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CIAPTER I

INTRODUCTION

In recent years, the use of stochastic systems becomes more extensive in

the study of complex phenomena. As the complexity grows, it is more and

more difficult in obtaining analytic results. Therefore, the use of computer

simulation to study complex stochastic systems has been widely adopted.

Typically, we first construct a model which captures the underlying structure

of the stochastic system. We then perform sampling experiments on the model

and analyze the simulation output sequences to make statistical inferences

about the behavior of the system. Since results are based on the observations

from our experiments, it is important to develop theoretically sound and

computationally efficient methods for simulation output analysis. This is our

main concern here.

In general, we want to estimate parameters associated with the steady-

state distribution of a stable stochastic process. We use confidence inter-

* . vals for the quantities of interest to assess the statistical precision of our

point estimates. To construct confidence interval for the characteristic of

the system under study requires the knowledge of the variance of the es-

timate. Different methods have been developed to evaluate this quantity.

The methods currently being used art the regenerative method, independent

replications, batch means, and an autoregrcssive approach. Except for the
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replication method, all methods are based on1 one output sequence recorded

from a single simulation run.

The regenerative method is based on limit theorems developed for regenera-

tive stochastic processes; see Crane and Lemoine (1977) and Iglehart (1978)

for an introduction to and a detailed review of the regenerative method.

To use it, one has to explore the. existence of a regenerative structure and

define an appropriate state vector to carry out the simulation. In practice,

simulations arise in which simulators may be reluctant to devote the time

required to do so or the regenerative property may be absent. In these cases,

alternative approaches for simulation output analysis play an important role.

The autoregressive method is developed to cope with these limitations of the

regenerative method.

The autoregressive approach has been discussed by Fishman (1973, 1978).

In this paper we discuss an autoregressive method which is a refinement of

the old one and is generalized to multidimensional processes. In contrast

to the regenerative method, the autoregressive method, which is based on

theorems developed for stationary processes, is a method of approximation.

It relies on the assumption that the variance constant required for assessing

the precision of point estimates can be approximated arbitrarily closely by

the spectral density function at zero of a finite order autoregressive process.

Instead of estim~ing the variance directly we use techniques developed for

time series analysis to get an approximation. This is our first goal.

Although simulation is useful, it can be a very expensive tool to use.

Since considerable computer time is required for simulation runs, it is there-

fore important to obtain as precise results as possible from the simulation.
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The second goal of this paper is to develop several variance reduction tech-

niques which can be used in conjuction with the autoregressive method for

obtaining additional variance reduction for the estimate. Our approach to

this objective is to, introduce some auxiliary processes, which are correlated

with the original process under study; along with the original process and

apply the multidimensional version of the autoregressive method.

A natural starting point for achieving our objectives is a review of the

theory of stationary processes. Chapter 2 provides a review of the general

theory, applicable limit theorems, and some linear models of stationary processes.

We also develop some approximation theorems for continuous spectral density

function. It is then demonstrated that a continuous spectral density function

can be approximated arbitrarily closely by the corresponding spectral density

functions of some finite order linear models.

*" Chapter 3 provides the estimation method for strictly stationary processes.

" This chapter contains a discussion of order selection criteria along with the

establishment of the .consistency of estimates. In the last section, we estab-

lish some conditions which allow us to apply the autoregressive method to

simulation output data and justify the autoregressive method for certain

non-stationary processes. Hence, the method is applicable to the simulation

of discrete or continuous time Markov processes and semi-Markov processes.

Several variance reduction techniques, which enable us to shorten the.

confidence interval constructed, are developed in Chapter 4. In the applica-

tion of these techniques a new point estimate is formed by taking a linear

combination of the old point estimate and the point estimates obtained from

those auxiliary processes. The coefficients of this linear combination which

3
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minimize the variance of the new point estimate must be estimated.

To see how the method works, Chapter 5 contains several numerical

examples. They are (1) the waiting time process in an M/M/1 queue, (2)

the outflow process of a lake model, (3) the passage time and response time

processes in a closed network of queues, (4) the queue length process in a

two-station single server cyclic queue. Except for the process in Example 4,

which is a semi-Markov process, all processes are Markov processes. All these

processes are regenerative processes; hence we include the simulation results

obtained by using the regenerative meihod for comparison. In each example,

we are able to provide the theoretical values.

In Chapter 6, we examine the strengths and weaknesses of the autoregres-

sive method.
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CHAPTER H

STATIONARY PROCESSES WITH A

DISCRETE TIME PARAMETER

2.1. General Definitions and Theorems

Let E be some measurable space, 6 a a-field of subsets of E with a

probability measure P. A random variable is a measurable function from E

to the real line K. A stochastic process y with discrete time parameter is a

family of random variables { I(n) n E T }. Here, t(n) is the observation

at time n and T is the time range involved, where T - {0, 1, 2,... } or

T {..., -1; 0, 1, ... }. And by a d-dimensional random process y we will

mean a column vector consisting of d random processes { yi(n) n E T },

j - 1, 2, ... ,d

.(n) ( y (n), Y2 (n),...,yd(fn)),

where denotes the transpose'of a vector.

(2.1.1) DEFINITION. (a) A stochastic process y = {y(n) : n E T} is

said to be strictly stationary if the joint distribution of V(n + n), v(n2 + n),

... , i(nk+n) is independent of n for every finite set of integers (ni, n2, ... , nk }

of T and for every integer n such that {ni + n, n2 + n,..., nk + } T

, . i.e.,

P{ yi, (n, + n) E Bi,..., j,(nk + n) E Bk=

P{ yj, ni) E B ,..., yj, Cn) Bk ,

• 5
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for all Borel sets BI,..., Bk E , and every subset ( l,j 2 , .. ., j} of{ 1, 2,..., d}.

(b) A weakly stationary process V is a stochastic process having finite second

moments (E.{ lj(n) 2 } < oo), a constant mean/j = E{ ij(n) }, and its covariance

function

R (n) - E{ (-y(n + mr) - IA))((m) -/)* (2.1.2)

exists, is finite, and does" not depend on m. Here * denotes the conjugate

transpose of a matrix or Vector.

Obviously, any process which is stationary in the strict sense and has

finite covariance matrix is weakly stationary. Two weakly stationary processes

= {z(n) : n E T} and y = {y(n) :n E T} are said to be stationarily

correlated, if their joint covarlance function

R,_(m, n) = E{ (x(m) - ,.)(v(n) - i.&)* }

exists and depends only on the difference m - n.

(2.1.3) EXAMPLE. White Noise. Let ... ,,(-1), E(0), e(1),.. be a

sequence of d-dimensional random vectors with

• . f e(n) }=Op

E{ e(n) } ,

where 0 is the zero vector and G is non-negative definitet, and such that any"

two different vectors are uncorrelated, that is,

E {e(n)e*(m)} = Od, for n - m,
:4

tA matrix C is non-negative definite if a*Cct > 0 for any complex-valued vector Ci.
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where Od denotes the d X d zero matrix. Then the process e - { e(n) -o <

n < oo } is weakly stationary with covariance function

G, k = 0;
R~k

Od, otherwise.

The time series e(n) is usually called white noise.

(2.1.4) EXAMPLE. Stationary Markov Chains. Let { X(n) .n > 0 }

be a Markov chain for which the initial state X(O) is chosen according to the

stationary distribution. Then { X(n) : n > 0 } is strictly stationary.

The class of covariance functions,-R, defined by Equation (2.1.2) can be

described by the following theorem.

(2.1.5) THEOREM. The covariance function is non-negative definite, that

is,
R(-n) = (n),

N (2.1.6)E o:,R (,n -,n) , o - 0, N= 1, 2,..
m, nz=

for every set of complex vectors al,..., ,N. Conversely, any function R

satisfying (2.1.6) is the covariance function of a stationary process.

Proof. See Doob (1953) p. 473. I

(2.1.7) THEOREM. If R is-the covariance function of a weakly stationary

process, then

R(n) = e FC>),

where F is a matrix-valued function whose increments, F(X 1 ) - F(X 2 ), X1 I_

)-2, are Hermitian non-negativet. The function F is uniquely defined if we

require in addition (i) F(-r) 0, and (ii) F(X) is right-continuous.

Proof. See Hannan (1970) pp. 34-37. I

tA matrix F is Hcrmitian non-negative if F - F and F is non-negative definite.
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The function F is called the spectral distribution function and we can

write F in the form

F -F + P + Fd,

where F., is the absolutely continuous part of F, F, is the singular part, and

"Fd is the discrete part. If F is absolutely continuous, (i.e., F, = Fd - Od)

then

F(X) f (u)du,

where f is called the spectral density function. The matrices f (X) are also

Hermitian non-negative for -7r < X < 7r; that is f(X) = f *(X) and

O&*f(X)oe > 0 for every complex-valued vector ot. Throughout this paper,

we shall only be concerned with real processes with absolutely continuous

spectral distribution functions. Since we deal only with real processes, {y(n):
n > 0 }, R(n). is real, and R(n) = R'(-n). A simple calculation

R(n)= eiXf(X) dX

= -f inX (-X) dX

= i' - -'(X) dX, (R(n) = R'(-n)),

shows that f(-X) = f'(X). If E'=___,IRi-(n) 2 < oo, then the numbers

R 2j(n)/27r are simply the Fourier coefficients of the Fourier series expansion

of the function f,3 (X), thus

00 
- n

1 =oo

fl_--0

Equation (2.1.8) is the Fourier series representation of f,(X) and thus f

is continuous. Note that Equation (2.1.8) also follows from the condition

8
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n=, =_IRi(n)I < oo, since an absolutely summable Series is automatically

square summable. The next theorem describes the class of spectral distribu-

tion functions.

(2.1.9) THEOREM. In order that the matrix function F be the spectral

distribution function of some weakly stationary d-dimensional process, it is

necessary and sufficient that the matrix F(X 2 ) - F(X 1 ) be Hermitian non-

negative for 7r > X2  X >ki -7r.

Proof. See Rozanov (1967) pp. 22-23. I

Before we state the next theorem, we need the following definitions.

(2.1.10) DEFINITION. A random process { z(t) : -oo < t < co } is said

to have orthogonal increments if E{ (z(Xi) - z(X2))(z(X3 ) - z(X4 )) } - d,

>-1 > X2  X3 > X4 .

(2.1.11) DEFINITION. Let x,, n - 1, 2,... be a sequence of random

variables for which E x2 } < oo. Then z, is said to converge in mean square

to a random variable x if

lim E{ Ix, - xl 1 } 0= . (2.1.12)
n- -- oo

A necessary and sufficient condition that x exists satisfying (2.1.12) is

the Cauchy condition,

lim E{I x nI = 0.
m, n-+ oo

We now state the spectral representation theorem for stationary processes.

9

4



(2.1.13). THEOREM. Every weakly stationary process { y(n) -oo < n <

co } admits a spectral representation

V(n) =fL e"Xz(dX), (2.1.14)

where the process { z(X) :-r _ X r } has orthogonal increments and

E{ z(dX)z'(dX) } = F(dX).

Defining z(X) to be right-continuous, it is then uniquely determined neglecting

a set in E of probability measure zero.

Proof. See Hannan (1970) p. 41. I

The symbol dX, which appears in integral (2.1.14), will be thought of as

a very small interval containing X. Also, dX, dy,... will be small intervals

containing X, p,..., respectively. Then

(F(d,), if X=/;
E{ z(dX)z*(dI) } =

Od, if X 34 1 A
The spectral representation can be modified if F(X) is absolutely continuous(cf.

Hannan (1970) pp. 122-123, Rozanov (1967)pp. 39-41). In that case, if there

is a measurable matrix p(X) satisfying
J:: =~ dF(),= (X),

dX

then there is a process { z, (X) -7r < X < 7r } with orthogonal increments

which satisfies

uyn) = j ei"X(X)zl(dX), E{zl(dX)z*,(d) } = Idd, (2.1.15)

where Id denote the d X d identity matrix. This representation will be used

4 later.
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2.2. Linear Transformations of Stationary Processes

Let y { y(n) -oo < n < oo } be some stationary process whose

spectral representation is

y(n) f inX z(dX).

We will say that the process X = { z(n): -oo < n < o } is obtained from y

by a linear transformation, if x admits a spectral representation of the form

z(n) - L snx h(>.)z(dX),

where h(X) satisfies

J h(X)F(dX)h*(X) < o.

We will call the function h the frequency response function of the linear

transformation. The joint covariance function of x and V is

E{ x(m) y(n)) E{ ei'mx h(X)z(d>X))(/ e inIA z(dls)) }

. E{ ei'm>-in h(X)z(dX)z*(dp) }

-J ei(mnn)xh(X)F(dX), (cf. p. 10),

which depends only on m - n. Thus the stationary processes x and y are

stationarily correlated as defined in Section 2.1. Let us call F. the spectral

distribution function for z, Fy for y, and F., their joint spectral distribution

function. It is not difficult to see

F,(X) = h(X)F()h(X), (2.2.1)

Fxv(X) = h(X)F(X).

The conditions (2.2.1) are not only necessary, but also sufficient for x to

be obtained from y by a linear transformation. This fact is proved in the

following theorem.

11

4



A

(2.2.2) THEOREM. Let the stationary processes x and y be stationarily

correlated. In order that x be obtainable from y by a linear transformation

with frequency response function h, it is necessary and sufficient that the

spectral distribution functions F=, F. and F_, satisfy conditions (2.2.1).

Proof. See Rozanov (1967) p. 36. 3

Remark. If the stationary process y has a spectral density f, then

a process x which is obtainable from V by a linear transformation with

frequency response function h also has a spectral density, which is given by

f,(X) h(X)fv(X)h*(X). (2.2.3)

* Let us consider two examples of linear models known as moving average

'- processes and autoregressive processes.

(2.2.4) EXAMPLE. Moving Average Processes. A moving average

process y - { y(n) -oo < n < oo is defined by the following expression

°00

(n) A(j)e(n - j), (2.2.5)

where e = { e(n) -oo < n < oo } is a sequence of uncorrelated random

vectors with covariance matrix 0 and { A(j) -oo < j < oo } are d X

d real matrices. Note that the process y is obtained from E by a linear

transformation with h(X)= . A(j)e -i jX. A necessary and sufficient

condition for the series in (2.2.5) to converge in mean square is

IIA(j)112 < 00,
j=-00

12



where . stands for any norm of a matrix. It is straightforward to see that

the process" has spectral density function (27r)-1G. From Equation (2.2.3),

we easily obtain the spectral density function f for U,

which is a continuous function. Therefore, the spectral density function of a

moving average process is absolutely continuous.

Alternatively, suppose we are given the stationary process 'Y with ab-

"- -solutely continuous spectral distribution function F and spectral density f.

Since f(X) is Hermitian non-negative, f(X) can be diagonalized by an unitary

matrix U(X)t:

(X) - U(X)D(X)U.(X),

where D(X) is a diagonal matrix and the elements of D are real and non-

negative. Define

(>(x))1 ,2 = U XlCD(Xl/U'(X),

where (D(X)) 1 / 2 is obtained by taking the non-negative square root of all the

elements of D(X). Then (f(X)) 1 / 2 is a Hermitian non-negative, measurable

function and

f (X) = ".

Then each element of (f(X)) 12 is square intcgrable and has a Fourier series

expansion, namely,

(f(x))1 2 -- E A(j)e-'j", E; IIA(j)112 < oo,
i=--o j=-o

tSce, for examplc, Strang (1976) pp. 212-213.

13



where

A(j) = 2- (x))/2 e s3dX.

It follows from (2.1.15) that the spectral representation of y can be written

as

asn ) einX(f(X))1/ 2z1 (dX)

7 f E" A(j)e'- z(dX)

00

= E A(i),E(n- j),

where

C(n) = einzl(dX), E{ zl(dX)z.(dX) } = I=ddX.

We see that {e(n): -oo < n < oo } is a sequence of uncorrelated random

vectors. This shows that V is a moving average process. Thus we have proved

the following theorem.

(2.2.6) THEOREM. A weakly stationary process is a moving. average

process if and only if its spectral distribution function is absolutely c6n-

tinuous.

Proof. See Ronazov (1967) pp. 39-42. i

The next two theorems deal with stationary processes with absolutely

continuous distribution having spectral densities which are polynomials in

e- iX. We first state tile theorem for scalar case.

(2.2.7) THEOREM. If the spectral density function

f(X) = - (j)e-ilX - 0, -(j) = -(-j), -"(q) 3 O,
-1j=-q

' 14
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where -y(j) is real, then it may be represented in the form

f() = a(j)e-ii x1 2 , a(j) is real, (2.2.8)
j.0

where the polynomial o a(j)z' has no zeros in the open unit disc.

Proof. We follow the proof given in Hannan (1970) pp.. 62-63. We consider

(~Z) = 1 (j)z-.

This expression has 2q zeros, counting-each with its appropriate multiplicity.

Let zk be a zero whose absolute value is not 1, then 2-1 is also a zero because

"7(j) - '(-"). Thus the zeros different from I in absolute value can be paired

(z;., :-1). Let there be r < q such pairs of zeros taking each pair as often as

: .its multiplicity. Then there are 2a = 2q - 2r zeros of absolute value 1, say

ei h , k =1,...,28. Then

1: • 2a

1(X) = -y(q)e-,> I- (e' - e1)(e" -') 2. -

r 2a

= -I (e - zy(e - " - (e"{yq)e- X JJ (- j 1 ) 1[ (e" - e"11)}.
jm=l . " I== kffi

It follows that the bracked factor is real and non-negative. Moreover, the

derivative of the bracked factor vanishes at X = ek because it is non-negative

and zero at X = 0 k. Thus Ok occurs in pairs. The 2q zeros can be numbered

and divide into two sets (zi, ... ,zq) and (zq+l,... , Z2q) such that if IZkI < 1

then zq+A = N and if Izkl - 1 then zq+k = zk. Then

ai(q) 2  ql~"-Z) 12 -'j 12,
f(X)- 111 (e'>--zk)1 =- 2t[E ((j)e-~x

k==1i j---=0

15



where

=iq) 21r-/(q) II(Z-k~ ~t~)
jm-l k-l

Since the coefficients in M(z) are real, the zeros are real or occur in conjugate

pairs. Then a(j) will be real. I

Note that (2.2.8) is the spectral density function of a qth order moving

average process (cf. pp. 12-13). There is a similar result for the vector case.

Since the proof is rather long, we omit it and refer the interested reader to

Hannan (1970) and Rozanov (1967).

(2.2.9) THEOREM. A non-negative matrix function
q

f(x) r(")e-ijx, r(q)# Od, r(i) r(-i),
.-- q

which has a determinant not identically zero, can be represented in the form

f(X) = ( A()e - i' )(Z A(j)e- i) , (2.2.10)

where A(0) is Hermitian non-negative definite, A(j) are real and all zeros of

det(Y lf.p A(j)zi) lie on or outside the unit disc.

Proof. See Hannan (1970) pp. 63-66. I

4 The factorization (2.2.10) leads to a finite order moving average repre-

sentation (cf. pp. 12-13), namely,

q

y(n) = A(j)e(n - i), E{ E(m)E*(n) } - 6_d,
i-a

where 6n = 1 if m = n, 6 = 0 otherwise.

We now study another important linear model which is called the autoregres-

sive process.

16



(2.2.11) EXAIPLE. Autoregressive Processes. A stationary process

t y = { i(n).: -o < n < oo } is called a pth order autoregressive process if

" :it satisfies

B B(j)y(n- j)= E(n), B(0)- Id, B(p)# Od, (2.2.12)
imo

where e={ e(n) -oo, < n < 00 is a process. of uncorrelated random

vectors with covariance matrix C. If y(n) has constant mean, IA, then we

certainly have

B (j)j = E{ e },
i-O

so that (2.2.12) holds for the new process { v(n) - 1: -o < n <00 } with

e(n) - E{ e(n) } on the right. Therefore, we may assume E{ e(n) } - 0 to

-. facilitate our discussion. If all zeros of

P

det( B (j)zj

lie outside the unit disc, then a solution of (2.2.12) exists and is of the form

:::y(n) - A(j).E(n - j), A(0) --Id, (2.2.13)

where the IIA(j)II converges exponentially to zero as j increases (cf. Hannan

(1970) p. 326). In order to obtain the spectral density function f of the process

-, we observe that E is obtained from V by a linear transformation with

* ,h(X)= 0 oB(j)e-' . From Equation (2.2.3), we obtain h(X)f(X)h*(X)=

(27r)-'G. Hence

S(X) = B(j)e-  C( B(j)e-1))

17



Multiply (2.2.12) by the transpose of (2.2.13) with n replaced by n - a and

take expectation on both sides, wc obtain

E{ B(j)y(n - j)y'(n - s) } E{ oEn)E'(n - a - k)A'(k) }
-- 0 k=O

which leads to

EB(j)R(.9-j)=56 ,n-O, ,. (2.2.14)

3-O

These are often called the Yule-Walker equations.

18



2.3. The Law of' Large Numbers and Central Limit Theorem

The study of strictly stationary processes is usually carried out in the

context of measure-preserving transformations, in this section we shall follow

the development of Doob (1953), Chapter 10. Let (E, e, P) be a probability

space; that is to say, E is a space of points w, e is a u-field of subsets of E,

and P is a probability measure on 6.

(2.3.1) DEFINITION. Let T be a transformation of e onto itself. It is

called a measure-preserving set transformation if the following conditions are

satisfied

(Cl) T is single valued, modulo set of probability 0: if Al is an image of A

under T, the class of all images of A is the class of all measurable sets

differing from Al by sets of probability 0.

(C2) P(TA) = P(A).

(03) Neglecting w sets of probability 0,

T(A U A2 ) =TA, U TA 2

T(UA,) U TAn
n-1

T(E -A) =E -TA.

If every measurable set is the image of some measurable set under T,

this transformation must be 1-1 (neglecting sets of probability 0) and the

inverse T-1 is defined, and is also a measure-preserving set transformation.

* If T is a measure-preserving set transformation, there is one and only one

transformation T, defined for every random variable, taking random variables

into random variables, and having the following properties:
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(P1) T, is single-valued modulo the random variables which vanish with

probability 1: if x, is an image of z under T1, the class of all images

of x is the class of all random variables equal to x, with probability

1.

(P2) T, is consistent with T: T1lA is 1 almost everywhere on TA and 0

otherwise.

(P3) T is linear: if a, b are constants and if x, y are random variables,

Ti(ax + by) - aTx + bTly a.e.

(P4) T preserves convergence: if

lim x, - x a.e.,

then limn--.,. T x,, Tx a.e..

We shall use the same notation T for T1 .

(2.3.2) PROPOSITION. if T is a measure-preserving set transformation,
and if x is a random variable, the stochastic process

-4 {y7(n): n > 0}, y(n) - Tnx, (2.3.3)

is strictly stationary, and, if T has an inverse, the stochastic process

{y(n):-oo <n< o}, y(n)=T n x ,

is also strictly stationary.

Proof. See Doob (1953) pp. 454-455. 9
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(2.3.4) PROPOSITION. Let {y(n) :n > 0} be a strictly stationary

process, then there is one and only one measure-preserving set transformation

T such that. T"y(0) = y(n) a.e. for all n > 1.

Proof. See Doob (1953) pp. 455-456. I

The above discussion and results apply equally well to multi-dimensional

processes; the interested reader is referred to Rozanov (1967) Chapter 4 for

an excellent treatment.

(2.3.5) DEFINITION. A measure-preserving set transformation is called

metrically transitive if the only invariant random variables are constant with

probability one.

The process defined by (2.3.3) is metrically transitive if T is metrically

transitive. We now have the ergodic theorem.

(2.3.6) THEOREM. If (y(n) n > 0) is strictly stationary and metrically

transitive with E{ lyi(n)l } < oo for j = 1,...,d, then

lir - y(k) -- E{ y(O)} a.e.
k-O

Also if E{ yi(n)2 } < o forj= 1, ,d, then

lim E ,y(m + k)y'(k) = E{ y(m)v'(0) } a.e. (2.3.7): ~ n--+ oo n k

kz=O

Proof. See Hannan (1970) p. 203. 1

We shall study a weaker condition than metrically transitive which im-.

plies it. Let { y(n) : n > 0 } be a strictly stationary process defined on a

' probability space (E, C, P). For integers 0 < a < b' let 7 b be the u-field

generated by y,(a),...,yj(b), 0 < j < d (with the obvious extension for

b oo).

21
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(2.3.8) DEFINITION. We say that the process { y(n): n > 0) is 0-mixing

if there exists a non-negative function € of positive integers such that

limn,. 0(n)= 0 and for each k > 0, and n > 1,

sup{ IP(E2 I Ej) - P(E 2 )1 El E ir, E2 E + } n ¢(n). (2.3.9)

Condition (2.3.9) simply says that events concerning the "future" of the

process become almost independent of events in the past.

Remark 1. Let { X(n) : n > 0-} be a stationary Markov chain with

finite state space, and let y(n) = f(X(n)) where f is some real function

on the state space. If { X(n) : n > 0 } is irreducible and aperiodic, then

{y(n): n > 0 1 is 4-mixing (cf. Billingsley (1968), pp. 167-168).

Remark 2. If { X(n) n > 0) is a Markov process with infinite state

space, then { y(n): n> 0 is 0-mixing if { X(n): n > 01 satisfies Doeblin's

condition, has one ergodic class, and is aperiodic.t

(2.3.10) THEOREM. Suppose that the process { y(n) n > 0} is 4)-

mixing with E, 4(n)1/ 2 < co, has covariance function R, and has mean

zero (E{ y} - 0. Then

:-:n k==o

Here = denotes the convergence in distribution and N(O, Z) is the d-

ig dimensional normal random vector with mean 0 and covariance matrix Z,

00

"Z- (o)- R (k). (2.3.11)
' °,oo

tSee Doob (1953), p. 190.
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The elements of Z are

00 0

(, = E{y,(o0yj(o) } + E E{ y,(0)yj(k) } + E E{ y,(k)y3(0) }, (2.3.12)
k=1 k=1

and the series converges absolutely.

Proof. See Billingsley (1968) pp. 174-177. I

Let f be the spectral density function of the process -y in Theorem
(2.3.10). From this theorem we know F,-'_IR1(k)l < oo for i, 3 =

1, ... , d, therefore / has Fourier series-expansion (cf. Section 2.1),

1 R (j)e - 'i '.

o--0

Observe that Z --= -- R(j) = 27rf (0). In the next section we will show

that any continuous spectral density function can be approximated arbitrarily

closely by the spectral density function at zero of a finite order autoregressive

" process. Therefore, we can use techniques in the time series literature to

obtain an estimate of .

4
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2.4 Approximation of Spectral Density Function

In this section we shall demonstrate that any arbitrary continuous spectral

density function f can be approximated by a polynomial in e - X having the

following form

q

g(X) = > r(j)e-'-i, r(j)= ',(-j), T(q) 3 Od. (2.4.1)

- .In Section .2.2, we have seen that g is the spectral density function of a

finite order moving average process. We shall also show that f can be

approximated arbitrarily closely by the spectral density function of a finite

order autoregressive process.

The approximation (2.4.1) is based on the Weierstrass approximation

theorem which states:

(2.4.2) THEOREM. If k is a continuous function of period 27r, then

corresponding to every positive number E there exists a trigonometric sum

n

s(X) ao + Z(a, cos Xj+ bi sin X3),

such that the inequality

IS(X) - k(X)I <e (2.4.3)

is satisfied for all value of X.

Proof. See Achieser (1956).

The results contained in the following remarks will be used throughout

this section.

Remark 1. For any continuous function of period 27r, let k(X) = (X) +

4 61 and let S(X) satisfy the Wcierstrass approximation theorem (2.4.2) with e

24
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A

. replaced by 82 > 0 in (2.4.3). Then

61-62 < S(X) -f(X) < 61 + 62.

By properly selecting 61 and 62, we can make the upper bound and lower

bound of S(X)- f(X) arbitrarily small.

Remark 2. If k(X) = k(-X) is an even function, let S 1 (X) - 1(S(X) +

S(-X)), which is also an even function. Then we have

IS,(X) - k(X)l = I 1(S(X) - k(X)) + -(S(-X) - k(-X))l
< C'

and

S(X) = -(s(X) + S(-X))n no
= ao + - Ej ai(cos X j + cos(-X j)) + b b(sin X j + sin(-), ))

2j=1 2 j-1ft

= o + E _-j(e + e-ix1 = -

where i = v', co = ao, ci = c_ = la are real.

Similarly, if k(X) - -k(-X) is an odd function, we may form an odd

function S 2 (X)= (S(X) - S(-X)). Then

IS2(X) - k(X)l <6

and

4 S2 (x) = a(cos Xj - cos(-X I)) + b3 (sin Xj - sin(-Xj))
1=, 3=1

2Zb 3(e"jx - e') f

where do =0, d = -d_ - -jb 3 are real.

The next theorem, which can be found in most time series literature

(cf. Anderson (1970) pp. 410-411 ), is an approximation theorem for scalar
4

processes.
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(2.4.4) THEOREM. If a spectral density function f is continuous then for

any e > 0 there is a spectral density function of the form

g(X -y() - iiX (2.4.5)

where -y(j) -y(-j) is real, g(X) > c/2 and g(X) - f(X) <c -7r < X < 7r.

Proof. Let 6 j 1 3/4, 62 c e/4 and take g(X) S(X) as described in Remark

1. Then

e/2 < g(X) - f(X) < e,

and g(X) > c/2 since f is a spectral density function which is non-negative

for all X. Since the spectral density function f is an even function (cf. Section

2.1), we can take g(X) as (2.4.5) according to the argument of Remark 2. a

(2.4.6) COROLLARY. If a spectral density function f is continuous then

for any c > 0. there is a finite order moving average process with positive

spectral density, say g, such that

" If(X)-g(X)I < C, -i r< X< 7.

Proof. By Theorem (2.4.4), f can be approximated by a spectral density

function (2.4.5). Then apply Theorem (2.2.7), it follows that g is the spectral

density function of a finite order moving average process. I

(2.4.7) COROLLARY. If a spectral density function f is continuous, then

for any arbitrary c > 0, there is an autoregressive process with spectral

density function, say h, such that If(X) - h(X)I < 6, -ir < X < ir.

Proof. Let f,(X) = f (X) + j, -7r < X < r. Obviously f.(X) is continuous

and positive; therefore, the reciprocal of f,(X), ff-'(X), exis'ts and is also

26
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continuous and positive. An application of Theorem (2.1.9) shows that f -'(X)

is the spectral density function of a stationary process. By Corollary (2.4.6)

there is a positive spectral density function of a moving average process, say

g, such that If-(X) - g(X)l < t, -7r < X < 7r, where

=1 min gX)

2 max f()

Then

SI(X) - g-X) 1 . + I(X) -g- 1 X)l
5 + lf.(,)I 1g-( I)• if-(- ) - g(,)I
~<

This proves the theorem. j

To prove similar theorems for vector processes, we shall begin with 2-

dimensional case (d = 2), then extend the results to d > 2. Let f be a

continuous 2 X 2 spectral density matrix. Since f(X) = fI(X) (cf. Section

2.1), we can take

A (X) Pl(X)+iP2 (X))
f 1)- (X)- iP(X) f2 X)

where fk and Pk are real continuous functions. In Section 2.1, we have shown

that f(X) = f'(-X), therefore 1k and pl.are even functions and P2 is an odd

function. Then we can properly select 61, 62 and the approximation functions

gk, qk, for fik and Pk, k = 1, 2 respectively, such that for e > 0

,. gk(X) =k 'ykje- 'j, k = Y,-j is real,

£ < Ak(X) = ,(X) - lk(X) < 2c,.

and

"q( X)'-- di e - y , d1i - dl,- is real,
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c/4 < U(X) q )- pi(X) < e/2,

and

q2(X) -i E d2 e-", d2s - -dj,-y is real,
3--vm2

c/4 < V'c)= q2(X) -P 2 (X) < e/2.

-ut ( ' (g,(X) qi(X) + iq2 )(X)

-qgCX(-X)2CX) g2(X) )
-. .., _Prj)e-f = ./(X) +4()

i--n

where
w(r) . ( Ai() UX) + V(X) 1

u ' -,CX) A2(X))
m- max(nk, iMk),

rk,(j)-d ci , -1 = O, if "l > nk , k 1,2,
r.s(j) --dly - dsy, dky --Op if [jl > rnk, I k --- 1 29

r 21(j) = dii +d 2j,

and JJA(X)Jj < 3e, if we define the norm to be maximum row sum. Clearly,

I'(m) Od, 1'(j) is real and .'(j) I= r(-j). To show the non-negativity of

g(),we observe that for any complex-valued vector a

c t  a' + ib' (a,a2 ) + b, b2 ), a,,bi E R) i =1,2,

ofg(X)0 = o (X)c1 + ' (X)0,

> a'C)ce (by the non-negativity of f(X))

=a &JL(,\) +a A 2 (>X) + 2ala2 U(X) + b2A,(X)
+ b 2 (X) + 2bib2 U(X) + 2(a 2 bi - alb2 )V(X).

Since Ak,U and V are positive, the worst case occurs when alas < O, bjb2 <

* 0 and (a2 bi - alb2 ) < 0. In this case, we use the following inequalities:

/flk(X) > ,

U(X),V(X) < e/2.

28
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We then have

Ck'g(x)C, > j((i + a2) 2 + (b + b2)2,+ (a2 + b)2 + (a, - b2)2 ) > 0.

Thus, we have shown that we can find an approximation g which is also a

spectral density function when d = 2. Now, assume d > 2 and f is a d X d

spectral density matrix having continuous components. We may obtain an

approximation function (2.4.1), say g, by applying the following algorithm.

i (2.4.8) ALGORITHM. (Approximation of Spectral Density Function)

Al. [Initialization.] Let g(k)(X) - f(X) for k 0. Set k = 0, i = 1, and

.j=2.

A2. [Polynomial approximation.] Let

w(X = g() g ) (x)\

If all components of w(X) are polynomials in e - then go to A4. Otherwise,

find a 2 X 2 matrix function, denoted by h, which approximates w(X)

using the procedure described in pp. 27-28.

A3. [Update.] Form g(k+l) by substituting h for w in g(k) and update k -

k +1.

A4. [Done?] Set j j + 1, if j _ d then go to A2. Otherwise, set i = i + 1.

If i < d then put j = i +1 and go to A2.

A5. [Obtain g.] Put g(X) - g(k)(X).

Note that all g(k) are spectral density functions, since they are Hermitian

non-negative (cf. Section 2.1). Note also that II(k+l)(X)- g(k)(>)JI < 3E for
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all k. This algorithm will terminate in a finite number of steps, M ( M <

d(d - 1)/2 ). Step A5. puts g g g(M) which is a spectral density function

having the form (2.4.1), and

IIgX) -f X)II < C. e ,

for some finite constant C (C < 3M). Thus we have established the following

result.

(2.4.9) THEOREM. If f is a d X d spectral density matrix with continuous

components, for any E > 0 there is a spectral density matrix of the form

g(X) = I Fj)e-i", 1r(m) -L od, r(j) = '(-j),

and IIg(X) - f(X)II < e, -7r < X < ir.

(2.4.10) COROLLARY. Let f be as described in Theorem (2.4.9), then

for any e, e > 0, there is a finite order moving average process with spectral

density function g, such that Ilf(X) - g(X)II < e,-7r < X < 7r. Also, there

is a finite order autoregressive process with spectral density function h, such

that 11f(X)- h(X)II < r,-r < X < 7r.

Proof. The first part follows directly from Theorem (2.4.9) and Theorem

(2.2.7). For the second part let

fAP) f(x) +e.1,

then every entry of f,(>,) is continuous and f(>,) is positive definite for all

X. Thus the reciprocal of f,(X), k(X) = f,-(X), exists for all X and every
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component of k(X) is continuous. Let

S(X) -( A(j)e-ix) G A(")e- i>x , A(O) - Id, A(j) is real,

such that J[S(X)- )(XlI < el, then

11f (X).- S-(X)II _< IIf() - f()II + II(X)- S-lC>)l< e + Ilf,((×)II. II -1g)l •I X) -k(X)ll.

And the reciprocal of S(X), S-'(X), exists except perhaps for finitely many X

and is the spectral density function of an autoregressive process. By properly

choosing cl, and letting h(X) -S-(X), we obtain Il()- h(X)II < c.

4

4
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CHAPTER III

THE AUTOREGRESSIVE METHOD

AND ITS APPLICATIONS

Based on the results of Chapter 2, it is clear that a continuous spectral

density function can be approximated arbitrarily closely by the spectral den-

sity function of a finite order autoregressive process. We shall see that it is

possible to use this result to obtain consistent point estimates and asymptoti-

cally valid confidence intervals for quantities of interest.

Let { y(n) : n > 0 } be a d-dimensional strictly stationary process which

is n-mixing with -z.l 0(n)1/ 2 < oo. We wish to estimate the quantity

r= E{ y(n)}.

From Theorem (2.3.6) and Theorem (2.3.10) we know

n

n (3.0.1)

v CVr , - ,)n N(0,27),

where - R (k) and the series converges absolutely. Corollary.

4 (2.4.10) shows that for any arbitrarily small c > 0 there is a 27, such that

I E- ZC.1 < e, and this Z, is 27r times the spectral density function at zero

of a finite order autoregressive process. Instead of estimating E directly, the

autoregressive method is designed to estimate the approximation ZE.
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3.1. The Autoregressive Method

We consider the kth order vector autoregressive process { z(n) n > 0 }

which satisfies

k

B(j)x(n- j) = (n), B(0)= Id, B(k) # Od, (3.1.1)
i-o

where the e(n) are i.i.d. (identically and independently distributed) with mean

zero and covariance matrix G and the B (j) are square matrices. The mean

zero assumption of c(n) implies that x(n) has mean zero. This is not always

the case. If the mean IA of x(n) is not zero, we make a mean correction (i.e.,

we replace x(n) by x(n)- ju). If all zeros of the

k

det(ZB(j)z)

lie outside the unit disc, then a solution of (3.1.1) exists (cf. Section 2.2) and

is of the form

X(n) = > A(j)e(n - j), A(0) = d.

Recall that the spectral density function g of { x(n) n > 0 } is

gCX) =( B(i)e - ) G( B(j)e--) '

4

To estimate the parameters B (j) and G, it is natural to use the Yule-Walker

E B(j)R(s-j)=8G, s--0,1,2,... (3.1.2)eqaton, hih 0r

j=O

Since there are k + 1 unknown matrices, namely B(1),..., B(k), and G, we

'4 use the first k + 1 equations of (3.1.2). By taking transpose on both sides and
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using R'(n) R R(-n) (cf. Section 2. 1), we obtain

k

Rewrite the equations in matrix form, we obtain

R (0) R (1) ... R(k -1)) (B'(1)) (R(1))

R(-1) R (0) ... R(k -2) B '(2) R (-2)
* . . , (3.1.3)

R( -lk) R(2 -lk)... R (0) B (k). R (-k)/

denoted by )Zk~k = -rA&.

Given a sample of size n, say (X(i) i 0 ,... , n - 1 },our estimation

equations become

CAkBk =-Ck

where

C(7n) =(n - mn) >i z-M + jAz'(),

replaces R (in) to obtain Ck from Xk, '2k from rk, andBk (fhk(1), ... k~))

is an estimate of Bl,. Since
k

j-o
we estimate G by

i-O

* and g(X) by

gk () E kU)eiiX'k( ( bkc)e" f
The consistency OfB fk(j) and 6k are justiflcd by the following theorem:
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(3.1.4) THEOREM. If x(n) n 0, n- 1 is generated by (3.1.1),

where c(n) and B(j) are as stated below the equation, then 13k, Ck and Gk

converge almost surely to Bk, Rk, and G respectively as n - ..

Proof. See Hannan (1970) pp. 329-332.

An alternative approach for the estimation of parameters is to assume

that -the e(n) are normally distributed and to use the method of maximum

likelihood. This does not lead to the estimates just discussed. If n is relatively

large, there will be little difference between the maximum likelihood estimates

and those derived from Equation (3.1.3) (cf. Anderson (1971) pp. 183-186).

We assume that { y(n) : n 0 is generated by a k.th order autoregres-

sive process with parameters Bko = (Bko (1), ... , 0 (ko))' and Gk. -If ko is

known, we can obtain consistent estimates Bk. and Ck0 from a realization.

Unfortunately, the value ko is usually not known, therefore we must estimate

the true order according to certain order selection rules. We shall study this

topic in detail later. Now let us assume we have an order selection criterion

and assume that there is a finite constant K, known a priori such that k 

K < oo. From Theorem (3.1.4) above, it follows directly that Bk and 6k

are consistent estimates of Bk. and Gk. respectively for all k > ko. So,

in order to estimate Z which appeared in (3.0.1) we propose the following

autoregressive method;~

(3.1.4) ALGORITHM (The Autoregressive Method)

Al. [Which criterion?] Select a constant K which serves as the maximum

order or the autoregressive model, and choose a critcrion for order deter-

mination.
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A2. [Parameters estimation.] Obtain the estimates Bk and 0 k by fitting the

observations { y(0), ..., y(n- 1) J to a kth order autoregressive process

for k 0, 1,...,K.

A3. [Select order.] Determine the order according to the selected criterion.

We denote this selection by k.

A4. [Obtain, ] Estimate Z by the quantity

A k -1 A / \-'

"-' j=O " ,- =0

*Justification for the autoregressive method appears in the following sec-

tions.

3
I

-6
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3.2 The Univariate Autoregressive Method

In this .section we shall study the univariate case in detail. The variance

constant appearing in (3.0.1) is simply a scalar, which we denote by a2.The

autoregressive method yields an estimate, say s2, which is an approximation

of 0a2 . We will examine several order selection criteria for the autoregressive

process and derive asymptotic properties for the estimates.

Recall that a kth order autoregressive process z = { x(n) n ~ 0 }

satisfies
k

E /3(j)xn - "-j) E(n), P(0) = 1, P(k). 0 (3.2.1)

where 8(j)'s are constants and the c(n) are uncorrelated random variables

with E{ E(n) } = 0 and variance E{ E(n)2 } = ,2(F). The spectral density

function f. of z is given by

f(2(e) (3.2.2).f=C) =2-7rjEffiorj)e_,i~l2.

Let y = {y(n) n > 0 } be a strictly stationary process which is
0i-mixing with "Lnl €(n)'/ 2 < o. Let the spectral representation of the

process y be

y(n) =J eiz(d_), E{ Iz(dX)12 } = F(dX).

First, we will show that we can find a finite order autoregressive process

z which is close to the process y in the sense of mean square. From the

discussion in Section 2.1, Equation (2.1.15), we know that the representation:a
can be modified if F is absolutely continuous. In that case, if h is a Borel

measurable function satisfying

I h(X)12  ddF(X- = f(X), (3.2.3)
dX
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then there is a zi process with orthogonal increments which satisfies

y(n)= eilnXh(X)zj(dX), • E{ lzi(dX) 2 } dX.

Since y is a real process and the series 2 R(k) converges absolutely (cf.

Theorem (2.3.10)), f is real, non-negative, and continuous (cf. p. 23). Then

we may take h(X) = V/\ which is the positive square root of f(X). From

Corollary (2.4.7), we know that for given 6 > 0 there is a spectral density

function (3.1.3), say g(X) = 1/I " op(j)e-ix 12, such that If(X)-g(x) < 6,

-ir < X < 7r. Let x = {z(n) n > 0} be defined as follows:

X(n ) = f "nX e 9 )Cz(dX).
7r

Since g is real and non-negative for all X, the positive square root of g(X),

V/' , exists thus x(n) is well-defined. The covariance function of z is

E{z(n + m)z* (n) } = f ei(n+m)X\ \M e-in" VCdX
P / i'mX

=1 e g(X)dX,

which depends only on m. This shows that x is a weakly stationary process.

The processes x and y are close in the sense of mean square, since

E{ Ix(n) - y(n)} = E{ I e (\(\A- V'""j)z (dX)l 2 }

I:- \I (X,/ _ -,/ ) 1 dX
/ <X If-] - V/ >l• V /X) + V-(>,) dX

5 <f If(X)- g(v)dX

< 21rb.
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Since 11/ 0opj)-iX, aso satisies (3.2.3), the spectral representation of

z can also be written as

1~n) " nX  z 2(dX), E{ Iz2(a"X)l } = ,X.

Define
k,c(,.) P C)x~n -j)1.8Co).

Then
/;,f I inXz2d)

c(n) 2(dX),

and
• ;, _ 27-/,2(o), if M=O;E{ e(n + m)c(n) } = / ' 'emxdA =

S (0to, ifm L 0.

This shows that the sequence c(n) are uncorrelated. Thus, x is a kth order

autoregressive process.

We now turn to the problem of parameter estimation. The autoregressive

method requires us to estimate /3k(j) and a2(e) for different values of k. As

indicated in Section 3.1, we solve Equation (3.1.3) to obtain the parameters.

Since we deal with scalar process, R(-j) = R(j). Therefore, Equation (3.1.3)
4

becomes

R(O) R(1). ... R(k - 1) /3k(1) (R(1))

R() R() - 2) R(2)
. I (3.2.4)

R(k-1)R(Ck-2)... R(0) 13k(k)) Rk))

denoted by )k/3k = -rk. The solution for (3.2.4) is 6k = -)Zk' rk and

a( ,.=o Ik(j)R(j). The equations for the coefficients of the (k + 1)th
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order autoregressive model are

qk rk(3.2.5)

(q~ R(O)J k 1k+(k+1)J kk +))

where qk = (R(k), . .. R(1)) I and ,3~'h (Pk+1(1)...,Pk+l(k))'. The

partitioned equations of (3.2.5) are

)Zk.8(l+,qkfik+1(k+l)=-Tk; (3.2.6)

qPk"j) 1 + R (O).Bk+I.k + 1) =-R(k + 1).(32)

Elimination of' k+ from (3.2.6) and (3.2.7) yields

qIkP-rk - R(k +1)

~&+ik + ) =R(O) - qk 1-qk

We observe that PZ-lqk =-Q.Bk(k)i Pk(k - 1).. ,fk(1))', therefore

k
R(O) - qkZ-qk P I5(j)R(j) = 0(e).

Thus
X~oR(k + 1)I d5

Substitution Of Pk+1(k + 1) into (3.2.6) -gives

13k+l(j) = 1k(.)+Pk(k-i-1-)k+,(k+1), 5 =12.,k

And
k+I

O'(e + I W k+l(3)R(j)

.1-0
k 1 k+1

R(0) + ~IPkC7)RC7) + iY&+I(k + 1)( Pk(k + 1 -jRj

= 01e 3+(k + 1)( R(k + 1 - )Ipk~))
2 (C)(1 p2+1))
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To summarize this method, we have the following recursive formulae: for each

k> 0

+1 (k + 1) =°R(k + 1- j)3k(j)

fOk+l(j) = Ik(j)+Ik3I(k+ 1 -j)/3k+l(k+ 1), j= 1,...,k, (3.2.8)

k+1(0)= 1,

+1(= (). (1 - + 1)),

with initial conditions

a = R(O)_, 8o(0) = 1. (3.2.9)

This is a simple and efficient method to compute parameters 13k(j) and Ao(f)

(cf. Durbin (1960)pp. 139-153). Given observations { y(O),...,y(n - 1)}, we

replace R(n) by C(n) in (3.2.8) and (3.2.9) to obtain estimates ' k and 82(E)

for 1 k and a2(c) respectively.

The problem of determining the order for an autoregressive process has

gained much attention during the.past forty years. We could trace interest in

this area to as early as the mid-1940's. Quenouille (1947) considered a method

for determining the goodness-of-fit for autoregressive model. Later, Akaike

(1969, 1970) introduced a method by using the concept of final prediction

error (FPE). A few years later, Akaike (1974) proposed a new criterion called

An Information Criterion (AIC) which has become very popular. Other

criteria have been introduced since then are, for example, the BIG suggested

*j by Akaike (1977), and Schwarz (1978), and the h criteria by Hannan and

Quinnt (1979). In this paper, we shall consider the AC, BIG, and h-

criterion. We consider a stationary process, { x(n) : n > 0), generated by
tln Ilannan and Quinn's paper they used 0 instead. We change it to h to avoid confusion
with the 4-mixing condition for stationary processes.
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(3.2.1). The estimate of the true order, which we shall call ko, is obtained by

minimizing one of the following quantities

ATC(k) = n log 62 (C) + 2k,

BIC(k) = n logk (e + k logn,

h(k) = nlog8 (E + 2kc log log n, c> 1,

where & (c are the estimates of o2 -(e)obtained from the kth order autoregres-

sive model based on a sample of size nt. We denote the selected order by Icn;

we will use k whenever there is no confusion.

We now state without proof certain theorems on the asymptotic properties

of these estimates. The proofs may be found in Shibata (1976) and Hannan

and Quinn (1979). We assume that

(c1) Ej= 01 (j)z.i _ 0, IxI 1; E{e(m)e(n) I = a

(C2) { e(n): n 0 } consists of independent random variables with the

same normal distribution N(O, , 2(e)).

(C3) The true order ko is bounded above by some constant K < oo which

is known a priori.

(3.2.10) THEOREM. Under the conditions described above the asymptotic

distribution of k, selected by AC is given by

rn P(L = k) = {P-k " qK-k, ko < k < K;

n-t, otherwise,

where
Pn -- " " ,1 ,-,+2,.,+ ..+n,%-n iI, _ ri!k i

'. 2d O, integers

rl-F2r2--..+nrn nn A
ri O, integers •

tUnless it is important to have the subscripts n, we shall drop them for convenience.
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K."

and a, = P(X 2 (i) > 2i), i 1,... K. Here, X2 (i) is a random variable

having the Chi-square distribution with i degree of freedom.

Proof. See Shibata (1976) pp. 119-120. g

The next theorem holds under a weaker condition : we may replace (C2)

by

(D2) E{e(n) I ,_ = 0, E{,E(n) I _1 = ,. E{ e(n)} < oo, where

in i8 the a-field generated by y(m), m _ n.

(3.2.11) THEOREM. Under the conditions (C1), (D2), (C3) and E{ Ie(n)r } <

00, for some r > 4, the estimates k obtained via BIC(k) .,r h(k) are strongly

consistent.

Proof. See Hannan and Quinn (1979) pp. 192-193. 1

Besides the order selection criteria discussed above, one may resort to a

statistical test(cf. Anderson (1971) p. 215, Fishman (1978) p. 251). We test

the null hypothesis H0 : autoregressive processes of order k < K against the

alternative HI: autoregressive process of order K. The statistic for testing is

T K . - n ( 1 - .g2 ( ,)

which has a limiting X2-distribution as n --+ oo with K - k degrees of freedom

when the null hypothesis is true. We reject the null hypothesis if

T4_ > X2_ 0 ( - k)

where X 2_,(K-k) is the (1- a)th quantile of the X2-distribution with K-k

degrees of freedom. We select the order k to be the first k, k 0,1, I..., K,
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such that Ho is accepted. For sufficiently large n, this test has approximate

significance level a. Other types of statistical test will not be considered in

this paper; the interested reader is referred to Anderson (1971), Quenouille

(1947), Grenander-and Rosenblatt (1957).

The variance constant obtained by the autoregressive method is
-2 1 1

27r = r ,-(Z o j)l1 "

To prove the consistency of 0, let us define the K-dimensional vectors 3,

Ok as follows:

03' (/ l(1), P(2), ... , fl(ko), 0,..., 0),

-- (?k(l), k2),....,kk),0,...,0), k-1 ... g,

where 3k(j)'s are the estimates of the coefficients of the kth order autoregres-

sive process. It should be noted thatlk and a2(E) are consistent for k > ko

(cf. Anderson (1970) pp. 188-200). Let

Sz, y)- 1 e, = E1,',1) X EK,z _ KY E
(+ xe)2 '

We observe that
2_ 2 ) _. __12e)

2 k (8 or2(e)),~2 7r I E " y __ P ( 7) j 2 2 7r

and k = s(fk, W:(e)) is an estimate of 82 obtained from the kth order.

4 autoregressive model. Since S is a continuous function, by using a continuous

mapping argument (cf. Billingsley (1968) pp. 30-31), we know that 8 k is a

consistent estimate of a2 for k > ko. If k is obtained by minimizing BIC(k)

or h(k), the consistency of 9? follows immediately from the strong consistency
k
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Ew U I UE i11 * ~ rI ! ... Ul ' J U -, ., - , • .. .. .

rof the estimate k. If k is obtained via minimizing AIC(k), then for any 6 >

p{. Pji_,21 > 6}--- j _~ ,21 > 6, -- k}

k-O
K

- ZP{ IB2I.>621 =k}P{£--k}
k-O

- _ P{ 21-. > 6}.P{ = k}.

From Theorem (3.2.10) and the consistency of a for k > ko, for sufficiently

large sample size M we have

>P{ic kj}< 2 and
k<ko

'- ~~~S 2{I-.1>6}< ko <_ k < K.
Thus

K
kP{Is -a 2i>6}< P{k-=k}+i

2 k> ko

<6

This shows that 0 is a consistent estimate of 62.

I4
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3.3. The Multidimensional Autoregressive Method

* For the vector case, we first derive recursive formulae for obtaining

parameters of the kth order autoregressive model, Bk and Gk (cf. Section

.3.1). To solve

)ZkBk - -rk (3.3.1)

recursively requires an auxiliary equation (cf. Lee (1980))
R R(0) R(1) ... R(k-1) AXk(k) (k()

R(-1) R (0) ... R(Ic-2) .A4(k-1) _ R(k -1)
(3.3.2)

. kR(1-k) R(2- k).. R(O) )%, A (1) JR (1) ,

denoted by RkAk = -qk*.' Note that Equation (3.3.2) is equivalent to

k
E Ak(])R(8-k-tj)=-Od, 8--0,1,...,k-1, (3.3.3)

j-O

with Ak(0) = 'd. If we define

Ck(n) Ak(k)x(n) + ... + Ak(1)x(n - k + 1) + Ak(0)r(n - k)
k= EAk(j)X(n*- k + j),

then Equation (3.3.3) implies

E{ k(n)x'(n -- s) } Od, s = 0, 1,..., k-1. (3.3.4)

Let Hk denote the covariance matrix of ek(n), then

k

* lHk = E{ e&(m) (n) } = E{ 1 Ak(j)x(n - k + j) (n) }

= E{x(n - k) (n)} (by (3.3.4))
k

- Z R(-j)A' (j).
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Equations (3.3.1) and (3.3.2) can be solved in an efficient recursive manner

(cf. Kailath (1974), Wiggins and Robinson (1965)). The equations for the

coefficients of autoregressive model of order (k + 1) are

(qOk )( k+ 1 - - k- 1 (3.3.5)

and R )4+
. .A='_(R (k 1)(3.3.6)+::)k) k s J, A+I \ qk

where
B+-- (Bk+j(1),BkF1(2),...,B

(') - (Ak+1(k),Ak+I(k- 1),. ,A+1(1))'.

The partitioned equations for (3.3.5) and (3.3.6) are

)kBt,+1 + qkBtk+I(k + 1) -T , (3.3.7)

qk..sl 1+ R (0)B'k+1(k + 1) = -R(-k - 1), (3.3.8)

and

R(0)A!"(k.+ 1) + A() -R(k + 1), (3.3.9)
'kAk+1(k + 1) + RkA(1) (3.3.10)

The solutions for (3.3.1) and (3.3.2) are Bk = - 1 rI, and Ak - - lq=

respectively. Substituting them into Equations (3.3.7)-(3.3.10), we obtain
+B(1) = Bk +A +),

k+.1 AkBh+1 (k+1)

Bs+(k + 1) = -(q Ak + R(0))- (R(- k - 1) + q'Bk),

() - Ak + BkA +1(k + 1),

A'k+,(k + 1) = -(R(0) + r'Bk)-'(R~ k + 1) + BrkA),

4 k
and Gk = Bk(j)R(-j)*= R(0) + rkBk,

i-U

k

. Hk = lA.(j)R (j) = R (0) + q' Ak.
i-U
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Note that Hk is the covariance matrix of k(n), hence is symmetric and

positive definite.

We recursively define

Adk+1= B(j)R (k + 1-]j)
j=0 (..1

Pk+1 C d~1 2 k+l(Hjj 2k '

with initial conditions

Go Ho R( - Ak(O) =Bk(O) Id- (3.3.12)

Then

Gk+1 Gk + 4 k)~lk+1
= ~ ~ H GkI-PIYk~)

=(0) -()GAk1

Hk+1 = k + Ak+lB~k + 1)+k1) (3.3.13)

= k(I- Pk+lPk+l),

Equations (3.3.1l)-(3.3. 14) give a simple way to compute the parameters

of a given order autoregressive process.

We assume that {y(n) n > 0 }is generated by a koth order autoregres-

- ~ sive process with parameters Bk0 = (Bk, (1), -. , -Bk, (ko)) and Gk.. Given a

sample of size n, we use Equations (3.3.1l)-(3.3.14) to compute the parameters

for differenit orders and wc adopt Akaike's criterion (cf. Akaike (1974)) to

- - select the order. As in the scalar case, we assume ko <5 K < oo, where K

is known a priori. We select the order kn which minimizes

AIC(k) =n logI(5kl + 2kd,
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where I.J denotes the determinant of a matrix and Gk is the estimate of

Gk, obtained from the kth order autoregressive process. We would like to

establish some asymptotic properties for k,. Before we can proceed we need

to prove the following lemma.

(3.3.15) LEMMA. If the matrix I- AA' is positive definite, then

0< I - A.X'<I1 if AA 0d.

Proof. Let X be an eigenvalue of 1 - AA' and x be the corresponding

eigenvector, then

(I- AA')x =Xx.

Multiply both sides by x' .to obtain

(1 - x'= x'AA'x > 0.

Because x is an cigenvector, x is'not the zero vector. This implies X < 1)

and since every eigenvalue of a positive definite matrix is positive we have

0 < X < 1. It is well known that

11 - AA'I = i,

where X are the eigenvalues of I- AA!. If II- AA'I = 1 then we must have

Xi = 1 for all i, and this means I- AA' = I or A = Od.

(3.3.16) THEOREM. The asymptotic distribution of k, has the following

property:

lim P{k,,--k}=O, ifk < ko.
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Proof. Using Equation (3.3.13) we obtain
16k+11 = 16kl" 11- Pk+lP'+lI

and from the consistency of the estimates for parameters of the autoregressive

process of order kk0 , we have in probability
lira "' 1/2z -1/2

PkoPko == PkoPko = G- LAkoBko(ko)G-1 •
11-4ko-0

Obviously, Gko-1 3- Od and since the true order is ko, we know that

Bko(ko) 3 Od. Also note that Bko(ko) = -H.IojAko, this implies Ak o

Od. So, lim,. PkoPo Od in prob ability.

For 0 < k < ko, we have

I ~II -(l - iX >1
IGko ( , 1)'k+IPkP'0

Since every I- i'jp is positive definite, by Lemma (3.3.15) we know 0 <

11- pi'o[I < 1. Therefore, for any E > 0, there exists a 6 > 0 and an integer

M > 0, such that for any n > M

exp(2(ko-k)d2 /n) < 1 +6,.

P{ IC l/IGkl < 1 + 6}<.

From the definition of k, we have

P{k=k}=P{AIC(k)< AIC(m),0 < m < K}

< P{ AC(k)< AIC(ko)}

= P{ ICkI/Iko < exp(2(ko - k)d 2 /n) }
< ,

this proves the theorem. *

The estimate of the covariance matrix Z appearing in (3.0.1) is given by

"30 " "=O

The consistency of Z can be shown in a manner analogous to that used in

the last paragraph of Section 3.2 by properly modifying the function S.
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3.4. Applications to Markov Processes

We now apply the results derived in previous sections to Markov processes.

Let (E, E) be a measurable space.

(3.4.1) DEFINITION. A function P : (E, 6) [0, 1] is said to be a

probability transition function if:

(a) for each x E E, P(z,.-) is a probability measure on (E, C),

(b) for each B E ,P(',B) is a measurable function with respect to C.

The n-step probability transition functions are defined by setting P'(x, B) -

P(x, B) and

Pn+1~ JE B P"-(y, B)P(z, dy).

Let E' E E X" and e _X " . For any w

(wo, wi,... ) E E00, let X(i)(w) = wi. Then given P and an initial probability

distribution p, there is a probability measure P. on (E' , ,C) such that for

all n > 0 and B 0,B 1,...,Bn E,6

P{X(0) EBoX(1) E B 1 ,...,X(n) EB} B)

'B0  (dxo) fP(zo, dx 1)... f P(Xn- 1 , dzn).

It can be shown that

P{X(n+1) EBIX(O),...,X(n)}=Pb{X(n+I)EBIX(n)). (3.4.2)

Equation (3.4.2) is called the Markov property and { X(n) n > 0 } is said to

I7 be a Markov process with state space E, initial distribution .t and stationary

probability transition function P.

For our simulation studies we assume that X(n) = X as n -- oo

where X has.stationary distribution 7r. It is known that if we takc the initial
i-4i 51
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distribution to be 7r then the process X(n) n > 01 is a strictly stationary

process. If-we make the further assumption that {X(n) n > 0} is ,-

mixing with. En O(n)'/ 2 < oo, then Theorem (2.3.10) holds. Therefore, we

can apply the autoregressive method to this stationary process and obtain

reasonable estimates about the steady state quantities. But usually we do

not know the stationary distribution 7r in real situation, otherwise we could

compute the results analytically and would have no need to simulate. So we

choose X(0) according to an initial distribution p, and simulate the process.

This procedure yields a non-stationary process. Since this non-stationary

process converges in distribution to a stationary random variable, the process

is asymptotically stationary. In order to apply the autoregressive method and

obtain consistent estimates, we need to justify the method for non-stati.onary

processes.

Let { X(n) n > 0 be a Markov process with initial distribution 7r

which satisfies the regular*ity conditions for Theorem (2.3.10). Then

Vn- ( E Z (i - N(O, Z).

The autoregressive method says that for E > 0, there exists a Z. such that

11Z - Z,11 < e and that from a sample of size n we can obtain a consistent

estimate n, for Z, under the stationary distribution 7r. Now, let ji be any

initial distribution which is absolutely continuous with respect to 7r, then the'
6d

Radon-Nikodym derivative exists (cf. Halmos 1950). We also assume that

there is a constant C, such that - < C < .For any >0, let

An() = {w E E: lln(w) - ,ll > 6},
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then r P.{ A.(6) } = 0. Thus

P,-:I ,.,ur P { A.(6))= .-lran / P2 { A.C(6) }p(dz)
,. = m P P.A.C6)} ,t(d)

n---bo coE0

-i (r P.{An(b))}-r(dx)
no Jjia d7r

< nm C .P,{A(6)}= 0.
n- o

So, Z, also converges in probability to Z, under P,. Therefore, -we have

found some conditions which allow us to apply the autoregressive method to

simulation output data.

Remark 1. If { X(n): n > 0 } is a finite state space irreducible Markov

chain then C always holds for any ji. For countable state space, 1 <

C holds if / has finite support.

Remark 2. If 7r has an atom x, then ii = 6, satisfies 4 < C.

It is often the case that we need to study the steady-state behavior of a

continuous time Markov chain. Since the process is simulated in continuous

time, we need a technique which converts the continuous time* process to a

discrete time series in order to apply the autoregressive method. This can

be done by either sampling the continuous time Markov chain (then we need

to consider the problem of what can be inferred about the full process from

the sample) or by using the discrete time method (cf. Hordijk, Iglehart, and

Schassberger (1976)). We shall briefly review this method below.

Let {X(t) : t > 0 } be a continuous time Markov chain with countable

state space E. Assume the Markov chain is irreducible and positive recurrent.

Then X(t) X as t -+ oo. Let the probability transition function be

pij(t) = P(Xt) = i lX(O) =i}

53



and let
dqia -l- dpij(t) It=-o,

Q = {q i,j E E}, and qi = -qii (assume 0 < qi < oo). The quantities

qij, i, j E E, are called the infinitesimal parameters of the process. Let 7r -

{ iri : i E E } be the stationary distribution of the process. Then xQ = 0,

or equivalently

"-7riqii = 0, j E E.

Define the matrix R -ri : ij E E-} by

0, if i j;

{qr/j -- (3.4.4)
::.rii -- !, %y qi, if i -7 j.

Let f E -R !. We are interested in estimating

r = E{f(X) } = (i)7r.
iEE

We use the embedded jump chain { X(n) n> 0 } which is a Markov chain

with probability transition function R. Let X(O) be choosen according to

the stationary distribution p of the embedded jump chain. We define a new

function g for { X(n) n > 0 } as follows

g(i) = f(i)q7 1, i E E.

Define
u(n) g(X(n)),

v(n) = n (3.4.5)

w(n) u(n) - r v(n).

Since { X(n) n > 0 } is strictly stationary, so are the processes u - { u(n)

n >_ 0}, V. {v(n) n > 0}, and w {w(n) n > 0}. Note that
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p'R - p', or we may write

Zpirii pj, for all jE E,
iEE

which implies

lEE

Since the stationary distribution is unique we must have piq7 1 - c'ir for

some constant c. Therefore,

E{ u(O) El f(X(O)q }) }
E{ v(O)} E{ qxo)}

- Ei f(i)q-'pi (3.4.6)
FIjEEqj lpi

=Zf :i)i, =r,.
iEE

Thus w(n) has mean zero. Applying Theorem (2.3.10) to process w yields, as

"--, v - r) N(O, 1). (3.4.7)

By using a continuous mapping argument we may replace by E{ v(O)} and

Equation (3.4.7) becomes

=* N(O, 1).

a/E{ v(0) I

The variance constant a2 is

00

or a2 = Rw(k), (3.4.8)
k=-oo

and by the definition of w, we have

R.(k) "- R(k) - 2rR, (k) + r2 R,(k).
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Therefore

00 CO r2 -O(.49

a2 = R,(k) - 2r R,,(k) + r2  R (k). (3.4.9)
k=-oo k=-oo k--oo

Here, R,,(k), R,(k), and R,,(k) are the covariance functions of the processes

w, u, and v respectively, and R, ,,(k) is the cross-covariance function of

the processes u and v. Thus, we have two alternatives to implement the

discrete time method. The first alternative is observe the processes u and

v, form { w(n): n > 0 } by replacing P for r then apply the univariate

autoregressive method and use Equation (3.4.8). The other alternative is to

use the vector process y = { y(n) : n > 0 } defined by y(n) = (u(n), v(n))'

directly and obtain an estimate of a2 by using Equation (3.4.9) through the

spectral density function of y.

To apply the autoregressiye method to semi-Markov processes simulated

in continuous time, we first apply the discrete time method (cf. Hordijk,

Iglehart, and Schassberger (1976)). Then we either use Equation (3.4.7) or

(3.4.8) to calculate -2.
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CHAPTER IV

VARIANCE REDUCTION TECHNIQUES

Although simulation is an important tool for analyzing stochastic sys-

tems, in many practical applications considerable computer time is required

for simulation runs. Therefore, it is-desirable to develop methods that al-

low us to obtain, based on the same realizations, improved statistical ac-

curacy. Such methods are called variance reduction techniques. We shall

develop several variance reduction techniques and incorporate them into our

autoregressive method.

Throughout this chapter, we let { X(n) n > 0 } be a strictly stationary

process. Since X(n) has the same distribution for all n, it holds trivially that

X(n) =* X as'n -- oo. The quantity of interest is

= E{ f(X) i, (4.0.1)

where f : E R-* ! is a real-valued measurable function. We make the further

assumption that { X(n): n > 0 } is 0-mixing with E",, 0(n)1/ 2 < oo. Then

= n E f(x(i))

is a strongly consistent unbiased estimate for r and the following central limit

theorem holds for F(n) (cf. Section 2.33)

or(- N(O, 1), (4.0.2)
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A

where

0 = var (x(o))'}J+ 2 Covf{(X(i)),f(x(0))}.

Our goal is to find another strongly consistent estimate for r and a central

limit theorem analogous to (4.0.2) with a smaller variance constant a2. The

motivation for doing so is to be able to form a shorter confidence interval for

r.

4.1. Control Variables Method

' In this section we will discuss the use of control variables to achieve

variance reduction in the simulation and hence obtain a shorter confidence

interval. A good introduction to this technique is given in the book by Gaver

and Thompson (1973) pp. 582-591. Detailed -accounts of various kinds of

control variables applications can be found in Iglehart and Lewis (1979),

Lavenberg, Mocller, and Welch (1977), and Gaver and Shedler (1971). A

control variable is a random variable whose expectation is known and which

. is correlated with the process under study.

Let a sequence of processes { Cj(n) : n > 0 }, j = 1, 2,..., k, which will

serve as the control variables, having the following properties:

(P1) They are fairly easy to obtain; i.e., we do not spend too much time

generating them.

(P2) They are correlated with the original process { X(n) n > 0 }.

4 (P3) The mean E{ C3 (n) } = j is known or can be calculated analytically.

Define a (k + 1) dimensional column vector

y(n) = (yo(n), yi(n),... Yk (n))'

= (f(X(n)), Ci(n),..., Ck(n))', n > 0,
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and assume that the process { y(n) n > 01 is strictly stationary and €-

mixing with. En -O(n)1 / 2 < oo. Then we have the following results (cf. Section

2.3):
n-I

V, -i) - a.s. and

Vfn(n- /)= N(O, Z), (4.1.1)

where
I = (r,.ui"" )"

*i E=(o,,), ij=--,1,...,k ,

and aui is defined by Equation (2.3.12). Now let be a (k + 1) dimensional

column vector of real numbers. If we take 3 = (1, 1, ... ,Ok)1 and form
k

yp(n) = f((X(n)) + E,1 I(C(n) - pi,), then

n
° 

k

((n + -,jCji + Aj

is an estimate of r. We have r(n-) - r a.s., and a simple application of the

continuous mapping theorem (cf. Billingsley (1968)) yields:

: Vz (Pi-' = N(O, 1), (4.1.2)

where a = Note that Equation (4.1.2) can be written as

V n( O (n )- r)
=* N(O, 1). (4.1.3)

Since there is no restriction in selecting the /?j's, j " 1,...,k, we pick

S=-- P -- (1, ,.. .,/)' where 8* minimizes 0 . This will produce the

4smallest possible confidence interval for r. To minimize a 2 we need to solve
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the following non-linear programming problem:

minimize 0a = /T'O/ (4.1.4)

subject to A30 = 1.

Let b =(131,..., A)', A ={aij },i, j"=l.., n (0o .... o')',

then
= (1,')(uo a')(1)

a 0o0 + 2a'b + b'Ab.

Therefore, the pioblem (4.1.4) becomes

minimize b'Ab + 2a'b. (4.1.5)

It is easily seen that the optimal solution for (4.1.5) is b -A-Ia. We

denote the corresponding3 by 3,then
-' + (A+-a

010. = 010- 2a'.AJ + Aa)'A(.A')
= 00 - aA-l a.

Since A is the covariance matrix of the control variables, it is positive definite

and thus so is A - 1 . Hence, we reduce the variance by a positive amount

a'A-'a. *Since the covariance matrix is not known, it becomes necessary to

estimate Z. If Z,, is a strong estimate of Z, then 8, a a.s. andA,, -- A
a.s. as n --+ oo. Hence, A . A-' a.s.. Let b, - -A;'&., it is clear

that b -- b a.s. as n --+ oo. Then fA.(n) and & . are strongly consistent

estimates of r and a#. respectively.

4 It follows that for 0 < -y < 1/2, the 100(1 - 2y)% confidence interval

for r is

I(n) = (n) z- / v ,(n) + a0
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where zl- - -(1-) and (D(.) is the distribution fun, tion of the standard

normal random variable.

This variance reduction technique is also applicable to continuous time

Markov chains and semi-Markov processes. We first apply the discrete time

method discussed in Section 3.4 and then the control variablcs method.
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4.2. Multiple Estimates Method

The multiple estimates method of variance reduction was introduced by

Heidelberger (1977) for regenerative Markov processes. In this section we

shall slightly modify the method to adapt it to our situation. Here { X(n):

n > 0 } is a strictly stationary 0-mixing process.

The multiple estimates for r are formed by choosing new measurable

functions fi: E -,- OR such that E{ fj(X) } = r for 1 < j < k. Assuming

E{ Ifi(X(0))I } < oo, then

n-1;()=1: f j(X~i))- r a.s.
n.

Each fj(n) is a strongly consistent estimate for r. Define a (k + 1)-dimensional

vector y as

v(n) = (yo(n), y(n),. ..,Yk (n))

= (X(n)), fi(X(n)),..., f,(X(n))), n > 0.

It is not difficult to see that the, process y = {y(n) n > 0 } is strictly

stationary. If .M is. the a-field generated by X(a), ... , X(b) and if t

is the a-field generated by yj(a),...,yi(b), 0 < j k, then Ma C N a.

Since { X(n) : n > 0} is 0-mixing it follows that y is 0-mixing. Thus

Equation (4.1.1) holds with 1A = (r,r,...,r)'. Let 3 = (Pfo,01,...,j k)' so

that P ~oj = 1 and form

f()= Z (n).
j=0

We have p(n) -- r a.s. and

V n ( #(n) - r)
- N(0, 1), (4.2.1)

0a 2
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where O ro /3 = Zi=o /o'/ii)i.

To maximize the variance reduction we solve the non-linear programming

problem:
minimize u7 - Z3

subject to )'e - 1,

where e - (1, 1,..., 1)'. The optimal solution is
': " " -. 2?-/e'Z?-1e,2 :(4.2.2)

or.- I/e'?-le.

To apply the multiple estimates method, we need to find the proper

functions fj's. We shall discuss the choices for Markov processes. Let

{ X(n) : n > 0 } be a discrete time Markov process with probability transition

function P. One choice suggested by Heidelberger (1977) is setting

fo f$
f.= Pif, j> I

which is defined by

Obviously, fj Pfj-, j > 1. It can be shown that 7rf -r(Pf). By

induction it follows that

rj- irfj r(Pfi-1)

= - = r.

4 This idea is also applicable to continuous time Markov chain {X(t)

t > 0 } with discrete state space. We first apply the discrete time method

discussed in Section 3.4. Let {X(n) : n > 0} be the stationary embedded

jump chain. For i - 1,..., k we define

gj(i) = fMi)q , i E E

uj(n)= gj(X(n))

v(n) q n

wj(n) = uj(n) - rv(n)
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and

andw(n) =(wo(n),. Wjk(f))

u(n) = (uo(n), Uk.. , '

{w(n) n > 0} is strictly stationary and -mLxing. For 0 < j < k, we

have ri = E{ ui(n) }/E{ v(n) I (cf. Section 3.4). Thus w(n) has mean zero,

(n) - r a.s. and,

v v= (u/;-D N(O,,),

where ,, = - R (j). By using a continuous mapping argument we

may replace V by'E{ v(0)},

Nx- (i*(n) - IA&) ~N(O,ZU), (4.2.3)
1IE{ v(0) I

where i.(n) = (i o(n), ... , ik(n). By applying the continuous mapping theorem

again, we immediately obtain Z = w./E{ V(0) }2.

To select fi we recall that (cf. Section 3.4)

. ,.lr'R= 7r,

* where 7r is the stationary dist ribution of the process { X(t) t > 0 } and R

is defined by Equation (3.4.4). Therefore, le f = 'R f. This suggests we let

to = f and choose

fi=RYf i 1.

Again irf'• - r for all j.
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4.3. Innovation Contro Method

The third variance reduction technique we will discuss is the innovation

control. This method utilizes the so-called Wold decomposition of the sta-

tionary process. For the purpose of variance reduction we need only discuss

the scalar case.

Following Anderson (1971), we use the double-infinite sequence of ran-

dom variables { z(n): -oo < n < oo I to generate the relevent Hilbert space.

Let An be the closed subspace spanned by x(m), m < n. Thus AM contains

all finite linear combinations, Zjes a(j)x(j), where S is a finite set of integers

which are less than or equal to n, as well as their limits in mean square. If x

and y are two elements of this Hilbert space, then E{ zy } is called the inner

product. Clearly, .Mm ACMn, m < n. We put .M_.o = fl A-n_ .M' and.

M M. The best linear prediction of x(n) by z(n - 1), x(n - 2),... is

the projection of x(n) on -M,n, denoted by c(n). Put c(n) = x(n)- 1(n),

then c(n) j .M,.-, i.e., E(n) is orthogonal to every element in M,-1. The

random sequence E(n) is usually called the innovation. If E{ E(n)2 } a2 =

0, the process is said to be purely deterministic. If E{ e(n) 2 } o. 2 > 0, the

process is called regular. The Wold decomposition, Wold (1954), clarifies the

structure of a stationary process.

(4.3.1) WOLD DECOMPOSITION THEOREM. If {x4n): -oo <

n < co } is a regular stationary stochastic process with E{ x(n) } 0 0, it can

be written as

00

z(n) = a(j)c(n - j) + v(n) = u(n) + v(n) (4.3.2)
j=O

65



where E' j 0 a(j)2 < oo, a(o) = 1, E{ e(n)} = E{v (n)} = 0, E(n) E M

and v(n) E.M-..O. The sequences {c(n) -oo < n < oo} and {v(n) -oo <

n < 0 } are unique.

Proof. See Anderson (1971) pp. 420--421. g

The next theorem states the spectral functions of u(n) and v(n)

(4.3.3) THEOREM. If z(n) is regular with spectral'distribution function

F - Fa + F, + Fd, and f is the derivative of F,, then f is the spectral

density function of u(n) and F, + Fdis the spectral distribution function of

v(n). Furthermore,

f(X) = -I E a(j)e-"l.

Proof. See Hannan (1970)pp. 140-141. I

Now we apply these theorems to obtain some variance reduction. .Let

{ X(n) n > 0 } be a strictly stationary and C-mixing process. We wish

to estimate r = E{ g(X) }t for a given function g. Let z(n) = g(X(n)) and

assume the process { z(n) n > 0} is regular. Applying Theorem (4.3.1)

yields
00

x(n) a(j)(n - j) + v(n).
Sj=0

Let
00

1(n) a(j)c(n - j) + v(n),

E(n) = x(n) - 1(n), and a'2  E{ e(n)' }.

Define

,.n ) = (x(n), ,E(n))'.

t We reserve f for the spc8ral density function.
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Then { y(n) n > 0 } is strictly stationary and 4 -mixing, therefore

n-1

vni) -+I a.s., and
niO

(n i .o0.

where
/A (r,0)'

00

n*oot= -00 n)={0.j)

Here aij, i, j - 1, 2 is defined by Equation (2.3.13). Let F(X) be the

spectral distribution matrix of y(n) and f(X)= dFa,(X)/dX. Then R(n)=

fr ei"nF(dX). Note that

01 = R 1 (n ) = > _ enXF1 (dX)
n=-oo no0

00

= 2rf,(O) + c = u21 E a(i)12 + c,
j=O

where c is the infinite sum of the integral from the discrete and singular parts

of F 1 (X). And

00

012 = Cov{x(n),E(O)}

00 00

: = Z Cov{ E a(j),E(n- j) +v(n),e(O)}
n=-oo i=0

00

-"2 Za(n),
71=0

a 022 E E f{E(n)E(0)} = 2.

As we have done in Section 4.1, we take 63 = (1, b)' and form P'y(n). Then

Z)E(f(X(i)) + bE(i))
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is an estimate of r and p(n) -- r a.s. as n - oo. Also the central limit

theorem holds:

:v ( (fi) - r)/ o  N(O, 1) as n - o

where ap- o,1 + 2ba 1 2 + b2 '22 . Again, we may choose /3 to minimize u

which is

S(1, '2/02 2 )= (, Y a(n))'
n=O

and -. -,1 - =12/22 .

We notice that if the process { x(n)-- n > 0 } has absolutely continuous

spectral distribution then o 2  c = 0 that means £r..(n) is a constant

random variable r.

Although this method seems extremely good, we encounter difficulties in.

application. In general, we are not able to obtain the innovation e(n), unless

we know the true values of the parameters (e.g., a(j)'s, ... ) for { z(n) n

0}.

4
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CHAPTER V

NUMERICAL EXAMPLES

In this chapter, we present four examples to demonstrate how well our

method performs. One of the examples, the outflow process in a lake model,

is actually a first order autoregressive process. All other examples come from

the area of queueing theory. They are the 'waiting time process in an M/M/1

queue, the passage time and response time processes in a closed network of

queues, and the queue length process in a cyclic queue. These processes are

regenerative processes for which we can calculate the theoretical values of the

parameters being estimated. Therefore we are able to make the comparison

between theoretical values and simulation estimates. For all examples, the

results obtained from the autoregressive method are quite satisfactory.

To determine the order of autoregressive model, we use AIC, BIC, h-

criterion, and the statistical test discussed in Section 3.2 for the univariate

case, and AIC for multivariate autoregressive method. Among different

criteria, the. results obtained by using the AC are usually the closest ones to

true values. We may conclude that A.C is the best one for many applications.

.4 All problems were run on a DEC-20 computer and we used the build-in

uniform random number generator to simulate all processes.
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5.1. EXAMPLE. Waiting Time Process in an M/M/1 Queu".

Suppose customers arrive at a single service facility. If a customer finds

the server idle, then he receives service immediately, otherwise, he waits his

turn to be served. Assume the zeroth customer arrives at time to - 0, finds

a free server, and experiences a service time v(0). The nth customer arrives

*i at time tn and expcriences a service time v(n). Let the interarrival times

u(n) = tn- tn- 1 , where n > 1. Also assume the two sequences { u(n)

n > 1 } and { v(n) n > 0 } each consists of i.i.d. random variables and

are themselves independent. Let E{ v(O) } =a 1 -', E{ u(1) } - and the

traffic intensity p > ,/gi. Let W(n) be the waiting time of the nth customer.

Then W(n) can be defined recursively by

W(0) = 0,
.W(n) = [W(n - 1) + X(n) (5.1.1)

=max{0,W(n- 1)+X(n)} n > 1,

where X(n)= v(n - 1) - u(n). It is known that if p < 1 then there exists

a random variable W such that W(n) = W as n -* oo. This model is

commonly called the G//1 queue. If the arrivals form a Poission process

with rate X and service times are exponentially distributed with rate JA, then

the queue is called an M/M/1 queue. We are interested in estimating E(W),

which is finite if E( v(n) 2 } < 00.

We observe the { W(n):n > 0 } process for the univariate autoregressive

method. For the variance reduction techniques, we apply the control variables

and multiple estimates methods. It is natural to use the service time and

interarrival time as control variables; i.e., we use (W(n), u(n), v(n - 1)) for

70



the control variables method. We use the column vector

y(n) = (fo((Wn)), f,(W(n)), f 2 (W(n)))', (5.1.2)

for the multiple estimates method. Here, the f function is f(z) z, fj(z) =

Pif, j > 0. In order to calculate fi, we need to find the probability transition

function for the { W(n) }process. For the M/M/1 queue it is easy to show

that

P{X(n) 
< z}

: -- 1-A-e-, for x > 0.

Thus g(x) -- P{ X(n) z } exists for all z and we write P{ X(n) E dz } 

g(x)dx. Now to evaluate f1 (z) we have

f.(z) - P(x, dy)f(y)= j yP{W(n + 1) E dy W(n) = x}

f -- yP{ x + X( + 1) E dy} = yg(y - )dy.

We find

(x) :x + -+ K -e
"X ( X + i,)

To evaluate f2(x) we compute the irtegral

f2 (x) = PCzdy)f,(y).

After this computation we find

-+ X e+i+ 1A

It is possible to calculate exactly the covariance matrix Z for y(n) in

(5.1.2), so that we can compute the theoretical values of variance reductions

for the multiple estimates method. The idea is to use the stationary process
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{ W(n) n > 0 }, i.e., W(0) is distributed according to its stationary dis-

tribution. Define the generating function of the joint Laplace transform of

the stationary waiting time process by

00

CzZ21, S) - E E{ e-ZI W(O)-z2W(n) }.,,
n=O

where Isl < 1. C(zI, z2, s) has been calculated by Blomqvist (1967), he also

gave the exact form for the covariance function of { W(n) n > 0 } which is

R(k) = Cov{ W(k), W(O) )
- 1 1p ( p \'(2i -3)!
:2= 2" Z " (1 + p)2 " 2)!

"" i-k+3

We can obtain aij from C(z1 , z 2 , a), e.g.

00

O = 0{ W(0) } + 2 Cov{ W(n), W(0) },

00

OI2 a 2{ W(0) } + 2 E Cov{ W(O), W(n) }
n=1

00 00

X(X+ ) (> =Cov{ W(0), e-W( ) } + E Cov{ W(tn), e-XW(O) },

and

::: E z{ w(0)w (n) } Z 2, )

n=O a-- 1 aZlCZ 2

Z Cov{ W(°)e - xWcn} =- lim aC(, 2, ,=o,=X •:: 0-1 a zl
-.. n=--O j

After we have calculated aj, we can obtain a2. by using Equation (4.2.2).

The exact form of the covariance function R allows us to demonstrate the

autoregressive approximation. Recall that the autoregressive method enables

us to approximate a2 (cf. Equation (4.0.2)) by 27r times the spectral density
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function at 0 of some finite order autoregressive process (cf. Section 3.1). If

we assume that { W(n): n > 0 } is a pth order order autoregressive process,

then {W(n) n 0 } satisfies

p
O / n j(j)W~n- j) = e(n), Pp(0) = 1, p3(p) € 0,

where c(n) are i.i.d. random variables with variance ao(e). We solve the

following Yule-Walker equations (cf. Section 2.2), namely

E f l3p(j)R(, -j) = 0, =1
i=O

to obtain p(j)'s and o(E) J3()R(-j). The corresponding ap-

2 Cr2(f/r

proximation for a2 is 2rfk(0) -- .7( )/ 1  01p()1 2 . Table 1 contains the

values of R(k) for k < 10, it -also gives 2lrfk(0) and simulation results for

2lrfk(0) for k < 10. From this table we can see that 27rfk(0) converges fairly

fast to a 2 = 21rf,.(0) (the stationary waiting time process is an infinite order

autoregressive process). Observe that 27rfl(0) is 23.99 which is 83% of 0,2

(27rf,,(0) = 29). If we want an estimate with accuracy 90% of the true

value, we may pick the order of the autoregressive model to be as low as 3.

To see how well the autoregressive method performs in an actual simula-

*tion, we have taken y- 1, p = 0.5. To obtain a 100(1 -2y)% confidence imi-

terval with half length 1006% of the true value of E{ W } requires zi_.a,1./ --

6 • E{ W} for some y. If we take -y = 0.05, 6 = 0.1 then the number of cus-

tomers, n, that need to be simulated is roughly 7850 or 3900 regenerative

cycles. For the purpose of comparing the autoregressive method and the

regenerative method, we simulated the waiting time process in cycles for a

4 total run length of 4000 cycles (the expected total iiamber of customers is
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8000). We consider 500, 1000, 2000, 3000, 4000 cycles, the longer runs being

continuations of the shorter runs.

All runs were replicated 30 times. For each replication we form point

estimates and confidence intervals for various parameters of interest. We
then average over the 30 independent replications and form 90% confidence

intervals for each parameter; this is done by using the central limit theorem

for i.i.d. random variables. The upper bound provided for order selection was

10 for all criteria. Table 2 shows the point estimate for E{W} either with

- or without a variance reduction technique. Table 3 contains the estimate for

a' from the regenerative method as well as the approximation of a2 from

the autoregressive method for various kinds of order selection criteria. By

inspecting the results, we conclude that among the order selection criteria,

A seems to be the most satisfactory one for {W(n) n > 0). Table

5 gives the average order of autoregressive model determined by various

order selection criteria. We notice that every criterion yielded a low order

autoregressive model, this indicates the choice of the upper bound K = 10 is

quite sufficient. In Tables 4 and 7 we report the coverage probability defined

by
C.P. number of 90% confidence intervals covering E{ W}

c - total number of confidence intervals formed

which has expected value 0.9.

Table 6 contains the results of a2. for different variance reduction tech-.

6 niques. Here we estimated the optimal multipliers P* by using equations

derived in Chapter 4. From Table 6 we see that by using 3 different f func-

tions for the multiple estimates, we get a substantial amount of variance

reduction. In order to judge a variance reduction technique, we must make a
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fair comparison. Suppose we simulate nj customers using no variance reduc-

" -tion technique (method 1) and n2 customers using multiple estimates with 3

f functions (method 2). In order to obtain the same statistical accuracy (i.e.

same half lengths of confidence intervals) we have

_ o1  o"2
.: Zl-~al "- la2_

* that is equivalent to saying

2 n2"

From Table 6 we find that for method 2 we can cut the run length to 1/3.0

of the run length of method 1 and still obtain the same statistical accuracy.

Of course, we recognize that by using method 2 we do a certain amount of

extra work. Since the computing time depends on the run length as well as

the upper bound selected for. the autoregressive method, it is hard to find

the relation of times between these two methods. However, based on our

results, the half length of confidence interval constructed by method 2 is 30

(= 29/.948) times smaller than that of method 1 but requires 6 times (for

example, take the last row of Table 8, 6 (110.96 + 372.16)/(43.61 + 39.74))

as much CPTj time.
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TABLE 1

Point Estimates and 90% Confidence Intervals for 2rf(0)

Using Various Orders of k in the Autoregressive Method for

the Waiting Time Process in an M/M/1 Queue with -- 1.0, p = 0.5

Order True Values Simulation Results for different number of cycles

k p(k) 27rfk(o) 500 1000 2000 3000 4000

27.90 23.92 24.47 24.48 24.20
1 0.778 23.99

- 6.62 - 3.66 - 3.03 -2.77 - 1.95

2 .0.617 25.56 30.06 -25.37 26.27 26.20 25.82
±7.69 ±3.99 ±3.44 ±3.16 ±2.28

30.76 26.05 26.90 26.94 26.64
3 0.497 26.50

±7.91 ±4.15 ±3.71 ±3.46 ±2.51

31.19 26.79 27.70 27.69 27.324 0.403 27.10 4±8.49 ±4.53 ±4.11 ±3.61 ±2.65

31.35 27.11 28.06 28.26 27.83
5 0.330 27.57

.__ ____±8.56 ±4.75 ±4.32 ±3.81 1±2.81
31.05 27.30 28.16 28.66 28.13

6 0.272 27.86
"±8.66 ±5.09 ±4.55 ±4.04 ±2.95

31.87 28.05 28.39 29.02 28.48
7 0.225 28.12

.±8.99 ±5.39 ±4.56 ±4.19 ±3.08

33.13 28.88 28.85 29.45 28.788 0.187 28.28
_±9.77 ±5.83 ±4.72 ±4.39 ±3.19

33.20 28.92 29.22 29.59 28.94
9 0.157 28.46

_±9.90 ±5.84 ±4.70 ±4.41 ±3.23

32.93 29.07 29.06 29.86 29.13
10 0.131 28.51

_±9.78 ±6.02 ±4.66 ±4.60 ±3.31

c 0 29.00

4 * Results are based on 30 independent replications, p(k)-- R(k)/R(O), R(O) - 3.
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TABLE 2

Simulation Results for E{W} = 1.0 in an M/M/1 Queue

with pt = 1.0, p = 0.5, Point Estimates and 90% Confidence Intervals

Number of No Variance Control Multiple Estimates

Cycles Reduction Variables 2 functions 3 functions

1.0039 0.9868 0.9823 0.9821
500

±0.0610 ±0.0379 ± 0.0160 4 0.0082

0.9901 0.9812 0.9861 0.99281000
±0.0428 4 0.0227 4 0.0130 4 0.0067

0.9942 0.9953 0.9964 0.9962
2000

±0.0316 4 0.0171 - 0.0101 4 0.0050

0.9978 0.9938 0.9953 0.9951
3000

_______ ±0.0250 ± 0.0160 - 0.0080 - 0.0040
4000 0.9949 0.9980 1.0003 0.9982

±0.0189 ±0.0118 ± 0.0069 ± 0.0032

* Results are based on 30 independent replications; the central limit theorem

for i.i.d. random variables was used to form confidence intervals.

* Point estimates are obtained by estimating /* for variance reduction

techniques.

* The AC criterion was used to select the order for the multivariate

autoregressive method.

* Tie maximum order for the autoregressive model is K.= 10.

4
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TABLE 3

Simulation Results for a2 = 29.0 in an M/M/1 Queue

with = 1.0, p =0.5, Point Estimates and 90% Confidence Intervals

Number of Regenerative Univariate Autoregressive Method

Cycles Method AIC BIG h Stat. Test

29.33 29.99 28.67 29.75 28.58500 50 7.83 - 7.94 - 7.11 4 7.80 4 6.69

27.36 28.54 24.57 26.47 26.04
1000

4- 5.07 4 5.75 4 3.92 - 4.82 ± 4.79

29.40 28.15 26.02 26.59 26.39
2000

± 5.56 - 4.51 = 3.84 4 3.83 4 3.86

30.12 29.21 26.07 27.21 26.86
3000

-5.07 - 4.47 -3.41 -3.61 -3.59

29.30 28.25 25.64 26.83 26.04
4000

-_- 3.75 - 3.12 - 2.49 -3.06 - 2.75

o Results are based on 30 independent replications; the central limit theorem

for i.i.d. random variables was used to form confidence intervals.

o Use the scalar process { W(n) n > 0 }.

* * The maximum order for the. autoregressive model is K - 10.

r
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TABLE 4

-Simulation Results for Coverage Probability (- 0.9)

in an M/M/1 Queue with -- 1.0, p - 0.5, -

Point Estimates and 90% Confidence Intervals

Number of Regenerative Univariate Autoregressive Method

Cycles Method MAIC BIG h Stat. Test

5 0.70 0.67 0.67 0.67 0.67500
±0.14 =0.14 40.14 ±0.14 -0.14

0.77 0.73 0.73 0.73 0.73
1000

±0.13 -0.14 ±0.14 ±0.14 ±0.14

2000 0.80 0.80 0.80 0.80 0.80

______ ±0.12 + 0.12 - 0.12 - 0.12 - 0.12

30000.80 0.80 0.77 0.80 0.77~3000
._____-_±0.12 - 0.12 ± 0.13 ± 0.12 - 0.13

0.90 0.90 0.83 0.90 0.90
4000

__-____ ±0.09 ± 0.09 ± 0.11 - 0.09 ± 0.09

* Results are based on 30 independent replications; the central limit theorem

for i.i.d. random variables was used to form confidence intervals.

* Use the scalar process { W(n): n > 0 }.

4 * The maximum order for the autoregressive model is K =10.

"4
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TABLE 5

Order of Autoregressive Model Selected by Different Criteria

in an M/M/1 Queue with A = 1.0, p =0.5,

Point Estimates and 90% Confidence Intervals

Number of Univariate Autoregressive Method

Cycles AMC BIC h Stat. Test

2.37 1.10 1.43 1.13
500

_- 0.56 - 0.09 - 0.23 - 0.13

3.30 1.10 1.70 1.471000
- 0.83 - 0.09 - 0.35 - 0.44

2 2.80 1.33 1.67 1.53

40.60 - 0.20 -0.41 -0.42

3.83 1.43 2.23 2.00
3000

- 0.81 - 0.22 - 0.51 :- 0.53

3.90 1.47 2.14 1.73
4000

- 0.75 - 0.22 - 0.47 - 0.41

* Results are based on 30 independent replications; the central limit theorem

for i.i.d. random variables was used to form confidence intervals.

e Use the scalar process { W(n) n > 01.

* The maximum order for the qutoregressive model is K - 10.
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TABLE 6

Point Estimates and 90% Confidence Intervals for o 2 by Applying

Variance Reduction Technique in an M/M/1 Queue with it = 1.0, p =0.5

Multivariate True Simulation results for different number of cycles

Method Value 500 1000 2000 3000 4000

Control 13.75 12.57 13.36 13.92 13.85

Variables =1= 3.45 = 2.12 ± 11.89 =E 2.14 - 1.53

Multiple 3.67 3.40 3.92 4.78 4.59
4.23

Estimates(2 f's) -- 1.65 -±1.11 ±0.98 ±1.77 ±1.37

Multiple 0948 0.589 0.554 0.679 0.930 0.918

Estimates(3 f's) =±0.373 ±0.230 ±0.220 ±0.441 ±0.367

* Results are based on 30 independent replications; the central limit theorem

for i.i.d. random variables was used to form confidence intervals.

" Point estimates are obtained by estimating 3 for variance reduction

" The AC criterion was used for order selection with maximum order

for the autoregressive model of K = 10.
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TABLE 7

Point Estimates and 90% Confidence Intervals

for Coverage Probability by Applying Variance Reduction Technique

in- an M/M/1 Queue with y - 1.0, p =0.5

Multivariate True Simulation results for different number of cycles

Method Value 500 1000 2000 3000 4000

Control 0.80 0.80 0.93 0.83 0.900.9
Variables - .12 ± .12 : .08 ± .11 4 .09

Multiple 0.73 0.77 0.83 0.80 0.90
0.9

Estimates(2 f's) ±.14 ±.13 -.11 ±.12 -. 09

Multiple 0.67 0.67 0.77 0.77 0.90

Estimates(3 f's) _1 ±.14 1-.14 ±.13 ±.13 1:±.09

* Results are based on 30 independent replications; the central limit theorem

for i.i.d. random variables was used to form confidence intervals.

* Point estimates are obtained by estimating 0 for variance reduction

* The AIC criterion was used for order selection with Maximum order

for the autoregressive model of K 1 10.

-4.
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TABLE 8

Comparison of Total CPU Time (in seconds) for Different

Methods for Estimating E{VW} in an M/M/1 Queue

with it =1.0, p =0.5

Number of Generate sample path Autoregressive method

Cycles No v.r. Multiple 2 f 's Univariate Multivariate

500 5.85 13.69 5.95 54.26

1000 11.51 26.92 11.02 98.13

2000 22.39 55.20 20.76 187.81

3000 33.85 84.69 31.06 288.63

4000 43.61 110.96 39.74 372.16

* Results are based on 30 independent replications; the central limit theorem

for i.d. random variables was used to form confidence intervals.

* v.r. is the abbreviation for variance reduction.

f ,. and 12 were calculated for the variance reduction method.

* Multiple estimate I, 12.
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5.2. EXAMPLE. The Outflow Process in a Lake

Let S(n), Z(n), and X(n) denote the volume of water stored in a lake,

- . the inflow of water, and the outflow of water respectively at time n. Then

the amount of water stored at time n + 1 is defined by the relation

S(n'+ 1) = S(n) + Z(n + 1)- X(n + 1). (5.2.1)

If one assumes that output increases with storage through a linear relation,

namely

X(n) a. S(n), O < a< 1,

then Equation (5.2.1) has the form

X(n + 1) = pX(n) + E(n + 1) (5.2.2)

where p = 1/(i + a) and c(n) = aZ(n)/(1 + a). We also assume that {E(n):

n > 0 } is a sequence of i.i.d. random variables with

P{,E(n) E B} p. o(B) + (1- p) / f(y)dy.

This yields a Markov process for the outflow process { X(n) n > 0 } with

state space E - [0, co) and probability transition function

P(x, B))p ( + (1-p) f (y - px)dy.

We notice that { X(n) : n > 0 } is actually a first order autoregressive

processes. It can be shown that X(n) = X as n oo with

4 . E{X} = E{ E(1) }/(I - p) - E{ Z(1)}.
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A simulation was carried out to estimate E{ X }. We have taken p - 0.75

and the e(n) to have distribution

P{ E(n) <_ x }=1- p)e x > 0,

which results in X being exponentially distributed with parameter 1.

We observe {X(n) : n > 1} and use the univariate autoregressive

method. It is also possible to observe the variables E(n) during the simulation,

since we know p. Thus we were able to apply the innovation control method

for variance reduction. We use the vector process { y(n) :n > 0 }, where

.(n) "-(X(n), E(n))', for the innovation control method. We consider 1000,

2000, 5000, 10000. observations, the longer runs being continuations of the

shorter runs. All runs were replicated 30 times. Notice that the process

{ X(n): n > 0 } is indeed a first order autoregressive process and the process

" {-y(n) :n > 0} can be written as

((n +1)) = p0)(X(f)) +(,E(n + 1)\

C(n +1) '00o E(n +1)

which results in y(n). being a first order autoregressive process. Therefore,

the upper bound provided for order selection was 5 for all criterions. Table

9-12 summarize the simulation results for the lake model. We estimated the

optimal/3" by Equation (4.3.4) and we observe that a 2. was actually reduced

to zero as expected. The fact that {X(n) :n > 0} and {y(n): n > 0}

are finite order autoregressive processes offcrs us a chance to validate the.

.-4 asymptotic property of k (cf. Section 3.3 and 3.4) obtained by various order

selection criteria. Table 12 contains the average order determined by each

criterion. The table shows what is to be expected, namely overestimation of

the order by AC.
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TABLE 9

Simulation Results for E{ X } (the outflow) in the Lake Model

with p = 0.75, Point Estimates and 00% Confidence Intervals

Number of True No Variance Innovation

Events Value Reduction Control

1000 1.0 1.0179 0.9912
±-0.0239 4-0.0010

2000 1.0 1.0229 0.9984
200 1- 0-0.0173 ±0.0006

1.0151 0.9994
5000 1.0

_-_-._ _-0.0092 ±-0.0001
1.0069 0.999710 0 0 0 1 .0± 0 0 7±0 0 0________ -______ 0.0070 :±0.0001

Results are based on 30 independent replications; the central limit theorem

for i.i.d. random variables was used to form confidence intervals.

* Point estimates are obtained by estimating 3 for the variance reduction

techniques.

*The ArC criterion was used to select the order for the multivariate

autoregressive method.

* * The maximum order for the autoregressive model is K - 5.
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TABLE 10

Simulation Results of a2 for {X(n) in the Lake Model

with p - 0.75, Point Estimates and 90% Confidence Intervals

Number of Univariate Autoregressive Method Innovation Control

Events True V. AIC BIG h Stat. T. True V. Simulation

7.2582 7.2172 7.1686 7.2172 0.0238
1000 7.0 0.0

4-.5358 ±1.4759 ±1.4940 ± .4759 ±- .0149

7.1428 7.1924 7.1402 7.1924 0.0149
2000 7.0 0.0

±.1,.3473 ±1.3189 1 .3068 .. 3189 ±-.0117

7.0935 7.1171 7.0945 7.1171 0.00305000 7.0 0.0
±.2349 ±.2356 ±.2305 ±.2356 -I.0006

6.9887 7.0245 7.0118 7.0245 0.002210000 7.0 0.0
±.1616 ±.1536 ±.1463 ±.1536 ±.0011

* Results are based on 30 independent replications; the central limit theorem

for i.i.d. random variables was used to form confidence intervals.

9 Point estimates are obtained by estimating 8* for variance reduction

techniques.

* The AIC criterion was used to select the order for the multivariate autoregressiv

method.

* The maximum order for the autoregressive model is K - 5.

* True V. is the abbreviation for True Value.

* Stat. T. is the abbreviation for Statistical Test.
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TABLE 11

Simulation Results for Coverage Probability in the Lake Model

with. p = 0.75, Point Estimates and 90% Confidence Intervals

Number of Univariate Autoregressive Method Innovation Control

Events True V. AIC BIC h Stat. T. True V. Simulation

0.90 0.90 0.90 0.90 0 1.01000 0.9 I0.9
±.09 h .09 4- .09 ±.09 4-_.0

0.90 0.90 0.90 0.90 1.02000 0.9 0.9
±.09 ±.09 -4.09 ±.09 _-_.0

0.97 0.97 0.97 0.97 1.0
5000 0.9 0.9

±- .05 ±.05 =h .05 - .05 _-.0

0.93 0.93 0.93 0.93 1.0.
10000 0.9 0.9

_- .08 .-. 08 ±.08 ±.08 _- .0

* Results are based on 30 independent replications; the central limit theorem

for i.i.d. random variables was used to form confidence intervals.

* Point estimates are obtained by estimating O3 for variance reduction

techniques.

, The AIC criterion was used to select the order for the multivariate autoregressive

.ethod.

* The maximum order for the autoregressive model is K = 5.

* True V. is the abbreviation for True Value.

* Stat. T. is the abbreviation for Statistical Test.
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TABLE 12

Order of Autoregressive Model Selected by Different Criteria in Lake Model,

with p - 0.75, Point Estimates and 90% Confidence Intervals

Number of Univariate Autoregressive Method MAR

Events AIC BIG h Stat. Test Method

1.3333 1.0 1.0667 1.0 1.0000
1000

± .2410 - .0 ± .0762 - .0 - .0000

1.6333 1.0 1.0667 1.0 1.13332000
± .3391 ± .0 - .0762 ± .0 ± .1282

1.3333 1.0 1.0667 1.0 1.1667
5000

± .2410 -4 .0 - .0762 = .0 ± .1778

1.5000 1.0 1.0333 1.0 1.1000
10000

±- .2586 ± .0 ± .0548 ± .0 ± .1908

* Results are based on 30 independent replications; the central limit theorem

for i.i.d. random variables was used to form confidence intervals.

* Point estimates are obtained by estimating /3 for variance reduction

techniques.

. AIC criterion was used to select the order for the multivariate autoregressive

method.

* The maximum order for the autoregressive model is K - 5.

e MAR Method is abbreviation for multivariate autoregressive method.
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5.3. EXAMPLE. Closed Network of Queues

The closed queueing network has been used in computer studies to model

multiprogrammed computer system (cf. Gaver and Shedler (1973)). Iglehart

and Shedler (1980) have written a monograph dealing with mathematical

and statistical methods for discrete event simulation of network of queues.

Here we consider the simple closed network of queues with feedback shown

in Figure 1.

There are two servers and a fixed number of jobs N circulating in the

network. When a job completes service at center 1, in accordance with a

binary-valued random variable 4,, the job joins the end of the queue at center

1 (when 0=1) or joins the end of the queue at center 2 (when 0 = 0). When

the job finishes service at center 2, the job rejoins the end of the queue

at center 1. We assume that the service discipline is first-come-first-serve.

In this example we are interested in estimating the limiting passage time

(denoted by P) and the limiting response time (denoted by R). Informally, a

passage time or a job is the time for a job to traverse a portion of a network

and a response time is the time for a job to complete one cycle of a network.

For the simulation of this queuing network, we make the'following prob-

abilistic assumptions:

(1) the two sequences of service times at both centers each consists of i.i.d.

random variables, exponentially distributed with rate Xi;

(2) V is a Bernoulli random variable with P{ 0 = 1 } = p and values of

4 form a sequence of i.i.d. random variables;

(3) the sequences in (1) and (2) are mutually independent.
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Fig. 1. Closed network of queues.

Let {P(n) n > 1 } (rcspectivcly {R(n) n > 1 }) be the sequence of

passage times (respectively response times) enumerated in order of passage

time starts and let {S(n): n > 1} be the service time experienced at

center 1 associated with P(n). We notice that { S(n) } is a sequence of i.i.d.

random variables. Iglehart and Shedler (1980) have shown that P(n) P P

and R(n) =* R as n- oo.

The simulation was carried out to estimate both E{ P } and E{ R } and

we have taken N = 2, Xi - 1.0, X2 - 0.5 and p 0.75. We observe

the {P(n) : n > 0}, {I?(n) : n > 0}, and {S(n) n > 0} processes

and use S(n) as the control variable when we estimate E(P) and E(R). We

consider 1000, 2000, 3000, 5000, and 10000 observations, the longer runs

being continuations of the shorter runs. All runs were replicated 30 times.

Table 13-.19 summarize the simulation results for estimating E{ P} and
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-.. E{ R }. The calculation of E{ P }, E{ R } and the variance constant cor-

responding -to passage times can be found'in Section 9 of Iglehart and Shedler

(1980). To evaluate the variance reduction for the control variables method,

L we carried out a similar computation discussed in Iglehart and Shedler (1980).

• Although we included the simulatiorr results for the variance constant of

response times, we can not provide the theoretical value.

S4
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TABLE 13

Simulation Results for E{ P } (Passage Time) and E{ R } (Response Time)

in a Closed Network of Queues with N = 2, X1 - 1.0, X2 = 0.5, p = 0.75

Number of P (Passage Time) R (Response Time)
Events True Value No v.r. With v.r. True Value No v.r. With v.r.

6.713 6.684 9.363 9.334
500 6.667 9.333

±.120 ±.019 -±- .128 -. 044

6.616 6.667 9.293 9.3421000 6.667 9.333
_ .079 ±-.014 - .091 - .035

6.638 6.661 9.309 9.3312000 6.667 9.333
± .053 ± .009 ± .060 + .023

6.660 6.666 9.327 9.3325000 6.667 9.333
4- .039 - .005 _ _ .034 ± .014

6 668 6.664 9.337 9.33310000 6.667 9.333
__ .027 ± .003 ±_ .024 ± .009

o Results are based on 30 independent replications; the central limit theorem

for i.i.d. random variables was used to form confidence intervals.

* Point estimates are obtained by estimating 8* for the variance reduction

techniques.

* The AIC criterion was used to select the order for the multivariate

autoregressive method.

* v.r. is the abbreviation for variance reduction.
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TABLE 14

Simulation Results for a2 of Passage Time (P)

in a Closed Network of Queues with N = 2, X1 - 1.0, X,2 - 0.5, p = 0.75

Number of Univariate Autoregressive Method Control Variables

Events -rue V. AIC BIG h Stat. T. True V. Simulation

59.887 57.081 58.164 48.922 2.300
500 58.667 1.581

___._____ 4-_ ±4.511 -3.392 - 3.201 :1 3.744 - .132

1000 58.667 58.794 55.910 56.220 53.305 1.581 2.054

- 2.768 ± 2.399 - 2.349 ± 2.887 ±.119

58.128 55.607 56.203 54.830 1.941
2000 58.667 1.581
_- _ -±2.168 ± 1.510 ± 1.533 ± 1.721 ±.070

59.746 57.262 58.565 56.989 1.801
5000 58.667 1.581

4 1.112 - 0.798 - 1.025 - 0.782 _-.027

58.737 57.051 58.218 56.474 1.763
10000 58.667 1.581

0.995 ± 0.677 ± 0.807 ± 0.575 ±.028

e Results are based on 30 independent replications; the central limit theorem

for i.i.d. random variables was used to form confidence intervals.

e Point estimates are obtained by estimating /3 for the variance reduction

techniques.

* The AIC criterion was used to select the order for the multivariate

autoregressive method.

' The maximum order for the autoregressive model is K - 25.

o True V. is the abbreviation for True Value.

o Stat. T. is the abbreviation for Statistical Test.
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TABLE 15

Simulation Results for a2 of Response Time (R)

'- in a Closed Network of Queues with N - 2, X1 - 1.0, X2 - 0.5, p - 0.75

Number of Univariate Autoregressive Method Control Variables

, Events AIC BIC h Stat. T. Method

60.274 62.094 61.891 58.065 9.025
500

".- 4-_ ::4.840 4 4.119 4 3.834 - 4.468 - 0.582

59.989 60.527 61.039 60.216 8.879
1000

. 3.471 - 2.752 - 2.745 - 3.088 - 0.450

59.602 62.133 60.621 61.923 8.650?:" 20000 ± 1.755 ±L 1.600 ± 1.643 ± 1.885 - 0.323

60.909 62.493 61.152 63.041 8.305
5000

:" 1.067. =E 0.928 - 1.113 - 0.834 - 0.277

100 59.160 60.182 60.006 60.985 8.354" 10000
• = 4-__ ±0.863 : 0.832 - 0.806 : 0.861 . 0.187

. Results are based on 30 independent replications; the central limit theorem

* for i.i.d. random variables was used to form confidence intervals.

S, Point estimates are obtained by estimating /9 for the variance reduction

techniques.

_ The AIC criterion was used to select the order for the multivariate

autoregressive method.

* The maximum order for the autoregressive model is K - 25.

* Stat. T. is the abbreviation for Statistical Test.
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TABLE 16

Simulation Results for Coverage Probability( =0.9) of Passage Times (P)

in a Closed Network of Queues with N - 2, XI = 1.0, X2= 0.5, p - 0.75

* Number of Univariate Autoregressive Method Control Variables
Events AMC BIC h Stat. Test Method

500 0.90 0.90 0.90 0.83 0.93~500
__-± .09 ± .09 ± .09 ± .11 "0.08

0.93 0.93 0.93 0.87 0.87
- . 1000

_____ ± .08 ± .08 ± .08 ± .10 ±0.10

200.87 0.87 0.87 0.87 0.90: 2000
__.____ ± .10 ±.10 ±.10 ± .10 ±0.09

0.80 0.80 0.80 0.80 0.90
- . 5000

±.12 ±.12 ±.12 ±.12 ±0.09

0.83 0.83 0.83 0.83 0.93
... ± .11 ±1.11 - .11 ±.11 ±0.08

.Results are based on 30 independent replications; the central limit theorem

for f.i.d. random variables was used to form confidence intervals.

* Point estimates are obtained by estimating P* for variance reduction

techniques.

* The AIC criterion was used to select the order for the multivariate

autoregressive method.

* The maximum order for the autoregressive model is K - 25.

* Stat. T. is the abbreviation for Statistical Test.
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TABLE 17

Simulation Results for Coverage Probability( =0.9) of Response Times (R)

in a Closed Network of Queues with N = 2, X1 - 1.0, Xs = 0.5, p - 0.75

f Number of Univariate Autoregressive Method Control Variables

Events AIC BIC h Stat. T. Method

0.87 0.87 0.87 0.87 0.80
500 ±.10 :.10 -. 10 -.10 -0.12

0.80 0.80 0.80 0.83 0.871000
±.12 ±.12 ±.12 ±.11 ±0.12

0.87 0.87 0.87 0.87 0.87
2000

-'_2000 4- .10 ± .10 ± .10 ± .10 ±0.10
0.93 0.93 0.93 0.93 0.87

5000
___±- .08 ±.08. ±.08 ±.08 ±0.10

0.87 0.87 0.87 0.86 0.93
10000

____ _± .10 : .10 + .10 T .10 ±0.08

* Results are based on 30 independent replications; the central limit theorem

for i.i.d. random variables was used to form confidence intervals.

* Point estimates are obtained by estimating 3" for the variance reduction

techniques.

- The AIC criterion was used to select the order for the multivariate

autoregressive method.

e The maximum order for the autoregressive model is K = 25.

* Stat. T. is the abbreviation for Statistical Test.
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TABLE 18

Order of Autorogressive Model Selected by Different Criteria

for the Passage Times (P)

in a Closed Network of Queues with N =2, X1 =1.0, X12 =0.5, p =0.75

Number of Univariate Autoregressive Method

Events MIC BIC h . Stat. Test

502.07 0.73 0.97 0.27

____±_ .62 ±.14 ±.17 ±.16

1.83 0.93 1.03 0.70

100±.40 :L.11 ±.15 ±.14 .*

1.97 .1.03 1.20 0.93
2000

±.33. ±.06 ±.15 ±.08

5001.93 1.10 1.43 1.07
____.31_ ___ .09 ±.22 ±.08

100 2.43 1.27 1.67 1.13
_______ ±.41 ±.13 ±.16 . .10

e Results are based on 30 independent replications; the central limit theorem

for i.i.d. random variables was used to form confidence intervals.

e Point estimates are obtained by estimating 8* for the variance reduction

techniques.- -

*The MIC criterion was used to select the order for the multivariate

autoregressive method.

*The maximum order for the autoregressive model is K =25.
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TABLE 19

Order of Autoregressive Model Selected by Different Criteria

for the Response Times (R)

in a Closed Network of Queues with N =2, X1  1.0, X2 =0.5, p 0.75

Number of Univariate Autoregressive Method

Events A!C BIC h Stat. Test

500 1.90 0.83 1.27 0.47500
±-.53 ±.21 ±.25 ±.17

1000 2.10 0.97 1.20 0.73

.. _~_1000 4±.54 ±.15 ±.20 ±-_.14

1.97 1.03 1.40 0.93" 2000
2000 ±.39" ±.55 ±.19 ±.08

2.30 1.20 1.50 1.10
5000

___ _ -±.43 ±.15 ±.17 ±.12
2.77 1.50 1.70 1.30

10000
________ - .42 i-.15 ±-.18 __ -__.14 __

. Results are based on 30 independent replications; the central limit theorem

for i.i.d. random variables was used to form confidence intervals.

* Point estimates are obtained by estimating P* for the variance reduction

techniques.

e AIC criterion was used to select the order for the multivariate

autoregrcssive method.

" The maximum order for the autoregressive model is K - 25.
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5.4. EXAMPLE. Queue Length Process in a Single Server Cyclic

Queue

We consider a closed system consisting of two service stations shown in

Figure 2. There are a fixed number of jobs N circulating in the system.

The departure process of each queue is the arrival process of the other. We

assume that the service times at both stations are mutually independent and

have general distribution functions.

For t > 0, let X(t) be the number of jobs both waiting and being served

at station A at time t. The state space E of the process {X(t) : t > 0}

is E = {0,,...,N}. Then the process {X(t) : t > 0} is a generalized

semi-Markov process (GSMP) (cf. Whitt (1980)). Let { (X, , C,) n > 0 } be

the embedded jump process for the GSMP, then we can reconstruct {X(t):

t > 0 }from {(X,, Cn):n > 0 . First let

n-1
=r, E min C,,,i,

M=O C, > 0O

where Cms is the value of the ith clock reading at the mth jump of X(t).

Then
00

X(t) = 6t((krk+1))Xk.
k- O

The only events that can occur are a service complction by A or by B.

Therefore, the clock vector c is a pair recording the service times left at

stations A and B respectively.

We are interested in estimating the expected number of jobs at station A

when the state is in equilibrium. We have taken N = 3, and the service times

to be gamma (2,1) for server A and gamma (3,1) for server B. We consider
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Server A Server B

Fig. 2. Single server cyclic queue.

400, SOO, 1200, 1600, 2000 cycles, the longer runs being continuations of the

shorter runs. For all our runs the-cycles were based on returns to the state

0. We use the discrete time method discussed in Section 3.4. All runs were

replicated 30 times. The simulation results for this model are displayed in

Tables 20-23.
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TABLE 20

Simulation Results for Queue Length Process at Station A

in a Single Server Cyclic Queue, 3-jobs, r(2, 1), l'(3, 1) servers.

Point Estimates and 90% Confidence Intervals

Number of True

Cycles Value Simulation

.8691

.8971300 .9002
±-.0140

500 .9002 .8971

.9042800 .9002
"-___-±.0066I .9042

1000 .9002

J_ ±.0071

* Results are based on 30 independent replications; the central limit

theorem for i.i.d. random variables was used to form confidence intervals.

, The maximum order for the autoregressive model is K = 25.
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TABLE 21

Simulation Results for a 2 = 4.0771 in a Single Server

Cyclic Queue, 3-jobs, r(2, 1), r(3, 1) Servers.

Point Estimates and 90% Confidence Intervals

Number of Regenerative Univariate Autoregressive Method

Cycles Method A!C BIG h Stat. Test

100 3.3900 3.9525 3.8601 3.8960 3.88703

± .3211 :1 .4073 ±. 4598 :1 .3724 ± .4364

3.9643 4.3605 4.2183 4.2844 4.22976" 300
±.2077 - .3279 ± .2059 ± .2443 - .2989

500 3.9909 4.2345 4.2534 4.3404 4.1984

±.1502 ±.3187 ±.1689 ±.2345 -. 3059

4.1250 4.2213 4.4250 4.3522 4.3413
8.1265 ±.2274 ±.1621 ±.2131 -.2092

4.1558 4.2460 4.4268 4.3391 4.3069I1000

""__ -.1178 ±.1948 ±.1506 ±.1634 -. 2063

• Results are based on 30 independent replications; the central limit

theorem for i.i.d. random variables was used to form confidence intervals.

e The maximum order for the autoregressive model is K - 25.

-,
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TABLE 22

Simulation Results for Coverage Probability (0.90) in a Single Server

Cyclic Queue, 3-jobs, r(2, 1), r(3, 1) Servers.

Point Estimates and 90% Confidence Intervals

Number of Regenerative Univariate Autoregressive Method

Cycles Method AIC BIC h Stat. Test

0.90 0.93 0.93 0.93 0.93
100

=_±0.09 ± .08 ± .08 - .08 ±.08

0.93 0.97 0.97 1.00 0.97
300

_.___ ±0.08 ±.06 ±.06 =.00 ±.06

0.97 1.00 1.00 1.00 1,00
500

--o±0.06 + .00 ±.00 -. 00 + .00

1.00 1.00 1.00 1.00 1.00
800

_____ -_±0.00 - .00 ± .00 : .00 ± .06

0.90 0.97 0.97 0.97 0.97
1000 ±0.09 ± .06 ± .06 ± .06 ± .06

" Results are based on 30 independent replications; the central limit

theorem for i.i.d. random variables was used to form confidence intervals.

" The maximum order for the autoregressive model is K - 25.
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TABLE 23

Order of Autoregressive Model selected by Different Criteria

for Queue Length Process at Station A in a Single Cycle Queue,

3-jobs, r(2, 1), r(3, 1) servers.

Number of Univariate Autoregressive Method

Cycles AIC BIC h Stat. Test

6.10 2.27 3.20 4.33100
± 1.53 ±.33 ±.58 ± 1.69

12.57 2.70 5.43 8.53
300

± 1.78 ±.32 ±.89 ± 1.79

18.10 3.70 7.70 14.20500 50 1.65 ±.58 41.01 41.75

21.93 5.73 11.90 18.9
800

± 1.03 ± .76 - 1.14 - 1.43

23.57 6.33 13.47 21.40
1000

_±.55 ±.81 ±1.15 J -±1.04

e Results are based on 30 independent replications; the central limit

theorem for i.i.d. random variables was used to form confidence intervals.

e The maximum order for the autoregressive model is K = 25.
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CHAPTER VI

CONCLUSIONS

As the use of computer simulation becomes more important in the study

of complex phenomena, the need to develop theoretically sound and com-

putationally efficient methods for simulation output analysis becomes more

" . pressing. The autoregressive method proposed in this paper uses techniques

*developed for time series analysis to provide both point and interval estimates

for parameters associated with the steady-state distribution. In this chap-

ter we shall examine the advantages and disadvantages of the tutoregressive

method.

The major advantage of the autoregressive method is obvious. It serves

as a black box; users provide the simulation output sequence, the black box

will produce results automatically. Users need not devote time in analyzing

the system as they must for the regenerative method. _Furthermore, it seems

that the autoregressive method applies to a much broader class of stochas-

tic processes than the regenerative method does. With the generalization to

multidimensional processes, the method enables us to apply variance reduc-

tion techniques to get more accurate point estimates along with more precise

interval estimates.

The disadvantages of the autoregressive method are r. First,

the covariance matrix obtained by the autoregrcssive method' is just an ap-
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proximation for the covariance matrix present in the central limit theorem

used to construct confidence intervals/ eeend, the assumptions -m put on the

system under-stvdy are stricter than we would like. The most important of

these are the requirement that the process be 4-mixing, the initial distribu-

tion it be absolutely continuous with respect to the stationary distribution 7r,

and the Radon-Nikodym derivative - be bounded above.

We would like to point out some areas that present potential for research

and development. First, try to relax the assumptions we have made about

the system under study. Second, to-justiy as well as find some conditions

which allow us to apply the autoregressive method for processes other than

Markovian or Semi-Markovian. Finally, to design order selection criteria

• -especially for the multidimensional autoregressive method.
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