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CHAPTER 1

INTRODUCTION

In recent years, the use of stochastic systems becomes more extensive in
the study of complex phenomena. As the complexity grows, it is more and
more difficult in obtaining analytic results. Therefore, the use of computer

simulation to study complex stochastic systems has been widely adopted.

Typically, we first construct a model which captures the underlying structure

of the stochastic system. We then perform sampling experiments on the model
and analyze the simulation output sequences to make statistical inferences
about the bchavior of the syst;:m. Since results are based on the observations
from our experiments, it is important to develop theoretically sound and
computationally efficient methods for simulation output analysis. This is our

main concern here.

In general, we want to estimate parameters associated with the steady-
state distribution of a stable stochastic process. We use confidence inter-
vals for the quantities of interest to assess the statistical precision of our
point.cstimates. To construct confidence interval for the characteristic of
the system upder study requires the knowledge of the variance of the es-
timate. Different methods have been developed to evaluate this quantity.

The methods currently being used are the regenerative method, independent

replications, batch means, and an autoregressive approach. Except for the

1
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replication method, all methods are based on one output sequence recorded

. from a single simulation run.

The regenerative method is based on limit theorems developed for regenera-
tive stochastic processes; see Crane and Lemoine (1977) and Iglehart (1978)
for an introduction to and a detailed review of the regenerative method.
To use it, one has to. eiplore the_existence of a regenerative structure and
define an appropriate state vector to carry out the simulation. In practice,
simulations arise in which simulators may be reluctant to devote the time
required to do so or the regenerative .];roperty may be absent. In these cases,
alternative apprda.ches for simulation output analysis play an important role.
The autoregressive method is developed to cope with these limitations of the
regenerative method.

The autoregressive approach has been discussed by Fishman (1973, 1978).
In this .pa.per we discuss-an autoregressive method which is a refinement of
the old one and is generalized to multidimensional processes. In contrast
to the regenerative method, the autoregressive method, which is based on
theorems developed for stationary processes, is a method of approximation.
It relies on the assumption that the variance constant required for assessing
the precision of point estimates can be approximated arbitrarily closely by
the spectral density/,' function at zero of a finite order autoregressive process.
Instead of estimdﬁing the variance directly we use techniques developed for
tihe series analysis to get an approximation. This is our first goal.

Although simulation is useful, it can be a very expensive tool to use.
Since considcrable computer time is required for simulation runs, it is there-

forec important to obtain as precise results as possible from the simulation.

2
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The second goal of this paper is to develop several variance reduction tech-

! niques which can be used in conjuction with the autoregressive method for

1 obtaining additional vari.ance reduction for the estimate. Our approach to
this objective is to introduce some auxiliary processes, which are correlated

i with the original process under s.tudy; along with the original process and
apply the multidimensional version of the autoregressive method.

A natural starting pc_)int for achieving our objectives; is a review of the
h theory of stationary processes. Chapter 2 provides a review of the general
theory, applicable limit theorems, and some linear models of stationary p;dceéses.

We also develop some approximation theorems for continuous spectral density

F : function. It is then demonstrated that a continuous spectral density function

can be approximated arbitrarily closely by the corresponding spectral density

functions of some finite order linear models.

Chapter 3 provides the estimation method for strictly stationary processes.
This chapter contains a discussion of order selection criteria along with the
establishment of the consistency of estimates. In the last section, we estab-
lish some conditions which allow us to apply the autoregressive method to
simulation output data and justify the autoregressive method for certain
non-stationary processes. Hence, the method is applicable to the simulation
of discrete or continuous time Markov processes and semi-Markov processes.

Several variance reduction techniques, which enable us to shorten the.
confidence interval constructed, are developed in Chapter 4. In the applica-

tion of these techniques a new point estimate is formed by taking a linear

combination of the old point estimate and the point estimates obtained from

those auxiliary processes. The coeflicients of this linear combination which

3




-

..............
.............

minimize the variance of the new point estimate must be estimated.

To see how the method works, Chapter 5 contains several numerical
examples. They are (1) the waiting time process in an M /M /1 queue, (2)
the outflow process. of a lake model, (3) the passage time and response time
processes in a closed network of queues, (4) the queue lengf.h process in a
two—station single server cyclic queue. Except for the process in Example 4,
which is a semi-Markov process, all processes are Markdv processes. All these
processes are regenerative processes; hence we include the simulation results
obtained by using the regenerative method for comparison. In each example,
we are able to provide the theoretical values.

In Chapter 6, we examine the s;trengths and weaknesses of the autoregres-

sive method.




CHAPTER II

3, ~ STATIONARY PROCESSES WITH A
DISCRETE TIME PARAMETER

.‘ 2.1. General Definitions and Theorems

Let E be some measurable spa.;:;, ¢ a o-field of subsets of E with a
probability meas;.lre P. A random variable is a measurable function from F
to the real line R. A stochastic process y with discrete time parameter is a
family of random variables {y(n) : n € T }. Here, y(n) is the observation
at time n and T is the time range involved, where T = {0,1,2,...} or
T={...,-1,0,1,...}. And by a d—-dimensional random process y we will
mean a column vector consisting of d random processes {y;(n) : n € T},
ij=12,...,d,

y(n) = (y1(n), y2(n), ..., va(n)),

where / denotes the transpose of a vector.

(2.1.1) DEFINITION. (a) A stochastic process y = {y(n) : n € T} is ,
said to be strictly stationary if the joint distribution of y(n; + n), y(na2 + n),
..., Y(nk+n)is independent of n for every finite set of integers { ny, na, .. .', ni }
of T and for every integer n such that {ny + n,n2 +n,...,ni + n} C T,
ie, | |

P{y; (n1+n) € By,...,yj.(nk +n) E B } =
P{ yil(nl) € B,,. "’yjk(nk) € By }:
5
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for all Borel sets By, ..., By € £, and every subset { j1,72,...,5k } of {1,2,...,d}.
. . (b) A weakly stationary process y is a stochastic process having finite second
moments (E{ y:(r)?2 } < o), a constant mean p = E{y(n) }, and its covariance

function
R(n) = E{(y(n + m) — p)(y(m) - p.)‘ }s (2.1.2)

exists, is finite, and does not depend on m. Here * denotes the conjugate

transpose of a matrix or vector.

Obviously, any process which is';tationa.ry in the strict sense and has
finite covariance matrix is weakly stationary. Two weakly stationary processes
z = {z(n):n €T}and y = {y(n) : n € T} are said to be stationarily

correlated, if their joint covariance function

ol | Ray(m,n) = E{ (z(m) — pa)(y(n) = 12y)" },
exists and depends only on the difference m — n.

f_ (2.1.3) EXAMPLE. White Noise. Let ...,e(—1), €(0), €(1),... be a

sequence of d-dimensional random vectors with

E{e(n)} =0,
E{e(r)’} =G,

where Ois the zero vector and G is non-negative definite!, and such that any"

two different vectors are uncorrelated, that is,

E{ e(.n)e‘(m)} = Oy, for n# m,

'A matrix G is non-negative definite if a*Ga > 0 for any complex-valued vector cx.

6
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wherc Oy denotes the d X d zero matrix. Then the process € = {e(n) : —o0 <

n < oo} is weakly stationary with covariance function
G, k=0
R(k) =

The time series €(n) is usually called white noise.

04, otherwise.

(2.1.4) EXAMPLE. Stationary Markov Chains. Let {X(n):n > 0}
be a Markov chain for which the initial state X(0) is chosen accordixig to the

stationary distribution. Then { X(n): n > 0} is strictly stationary.

The class of covariance functions,-R, defined by Equation (2.1.2) can be

described by the following theorem.

(2.1.5) THEOREM. The covariance function is non-negative definite, that

is,
R(—n) = R*(n),
- 2.1.6
Y eiR(m-n)am >0, N=12,... (2.1.6)
m,n=1

for every set of complex vectors ay,...,an. Conversely, any function R

satisfying (2.1.6) is the covariance function of a stationarfr process.
Proof. Sce Doob (1953) p. 473.

(2.1.7) THEOREM. If R is-the covariance function of a weakly stationary

process, then

R(n) = /"' ™ F(d\),

-

where F is a matrix-valued function whose increments, F/(A\ ;) —F(\2), A\ >
Az, are Hermitian non-negative!. The function F is uniquely defined if we
require in addition (i) F(—) = 0, and (ii) F'(\) is right-continuous.

Proof. See Hannan (1970) pp. 34-37.

'A matrix F is Hermitian non-negative if I = I"* and F' is non-negative definite.

7




The function F is called the spectral distribution function and we can
_ write F in the form

F=Fac+Fa+Fd7

where F,. is éhe absolutely continuous part of F', F), is the singular part, and
" Fyq is the discrete part. If F' is absolutely continuous, (i.e., F, = Fq = 0y)
then ‘

DN
R F()‘)=/;"f(u)du,

where f is called the spectral density function. The matrices f(\) are also
Hermitian non-negative for —# < X < =; that is f()\) = f*(\) and
a* f(\)ae > 0 for every complex—valued vector ec. Throughout this paper,
we shall only be concern.e'd with real processes with absolutely continuous
spectral distribution functions. Since we deal only with real processes, { y(n) :

n > 0}, R(n) is real, and R(n) = R’(—n). A simple calculation

R(n) = /_ : e™ F(\) d\

= [ (=N dx
— /;" e—inkfl()\) d), (R (n) == RI(_n)),

shows that f(—=\) = f'(\). If ¥ oo __|Rij(n)|? < oo, then the numbers
R;;(n)/2x are simply the Fourier coefficients of the Fourier series expansion
of the function f;;(\), thus
1 < —inX '
FO) = o n;@R(n)e . (2.1.8)
Equation (2.1.8) is the Fourier series representation of f(\) and thus f

is continuous. Note that Equation (2.1.8) also follows from the condition

8
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Yo —wolRij(n)] < oo, since an absolutely summable series is automatically
square summable. The next theorem describes the class of spectral distribu-

tion functions.

(2.1.9) THEOREM. In order that the matrix function F be the spectral
distribution function of some weakly s;tationary d-dimensional process, it is
necessary and sufficient that the matrix F(\;) — F(\1) be Hermitian non-

negative for ¥ > X2 2 )\ 2> -m.
Proof. See Rozanov (1967) pp. 22-23. @

Before we state the next theorem, we need the following definitions.

(2.1.10) DEFINITION. A random process { 2(t) : —co < t < oo} is said
to have orthogonal increments if E{ (2(\1) — 2(A2))(2(As) — 2(As))" } = 04,

A1 > N2 2 A3 > A

(2.1.11) DEFINITION. Let z,,n =1, 2,... be a sequence of random
variables for which E{z2 } < co. Then z, is said to converge in mean square

to a random variable z if

lim E{|z, —z|>} =0. (2.1.12)

A necessary and sufficient condition that z exists satisfying (2.1.12) is

the Cauchy condition,

lim E{|zm —za|?}=0.

m,n— 0o

We now state the spectral representation theorem for stationary processes.

9




(2.1.13) THEOREM. Every weakly stationary process { y(n) : —o0 < n <

00} admits a spectral representation

y(n) = /_ : '™ z(d)\), (2.1.14)

where the process { 2(A\) : —m < A < =} has orthogonal increments and
E{ z(d\)z*(d\) } = F(d\).

Defining 2()\) to be right—continuous, it is then uniquely determined neglecting

a set in IY of probability measure zero.
Proof. See Hannan (1970) p. 41. B

The symbol d\, which appearls in integral (2.1.14), will be thought of as
a very small interval cont‘ainin_g . Also, d)\, du,... will be small intervals

containing X\, u,..., respectively. Then
F(d\), if M=y

Oa, if N5 p

The spectral representation can be modified if F°(\) is absolutely ;:ontinuous(cf .

E{2(d\)z*(dp) } = {

Hannan (1970) pp. 122-123, Rozanov (1967)pp. 39-41). In that case, if there
is a measurable matrix ¢(\) satisfying

oMo () = 20 = 5,

then there is a process {z;(\) : —x < X < =} with orthogonal increments

which satis(ies

y(n) = / ) e™ p(\)z1(d)\), E{z1(d\)z](d\)} = Id\, (2.1.15)

-
where Iy denote the d X d identity matrix. This represcntation will be used

later.

10
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2.2. Linear Transformations of Stationary Processes

Let y = {y(n) : —c0 < n < oo} be some stationary process whose

spectral representation is

) | y(n) = / ) e™ z(d)\).

-
We will say that the process z = {z(n): —co < n < oo } is obtained from y
by a linear transformation, if z admits a spectral répresentation of the form

z(n) = [_ ) ™ h(\)z(d)\),

where h()\) satisfies
/ R(\)F(d\R" (M) < co.
- We will call the functiox; h the frequency response function of the linear

transformation. The joint covariance function of z and y is
x x
E(=(m)y )} = B((|_ ™ ne@)([_ e s(an)'}.
= B{ /_ : /_ : e '™ B p(\)z(d)\)z* (du) }
= / § (M= R(\F(dN),  (cf. p. 10),
which depends only on m — n. Thus the statlona.ry processes x and y are
stationarily correlated as deﬁned in Section 2.1. Let us call F; the spectral

distribution function for z, F,, for y, and F, their joint spectral dlstrlbutlon .

function. It is not difficult to see
F:(\) = R(\)F,(MR"(N),
FuyN) = hF, ().

The conditions (2.2.1) are not only necessary, but also sufficient for z to

(2.2.1)

be obtained from y by a lincar transformation. This fact is proved in the

following theorem.

11
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(2.2.2) THEOREM. Let the stationary processes z and y be stationarily

_ correlated. In order that = be obtainable from y by a linear transformation

with frequency response function h, it is necessary and sufficient that the

spectral distribution functions F,, F, and F,, satisfy conditions (2.2.1).

Proof. See Rozanov (1967) p. 36. §

Remark. If the stationary process y has a spectral density f, then
a process z which is obtainable from y by a linear transformation with

frequency response function h also has a spectral density, which is given-by

£2(0\) = ()£, (VR (V). . (2.2.3)

Let us consider two examples of linear models known as moving average

processes and autoregressive processes.

(2.2.4) EXAMPLE. Moving Average Processes. A moving average
process y = {y(n): —co < n < oo} is defined by the following expression
. | [ -]
y(n)= D A(je(n—7), (2.2.5)
j=—o00 -
where € = {€(n) : —~00 < n < oo} is a sequence of uncorrelated random

vectors with covariance matrix G and {A(j) : —©0 < j < oo} are d X

d real matrices. Note that the process y is obtained from € by a linear

transformation with h(\) = 3% _ __ A(j)e~">. A necessary and sufficient

j=—co

condition for the series in (2.2.5) to converge in mean square is

> IAGE < oo,

j=—o0

12
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where ||-]| stands for any norm of a matrix. It is straightforward to see that
the process € has spectral density function (27)~1G. From Equation (2.2.3),
we easily obtain the spectral density function f for y,
“ . » *
) .f()\) — _( Z A(])e-’j)‘) G( Z A(j)e-tJX) ,
J=—00 § == —00
which is a continuous function. Therefore, the spectral density function of a

moving average process is absolutely continuous.

Alternatively, suppose we are given the stationary process y with ab-
solutely continuous spectral distribut‘;i-<->n function F' and spectral density f.
Since f(\) is Hermitian non-negative, f(\) can be diagonalized by an un.ita.r.y
B matrix Ut |

F(\) = UN)DN\U"(N),

where D()\) is a diagonal matrix and the elements of D are real and non-

negative. Define

(FO)Y? = vp)(PN) 2T (),

where (D.()\))I/ ? s obtained by taking the non-negative square root of all the
elements of D(\). Then (f ()\))1/2 is a Hermitian non-negative, measurable

function and
£ = (FO) A ((F )Y

Then cach element of (f ()\))1/2 is square integrable and has a Fourier series

expansion, namely,

(o) = Z A(j)e, 3 4G < oo,

j=—oo Jj=-o0

tSce, for example, Strang (1976) pp. 212-213.
13
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where | ‘i
. 1 T 1/2 i\ i

A() =5~ [_ (FO))77 e7ax. !

It follows from (2.1.15) that the spectral representation of y can be written

. ' o) = [ (00 (@
-l _ /"' einx i A(j)e—"")‘lzl(d)\)

- .
. J=—00

= 3 Ali)eln—3)

j‘—m -

where
1 e(n) = /_ , ej"f*zl(dx), E{ z1(d\)z}(d\) } = Iid).

" We see that {e(n): —o0 < n < oo} is a sequence of uncorrelated random
vectors. This shows that y is a moving average process. Thus we have proved

. the following theorem.

(2.2.6) THEOREM. A weakly stationary process is a moving average
process if and only if its spectral distribution function is absolutely con-

tinuous.
Proof. See Ronazov (1967) pp. 39-42. §

- ' The next two thcorems deal with stationary processes with absolutely -
continuous distribution having .spectra.l densities which are polynomials in

e~ . We first state the theorem for scalar case.

(2.2.7) THEOREM. If the spectral density function

- g g

P SO = > 4™ > 0, () =1(-37) (g)# 0,
- . J=-q .

14
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where 4(7) is real, then it may be represented in the form

1 xS i N
f\) = 5;' Z a(7)e™ 2,  af(j) is real, (2.2.8)
. J=0
where the polyno‘n;ia.l E;=o a(5)2’ has no zeros in the open unit disc.

Proof. We follow the proof given in Hannan (1970) pp. 62-63 . We consider
. . .
M@= Y 2.
Jm—gq
This expression has 2q zeros, counting each with its appropriate multiplicity.

Let zj be a zero whose absolute value is not 1, then 2! is also a zero because

4(5) = 4(~7). Thus the zeros different from 1 in absolute value can be paired

(2x, 2;1). Let there be r < ¢ such pairs of zeros taking each pair as often as
its multiplicity. Then there are 2s = 2q — 2r zeros of absolute value 1, say

e% k=1,...,2s. Then

r . 2s ]
700 =(a)e T ~ )™ = 57 [ (> - )

Jem=1 k=1
= fI (ea - zj)(e—;x _ 2j){7(q)F—i’x ]:I(“El_l) ]j: (ea _ ez‘Og)}.

jo=1 _ I=1 k=1
It follows that the bracked factor is real and non-negative. Moreover, the
derivative of the bracked factor vanishes at A\ = 6. becausc it is non-negative
and zcro at X = 0. Thus 0; occurs in pairs. The 2¢ zcros can be numbered '
and divide into two sets (z;,...,2,) and (2zg41,...,224) such that if |z, < 1
then zy4.x = E,:l and if |2¢| = 1 then zg4x = 2¢. Then

100 = S L 2t = 11 ali)e P,
i=0 |

k==1

15
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o(a)? = 209(a) TT () TT (=)

Ju=] k==1

Since the cocfficients in M(z) are real, the zeros are real or occur in conjugate

pairs. Then a(j) will be real. 8

Note that (2.2.8) is the spectral density function of a gth order moving
average process (cf. pp. 12-13). There is a similar result for the vector case.
Since the proof is rather long, we omit it and refer the interested reader to

Hannan (1970) and Rozanov (1967). _

(2.2.9) THEOREM. A non-negative matrix function
q ' .
fN) = ) T, I(q)# 0s I(j)=TI'(-3),
J==—q

which has a determinant not identically zero, can be represented in the form
1 (& S ) | :
f\) = 5;(2 A(j)e™" )(Z A(f)e™™ ) , (2.2.10)

7 =0 =0 _
where A(0) is Hermitian non-negative definite, A(7) are real and all zeros of

det(3°7 o A(7)2") lie on or outside the unit disc.
Proof. See Hannan (1970) pp. 63-66. §

The factorization (2.2.10) leads to a finite order moving average repre-
sentation (cf. pp. 12-13), namely,
' q
y(n) = >_ A(j)e(n—j), E{e(m)e’(n)} = én14,
J=0

" where 62, = 1if m = n, &, = 0 otherwise.

We now study another important linear model which is called the autoregres-

sive process.

16
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(2‘.2.11) EXA.MPLE. Autoregressive Processes. A stationary proéess
vy = {y(n): —00 < n < o0} is called a pth order autoregressive process if
it satisfies
-
: ;)B(j)y(n -j)=¢n), BO)=IL, B(# 0 (2212
jom
where € = {¢&(n) : —.oo. < mn < oo} is a process of uncorrelated random

vectors with covariance matrix G. If y(n) has constant mean, u, then we

certainly have

S B(j)u = E{n)},

=0
so that (2.2.12) holds for the new process { y(n) — p : —co < n < oo } with
€(n) — E{e(n)} on the right. Therefore, we may assume E{e(n)} = 0 to
facilitate our discussion. If all zeros of

det(i B(j)zf)

3 =0
lie outside the unit disc, then a solution of (2.2.12) exists and is of the form
y(n) =D AQ)e(n—j), A(0)=1I,, (2.2.13)
i=0

where the ||A(7)|| converges exponentially to zero as j increases (cf. Hannan

(1970) p. 326). In order to obtain the spectral density function f of the process

y, we observe that e is obtained from y by a linear transformation with

h(\) = YF_, B(5)e~""*. From Equation (2.2.3), we obtain h(A\)f(A\)h*(\) =

7=0
(27)~!G. Hence

.1

109 = (> B(J')e-"f*)-l o( L Buw)

17
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Multiply (2.2.12) by the transpose of (2.2.13) with n replaced by n ~ s and

take expectation on both sides, we obtain

E{Y. B(i)yn—iW/(n— )} = E{ 3 e(n)e(n — s — k) A'(K)}

=0 k=0

whicil leads to

2”: B(j)'R (s—7) =63 G, 8=0,1,2,... (2.2.14)

| . &
=

These are often called the Yule-Walker equations.

18
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2.3. The Law of Large Numbers and Central Limit Theorem

The st‘udy of strictly stationary processes is usually carried out in the
context of measure-preserving transformations, in this section we shall follow
the development of Doob (1953), Chapter 10. Let (E, &, P) be a probability
spa.ce} that is to say, F is a space of points w, £ is a o-field of subsets of E,

and P is a probability measure on €.

(2.3.1) DEFINITION. Let T be a transformation of £ onto itself. It is
called a measure—preserving set transformation if the following conditions are
satisfied :

(C1) T is single valued, modulo set of pr.obability 0: if A; is an image of A
under T, the class of all images of A is the class of all measurable sets
differing from A; by sets of probability 0.

(C2) P(TA) = P(A).

(C3) Neglecting w sets of probability 0,

T(aJ4:) =1: U TA2.
T( U A,,) = (J 4.

‘\n=1 n=1

T(F-A)=FE-TA.
If every measurable set is the image of some measurable set under T,
this transformation must be 1-1 (neglecting sets of proBability 0) and the
inverse T-! is_deﬁned, and is also a measure-preserving set transformation.
If T is a measure-preserving set transformation, there is one and only one

transformation T defined for every random variable, taking random variables

into random variables, and having the following properties:

19




(P1) Ty is single-vz;,lued modulo the random variables which vanish with
probability 1: if z; is an image of z under T, the class of all images
of z is the class of all random variables equal to z; with probability
1.

(P2) T is consistent with T: Tj14 is 1 almost everywhere on TA and 0

otherwise.

(P3) Ty is linear: if @, b are constants and if z, y are random variables,
Ti(ez + by) = aT1z + bT1y a.e.

(P4) T, preserves convergence: if

- lim z, =2z a.e.,
n— o0

then lim,_, oo T1 2, = Tz a.e..
We shall use the same notation T for Tj.
(2.3.2) PROPOSITION. If T is a measure-preserving set transformatic;n,
and if z is a random variable, the stochastic process
{v(n):n 2> 0}, y(n)=T"z, (2.3.3)
is strictly stationary, and, if T has an inverse, the stochastic process

{y(n): —0 <n < o0}, y(n)=T"z,

is also strictly stationary.

Proof. See Doob (1953) pp. 4564-455.
20




(2.3.4) PROPOSITION. Let {y(n) : n > 0} be a strictly stationary
process, then there is one and only one measure-preserving set transformation

T such that. T"y(0) = y(n) a.e. for all n> 1
Proof. See Doob (1953) pp. 455-456. 1§

The above discussion and results abply equally well to multi-dimensional
processes; the interested reader is referred to Rozanov (1967) Chapter 4 for

an excellent treatment.

(2.3.5) DEFINITION. A measure-preserving set transformation is called
metrically transitive if the only invariant random variables are constant with

probability one.

The process defined by (2.3.3) is metrically transitive if T is metricall_y

transitive. We now have the ergodic theorem.

(2.3.6) THEOREM. If { y(n):n > 0} is strictly stationary and metrically
transitive with E{|y;(n)|} < oo for j =1,...,d, then

n—1

lim 1 > y(k) = E{y(0)} ae.

k=0
Also if E{y;(n)?} < oo for j =1,...,d, then

n—-1 .
Jim_ % 3 y(m + Ky (k) = E{y(m)y'(0)} ae  (23.7)
8 k=0

Proof. See Hannan (1970) p. 203. &

We shall study a wecaker condition than metrically transitive which im-.
plies it. Let {y(n) : n > 0} be a strictly stationary process defined on a
probability space (E, £, P). For integers 0 < a < b, let ¥4 be the o-field
generated by y;(a),.. .,.y_,-(b), 0 < j < d (with the obvious extension for
b= ).

21




(2.3.8) DEFINITION. We say that the process { y(n) : n > 0} is ¢—mixing
_if there exists a non-negative function ¢ of positive integers such that

lim,, o #(n) = 0 and for each ¥ > 0, and n > 1,

-sup{|P(Ez | E1) — P(E»)| : E1 € 75, E2 € F30} < 4(n). (2.3.9)

Condition (2.3.9) simply says that events concerning the "future” of the
process become almost independent of events in the past.

Remark 1. Let {X(n) : n > 0} be a stationary Markov chain with
finite state space, and let y(n) = f(X(n)) where f is some real function
on the state space. If {X(n):n > 0} 'is irreducible and aperiodic, then
{y(n):n > 0} is ¢-mixing (cf. Billingsley (1968), pp. 167-168). -

Remazk 2. If {X(n) : n > 0} is a Markov process with infinite state
space, then {y(n) : n > 0} is ¢-mixing if { X(n) : n > 0} satisfies Doeblin’s

condition, has one ergodic class, and is aperiodic.t

(2.3.10) THEOREM. Suppose that the process {y(n) : n > 0} is ¢-
mixing with 3°_#(n)!/? < oo, has covariance function R, and has mean

zero (E{y} = O. Then

1 n-—-1

ﬁ(— > y(k)) = N(0, X).

n
k=0

Here = denotes the convergence in distribution and N (0, %) is the d-

dimensional normal random vector with mean O and covariance matrix X,

3 = (o) = i R(k). (2.3.11)

. k=—o00

'See Doob (1953), p. 190.
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The elements of 3 ax:e ‘
0i; = E{w:(0)y;(0)} + Y E{w:(0)y;(k)} + > E{ui(k)y;(0)}, (2.3.12)
k=1 k==1

and the series converges absolutely.

Proof. See Billingsley (1968) pp. 174-177. @

Let f be the spectral density function of the process y in Theorem
(2.3.10). Trom this theorem we know Y .o _ _ |R:ij(k)] < oo for ¢, j =
1,...,d, therefore f has Fourier series-expansion (cf. Section 2.1),

F =50 3 R

Jj=—o0

Observe that ¥ = Y72 ___ R(j) = 2«f (0) In the next section we will show

j=-o0

that any continuous spectral density function can be approximated arbitrarily
closely by the spectral density function at zero of a finite order autoregressive
process. Therefore, we can use techniques in the time series literature to

obtain an estimate of XJ.

23




2.4 Approximation of Spectral Density Function

In this section we shall demonstrate that any arbitrary continuous spectral
density function f can be approximated by a polynomial in e~** having the

following form

g(\) = Zq: ()=, I(j)=I'(~j5), I'(g)# Oa (2.4.1)

J==q .
In Section 2.2, we have seen f,hat g is the spectral density function of a
finite order moving average process. We shall also show that f can be
approximated arbitrarily closely by tie spectral density function of a ﬁﬁité
order autoregressive process.
The approxin;ation (2.4.1) is based on the Weierstrass approximation

theorem which states:

(2.4.2) THEOREM. If k is a continuous function of period 2=, then
corresponding to every positive number € there exists a trigonometric sum
S(\) =ag + Z(aj cos X 7 + b; sin X j),
J=1
such that the inequality .
IS(\) — k(M) < € (2.4.3)

is satisfied for all.value of \.
Proof. See Achicser (1956).

The results contained in the following remarks will be used throughout
this section.
Remark 1. TFor any continuous function f of period 2r, let k(A\) = f(\)+

8 and let S(\) satisly the Weierstrass approximation theorem (2.4.2) with
' 24




replaced by & > 0 in (2.4.3). Then
' 8 — bz < S(N) — f(\) < 6 + &3.
By properly selecting §; and 62, we can make the upper bound and lower
bound of S(\) — f()) arbitrarily small.
Remark 2. If k(A\) = k(—X) is an even function, let §1(\) = s +
S(—X)), which is also an even function. Then we have

15100 ~ KNI = 15(50) = k(N)) + 5(S(=3) — K(-N)
- <g
and ' -

51 = 2(SO) + S(-N)

=ag + = Z a_,(cos N7+ cos( )‘J)) + = Z bi(sin N5 + Sln(—)\J))

J=1 J=1
n
=ag + Z —a,(e"" +e ) = Z cje” >
j=12 j=—n

where i = /=1, ¢o = ap, ¢; = c—; = 1a; are real.
Similarly, if k(\) = —k(—)\) is an odd function, we may form an odd
function S;(\)= }(S(\) — S(—X)). Then

[S2(N\) — k(A < €

and
1 n
Sa(\) = EJ; a;(cos X j — cos(—\ 7)) + J; bi(sin M 5 — sm(—)\ ]))
i Z b (exJX —in) =3 Z dje—s'jx,
J==1 j=-n
where dg = 0, d; = —d_; = —}b; are real.

The next theorem, which can be found in most time series literature
(¢f. Anderson (1970) pp. 410-411 ), is an approximation theorem for scalar

processes.
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(2.4.4) THEOREM. If a spectral density function f is continuous then for

b _any € > 0 there is a spectral density function of the form

m

g\ = D A5)e, (2.4.5)

j=—m

where 4(7) = (—7) is real, g(\) > €/2 and [g(A) = f(\)| < e; < A<

Proof. Let §; = 35/4,. 62'= €/4 and take g(\) = S()\) as described in Remark
1. Then '

/2 <g\)-f(M) <
and g(\) > €/2 since f is a spectral density function which is non-negative

for all \. Since the spectral density function f is an even function (cf. Section

- 2.1), we can take g()\) as (.2..4.5) according to the argument of Remark 2. 8

(2.4.6) COROLLARY. If a spectral density function f is continuous then
for any € > 0 there is a finite order moving average process with positive

spectral density, say g, such that

lFA) -9 <e —-r< A< m

Proof. By Theorem (2.4.4), f can be approximated by a spectral density
function (2.4.5). Then apply Theorem (2.2.7), it follows that g is the spectral

density function of a finite order moving average process. J§

(2.4.7) COROLLARY. If a spectral density function f is continuous, then
for any arbitrary € > 0, there is an autoregressive process with spectral

density function, say h, such that |[f(A\)=h(N\)| <¢, - < X< =

Proof. Let f(\) = f(A\)+ §, = < X\ < 7. Obviously f()\) is continuous
and positive; therefore, the reciprocal of fe(\), f71(\), exists and is also
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continuous and ﬁositive. An application of Theorem (2.1.9) shows that f71()\)
is the spectral density function of a stationary process. By Corollary (2.4.6)
there is a positive spectral density function of a moving average process, say
g, such that |[f71(A) - g(\)] < €, = < X\ < =, where

_ 1 ming())
€ =3¢ max 1.0

Then : >
PO =g LS £ + 1500~ g~ (V)

€ - -
< L1 ST — gD
. < €.
This proves the theorem. §

To prove similar theorems for vector processes, we shall begin with 2-

dimensional case (d = 2), then extend the results to d > 2. Let f be a

. continuous 2 X 2 spectral density matrix. Since f(A\) = f*(\) (cf. Section .

2.1), we can take

. A 1(A) + tp2(X
f‘*’=(, & p()+P())
M- im®) A

where fi and p; are real continuous functions. In Section 2.1, we have shown
that f(\) = f'(—)), therefore f; and p,.are even functions and p; is an odd
function. Then we can properly select 6;, 62 and the approximation functions
gk, gk, for fx and px, k = 1, 2 respectively, such that for ¢ > 0

nk
gN) = D e, i =, isreal,

Je=—ny

e < Ak(X) = gk()\) -— fk(k) < 26,.

and

mi
a(d) = Z dije~7, dy; =dj,—; is real,

Jm=—m,
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¢4 <URN) = a1\ - ;) < ¢/2,

Qe s s e e A aaeh |
P Y oo .
o

. %

qz()‘) =1 Z daje™7, dp; = —da,—; is real,

Jem—m3y

/4 < V(\) = a:(\) - ps(\) < ‘/2

Put s o
' ( g1(M\) 91(>‘)+i92(>\))
g(2) = . ‘
g1(N) — ig2(N) g2(»)
Z r(:)e*“‘-—f(x)mw
where

A0y = ( Ar(\) U+ z'V()\))
UM —V()\) Az(N\)
m = max(ng, mx),. . -
Tee(s) = ey, 5 =0, if|j] > ne, k=12,
T12(7) =di; — dz;y, diey =0, if|j]>mi, ,k=1,2,
T21(7) = di; + daj,
and ||A(M]| < 3¢, if we define the norm to be maximum row sum. Clearly,

I'(m) £ 04, I'(j) is real and -I"'(5) == I'(~7). To show the non-negativity of

g()\), we observe that for any complex~valued vector

o =a' + b = (a;,ag) + i(by, b2), ay, i); ER, 1=1,2,

@ g()\)a = « f()\)a + o A(\)e,
> a A(\)e (by the non-negativity of f()\))
= alAl()\) + azAz(X) + 2a1a2U(>\) + biAl()\)
o - + b3A5(N) + 2b162U(N) + 2(a2by — a1b2)V(\).
Since Ag,U and V are positive, the worst case occurs when aje; < 0, biby <

0 and (azby — a1b2) < 0. In this case, we use the following inequalities:

E‘ Ak(x) > ¢,
— UM, V() < €/2.
& 28
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We then have
- ' € i
o g()\)a > 5((01 + 02)2 + (b1 + bz)z'-i- (a2 + b1)2 + (a1 - bz)z) > 0.

Thus, we have shown that we can find an approximation g which is also a
spectral density function when d = 2." Now, assume d > 2 and fisad X d
spectral density matrix having continuous components. We may obtain an

approximation function (2.4.1), say g, by applying the following algorithm.

(2.4.8) ALGORITHM. (Approximation of Spectral Density Function)

Al [Initialization.] Let g®)(\) = f(X) for k = 0. Set k = 0, i = 1, and
=2,

A2. [Polynomial approximation.] Let

| gP0) P
w()) =( (k) ® |
95i ()‘) 955 ()‘)

If all components of w()\) are polynomials in e~* then go to A4. Otherwise,
find a 2 X 2 matrix function, denoted by h, which approximates w(\)

using the procedure described in pp. 27-28.
A3. [Update.] Form g{*+1) b); substituting h for w in g(*) and update k =
k+1.
Ad. [Done?] Set j = j-l; 1, il 5 < d then go to A2. Otherwise, set ¢t = iq- 1. -
If 1 < d then put 7 =17+ 1 and go to A2. '
AS5. [Obtain g.] Put g(\) = g(¥)(\). |
Note that all g(*) a.l"e spectral density functions, since they are Hermitian

non-negative (cf. Section 2.1). Note also that ||g(s+1)(\) — g(-)(\)|| < 3e for
' 29
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all k. This algorithm will terminate in a finite number of steps, M ( M <
_d(d —1)/2°). Step A5. puts g = g{™) which is a spectral density function
having the form (2.4.1), and

lg\) = FO)|| < C-¢

for some finite constant C (C < 3M). Thus we have established the following
result. ’

(2.4.9) THEOREM. If f is a d X d.spectral density matrix with continuous

components, for any € > 0 there is a spectral density matrix of the form

dN) =3 TG, I(m)s# 05 I()=TI"(~i)

J==—m

and lg0) - fFMI <g —r< A<

(2.4.10) COROLLARY. Let f be as described in Theorem (2.4.9), then

for any ¢, € > 0, there is a finite order moving avera.ge.process ‘with spectral
density function g, such that [|f(X\) — g(\)|| < ¢,—7 < X < . Also, there
is a finite order autoregressive process with spectral density function h, such

that [f(\)-h)|| <€,—7 < N< =

Proof. The first part follows directly from Theorem (2.4.9) and Theorem
(2.2.7). For the second part let

fe(k) = .f()\) + € ’Idr

then every entry of f.()\) is continuous and f.()\) is positive definite for all

X\. Thus the reciprocal of f.(\), k(\) = £ 1(\), exists for all X\ and every
30
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component of k(\) is continuous. Let
q . q v . * -
s = (3 4o (T aiR), AO =L, Al isrea
=0 =0 : ‘

such that IIS()\) — k(M\)|| < €1, then

IF ) = ST < IFO) = £+ [1FN) = ST
< e+ IF - IS - lg(h) = k)]I-

And the reciprocal of S(\), S~1()\), exists except perhaps for finitely many \

and is the spectral density function of an autoregressive process. By properly

choosing €1, and letting h(X\) = S~1(\), we obtain [[f(\)—h(D\)||< €. @
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CHAPTER III

THE AUTOREGRESSIVE METHOD
AND ITS APPLICATIONS

Based on the results of Chapter 2, it is clear that a continuous spectral
density function can be approximateiarbitrarily closcly by the spectral cieﬁ-
sity function of a finite order autoregressive process. We shall see that it is
possible to use this; result to obtain consistent point estimates and asymptoti-

cally valid confidence intervals for quantities of interest.

Let {y(n): n > 0} be a d-dimensional strictly stationary process which

is ¢—mixing with 320 ¢(n)!/? < co. We wish to estimate the qua.nt;ity

r=E{y(n)}.

From Theorem (2.3.6) and Theorem (2.3.10) we know

- ',; yi) = v s (3.0.1)
VvVn (#n — )= N(0,X),

where & = Y 7.__ _ R(k) and the series converges absolutely. Corollary .

(2.4.10) shows that for any arbitrarily small € > 0 there is a X such that

X - Z¢J| < ¢, and this X, is 27 times the spectral density function at zero

of a finite order autoregressive process. Instead of estimating X directly, the

autoregressive method is designed to estimate the approximation X..
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3.1. The Autoregressive Method

We coﬁsider the kth order vector autoregressive process { z(n):n > 0}
which satisfies
k _

> B(j)z(n—j)=e€n), B(0)=1I, B(k)5# 04 (3.1.1)

J==0
where the €(n) are i.i.d. (identically and independently distributed) with mean
zero and covariance matrix G and the B(J) are square matrices. The mean
zero assumption of €(n) implies that z(n) has mean zero. This is not always
the case. If the mean pu of z(n) is noﬁ-zero, we make a mean correction (i.e.,
we replace z(n) by z(n) — u). If all zeros of the .

k
det(z B(j)zj)
J =0

lie outside the unit disc, then a solution of (3.1.1) exists (cf. Section 2.2) and

is of the form :
z(n) = E A(j)e(n —7), A(0) = I.
i=0
Recall that the spectral density function g of {z(n):n > 0} is

g(\) = ( ij B(j)’e“")—lc (Zk: B(j)e"’").

To estimate the parameters B () and G, it is natural to use the Yule-Walker
equations, which are

k
Y B()R(s—4)=65G, s=0,1,2,... (3.1.2)
=0 '
Since there are k + 1 unknown matrices, namely B(1),...,B(k), and G, we

use the first k + 1 equations of (3.1.2). By taking transposc on both sides and
33
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using R’(n) = R(—n) (cf. Section 2.1), we obtain

k
Y B()R() =G,

i=0

k
' Z R(j—s)B'(j)=—-R(-s), s=1,2, ,k

; =1
Rewrite the equations in matrix form, we obtain
R(0) R() ...R(k-1)\/B'(1)\ [R(-1)
R(-1) R() ...R(k-2)j| B'(2) R(-2)

. (3.1.3)

R(1—k)R(2—k)... R(0) /\B'(k) R(—k)
denoted by Ry By = —7ri.

Given a sample of size n, say {z(¢): ¢ = 0,...,n — 1}, our estimation

" equations become

Ck.ék = —'Ck
where
C(m)=(n—m)™} Z z/m + 7)z'(5),
=1

replaces R(m) to obtain Ci from Ry, ¢k from 7, and B, = (ﬁk(l), e ,ﬁk(}c))'
is an estimate of Bj. Since
k .
G =) B()R(-j),
J=0
we cstimate G by

k
G = )_B.(j)C(-3),
: j=0
and g()\) by

5e(\) = (Z":Bk(j)e-ij)‘)_lék (z":ék(J.je-;jx).

j=0 =0

The consistency of B (5) and G, are justified by the following theorem:
34

S A U Y PNy UH G, Ty WPy [y pupue sy gy - .




(3.1.4) THEOREM. If {z(n):n =0, 1,...,n—1} is generated by (3.1.1),
where ¢(n) and B(j) are as stated below the equation, then By, Ci and G

converge almost surely to By, R, and G respectively as n — oo.
Proof. See Hannan (1970) pp. 329-332. @

An a.ltern_ative approach for the estimation of parameters is to assume
that the €(n) are normally distributed and to use the method of maximum
likelihood. This does not lead to the estimates just discussed. If n is relatively
large, there will be little difference between the maximum likelihood estimates
and tho.se derived from Equation (3.1.3) (cf. Anderson (1971) pp. 183-1886).

We assume that { y(n) : n > 0} is generated by a koth order autoregres-
sive process with parameters Bi, = (Bko(1),. .., Bko(ko))' and Gg,. If ko.is
known, we can obtain consistent estimates ﬁko and é’ko from a realization.
Unfortunately, the value.lco is usually not known, therefore we must egtimate
the true order according to certain order selection rules. We shall study this
topic in detail later. Now let us z;ssume we have an order selection criterion
and assume that ther.e is a finite constant K, known a priori such that kg <
K < oo. From Theorem (3.1.4) above, it follows directly that By and Gy
are consistent estimates of B;co and Gy, respectively for all k > kg. So,

in order to estimate X which appeared in (3.0.1) we propose the following

autoregressive method.

(3.1.4) ALGORITHM (The Autoregressive Method)

Al. [Which criterion?] Select a constant K which serves as the maximum
order of the autoregressive model, and choose a criterion for order deter-

mination.
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A2. [Parameters estimation.] Obtain the estimates By and &} by fitting the
observations { y(0),...,y(n — 1)} to a kth order autoregressive process
for k=0, 1,...,K.

A3. [Select order.] Determine the order according to the selected criterion.
We denote this selection by k.

Ad4. [Obtain ] Estimate X by the quantity

-1

2=(iég(f))_lé;(f3é,;(j>)' -

=0 - 7=0

Justification for the autoregressive method appears in the following sec-

tions.
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3.2 The Univariate Autoregressive Method

In this section we shall study the univariate casc in detail. The variance
constant appearing in (3.0.1) is simply a scalar, which we denote by 2. The
autoregressive method yields an estimate, say s2, which is an approximation
of o2, We will examine several order selection criteria for the autoregressive
process and derive asymi)totic properties for the estimates.

Recall that a kth order autoregressive process £ = {z(n) : n > 0}

satisfies
k
3 B()z(n—3) = e(n), BO)=1, Bk} 0 (3.2.1)
7=0

where B(j)’s are constants and the e(n) are uncorrelated random variables

. with E{¢(n)} = 0 and variance E{e(n)?} = o%(¢). The spectral density

function f, of z is given by .
0]

2 moB(a)e= P2

Let y = {y(n) : n > 0} be a strictly stationary process which is

fa(\) = (3.2.2)

¢-mixing with 3°°°_, ¢(n)'/2 < oo. Let the spectral representation of the

proccess y be

sy = [ Ea(@), B} = F@y).

-
First, we will show that we can find a finite order autoregressive process
z which is close to the process ¥ in the sense of mean square. From the
discussion in Section 2.1, Equation (2.1.15), we know that the representation
can be modified if F' is absolutely coqtinuous. In that case, if h' is a Borel

measurable function satisfying

Ih(N)|? = i%%) = f(\), - (3.2.3)
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then there is a z; process with orthogonal increments which satisfies

y(n) = / e™ h(\)z1(dN), - E{|z1(dN\)|? } = d).

-

Since y is a real process and the series Y_po____ R(k) converges absolutely (cf.
Theorem (2.3.10)), f is real, non-negative, and continuous (cf. p. 23). Then
we may take h(\) = 1/f(\) which is the positive square root of f(\). From
Corollary (2.4.7), we know thaf for given 6 > 0 there ié a spectral density
function (3.1.3), say g(\) = 1/|3=; _O,B(J)e"’)‘]z, such that |f(\)— g()\)l < §,
-t < A< 7 Let z={z(n):n > 0} be defined as follows:

z(n) = [-« e ™ /g(\)z1(d)\).

Since g is real and non—nega{;iVe for all X\, the positive square root of g(}\), .

vV 9()\), exists thus z(n) is well-defined. The covariance function of z is

E{z(n+m)z*(n)} = /:r e mtmX Jo(N) e /g(\)d\

— ei'mkg(x)d)\,

which depends only on m. This shows that z is a weakly stationary process.

The processes z and y are close in the sense of mean square, since

E{Jen) -y} = (1| ™ (VIR - V)= )
= [ VIR - vatiras

< [ W - VaO - VT + VRl
< 100 - soian
< 276.
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Since |1/ E;f,o .ﬁ(j)e""j)‘l also satisfies (3.2.3), the spectral representation of

z can also be written as

z(n) = [_' e - 1 — z2(d)\), E{|za(d\)|?} = d).
" (oAl |
Define ' ' . -
€n) = E)ﬂ(j)z(n = 5)/B(0).
Then . | '
e(n) = /_ _ E(%)- e ™ z5(d)),
and

. [ : 21rﬂ20, if m=0;
E{ G(n + m)e(n)} =>‘/;’r p21(0)e’mxd>‘ — { / ( )

0, if m #£ 0.

_This shows that the sequence €(n) are uncorrelated. Thus, z is a kth order

autoregressive process.

We now turn to the problem of parameter estimation. The autoregressive
method requires us to_estimate Bx(5) and oZ(e) for different values of k. As
indicated in Section 3.1, we solve Equation (3.1.3) to obtain the parameters.
Since we deal with scalar process, R(—j) = R(5). Therefore, Equation (3.1.3)
becomes '

R(0) R(1). ...R(k-1) ﬂk(l)\ R(l)\

R(1) RO ...R(k-2)|| (2 R(2)
. . : . ) (3.2.4)

R(k—1)R(k—2)... R() _ﬂk(k)J R(¥)/
denoted by RxfBr = —ri. The solution for (3.2.4) is B = —Ry'rx and
oi(e) = E;;o Bk(7)R(7). The equations for the coefficients of the (k + 1)th
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{'-;I order autoregressive model are

‘ : (2" % )( By )= _( rk ), (3.2.5)
5 4 ROMgk+1)  \Rk+1)
2 where g, = (R(k): R(l)) and ﬁk+1 (ﬂk+1(1):---:ﬂk+1(k))’- The
n : partitioned equations of (3.2.5) are _
Rkﬁg-;)-;'i' QcPr+1(k +1) = -7, (3.2.8)
E‘ . ghBdy + R(0)Biya(k + 1) = —R(k +1). (3.2.7)

= Elimination of f{}; from (3.2.6) and (3.2.7) yields
i G R e — Rk +1) -
R(0) - ¢ R qx
We observe that R g, = -(p,‘(k), Br(k - 1), .+ Bx(1))', therefore

© Bryi(k+1) =

R(0) - Qkkk qr = Z ﬂk(J)R(J) = oi(e).

J==0
Thus |
ﬂk+1(k +1)= —E”‘° R(k+1- J)ﬂk(J)
. oi(e)

Substitution of Bix41(k + 1) into (3.2.6) gives

Pr+r(d) = Bi(d) + Bk + 1= )Besa(k +1), 5=1,2,...,k.

And
k+1
ot 1(e) = z ﬂk+1(J)R(J)
=0 '
k+1
= R(0) + Z Br(7)R(7) + Br+r(k + 1)(2 Br(k +1 -J)R(J))
Jo=l J"‘l ‘

= 02(€) + Brr(k + 1)(2 Rk +1- J)ﬁk(]))

) =0
= o3(c)(1 - Bl 41k +1)).
' 40
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To summarize this method, we have the following recursive formulae: for each |

k>0

S5 oR(k +1 - 7)Be(5)

ﬁk-l-l(k. + 1) _._- - UE(U) ’
,ﬂk-l-l(j) = ﬂk(J) + ﬂk(k +1 "'j)ﬂ.k+1(k + 1)1 I=1,...k (328)
ﬂk+1(0) =1,

°'£+1(5) = Ui(e) : (1._ ﬂ£+1(k + 1))1

with initial conditions
op(e) = R(0), Po(0) = 1. (3.2.9)

This is a simple and efficient method to compute parameters Bx(7) and o7 ()
(cf. Durbin (1960) pp. 139-153). Given observations {y(0),...,y(n—1)}, we
replace R(n) by C(n) in (3.2.8) and (3.2.9) to obtain estimates B, and &3(e)
for B and o}(e) respectively. |

The problem of determining the order for an autoregressive process has
gained much attention during the past forty years. We could trace interest in
this area to as early as the mid-1940’s. Quenouille (1947) considered a method
for dctermining the goodness—~of-fit for autoregressive model. Later, Akaike
(1969, 1970) introduced a method by using the concept of final prediction
error (FPE). A few years later, Akaike (1974) proposed a new criterion called
An Information Criterion (AIC) which has become very popular. Other
criteria have been introduced since then are, for example, the BIC suggested. '
by Akaike (1977), and Schwarz (1978), and the h criteria by Hannan and
Quinnt (1979). In this paper, we shall consider the AIC, BIC, and h-

criterion. We consider a stationary process, {z(n) : n > 0}, generated by

'In Ilannan and Quinn’s paper they used ¢ instead. We change it to h to avoid confusion
with the ¢-mixing condition for stationary processes.

41

W PN ORI W SR TR WA S ST VR W IO Y- I N0 W WL IV WU W8 PSP P S - P




(3.2.1). The estimate of the true order, which we shall call ko, is obtained by

_ minimizing one of the following quantities :

AIC(k) = nlogéi(e) + 2k,
BIC(k) = nlog &Z(e) + klogmn,
h(k) = nlogdi(e) + 2kcloglogn, ¢ > 1,
where 6 (¢) are the estimates of 0%(¢) obtained from the kth order autoregres-
sive model based on a sample of size nt. We denote the selected order by I::,.;

we will use k£ whenever there is no confusion.

We now state without proof certain theorems on the asymptotic properties
of these estimates. The proofs may be found in Shibata (1976) and Hannan

and Quinn (1979). We assume that
(C1) T5_oB()z? # 0, |z| £ 1; E{e(m)e(n)} = 870%(e). -
(C2) {e(n) : n > 0} consists of independent random variables with the
same normal distribution N(0, o2(c)).
(C3) The true order ko is bounded above by some constant K < oo which

18 known a priori.

(3.2.10) THEOREM. Under the conditions described above the asymptotic

distribution of k, selected by AIC is given by
{Pk—ko "qk—k, ko< k< Kj

lim P(k, = k) =
0, otherwise,

n— 0o
where i )
1 7o\
Pn = H I\ )
N T 1
ri42ra4-tnra=n ;=1
r; 2> 0,integera

| o1 f1-as\"
— —— b
In 2 (H fi!( i ) )'
ri142ra4-dnra=n \f=1

ri> 0, integers -

tUnless it is important to have the subscripts n, we shall drop them for convenience.
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and a; = P(x%(3) > 2i), i = 1,...,K. Here, x*(t) is a random variable

having the Chi-square distribution with ¢ degree of freedom.
Proof. See Shibata (1976) pp. 119-120. g

The next theorem holds under a weaker condition : we may replace (C2)
by
(D2) E{e(n) | Fac1} =0, E{e(n)? | Fa—1} = 02, E{e(n)*} < 0o, where

Fn 18 the o-field generated by y(m), m < n.

(3.2.11) THEOREM. Under the conditions (C1), (D2), (C3) and E{|e(n)|" } <
oo, for some r > '4, the estimates k, obtained via BIC(k) ~r h(k) are strongly

consistent.
Proof. See Hannan and Quinn (1979) pp. 192-193. 8

Besides the order sel_ectiouv criteria discussed above, one may resort to a
statistical test(cf. Anderson (1971) p. 215, Fishman (1978) p. 251). We test
the null hypothésis Hy: autoregressive processes of order k < K agéinst the

alternative H,: autoregressive process of order K. The statistic for testing is

Tcle=n (1 _ &"}c(e))

HO)

which has a limiting x2-distribution as n — oo with X —k degrees of freedom

when the null hypothesis is true. We reject the null hypothesis if
Tr—k > Xi-alK — k)

where x%__ (K —k) is the (1 — a)th quantile of the x?-distribution with K —k
degrees of frcedom. We select the order k to be the first k, k=0,1,...,K,
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such that Hy is accepted. For sufficiently large n, this test has approximate

_ significance-level a. Other types of statistical test will not be considered in

this paper; the intcrested reader is referred to Anderson (1971), Quecnouille
(1947), Grenander-and Rosenblatt (1957).

The variance constant obtained b).' the autoregressive method is

_1_ 1
5 —
T B

&N

8

To prove the consistency of 3,%, let us define the K-dimensional vectors 8,
ﬁ k as fc;llows:
B =(B(1),5(2), ..., B(ko),0,...,0),
B = (B(1), B(2),-- -, Bi(K),0,...,0), k=1,... K,
where B, (5)'s are the estin.la.tes 'of the coefficients of the kth order autoregres-
sive process. It should bc;. noted that B, and &2(€) are consistent for k > ko
(cf. Anderson (1970) pp. 188-200). Let
S(z,y) = (1'_'_—3;,;)—5, e =(1,...,1)eRE, zeR¥,ye R
We observe that
g2 = a?(e) _ 1
2|20 B(A)2 27

S'(é,az(e)),

and §; = S(,Bk,&z(e)) is an estimate of s? obtained from the kth order.
autorcgressive model. Since S is a continuous function, by using a continuous
mapping argument (cf. Billingsley (1968) pp. 30-31), we know that 52 is a
consistent estimate of s2 for k > ko. If k is obtained by minimizing BI C(k)

or h(k), the consistency of 32 follows immediately from the strong consistency
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of the estimate k. If k is obtained via minimizing AIC(k), then for any § >
0,e>0

K
P{|s—*| > 6} =3 P{|s} - s*| > 6,k =k}
k==0

K
=D P{ls}-s*|>6|k=k}-P{k=k}
ka=0

K : ) '
=D P{|si-s*>6}-P{k=k}.
a1

From Theorem (3.2.10) and the consistency of 3% for k > ko, for sufficiently

large sample size M we have

Z Plk=k} < S, and
k<ko 2

P{|3?-s? > 6} < g ko< k< K.

Thus

B .
€ » N €

P{[s}-s%>6} < 5 > P{k=k}+§
k> ko

<e€

This shows that 3% is a consistent estimate of s2.
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3.3. The Multidimensional Autoregressive Method

For the vector case, we first derive recursive formulae for obtaining

N SN

parameters of the kth order autoregressive model, By and Gj (cf. Section

:3.1). To solve

RikBi = —r ' (3.3.1)

recursively requires an auxiliary equation (cf. Lee (1980))
R(0) R(1) ...R(k-1) (k) R(k) |

R(-1) R(0) ...R(k—2)]|] AL(k—1) R(k—1) j
. . . ) . , (3.3.2)

R(1-k)R(2-k)... R(0) Ai(D) R(1)
_denoted by RxAx = —gqi. Note that Equation (3.3.2) is equivalent to
Zk:Ak(j)R(s—-k+j)= 04, s=0,1,...,k—1, (3.3.3)
. j=0 ‘
with A(0) = I,. If we define
€k(n) = Ax(k)z(n) + -+ + Ax()z(n — k + 1) + Ax(0)z(n - k)

k
= E Ar(f)z(n — k + 7),
Jj=0

then Equation (3.3.3) implies
E{é(n)z'(n—38)} =04, s=0,1,...,k—1. (3.3.49)

Let H; denote the covariance matrix of £i(n), then

Hy = B{&(n)éu(n)} = E{ . Ac(s)z(n — k + j)ék(n)}

=0

= E(z(n~B)&in)}  (by (33.4)

k
= Y R(-j)AL().

J=0
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Equations (3.3.1) and (3.3.2) can be solved in an efficient recursive manner
(cf. Kailath (1974), Wiggins and Robinson (1965)). The equations for the

coefficients of autoregressive model of order (k + 1) are

: = — (3.3.5)
g R(0)/\ B}, (k+1) R(-k—1)

(R 0) =% )( L+1((1k) + 1)) _ _(R (k + 1)) 339
e Rk Akt qk

Bg,*)_l = (Bk+1(l), Bk;[.‘l(2), ceey Bk+1(k))l,
AR} = (Aksa(k), Aer(k = 1),..., Acga (1))
The partitioned equations for (3.3.5) and (3.3.6) are

and

where

RiBY, + quBlyy(k+1) = —ry, (3.3.7)
¢.Bl), + R(0)Bj,(k+1)=-R(-k—1), .  (338)-
and .
R(0)A} o (k+1) + '(;Aiill =-R(k+1), (3.3.9)
reAly(k +1) + R AL = —qr. (3.3.10)

The solutions for (3.3.1) and (3.3.2) are By = —R;'ri and Ay = —R;'qx
respectively. Substituting them into Equations (3.3.7)—(3.3.10), we obtain

B{); = Bi + AcBly (k +1),
B} i(k +1) = ~(g, A + R(0) " (R(~k — 1) + ¢, By),
AL), = A + BiAl(k +1),

Lok +1) = —(R(0) + ¥\ Bi) " (R(k + 1) + 7} Ax),

k
and Gi = ) _ Bi(j)R(—j) = R(0) + r\.Bx,

j=0
k
He =) A5)R(j) = R(0) + g} As.
j=0
47
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Note that Hj is the covariance matrix of £kx(n), hence is symmetric and

_ positive definite.

We recursively define

. .
Apy1 = Z Bk(J)R(k +1 —J.)
‘—o )

(3.3.11)
pre1 = G Ay (H?Y,
with initial conditions
Go = Ho = R(0), . Ax(0)= B(0)=1I,. (3.3.12)
Then B A
Biy1 = (Ok) - ( Ik)HIIAch,
¢ (3.3.13)

Gi+1 = Gk + Ar41Biy 1 (k + 1)
= Gi(I - pr+1P%ks1)s

Aky1 = - G Ak,
k+1 ( Ak) (Bk k Sk+1

Hiy1 = Hi + Arya(k + 1) Ap 4 (3:3.14)
= Hi(I - pley1Pr+1)s ' ,

Equations (3.3.11)—(3.3.14) give a simple way to compute the parameters

of a given order autoregressive process.
We assume that { y(n) : n > 0} is generated By a koth order autoregres-
sive process with parameters By, = (Bi,(1), ..., Bk, (ko)) and Cko. Given a .
sample of size n, we use Equations (3.3.11)(3.3.14) to compute the parameters
for different orders and we adopt Akaike’s criterion (cf. Akaike (1974)) to
select the order. As in the scalar case, we assume kg < K < o<;, where K

is known a priori. We select the order k, which minimizes

AIC(k) = n log|Gy| + 2kd?,
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where || denotes the determinant of a matrix and G is the estimate of
Gy, obtained from the kth order autoregressive process. We would like to
;n establish some asymptotic properties for 'l::n. Before we can proceed we need

to prove the following lemma.

h (3.3;15) LEMMA. If the matrix I — AA’ is positive definite, then

_ 0<|I-AA| <1 if A 0,

Proof. Let X\ be an eigenvalue of I — AA’ and x= be the corresponding
eigenvector, then

(I- AA")z = \z.

Multiply both sides by z’ to 6btain
(1 ~Nz'z =’A4'z > 0.

Because z is an eigenvector, « is'not the zero vector. This implies A < 1,

and since every eigenvalue of a positive definite matrix is positive we have

0 < X\ < 1. It is well known that
[T - AA| =[] >,

where \; are the cigenvalues of I— AA’. If |[I— AA'| = 1 then we must have

A; =1 for all 7, and this means - AA'=Tor A=0;. B

(3.3.16) THEOREM. The asymptotic distribution of k, has the following
property:
lim P{ka =k} =0, ik < ko.

n—+ 00
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Proof. Using Equation (3.3.13) we obtain
|Gr+1l = |Gil - 1T — Pt 1Pyl .
= |Gol - [(T— 12l (T = Prc1P%es1)ls
and from the consistency of the estimates for parameters of the autoregressive

process of order ki,, we have in probability

. P -1/2 -1/2
hm pkopio = pkop;co = Gko—/—lAkOB;co(ko)Gko—/l'

n— 00

Obviously, Gx,—1 % O and since the true order is kp, we know that
By, (ko) # 0u. Also note that By, (ko) = —Hp, ", Ax,, this implies Ag, %
0a. So, limn_, oo PkoPk, 7 Oa in probability.
For 0 < k < kg, we have
- ko -1

|Gkl ( n ) 1

- = [T — pipi 2 g7 > L

|Gl ;=1::I+1 ) = Pico P |
Since every I — p;p; is positive definite, by Lemma (3.3.15) we know 0 <

|T— p;p:] < 1. Therefore, for any € > 0, there exists a § > 0 and an integer

M > 0, such that for any n _>_ M
exp(2(ko - k)dz/n) <1434,
P{G/IGel € 1+6} < e
From the dcfinition of I::, we have
- P{k=k} =P{AIC(k) < AIC(m),0< m< K}
< P{AIC(K) < AIC(ko)}
= P{|G«|/|Gko| < exp(2(ko — k)d*/n)}
<eg
this proves the theorem. J

The estimate of the covariance matrix X' appearing in (3.0.1) is given by

. . -1

k -1 k .

5= (ZB,-C(,')) G,;(ZB;C(]'))
7==0 3=0

The consistency of £ can be shown in 2 manner analogous to that used in

the last paragraph of Section 3.2 by properly modifying the function S.
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3.4. Applications to Markov Processes

:G : We now apply the results derived in previous sections to Markov processes.

Let (E, £) be a measurable space.

(3.4.1) DEFINITION. A function P : (E,€) — [0,1] is said to be a

probability transition function if :

(a) for each z € E, P(z, ') is a probability measure on (E, ),

(b) for each B € £, P(+, B) is a measurable function with respect to €£.

The n-step probability transition functions are defined by setting P!(z, B) =
P(z,B) and
P"*(z,B) = / P(y, B)P(z, dy).
. E

Let E® = E X E X -+ and C°° = &X X ++. For any w =
(wo, w1, . --) € E®, let X(i)(w) = w;. Then given P and an initial probability
distribution g, there is a probai)ility measure P, on (E*, £*) such that for
alln > 0 and By, By,...,Bn €€

P,{X(0) € Bo,X(1) € By,...,X(n) € Bn} =

-/Bo u(dzo) Ll P(zo,dz,)- - /B” P(zn_1,dzn)-

It can be shown that
P{X(n+1)€B| X(O)..., X(n)} = Pu{ X(n +1) € B X(w)}. (34.)

Equation (3.4.2) is called the Markov property and { X (n): n 2 0} is said to
be. a Markov process with state space E, initial distribution u and stationary
probability transition function P.

For our simulation studies we assume that X(n) = X asn — oo

where X has stationary distribution 7. It is known that if we take the initial
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distribution to be 7 then the process { X(n) : n > 0} is a strictly stationary
process. If-we make the further assumption that {X(n) : n > 0} is ¢-
mixing with 3°_ ¢(n)}/? < oo, then Theorem (2.3.10) holds. Therefore, we
can apply the autoregressive method to this stationary process and obtain
reasonable estimates about the sl:.eady state quantities. But usually we do
not know the stationary distribution = in real situation, otherwise we could
compute the results a.nal);tically and woul.d have no need to simulate. So we
choose X(0) according to. an initial distribution g, and simulate the process.
This procedure yields a non-stationary process. Since this non-stationary
process converges in distribution to a stationary random variable, the process
N is asymptotically s'tationaxfy. In order to apply the autoregressive method and
obtain consistent estimates, we need to justify the method for non-stationary

processes.

Let {X(n) : n > 0} be a Markov process with initial distribution =

which satisfies the regularity conditions for Theorem (2.3.10). Then

1 n—1

va (% > ()~ ) = N©O.3),

The autoregressive method sa'ys that for € > 0, there exists a X, such that
o |¥ — X¢|]| < € and that from a sample of size n we can obtain a consistent .
estimate i',, for X, under the stationary distribution 7. Now, let u be any
initial distribution which is absolutely continuous with respect to =, then the

Radon-Nikodym derivative 5% exists (cf. Halmos 1950). We also assume that

there is a constant C, such that Z—ﬁ < C<oo.TForany § >0, let

A(6)={weE: ”“‘:n(w) - >4é},
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then limp— oo Pe{ An(6)} = 0. Thus

Jim P{An6)) = tim [ P{4n(0)}u(e)

lim EP,{A,.(&)}Z—:w(dz)

n— oo

< lim C-Pu{An(6)}=0.

So, 3, also converges in probability to X, under P,. Therefore, ‘we have
found some conditions which allow us to apply the autoregressive method to

simulation output data.

Remark 1. If {X(n):n > 0} is a finite state space irreducible Markov
chain then gf:— < C always holds for any y. For countable state space, %ﬁ <
C holds if p has finite support.

Remark 2. If  has an atom z, then u = §, satisfies %’5 < C.

It is often the case that we need to study the steady-state behavior of a
continuous time Markov chain. Since the process is simulated in contim.mus
time, we need a technique which converts the continm.)us time process to a
discrete time series in order to apply the autoregressive method. This can
be done l;y either sampling the continuous time Markov chain (then we need
to consider the problem of what can be inferred about the full process from
the sample) or by using the discrete time method (cf. Hordijk, Iglehart, a.nd
Schassberger (1976)). We shall briefly review this method below. .

Let {X(t): ¢t > 0} be a continuous time Markov chain with countable
state space E. Assume the Markov chain is irreducible and positive recurrent.

Then X (t) = X ast — oo. Let the probability transition function be

pij(t) = P{X(t) = 7| X(0) = i},
53
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and let

d
gi; = d—tpij(t) |¢=0,

Q ={qi;:%,7€EFE}, and ¢; = —¢,; (assume 0 < ¢; < ). The quantities
g, %, J € E, are called the infinitesimal parameters of the process. Let 7 =
{=: : i € E'} be the stationary distribution of the process. Then '@ = 0,

or equivalently
Y migi; =0, jE€E.

i€E .
Define the matrix R = {r;;:1,5 € E-} by
0, if 1 =j;
= e 5.9
0ii/g, i iF J.

"Let f : E — R. We are interested in estimating

r=E{f(X)}=_ f(i)m:.

. i€E ’
We use the embedded jump chain { X(n):n > 0} which is a Markov chain
with probability transition function R. Let X (0) be choosen according to
the stationary distribution p of the embedded jump chain. We define a new
function g for { X(n):n > 0} as follows :

g() = f()e;7!, i€E.
Define

: u(n) = g(X(n)),

v(n) = q}tn), . (3.4.5)
w(n) = u(n) —r - v(n).

Since { X(n) : n > 0} is strictly stationary, so are the processes u = {u(n):
n> 0}, v={vn):n > 0}, and w = {w(n) : n > 0}. Note that
| 54




i~ p'R = p/, or we may write

;U . ' Z pirij = pj, foralljEE,
S . i€E

which implies

_ ] T ' Z.Piqu%‘j = 0.

= _ . « i€E B
_ Since the stat;iona.ry distribution is unique we must have p,-q,-—1 = cm; for
h ' some constant ¢, Therefore,
B | E{u(0)} _ E{/(X(0))ax(0)}
8 ' B}~ T Blaxio )
_ s f)aims " (3.4.6)
. Yierd; Pi
. = Z f@)mi=r.
: ’ i€E

Thus w(n) has mean zero. Applying Theorem (2.3.10) to process w yields, as

' VAw _ Va((a/9)=r)

o o/

= N(0,1). (3.4.7)

By using a continuous mapping argument we may replace 3 by E{v(0) } and

Equation (3.4.7) becomes

vn(a/3 —r)
.a/E{'v(O)} = N(0,1).

The variance constant o?is

o? = i Ru(k), . (3.4.8)

k=—00

and by the definition of w, we have

Ry (k) = Ry(k) — 2rRyy (k) + r2 Ry (k).
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Therefore

o = i R, (k) - 2r i Ry (k) + r? i R,,(k). ' (3.4.9)

k=—oc0 k=-—c0 k=—o0c0

Here, Ry (k), Ru(k), and R, (k) are the covariance functions of the processes
w, ‘;.l, and v respectively, and R,,(k) is the cross—coya.riance function of
the processes u and v. Thus, we have two alternatives to impl_ement the
discrete time method. The first alternative is observe the processes u and
v, form {w(n) : n > 0} by replacing #, for r then apply the univariate
autoregressive method and use Equa;ion (3.4.8). The other alternative is to
use the vector process y = {y(n):n > 0} defined by y(n) = (u(n),v(n))’
directly and obtain an estimate of o by using Equation (3.4.9) t..hl"ough the

spectral density function of y.

To apply the autoregressive method to semi-Markov processes simulated
in continuous time, we first apply the discrete time method (cf. quﬂijlc',
Iglehart, and Schassberger (1976)). Then we either use Equation (3.4.7)‘or
(3.4.8) to calculate o2.
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CHAPTER IV
VARIANCE REDUCTION TECHNIQUES

Although simulation is an important tool for anaiyzing stochastic sys-
tems, in many practicgl applications considerable computer time is required
for simulation runs. Therefore, it is desirable to develop methods that al-
low us to obtain, based on the same realizations, improved statistical ac-
curacy. Such methods are called‘ variance reduction techniques. We shall
develop several variance réduction techniques and incorporate them into our

autoregressive method.

Throughout this chapter, we let { X(n) : n > 0} be a strictly stationary
process. Since X(n) has the same distribution for all n, it holds trivially that

X(n) = X asn — oco. The quantity of interest is
r=L{f(X)}, (4.0.1)

where f : E — R is a real-valued measurable function. We make the further

assumption that { X(n):n > 0} is ¢~mixing with ¥ _ ¢(n)'/? < co. Then

Pn= = f(X()

is a strongly consistent unbiased estimate for r and the following central limit

theorem holds for #(n) (cf. Section 2.33) :

| ﬁ—(rfﬁ = N(0,1), (4.0.2)
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where

5 o® =Var{ f(X(0))} +2 i Cov{ f(X (), £(X(0)) }.
=1

Our goal is to find another strongly consistent estimate for r and a central

limit theorem analogous to (4.0.2) with a smaller variance constant o2. The
motivation for doing so is to be able to form a shorter confidence interval for

r'

4.1. Control Variables Method

In this section we will discuss the use of control variables to achieve
variance reduction in the simulation and hence obtain a shorter confidence
interval. A good introduction to this technique is given in the book by Gaver

“and Thompson (1973) pp. 582-591. Detailed accounts of various kinds of
control variables applications can be found in Iglehart and Lewis (1979),
Lavenberg, Mocller, and Welch (1977), and Gaver and Shedler (1971). A
control variable is a random variable whose expectation is known and which
is correlated with the process under study.

Let a sequence of processes { Cj(n):n > 0}, 7 = 1,2,...,k, which will
serve as the control variables, having the following properties:

(P1) They are fairly easy to obtain; i.e., we do not spend too much time

generating them.
(P2) They are correlated with the original process { X(n):n > 0}.
(P3) The mean E{C;(n)} = p; is known or can be calculated analytically.

Define a (k + 1) dimensional column vector

y(n) = (yO(n)) 'yl(n)’ veey yk(n))'
= (j(X(n)), Ci(n),..., Ck(n))', n> 0,
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and assumec that the process {y(n) : n > 0} is strictly stationary and ¢-

_ mixing with Y #(n)!/? < co. Then we have the following results (cf. Section

B

2.3):
1 n~—1
Yn = ; fi—% y(z) — U a.s. and
Vn(in — p) = N(0,X), (4.1.1)
where

K= (7'7”'1:'-')#':),1
2=(°‘:‘j)) 1,7=0,1,...,k,

and o;; is defined by Equation (2.3.12). Now let B be a (k + 1) dimensional

column vector of real numbers. If we take 8 = (1,81,...,08x) and form
yp(n) = S((X(n)) + £5; B(Cy(n) - 15), then |
. :
ral) = 1 3 (70X @) + X 85(056) - )
i=0 j=1

is an estimate of . We have #3(n) — r a.s., and a simple application of the

continuous mapping theorem (cf. Billingsley (1968)) yields:

V(B — A1)

n
o8

= N(0,1), (4.1.2)

where 04 = ' ZB. Note that Equation (4.1.2) can be written as

vn (fa(n) )

o9p

Since there is no restriction in selecting the 8;'s, 7 = 1,...,k, we pick
B=p = (l,ﬂi,...,ﬁ;)’ where B8* minimizes aﬁ. This will produce the
smallest possible confidence interval for r. To minimize a?, we nced to solve
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the following non-linear programming problem:

minimize o4 =038 (4.1.4)
14
subject to Bo=1.

Let b = (ﬂl,...,ﬂk)’, A= {a,-j}, i, J = 1,...,k and a = (001,...,0’0k)',

then- N1
o = (1,0 (010 a)( )
A ( ) a A/\b

= ogp + 2a’b + b’ Ab.
Therefore, the problem (4.1.4) becomes

minimize b’ Ab + 2a’b. (4.1.5)

It is easily seen that the optimal solution for {4.1.5) is b* = —A"la. We
denote the corresponding 8 by B*, then |
03. =000 —2a'A7'a + (A"'a) A(A " !a)
= ggg — a'A"la.

Since A is the covariance matrix of the control variables; it is positive déﬁnite
and thus so is' A~!, Hence, we reduce the variance by a positive amount
a’A~la. Since the covariance matrix is not known, it becomes necessary to
estimate X, If E’n is a strong estimate of X, then ¢, — a a.s. andA,, — A
as. asn — oo. Hence, A7! — A~1as.. Letb, = —-A71a’, it is clear
thatb, — b as. asn — oo. Then Fi,- (n) and &a- are strongly consistent
estim;.tcs of r and o4 respectively. |

It follows that for 0 < v < 1/2, the 100(1 — 27)% confidence interval

for r is

H(n) = |#4+(n) = 21-485° [V, 75+ (n) + 2148+ [V,
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where 21, = ®~*(1—1) and &(-) is the distribution fun. tion of the standard

normal random variable.

","H'. .

This variance reduction technique is also applicable to continuous time
Markov chains and semi-Markov processes. We first apply the discrete time

h . method discussed in Section 3.4 and then the control variables method.




4.2, Multipfe Estimates Method

The multiple estimates method of vafiance reduction was introduced by
Hcidelberger (1977) for regenerative Markov processes. In this section we
shall slightly modify the method to adapt it to our situation. Here { X (n):
n > -0} is a strictly stationary ¢—mixing process.

The -multiple estimates for r are formed by choosing new measurable
functions f; : E — R such that E{f;(X)} =rfor1 < j < k. Assuming
E{|£;(X(0))|} < oo, then

=0
#i(n) = - ,-;) fi(X@E) = r a.s.
Each #j(n)is a stréngly consistent estimate for r. Define a (k+1)-dimensional

vector y as

y(n) = (vo(n), 31(n), . .., yk(n))
= (/(X(@), (X (), (X (@)Y, n> 0.

It is not difficult to see that the process y = {y(n) : n > 0} is strictly
stationary. If N2 is the o—field generated by X(a), ..., X(b) and if M}
is the o-ficld generated by y;(a),...,y;(0), 0 < j < k, then M} C NS,
Since {X(n) : n > 0} is ¢-mixing it follows that y is ¢-mixing. Thus
Equation (4.1.1) holds with g = (r,r,...,r). Let B = (Bo,B1,..-,Bk) so
that E§=o B; =1 and form
k
Fa(n) = D_ Biti(n)-
=0
We have #5(n) — r a.s. and
VA (Foln) =)

9g

= N(0,1), | (4.2.1)
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2 _ k
where 0 = X = E,-,J-=o Bio:;B;.
To maximize the variance reduction we solve the non-linear programming

problem:
minimize ¢} = g'Xp

. subject to Pe=1,
where e = (1,1,...,1). The optimal solution is
B =X"1dT e :
& ssvel. - (422)

0g- =1/e'Z .

To apply the multiple estimates method, we need to find the proper
functions f;’s. We shall discuss the choices for Markov processes. Let
{X(n):n > 0} be a discrete time Markov process with probability transition
function P. One choice suggested by Heidelberger (1977) is setting -

.f0=fa
fJ'=ijx Jj=1,

which is defined by
1) = [ Pite, an)s(o)
Obviously, f; = Pfj~1, § > 1. It can be shown that nf = «(Pf). By

induction it follows that

rj = nf; = (P f;_1)

=Afjp = =r7.
This idea is also applicable to continuous time Markov chain {X(t) :
t > 0} with discrete state space. We first apply the discrete time method
discussed in. Scetion 3.4. Let {X(n) :n > 0} be the stationary embedded
jump chain. For j = 1,...,k we define
- g;(1) = f;()ar!, i€E
uj(n) = g;(X(n))

v(n) = dx(n)
w;(n) = uj(n) - rv(n)
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E | and
w(n) = (wo(n),..., wk(n))'
m ' u(n) = (uo(n), cee, uk(n))'.

{w(n) : n > 0} is strictly stationary and ¢-mixing. For 0 < 5 < &, we

have r; = E{ uj(n) }/E{v(n)} (cf. Section 3.4). Thus w(n) has mean zero,

?j(h) = %’- - r a.s. a.pd, {

VAW = ﬁ(?;z—“) = N(0,XZ.),

= where X, = E;;_w R,(7). By using a continuous mapping argument we

may replace 7 by E{»(0)},

T! _ v (#(n) — p)
1/E{v(0)}

= N(0,Z.), | (4.2.3)

where #(n) = (#o(n), ..., #x(n). By applying the continuous mapping theorem %

again, we immediately obtain X = X, /E{»(0)}%.

To select f; we recall that (cf. Section 3.4)
R =,

where 7 is the stationary distfibution of the process { X(t):t > 0} and R
is defined by Equation (3.4.4). Therefore, 7/f = =’ R f. This suggests we let .
fo = f and choose

[i=Rif j>1

Again »/f; = r for all j.
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4.3. Innovation Control Method

The third variance reduction technique we will discuss is the innovation
control. This method utilizes the socalled Wold decomposition of the sta-
tiongry process. F;ar the purpose of variance reduction we need only discuss
the scalar case. | | .

Following.Anderson {1971), we use the double-infinite sequence of ran-
dom variables {z(n): —oo < n < o0} to generate the relevent Hilbert space.
Let M, be the closed subspace spanned by z(m), m < n. Thus M, contains
all finite linear combinations, 3 jes @(7)z(7), where S is a finite set of integers
which are less than or equal to n, as well as their limits in mean sqﬁare. If z

and y are two elements of this Hilbert space, then E{zy} is called the inn'gr

product. Clearly, My C M,, m < n. We put Moo = 2 M, and -

n=—co
Moo = M. The best linear prediction of z(n) by z(n — 1),z(n — 2),... is
the projection of z(n) on M._;, denoted by Z(n). Put ¢(n) = z(n) — %(n),
then ¢(n) | M,—,, ie, e(n) is orthogonal to every element in M,_1. The
random scquence €(n) is usually called the innovation. If E{¢(n)?} = o? =
0, the process is said to be purely deterministic. If E{e(n)?} = 0% > 0, the
process is called regular. The Wold decomposition, Wold (1954), clarifies the

structure of a stationary process.

(4.3.1) WOLD DECOMPOSITION THEOREM. If {z(n) : —00 <

n < oo } is a regular stationary stochastic process with E{z(n)} =0, it can
be written as
. oo
z(n) = Y _ a(j)e(n — 7) + v(n) = u(n) + v(n) (4.3.2)
j=0 '
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where $5% 0 a(j)? < 00, a(0) = 1, E{e(n)} = E{u(n)} = 0, (n) € M,
and v(n) € M~e. The sequences {¢(n): —oco < n < o0} and {v(n): —o0 <

n < oo} are unique.
Proof. See Anderson (1971) pp. 420--421. @
The next theorem states the spectral functions of u(n) and v(n)

(4.3.3) THEOREM. If z(n) is regular with spectral distribution function
F = F,. + F, + Fy4, and f is the derivative of Fy,., then f is the spectral
density function of u(n) and Fy + Fyis the spectral distribution function of

v(n). Furthermore,

10 = 213 alile= M.

i=0
Proof. See Hannan (1970)pp. 140-141. @

Now we apply these theorems to obtain some variance reduction. Let
{X(n) :n > 0} be a strictly stationary and ¢-mixing process. We wish
to estimate r = E{g(X)}! for a given function g. Let z(n) = 9(X(n)) and

assume the process {z(n) : n > 0} is regular. Applying Theorem (4.3.1)

yields ,
z(n) = ) a(j)e(n — 5) + v(n).
7=0
Let -
#(n) = ), a(s)e(n ~ 1) +(n),
=1
. ¢(n) = z(n) ~ (n), and o? = E{e(n)?}.

Define

y(n) = (z(n), (n))"

tWe reserve f for the spectral density function.
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Vi (2T v -n)= NO3),

+=0
where
@w= (Tro), |
= ) R(n)={oy}.

Here o0;;, t{, § = 1, 2 is defined by Equation (2.3.13). Let F(X\) be the
spectral distribution matrix of y(n) and F(\) = dF,:(\)/d\. Then R(n) =
J7_e&™* F(d\). Note that
o= Y Rum)= ), / e Fy1 (d\)
—-n

n==—o00 n=-—0o

=+
= 27 f11(0) +c = o?| E a(7)|? + ¢,
j=0 .

where ¢ is the infinite sum of the integral from the discrete and singular parts

of F11()\). And’

o123 = Z Cov{z(n),€(0) }

= > Cov{D_ a(s)e(n - .1')‘+ v(n), €(0) }
n=--00 =0 .
== 0'2 i a('n),
n=0

i E{¢(n)e(0)} = o2

n=-—~0o

As we have done in Section 4.1, we take 8 = (1, b)’ and form B'y(n). Then

022

n—-1

falm) = £ LX) + 3t

ni=o
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is an estimate of r and #g(n) — r as. as n — oo. Also the central limit
theorem holds:

Vn(#g(n) —r)/og = N(0,1) as n— oo

-

where 0% = 011 + 2bo12 + b2032. Again, we may choose A" to minimize o}
which is
[ «)
- . ) !
8" = (1,~012/02) = (1,— D a(n))
) —=

and a;‘;- = 031 — afz/agg =c.
We notice that if the process {x(n)-: n > 0} has absolutely continuous
spectral distribution then az. = ¢ = 0 that means #5-(n) is a constant

random variable r.

Although this method seems extremely good, we encounter difficulties in .

application. In general, we are not able to obtain the innovation €(n), unless

we know the true values of the parameters (e.g., a(5)’s, ...) for {z(n): n >

0}.
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CHAPTER V

NUMERICAL EXAMPLES

In this chapter, we present four examples to demonstrate how well our
method performs. One of the examples, the outflow process in a lake model,
is actually a [irst order autoregressive.process. All other examples come from
the area of queueing theory. They are the waiting time process in an M /M /.1
queue, the passage time and response time processes in a closed nétwork of
queues, and the queue length process in a cyclic queue. These processes are
regenerative processes for which we can calculate the theoretical values of the
parameters being estimated. Therefore we are able to make the comparisoﬂ
between theoretical values and simulation estimates. For all examples, the
results obtainéd from the autoregressive method are quite satisfactory.

To determine the order of autoregressive model, we use AIC, BIC, h-
criterion,' and the statistical test discussed in Section 3.2 for the univariate
case, and AJIC for multivariate autoregressive method. Among different
criteria, the results obtained by using the AIC are usually the closest ones to
true \;alues. We may conclude that AIC is the best one for Imany applications.

All problems were run on a DEC-20 computer and we used the build-in

uniform random number generator to simulate all processes.
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5.1. EXAMPLE. Waiting Time Process in an M/M/1 Queu=

Suppos.e customers arrive at a single service facility. If a customer finds
the server idle, then he receives service immediately, otherwise, he waits his
turn to be served. Assume the zeroth customer arrives at time tg = 0, finds
a free server, and experiences a service time v(0). The nth customer arrives
at time t, and experiences a service time v(n). Let the interarrival times
u(n) = tp — t,—1, wWhere n > 1. Also assume the two sequences {u(n) :
n > 1} and {v(n): n > 0} each consists of i.i.d. random variables and
are themselves independent. Let E{v(0)} = u~ !, E{ u(l)} = A"}, and the
traffic intensity p = \/u. Let W(n) be the waiting time of the nth customer.
- Then W(n) can be defined recursively by
W(0) =0,

W(n) = [W(n—-1)+X(n)]* _ (5.1.1)
max{0,W(n - 1)+ X(n)}, n> 1,

where X(n) = v(n — 1) — u(n). It is known that if p < 1 then there exists
a random variable W such that W(n) = W as n — oo. This model is
commonly called the GI/G/1 queue. If the arrivals form a Poission process
with rate \ and service times ;mre exponentially distributed with rate p, thep
the queue is called an M /M /1 queue. We are interested in estimating E(W), -
which is finite if E{v(n)?} < oo.

We observe the { W(n): n > 0} process for the univariate autoregressive
method. For the variance reduction techniques, we apply the control variables
and multiple estimates methods. It is natural to usc the service time and

interarrival time as control variables; i.c., we use (W(n), u(n),v(n — 1)) for
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the control variables method. We use the column vector

!

y(n) = (fo(W(n)), 1(W(n)), 2(W(n))), (5.1.2)

for the multiple estimates method. Here, the f function is f(z) = z, f;(z) =
Pif,j > 0. In order to calculate f;, wé need to find the probability transition
function for the { W(n)} process. For the M /M /1 queue it is easy to show

that '
ﬁe)", for z < 0;

1 -__;}‘_—;e‘“", for z > 0.

P{X(m) < 2} = {
Thus g(z) = £ P{X(n) < z} exists for all z and we write P{X(n) €dz } =
g(z)dz. Now to evaluate f;(z) we have
e = [ Pl = [ sPWen+ 1) € dy| W) =2}
= [CuP(z+ XD edy = | voly- =)
. 0 0
We find

A—p Bz
A\p + A+ p)e

To evaluate fz(z) we compute the irtegral

fl(a:) =z -+

he)= [ Pl ant)

After this computation we find

A\ — 2 11
fa(z) = fi(z) + )‘pﬂ + (x f_ #) C—M(i tr et “)-

It is possible to calculate exactly the covariance matrix X for y(n) in
(5.1.2), so that we can compute the theorctical values of variance reductions

for the multiple estimates method. The idea is to use the stationary process
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{W(n): n > 0}, i.e.,, W(0) is distributed according to its stationary dis-
tribution. Define the generating function of the joint Laplace transform of
the stationary waiting time process by

0(21, 29, s) . Z: E{ e—:xW(O)—zQW(n) } ) 8",

n=0
where |s| < 1. C(z1, 22, 8) has been calculated by Blomqvist (1967), he also

gave the exact form for the covariance function of {W(n) :n > 0} which is

R(k) = Cov{ W(k), W(0) }

_1.1-2 < P “.(2’."3)!.,‘_ 1) (i -k —
R (o) - O RO

We can obtain o;; from C(zy, 22, 8), e.g.

o1 = o {W(0)} +2 ) Cov{W(n), W(0)},

n==1 .
— o2( S
012 = > {W(0)} +2 ) Cov{W(0), W(n)}
n=x1 .
e W)y 4 T ~AW(0)
50T (; Cov{ W(0), e }+ n; Cov{W(n), e )
and
b - 92C(z4, 23, 3)
,.;OE{ WOW(n)} = lim —3=5"2= 1., —0,2=0,
_ Z Cov{W(0)e (™} = _ lim M |21 =0,2s=x -
ne=0 s— 1 321

After we have calculated o,;, we can obtain ag. by using Equation (4.2.2).
The exact form of the covariance function R allows us to demonstrate the
autoregressive approximation. Recall that the autoregressive method enables

us to approximate o2 (cf. Equation (4.0.2)) by 27 times the spectral density
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function at 0 of some finite order autoregressive process (cf. Section 3.1); If

we assume that {W(n):n > 0} is a pth order order autoregressive process,

then { W(n):n > 0} satisfies

> BW=i) =) B0 =1 Al) # O
jo=
where ¢(n) are i.i.d. .ra.x‘ldom variables with variance oZ(¢). We solve the
following Yule-Walker equations (cf. Section 2.2), namely

? _

Y B(DR(s—5)=0, s=1,...,p,

=0 :
to obtain ﬁp(j)’sv and o(e) = > f—0Pp()R(—7). The corresponding ap-
_ proximation for o2 is 27 f¢(0) = o2(e)/|3-F—0 Bp(s)|?. Table 1 contains the
values of R(k) for k < 10, it also gives 27 f,(0) and simulation results for
27 f(0) for k < 10. From this table we can see that 2 f,(0) converges fairly
fast to 02 = 21 o (0) (the stationary waiting time process is an infinite order
autoregressive process). Observe that 27 f;(0) is 23.99 which is 83% of o2
(27 foo(0) = 29). If we want an estimate with accuraéy 90% of the true
value, we may pick the order of the autoregressive model to be as low as 3.

To see how well the autoregressive method performs in an actual simula-

tion, we have taken u ='1, p = 0.5. To obtain a 100(1 —2+)% confidence in-

terval with half length 1006% of the true value of E{ W } requires z;—,0/\/n =
§ - E{W} for some 4. If we take 4y = 0.05, § = 0.1 then the number of cus-
to.mers, n, that need to be simulated is roughly 7850 or 3900 regencrative
cycles. For the purpose of comparing the autoregressive method and the

regenerative mcthod, we simulated the waiting time process in cycles for a

total run length of 4000 cycles (the expected total namber of customers is
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8000). We consider 500, 1000, 2000, 3000, 4000 cycles, the longer runs being
continuations of the shorter runs.

All runs were replicated 30 times. For each replication we form point
estimates and confidence intervals for various parameters of interest. We

then average over the 30 independent replications and form 90% confidence

intervals for each parameter; this is done by using the central limit theorem
':‘-_'.T‘ for i.i.d. random va.riables.. The upper bound provided for order selection was
b 10 for all criteria. Table.2 shows the point estimate for E{ W} either with
or without a variance reduction technique. Table 3 contains the estimate for
o? from the regenerative method as well as the approximation of o2 from
t! the autoregressive method for various kinds of order selection criteria. By

inspecting the results, we conclude that among the order selection criteria,

AIC seems to be the most satisfactory one for {W(n) : n > 0}. Table '
5 gives the average order of autoregressive model determined by various
order selection criteria. We notice that every criterion yielded a low order
autoregressive rnodel,. this indicates the choice of the upper bound K = 10 is

quite sufficient. In Tables 4 and 7 we report the coverage probability defined

by _ )
number of 90% confidence intervals covering E{ W}
total number of confidence intervals formed

c.p. =
which has expected value 0.9.

Table 6 contains the results of a%. for different variance reduction tech-.
niques. Here we estimated the optimal multipliers 8* by using equations
derived in Chapter 4. From Table 6 we see that by using 3 different f func-
tions for the multiple éstimates, we get a substantial amount of variance

reduction. In order to judge a variance reduction technique, we must make a
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fair comparison. Suppose we simulate n; customers using no variance reduc-
tion technique (method 1) and ny customers using multiple estimates with 3
f functions (method 2). In order to obtain the same statistical accuracy (i.e.

same half lengths of confidence intervals) we have

o1 o3
ma~—F— = 2 —a—F—,
vn2

3

that is equivalent to saying
ny

o1
0‘% Ny )

From Table 6 we find that for method 2 we can cut the run length to 1/30
of the run length of method 1 and still obk:ain the same statistical accuracy.
Of course, we recognize that by using method 2 we do a certain amount of
extra work. Since the computing time depends on the run length as well as
the upper bound selected for.the autoregressive methed, it is hard to ﬁnd_
the relation of times between these two methods. However, based ‘ovn .our
results, the half length of confidence interval constructéd by method 2 is 30
(= 29/.948) times smaller than that of method 1 but requires 6 times (i:or
example, take the last row of Table 8, 6 & (110.96 + 372.16)/(43.61 + 39.74))

as much CPU time.
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Point Estimates and 90% Confidence Intervals for 27 f(0)

TABLE 1

Using Various Orders of k in the.Autoregressive Method for

the Waiting Time Process in an M /M /1 Queue with u = 1.0, p = 0.5

Order| True Values Simulation Results for different nurr_lber of cycles
k p(k) | 2=f.(0) [ 500 1000 2000 3000 4000
27.90 23.92 24.47 24.48 24.20
1 0.778 | 23.99 }
+6.62 | £366 | + 3.03 | £2.77 | £1.95
30.06 -25.37 26.27 26.20 25.82 .
2 |.0.617 | 25.56 2
+7.69 +3.99 +3.44 +3.16 +2.28
30.76 26.05 26.90 26.94 |~ 26.64
3 | 0497 26.50
+7.91 +4.15 +3.71 +3.46 +2.51

29.00

31.19 | 26.79 27.70 | 27.69 | 27.32 -
4 |o0403| 27.10 |. -
+8.49 | +4.53 +4.11 | +3.61 | +2.65
31. 27.1 28.06 | 28.26 | 2.
5 {0.330] 27.57 35 1 8 783
+8.56 | +4.75 +4.32 | +3.81 | +2.81
: 31.05 | 27.30 28.16 | 28.66 | 28.1
6 | 0.272| 27.86 6 3
+8.66 | +5.09 | +4.55 | +4.04 | +2.95
' 31. 28, 28.39 | 29.02 | 28.4
7 | o0.225 | 28.12 87 8.05 3 8
+8.99 | +5.39 +4.56 | +4.19 | +3.08
33.13 | 28.88 28.85 | 29.45 | 28.78
8 |0.187 | 28.28
+9.77 | +5.83 +4.72 | +4.39 | +3.19
33.20 | 28.92 20.22 | 29.59 | 28.94
9 |0.157 | 28.46 .
+9.90 | +5.84 +4.70 | +4.41 | +3.23
32.93 | 29.07 290.06 | 29.86 | 29.13
10 | 0.131 | 28.51
+9.78 | +6.02 +4.66 | +4.60 | +3.31
oo 0 — — — — —

¢ Results are based on 30 independent replications, p(k) = R(k)/R(0), R(0) = 3.
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TABLE 2
Simulation Results for E{W} = 1.0 in an M /M /1 Queue

with 4 = 1.0, p = 0.5, Point Estimates and 90% Confidence Intervais

Number of | No Variance Control Multiple Estimates
Cycles Reduction Variables 2 functions | 3 functions

500 1.0039 0.9868 0.9823 0.9821

+0.0610 +0.0379 + 0.0160 + 0.0082

1000 0.9901 0.9812 0.9861 0.9928

+0.0428 + 0.0227 4 0.0130 + 0.0067

2'000 0.9942 0.9953 0.9964 0.9962

+0.0316 +0.0171 + 0.0101 + 0.0050

3000 0.9978 0.9938 0.9953 0.9951

+0.0250 - 40.0160 + 0.0080 -+ 0.0040

4000 0.9949 0.9980 1.0003 0.9982

_ +0.0189 +0.0118 + 0.0069 4 0.0032

e Results are based on 30 independent replications; the central limit theorem

for i.i.d. random variables was used to form confidence intervals.

¢ Point estimates are obtained by estimating B* for variance reduction

techniques.

autoregressive method.

e The AIC criterion was used to select the order for the multivariate

¢ The maximum order for the aﬁtoregressive model is K = 10.

P
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TABLE 3

Simulation Results for 02 = 29.0 in an M /M /1 Queue

with u = 1.0, p =0.5, Point Estimates and 90% Confidence Intervals

¢ Results are based on 30 independent replications; the central limit theorem

Number of [Regenerative Univariate Autoregressive Method
Cycles Method - AlIC BIC h- Stat. Test
500 29.33 29.99 28.67 - 29.75 28.58
+7.83 + 7.94 +7.11 +7.80 + 6.69
1000 27.36 28.54 24.57 26.47 26.04
+ 5.07 +£5.75 | +3.92 + 4.82 + 4.79
2000 29.40 28.15 26.02 26.59 26.39
+ 5.56 + 4.51 + 3.84 + 3.83 + 3.86
3000 30.12 29.21 26.07 27.21 26.86
%+ 5.07 + 4.47 +3.41-| +3.61 + 3.59
4000 29.30 28.25 25.64 26.83 26.04
+ 3.75 + 3.12 + 2.49 + 3.08 + 2.75

for i.i.d. random variables was used to form confidence intervals.

e Use the scalar process {W(n):n > 0}.

e The maximum order for the autoregressive mod_el is K = 10.
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TABLE 4

-Simulation Results for Coverage Probability (= 0.9)

in an M /M /1 Queue with p=1.0,p=05, -

Point Estimates and 90% Confidence Interval_s

Number of [Regenerative Univariate Autoregressive Method
Cycles Method AlIC BIC h Stat. Test
500 0.70 0.67 10.67 0.67 0.67
+0.14 +0.14 + 0.14 +0.14 +0.14
1000 0.77 0.73 0.73 0.73 0.73
+0.13 +0.14 +0.14 +0.14 +0.14
9000 0.80 0.80 0.80 0.80 0.80
+0.12 + 0.12 +0.12 +0.12 +0.12
3000 0.80 " 0.80 0.77 0.80 0.77
+0.12 +0.12 +0.13 + 0.12 +0.13
400'0 0.90 0.90 0.83 0.90 0.90
+0.09 + 0.09 +0.11 + 0.09 +0.09

¢ Results are based on 30 independent replications; the central limit theorem

for i.i.d. random variables was used to form confidence intervals.

e Use the scalar process {W(n):n > 0}.

e The maximum order for the autoregressive model is K = 10.




TABLE 5

Order of Autoregressive Model Selected by Different. Criteria
in an M /M /1 Queue with u = 1.0, p =0.5,

Point Estimates and 90% Confidence Intervals

e Use the scalar process {W(n):n > 0}.

80

Number of Univariate Autoregressive Method
Cycles AIC BIC h . Stat. Test

500 2.37 1.10 1.43 1.13

+ 0.56 + 0.09 + 0.23 +0.13

3.30 1.10 1.70 1.47
1000

+ 0.83 + 0.09 + 0.35 + 0.44

2.80 1.33 1.6 1.

2000 A ! 53

4 0.60 + 0.20 + 0.41 + 0.42

o ’ 3.83 1.43 2.23 2.00

- +0.81 +0.22 +0.51 + 0.53

u 3.90 1.47 2.14 1.73
b 4000

.. + 0.75 + 0.22 + 0.47 . +0.41

¢ Results are based on 30 independent replications; the central limit theorem

for i.i.d. random variables was used to form confidence intervals.

e The maximum order for the autoregressive model is K = 10.




TABLE 6

: _ Point Estimates and 90% Confidence Intervals for ¢? by Applying

Variance Reduction Technique in an M /M /1 Queue with y = 1.0, p =0.5

Multivariate | True | Simulation results for different number of cycles
Method Value .| 500 1000 2000 3000 4000
Control 13.75 12.57 13.36 13.92 13.85
Variables | | +345 | +212 | +11.89 | +214 | +153
Multiple 4.93 3.67 3.40 3.92 4.78 4.59
Estimates(2 f’s) +1.65 | +1.11 +0.98 | +1.77 | +£1.37
| Multiple oosg | 0589 | 0854 | 0679 ©0.930 | 0.918
5 Estimates(3 f’s) +£0.373 | £0.230 | +0.220 | +0.441 | +0.367

- @ Results are based on 30 independent replications; the central limit theorem

for i.i.d. random variables was used to form confidence intervals.

¢ Point estimates are obtained by estimating 3* for variance reduction

e The AIC criterion was used for order selection with maximum order

for the autoregressive model of K = 10.
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TABLE 7
Point Estimates and 90% Confidence Intervals
for Coverage Probab‘ility by Applyiné Variance Reduction Technique
in-an M /M /1 Queue with g = 1.0, p =0.5

Multivariate | True | Simulation results for different number of cycles
Control 0.9 0.80 0.80 0.93 0.83 0.90
Variables ) + .12 + .12 + .08 + .11 + .09
Multiple 0 0.73 | 0.77 0.83 0.80 0.90
. Estimates(2 f's)| +.14 +.13 +.11 +.12 +.09
['! Multiple |, 0.67 0.67 0.77 0.77 0.90
9 Estimates(3 f’s)) | +.14 +.14 +.13 +.13 +.09"
; ¢ Results are based on 30 independent replications; the central limit theorem _

for i.i.d. random variables was used to form confidence intervals.
¢ Point estimates are obtained by estimating 8* for variance reduction
e The AIC criterion was used for order selection with Maximum order

for the autoregressive model of K = 10.
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TABLE 8

Comparison of Total CPU Time (in seconds) for Different
Methods for Estimating E{W '} in an M /M /1 Queue
with g = 1.0, p = 0.5

Number of Generate sample path Autoregressive method
Cycles No v.r. Multiple 2 f’s Univariate | Multivariate
500 5.85 13.69 5.95 54.26
1000 11.51 26.92 11.02 98.13
2000 22.39 . 55.20 20.76 18;7.81
3000 33.85 84.69 31.06 288.63
4000 43.61 110.96 39.74' 372.16 |

e Results are based on 30 independent replications; the central limit theorem
for i.i.d. random variables was used to form confidence intervals.

e v.r. is the abbreviation for variance reduction.

e f1 and f2 were calculated for the variance reduction method.

e Multiple estimate f1, fs.
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5.2. EXAMPLE. The Outflow Process in a Lake

Let S(n), Z(n), and X(n) denote the volume of water stored in a lake,
the inflow of water, and the outflow of water respectively at time n. Then

the amount o.f water stored at time n + 1 is defined by the relation
S(n+1) = S(n) + Z(n + 1) — X(n +1). (5.2.1)

If one assumes that output increases with storage through z linear relation,

namely

X(n)=a-8(n), 0<a<],
then Equation (5.2.1) has the form
X(n+1)=pX(n)+¢en+1) : (5.2.2)

where p = 1/(1 + a) and ¢(n) = aZ(n)/(1 + a). We also assume that {e(n):

n > 0} is a sequence of i.i.d. random variables with

P{e(n) € B}'= p-o(B)+(1— p)/B f(y)dy.

This yields a Markov process for the outflow process { X(n) : n > 0} with

state space E = [0, o0) and probability transition function

P(z,B)=1p-6,.(B)+ (1 -p) /B f(y — px)dy.

We notice that {X(n) : n > 0} is actually a first order autoregressive

processes. It can be shown that X(n) = X as n — oo with

E{X}=E{1)}/(1-p)=E{2(1)}.
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A simulation was carried out to estimate E{X }. We have taken p = 0.75

~and the ¢(n) to have distribution

Plen) L z}=1-(1-ple %, z > 0,

which results in X being exponentially disiributed with parameter 1.

We observe {X(n) : n > 1} and use the univariate autoregressive
method. It is also possible to observe the variables ¢(n) during the simulation,
since we kric;w p. Thus we were able to apply the innovation control method
for variance reduction. We use the vector process { y(n) : n > 0}, where
y(n) = .(X (n), e(n))’, for the innovation control method. We consider 1000,
2000, 5000, 10000 observations, the longer runs being continuat.io'ns of the
shorter runs. All runs were replicated 30 times. Notice that the process
{X(n):n > 0}isindeeda ﬁ;'st order autoregressive process and the pfocess :
{y(n):n > 0} can be written as

X(n+1) p 0\ [/X(n) e(n +1)
(e(u#i)) =(no)( 0 )+(e(n+1))

which results in y(n) being a first order autoregressive process. Therefore,

the upper bound provided for order selection was 5 for all criterions. Table

9-12 summarize the simulation results for the lake model. We estimated the

optimal 8* by Equation (4.3.4) and we observe that o3. was actually reduced

to zero as expected. The fact that {X(n):n > 0} and {y(n):n > 0}

are finite order autorcgressive processcs offers us a chance to validate the .
asymptotic property of k (cf. Section 3.3 and 3.4) obtained by various order

selection criteria. Table 12 contains the average order determined by ecach

criterion. The table shows what is to be expected, namely overestimation of
the order by AIC.
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B TABLE 9
f:': Simulation Results for E{X } (the outflow) in the Lake Model
13
- with p = 0.75, Point Estimates and 90% Confidence Intervals
Number of True No Variance Innovation
e Events Value Reduction Control ‘
1.0179 0.9912 o
1000 1.0 ' ' : ‘
] +0.0239 +0.0010 1
2000 1o 1.0229 0.9984
i ' - +0.0173 40.0006
- 1.0151 0.9994
5000 1.0 :
- +0.0092 40.0001
Y 1.0069 0.9997
' 10000 1.0 :
B +0.0070 40.0001
¢ Results are based on 30 independent replications; the central limit theorem
. .
_ for i.i.d. random variables was used to form confidence intervals.
¢ Point estimates are obtained by estimating 8* for the variance reduction
techniqueé.
'.;:'.‘ e The AIC criterion was used to select the order for the multivariate
autoregressive method.
.. ¢ The maximum order for the autoregressive model is K = 5.
o
4
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TABLE 10

Simulation Results of 02 for { X(n)} in the Lake Model

with p = 0.75, Point Estimates and 90% Confidence Intervals

Number of Univariate Autoregressive Method Innovation Control
Events [TrueV., AIC BIC h Stat. T.' [True V.|Simulation
7.2582 | 7.2172| 7.1686 7.2172 0.0238
1000 7.0 6 0.0
+ .5358 | £+ .4759 | + .4940 | + .4759 + .0149
7.1428 | 7.1924§ 7.1402 7.1924 014
2000 7.0 0.0 0 9
+.3473 [ +.31897+ .3068 | +.3189 + .0117
. 7.09351 7.1171 | 7.0945 7.1171 | 0.0030
5000 7.0 0.0
+.2349 | +.2356 | & .2305 | +.2356 + .0006
6.9887 | 7.0245| 7.0118 7.0245 ‘ 0.0022
10000 7.0 0.0
+.1616 | £ .1536 | & .1463 | +.1536 + .0011

e Results are based on 30 independent replications; the central limit theorem
for i.i.d. random variables was used to form confidence intervals.

e Point gétimates are obtained by estimating B8* for variance reduction
techniques.

e The AIC criterion was used to select the order for the multivariate autoregressiv

method.

e The maximum order for the autoregressive model is K = 5. -
e True V. is the abbreviation for True Value.

e Stat. T. is the abbreviation for Statistical Test.
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TABLE 11

Simulation Results for Coverage Probability in the Lake Model

with. p = 0.75, Point Estimates and 90% Confidence Intervals

Number of; Univariate Autoregressive Method Innovation Control
Events [TrueV.)| AIC | BIC h Stat. T. [True V.Simulation
0.90 0.90 0.90 0.90 1.0
1000 0.9 0.9
+£.09 | £.09 [ +.09 + .09 +.0
0.90 0.90 0.90 0.90 1.0
2000 0.9 0.9
+.09 | +.09 |-+.09 + .09 4+ .0 -
0.97 0.97 0.97 0.97 1.0
5000 0.9 0.9
+.05 | £.05 | +.05 + .05 +.0
0.93 0.93 0.93 0.93 1.0.
10000 0.9 0.9
+.08 | £.08 | .08 | +.08 +.0

¢ Results are based on 30 independent replications; the central limit theorem

for i.i.d. random variables was used to form confidence intervals.

e Point estimates are obtained by estimating B* for variance reduction

techniques.

e The AIC criterion was used to select the order for the multivariate autoregressive

nethod.

¢ The maximum order for the autoregressive model is K = 5.°

e True V. ié the abbreviation for True Value.

e Stat. T. is the abbreviation for Statistical Test.
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TABLE 12
Order of Autoregressive Model Selected by Different Criteria in Lake Model,

with p = 0.75, Point Estimates and 90% Confidence Intervals

Number of Univariate Autoregressive Method MAR
Events AIC BIC h Stat. Test Method
1000 1.3333 1.0 1.0667 1.0 1.0000

+.2410 +.0 + .0762 +.0 + .0000
2000 1.6333 1.0 1.0667 1.0 1.1333
+.3391 +.0 =+ .0762 +.0 +.1282
5000 1.3333 1.0 1.0667 1.0 1.1667
+ .2410 +.0 | +.0762 +.0 +.1778
10000 1.5000 | 1.0 1.0333 1.0 ~1.1000
+ .2586 +.0 + .0548 +.0 +.1908

e Results are based on 30 independent replications; the central limit theorem
for i.i.d. random variables was used to form conﬁdence intervals.

e Point estimates are obtained by estimating 8* for variance reductioﬁ
techniqueé.

e AJIC criterion was used to select the order for the multivariate autoregressive
method.

¢ The maximum order for the autoregressive model is K = 5.

e MAR Method is abbreviation for multivariate autoregressive method.
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5.3. EXAMPLE. Closed Network of Queues

The closed queueing network has been used in computer studies to model
multiprogrammed computer system (cf. Gaver and Shedler (1973)). Iglehart

and Shedler (1980) have written a monograph dealing with mathematical

NN T e
el el
Pl R Lo -

v and statistical methods for discrete event simulation of network of queues.
| Here we consider the simple closed network of queues with feedback shown
in Figure 1.
__ , There are two servers and a fixed number of jobs IV circulating in the
' network. When a job completes service at center 1, in accordance with a
binary-valued random variable %, the job joins the end of the queue at center
- 1 (when ¥=1) or joins the end of the queue at center 2 (when ¢ = 0). When
the job finishes service at center 2, the job rejoins the end of the queue
at center 1. We assume that the service discipline is first~come-first-serve.
In this example we are interested in estimating the limiting passage time
(denoted by P) and the limiting response time (denoted by R). Informally, a
passage time of a job is the time for a job to traverse a portion of a network
and a response time is the time for 2 job to complete one cycle of a network.

For the simulation of this queuing network, we make the following prob-

abilistic assumptions:

(1) the two sequences of service times at both centers each consists of i.i.d.

random variables, exponentially distributed with rate \;;

(2) ¥isa Bernoulli random variable with P{y = 1} = p and values of L

9 form a sequence of i.i.d. random variables;

& (3) the sequences in (1) and (2) are mutually independent.
90
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Fig. 1. Closed network of queues.

Let {P(n):n 2> 1} (respectively { R(n) : n 2> 1}) be the sequence of
passage times (fespcctivcly response times) enumerated in order of passage
time starts and let {S(n5 :n > 1} be the service time experienced at
center 1 associated with P{n). We notice that { S(n)} is a sequence of i.i.d.
random variables. Iglehart and Shedler (1980) have shown that P(n) = P
and R(n)= Rasn-  oco.

The simulation was carried out to estimate both £{ P} and E{R} and
we have taken N = 2, \; = 1.0, A2 = 0.5 and p = 0.75. We observe
the {P(n): n > 0}, {R(n):n > 0}, and {S(n) : n > 0} processes
and use S(n) as the control variable when we estimate I(P) and E(R). We
consider 1000, 2000, 3000, 5000, and 10000 observations, the longer runs
being continuations of the shorter runs. All runs were replicated 30 times.

Table 13-19 summarize the simulation results for estimating £{ P} and
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E{R}. The calculation of E{P}, E{R} and the variance constant cor-

~ responding to passage times can be found’in Section 9 of Iglehart and Shedler -

(1980). To evaluate the variance reduction for the control variables method,
we carried out a similar computation discussed in Iglehart and Shedler (1980).
Although we included the simulation results for the variance constant of

response times, we can not provide the theoretical value.
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TABLE 13

Simulation Results for E{P } (Passage Time) and E{R } (Response Time)

in a Closed Network of Queues with N = 2, A\; = 1.0, Ao = 0.5, p = 0.75

e Results are based on 30 independent replications; the central limit theorem
for i.i.d. random variables was used to form confidence intervals.

¢ Point estimates are obtained by estimating B8* for the variance reduction

techniques.

e The AIC criterion was used to select the order for the multivariate

autoregressive method.

e v.r. is the abbreviation for variance reduction.

Number of P (Passage Time) R (Response Time)
Events | True Value |No v.r.|With v.r.| True Value | No v.r. | With v.r.

6.713| 6.684 : 9.363| 9.334

500 6.667 9.333
+.120] +.019 +.128| +.044
6.616| 6.667 9.293| 9.342

1000 6.667 ) 9.333
+.079| +7014 +.091| +.035
. 6.638| 6.661 9.309| 9.331

2000 6.667 9.333
+.053| +.009 +.060( +.023
- 6.660] 6.666 9.327 9.332

5000 6.667 9.333
+.039| +.005 : +.034{ +.014
6 668| 6.664 9.337 9.333

10000 6.667 9.333
+.027| +.003 +.024| +.009
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TABLE 14
Simulation Results for o2 of Passage Time (P)

in a Closed Network of Queues with N = 2, \; = 1.0, \; = 0.5, p = 0.75

Number of Univariate Autoregressive Method Control Variables
Events [TrueV.,| AIC BIC h Stat. T. [True V.|Simulation
59.887 | 57.081| 58.164| 48.922 2.300
500 |58.667 1.581
| +4.511 | +3.392 | +3.201 | +3.744 +.132
8.794| 55.910| 56.220| 53.305 2.054
1000 |58.667 5 1.581
+2.768 | +-2.3997+ 2.349 | + 2.887 +.119
58.128 | 55.607 | 56.203 | 54.830 1.941
2000 |58.667 1.581 | .
+2.168 | +1.510 | +1.533 | +1.721 +.070
59.746 | 57.262| 58.565| ©56.989 1.801.
5000 |[58.667 1.581
+1.112 | 4+0.798 | +1.025 | +0.782 +.027 -
58.737 | 57.051| 58.218| 56.474 1.763
10000 |58.667 1.581
. +0.995] + 0.677 | + 0.807 | + 0.575 + .028

¢ Results are based on 30 independent replications; the central limit theorem
for i.i.d. random varigbles was used to form confidence intervals.

¢ Point estimates are. obtained by estimating B* for the variance reduction
techniques.

o The AIC criterion was used to select the order for the multivariate
autoregressi\'re method.

¢ The maximum order for the autoregressive model is K = 25.

e True V. is the abbreviation for True Value.

e Stat. T. is the abbreviation for Statistical Test.
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e Stat. T. is the abbreviation for Statistical Test.

o TABLE 15
" Simulation Results for o2 of Response Time (R)
x in a Closed Network of Queues with N = 2, \; = 1.0, Az = 0.5, p = 0.75
Number off Univariate Autoregressive Method Control Variables
Events AI C BI C h Stat. T. Method
500 60.274 | 62.094 | 61.891 58.065 9.025
' +4.840 | +4.119 | +3.834 | - 4.468 + 0.582
1000 59.989 | 60.527 | 61.039 60.216 8.879
+3.471 | +2.752 | +£2.745 | + 3.088 + 0.450
= 2000 59.602 | 62.133 | 60.621 | 61.923 8.650
g + 1.755 | +1.600 | +1.643 | +1.885 + 0.323
5000 60.909 | 62.493 | 61.152 63.041 8.305
= +1.067 | +0.928 | +1.113 | +0.834 + 0.277
. 10000 59.160 | 60.182 | 60.006 60.985 8.354
;4. +0.863 | +0.832 | £ 0.806 | + 0.861 + 0.187
e Results are based on 30 independent replications; the central limit theorem
for i.i.d. random variables was used to form confidence intervals.
. ¢ Point estimates are obtained by estimating B* for the variance reduction
_ techniques.
( ‘ e The AIC criterion was used to select the order for the multivariate
autoregressive method.
¢ The maximum order for the autoregressive model is X = 25.
g
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TABLE 16

Simulation Results for Coverage Probability( =0.9) of Passage Times (P)

in a Closed Network of Queues with N = 2, \; = 1.0, A\ = 0.5, p = 0.75

¢ Results are based on 30 independent replications; the central limit theorem

Number off Univariate Autoregressive Method Control Variables
Events AI C . BI C h Stat. Test ‘ Method
500 0.90 0.90 _ 0.90 0.83 - 0.93

+ .09 + .09 + .09 + .11 +0.08
1000 0.93 0.93 0.93 0.87 0.87
+ .08 + .08 + .08 +.10 +0.10
9000 0.87 0.87 0.87 0.87 0.90
: +.10 + .10 + .10 + .10 +0.09
5000 0.80 0.80 .0.80 0.80 0.90
+ .12 +-.12 + .12 +.12 +0.09
10000 0.83 . 0.83 0.83 0.83 0.93
+.11 +.11 | +£.11 +.11 +0.08

for i.i.d. raﬁdom variables was used to form confidence interva.l.s.

¢ Point estimates are obtained by estimating 8* for variance reduction

techniques.

e The AIC criterion was used to select the order for the multivariate

autoregressive method.

e The maximum order for the autoregressive model is X = 25.

e Stat. T. is the abbreviation for Statistical Test.
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TABLE 17

Simulation Results for Coverage Probability( =0.9) of Response Times (R)
in a Closed Network of Queues with N = 2, \; = 1.0, Az = 0.5, p = 0.75

Number of Univariate Autoregressive Method Control Variables
Events AIC BIC h Sta.t. T. Method
500 0.87 0.87 0.87 0.87 0.80

- +.10 +.10 +.10 + .10 +0.12

. . 0. .83 .
1000 0.80 0.80 80 0 0.87
+ .12 +.12 + .12 +-.11 +0.12

. . 0.87 87 .
2000 0.87 0.87 8 0.8 0 87-
+ .10 + .10 + .10 + .10 +0.10
5000 0.93 0.93 0.93 0.93 0.87
+ .08 +.08.] +.08 + .08 +0.10
10000 0.87 9.87 0.87 0.86 0.93
+ .10 +.10 + .10 + .10 +0.08

techniques.

autoregressive method.
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e Stat. T. is the abbreviation for Statistical Test.

e Results are based on 30 independent replications; the central limit theorem
for i.i.d. random variables was used to form confidence intervals.
e Point estimates are obtained by estimating 8* for the variance reduction

e The AIC criterion was used to select the order for the multivariate

¢ The maximum order for the autoregressive model is K = 25.
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TABLE 18
Order of Autorcgressive Model Selected by Different Criteria
& . for the Passage Times (P)
in a Closed Network of Queues with N =2, A\; = 1.0, A\ = 0.5, p = 0.75
Number of Univariate Autoregressive Method ;
2 Events AIC BIC h .| Stat. Test -‘
oy 2.07 a3 97 .
500 0 0.9 0.27
Y + .62 +.14 +.17 + .16 |
: .93 1.03 : =
1000 1.83 0 0.70 |
+ .40 +.11 +.15 + .14 . |
1.97 11.03 1.20 . |
2000 , 0.93 .
o + .33 . + .06 +.15 + .08 ;
- ‘ 1.93 -~ 1.10 1.43 1.07 '
T 5000
- -.31 +.09 + .22 + .08
. ~ : : 27 1.67 :
. 10000 . 2.43 1 6 1.13
:3'_ + .41 +.13 +.16 . + .10
¢ Results are based on 30 independent replications; the central limit theorem
for i.i.d. random variables was used to form confidence intervals. '
¢ Point estimates are obtained by estimating 8* for the variance reduction i
f
techniques. :
a ¢ The AIC criterion was used to select the order for the multivariate i
autoregressive method.
‘ e The maximum order for the autoregressive model is K = 25. %
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TABLE 19

Order of Autoregressive Model Selected by Different Criteria

for the Response Times (R)

in a Closed Network of Queues with N = 2, \; = 1.0, A\; = 0.5, p = 0.75

Number of Univariate Autoregressive Method
Events - AIC BIC h Stat. Test
1.9 0.8 1.27 .
500 0 3 0.47
+ .53 + .21 + .25 +.17
2. .9 1. .
1000 10 0.97 20 0.73
+ .54 + .15 + .20 + .14
. 1. . .
2000 197.. 03 1.40 . 0.93
+ .39 3+ .65 +.19 + .08
2.30 1.2 1. .10
5000 3 0 50 11
+ .43 + .16 + .17 + .12
2.77 1.50 . .30
10000 : 170 1.30
+ .42 +.15 + .18 + .14

e Results are based on 30 independent replications; the central limit theorem

for i.i.d. random variables was used to form confidence intervals.

o Point estimates are obtained by estimating B* for the variance reduction

techniques.

e AIC criterion was used to select the order for the multivariate
autoregressive method.

e The maximum order for the autoregressive model is K = 25.

...............................
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5.4. EXAMPLE. Queue Length Process in a Single Server Cyclic

Queue

We consider a closed system consisting of two service stations shown in
Figuye 2. There are a fixed number of jobs NN circulating in the system.
The departure process of each queue is the arrival process of the other. We
assume that the service times at both stations are mutually independent and
have general distribution functions. .

For t > 0, let X(t) be the number of jobs both waiting and being served
at station A at time ¢t. The state space E of the process {X(t): t > 0}
is E = {0,1,...,N}. Then the process {X(t): ¢t > 0}is a ge_neralize.d
semi-Markov process (GSMP) (cf. Whitt (1980)). Let {(Xn,Cn):n > 0} be
the embedded jump process for the GSMP, then we can reconstruct { X(¢) :
t > 0} from {(Xn,Cn):n > 0}. First let |

n—1
Tp = E min Cp,i,
m=0 Fm:i>0

where Cp, ; is the value of the 7th clock reading at the mth jump of X(2).
Then

X(t) = i 8e([me, Te+1)) Xk
k=0

The only events that can occur are a service complction by A or by B.
Thercfore, the clock vector ¢ is a pair recording the service times left at
stations A and B respectively.

We are interested in estimating the expected number of jobs at station A
when the state is in equilibrium. We have taken N = 3, and the service times

to be gamma (2,1) for server A and gamma (3,1) for server B. We consider
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Server A Server ‘B

() — —

Fig. 2. Single server cyclic queue.

400, 800, 1200, 1600, 2000 cycles, the longer runs being continuations of the
shorter runs. [For all our runs the‘c—y-cles were based on returns to the state
0. We use the discrete time method discussed in Section 3.4. All runs were

replicated 30 times. The simulation results for this model are displayed in

Tables 20-23.
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TABLE 20
Simulation Results for Queue Length Process at Station A
in a Single Server Cyclic Queue, 3-jobs, I'(2, 1), I'(3, 1) servers.

Point Estimates and 90% Confidence Intervals

e Number of "~ True
Cycles Value Simulation
o 8691
100 .9002
+ .0259
: B 8971
& 300 .9002
- ' +.0140
& .9028
K! 500 . .9002
3 . +.0096
- 400 0002 " .0042
' +.0066 ;
- . 9075
1000 . .9002
| +.0071

¢ Results are based on 30 independent replications; the central limit
theorem for i.i.d. random variables was used to form confidence intervals.

e The maximum order for the autoregressive modgl is K = 25.
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X TABLE 21
..
' Simulation Results for 62 = 4.0771 in a Single Server
": Cyeclic Queue, 3-jobs, I‘(é, 1), I'(3,1) Servers.
Point Estimates and 90% Confidence Intervals
X Number of [Regenerative Univariate Autoregressive Method
2 Cycles | Method | AIC BIC h Stat. Test
+ 00 | 33900 .| 3.9525 | 3.8601 | 3.8960 3.88703
: + .3211 + .4073 + .4598 + .3724 + .4364
E 300 3.9643 4.3605 . 4.2183 4.2844 4.22976
. +.2077 =+ .3279 +.2059 4+ .2443 + .2989
< 500 3.9909 4.2345 4.2534 4.3404 4.1984
8 +.1502 | £+.3187 | +.1689 | +.2345 |  +.3059°
P : 500 4.1250 42213 | 4.4250 | 4.3522 4.3413
: +.1265 | +£.2274 | +.1621 | +.2131 + .2092
N 1000 4.1558 4.2460 4.4268 4.3391 4.3069
+.1178 +.1948 | +.1508 | +.1634 + .2063
e Results are based on 30 independent replications; the central limit
. theorem for i.i.d. random variables was used to form confidence intervals.
e The maximum order for the autoregressive model is K = 25.
4
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TABLE 22
Simulation Results for Coverage Probability (0.90) in a Siﬁgle Server
' Cyclic Queue, 3-jobs, I'(2,1),I'(3, 1) Servers.

Point Estimates and 90% Confidence Intervals

F Number of|Regenerative Univariate Autoregressive Method
= Cycles Method AIC BIC h Stat. Test
- 100 0.90 0.93 0.93 0.93 0.93
+0.09 + .08 +.08 + .08 + .08
300 0.93 0.97 | 097 1.00 0.97 |
+0.08 + .06 +.06 + .00 + .06 E
<00 0.97 100 | 100 | 1.00 1,00 |
+0.06 . _+.00 +.00 + .00 + .00 "
800 1.00 1.00 1.00 1.00 | 1.00
+0.00 + .00 + .00 + .00 + .06
100(') . 0.90 0.97 0.97 0.97 097 .
+0.09 + .06 + .06 + .06 + .06 o

¢ Results are based on 30 independent replications; the central limit . !
theorem for i.i.d. random variables was used to form confidence intervals.

e The maximum order for the autoregressive model is K = 25.
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TABLE 23

Order of Autoregressive Model selected by Different Criteria

for Queue Length Process at Station A in a Single Cycle Queue,

3-jobs, I'(2, 1), I'(3, 1) servers.’

Number of Univariate Autoregressive Method
Cycles AIC BIC k Stat. Test

100 6.10 2.27 3.20 4.33
+ 1.53 +.33 + .58 + 1.69

300 12.57 2.70 5.43 8.53
+1.78 +.32 +.89 + 1.79

500 18.1(')' 3.70 7.70 1420
+ 1.65 + .58 +1.01 +1.75

$00 21.93 5.73 ©11.90 18.9
+1.03 +.76 +1.14 + 1.43

1000 23.57 6.33 13.47 21.40
+ .55 + .81 + 1.15 + 1.04

e Results are based on 30 independent replications; the central limit -

theorem for i.i.d. random variables was used to form confidence intervals.

¢ The maximum order for the autoregressive model is K = 25.
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E | CHAPTER VI

CONCLUSIONS

. {

& \

i:l As the use of computer simulation becomes more important in the study
of complex phenomena, the need to develop theoretically sound and com-
putationally efficient methods for simulation output analysis becomes more
pressing. The au.toregressive method proposed in this paper uses techniques
™ developed for time series analysis to provide both point and interval estimates
for parameters associated with the steadyéstate distribution. In this chap-
ter we shall examine the advantages and disadvantages of thclLutoregressive

. -

X method. -

The major advantage of the autoregressive method is obvious. It serves
as a black box; users provide the simulation output sequence, the black box

wil! produce results automatically. Iéers need not devote time in analyzing

———

the system as they must for the regencrative metho;i\. 4Furthermore, it seems
that the autoregressive method applies to a much broader class of stochas-
 .-‘ tic processes than the regenerative method does. With the generalization to
multidimensional processes, the method enables us to apply variance reduec-
ti.on techniques to get more accurate point estimates along with more precise .

interval estimates.

Ve L
LA A

The disadvantages of the autoregressive method are alse-clear. First,

o the covariance matrix obtained by the autoregressive method is just an ap-
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‘p'roximation for the covariance matrix present in the central limit theorem
used to construct confidence intervals/) See;f:éi the assumptions wwe put on the
system under-study are stricter than we ‘would like. @f most important of
these are the requirement that the process be ¢—mixing, the initial distribu-
tion pu be absolutely continuous w'ith respect to the stationary distribution =,
and the Radon-Nikodym derivative :—',f be bounded above.

We would like to pOiI.lt out some areas that present pbtential for research
and development. First,' try to relax the assumptions we have made about
the system under study. Second, to justiy as well as find some conditions
which ailow us to apply the autoregressive method for processes other than

Markovian or Semi-Markovian. Finally, to design order selection criteria

especially for the multidimensional autoregressive method.
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