pointed out that the calculated sign of the bire-
fringence, an = Ne = Mo» is predicted incorrectly, Within the context of the
Bond Orbital Model, the sign of the birefringence is specified strictly by
crystal geometry, These differences in the ordinary and extraordinary indices
are perhaps be due to the bond-bond coupling or anisotropic local field

effects.

2,1,6.3 Second-Order Susceptibility

The second-order susceptibility, xgi;, may be divided into two
parts: an electronic part and an ionic displacive one. The electronic
contributions arise from the changes in the first-order electronic polariz-
ability due to the application of a dc electric field while keeping all atomic
positions fixed. Calculations in TeO, (point group symmetry 422) show that this
electronic contribution vanishes in accordance with the Kleinman's symmetry

criterion.2 The ionic displacive contribution is determined by perturbing the

-"Q{f’,s?‘.‘M

crystal geometry with a dc electric field, as described below, and then recal-

culating the first-order susceptibility using the formalism given in Sec-
tion 2,1.6.2., We hold the crystal surfaces rigid or clamped and then do not
jnclude any distortion arising from the piezoelectric effect. The second-
order susceptibility, and hence the “c]amped"4 electro-optic coefficient, is
then proportional to the difference between the two linear susceptibilities
associated with the perturbed and unperturbed geometries.

In determining the ionic displacive contribution in the clamped case,
the only important degrees of freedom for the electro-optic effect correspond
to the IR-active optical modes in which the displacement of an atom gives rise
to a net change in the electrical dipole moment. Since the ratio of the Te
mass to the 0 mass is about eight, one can, in principle, decouple the problem

. of finding the acoustical modes from that of the optical modes. Therefore,
only the vibrations of the oxygen atoms in an immobile tellurium lattice will
be considered and any coupling between the various local oxygen modes will be
neglected. (Note: a detailed description of the vibrational modes in
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paratellurite has been given elsewhere.zs) Thus, again consider a bonding
subunit Te-0-Te as in Fig. 6 and now distinguish the two bond lengths which
were neglected in the preceding. Letting the elastic motion of the oxygen be
characterized by a "bond-stretching" force constant, Cos which describes the
change in Te-0 interatomic distance. and a “bond-rocking" force constant, C,
which describes the tilt of the Te-0-Te unit out of the x-z plane, the elastic
energy can be written

L (4 -dp? gy - dp)? 2
Erzlo—g 7l gtz (%) (93)
1 2

where d'l and d'z are the time-dependent Te-0 bonding distances, di and d, are
the corresponding equilibrium distances and &8¢ is the angular tilt. Here, the
"bond-bending" force for the Te-0-Te bond angle has been neglected because it
is much smaller than the "bond-stretching" force and any oxygen displacement
in the x-z plane causes changes in bond length. For the coordinate system
shown in Fig. 6b, the equations of motion for the oxygen atom (to first-order
in the displacement) are

X3 xh *o%1 | XoZ2
- M wZAx = CO[(T + T] AX = (T + —T—)AZ]
d d d d
1 2 1 2
2 9
- Moty = - —— ty (94)
X
0
0?1 2§ 23
- Mw2az = - Co[- T— T) Ax + (T + T) AZ]
d d; d 4

where 2z, and z, specify the tellurium positions and X, gives the location of
the oxygen atom, (Note that the motion in the y-direction is completely
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uncoupled from the x and z motions,) In the approximation of a symmetric
Te-0-Te unit where dy = d, and Zy = Z, the three normal vibrational modes are
purely along the x, y and 2z axes with the eigenfrequencies given by

2
. 2 C° sin4s
(l)x- 2
M d1
c1
9; = - (95)
X
2
. 2 Co cos <8
wz-———z——-—
M d1

respectively, where 6 = (v - 8')/2 and 9' is the Te-0-Te bond angle. For the
unsymmetric case, the equations of motion can also be obtained in closed form
and the resultant set of vibrational modes and frequencies only deviate a
small amount from the symmetric case.

The three local mode frequencies w,, wy and w, will be the same for
a1l the oxygen atoms in the unit cell, Allowing for some small frequency
distribution for the various oxygen atoms due to coupling between different
modes through the tellurium atoms in the real crystal, this local mode
approximation leads to three sets (or bands) of optical frequencies, each
centered at the local mode frequency given by Eq. (95). Indeed the experi-
mental infrared reflectivity data2t show distinct bands which can be inter-
preted as arising from the oxygen local modes., This predicts immediately a
ratio w/w, = tan 6 = 0,36, Assigning the centers of the two highest bands to
the frequencies of uﬁxP.t = 0.70 x 1014 sec-! and wzexp't = 1.45 x 1014 sec-!
for the bond-stretching local modes and the third one with a frequency
of u;xp't = 0.33 x 1014 sec-! for the rocking mode of the Te-0-Te subunit, we
find w,/w, = 0.48. The following estimates for C, and C; are obtained from
Eq. (95):
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Co = 116 ev
(96)
cl = 8.0 ev
where C, was determined from the average fit to wixP t and w§Xp't.

The magnitude of these values for C, and C; are in reasonable agreement with
estimates for bond-stretching and bond-bending force constants in semicon-
ductors.l It is worth mentioning here that due to the Hecoupling of the bond-
stretching modes (w, and w, above) from the Te-0-Te bond-rocking mode (qy).
the frequency of the latter is determined by Cy only and is therefore "softer"
than the bond-stretching modes. As it turns out, this softer mode makes the
major contribution to the electro-optic coefficient since it is most affected
by the dc electric field,

In order to estimate the motion of the oxygen atoms in response to an
applied dc electric field, we introduce a transverse effective oxygen charge
1 It is defined to be the electric dipole
interaction by a single oxygen, divided by the displacement. Expressions to
determine these effective charges in terms of the Bond Orbital Model
parameters already introduced have previously been derived! for the Si-0-Si

eT* associated with each mode,

unit. Using the same expressions for Te-0-Te:

(e), = 2* =8, +8

2

Z*

+

(e2), (3 sin?0 -1) 8 (1 - %) + 3 sin% (1 - 82)

2 2

1*

+

(e,?)z (3 cos“e - 1) az(l -Bi) + 3 cos"® Bx(l - Bi)
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where 8, and B8, are given in Eq. (81). Numerically evaluating the parameters
for a symmetric Te-0-Te subunit gives

(e’T*)x = 1.40

(ef), = 1.02 (98) i
?
!

(e¥), = 2.60. :

1 Experimentally, these tranverse effective charges give the local

§ polarization induced by the relative oxygen displacements and hence the

z splitting between the transverse and longitudinal optical modes, For each
mode, the transverse effective charge is shown, in Section 2.1,6.5 below, to

;f be given by a Lyddane-Sachs-TeHer14 relation
2 - w2 = 2 a2
wo - Wy 41l(e¥) e /3mﬂoe1 (99)
where e is the electronic charge, M is the mass of the oxygen, % is the i
average volume per oxygen atom and e1(= €,) is the optical dielectric con-
T stant. Using this relation along with the approximate experimental splittings
) of (wEo - w%o) = ,093, .028 and ,.326 sec'2 for the x, y and z modes respec-
< . tively, we obtain experimental transverse effective charges of
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(ex), = 1.75

(), = 0.9 (100)
(e‘T‘)z = 3,27

which can be directly compared with the theoretical estimates given in
Eq. (98).

The force, F;, in the i-th direction on an oxygen atom is given by
- dc
Fi = e(ef)i Ei (101)

where E?c is i-th component of the dc electric field in the coordinate system
of the Te-0-Te subunit, Finally, substituting this force into Eq. (94) gives
the components of the displacements, which can simply be written as

-e(eg), Ef°
i

for the symmetric Te-0-Te subunit, (The displacements for the unsymmetric
subunit can also be obtained in an exact (but more complicated) closed form.)
These displacements can now be used to generate a perturbed crystal geometry
for an appropriate dc electric field and the first-order susceptibility can be
recalculated, as in Section 2.1.6,2,
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The defining relation for the second-order (electro-optic)

susceptibility, xgﬁ), is

= IH) s 1 (2) (i) 2Pt z X £ (103)

where, as before, P; is the induced polarization density, x§¥) is the first-

i
order susceptibility, Egpt is the optical electric field, Ek is the dc elec-
tric field and X§j represents the "total" susceptibility. The electro-optic

susceptibility tensor is then obtained from the difference:

T T ,ed 2) (d
g = xg(E%0) - xqy(E%=0) = T xify € (104)

where each particular component of the tensor is determined by considering a
specific direction for Edc.

The procedure for predicting this electro-optic susceptibility is
somewhat similar to that used for the unperturbed linear susceptibility.
First, a dc electric field, Ek , is applied in the crystal coordinate system
of each Te-0-Te subunit and the relative vector displacement of each oxygen,
induced by this dc field, is calculated according to Eq. (102). Next, the
vector displacement of each oxygen, given in the Te-0-Te subunit coordinate
system, must be transformed back into the crystalline axes thus determining
the perturbed crystal geometry. The new linear susceptibility can now be
calculated and the electro-optic susceptibility obtained from the difference,
The process was carried out numerically for fields in each of the three
crystal directions for Ek . One computational difficulty was encountered
involving the magnitude of E If Ek was too small, then the change in
linear susceptibility was less than the computer round-off error in the
calculation. On the other hand, if E:C was too large, third-order effects
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began to appear. Realizing this problem and choosing an appropriate value for

the magnitude for E:c gave a 3 x 3 x 3 tensor for the electro-optic
susceptibility, in which all components are 2ero except for

_ - _ _ -7 cm
X213 = X312 = “Xjz3 = “x3gy = 0437 * 10 wrareeTe (108)

consistent with the symmetry of point group 422. In this numerical
evaluation, the result listed in Eq. (105) has been scaled by Y2 as discussed

in Section 2.1.6.2. Finally, the clamped electro-optic coefficient is given
by

"‘a. 4 5 - el | PR

A o -0.15 x 1077 =™ = _ 0.51 x 10"}2m/v (106)
3 S . statvolt .
e o
7 where the values for ng and n, are theoretical values calculated from Eq. (92)
] with the linear susceptibility also scaled using the same v,

An alternative to using the Te-0-Te subunits for calculating the
linear and nonlinear susceptibilities is to employ the bond-by-bond approach,
as has been typically done with the tetrahedral semiconductors. 1] There, the
first-order susceptibility can be written

) 1) & ; V5 4, 10)
. X = -—1r-—1r{}7 107
- 1 v bonds (V2 + V3) 2
- 3
where e is the electronic charge, v, V2 and V3 are defined in terms of sp
d hybridization in Ref. 11, d, is the m-th component of the interatomic distance
] - vector between the bonding atoms, v is the volume of the unit cell and the ’
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¢ summation is over all bonds in the unit cell. Applying this method to the
sixteen bonds in the Te0, unit cell gives first-order susceptibilities of

D ) - 0.as i
(108) i

(1),
X33 0.232

which can be compared with Eq. (91) after accounting for the use of a slightly
different vy = 1,77 as listed in Ref, 12,

The electro-optic susceptibility and electro-optic coefficient can
then be determined within the context of this bond-by-bond method by using
Eqs. (103), (104) and (105). The results are

(2) _ () _ _ (2) _ _ (2) _ -7 __¢cm
X213 = X312 T 7 X123 T - X3p1 = 017 x 107 ey (109)
and
_ -7 cm - -12 m
J F41 = - 0.11 x 10 m = - 0.37 x 10 v (110)

which compare reasonably well with Eqs. (105) and (106) even though the
assumptions about tetrahedral coordinate that went into Eq. (107) are somewhat
dubfous for TeO,.

f . 2.1.6.4 Discussion

The relatively close agreement in the results of the molecular
Te-0-Te subunit approach and the bond-by-bond approach suggests that the
details of the electronic structure may not be as important as the crystal
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geometry., This is because the non-zero tensor elements of the susceptibility
arise when the components of the dipole moments do not exactly cancel when
summed over the unit cell. The extent of the cancellation is strictly a
geometrical effect and the results are relatively insensitive to the
parameters that represent the electronic structure.

An experimental value for the "unclamped” or constant stress electro-
optic coefficient, rIl, in Te0, has previously17 been determined to be

T

5= - 0.76 x 1012 mpy (111)

r

The above calculations predicted the "clamped" or constant strain
coefficient, ril, which can be related to the "unclamped" coefficient by5

s _ T
Fa1 = Ta1 ~ Pag 934 (112)

where paq is a shear photoelastic constant and dy4 is the piezoelectric
constant. The magnitudes of both psy4 and dy4 have previously been
measured:15+27 |p44| = 0.17 and |d14| = 0,81 x 1011 C/N .

Substituting in these numbers into Eq. (112) yields two possible
experimental values for the “"unclamped" electro-optic coefficient, depending
on the sign of the product (pgs dy4). For (pggq dig) negative,

rjl = + 0.62 x 10712 myy

and for (p44 dy4) positive,
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rfl =218 x10 %y (118)

This pair of numbers can now be directly compared with [qs. (106) or {110).

If {pgs dyg) is less than zero, then the magnitude of the predicted electro-
optic cvefficienl ayrees remarkably well with experiment but a discrepancy
exists in the sign. The theory determines this sign solely from the crystal
geometry, On the other hand, if (p44 di4) is greater than zero, then the sign
agrees but the magnitude of the prediction is approximately a factor of four
too small, The theory predicts, then, that Pas and dys have the same sign.

2.1.6.5 The Lyddane Sachs Teller Relation For Te0,

The optical vibrational modes for Te0, can be rather well separated
into three distinct sets, with frequencies ey Uy, and wy e If there were no
dipoles associated with them, these oscillators would be treated as identical,
with Ny modes per unit volume, where Ny is the number of oxygen atoms per unit
volume,

To understand the small shifts in frequencies due to electrostatic
forces, consider a particular set of oscillators, say those of frequency,
w,. These are degenerate vibrational modes, one for each oxygen, and could be
equivalently written as modes with well- definedirgv?number 9y giving each
local oscillator a displacement amplitude of de , where rj is the
atomic position, and this will in fact give the modes which interact with
infrared optical fields of a corresponding wavenumber,

As a first problem, assume that every oscillator moves in a direction
exactly parallel to the wave-vector, K, which has been chosen. {This will
never be the case, but will make the calculation clear for the interesting
case.) If the dipole moment is given by (e*) times the displacement of the
atom (this is the definftion of the transxerse charge (e ) ), then the
polarization density is P = No(ef)z i(k'rj -t , where u is the vector

amplitude parallel to K. The electric field is obtained from the charge
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accumulation, -iK+ #, through Poisson’s Equation, By dividing by the
electronic dielectric constant, the net field, and hence the force on each atom
given by e(e;)z times the electric field, is determined and leads to a shift

in frequency. This gives the familar Lyddane-Sachs-Teller result for the
difference between the longitudinal frequency, w > and the transverse
frequency, wr,, (for which there is no charge accumulation and therefore no
shift in frequency). It is

£ & = anlen? e, . (115)

If we now examine the relevant case for Te0, where the orientation of
the polarization vector for the w, mode is different for each different
oxygen, similar charge-polarization-modulated modes result which, without
coupling, all have the same frequency, However, in this case, the dipole of
each mode makes an angle ej with K so its contribution to the polarization
density is reduced by a factor of cos 6;. Furthermore, the force felt by the
dipole along its direction of motion due to the field of all other dipoles is
reduced by cos ej so it behaves exactly as if it were aligned with the field
but had its effective charge reduced by a factor of cos ej. If every dipole
had the same ej, the Lyddane-Sachs-Teller relation given above would be valid
but with (ef i replaced by (ef)i coszej. Clearly in our averaged treatment of
the local modes, coszej should be re-laced by its average, one third, for the
case of random orientations.

The distinction between longitudinal and transverse modes in this
scheme must be clarified., The phase for each local mode was chosen so that
' the sign of the polarization along K was the same for neighboring atoms,
corresponding to a longitudinal mode. Had a particular transverse direction
been selected and the sign in that direction chosen to be the same for neigh-
boring atoms, a mode with transverse polarization would have been obtained but
the longitudinal components would have cancelled on average, and there would

59
C4663A/bw




‘l‘ Ro;:kwell International

Science Center

SC5266.2FR

have been no shift in frequency. Clearly, at long wavelengths, there are
longitudinal and transverse optical modes just as there are longitudinal and
transverse acoustic modes., There is no difficulty for the long wavelengths of
interest here and the relation for our system becomes

£ = el efny/(ame) . (116)

The corresponding expressions, with the same factor of one third, may be
written for the x- and y-modes.,

i o o

2.2 Experimental

2.2.1 The Electro-Optic Effect in Tl AsSeq

.= w‘ ‘5-“

We have completed measurements of the linear electro-optic tensor f
component (r. = +1.,5 x 1012m/V) for the chalcogenide salt T13AsSes (TAS). TAS '
crysta1111e528 the trigonal space group R3m, with the point group 3m. This
implies the electro-optic tensor has the following form: 4

- A

. rp 0 r13
-rp O ri3
0 0 r33
: Fij = (117)
. 0 P51 0
- ' r‘51 0 0
| 0 -rp 0

The dc electric field was applied along the crystallographnic z axis. With
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the light propagating along x, polarized 45° from Z towards y, and the dc
! field applied along z, the dielectric impermeability tensor? has the form

+L 0 0
"o
_ 1
Bij =10 —5 + r13E3 0 (118)
n
0
0 0 N I
n 2 33°3
e
Multiplying by the appropriate polarization tensors, we find: f
- 0 0 \ /o\
n
0
o = - 1 1
pB-/2_(011) 0 n2+r13E3 r 1
0

3373

o
o
3
2 N,n—'
+
-
™
\
i
b
\

]

Uy
+
&

(119)
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which implies that
8 =1 (ryq + roa)E (120)
2 13 3373
For this propagation direction, the effective index is:
2n n
ng = -t . (121)
leng + ngi .

If we assume the incident wave is linearly polarized at 45° to the
optical axis upon entry into the crystal, the propagating wave can be
decomposed into the two orthogonal modes (ordinary and extraordinary) in the
crystal, As the wave travels through the crystal, these two modes get out of
phase with one another due to their different propagation velocities. The
accumulated phase difference T at the exit surface of the crystal is given by:

. 2n
re s (ng = 1) (122)

where £ = the crystal length and Ay = the free-space wavelength. Thus the
emerging beam will, in general, be elliptically polarized due to the arbitrary
phase between the energy in each of the two modes., Experimentally, we may
quantify the ellipticity through the use of a Babinet Compensator and a final
linear polarizer analyser. The application of a transverse dc electric field
may affect this propagating beam in three ways. First because TAS is also
piezoelectric, the electric field may change the physical dimensions of the
sample due to electrically induced mechanical strain:
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In this case E; = E3 so we have
g = d3)E3
e, = d3;3 (124)
€3 = da;k,

The two strain components €2 and e3'do not produce a direct mechanical effect
on the sample which effects our measurement. However e, which is a contrac-
tion (or expansion) of the crystal along x, will change the physical length of
the sample. This in turn will produce a change in the phase at the exit
1 | surface, Although no direct experimental measurement of the piezoelectric
effect in TAS exists, we can assume that it is small consistent with similar
§ semiconducting materials like GaAs. Thus the direct mechanical perturbation
E will be ignored and the measurement will provide only the "unclamped" value
for the electro-optic coefficient. There is, however, a second-order indirect
effect often referred to as the converse piezo-optic effect in which the
electrically induced strain couples to the refractive index via the strain-
optic effect. The strain-optic effect produces on index change:

3
- n

where Pyj is the strain-optic coefficient and €5 is the strain component as
before. Then

3
n
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or we may define an effective converse-piezoelectric electro-optic tensor
component :

eff_
Fik = Pigd; (127)

The photo-elastic tensor for the point group 3m is given by:

Pl1 P12 P13 Pl O O \
Pi2 P11 P13 -P1g O
P3) P31 P33 O 0 0
Pij = (128)

Par-Pay O Py O 0

0 0 0 0 Py pg
0 0 0 0 P14 1/2 (pll - plz)

Again taking E, = E3, and noting the non-zero elements of both the Pij tensor
and the dkj tensor, we find the remaining non-zero components are:

n3

"
(an); = - 5= (pyydy + Pypd3y + Py3d33)E;

3
n
= - ‘% ((pyy * P1p)d3; + Pi3ds;3)Es (129)
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3
n,
(8n)y = = 3= (Py1d3; + Pppdyy + Ppydyy)Ey
;
= =3 (P * Ppr)dy) + py3dg3)Es
n
(an); = - 5= (P3)d3; + P3pd3; + Py3dy;)Ey
3
n3 ,
= =3~ (2(pgydq)) + Pygdyy)Ey & (130)

Thus we note that both the y and z components of the index (ordinary and
extraordinary respectively) will be affected by the dc elecric field. At
present, data for the magnitude of p;; and p33 have been taken at this
laboratory under company sponsored IR& program, but no data exists for the
remaining photoelastic components or the piezoelectric tensor components,
Thus although, as shown below, we were able to meiasure a value for the
"electro-optic" effect, it is at present not possible to quantitatively
separate out effect due to the piezoelectric effect and the converse piezo-
optic effect.

2.2.2 Measurement of the Electro-Opic Effect in TAS

A single crystal boule of TAS was grown from the melt using the
vertical Bridgman-Stockbarger technique,29 An experimental sample of dimen-
sfons 1.27 ecm x 0.54 cm x 0.56 cm was wire sawed from the boule, aligned using
back reflection Laue photographs, and mechanically polished. The sample geom-
etry is as shown in Fig. 7. In our early experiments a wire grid polarizer
was used as an analyzer after the crystal, A compensator was placed between
the sample and the analyzer. The compensator and analyzer were then adjusted
so that essentially no 1ight was transmitted through the analyzer to the
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. detector, As the dc electric field was slowly increased, a series of oscil-
lations in the signal level at the detector was observed (see Fig. 8). How-
ever, further experiments showed that these preliminary results were the
result of joule heating of the sample due to an excessive current flowing
through the sample when high voltage was applied. Indeed it was possible to
reproduce the oscillating transmission by blowing hot air from an electric
heat gun across the sample with no applied dc voltage. This excessive current .
was produced by a low value for the bulk resistivity in the sample. Rather |
than pursue the traditional methods to remove impurities and defects to obtain
intrinsic resistance, which tend to be extremely costly and time consuming, we
have chosen an altrnative approach. A high voltage pulser,27 shown in Fig. 9,
was used to apply pulses of high voltage to the sample. The pulse width was
kept short and the repetition rate correspondingly low so that the duty cycle

i was reduced and consequently heating effects were reduced if not eliminated.

3 The average power dissipated in the sample was typically of the order of

§ 1 mW. A high-speed (150 MHz) current-to-voltage amplifier was used in

’: conjunction with a small area InSb photodiode to observe the change in optical

5 transmission produced by the applied high voltage pulse. It should be pointed

; out, however, as shown in Fig. 10, the pulse was sufficiently long as to allow

time for mechanical response of the sample. That is to say, the measurement ?
was made under constant stress conditions (unclamped). The signal from the
amplifier was then fed to one channel of an oscilloscope and displayed simul- }
taneously with the high voltage pulse. The process of taking data consisted J
of (1) setting the amplitude of the high voltage pulse, (2) reading the ampli-
tude of the optical signal as a function of analyzer angle (over 90° of rota-

. tion) and (3) then repeating this process at several peak pulse voltages. One

- can show that for propagation of light polarized at an angle, a, relative to

‘ the optical axis, through a birefringent medium and through an analyzing

polarizer oriented at an angle, 6, (relative to the optical axis), the

resulting transmission will be:

b e ot B
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2 2 2 2

asin®e + cos“acos“e + 2sinacosOsinecos (sznn)

1(9 u) =-2-l sin
(131)

If the propagating medium is an electro-optic material oriented similar to our
sample, then an applied dc electric field will modify the term containing an
via the electro-optic effect. The difference in intensities with the electric
field on and off is

3

’ 2n2 "o eff
al(8,a,E) = IO sina cosa sin®é cos® lcos[ (an + 7 e E)]

- €os (2"1 An)l . (132)

Y

‘; This change in transmitted intensity as a function of analyzer angle, 8, for a
y given "dc" electric field is precisely the data we have obtained
experimentally. The data can then be numerically fitted to the above
expression to yield a value for rsz. Figure 11 shows a fit to the
experimental data. This process yields a value of reff =+ 1.5 x 1012 m/V at
T = 300K and A = 3,39 um, As previously indicated, more data is needed to
explicitly solve for each of the varjous contributions to this value., Future

studies on TAS hopefully will supply this information,

~
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3.0 CONCLUSION

In summary, the microscopic understanding of the electro-optic effect
has progressed substantially during the course of this program, A tight-
binding theory for dielectric susceptibilities has been specifically applied
to the linear dc (Pockel's) effect. The distinction between electronic and
ionic contributions was explicitly maintained., A formalism to address the
generalized lattice dynamic problem, associated with the fonic contribution to
the electro-optic effect, has been developed using a method which should be
applicable to all materials, e.g., ferroelectric crystals that exhibit large
electro-optic coefficients.
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