
ADA 123797

INSTALLATION RESTORATION PROGRAM

PHASE I – RECORDS SEARCH

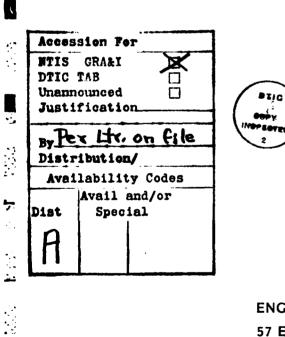
ROBINS AFB, GEORGIA

PREPARED FOR

This report has been prepared for the U.S. Air Force by Engineering-Science for the purpose of aiding in the implementation of the Air Force Installation Restoration Program. It is not an endorsement of any product. The views expressed herein are those of the contractor and do no necessarily reflect the official views of the publishing agency, the United States Air Force or the Department of Defense. •••

Ę

Ē


223

....

Ľ

Prepared For United States Air Force AFESC/DEV Tyndall AFB, Florida

Ē

i.

i.

Ē

April, 1982

DTIC

2

By

ENGINEERING-SCIENCE, INC. 57 Executive Park South, N.E. Suite 590 Atlanta, Georgia 30329

DISTRIBUTION STATEMENT Approved for public release **Distribution Unlimited**

This report has been prepared for the U.S. Air Force by Engineering-Science for the purpose of aiding in the implementation of the Air Force Installation Restoration Program. It is not an endorsement of any product. The views expressed herein are those of the contractor and do no necessarily reflect the official views of the publishing agency, the United States Air Force or the Department of Defense. Ξ

. .

.

•

.

-

57 EXECUTIVE PARK SOUTH, N.E., SUITE 590 • ATLANTA, GEORGIA 30329 • 404/325-0770 CABLE ADDRESS: ENGINSCI TELEX: 54-2882

9654

Ē

E

April 13, 1982

Mr. Bernard Lindenberg AFESC/DEVP Tyndall AFB, Florida 32403

Dear Mr. Lindenberg:

Enclosed is the Engineering-Science, Inc. (ES) final report entitled "Installation Restoration Program, Phase I - Records Search, Robins AFB, Georgia." This report has been prepared in accordance with the ES proposal dated July 15, 1981 and Air Force Contract Number F08637-80 0009 Call #0009.

Presented in this report are introductory background information on the Installation Restoration Program, a description of the Robins AFB installation including past activities, mission and environmental setting, a review of industrial activities at Robins AFB, an inventory of major solid and hazardous waste from past activities, a review of past and present waste handling, treatment and disposal facilities, an evaluation of the pollution potential of waste disposal sites, and recommendations for the Installation Restoration Program, Phase II, Problem Confirmation and Quantification.

Any questions concerning this report should be directed to the Office of Public Affairs, Robins Air Force Base, 912/926-5202.

We appreciate the opportunity to work with you and the other Air Force personnel who contributed information to us for the completion of this assessment.

Very truly yours,

ENGINEERING-SCIENCE, INC.

5 / Solworder

E. J. Schroeder, P.E. Manager, Solid & Hazardous Waste

EJS/lmr

Enclosure

TABLE OF CONTENTS

5			
	Ē		
	*		
4			
.	•		
			LIST (
	•		LIST (
[5 37 603 1 10
Ľ.	· · ·		EXECU
	-		
		CHAPTER 1	INTRO
			Backg
			Purpos Method
ĥ	())。 【1]		
E		CHAPTER 2	INSTAI
	•]		Locati
E	•		Base I Organi
	12-		or guilt
Ĩ		CHAPTER 3	ENVIR
F.	27		Meteor
	•		Geogra
			I
È			5
	\$		Geolog
į,			I
H	_		Hydrod
Ē			(
	1. ·		Surfac
r.	÷		Wetlar Summar
	•		O GINENCEI
Ē	ne ta	CHAPTER 4	FINDIN
			Past S
Ë			_
F			H H H
			Descri
	•		I V
E	¥3		•
F	i.		
	• .		
Ŀ	2.• •		
	ſ		
	•		

Page

1

LIST OF FIGU	RES	iv
LIST OF TABL	ES	v
EXECUTIVE SU	MMARY	1

Background1-1Purpose and Scope1-1Methodology1-2CHAPTER 2INSTALLATION DESCRIPTION2-1Location, Size and Boundaries2-1Base History2-1Organization and Mission2-5CHAPTER 3ENVIRONMENTAL SETTING3-1Meteorology3-1Geography3-4Drainage3-4Surface Soils3-4Geology3-9Stratigraphy3-9Distribution3-10Hydrogeology3-10Ground-Water Quality3-22Wetland Areas3-23Summary of Environmental Settings3-25
Methodology1-2CHAPTER 2INSTALLATION DESCRIPTION2-1Location, Size and Boundaries2-1Base History2-1Organization and Mission2-5CHAPTER 3ENVIRONMENTAL SETTING3-1Meteorology3-1Geography3-1Topography3-4Drainage3-4Surface Soils3-4Geology3-9Stratigraphy3-9Distribution3-10Hydrogeology3-10Ground-Water Quality3-22Wetland Areas3-23
CHAPTER 2 INSTALLATION DESCRIPTION 2-1 Location, Size and Boundaries 2-1 Base History 2-1 Organization and Mission 2-5 CHAPTER 3 ENVIRONMENTAL SETTING 3-1 Meteorology 3-1 Geography 3-4 Drainage 3-4 Surface Soils 3-4 Geology 3-9 Stratigraphy 3-9 Distribution 3-10 Hydrogeology 3-10 Ground-Water Quality 3-16 Surface Water Quality 3-22 Wetland Areas 3-23
Location, Size and Boundaries 2-1 Base History 2-1 Organization and Mission 2-5 CHAPTER 3 ENVIRONMENTAL SETTING 3-1 Meteorology 3-1 Geography 3-1 Topography 3-4 Drainage 3-4 Surface Soils 3-4 Geology 3-9 Stratigraphy 3-9 Distribution 3-10 Hydrogeology 3-10 Ground-Water Quality 3-16 Surface Water Quality 3-22 Wetland Areas 3-23
Location, Size and Boundaries 2-1 Base History 2-1 Organization and Mission 2-5 CHAPTER 3 ENVIRONMENTAL SETTING 3-1 Meteorology 3-1 Geography 3-1 Topography 3-4 Drainage 3-4 Surface Soils 3-4 Geology 3-9 Stratigraphy 3-9 Distribution 3-10 Hydrogeology 3-10 Ground-Water Quality 3-16 Surface Water Quality 3-22 Wetland Areas 3-23
Base History2-1Organization and Mission2-5CHAPTER 3ENVIRONMENTAL SETTING3-1Meteorology3-1Geography3-4Drainage3-4Surface Soils3-4Geology3-9Stratigraphy3-9Distribution3-10Hydrogeology3-10Ground-Water Quality3-22Wetland Areas3-23
Organization and Mission2-5CHAPTER 3ENVIRONMENTAL SETTING3-1Meteorology3-1Geography3-1Topography3-4Drainage3-4Surface Soils3-4Geology3-9Stratigraphy3-9Distribution3-10Hydrogeology3-10Ground-Water Quality3-16Surface Water Quality3-22Wetland Areas3-23
CHAPTER 3 ENVIRONMENTAL SETTING 3-1 Meteorology 3-1 Geography 3-1 Topography 3-4 Drainage 3-4 Surface Soils 3-4 Geology 3-9 Stratigraphy 3-9 Distribution 3-10 Hydrogeology 3-10 Ground-Water Quality 3-16 Surface Water Quality 3-22 Wetland Areas 3-23
Meteorology3-1Geography3-1Topography3-4Drainage3-4Surface Soils3-4Geology3-9Stratigraphy3-9Distribution3-10Hydrogeology3-10Ground-Water Quality3-16Surface Water Quality3-22Wetland Areas3-23
Geography3-1Topography3-4Drainage3-4Surface Soils3-4Geology3-9Stratigraphy3-9Distribution3-10Hydrogeology3-10Ground-Water Quality3-16Surface Water Quality3-22Wetland Areas3-23
Topography3-4Drainage3-4Surface Soils3-4Geology3-9Stratigraphy3-9Distribution3-10Hydrogeology3-10Ground-Water Quality3-16Surface Water Quality3-22Wetland Areas3-23
Drainage3-4Surface Soils3-4Geology3-9Stratigraphy3-9Distribution3-10Hydrogeology3-10Ground-Water Quality3-16Surface Water Quality3-22Wetland Areas3-23
Drainage3-4Surface Soils3-4Geology3-9Stratigraphy3-9Distribution3-10Hydrogeology3-10Ground-Water Quality3-16Surface Water Quality3-22Wetland Areas3-23
Geology3-9Stratigraphy3-9Distribution3-10Hydrogeology3-10Ground-Water Quality3-16Surface Water Quality3-22Wetland Areas3-23
Stratigraphy3-9Distribution3-10Hydrogeology3-10Ground-Water Quality3-16Surface Water Quality3-22Wetland Areas3-23
Distribution 3-10 Hydrogeology 3-10 Ground-Water Quality 3-16 Surface Water Quality 3-22 Wetland Areas 3-23
Distribution3-10Hydrogeology3-10Ground-Water Quality3-16Surface Water Quality3-22Wetland Areas3-23
Ground-Water Quality3-16Surface Water Quality3-22Wetland Areas3-23
Surface Water Quality3-22Wetland Areas3-23
Surface Water Quality3-22Wetland Areas3-23
Summary of Environmental Settings 3-25
CHAPTER 4 FINDINGS 4-1
Past Shops and Base Activity Review 4-1
Industrial Shops 4-2
Fire Protection Training 4-9
Pesticide Utilization 4-14
Fuel Management 4-15
Description of Past On-Base Disposal Methods 4-18
Landfills 4-19
Waste Dumps 4-24

	Sludge Lagoon	4-28
	Hazardous Waste Burial Site	4-28
	Low-Level Radioactive Waste Sites	4-30
	Industrial Wastewater Treatment Plants	4-33
	Sanitary Wastewater Treatment Facilities	4-34
	Storm Sewer System	4-36
	Refuse Incineration	4-36
	Evaluation of Past Disposal Activities and	
	Facilities	4-30
CHAPTER 5	CONCLUSIONS	5-1
CHAPTER 6	RECOMMENDATIONS	6-1
LODMUDTY L		
APPENDIX A	BIOGRAPHICAL DATA	
APPENDIX B	INSTALLATION HISTORY, ORGANIZATION AND MISSION	
APPENDIX C	SUPPLEMENTAL ENVIRONMENTAL SETTING INFORMATION	
APPENDIX D	MASTER LIST OF INDUSTRIAL SHOPS	
APPENDIX E	PHOTOGRAPHS	
APPENDIX F	WATER SUPPLY WELL LOGS	
APPENDIX G	HAZARD EVALUATION METHODOLOGY	
APPENDIX H	SITE RATING FORMS	
APPENDIX I	REFERENCES	
APPENDIX J	GLOSSARY	
NELEMPTY O		

.

•••••

. '

7

-

:

H E

1.1.1

H ...,

-

.

-4

iii

LIST OF FIGURES

Number	Title	Page
1	Contaminated Site Locations	4
1.1	Decision Tree	1-5
2.1	Regional Location	2-2
2.2	Area Location	2-3
2.3	Site Plan	2-4
3.1	Physiographic Provinces of Georgia	3-3
3.2	Major Drainage Basins of Georgia	3-5
3.3	Surface Drainage	3-6
3.4	Soil Associations	3-7
3.5	Surficial Geology	3-12
3.6	Generalized Cross Section of Major Geologic Units	3-13
3.7	Principal Aquifers of The Coastal Plain of Georgia	3-15
3.8	Well Locations, City of Warner Robins	3-17
3.9	Base Water-Supply Well Locations	3-19
3.10	Boring and Monitoring Well Locations	3-21
3.11	Surface Water Quality Monitoring	3-24
	Station Locations	
4.1	Fire Protection Training Areas	4-10
4.2	Fire Protection Training Area No. 2	4-12
4.3	Fire Protection Training Area No. 3 & No. 4	4-13
4.4	Pesticide Storage Area	4-16
4.5	Landfill Locations	4-20
4.6	Landfills No. 1 & No. 2	4-22
4.7	Landfill No. 3	4-25
4.8	Landfill No. 4 and Sludge lagoon	4-26
4.9	Waste Dump Locations	4-27
4.10	Hazardous Waste Burial Site	4-29
4.11	Radioactive Waste Burial Site and Aircraft Wash Areas	4-31
4.12	Radioactive Waste Burial Site	4-32
4.13	Wastewater Treatment Facilities	4-35

<u>-</u>, -

•---

• · · • <u>- · ·</u>

. en interne

LIST OF TABLES

•

· • •

.

. . .

•••

Y

Ţ

×

٠.,

Number	Title	Page
1	Priority Ranking of Potential Contamination Sources	5
2	Recommended Monitoring Program for Phase II	7
3.1	Robins AFB Climatic Data	3-2
3.2	Robins AFB Base Soils	3-8
3.3	Geologic Formations	3-11
3.4	City of Warner Robins Municipal Wells	3-18
3.5	Summary of Robins AFB Wells	3-20
4.1	Industrial Operations (Shops)	4-3
4.2	Summary of Major Fuel Oil and Chemical Storage Capacities	4-17
4.3	Summary of Landfill Disposal Sites	4-21
4.4	Summary of On-Base Oil/Water Separators	4-37
4.5	Summary of HARM Scores for Potential Contamination Sources	4-38
5.1	Priority Ranking of Potential Contamination Sources	5-2
6.1	Recommended Monitoring Program for Phase II	6-5
6.2	List of Analytical Parameters	6-8

Ξ · ----*****2 . ••• ٠, **`** . . -. . . -

•• .

× .1

EXECUTIVE SUMMARY

÷.

۰.

. · · .

•

÷.,

Ē

1

4

É

EXECUTIVE SUMMARY

The Department of Defense (DOD) has developed a program to identify and evaluate past hazardous material disposal sites on DOD property, to control the migration of hazardous contaminants, and to control hazards to health or welfare that may result from these past disposal operations. This program is called the Installation Restoration Program (IRP). The IRP has four phases consisting of Phase I, Initial Assessment/Records Search, Phase II, Problem Confirmation, Phase III, Technology Base Development, and Phase IV, Operations. Engineering-Science (ES) was retained by the Air Force Engineering and Services Center to conduct the Phase I, Initial Assessment/Records Search at Robins AFB under Contract No. F08637-80-G009, Call No. 0009, using funding provided by the Air Force Logistics Command.

INSTALLATION DESCRIPTION

D

T

Robins AFB is located in middle Georgia approximately 90 miles southeast of Atlanta and 18 miles south of Macon. The base was activated in 1942 and presently comprises 8,855 acres. The primary mission of the base is serving as the parts and equipment logistics manager for a variety of aircraft. This mission has not changed significantly since the mid 1940's.

ENVIRONMENTAL SETTING

The environmental setting data reviewed for this study indicate the following key items concerning the impact of past waste disposal practices on the base:

Alluvial deposits cover the upper 20 to 40 feet of the base.
 The eastern part of the base is swampy with peat deposits covering the upper 10 to 15 feet and underlain by a thin layer of clay. The western part of the site consists of more sandy alluvial deposits which extend eastward below the swamp deposits.

o The water table beneath the site is shallow, particularly to the east where a surface discharge contributes toward the creation of a swampy area. In the western part of the base, the surface soils are sandy and infiltration of precipitation is expected to be high. This infiltration would directly recharge the shallow aquifer.

- o The primary regional aquifer, the Cretaceous aquifer, underlies Robins AFB at a depth of about 40 to 50 feet and extends to a depth of approximately 650 feet below the surface. It consists of sand with a few clay lenses interspersed throughout its thickness.
- Robins AFB obtains its water supply from twelve wells distributed over the installation. The City of Warner Robins has a separate system consisting of 11 wells, located throughout the city. All wells are drilled into the Tuscaloosa Formation of the Cretaceous aquifer.
- o Recharge for the Cretaceous aquifer occurs west of Robins AFB where the Providence sand outcrops at the surface. Some recharge may also occur beneath the base as some interconnection between alluvial and underlying deposits may occur.
- Area precipitation rates (44.1 inches per year) are higher than potential evapotranspiration rates (42 inches per year).

-

-3

 Approximately 1200 acres of wetlands in the form of an unimproved river swamp system are located on the east side of the base. The wetlands are known to harbor two species of animals listed by the Federal government as threatened or endangered; American alligator and the red-cockaded woodpecker.

METHODOLOGY

During the course of this project, interviews were conducted with base personnel (past and present) familiar with past waste disposal practices, file searches were performed for facilities which have generated, handled, transported, and disposed of waste materials, interviews were held with local, state and federal agencies, and site inspections were conducted at facilities that have generated, treated,

stored, and disposed of hazardous waste. Thirteen disposal sites located on the Robins AFB property were identified as containing hazardous waste resulting from past waste disposal activities, (Figure 1). These sites have been assessed using a hazardous assessment rating methodology (HARM) which takes into account factors such as site characteristics, waste characteristics, potential for contaminant migration and waste management practices. The details of the rating procedure are presented in Appendix & and the results of the assessment are given, in Table 1. The rating system is designed to indicate the relative need for follow-on action. Represented in Appendix of the assessment migration and contained for the follow of the takes and the migration of the takes the relative need for follow-on action. Represented in Manation of the takes migration and the follow of the takes and the takes and the takes the migration and the follow of the takes and the takes and the takes the relative need for follow-on action. Represented to indicate the migration and the follow of the takes and the takes and the takes and the migration and the follow of the takes and takes and

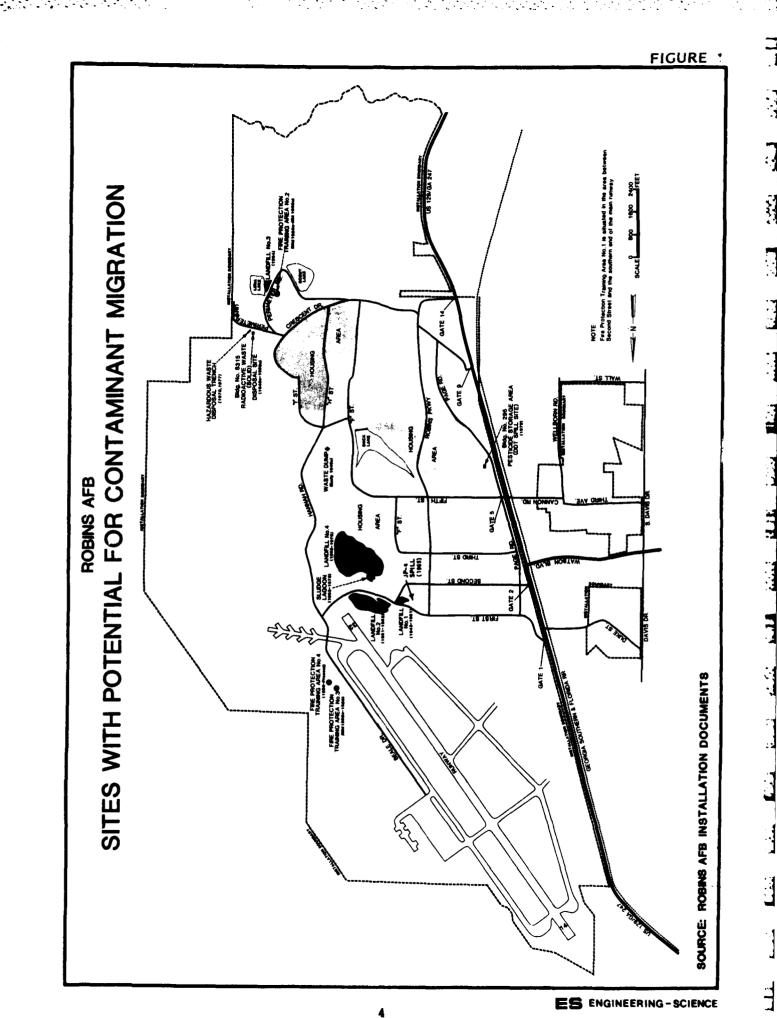
The following conclusions have been developed based on the results of the project team's field inspection, review of base records and files and interviews with base personnel.

The areas determined to have a high potential for contaminant migration are as follows:

- o Sludge Lagoon
- o Landfill No. 4
- o DDT Spill (1979)

The areas determined to have a moderate potential for contaminant migration are as follows:

- o Fire Protection Training Area No. 2
- o Landfill No. 1
- o Landfill No. 2
- o JP-4 Spill (1965)


• Hazardous Waste Burial Site

• Fire Protection Training Area No. 1

o Laboratory Chemical Disposal Site

The areas determined to have a low potential for contaminant migration are as follows:

- o Landfill No. 3
- o Fire Protection Training Area No. 3
- o Low Level Radioactive Waste (Solid) Burial Site

TABLE 1

PRIORITY RANKING OF POTENTIAL CONTAMINATION SOURCES ROBINS AFB

Rank	Site Name	Date of Operation or Occurrence	Overall Total Score
1	Sludge Lagoon	1963-1978	77
2	Landfill No. 4	1965-1978	73
3	DDT Spill (1979)	1979	70
4	Fire Protection Training Area No. 2	mid 1950's to mid 1960's	64
5	Landfill No. 1	1943-1951	5 9
6	Landfill No. 2	1951-1953	58
7	JP-4 Spill (1965)	1965	57
8	Hazardous Waste Burial Site	1976, 1977	54
9	Fire Protection Training Area No. 1	1943-mid 1950's	52
10	Laboratory Chemical Disposal Site	early 1960's	51
11	Landfill No. 3	1964	47
12	Fire Protection Training Area No. 3	mid 1960's to 1969	45
13	Low Level Radioactive Waste (Solid) Burial Site	1940's to 1950's	31

Note: This ranking was performed according to the Hazardous Assessment Rating Methodology (HARM) described in Appendix G. Individual site rating forms are in Appendix H.

2

.

Å

RECOMMENDATIONS

The detailed recommendations developed for further assessment of potential contaminant migration are presented in Chapter 6. These recommendations are summarized as follows:

- Sludge Lagoon and Landfill No. 4 Conduct geophysical surveys and additional ground-water monitoring.
- DDT Spill Site Remove contaminated soils and sample soils to verify clean up.
- Fire Protection Training Area No. 2 Collect and analyze soil borings in and around the site.
- Landfill No. 1 and JP-4 Spill Site Conduct geophysical surveys or sample the top of the water table. Also sample landfill leachate stream.
- Landfill No. 2 and Fire Protection Training Area No. 1 Conduct ground-water monitoring program.
- Hazardous Waste Burial Site Conduct ground-water monitoring program.
- Laboratory Chemical Disposal Site Conduct geophysical survey and collect and analyze soil borings.
- o Water Supply Wells Sample and analyze well water.
- Surface Water Conduct additional surface water monitoring on the base.

6

CHAPTER 1

INTRODUCTION

• 1 <u>.</u> •

> 0

ب بر نگ

. .

Ľ

Ľ

Ţ

C

CHAPTER 1 INTRODUCTION

BACKGROUND

The United States Air Force, due to its primary mission, has long been engaged in a wide variety of operations dealing with toxic and hazardous materials. Federal, state and local governments have developed strict regulations to require that disposers identify the locations and contents of disposal sites and take action to eliminate the hazards in an environmentally responsible manner. The Department of Defense (DOD) has issued Defense Environmental Quality Program Policy Memorandums 80-6 and 81-5 which require the identification and evaluation of past hazardous material disposal sites on DOD property, the control of migration of hazardous contaminants, and the control of hazards to health or welfare that resulted from these past operations. This program is called the Installation Restoration Program (IRP). The IRP will be a basis for response actions on Air Force Installations under the provisions of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980.

PURPOSE AND SCOPE OF THE ASSESSMENT

The Installation Restoration Program has been developed as a fourphased program as follows:

Pha	ıse	I	-	Ini	tial	Assessment/	Record	is Search
-----	-----	---	---	-----	------	-------------	--------	-----------

- Phase II Problem Confirmation
- Phase III Technology Base Development

Phase IV - Operations (Control Measures)

Engineering-Science (ES) was retained by the Air Force Engineering and Services Center to conduct the Phase I Records Search at Robins AF Base under Contract No. F08637-80-G0009, Call No. 0009, using funding provided by the Air Force Logistics Command. This report contains a

The goal of the first phase of the program was to identify the potential for environmental contamination from past waste disposal practices at Robins AFB, and to assess the potential for contaminant migration. The activities undertaken in Phase I included the following:

- Review site records
- Interview personnel familiar with past generation and disposal activities
- Inventory wastes
- Determine quantities and locations of current and past hazardous waste storage, treatment and disposal
- Define the environmental setting at the base
- Review past disposal practices and methods
- Conduct field inspection
- Gather pertinent information from federal, state and local agencies
- Assess potential for contaminant migration

To perform the on-site portion of the records search phase, ES assembled the following core team of professionals:

- E. J. Schroeder, Environmental Engineer and Project Manager, MSCE, 14 years of professional experience
- R. E. Zimmermann, Hydrogeologist, BS Geology, 4 years of professional experience
- G. M. Gibbons, Environmental Engineer, MSCE, 3 years of professional experience
- M. I. Spiegel, Environmental Scientist, BS Environmental Science, 5 years of professional experience
- R. M. Reynolds, Chemical Engineer, BSChE, 8 years of professional experience

More detailed information on these individuals is presented in Appendix A.

METHODOLOGY

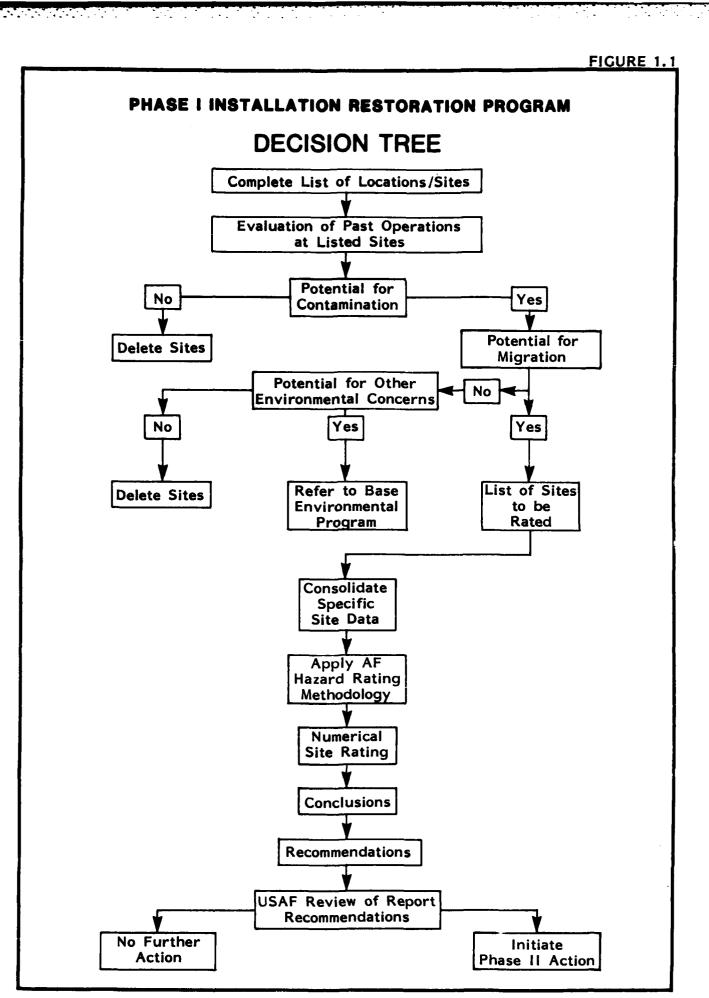
The methodology utilized in the Robins AFB Records Search began with a review of past and present industrial operations conducted at the base. Information was obtained from available records such as shop files and real property files, as well as interviews with past and present base employees from the various operating areas of the base. Those interviewed included current and past environmental personnel associated with the Civil Engineering Squadron, the Bioenvironmental Engineering Services Division Office, and the Directorate of Maintenance. Several current or past personnel associated with the fire protection, wastewater treatment plant, pesticide program, fuels management and solid waste collection and disposal were interviewed extensively. Experienced personnel from the tenant organizations were also interviewed. Formal interviews were conducted with 62 personnel to obtain the needed past activity information.

14

Concurrent with the base interviews the applicable federal, state and local agencies were contacted for pertinent base related environmental data. The agencies contacted and interviewed are listed as follows:

- o U.S. Environmental Protection Agency, Region IV, Atlanta, Georgia
- o U.S. Soil Conservation Service, Atlanta, Georgia
- o U.S. Geological Survey, Atlanta, Georgia
- o Georgia Geological Survey, Atlanta, Georgia
- o Georgia Environmental Protection Division, Atlanta, Georgia
- o City of Warner Robins Water Department, Warner Robins, Georgia
- Georgia Game and Fish Division of the Department of Natural Resources, Fort Valley, Georgia.

The next step in the activity review was to determine the past management practices regarding the use, storage, treatment, and disposal of hazardous materials from the various operations on the base. Included in this part of the activities review was the identification of all known past disposal sites and other possible sources of contamination such as fuel-saturated areas resulting from spills.


An aerial overflight and a general ground tour of identified sites were then made by the ES Project Team to gather site specific information including (1) visual evidence of environmental stress, (2) the presence of nearby drainage ditches or surface-water bodies, and (3)

1-3

visual inspection of these water bodies for any obvious signs of contamination or leachate migration.

A decision was then made, based on all of the above information, whether a potential exists for hazardous material contamination at any of the identified sites using the decision tree shown in Figure 1.1. If no potential exists, the site was deleted from further consideration. For those sites where a potential for contamination was identified, a determination of the potential for migration of the contamination was made by considering site-specific conditions. If the potential for contaminant migration was considered significant, then the site was evaluated and prioritized using the hazardous assessment rating methodology (HARM).

The HARM score indicates the relative potential for contaminant migration at each site. For those sites showing a high potential, recommendations are made to quantify the potential contaminant migration problem under Phase II of the Installation Restoration Program. For those sites showing a moderate potential, a limited Phase II program may be recommended to confirm that a contaminant migration problem does or does not exist. For those sites showing a low potential, no further follow-up Phase II work would be recommended.

Ē

r

1-5

ES ENGINEERING-SCIENCE

CHAPTER 2 INSTALLATION DESCRIPTION

. .

È

-Ľ.

-."

Ċ

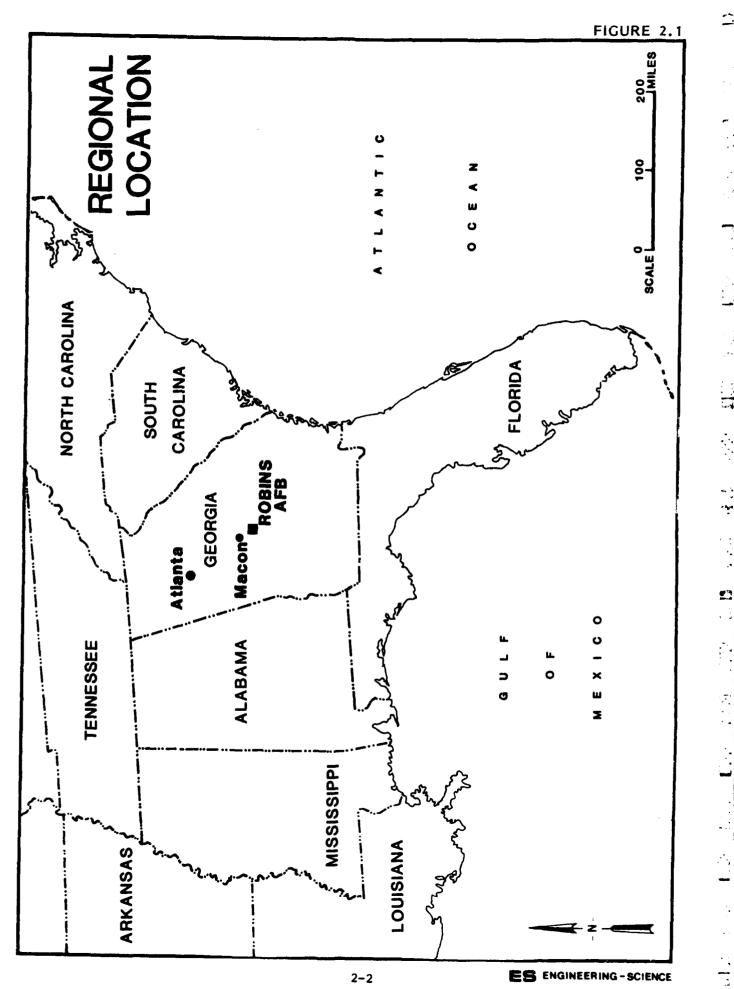
CHAPTER 2 INSTALLATION DESCRIPTION

.

LOCATION, SIZE AND BOUNDARIES

Robins AFB is located in middle Georgia approximately 90 miles southeast of Atlanta and 18 miles south of Macon as shown in Figures 2.1, 2.2 and 2.3. The base lies within the lower Ocmulgee River Basin and drains primarily to Horse Creek. The boundaries of the base cover 8,855 acres with facilites for operation, industrial, administrative and supply functions. Present land areas adjacent to the base are primarily as follows:

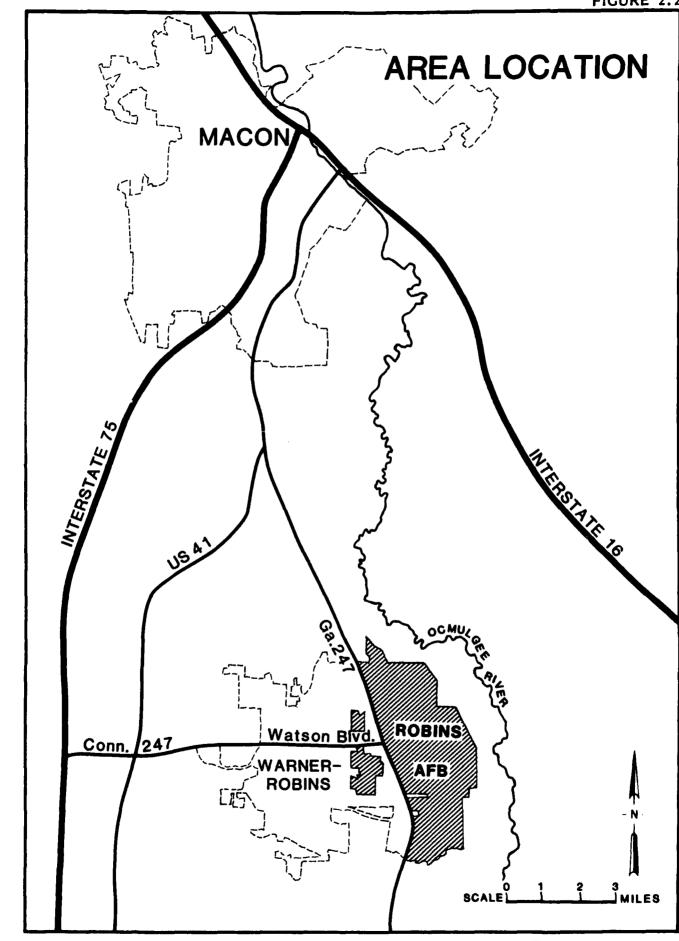
North - commercial, residential East - dense forest, swamp South - commercial, residential West - commercial, residential


The most prominent physiographic features of the area are the Ocmulgee River and the swamp surrounding the east portion of the base.

BASE HISTORY

The initial construction of Robins AFB began in 1941 on a 3,000 acre tract of land donated by the City of Macon and Bibb County. The base was officially activated in March 1942. Subsequent acquisitions by the Federal government increased the size of the installation to its present 8,855 acres. The original intent was to establish Robins AFB as a maintenance and supply depot, but the installation also was used as a training center. Original facilities included both temporary and permanent structures. After World War II, the base ceased its training functions while continuing its supply and maintenance role.

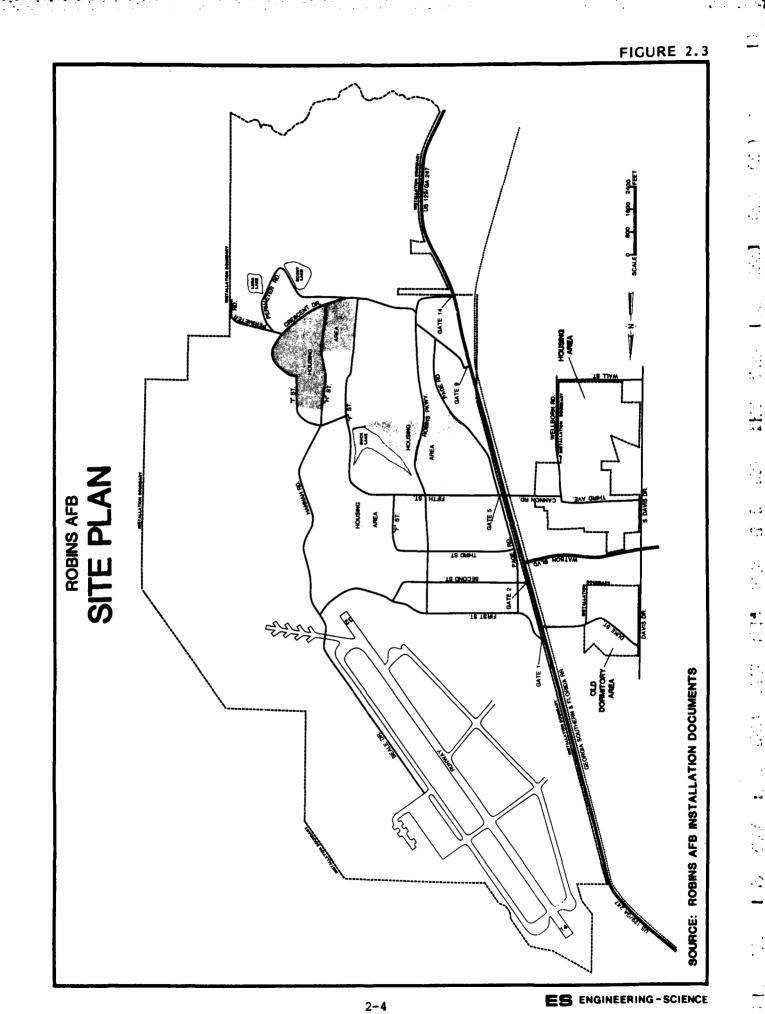
A second growth surge began in 1949 when the Fourteenth Air Force Headquarters moved to Robins AFB, where it remained until deactivated in 1960. The largest construction program commenced in 1958 to prepare facilities for the 19th Bombardment wing as a tenant organization. Runway enlargement and family housing areas were included in this


2-1

2

۰<u>,</u>

÷,


)

14

A

2-3

ES ENGINEERING-SCIENCE

(5

program. In 1962, the runways were further rehabilitated to better accomodate the B-52 and KC-135 aircraft. In 1974, the Technology Repair Center (TRC) was created as a function of the Warner Robins Air Logistics Center (WR-ALC). In addition to depot maintenance responsibility for assigned aircraft, the WR-ALC, TRC, performed repair services on aircraft component systems.

A complete description of Robins Air Force Base history is presented in Appendix B.

ORGANIZATION AND MISSION

The primary mission of Robins AFB are the responsibilities assigned to the Warner Robins Air Logistics Center (WR-ALC). The WR-ALC has a threefold mission as follows:

- a. It is the worldwide logistics manager for assigned aircraft and commodities;
- b. It is the repair center for aircraft and five distinct technologies;
- c. It serves as a storage center at wholesale and retail levels for Air Force spare parts and systems.

The WR-ALC is logistics manager for five Air Force transport aircraft (C-141, C-130, C-7, C-140, C-123), the F-15 fighter, a bomber used in reconnaissance (B-57), eight missiles, five helicopters, seven utility aircraft and seven drones and remotely piloted vehicles. In addition, electronics equipment managed at WR-ALC ties its support to every element of the aerospace combat forces.

WR-ALC is the exclusive technology repair center for airborne electronics for the Air Force. In addition, aircraft repair and maintenance responsibilities for the F-15, C-141 and C-130 are assigned to the WR-ALC. The WR-ALC has various shops (plating, machining, metal bonding, etc.) which support the major workload activities.

The third major mission involves receiving, storing, issuing and transporting material. These functions are carried out in automated warehouses on base. In conjunction with its worldwide missions, WR-ALC has a geographical area of responsibility for logistics support of Air Force installations which include Eastern United States, Newfoundland, Greenland, Iceland, Bermuda, The Azores and activities in Europe, Africa and the Mid-East.

ĺ,

The 2853rd Air Base Group provides the services and support to carry out the mission of the WR-ALC and other tenant organizations on Robins AFB. Descriptions of the tenant organizations and their missions are presented in Appendix B.

9

CHAPTER 3

.

۰.

E

د .

r.

. . .

. .

4.2

Ľ

Ĺ.

ENVIRONMENTAL SETTING

و د در خ ه

• •

CHAPTER 3 ENVIRONMENTAL SETTING

The environmental setting of Robins AFB is described in this chapter with the primary emphasis directed toward identifying features which may affect the movement of hazardous waste contaminants. A summary of the environmental setting pertinent to the study are highlighted at the end of the section.

METEOROLOGY

h rt

. . .

.

17

R

لسنة

ł

Temperature and precipitation data furnished by the Global Climatology Branch, Robins AFB, are presented in Table 3.1. The period of record is 33 years. The summarized data indicate that the mean annual precipitation is 44.1 inches. Using Thornthwaites Equation (Chow, 1964, p.11.27-28) potential evapotranspiration for the Warner Robins Area is 42.0 inches.

GEOGRAPHY

Robins Air Force Base lies along the upper margin of the Coastal Plain province. The Coastal Plain is part of a large coastal province extending from Long Island, N.Y., to the Mexican border (LeGrand, 1962). Just north of the study area, lies the Piedmont Province (Figure 3.1). The line separating the Piedmont from the Coastal Plain is generally known as the Fall Line. This line separates the more resistant crystalline rocks of the Piedmont from the less resistant deposits of the Coastal Plain.

Locally, Robins AFB lies within the Coastal Plain province but is situated on alluvial deposits along the Ocmulgee River. These deposits form a low terrace about 3 miles wide extending westward from the river to the City of Warner Robins.

TA	BLE	3.	1	

. .

.

	Precip	itation	3	emperature	
·•	Mean	Max	Mean	Mean	Mean
Month	(in.)	(in.)	max (*F)	(°F)	min(*F)
January	4.0	8.4	57.5	47.5	37.2
Febru ary	4.5	9.0	60.7	50.2	39.2
March	4.8	10.6	67.7	56.9	45.7
April	3.2	8.4	76.9	65.4	53.6
May	3.5	7.2	84.0	73.1	61.7
June	3.7	7.0	88.9	78.9	68.5
July	5.1	9.3	90.3	81.1	71.6
August	3.8	6.7	90.2	80.7	70.9
September	2.9	7.9	85.3	75.8	65.9
October	2.2	7.4	77.1	65.8	54.0
November	2.2	5.4	67.3	55.6	43.5
December	4.4	11.5	59.5	49.2	38.5
Annual	44.3		75.5	65.0	54.2

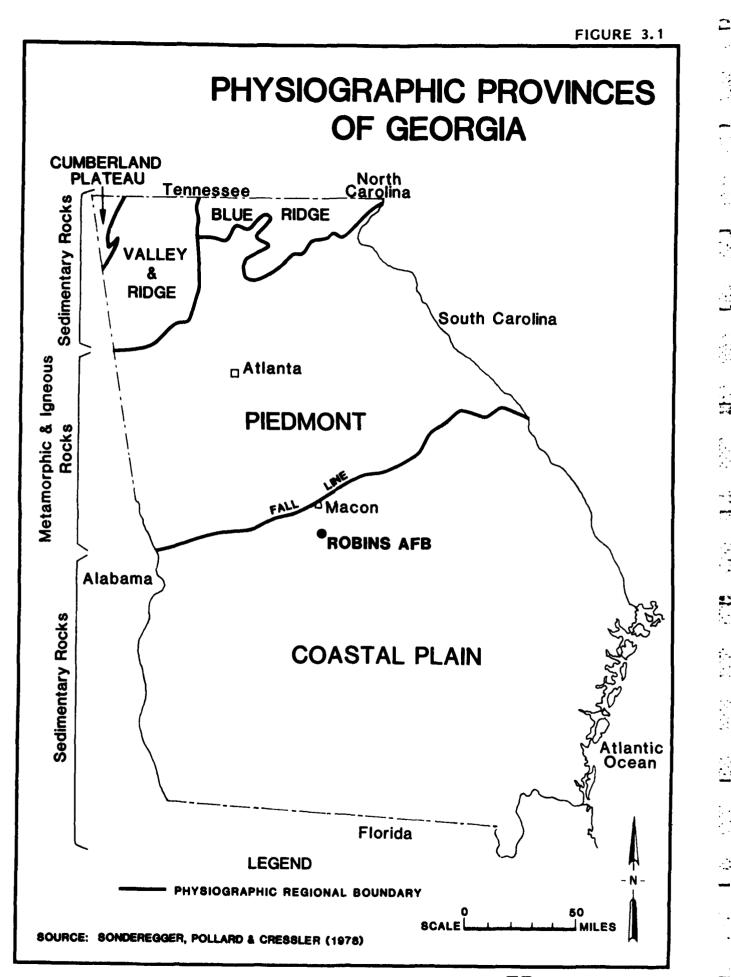
ROBINS AFB CLIMATIC DATA

1.

ł

D

•


: •

. • 17

----5

. . . .

Source: Global Climatology Branch, Robins AFB

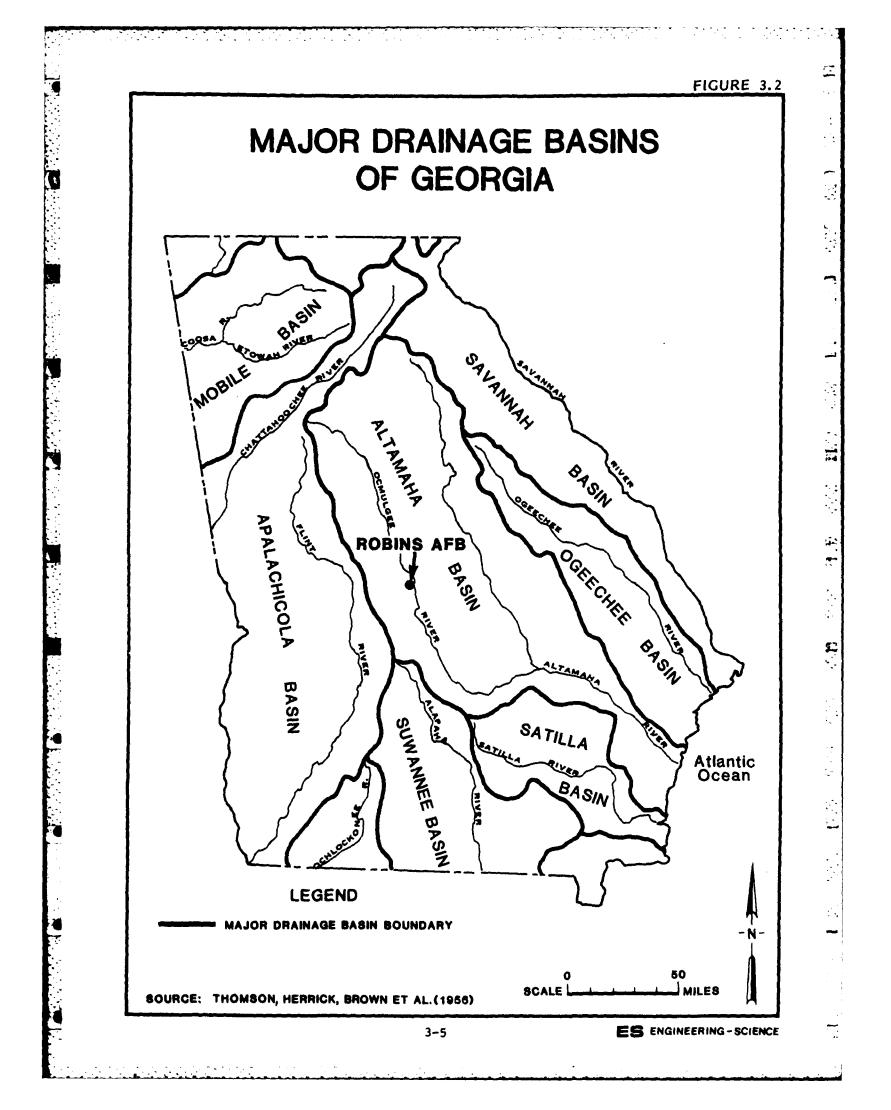
3-3

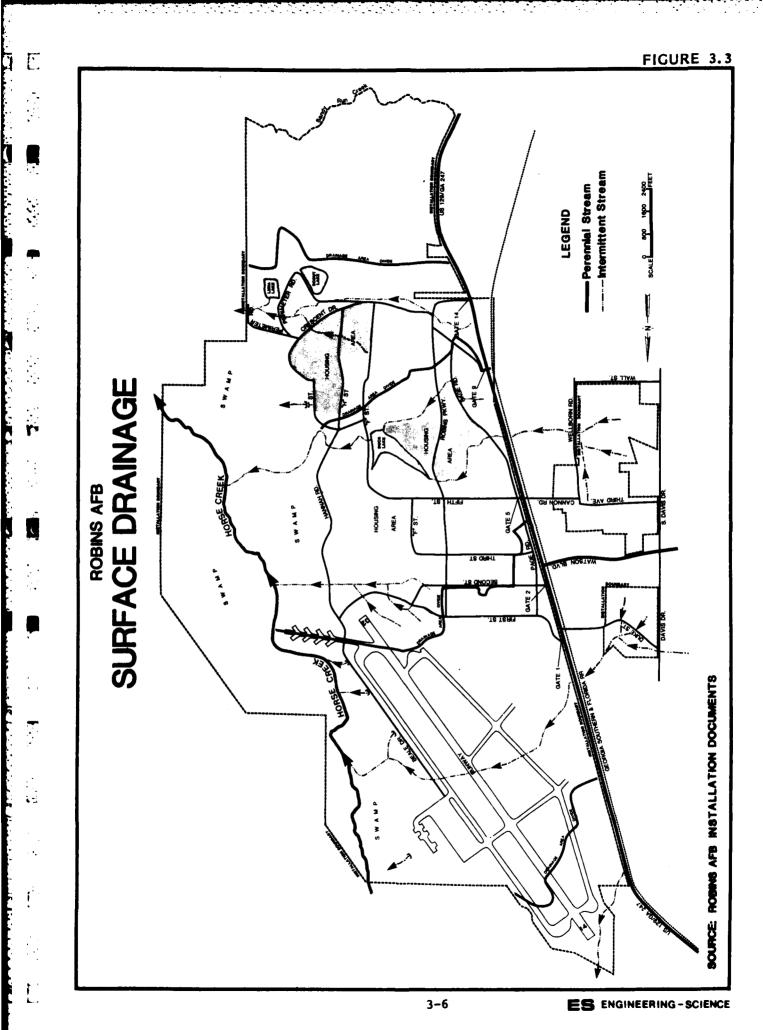
ES ENGINEERING-SCIENCE

Topography

D

The Coastal Plain is basically level with an eastward slope of approximately 2-3 feet per mile from the Fall Line to the Georgia coast (Thomson et el, 1956). Robins AFB is located on a low alluvial terrace of the Ocmulgee River. The slope of the base east of Highway 247 is towards the east with elevations of 300 feet MSL on the western edge of the site and 240 feet MSL on the east along the Ocmulgee River. Much of the area bordering the base is low lying swamp land and parts of the base have been constructed over reclaimed swamp land.


Drainage


Robins AFB lies within the drainage basin of the Ocmulgee River, known as the Altamaha basin (Figure 3.2). The installation is drained by several unnamed intermittent streams as well as overland flow. Direction of surface flow is to the east, through the swamp (Figure 3.3).

A large portion of precipitation on the site may not become surface flow but rather infiltrate through the sandy soil. Based on the intensity of precipitation and on the amount of moisture in the soil, this water most likely will recharge the shallow aquifer. Approximately 4.2 inches of total annual percipitation will become recharge to the shallow aquifer. Flooding is a problem on the eastern boundary of the base where the water table intersects the surface and results in swamp development. During flooding periods, Hannah Road would become innundated, as would several other areas at the base including parts of some past waste disposal sites.

Surface Soils

Surface soils of the Robins Air Force Base area have been reported by the USDA, Soil Conservation Service (1967). Twenty soil types have been mapped within installation boundaries and are depicted on Figure 3.4. The individual soil types are discussed on Table 3.2. Base soils fall within two distinct groups: sandy upland soils, and wet, organic lowland types. All the soil types present on the installation exhibit moderate to severe constraints on the development of waste disposal facilities, due either to permeability or flooding potential.

ľ

i

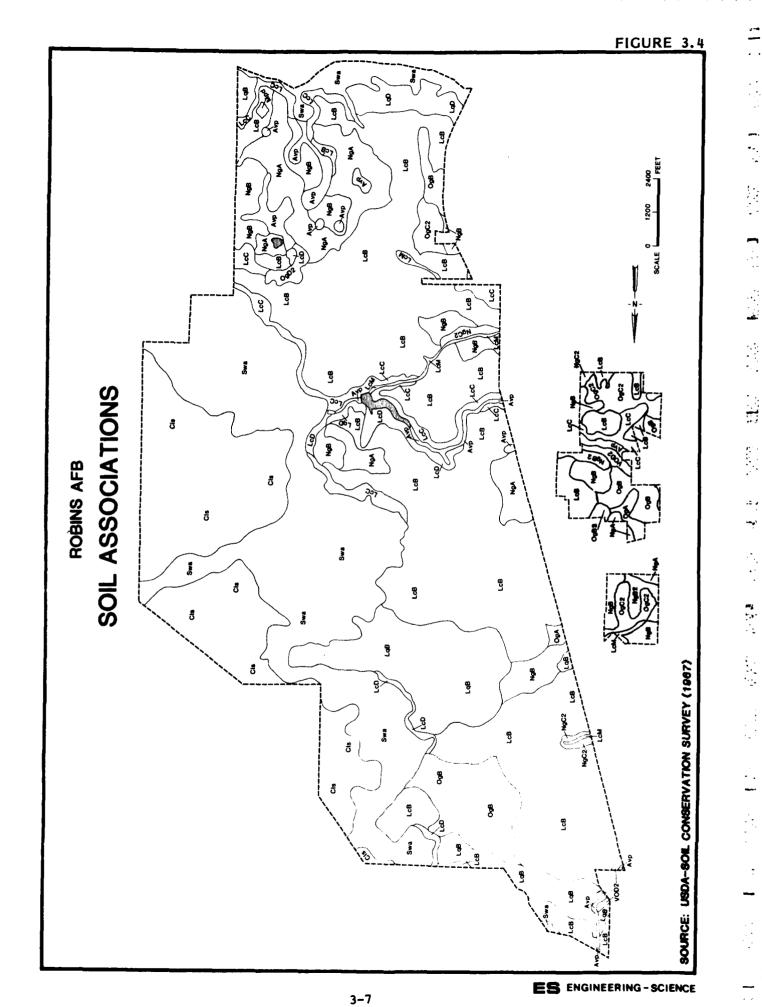


TABLE 3.2

<u>_</u>____

-

["

ł

> ÷ -

.___

F.

. L.

ROBINS AIR FORCE BASE SOILS

Symbol	Description	USDA Texture	Thickness (in.)	Unified Classification	Permeability (in/hr)	HWD Facility Use Constraints
Avp	Alluvial land, wet, 0-2 percent slopes	Organic clay loam, clay	36+ 36	SC,CL,CH,OH	Not estimated	Severe - floods
cls.	Chastain leaf soils, 0-2 percent slopes	Silt loam, silty clay loam, silty clay; clay	20	NJ , CL	<0.2 - 0.63	Severe - floods
LCB	Lucy sand, 0-5 percent slopes	Sand, loamy sand, sandy	60	SP,SM,SC,CL	0.63 - >6.3	Severe - High permeability
rcc	Lucy sand, 5-8 percent slopes	Sand, loamy sand, sandy	60	SP, SM, SC, CL	0.63 - >6.3	Severe – High permeability
LCD	Lucy sand, 8-12 percent slopes	Sand, loamy sand, sandy	60	SP,SM,SC,CL	0.63 - >6.3	Severe - High permeability
LcM	Local alluvial land, 0-2 percent slopes	This unit is highly variable.	24-36	Properties not	estimated	Severe - floods
LqB	Lakeland fine sand, 0-5 percent slopes	Fine sand, sand	60	SP,SM	>6.3	Severe - High permeability
upu t	Lakeland fine sand, 5-12 percent slopes	Fine sand, sand	60	SP,SM	>6.3	Severe - High permeability
AgM	Norfolk loamy fine sand, 0-2 percent slopes	Loamy fine sand, sandy clay loam	58	SM, SC, CL	0.63 - >6.3	Moderate permeability
86N	Norfolk loamy fine sand, 2-5 percent slopes	Loamy fine sand, sandy clay loam	58	SM, SC, CL	0.63 - >6.3	Moderate permeability
N9B2	Norfolk loamy fine sand, 2-5 percent slopes, eroded	Loa m y fine sand, sandy clay loam	58	SM, SC, CL	0.63 - >6.3	Moderate permeability
NgC ₂	Norfolk loamy fine sand, 5-8 percent slopes, eroded	Loamy fine sand, sandy clay loam	58	SM, SC, CL	0.63 - >6.3	Moderate permeability
4 ₽0	Orangeburg loamy fine sand, 0-2 percent slopes	Loamy fine sand, sandy clay loam	64	SM, SC	0.63 - >6.3	Moderate permeability
8 60	Orangeburg loamy fine sand, 2-5 percent slopes	Loamy fine sand, sandy clay loam	64	SM, SC	0.63 - >6.3	Moderate permeability
09B ₂	Orangeburg loamy fine sand, 2-5 percent slopes, eroded	Loamy fine sand, sandy clay loam	64	SM, SC	0.63 - >6.3	Moderate permeability
09C2	Orangeburg loamy fine sand, 5-8 percent slopes, eroded	Loamy fine sand, sandy clay loam	64	SM, SC	0.63 - >6.3	Moderate permeability
09D2	Orangeburg loamy fine sand, 8-12 percent slopes, eroded	Loamy fine sand, sandy clay loam	64	SM, SC	0.63 - >6.3	Moderate permeability
RhA	Red Bay fine sandy loam, 0-2 percent slopes	Fine sandy loam, sandy clay loam	70	SM, SC, CL	0.63 - 6.3	Moderate permeability
Swa	Swamp	Perennial wetland	Proj	Properties not estimated	ated	Severe - floods
vod ₂	Vaucluse-Hoffman complex, 8-12 Dercent slopes, eroded	Loamy sand, sandy clay loam	60	SM, SC, CL	0.63 - >6.3	Moderate permeability

. Ĵ •. · · · · •

.

Source: USDA, Soil Conservation Service, 1967

•_`.

GEOLOGY

The geology of the Warner Robins AFB has been reported by LeGrand (1962), Herrick (1961, 1963, and 1965), Thomson et al. (1956), Herrick and Vorhis (1963), Sonderegger (1978), Pollard (1980), and Mitchell (1979) among others. A brief review of their work has been summarized in support of this investigation.

Stratigraphy

Stratigraphy of the area was studied in order to understand the occurrence and movement of ground water beneath the site. Geologic units ranging from Cretaceous to Quatenary have been described in the Warner Robins area and are presented in Table 3.3. The lithologies of these units are typically unconsolidated material. Older Cretaceous units are encountered at depths of approximately 1700 feet. Crystalline basement rocks are typically encountered at depths greater than 1750 feet below ground surface (LeGrand, 1962).

Regionally, the site is located within the upper Coastal Plain province, but locally, lies on an alluvial terrace of the Ocmulgee River. Sections of the base constructed in swamps have been built up over fill material and do not represent original stratigraphic sequen-The uppermost native unit consists of alluvial deposits of two ces. types depending upon exact location on the base (refer to Geologic Map and legend, Figure 3.5). In the lowland or swampy areas typical of the eastern portion of the base, as well as beneath many of the artificially filled areas, a 5 to 15 foot thick layer of peat and fine silts are encountered, generally underlain by a thin (3 to 5 feet) layer of clay. In upland areas typical of the western half of the base, however, fine alluvial sands and silts are present at the surface and grade into sands and fine gravels with increasing depth. A clay layer not known to its also underlie the organic deposits in the lowlands. These are recent deposits and may be 20 to 25 feet thick.

Directly below the surficial alluvial deposits are the most significant geologic units, comprised primarily of several hundred feet of permeable sands. The uppermost major unit is the Providence Sand. It is the youngest and uppermost Cretaceous formation in Georgia. It consists of light colored sands, interbedded with numerous layers of clay. Thickness of the Providence Sand ranges from 60 to 120 feet and is approximately 60 feet at Robins AFB (LeGrand, 1962).

Immediately underlying the Providence Sand is the Tuscaloosa Formation. Although it does not crop out at the base, it is the oldest outcropping formation of Georgia's Coastal Plain Region (LeGrand 1962). Lithologically, the Tuscaloosa is almost identical to the Providence Sand. It also consists of a light-colored sand with numerous lenticular masses of clay interbedded throughout the formation. These clay beds are generally lenses which can not be traced far. Thickness of this formation ranges from 500 to 600 feet. A generalized geologic section depicting the relationships of major geologic units is presented as Figure 3.6. The Tuscaloosa Formation is a superb aquifer capable of producing tremendous quantities of excellent quality water. Both Robins AFB and the City of Warner Robins use this formation as a source of their water supplies.

Immediately below the Tuscaloosa formation are crystalline rocks of Paleozoic, or possibly older, age. No records were found of wells reaching bedrock, therefore, the exact depth to these units is uncertain. Due to the depth and nature of these formations, they would not be a significant source of water in this area.

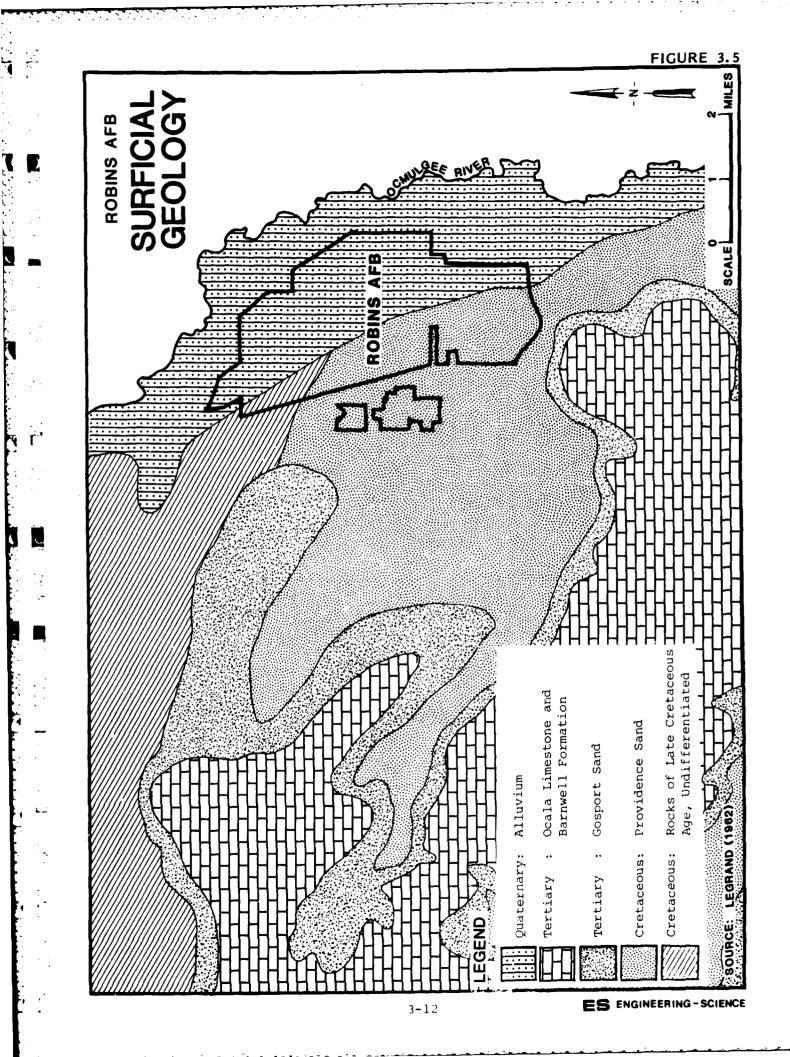
Distribution

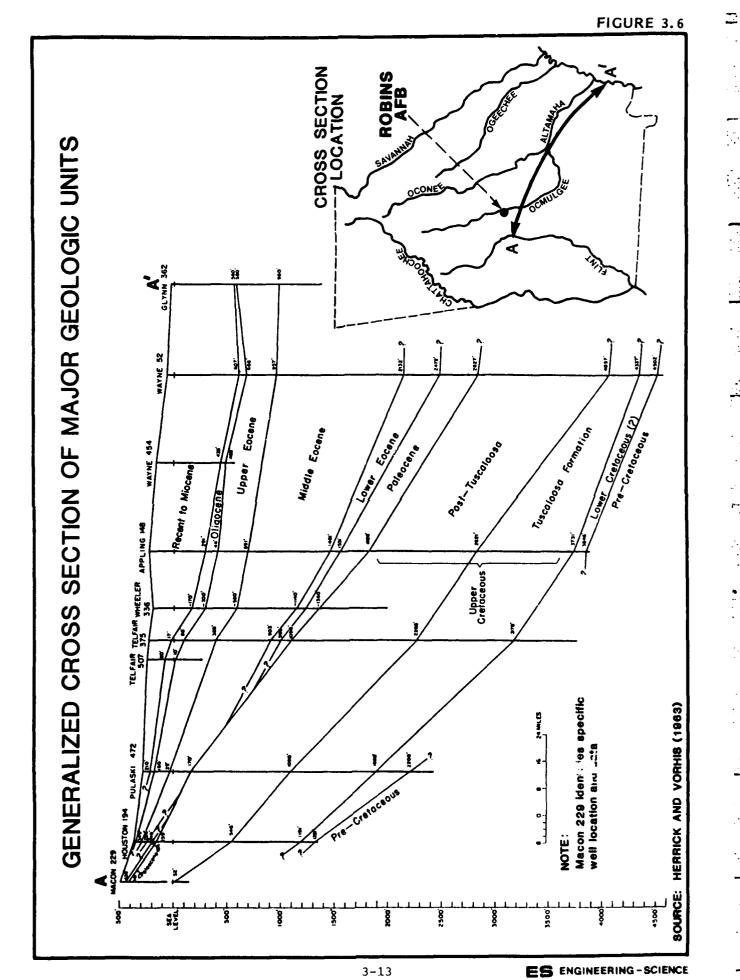
The areal distribution of geologic units significant to this study is mapped on Figure 3.5, which is modified from the work published by H. E. LeGrand (1962). Most of the site is immediately underlain by alluvial deposits of the Ocmulgee River. The depth to consolidated deposits is not confirmed, but presumed to be at least 1700 feet below the surface, based upon regional geologic data. The western half of the base is dominated by sandy alluvial deposits while the eastern part of the base is underlain by peat and fine grained organic silt deposits.

HYDROGEOLOGY

Ground-water hydrology of the Warner Robins Area has been reported by LeGrand (1962), Mitchell (1979), Pollard and Vorhis (1980), Thomson (1956), Herrick (1961) and Sonderegger (1978). Supporting information

		Thickness (feet)	5-20			60-120	500-600		
	IN ROBINS AFB AREA	uo	Peat, organic silty clays deposited in Ocmulgee River generally over alluvian.	Silts, sands and gravels deposited along major stream borders and in interstream areas.		Light colored sand inter- bedded with lenticular layers of clay.	Light colored sand inter- bedded with several lenticular layers of clay.		
TABLE 3.3	GEOLOGIC FORMATIONS IN ROBII	Formation	Swamp Deposits:	Alluvial Deposits:	NONE PRESENT UNDERLYING ROBINS AFB	Providence Sand:	Tuscaloosa Formation:		
		Series	Pliocene to Recent		NONE PRESENT U	Upper		1, 1962	
		System	Quaternary		Tertiary	Cretaceous		Source: LeGrand,	


• .


.

÷.

•

ľ

(

Ľ.

-

•

•

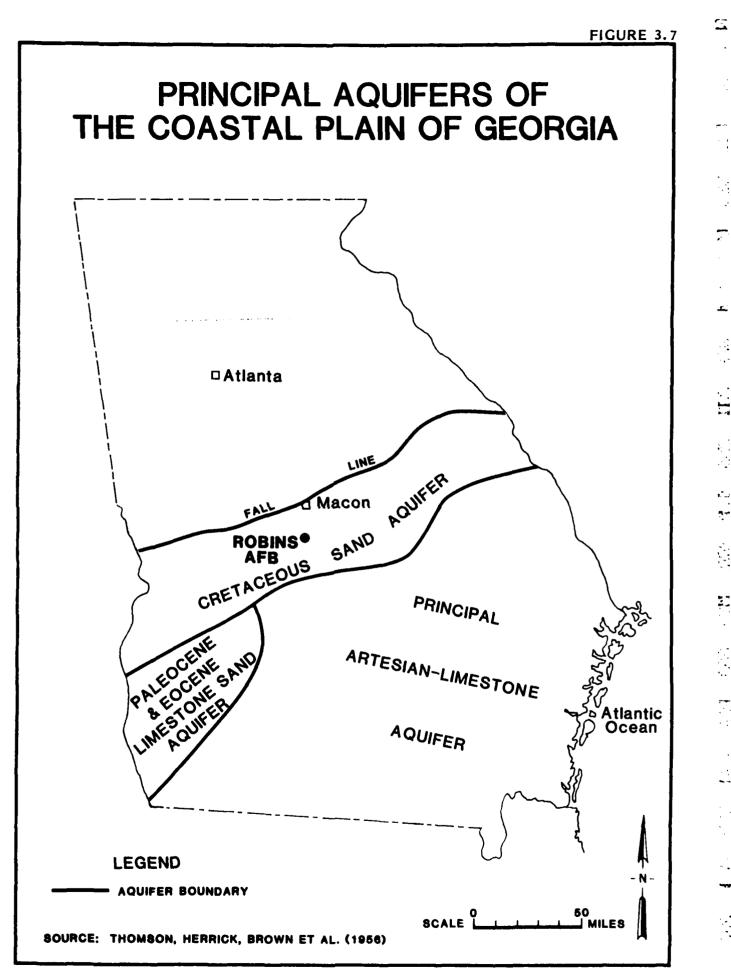
.

has been obtained from Robins AFB water department files and files from the City of Warner Robins water plant. Additional information on permeabilities and shallow ground-water quality were obtained from a report by Law Engineering Testing Company (LETCO, 1980).

. .

.

N



The Coastal Plain province in Georgia extends from the Fall Line on the north to Florida in the south and from the Savannah River and the Atlantic Ocean on the east to the Chattahoochee River on the west.

The Coastal Plain may be divided into three areas (Figure 3.7) according to aquifer availability and utilization (Thomson, Herrick, Brown et al, 1956). Along the Fall Line, and for a distance of 30 to 60 miles south of it, sand and gravel of Cretaceous age constitute the principle aquifer. Sands and gravels of both the Providence Sand and Tuscaloosa Formation comprise the Cretaceous aquifer which extend to a depth of 600 to 700 feet below the surface at Robins AFB.

An important consideration in assessing ground-water contamination is the water present in the upper alluvial deposits. These deposits are not used locally as a source of water supply, although some degree of interconnection may occur between this and the underlying formations.

Ground water exists beneath Robins AFB under both water table and artesian conditions. The water table is present throughout the base in the upper sandy alluvial deposits. The water table discharges to the east and contributes to the development of a swampy area extending to the Ocmulgee River, LeGrand, (1962). There appears to be a confining bed just below the swamp deposits which would create weak artesian conditions immediately below this upper layer. Both the land surface and the beds are inclined towards the southeast, but the inclination of the beds is steeper. The numerous interbedded clay layers in both the Providence Sand and the Tuscaloosa Formation create artesian conditions within them. Surface water recharge, particularly precipitation, enters the ground, percolates to the water table and flows downgradiant to a point where the zone of saturation is interrupted by an impermeable bed. Part of the water may pass above the bed and continue to flow under water table conditions and the other part of it flows beneath the confirming bed. This is confined or artesian water; it will rise in a tightly cased well to a height above the bottom of the confining bed. The interlayering of clay and sand results in a composite artesian

ŧ

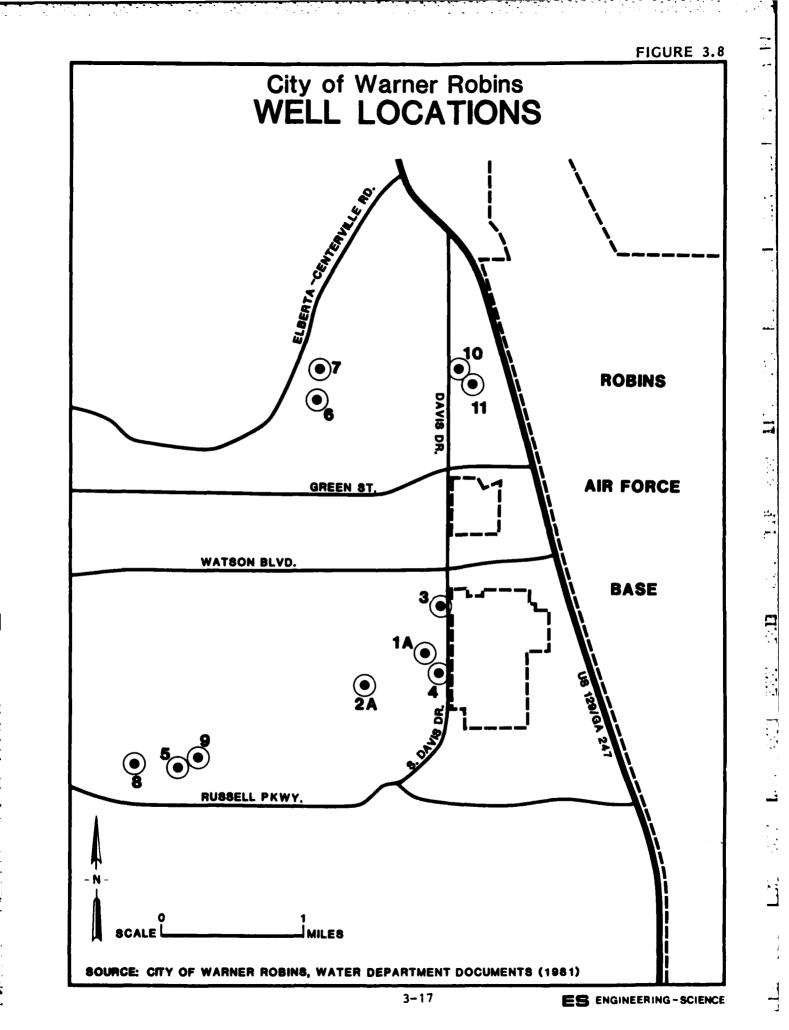
3-15

ES ENGINEERING-SCIENCE

system consisting of several artesian sand aquifers, and intervening clay confining beds.

In the study area, deposits of Cretaceous age furnish adequate water supplies to present users and are capable of yielding large supplies to future developers. The City of Warner Robins obtains its water from wells screened in various sand layers of the Tuscaloosa Formation (See Well Logs - Appendix F). Figure 3.8 shows the location of these wells and Table 3.4 gives a brief summary of the wells. The city wells have capacities which range from 1000 to 1600 gpm indicating the large quantity of water available from this aquifer. Robins AFB has 12 wells. The logs of these wells are shown also in Appendix F. Of these 12 wells, numbers 1 through 8 are used as a drinking water source. Locations and a summary of these wells are given in Figure 3.9 and Table 3.5. Well No. 9 furnishes water supplies to the Federal Aviation Administration (FAA) building. Well No. 10 is not connected to the public system but is an independent two-inch diameter well used for drinking water supply at the skeet range. Wells No. 11 and No. 12 are used for water level maintenance at Luna and Scout Lakes.

Ground-Water Quality


T F

D

n

Ground-water flow direction in the Cretacecus aquifer is in an easterly-southeasterly direction (LeGrand, 1962), discharging to the Ocmulgee River locally. Natural ground-water quality in the Cretaceous aquifer has been reported to be excellent (LeGrand, 1962). Results from samples collected from these wells in January of 1978 indicated the quality to be excellent with very little mineral content present. Results did not indicate any contamination of these wells for the parameters tested; an organic scan was not run.

Shallow ground water in the vicinity of Landfill No. 4 was reported by Law Engineering Testing Company (LETCO, 1980) to be contaminated. Several shallow monitoring wells installed by LETCO (Figure 3.10) indicate the presence of various concentrations of chloride, dissolved solids, nitrate, cyanide, arsenic, calcium, chromium, lead, manganese and zinc. An organic scan was run on monitoring wells nos. 4, 5, 15, and 18. The results of this analyses indicated the presence of methylene chloride, phenol, diethylphthalate, bis(2-ethylhexyl)phthalate, benzene, chlorobenzene, trans-1,2,dichloroethylene,

X

.

Well No.	Casing Diam. (in.)	Total Depth (feet)	Capacity (GPM)	y Static Depth Below Grou Surface (Feet)	Motor H.P. and	Date Drilled	Remarks
1A	12	540	1557	129	150	1981	10' screens at 340' 370' and 420' 20' screens at 440' 470' & 510'
2A	25	580	1613	132	150	1979	10' screens at 174' 300', 478' and 495' 40' screen at 400'
3	10	415	1000	105	75	1961	10' screen at 360' 20' screen at 275' 15 ' screen at 390'
4	12	390	1559	122	100	1960	10' screen at 240' and 320' 20' screen at 360'
5	12	422	1100	132	75	1962	10' screens at 235' 270' 20' screen at 392' 5' screen at 349'
6	12	435	1050	116	100	1968	10' screens at 250' 390' and 415' 20' screen at 290'
7	12	440	1641	105	150	1972	10' screen at 240', 20' screen at 345', 30' screen at 400'
8	12	430	1641	101	150	1970	20' screens at 240' 360' and 400' 15' screen at 305'
9	12	490	1613	101	150	1971	10' screens at 330' and 405' 20' screens at 360' and 460'
10	12	480	1613	56		1976	
11	12	440	1600	47	100	1976	

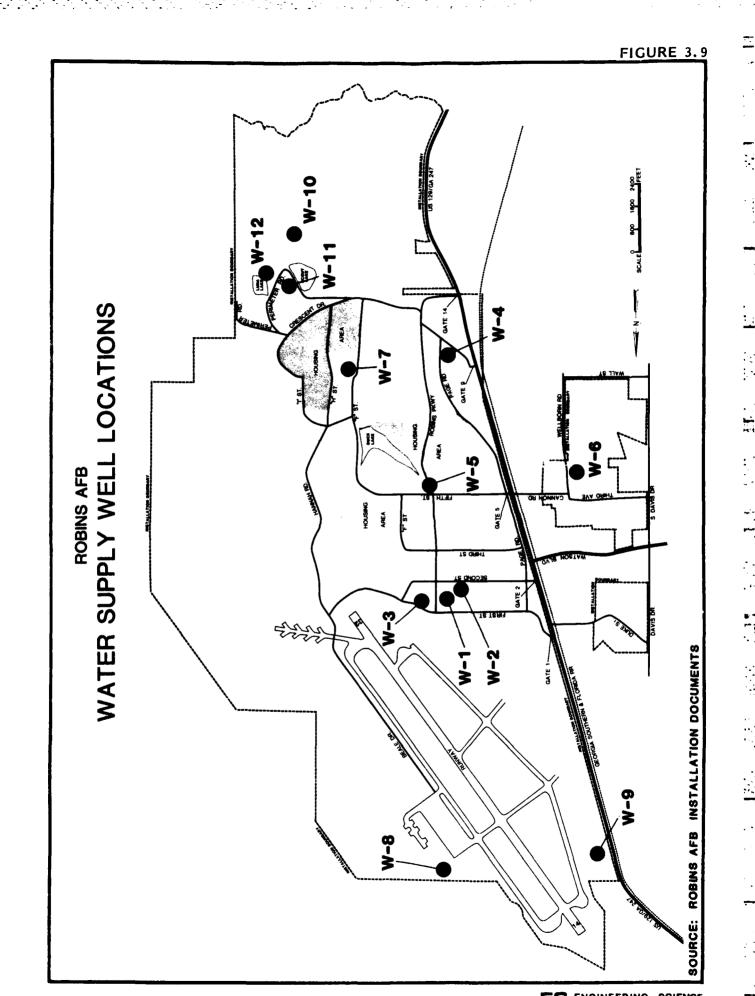
TABLE 3.4 CITY OF WARNER ROBINS MUNICIPAL WELLS

. .

. ...

•

r


L

.

ľ

• • • .

Source: City of Warner Robins Water Plant Files

.

•:•

- -

٠.

٠.,

.

ES ENGINEERING-SCIENCE

-									
Bldg No.	Well No.	Casing Diam.		Capacity (GPM)				Date Drilled	Remarks
186	1	12"	362	835		100	Vertical turbine	. 1941	Redrilled
	1A	12"	389	950				1975	
164	2	12"	255	900		100		1941	Redrilled
	2A	12"	386	900				1974	
	3	12"	298	1300			Vertical turbine	1942	
648	4	12"	430	775		60		1943	
	4A	12"	385	992		60		1956	
511	5	12"	355	700				1942	Redrilled
	5A	12"	430	1230	45'	100		1963	
	6	12"	367	1500	4 5 '	150		1943	Redrilled
	6A	12"	495	1500	63'			1976	
	7							1944	Redrilled
	7A	12"	490	992	38'	100		1958	
61	8	8"	522	900	9'	75		1958	
	9	6 "	140	30	60'	3	Submers- ible	1958	
	9A	-	135	300		7 1/2		1970	6"Outlet
	10	(Small	well -	- data una	vailable)			
	11		180	10	45'	1	Jet pump	1968	2"Outlet
	12			20		1	Submers- ible	1966	4"Outlet

TABLE 3.5 SUMMARY OF ROBINS AFB WELLS

ij

Source: Robins AFB Files

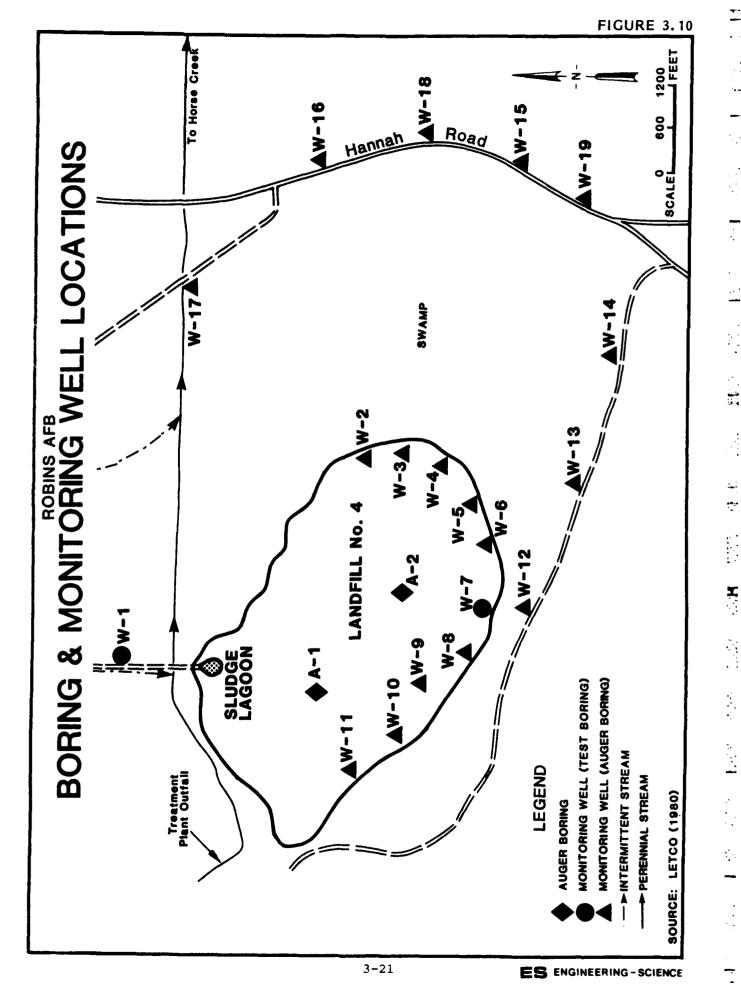
Ľ

65

•

....

:


Ľ

Note: The A notation after the Well No. indicates that the well was redrilled.

.

. .:

. . . .

(1

•••• ••• •---,

....

.

.

1

trichloroethylene, and 1,1,2,2 tetrachloroethylene in the shallow ground water downgradient of Landfill No. 4 and the sludge lagoon. A summary of the LETCO ground-water quality data is included in the appendix. This study was conducted at Landfill No. 4 and shallow ground-water quality elsewhere on the base has not been investigated.

In the area of Landfill No. 4, weak artesian conditions may exist below the thin clay layer which underlies the swamp deposits (LeGrand, 1962, Figures 6). Both of these factors (clay layer and artesian conditions) may affect the concentrations of contaminants entering the lower aquifer. The upper clay layer, which is probably restricted to the zone underlying the swamp deposits, may act as a confining bed preventing any further infiltration. It is important to note however, that organic compounds such as methylene chloride and other chlorinated hydrocarbons have the ability to move through clay more rapidly than water would move through clay (Roberts et al, 1980, and Giger and Molnar-Kubica, 1978). The mechanisms through which this occurs are extremely complex but have been shown through experimentation. Under normal circumstances, weak artesian conditions appear to exist in the deposits immediately below the clay. This may cause the "upwelling" of water from below the fill rather than infiltration from the fill into the aquifer. The fate of organics in the subsurface is extremely difficult to predict because of the uncertainty involved in describing precise attentuation mechanisms occurring under unsaturated and saturated conditions.

SURFACE WATER QUALITY

Ē

K

Robins AFB has several streams and surface drainage systems which originate on or flow through the base property. All of these streams drain in a general west-to-east course and ultimately flow to the Ocmulgee River either via defined creek beds such as Horse Creek or by dissipated overland drainage through the adjacent swamp areas. The streams have been monitored routinely at several locations by the base Bioenvironmental Engineering Services Division (BESD) in compliance with State permit requirements. In addition to the required monthly sampling program, the BESD conducted a baseline chemical characterization survey of the non-potable surface waters within the base between 1978 and 1979

(Talley, et al., 1979). Figure 3.11 depicts the surface water monitoring stations presently sampled for NPDES permit compliance as well as the additional stations sampled during the 1978-1979 baseline survey. Summaries of the data compiled during the 1978-1979 study and the 1981 NPDES data are included in Appendix C. -

•

~~

• -

i. .

-.

.

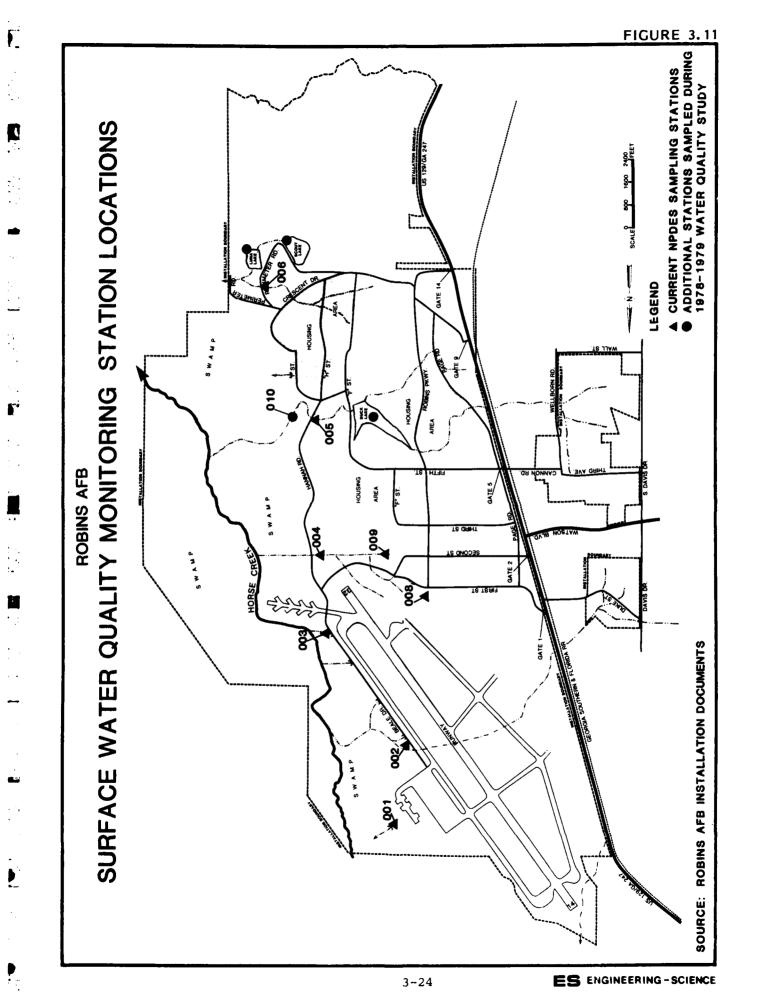
~-

s" a

5

· . .

. -


•

The 1978-1979 water quality survey detected levels of phenol from 0.05 to 1.5 mg/l in the Hannah Road runoff ditch, Station 004. Ammonianitrogen concentrations at Station 004 ranged between 4.0 and 8.6 mg/l and manganese concentrations ranged from 0.057 to 0.18 mg/l. The phenol and ammonia values may be attributable to the sanitary sewage treatment plant No. 1 discharge or to seepage from past landfills adjacent to the creek. The 1981 NPDES data revealed only one sample which exceeded the 2.0 mg/l ammonia nitrogen limitation at a concentration of 2.4 mg/l. Phenols were not sampled at this location; however, the phenol data collected directly from the sanitary treatment plant No. 1 effluent (Station 009) were at or below the NPDES limits. Oil and grease concentrations ranged from 0.3 to 6.2 mg/l at Station 004 and from 0.2 to 4.7 mg/l at Station 009. The oil and grease concentrations at Station 004 was frequently higher than those detected upstream at Station 009, signifying that oil and grease may be entering the ditch at some point downstream of the industrial wastewater treatment plant.

All remaining monitoring stations were found to have good water quality values. The only noticeably high constituent detected was total iron in samples collected from Stations 001 and 005 during the 1978-1979 survey. These concentrations ranged from 0.28 to 3.4 mg/l for Station 001 and 0.57 to 1.8 mg/l for Station 005.

WETLAND AREAS

Robins AFB has 1,178 acres of wetlands in the form of an unimproved river swamp system. The swamp area provides important functions for the sustenance of aquatic life and water quality in the river and streams receiving its drainage. These functions include providing breeding

grounds for various aquatic organisms as well as providing the streams with vital organic matter which serves as a food source for the many organisms inhabiting these areas. In addition, the swamp is known to harbor two species of animals listed by the Federal government as threatened or endangered. These species are the American alligator and the red-cockaded woodpecker. Ten alligators have been sighted on Robins AFB and it is estimated that approximately 15-20 alligators actually exist on base. Approximately ten red-cockaded woodpeckers have been sighted on the base. A list of the threatened or endangered vertebrate species potentially present is included in Appendix C. There are also several species of threatened or endangered plants which potentially occur within the swamp area. 2

.

-

- :

Summary of Environmental Settings

10

The environmental setting data reviewed for this study indicate the following key items concerning the impact of past waste disposal practices on the base:

- Alluvial deposits cover the upper 20 to 40 feet of the base.
 The eastern part of the base is swampy with peat deposits covering the upper 10 to 15 feet and underlain by a thin layer of clay. The western part of the site consists of more sandy alluvial deposits which extend eastward below the swamp deposits.
- o The water table beneath the base is shallow, particularly to the east where a surface discharge contributes toward the creation of a swampy area. In the western part of the base, the surface soils are sandy and infiltration of precipitation is expected to be high. This infiltration may directly recharge the shallow aquifer.
- o The primary regional aquifer, the Cretaceous aquifer, underlies Robins AFB at a depth of about 40 to 50 feet and extends to a depth of approximately 650 feet below the surface. It consists of sand with a few clay lenses interspersed throughout its thickness.

Robins AFB obtains its water supply from twelve wells distri buted over the installation. The City of Warner Robins has a
 separate system consisting of 11 wells, located throughout the

city. All wells are drilled into the Tuscaloosa Formation of the Cretaceous aguifer.

o Recharge for the Cretaceous aquifer occurs west of Robins AFB where the Providence sand outcrops at the surface. Some recharge may also occur beneath the base as some interconnection between alluvial and underlying deposits may occur.

0

.

- Area precipitation rates (44.1 inches per year) are higher than potential evapotranspiration rates (42 inches per year).
- Approximately 1200 acres of wetlands in the form of an unimproved river swamp system are located on the east side of the base. The wetlands are known to harbor two species of animals listed by the Federal government as threatened or endangered; American alligator and the red-cockaded woodpecker.

From these major points, it may be seen that the potential for the generation and migration of contamination caused by past waste disposal practices is high. The presence of shallow ground-water contaminants has been documented near landfill No. 4 (LETCO, 1980). Although the production wells located on the base are several hundred feet deep, some degree of interconnection between upper and lower aquifers potentially could occur. Information obtained from base production wells and from ground-water monitoring data (LETCO, 1980) indicate that the base is located in a ground-water discharge area; i.e. the hydraulic gradient is upward. However, the production wells will alter this gradient within their particular zone of influence and may induce the downward movement of leachate. On the eastern edge of the base, some migrating contaminants may be transported in shallow ground-water flow and discharged at the surface into the swamp.

CHAPTER 4

<u>، ا</u>

2

.-

international de la composición de la c

. .

. . ~

. .

. .

.

.

•

••

FINDINGS

CHAPTER 4 FINDINGS

. . .

To assess hazardous waste management at Robins Air Force Base, waste generation and disposal methods were reviewed. This chapter summarizes the hazardous waste generated by activity, describes waste disposal methods, identifies the disposal sites located on the base, and evaluates the potential for contaminant migration.

PAST SHOP AND BASE ACTIVITY REVIEW

Ē

1

្រុ

To identify past base activities that resulted in generation and disposal of hazardous waste, a review was conducted of current and past waste generation and disposal methods. This review consisted of interviews with base employees, a search of files and records, and site inspections.

The source of most hazardous wastes on Robins AFB can be associated with one of the following activities:

- o Industrial shops
- o Fire protection training
- Pesticide utilization
- o Fuels management

The following discussion addresses only those wastes generated on base which are either hazardous or potentially hazardous. In this discussion a hazardous waste is defined as hazardous by the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). A potentially hazardous waste is one which is suspected of being hazardous although insufficient data are available to fully characterize the waste material.

Industrial Shops

The industrial operations at Robins AFB can be divided into two major groups as follows: The Directorate of Maintenance and other base facilities or tenant organizations. Five major divisions embody the majority of the shop activities for the Directorate of Maintenance. The divisions include the Aircraft Division, Plant Management Division, Airborne Electronics Division, Quality Division and Industrial Products Division. A principal source of waste materials generated at Robins AFB has been the Directorate of Maintenance areas.

Other base maintenance support activities include the industrial shops from the Directorate of Distribution, the 2853rd Air Base Group, the 2853rd Civil Engineering Squadron, the 5th Combat Communications Group, the 19th Bombardment Wing, and the 1926th Communication Installation Group. These industrial operations include primarily vehicle, electrical and aircraft maintenance and repair.

In order to identify those shops which handle hazardous materials and/or generate hazardous waste, a review was made of the Bioenvironmental Engineering Services Division shop files. The results of this file review are shown in Appendix D, Master List of Industrial Shops.

For those shops identified that handled hazardous materials or generated hazardous waste, key personnel within the Directorate of Maintenance and other base maintenance support functions were interviewed. A timeline of disposal methods was established for major wastes generated. The information from the interviews with base personnel and base records is summarized in Table 4.1. This table shows the building locations as well as the waste material names, waste quantities, and disposal method timeline.

	Z	INDUSTRIAL OPERATIONS HAZARDOUS WASTE MANAGEMENT	RIAL OPERATIONS (Shops) Hazardous waste management	3)
SHOP NAME	LOCATION (BLDG. NO.)	WASTE MATERIAL	WASTE QUANTITY"	METHOD(S) OF TREATMENT, STORAGE & DISPOSAL 1950 1950 1970 1950
DIRECTORATE of DISTRIBUTION				
HAZARDOUS CHEMICAL STORAGE	327	NON-SALABLE PAINT STRIPPERS	10 to 15 GALS./YR.	1
		NON-SALABLE, EXPIRED SHELF-LIFE CHEMICALS	15 to 30 LBS./YR.	DPDO ⁽⁴⁾ ON-BASE LANDFILLS CONTRACTORS
		DDT	20 to 40 LBS /2 to 5 YRS.	DPDO ON-BASE LANDFILLS CONTRACTORS
PAINT SHOP	32 4	PAINT SHOP WASTES, MISCELLANEOUS	25 GALS. /MO.	DRUMMED TO BASE LANDFILLS
CUN ROOM (Cleaning)	368	SOLVENTS	25 GALS. / 18 MOS.	
DRECTORATE of MAMTENANCE				
AIRCRAFT DIVISION				CTOBU
CORROSION CONTROL	5	PHENOLIC/NON-PHENOLIC	1,500 to 2,000 GALS./WK.	NEGLIGIBLE SEWER INTP
	(1979 to Present)	PHOSPHORIC ACID CLEANER	800 GALS./MO.	NEUTRALIZED TO SANITARY SEWER
	110 (to 1979)	CHROMIC ACID CLEANER	800 GALS. /MO.	
		PD-683	55 CALS./WK.	st.
PAINT SHOP	?/ 89 (Bidg. 89 - 1964 to Present)	PAINT RESIDUE, THINNERS & SOLVENTS	800 CALS. /MO.	STORM SERVER OK SLUDGE LANDFILL
NOSE DOCKS	44, 47, 48 6 49	PD-680 HYDRAULIC FLUID	100 CALS. /MO.	BURNED IN FPT AREAS DPDO
ENGINE REPAIR SHOP	125	PD-680 WASTE OILS	50 GALS. /MO.	BURNED IN FPT AREAS
LANDING GEAR SHOP	125	PD-680	50 GALS./2 MOS.	BURNED IN FPT AREAS DPDO
KEY				

4-3

--

Ē

•

.

.

.

-

. . . _

KEY

2

ACTIVITY ASSUMED TO OCCUR IN A SHOP LOCATED ELSEWHERE CONFIRMED TIME-FRAME DATA BY SHOP PERSONNEL ESTIMATED TIME-FRAME DATA BY SHOP PERSONNEL

(1) BASED ON CURRENT RATES AND BEST ESTIMATES OF PAST RATES (2) NWTP = INDUSTRIAL WASTE TREATMENT PLANT
(3) FPT = FIRE PROTECTION TRAINING
(4) DPDO = DEFENSE PROPERTY DISPOSAL OFFICE

.

 2 of (TREATMENT, STORAGE & DISPOSAL 1950 1960 1970 1980 2010 DPDO 00dd BURNED IN FPT AREAS ON-BASE LANDFILLS STORM SEWER OR SLUCE LADON OF BURNED IN FPT AREAS ON ARE LANDFILLS BURNED IN FPT AREAS ON-BASE LANOFILLS STORM SEWER OR BURNED IN FPT AREAS, ON BASE LACOON OR BURNED IN FPT AREAS SLUDGE LACOON DPDO **UTP** IWTP IWTP BURNED IN FPT AREAS DPDO DPPOO METHOD(S) OF DPDO BURNED IN FPT AREAS DPDO BURNED IN FPT AREAS 1960 SANITARY SEWER CHEMICAL REDUCTION TO STORM SEWER STORM SEWER AREAS WASTE QUANTITY 600 to 800 GALS./MO. (1950s to 1972) 50 to 100 GALS./2 WKS. 200 to 400 GALS. /YR. 100 GALS./WK. (1972 to Present) 100 GALS. /MO. 100 GALS. /WK. 110 CALS. /MO. 500 GALS. /YR. 110 GALS. /MO. 00 GALS. /MO. SO CALS. /MO. 50 CALS. /MO. 50 GALS. /WK. 200 LBS. /YR. WASTE ACID CLEANERS SLUDGE TRICHLOROETHANE (from '79) CARBON REMOVER, PHENOLIC TRICHLOROETHYLENE (to '79) PAINT RESIDUE, THINNERS 5 SOLVENTS WASTE MATERIAL METHYL ETHYL KETONE METHYL ETHYL KETONE POLYSULFIDE SEALANT METHLYENE CHLORIDE TRICHLOROETHYLENE TRICHLOROETHYLENE HYDRAULIC FLUID PAINT THINNERS CYANIDE BATHS CHROME BATHS PAINT WASTE WASTE OILS ACETONE PD-680 PD-680 7/140 (Bldg. 140 --1971 to Present) LOCATION (Bidg. 140 -1971 to Present) (BLDG. NO.) 136 (1995 to 1969) 125 (1996) 10 1955) 640 8 645 142 (1969 to Presen 2/140 125 AIRBORNE ELECTRONICS DIVISION INDUSTRIAL PRODUCTS DIVISION PROPELLER & PROP CLEANING SHOP NAME COMPOSITE - ALL SHOPS ELECTROPLATING SHOP **TURRET SHOP** PAINT SHOP

INDUSTRIAL OPERATIONS (Shops)

·. ·.

()

HAZARDOUS WASTE MANAGEMENT

4-4

• ••• • -{ -

i. E

1

......

1

INDUSTRIAL OPERATIONS (Shops) HAZARDOUS WASTE MANAGEMENT

Ç

Ē.

: :____

.

.

1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

				3 of 6
SHOP NAME	LOCATION (BLDG. NO.)	WASTE MATERIAL	WASTE QUANTITY	METHOD(S) OF TREATMENT, STORAGE & DISPOSAL 1950 1950 1970 1980
INDUSTRIAL PRODUCTS DIVISION (continued)				
ELECTROPLATING SHOP (continued)		WASTE ALKALINE CLEANERS	400 GALS./3 MOS.	STORM SEWER
	(1969 to Present) 138	TRICHLOROETHYLENE	150 GALS. /WK.	AURINE IN FPT DPDO
	(656) 43 656(1)	TRICHLOROETHANE	150 GALS. /WK.	AURNED IN FFT DPDO
		PERCHLORETHYLENE	150 GALS. /WK.	BURNED IN FFT DPDO
HYDROSTATIC TESTING	150	PAINT WASTES & RESIDUE	30 GALS. /MO.	STORM SEWER SLUDGE LACOON ON DPDO OR BURNED IN FPT AREAS ON-BASE LANDFILLS DPDO
BATTERY SHOP	150	WASTE ACIDS	25 GALS. /MO.	STORM SEWER INTP
PARTS CLEANING & METAL BOND	169	PAINT STRIPPER, PHENOLIC	110 GALS. /DAY	SANITARY SEWER INTP
		TRICHLOROETHANE	55 CALS. /WK.	NURNED IN FOT DPDO
PLASTICS SHOP & RADOME SHOP	670 € 680	METHYL ETHYL KETØNE	150 GALS. /MO.	BURNED IN FPT AREAS ON AASE LANDRILLS DPDO
		PAINT RESIDUE	50 GALS. /3 WKS.	STORM SEVER OR SLUDGE LAGOON OR BURKED IN FPT AREAS ON-BASE LANDFILLS DPDO
5 COMBAT COMMUNICATIONS GROUP (CCG)				
GROUND POWER SHOP	614	WASTE GENERATOR OIL	110 GALS. /MO.	1364 DPDO
VEHICLE MAINTENANCE	655	SKIMMED OIT STUDCE	100 GALS. /4 MOS.	SLUDGE LACOON OR DPDO
19 BOMBARDMENT WING (BW)				1974
FIELD MAINTENANCE SQUADRON (FMS) FUEL SYSTEM SHOP	5	SKIMMED OIL JEIEE STUDGE		STUDEE LACOON OR
			200 GALS. /4 MOS.	

				4 of 6
SHOP NAME	LOCATION (BLDG. NO.)	WASTE MATERIAL	WASTE QUANTITY	METHOD(S) OF TREATMENT, STORAGE & DISPOSAL 1950 1950 1950 1950
19 BOMBARDMENT WWG (BW) (continued)				
r IELD MAINTENANCE SQUADRON (FMS) (continued)				
PNEUDRAULICS SHOP	19	PD-680	160 CALS./6 MOS.	1965 DPDO
		HYDRAULIC FLUID	1 QT./MO.	DISPOSED OF 1965 AT BLDC, 79
ELECTRIC SYSTEMS SHOP	79	WASTE BATTERY ACID	10 CALS. /6 MOS.	INTP VIA BLDC. 159
CORROSION CONTROL	80	PAINT RESIDUE		1965
		THINNERS PAINT STRIPPERS ACID CLEANERS METAL BRIGHTENERS	55 GALS. /MO.	SLUDGE LACOON OR DPDO ON-BASE LANDFILLS DPDO
AEROSPACE CROUND EQUIPMENT (AGE)	82 6 85	JP-4	100 CALS. /MO.	
NETAIN UNOT & AGE JENVICEING JACK		MOGAS	100 GALS. /MO.	
		HYDRAULIC FLUID PAINT THINNER PAINT STRIPPER LUBRICATION OIL	200 GALS/MO.	SLUDCE LACOON OR ON AASE LANOFILLS DPDO 1965
PROPULSION BRANCH	76	₽-qſ	100 CALS. /MO.	1965 DPDO
		ENCINE OIL	10 GALS. /MO.	1965 DPDO
MUNITION MAINTENANCE SQUADRON EQUIPMENT MAINTENANCE BRANCH	98	HYDRAULIC FLUID	Also included in AGE Shop waste total	SLUDGE LACOON ON DPDO
		PD-680	36 GALS./MO.	1965 DPDO

.

•.

.

INDUSTRIAL OPERATIONS (Shops)

(1

4-6

7 ----•••

.

. .

•

.

7

. ÷

	Z	INDUSTRIAL OPERATIONS (Shops) Hazardous waste management	ATIONS (Shops e management	s) <u> </u>
SHOP NAME	LOCATION (BLDG. NO.)	WASTE MATERIAL	WASTE QUANTITY	METHOD(S) OF TREATMENT, STORAGE & DISPOSAL 1950 1960 1970 1980
19 BOMBARDMENT WING (BW) (continued)				
ORGANIZATION MAINT. SQUADRON				1 465 DPDO
BOMBER-PHASE MAINTENANCE TANKER-PHASE MAINTENANCE	81 67	ENGINE OIL HYDRAULIC FLUID	100 GALS. /MO. 100 GALS. /MO.	
1926 COMMUNICATIONS & INSTALLATION GROUP				
MINOR VEHIC'LE MAINTENANCE	978	SKIMMED OIL SLUDGE	20 to 30 GALS./YR.	1965 1965
WEATHER EQUIPMENT REPAIR	1684	WASTE OILS, FLUIDS	5 GALS. /YR.	1955 DPDO
2853 AM BASE GROUP (ABG)				
VEHICLE TRANSPORTATION DIVISION				
FUEL VEHICLE REPAIR	961			BURNED IN FPT DPDO
AUTO MAINTENANCE SHOP	286 - 696	HYDRAULIC FLUID	BUD CALS. /MC.	
PAINT & BODY SHOP	304	THINNERS & PAINT REMOVER	55 GALS. /YR.	
		PAINT BOOTH SLUDGE	55 GALS./3 YRS.	ON-BASE LANDFILLS
		PAINT RESIDUE	55 GALS. /2 YRS.	STORM SEWER ON-BASE LANGFILLS DPDO
2863 CIVIL ENGMEERING SQUADRON (CES)				SANITARY SEWER. Studge Stoda Carden Carden
INDUSTRIAL WASTE TREATMENT PLTS.	141, 147 6 314	INTP SLUDGES	900 CU. YDS./YR.	ON-BASE LANDFILLS SLUDGE LACOON FACILITY
TRANSFORMER STORAGE	9611	PCB TRANSFORMERS	1 to 2 EA./2 to 5 YRS.	ELECTRIC REHABILITATION CONTRACTORS (CES)

.

للغال فالمناز وكالمنابع المتعالم المتالية المنافعات المعالية والمنافع المنافع المنافع المنافع المنافع المنافع ا

States of the second second

TABLE 4.1 (continued)

Ū

•

È.

•

2

INDUSTRIAL OPERATIONS (Shops)

÷.,

÷., '

HAZARDOUS WASTE MANAGEMENT

SHOP NAME			-	
	LOCATION (BLDG. NO.)	WASTE MATERIAL	WASTE QUANTITY	METHOD(S) OF TREATMENT, STORAGE & DISPOSAL 1950 1960 1970 1980
2853 CIVIL ENGINEERING SQUADRON (CES)				
PAINT SHOP	275	PAINT RESIDUE	100 CALS./3 MOS.	SLUDGE LACOON OR ON-BASE LANDFILLS
		THINNERS	50 CALS./3 MOS.	OR DUM NEW FOR AREAS SLUDGE LANDFILLS
ENTOMOLOCY UNIT	295 & 296	RINSED CONTAINERS	10 to 20 EA./YR.	ON-BASE LANDFILLS COUNTY LANDFILL
		OFF-SPEC GRANULAR MALATHION	40 TONS (One-Time Occurrence)	ON-BASE LANDFILL
		AEROSOL CANS OF DDT	240 CANS (On∉-Time Occurrence)	HAZARDOUS WASTE
GROUNDS SHOP	591 & 593	RINSED CONTAINERS	10 to 12 EA./YR.	ON-BASE LANDFILLS

. .

۰.

. . .

۰.

Ξ

.

.

-

•

....

분

.

. .

_+

· 4-8

From the early 1940's to approximately 1965, many ignitable waste chemicals and petroleum compounds were burned in fire protection training pits during training exercises. Waste solvents were burned in the fire protection training pits through approximately 1955, then the base began disposal of the material through resale or reuse. Rinse water from the plating and painting operations were previously discharged to the storm sewer. Cyanide solutions from the plating facility were discharged to the sanitary sewer system.

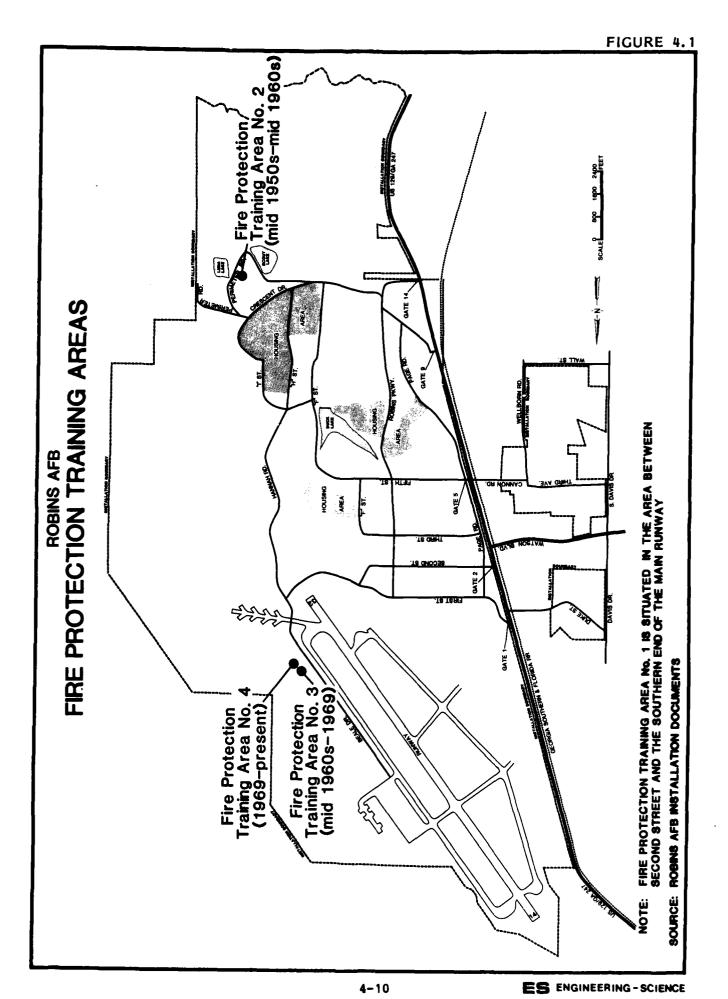
Burning of ignitable and other chemical waste in the fire protection training pits was decreased about 1965 due to air quality considerations. An industrial waste treatment system became operational in 1964 and expanded in 1969. Treatment began of waste streams from facilities such as the Electroplating Shop and the Corrosion Control Shop which had previously discharged to the storm sewer or sanitary sewer. A sludge lagoon was also constructed in the mid-1960's to dispose of industrial waste treatment plant sludge. Many types of waste chemicals and chemical sludges were also disposed of in the sludge lagoon. Paint residue, thinners and paint skimmings were typically disposed of in the on-base landfills. Petroleum products were sold by DPDO beginning in approximately 1965.

In 1978, the on-base disposal of all hazardous solid wastes and most non-hazardous solid waste was discontinued. Solid wastes were disposed of off-base by contract disposal. New industrial waste treatment plant sludge disposal facilities were also completed and started up about this time.

Fire Protection Training

Ċ

<u>.</u>


-

Ē

The Fire Department has operated four fire protection training areas since 1943. These areas were used for practice exercises where petroleum based fires are set and then extinguished. The following list gives specific designation for the areas and their approximate period of use (See Figure 4.1).

1 1 1

Fire Protection Training Area	Period of Operation
No. 1	1943-mid 1950's
No. 2	Mid 1950's-mid 1960's
No. 3	Mid 1960's-1969
No. 4	1969-present

· ·

E

-

:

1

.

· •

يەر مىر

نټ)

<u>د ر</u>با

In the past, the common mode of operation was for the Fire Department to dump drums of contaminated fuel, oil, solvents, and ignitable chemicals on previously water saturated ground. The area was repeatedly ignited and extinguished during each exercise until it would no longer burn. This was the standard procedure until air pollution control regulations became more stringent in the mid 60's. These regulations curtailed the number of exercises and required the use of only uncontaminated JP-4 (less than 10 percent contaminants).

High pressure water was used to extinguish fires at Robins AFB until the introduction of protein foam in 1950. The protein foam was replaced in 1972 by the AFFF as an extinguishing agent for fire fighting training exercises.

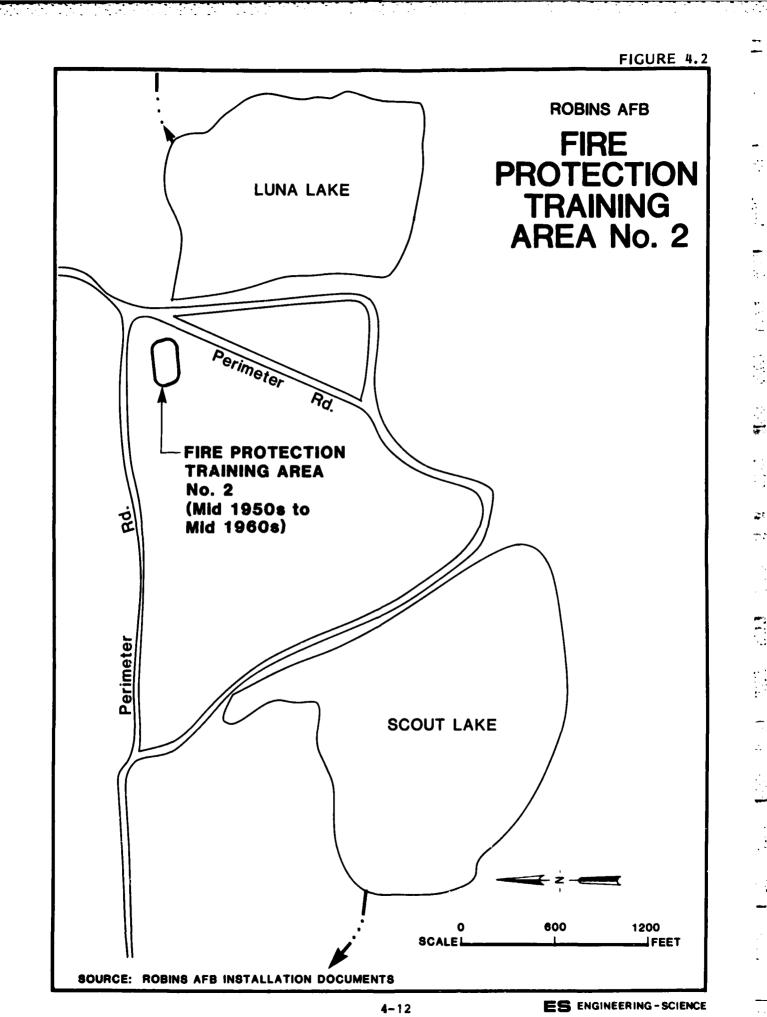
Fire Protection Training Area No. 1

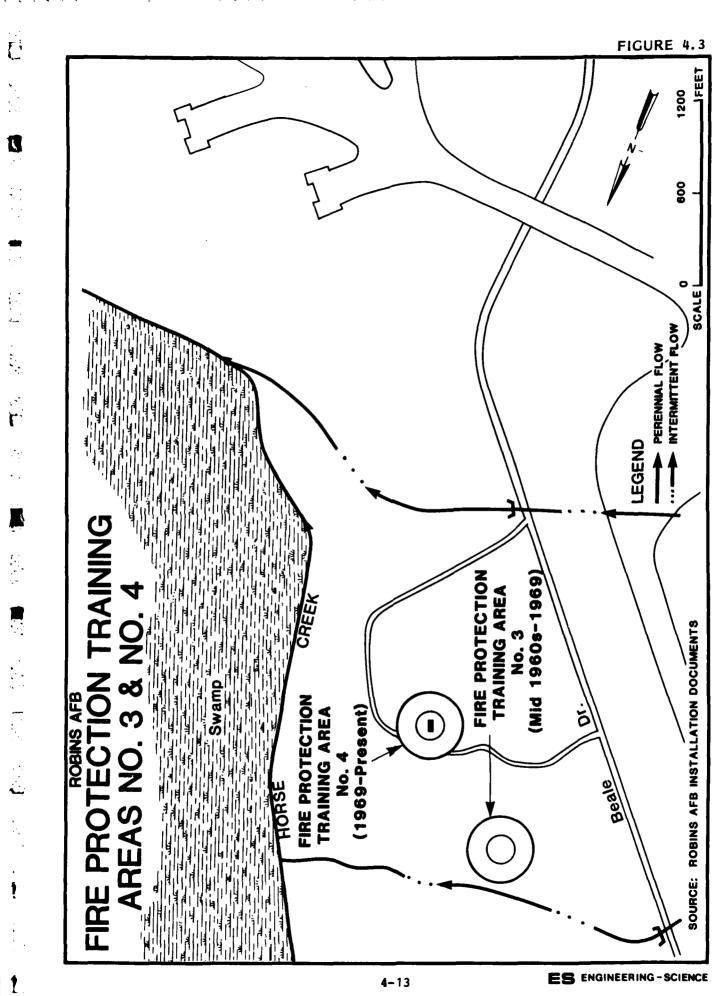
C

.

٤.

2


Fire protection training area No. 1 was located in the general vicinity of landfills No. 1 & No. 2, near the POL bulk storage area, however, the exact location of fire protection training area No. 1 could not be determined. This area was an unlined pit surrounded with earthen dikes and was used twice a week from 1943 until the mid 1950's.


Fire Protection Training Area No. 2

Fire protection training area No. 2 was actually a number of sites in the general area of Lake Luna as shown in Figure 4.2. These sites were used from the mid 1950's until the early to mid 1960's. During this period the Fire Department did not use a pit but conducted training exercises on open sites. Operating procedures included saturating the ground with water and then burning various flammable materials or chemical wastes.

Fire Protection Training Area No. 3

Fire protection training area No. 3, was another diked, unlined pit. This area was located close to the present site (No. 4), as shown in Figure 4.3. The site was operated from the early 1960's until the construction of the present training area in 1969. As previously mentioned, air pollution regulations curtailing the number of exercises and requiring the use of only uncontaminated fuel became effective during this period. and the second sec

Fire Protection Training Area No. 4

.

The current site, fire protection training area No. 4, is a concrete lined, diked pit located in the SAC area as shown in Figure 4.3. Permanent fuel tanks with gravity feed were also installed during construction. Training exercises are limited to twice per quarter using uncontaminated JP-4. _

بسيب

•

Pesticide Utilization

Pest control has been an on-going program since the inception of Robins AFB. The Entomology Shop initially administered the pest control program while the grounds and pavements $\operatorname{shc}\rho$ was responsible for weed control. In 1967, the two programs were combined and the Entomology Shop became responsible for both programs. The Entomology Shop has always been located in building 295 and the chemical storage areas have been situated in the facilities neighboring the shop. Grounds and pavements has been located in the same compound as Entomology occupying facilities 294 and 286.

The pesticide program entails routine and specific job order spraying. Both truck-mounted and hand-held sprayers are utilized. A listing of the pest and weed control chemicals presently on hand is included in Appendix C. Standard procedures include mixing and using all pesticides immediately or storing any residual mixtures for use within 15 to 30 days. In 1966, a wash rack was constructed in an area adjacent to the Entomology Shop to rinse empty containers and spray equipment. Water collected in the wash rack is stored in an underground tank. The water is routinely pumped and used as make-up water for chemical mixing. Prior to the wash rack installation, Entomology Shop personnel interviewed stated that excess herbicides were usually sprayed on the adjacent lot. Empty pesticide containers are presently triple rinsed, punctured or crushed and disposed along with the base refuse.

It was indicated by several base personnel that a one time quantity of pesticide, approximately 40 tons, had been disposed in Landfill No. 2. It is suspected that the material was a mixture of clay or aggregate with 1.5 to 10 percent granular malathion used for aerial spraying to control mosquitoes and gnats. Further investigation revealed that the disposal operation would likely have occurred prior to 1964.

In October 1979, 55 gallons of DDT solution leaked from a drum stored in a gravel section of the chemical storage area adjacent to building 295, (Figure 4.4). The Bioenvironmental Engineering Services Division collected soil samples from the site and the drainage paths from the storage area to determine the extent and degree of migration of the DDT (SGB, 1980). Soil under the gravel was found to be primarily a sandy loam. The chemical analyses were conducted by USAF OEHL, Brooks AFB, TX and are summarized below:

Location

È

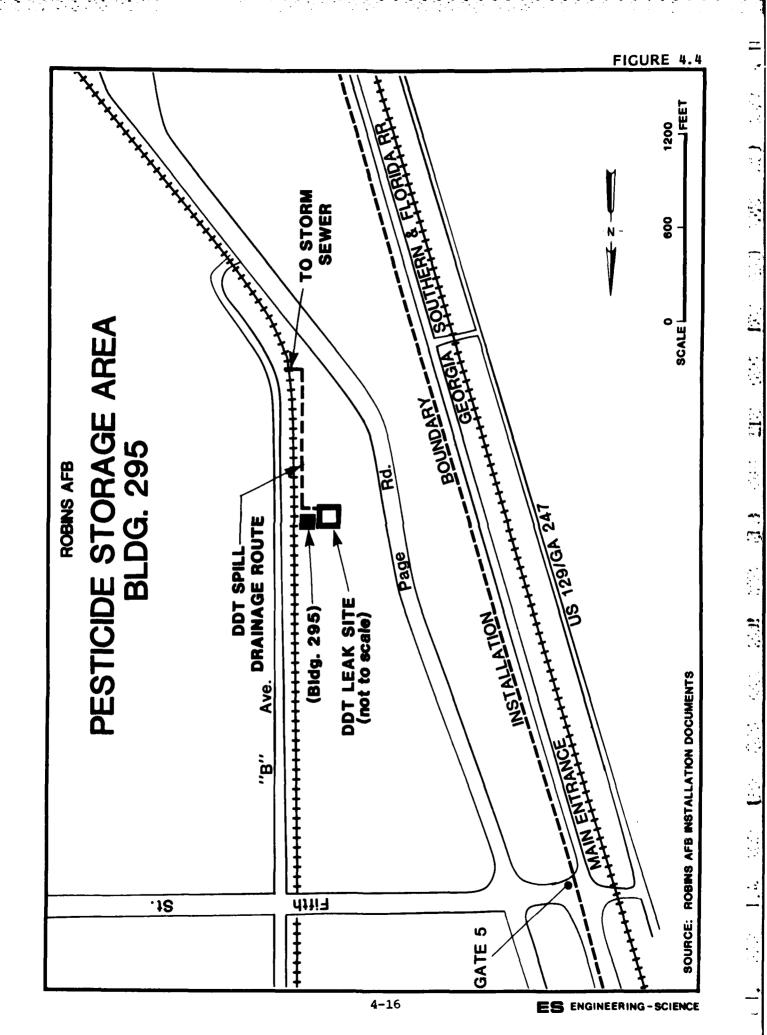
Ø

I 1

I

-

Concentration DDT in ppm


Surface of soil under pallet	2144
Crystalline material from pallet	55
Soil sample 6"-10" under surface	7600
Soil sample 18" under surface	6760
10' west of pallet	1124
Surface - east runoff ditch	135
Drainage ditch at entrance to storm sewer	3

The area at the leak site has since been covered with an asphalt pad incorporating a four inch high curb along the perimeter. This area continues to serve as the drummed chemical storage area for the entomology shop.

Fuel Management

The Robins AFB Fuels Management storage system consists of numerous under-ground and above-ground storage tanks in various locations throughout the base. A description of major fuel, oil and chemical bulk storage capacities is summarized in Table 4.2. These include JP-4, DF-2 (distillate fuel), MOGAS, AVGAS, solvents, oil and other chemicals. Bulk storage of fuels is located in the fenced POL tank area. The JP-4 tanks in the bulk storage area are supplied by a four inch diameter steel pipe running from the Standard Transmission Corporation tank farm located north of the base on Georgia Highway 247. An eight inch diameter steel line supplies JP-4 to the SAC area from the POL storage area. The POL storage area was paved with concrete some time between 1978 and 1979. Prior to this time the containment dikes were tarred and the rest of the ground surface was covered with gravel.

Fuel storage tanks have been cleaned every three years and 1 to 50 gallons of sludge per tank was removed during cleaning. Until 1975, the

TABLE 4.2

`• ...'

. . . .

Ē

•

. . .

1

SUMMARY OF MAJOR FUEL, OIL AND CHEMICAL STORAGE CAPACITIES

Robins Air Force Base

Item	No. of Tanks	Maximum Tank Volume (gals.)	Minimum Tank Volume (gals.)	Total Storage Volume (gals.)
JP-4	20	788,739	48,770	2,909,369
MOGAS	4	17,387	9,988	58,771
Fuel Oil	4	1,063,223	2,018	1,115,189
AVGAS	1	24,4)3	24,493	24,493
JPTS	1	24,963	24,963	24,963
Aluminum Sulfate	e 1	5,250	5,250	5,250
Sodium Hydroxide	1	16,000	16,000	16,000
Sulfuric Acid	1	16,000	16,000	16,000
Oil, Phillips 220	0 1	30,000	30,000	30,000
Solvents	1	1,400	1,400	1,400
Calibration Fluid	3 1	5,000	5,000	5,000

Note: Information obtained from Robins AFB Oil and Hazardous Substances - Pollution Contingency Plan, 30 September 1981.

sludge was dumped next to the cleaned tank, the area was roped off and the sludge allowed to weather. Sludges removed from the tanks are now disposed of off-base by contractor service through DPDO.

Spent fuel filters were placed in buckets to allow the fuel to evaporate. After the fuel filter has sufficiently weathered it was discarded into a dumpster to be disposed of with the general refuse.

Interviews with base personnel indicated there have been three major fuel spills on the base. A leak of an undetermined amount of JP-4 occurred from the four inch diameter supply line about the mid 1960's. The leak was located north of the POL bulk storage area by landfill No. 1. After the pipeline was repaired the pipe trench was closed and no attempt was made to recover the JP-4 that was spilled. JP-4 has been found in pipe trenches and other excavations in this general area on a regular basis since the leak occurred.

A second major spill of JP-4 occurred in the early 1970's. An estimated 60,000 gallon of fuel overflowed a tank in the POL storage area. The containment dike valve was left open and the fuel flowed into the drainage ditches leading to Horse Creek. Only a small portion of the spilled JP-4 was recovered. Contaminated soil in the affected area of the sump was excavated and removed.

A third JP-4 spill occurred in May of 1978 when approximately 1,000 gallons of fuel overflowed a tank in the storage area. This spill was contained and recovered.

H

Numerous small leaks were mentioned in the interviews along the four inch diameter JP-4 supply line and the eight inch diameter SAC JP-4 supply line. These pipelines were originally installed without cathodic protection and were susceptible to corrosion. Most of the pipe has been replaced and protection has been installed during the replacement effort.

DESCRIPTION OF PAST ON-BASE DISPOSAL METHODS

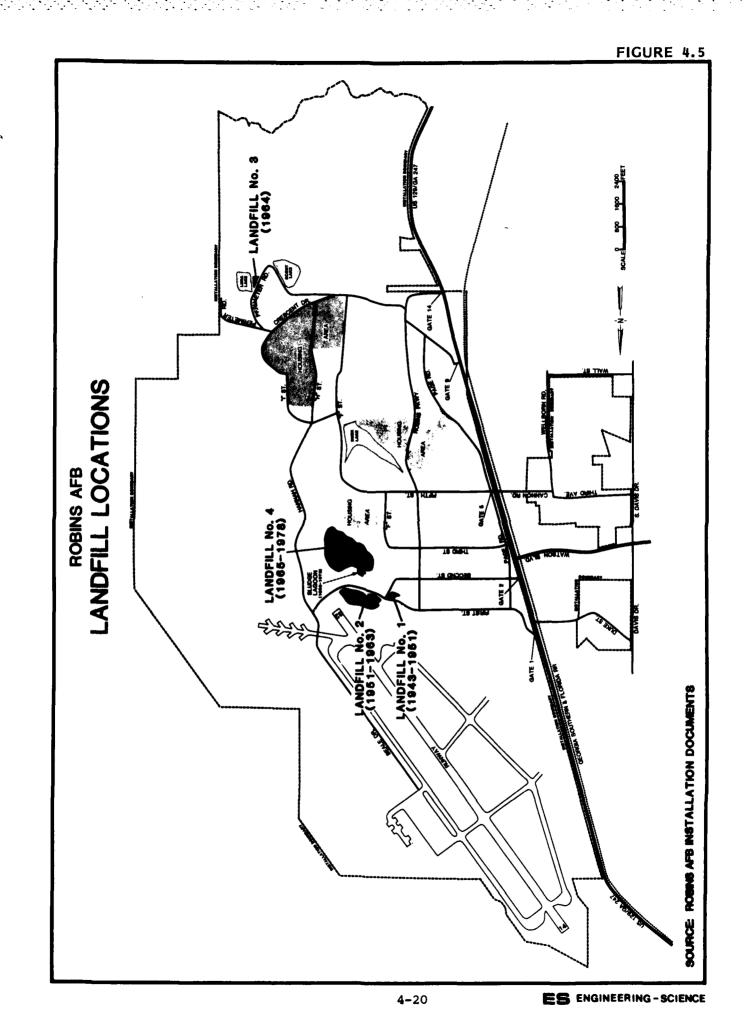
Prior to 1977, many waste materials generated at Robins AFB were disposed of or treated on the base by landfilling, burning in the fire protection training pits, or discharged to the sludge lagoon or industrial wastewater treatment plant. The collection and on-base transportation of liquid waste solvents from a portion of the various base organizations has been a contract service from 1974 to 1982. The contractor has been responsible for emptying and cleaning various degreasing vats, solution tanks and paint booths and containerizing the waste material. He was also responsible for transporting the waste from the on-base industrial facility to the on-base waste holding area. The waste holding area was located in the vicinity of industrial waste treatment plant No. 1 and Landfill No. 4 from approximately 1965 through 1979. From 1965 to 1974, base employees performed these services.

Since 1980, the Defense Property Disposal Office (DPDO) has been responsible for disposal of hazardous wastes. DPDO has awarded one year contracts that require the contractor to load and transport the materials for off-base reprocessing or disposal.

The on-site facilities which have been used for management and disposal of waste can be categorized as follows:

- o Landfills
- o Waste Dumps
- o Sludge Lagoon
- o Hazardous Waste Burial Sites
- o Low Level Radioactive Waste Sites
- o Industrial Wastewater Treatment Plant
- o Sanitary Wastewater Treatment Plant
- o Storm Sewers (Oil/Water Separators)
- o Refuse Incineration

The types of waste management facilities are discussed individually in the following subsections.


Landfills

C

On-base landfills have been used for disposal of non-hazardous and hazardous solid wastes at Robins Air Force Base. Landfills were operated at four locations on the base as shown in Figure 4.5. Table 4.3 contains a summary of pertinent information concerning each landfill disposal site. Since 1978, solid wastes have been hauled off-base and no landfills were operated on the base.

Landfill No. 1

Landfill No. 1 is located, as shown in Figure 4.6, near the south end of the runway, between the fuels management (POL) tank farm and Second Street. The site was operated from 1946 to 1951, encompassing an and the second second

ļţ

4

Ŧ

.

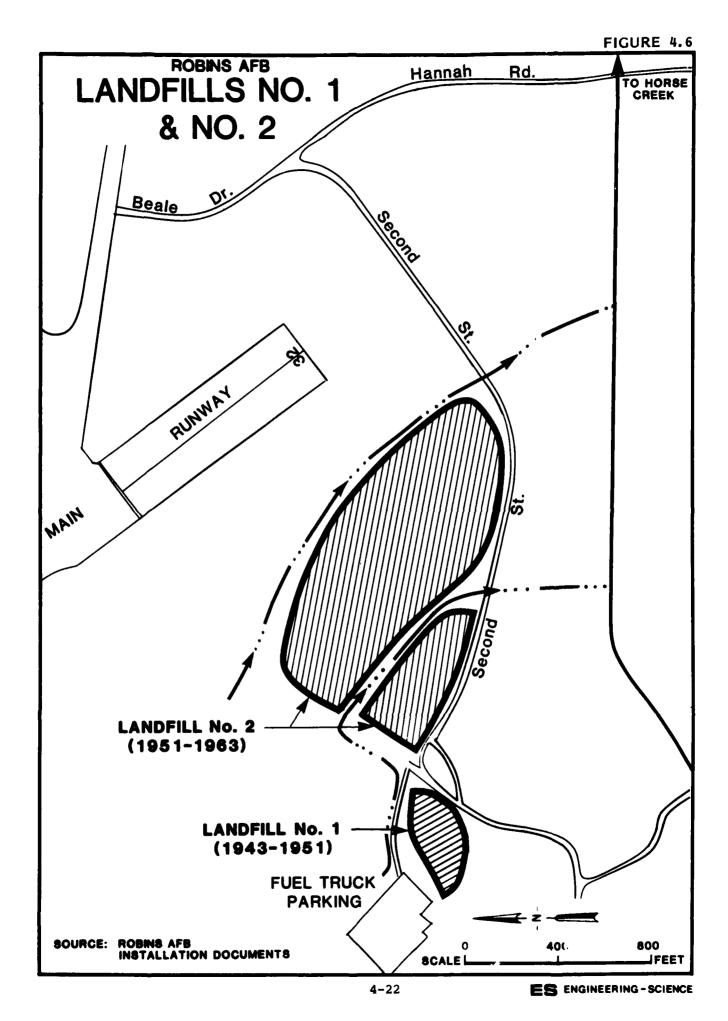
5

				Comments	*Burface erosion on slope -landfilled material exposed *Lachate mitering ditch -bright green color	"Water on gurface of trench areas "Drainage stream traverses the site	*Permemble soil *Close Froximity to Lake Luna	<pre>*Reported G.W. contamination (from monitoring wells installed 1980) installed 1980) *Installe soil cover *Erreshe soil cover ************************************</pre>
			Burface Drainaon		To Horse Creek and swamp	To Horse Creek and swamp	To Horse Creek and svemp	To Horse Creek and surrounding swamp
		SPOSAL SITES	Closure Status		Closed: cover of sandy-loam and local grasses. Impact aled located in area.	Closed: cover of sandy loss and local gasses: runway buffar area. Ponding on the surface.	Closed: cower of sandy loam. Used for a baseball field.	Closed: cover of sandy loam.
	TABLE 4.3	OF LANDFILL DISPOSAL SITES	Method of Operation		Trench and daily bottom ash cover Filled in water table	Trench and daily bottom ash cover Filled in water table. A wood burning face located on west	Surface dump in water table	Surface dump and daily cover with west end-trench and daily cover. Filled in water table of swamp
		SUMMARY OF	a Ratimated . tes Waste Quantity (cu.yd.)		•central Refuse 65,500 •Probably acue indus- trial wates •Boiler bottom ash (daily cover) •Aeh from refuse incinerator	"General Refuse 580,000 Probably some indus- trial wastes Boiler bottom ash (daily cover aver *Approw. 40 tons of granular malathion and aggregate	Rafuse 65,500	-General Rafuse 484,000 *robably some indus- trial wates
			Approximate Types Size of Wastes (Acres)		2 • Ceneral Rafu Probably acm trial wates *Boiler botton (daily cove *Aah from ref incinerator	22 "General Refuse "Probably score trial wates trial wates over over anlathion and malathion and	2 °General Refuse	45 "General Rafuse "Probably some trial wastes
£.			Operation Period			1961-1963	1964	1965-1978
			Landfill			Number 2	Number 3	Number 4

. . . .

.

and the second second


£

• .'

· .

4-21

1 ~

.....

. 11 Π., • area of approximately two acres. The landfill was a trench and fill operation with daily cover of bottom ash from the boiler. The area had been previously filled with a sandy loam. Trench depths of 20 feet penetrated the fill material and sometimes extended below the water table requiring pumping when equipment had to operate near the trench bottom. General refuse from the base and housing areas was the primary material landfilled. Disposal of chemicals in the landfill was not standard procedure, however, some industrial wastes may have been placed in this landfill. An impact test facility sled was constructed on the site after landfill was closed. During construction of the sled, JP-4 seeped into the excavation that had been dug in the landfill. The source of the fuel may have resulted from a previous leak in the 4-inch diameter fuel supply line. Apparently, portions of the landfill contained JP-4 from the leaking supply line. The landfill is closed and the area is covered with soil and has established grass. During visual inspection of the site a green colored leachate was noted flowing from an eroded section on the northwest slope of the landfill. The site is 800 feet from a drinking water well and 4500 feet from the base boundary.

Landfill No. 2

Ē

•

•

-

- :

Ċ

Ï

, . , . , .

÷. •

• .

. سک Landfill No. 2 is located, as shown in Figure 4.6, east of the first site, across Second Street. This fill encompasses approximately 22 acres and was in operation from 1951 to 1963. Operation of landfill No. 2 was similar to No. 1, and included trenching into a previously filled area with daily cover of boiler bottom ash. The trench depths of 20 feet also penetrated the water table. Landfill No. 2 had a burning face on the west side of the site for disposing of scrap lumber from the base. Disposal material in landfill No. 2 included general refuse and moderate quantities of industrial wastes. Information obtained from interviews with base personnel revealed that in the early 1960's, forty tons of off-specification pesticide was buried at this site 'clay or aggregate and 1.5 t 0 percent granular malathion). The site is closed and is covered with soil and vegetation has been established. An inspection of landfill No. 2 revealed some ponding of rain water on the top of the site. A drainage stream is located in the southwest corner

of the site. Landfilling occurred on both sides of the drainage stream. This site is approximately 2200 feet from a drinking water well.

Landfill No. 3

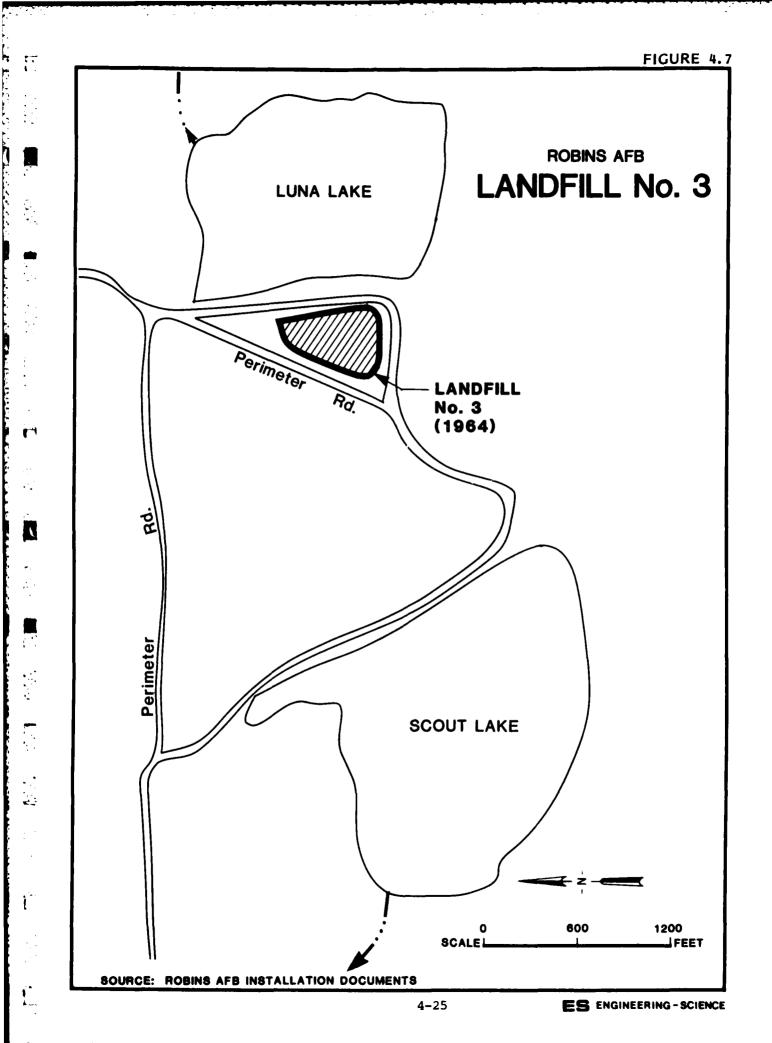
.

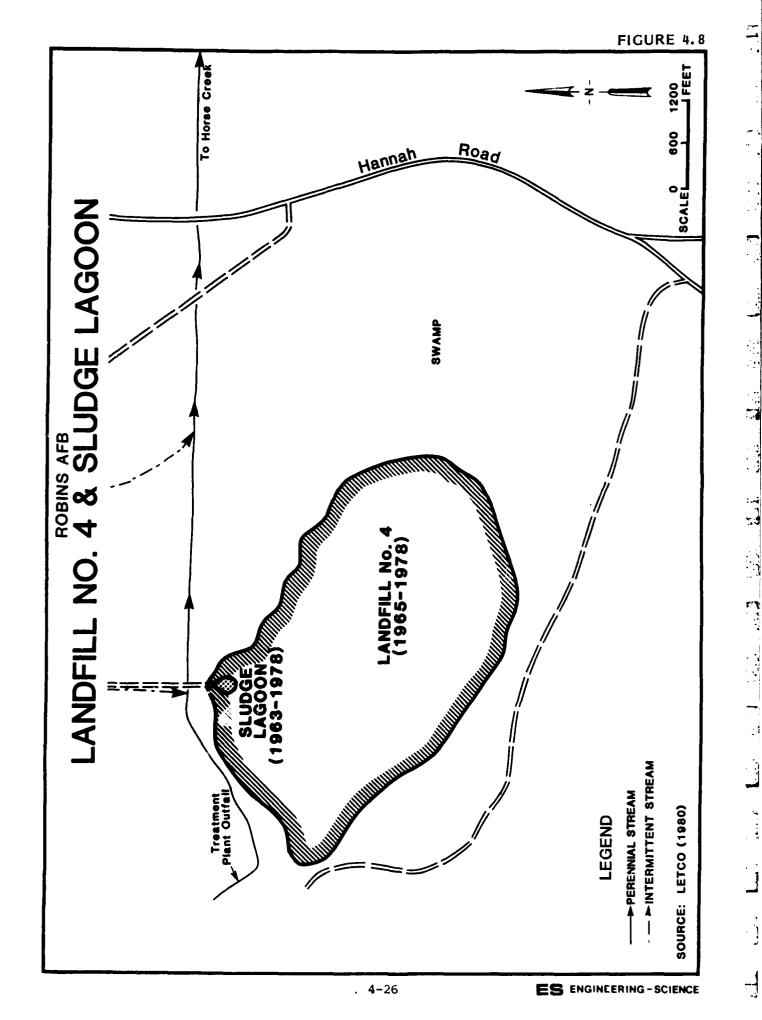
Landfill No. 3 is located, as shown in Figure 4.7, in the southeastern part of the Robins AFB property near Lake Luna. The site was operated in 1964, primarily to fill a swampy area. Total area of the fill is approximately 2 acres. General refuse was deposited followed by a daily cover of sandy loam. Fire protection training exercises were conducted around the landfill site. The landfill is closed and the area has an established vegetation cover and a baseball field is built over it.

÷.,

٠.*

.

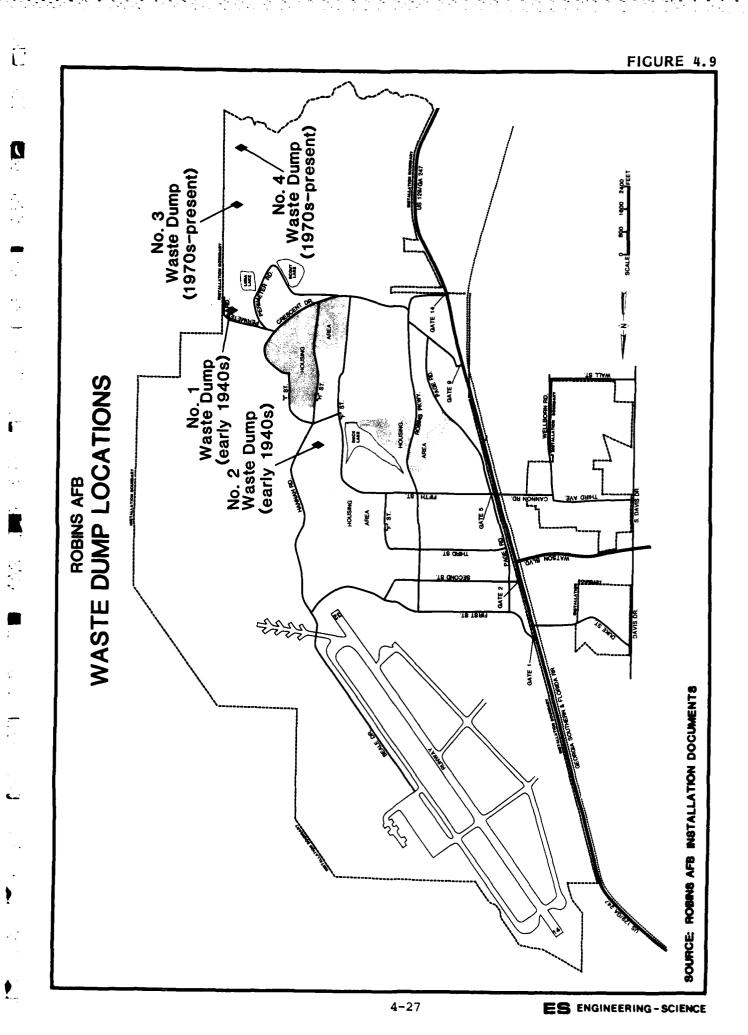

E


Landfill No. 4

Landfill No. 4 is located, as shown in Figure 4.8, near landfill No. 2, southeast of the industrial waste treatment plant addition. The fill was operated from 1965 to 1978, encompassing approximately 45 acres. Landfill No. 4 was the last on-base disposal site for solid waste. General refuse was deposited into the swamp and covered daily with a sandy soil. Little or no boiler bottom ash was used as cover due to the conversion of the boiler system to natural gas in 1966. There was occasional dumping of industrial wastes in this landfill throughout its life. The site is now covered with a sandy soil loam and partially established vegetation. This site is approximately 2200 feet from a drinking water well and is located adjacent to drainage ditches which flow to Horse Creek. From 1976 to 1979, approximately 1500 drums of waste material were stored at the west end of the landfill. A groundwater monitoring study was conducted around Landfill No. 4 and the sludge lagoon (LETCO, 1980). The results of this monitoring program indicate the presence of contaminants in the shallow aquifer has occurred downgradient of the site.

Waste Dumps

Four sites on-base were used for general refuse and landscape trash. The general locations of the waste dumps are indicated on Figure 4.9. Waste dump No. 1 and 2 were operated from early 1942 through 1946. The exact method of operation of the waste dumps was not determined. It is speculated that refuse was surface dumped at these sites and burned when it began to accumulate. No daily cover was probably applied,



٠. ۰.

G

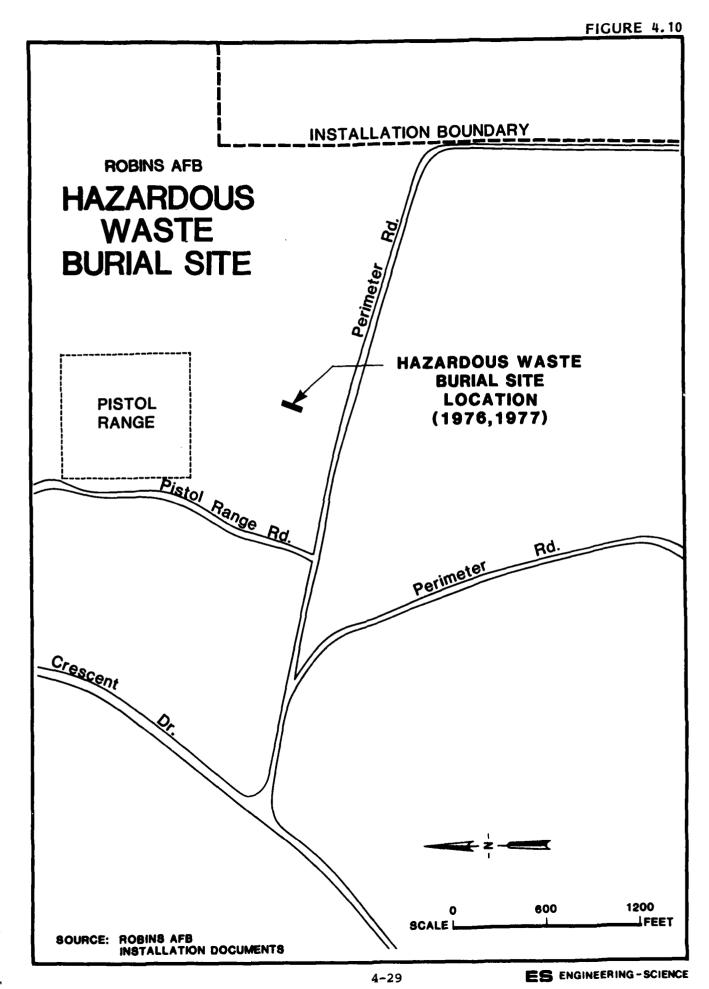
.

÷.	-11	الهائية بالمعاد أحار	 	Sa traina and	 	

however, both waste dump No. 1 and No. 2 have been given a final cover.

Waste dump No. 3 and No. 4 are currently active sites where primarily landscape refuse has been disposed. Portions of these areas are covered with soil. Small quantities of paint cans, construction material wastes, automotive filters and oil cans, tires, and empty fire extinguisher agent containers were observed during a visual inspection. No hazardous wastes were found at these sites.

Sludge Lagoon


A sludge lagoon was used for disposal of industrial wastewater treatment plant sludges from approximately 1962 until its closure in 1978. The lagoon emcompassed approximately 1.5 acres located on the north end of Landfill No. 4 (Figure 4.8). The lagoon was an unlined, diked pit with the bottom excavated below the water table level. Sludges (2-5 percent solids) from both industrial waste treatment plants were dumped into the lagoon. Sludge from industrial waste treatment plant No. 1 contained some phenols and oils. Industrial waste treatment plant No. 2 treated waste water from metal plating operations and the sludges contained cyanide, chrome, and other heavy metals. Other industrial wastes such as paint removers, solvents, hydraulic fluids, and oils were occasionally disposed of in the sludge lagoon.

The sludge lagoon was closed in 1978 when the sludge dewatering and disposal building was started up. The lagoon is now covered with sandy loam soil which also covers Landfill No. 4. The lagoon is approximately 2200 feet from a drinking water well and 5200 feet from the nearest base boundary. The ground-water monitoring program recently conducted indicated the presence of contaminants in the shallow aquifer downgradient of the sludge lagoon.

11

Hazardous Waste Burial Sites

In January 1976, approximately 240 aerosol cans of DDT with pyrethrin were disposed by burial on the south portion of the base (Figure 4.10). Several sections of 30 inch diameter reinforced concrete pipe 48 inch in length were used as containers. These sections were placed vertically in a trench then capped at the bottom end with concrete. The aerosol cans were placed in the pipe sections. Each pipe section was capped at the top end with concrete for a secure closure. The trench was filled and 24 inches of natural earth cover was placed over the pipe

<u>.</u>

17

E

R

·. .:

•

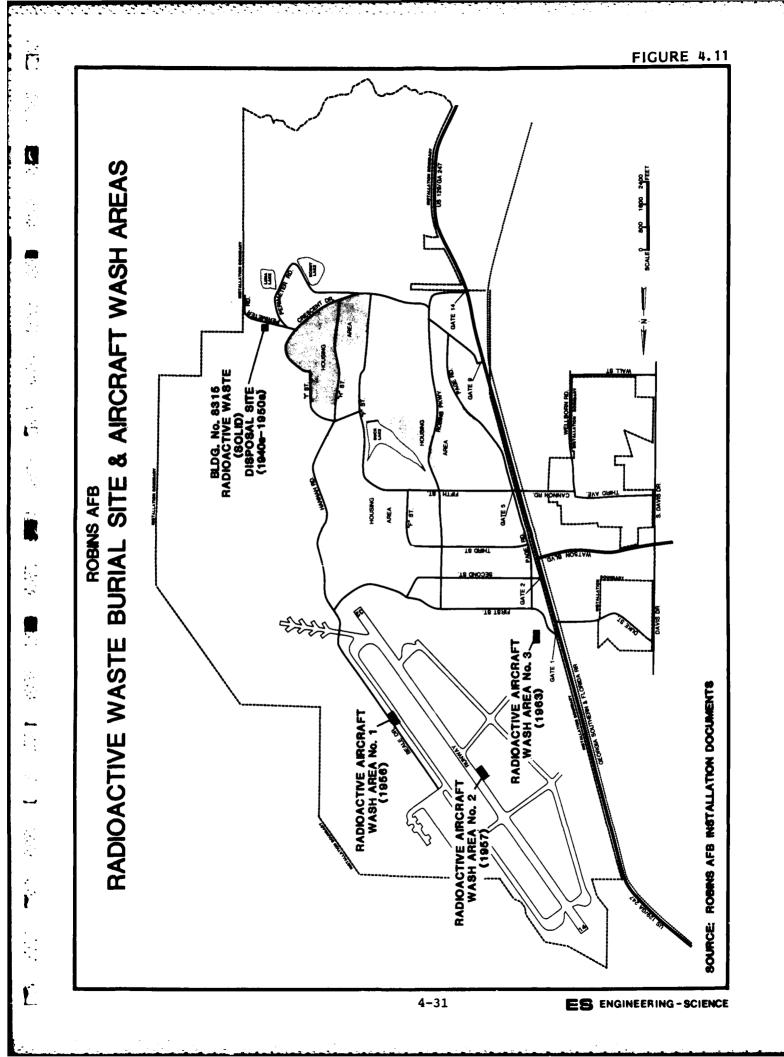
.

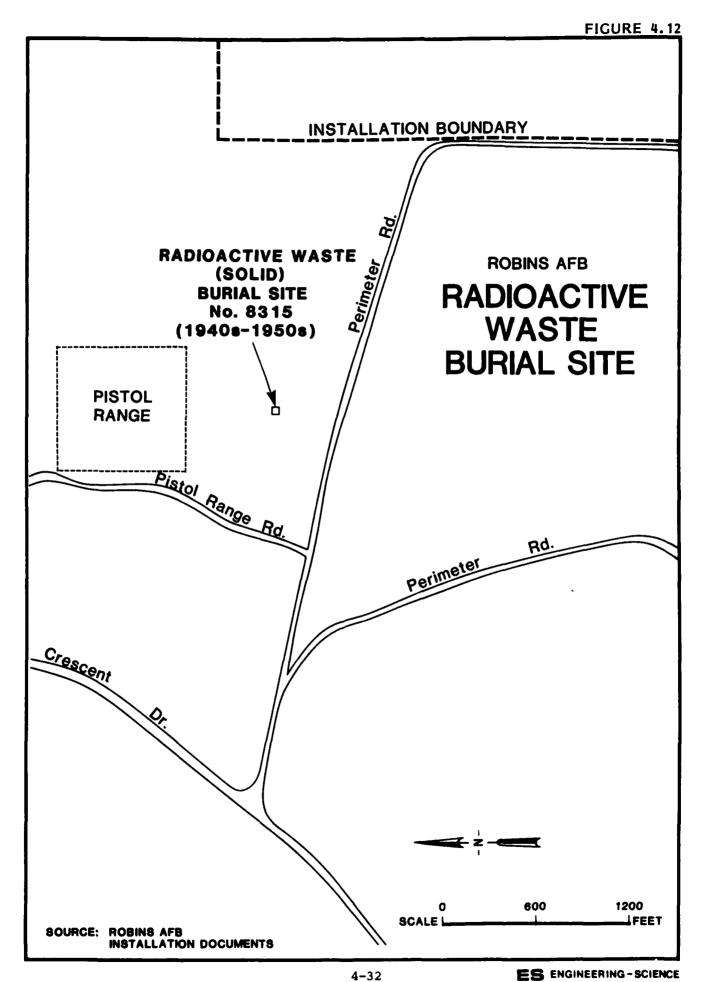
sections. Similar procedures were used at this same location for disposal of two containers of mercury contaminated material and one container of a small amount of PCB material in April 1976. Approximately 15 gallons of wastes contaminated with mercury were disposed at this location in April 1977. The waste material was placed in plastic bags, then placed in metal containers. The containers were placed in additional plastic bags, then were encapsulated with six inches of concrete prior to final burial. No indication of further waste disposal at this site was determined from the base records and personnel interviews. -

-}

.¦., €

.....


Ξ.


Laboratory chemicals which had exceeded their recommended shelf life were buried in two unlined pits in the southeastern end of the base sometime between 1962 and 1964. This was a one time disposal of old bottles, canisters and jars of a variety of laboratory chemicals from the base storage. The disposal site is believed to be in the vicinity of Luna Lake by the dog kennel, however, an exact location could not be determined.

Low Level Radioactive Waste Sites

Low level radioactive wastes have been generated on-base from instrument repair work and washdown of radioactive aircraft. The disposal sites for these wastes occurred in the locations shown in Figure 4.11 and are described below.

The radioactive waste (solid) disposal site, facility number 8315, is located, as shown in Figure 4.12, on the southeast corner of the base along Perimeter Road south of the firing range. It is comprised of a concrete vault buried approximately six feet below the ground surface. A locked chain-linked fence with two barbed wire strands surrounds the disposal area. Two signs are posted on the fence designating the area as a "Radiation Hazard Area". The site was used in the early 1950's for disposal of low-level solid radioactive wastes such as old radium dials, contaminated radioactive brushes, election tubes and spark gaps. Soil samples collected within and adjacent to the burial area have been analyzed annually. The 1980 soil analyses are presented in Table C.13 (Appendix C). The area was last surveyed with a beta/gamma radioactivity detector in September of 1981. Radiation levels did not exceed 0.03 mr/hr above a background of 0.01 mr/hr; indicating radioactive

•••

• · · ·

NGINEERING - SCIENCI

materials are present, but do not result in radioactivity levels hazardous to human health.

Two open radioactive aircraft wash areas were utilized at Robins AFB for decontamination caused by airborne fission products. Wash area No. 1 was located east of the SAC ordinance area. This area was used in 1956 to decontaminate one aircraft. The aircraft was positioned off of the taxiway onto a grass area for washdown. The area was restricted after washing until monitoring for levels of radioactivity indicated only background amounts.

Similar washdown operations occurred in area No. 2. Approximately four aircraft were decontaminated at this location during 1957. Similar area restrictions and monitoring were initiated until only background levels of radioactivity were detectable.

Two underground storage tanks (wash area No. 3) located adjacent to the east side of building 58, were designed to collect washdown from aircraft that also may have been contaminated by airborne fission products. The contents of these tanks were sampled in 1978 and found to contain water contaminated with zinc, iron, low level radiation and a surfactant. The east tank also contained a stratified upper layer mixture of a petroleum base solvent and a compound similar to methyl ethyl ketone. The solutions were probably generated around 1963 during a washdown operation. During interviews with the Bioenvironmental Engineering Services Division personnel, it was learned that these tanks were pumped out in 1978 and the water was discharged to the wastewater treatment plant at a predetermined, dilution ratio.

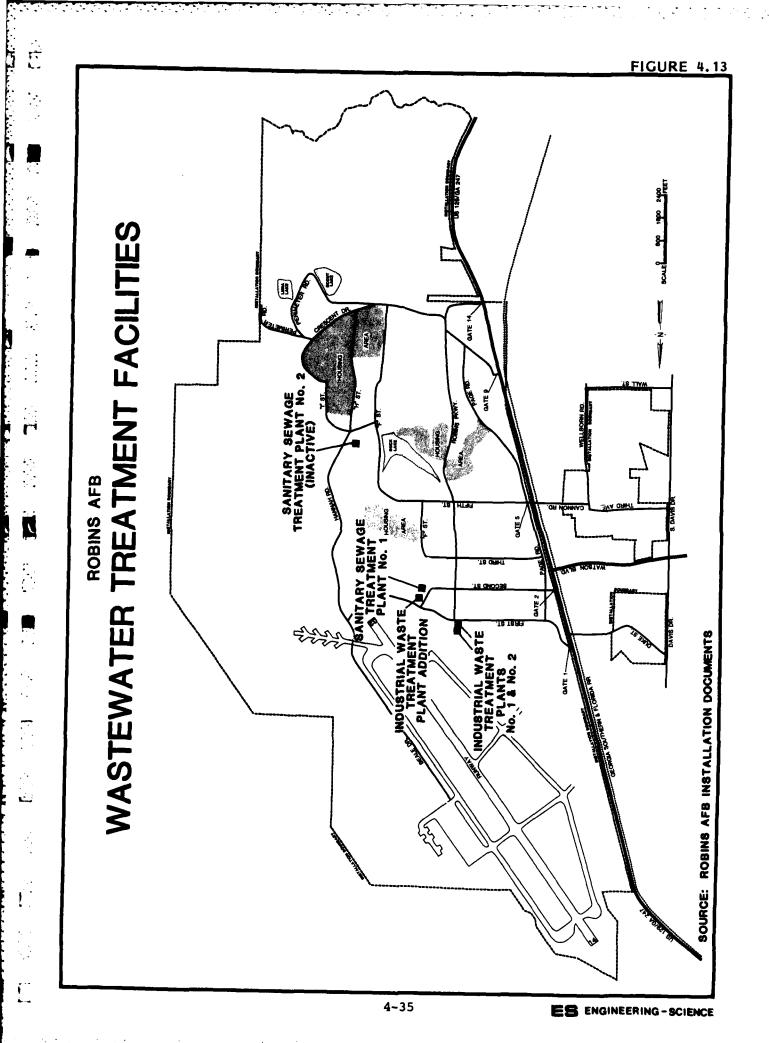
Industrial Waste Treatment Plants

×.

The first industrial waste treatment at Robins AFB began in 1960 with batch treatment of cyanide wastes. The treated wastes were combined with treated sanitary sewer wastes and discharge to Horse Creek. Prior to this many aqueous industrial wastes may have been neutralized, diluted and discharged to the storm sewer system.

The first industrial waste treatment plant was built in 1964 primarily as an air flotation system for removal of oils and phenols. In 1971, the plant was upgraded to provide treatment for reduction of hexavalent chromium, neutralization, and coagulation/precipitation of heavy metals. Industrial waste treatment plant No. 1 treats all the industrial waste from the base except the plating shops, and includes wastes from aircraft stripping operations and washdown. The wastewater contains oils, phenols, chrome, paint residues, solvents and alkaline based stripping materials. Sludge from the treatment plant was discharged into the sludge lagoon until its closure in 1978. Sludge has been dewatered and placed in the sludge disposal building since 1978. Effluent from industrial waste treatment plant No. 1 flows through a sanitary waste treatment facility for biological oxidation of residuel phenols.

ن م


H

47

Industrial waste treatment plant No. 2 was built in 1969 to treat the base plating shops wastes. Influent is typical plating waste and includes high levels of chrome, cyanide and heavy metals. Sludge from the clarifier underflow of this facility was also disposed in the sludge lagoon until its closure in 1978. Since then the sludge has been dewatered and placed in the sludge disposal building.

The sludge dewatering and disposal facility was built in 1978 as part of the closure of the sludge lagoon. The disposal building is completely enclosed with a concrete floor. Decant from sludge dewatering (plate and frame pressure filter) is returned to industrial waste treatment plant No. 1. The sludge disposal building was designed for a total dry sludge storage volume of 9,323 cubic yards and an estimated life of 10 years at current sludge generation rates. The locations of the waste treatment facilities are shown in Figure 4.13. Sanitary Mastewater Treatment Facilities

Domestic sewage has been treated on-base since 1942 by a single stage trickling filter system located in the area of industrial waste treatment plant No. 1. This sanitary treatment facility discharges treated effluent to a tributary of Horse Creek. The sludge generated from this treatment facility was applied to various land areas on-base. This system may have received wastewater streams containing phenolic and non-phenolic paint strippers from the mid 1940's to 1965. Also this system may have received batches of partially or completely treated cyanide baths from the electroplating operations on-base during the same period.

and the second sec

An additional sanitary wastewater treatment plant was operational from 1943 through approximately 1979. In 1973 this facility was upgraded from a primary to a secondary treatment facility. This facility is located off Hannah Road near Seventh Street. It is believed that this plant received little or no industrial waste streams. This facility is now used only as a pumping station. The locations of the waste treatment facilities are shown in Figure 4.13.

:--

.

Storm Sewer Systems

The storm sewer systems on-base consist primarily of concrete conduits or open-channels which direct drainage towards tributaries of Horse Creek. The systems in the areas of aircraft maintenance functions received some discharges of wastes from maintenance activities from the mid 1940's through the early 1970's. In the mid 1970's, oil/water separators were installed in many of the systems. A list of these units is shown in Table 4.4.

Refuse Incineration

General refuse from the base was disposed of by incineration in the late 1940's. The incinerator was located west of landfill No. 4. Ash from the incinerator was buried in landfill No. 1. The operation was discontinued in the early 1950's and the refuse went directly to the landfill for disposal.

EVALUATION OF PAST DISPOSAL ACTIVITIES AND FACILITIES

The review of past operation and maintenance functions and past waste management practices at Robins AFB has resulted in the identification of 13 sites containing hazardous waste materials and having the potential for migration of contaminants. Other sites were reviewed and eliminated from further evaluation based on the logic presented in the decision tree shown in Figure 1.1.

The 13 sites have been assessed using a hazardous assessment rating methodology (HARM) which takes into account characteristics of potential receptors, waste characteristics, pathways for migration and specific characteristics of the site related to waste management practices. The details of the HARM procedures are presented in Appendix G and the results of the assessment are summarized in Table 4.5. The rating system is designed to indicate the relative need for follow-on action. The

TABLE 4.4

- • •

1

Ē

D

.

Separator Number	Date Installed	Building Location	Description
0-01	1972	23	North Side
0-02	1978	30	Noise Suppressor N.E. Corner
0-03	1969	33	East of Pad
0-04	1970	47	West Side
0-05	1967	48	East Side
0-06	1967	49	East Entrance
0-07	1954	628	West Side ALC
0-08	1976	656	N.W. Side
0-09	1975	959	(Gray Eagle Unit)
0-10	1979	979	S.W. Side
0-11	1977	377	East Side (Fire Dept.)
0-12	1952	318	East Side (Land Fill)
0-13	1956	194	S.E. of Bldg. 153 on Parking Ramp
0-14	1964	302	East End of Washrack
0-15	1960	67	N.W. Side
0-16	1960	67	North Side
0-17	1975	85	North Side
0-18	1960	76	N.E. Corner
0-19	1960	82	North Side
0-20	1962	52	South Side
0-21	1962	52	North Side
0-22	1963	190	North Side
0-23	1963	190	N.E. Holding Tank
0-24	1963	196	North of Bldg. 192 (POL)
0-25	1963	196	Area near Bldg. 73 (POL)
0-26	1960	79	Adjacent to Washrack
0-27	1979	PB64	Outside Flight Line Area along 1st St.
Ŭ-28	1974	922	BX Service Station
0-29	1979	97 9	Washrack
0-30	1980	184	Aero Club/Aircraft Parking Lot
0-31	1967	985	Base Hobby Shop
0-32	1963	109	Fire Department
0-33	1951	93	Paint Storage (inactive)

SOURCE: Bioenvironmental Engineering Services Division Files, verified and updated by CES

TABLE 4.5

(

Ĭ.

÷.,

SUMMARY OF HARM SCORES FOR POTENTIAL CONTAMINATION SOURCES

Rank	Site Name	Receptor Subscore	Pathways Subscore	Waste Characteristics Subscore	Waste Management Factor	Overall Total Score
-	Sludge Lagoon	57	100	75	1.0	11
7	Landfill No. 4	59	100	60	1.0	73
m	DUT Spill (1979)	51	100	60	1.0	70
4	Fire Protection Training Area No. 2	46	55	06	1.0	64
ŝ	Landfill No. 1	46	80	. 20	1.0	59
Q	Landfill No. 2	42	80	53	1.0	58
٢	JP-4 Spill (1965)	404	80	45	1.0	57
8	Hazardous Waste Burial Site	44	48	80	0.95	54
5	Fire Protection Training Area No. 1	44	62	50	1.0	52
10	Laboratory Chemical Burial Site	42	80	30	1.0	51
:	Landfill No. 3	46	56	40	1.0	47
12	Fire Protection Training Area No. 3	40	56	40	1.0	45
13	Radioactive Waste (Solid) Disposal Site	44	41	14	0.95	31

-

· .

•.

. .

•

· . .

4-38

9

÷

::

-

<u>.</u>

.

-

-

.

•

.

::`` —

•

-

· ·

information presented in Table 4.5 is intended as a guide for assigning priorities for further evaluation of the Robins AFB disposal areas (Chapter 5, Conclusions and Chapter 6, Recommendations). The rating forms for the individual waste disposal sites on Robins AFB are presented in Appendix H. Photographs of some of the key disposal sites are contained in Appendix E.

ľ

17

CHAPTER 5

•

.

٦. ·. · . .

٠.

•

ر~

Ū

(1, 2)Ľ

•

•

ſ

. .

. . .

۰.

CONCLUSIONS

CHAPTER 5 CONCLUSIONS

The goal of Phase I of the IRP is to identify the potential for environmental contamination from past waste disposal practices at Robins AFB and to assess the probability of contaminant migration. The conclusions given below are based on the assessment of the information collected from the project team's field inspection, review of records and files, interviews with base personnel, past employees and state and local government employees and review of the environmental setting. Table 5.1 contains a summary of HARM scores for sites at Robins AFB.

1) The sludge lagoon has a high potential for migration of contaminants. This lagoon was used from approximately 1962 through 1978 to dispose of sludges from the industrial waste treatment plants. Sludges and industrial wastes from other industrial operations on-base were also disposed of in this lagoon. The results of a recently conducted ground-water monitoring program (LETCO, 1980), indicated contamination of the shallow aquifer down-gradient of the site. The lagoon is approximately 2,200 feet from a drinking water well and 5,200 feet from the base boundary. The lagoon was constructed in a former swamp area and the bottom extends below the water table. A stream flows adjacent to the lagoon site and standing water conditions commonly occur near the lagoon site. This site received a rating score of 77. 2) Landfill No. 4 has a high potential for migration of contaminants. This landfill was utilized from 1965 through 1978 for disposal of general refuse and significant quantities of industrial wastes. The results of a ground-water monitoring study (LETCO, 1980) indicate contamination of the shallow aquifer downgradient of the site. Landfill No. 4 is located approximately 2,000 feet from a drinking water well and 4,800 feet from the nearest base boundary. The bottom of the landfill is in the ground-water

.

۰.

F1 . . .

777

.

.

PRIORITY RANKING OF POTENTIAL CONTAMINATION SOURCES ROBINS AFB

Rank	Site Name		verall Total Score
1	Sludge Lagoon	1963-1978	77
2	Landfill No. 4	1965–1978	73
3	DDT Spill (1979)	1979	70
4	Fire Protection Training Area No. 2	mid 1950's to mid 1960's	64
5	Landfill No. 1	1943-1951	59
6	Landfill No. 2	1951-1953	58
7	JP-4 Spill (1965)	1965	57
8	Hazardous Waste Burial Site	1976, 1977	54
9	Fire Protection Training Area No. 1	1943-mid 1950's	52
10	Laboratory Chemical Disposal Site	early 1960's	51
11	Landfill No. 3	1964	47
12	Fire Protection Training Area No. 3	mid 1960's to 1969	45
13	Low Level Radioactive Waste (Solid) Burial Site	1940's to 1950's	31

. ____ • . . -5

table. This site is presently closed and covered with sandy loam and has some vegetation established. Landfill No. 4 was given a HARM score of 73.

3) The DDT spill (1979) poses a high potential for contaminant migration. The spill involved a 55-gallon drum which leaked concentrated pesticide prior to discovery by base personnel. The immediate area around the spill received significant quantities of DDT as determined by soil samples taken by the Bioenvironmental Engineering Services Division office. The surface drainage pathway of the spilled material leading to Horse Creek was also sampled and contained lower levels of DDT. The remedial action taken consisted of covering the contaminated spill site with asphalt material. No removal of contaminated soil from the spill area or drainage pathway was reported. This site received a HARM score 70.

4) Fire Protection Training Area No. 2 poses a moderate potential for migration of contaminants. This area actually consists of several grade level open burning sites used from the mid 1950's through the mid 1960's. Significant amounts of chemical wastes, solvents, and paint wastes may have been routinely burned at this site in addition to the petroleum based materials used in each exercise. The estimated locations of the burn areas are within 1,200 feet to 600 feet of a drinking water well and are within 1,200 feet to 2,000 feet from the base boundary. The depth to ground water is estimated to be between 20 feet and 25 feet. This area received a HARM score of 64.

5) Landfill No. 1 poses a moderate potential for contaminant migration. Landfill No. 1 was operated from 1946 to 1957 and may have received small quantities of industrial wastes as well as general refuse. During a visual inspection of the site, a green colored leachate was noted flowing from an eroded section on the northwest slope of the landfill. The landfill may contain JP-4 as a result of a pipeline leak that occurred in the 1960's. This site is 800 feet from a drinking water well and 4,500 feet from the base boundary. Landfill No. 1 is now covered with soil and established vegetation. This landfill received a HARM score of 59.

6) Landfill No. 2 poses a moderate potential for migration of contaminants. Landfill No. 2 was used for disposal of general refuse and may have received moderate quantities of industrial wastes from 1951 to 1963. This site is approximately 2200 feet from a drinking water well and is located adjacent to drainage ditches which lead to Horse Creek. The distance from the bottom of the landfill to ground water is estimated to be 5 feet or less. This site is closed and covered with soil and vegetation is established. This landfill received a HARM score of 58.

-

. .

÷...

-

7

1

7) The JP-4 leak (1965) poses a moderate potential for migration of contaminants. Several incidents of finding JP-4 seepage during excavations have been reported in the area of the old pipeline leak specifically around Landfill No. 1. It is believed that a moderate to large quantity of JP-4 may be floating on the ground water table down-gradient of the leak site. The quantity of fuel spilled and the quantity remaining on the ground-water table has not been determined. The JP-4 spill received a HARM score of 57.

8) The hazardous weste burial site poses a moderate potential for migration of contaminants. This site contains moderate amounts of hazardous wastes. Encapsulation of the wastes in concrete pipes was completed at the hazardous waste disposal site prior to burial of the material. The hazardous waste disposal site received a HARM score of 54.

9) Fire Protection Training Area No. 1 poses a moderate potential for contaminant migration. Hazardous materials have been burned in this area along with petroleum materials. The area was operated from 1943 through 1950. The precise location of Fire Protection Training Area No. 1 could not be determined, but it is believed to be located in or by Landfill No. 2. This site received a HARM score of 52.

10) The laboratory chemical disposal site is believed to pose a moderate potential for migration of contaminants. This site is located somewhere in the vicinity of Luna Lake and the dog kennel but the exact location could not be determined. Bottles, canisters and jars of outdated laboratory chemicals from the base storage

facility were buried at this site. The disposal site received a HARM score of 51.

11) Landfill No. 3 poses low potential for migration of contaminants. This site was operated in 1964 and is believed to have received primarily general refuse and little or no waste chemicals for disposal. The site is covered with vegetation and soil. Landfill No. 3 received a HARM score of 47.

12) Fire Protection Training Area No. 3 poses a low potential for contaminant migration. Fire training was conducted in this area from 1960 through 1969, only petroleum substances were known to be used in the training exercises. The site received a HARM score of 45.

13) The low level radioactive waste (solid) burial site poses a low potential for migration of contaminants. A concrete vault was used to dispose small quantities of low-level radiation materials in the late 1940's and early 1950's. The site is fenced securely and marked with warning signs. This site received the lowest HARM score, 31.

.

CHAPTER 6

.

·. .

Ē

.

Ċ

.

1 1

- 4- 4-

I.

RECOMMENDATIONS

CHAPTER 6 RECOMMENDATIONS

17

l

1 .

1 ...

To aid in the comparison of the 13 sites on Robins AFB with those sites identified in the IRP at other Air Force Bases, a hazardous assessment rating methodology (HARM) was developed. Of primary concern at Robins AFB are those sites with a high potential for contaminant migration and with HARM scores greater than 65. These sites require further investigation in Phase II. Sites of secondary concern are those with moderate potential for contaminant migration and have HARM scores from 50 to 64. Further investigation at these sites is recommended. No further monitoring is recommended for those sites with low potential for migration of contaminants (scores from 0 to 49) unless data collected from other locations indicate a potential problem could exist at one of these sites.

The following recommendations are made to further assess the potential for contaminant migration from waste disposal areas at Robins AFB. The recommended monitoring program for Phase II is summarized in Table 6.1.

1) Landfill No. 4 is considered to have a high potential for migration of contaminants as demonstrated by the contamination of the shallow ground water down-gradient of the site. The recommended monitoring at this site is intended to define the extent of contamination and help determine remedial measures.

Geophysical survey techniques are recommended to help map the contaminant plume and further define site geology. The swamp area may restrict the performance of geophysical survey techniques.

A revised ground water monitoring program is recommended to determine plume configuration, depth of contamination, and concentration of contaminants. The monitoring program should consist of the following:

Evaluate the existing down-gradient monitoring wells along
 Hannah Road to determine their condition. The wells are

constructed of polyvinyl chloride (PVC) pipe and some of the organic contaminants such as methylene chloride will react with the PVC. Use these wells if no distortion or sofening of the PVC is noted. If PVC deterioration is observed, then construct new monitoring wells with Teflon®, stainless steel, or other inert material.

- o Establish three wells in deeper zones above Hannah Road, to depths of 50, 75 and 100 feet, respectively. These wells can be used to evaluate vertical migration of contaminants. Monitor for the parameters in List A, Table 6.2. If contamination is found at 100 feet, then deeper wells should be constructed to define the depth of the plume. The material for well construction should be determined from the previous evaluation.
- o Establish an up-gradient well nest west of Landfill No. 4 and other sources of contamination. The ground-water should be sampled at 25, 50, 75 and 100 feet. Monitor for the parameters in List A, Table 6.2. The existing up-gradient well is in an area down-gradient of another potential source of contamination (Landfill No. 2). Therefore this well is not representative of background conditions.
- Establish eight monitoring wells down-gradient at the landfill perimeter, capable of sampling to depths of 25, 50, 75 and 100 feet. These wells should be constructed of stainless steel or Teflon® since deterioration of the existing perimeter wells constructed of PVC has already been observed. Monitor for the parameters in List A, Table 6.2.
- Abandon and seal the existing up-gradient and perimeter monitoring wells in accordance with Section 391-3-2.13 of the Georgia Ground Water Use Act of 1974.

 Monitoring wells should be established to determine the furthest edge of the ground-water contaminant plume. This may be difficult to achieve in the swamp area. Samples should be anlayzed for the parameters in List A, Table 6.2.

2) The sludge lagoon is also considered to have a high potential for migration of contaminants as demonstrated by the contamination of the shallow ground water down-gradient of the site. Landfill No. 4 and the

sludge lagoon are too close to each other to monitor separately, therefore, the program described for monitoring Landfill No. 4 will include the sludge lagoon.

3) The DDT spill (1979) site has a high potential for contaminant migration. Sampling has shown that the soil around the site is contaminated with DDT. The contaminated soil should be removed and replaced with fill material then the area paved to prevent infiltration. Sampling and analyses for DDT should be performed to verify clean up of the site.

4) The Fire Protection Training Area No. 2 is considered to have a moderate potential for migration of contaminants. The exact location of this site was not clearly defined by the records search project therefore part of the monitoring will be aimed at identifying the pit location. Collect soil borings in and around the suspected area of the old pits (100 ft. by 200 ft., 15 in the general pit area and 1 outside the area). The borings should be on a 50 foot grid, ten feet deep with soil samples taken at regular intervals and at any interface. Analyses should be performed on water extractions and then analyzed for the parameters in List B (Table 6.2).

L

. .

ic.

۰.,

5) Landfill No. 1 is considered to have a moderate potential for contaminant migration and monitoring is recommended. Geophysical survey techniques are recommended to identify any JP-4 in or around the site. If the geophysical survey is not affective, then install six monitoring wells (PVC) into the top of the water table down-gradient of the landfill and sample for floating oil. Samples of any leachate stream(s) should be collected and analyzed for the parameters in List A, Table 6.2.

6) Landfill No. 2 is considered to have a moderate potential for migration of contaminants and monitoring of this site is recommended. One upgradient and three downgradient monitoring wells (Schedule 40 PVC) should be constructed in the uppermost aquifer and the shallow ground water should be monitored for the parameters in List A, Table 6.2.

7) The area around the JP-4 leak (1965) is considered to have a moderate potential for migration of JP-4 and monitoring down-gradient of the site is recommended. Geophysical survey techniques may be effective

for defining JP-4 floating on top of the water table. If the geophysical survey is not effective then install six monitoring wells (PVC) into the top of the water table down-gradient of the leak and sample for floating material. This monitoring should be done jointly with monitoring for Landfill No. 1.

8) The hazardous waste burial site has a moderate potential for contaminant migration. One up-gradient and two down-gradient monitoring wells are recommended at this site. The wells should be constructed of Schedule 40 PVC and the ground water should be sampled and analyzed for the parameters in List B, Table 6.2.

9) The Fire Protection Training Area No. 1 has a moderate potential for contaminant migration. Since this site is believed to be located in or around Landfill No. 2, it will be included as part of the monitoring of Landfill No. 2.

10) The laboratory chemical disposal site is considered to have a moderate potential for contaminant migration. The exact location of this site could not be determined by the records search project. Since some of the materials were disposed of in metal containers, geophysical surveys techniques may be effective in identifying the location. The waste were reported buried on the south side of Luna Lake near the dog kennels. If the site is identified, collect soil borings as described for fire protection area No. 2.

11) Conduct a one-time water sampling program for water supply wells Nos. 3, 6, 8 and 12. Analyze each sample for he parameters shown in List A of Table 6.2.

12) Sample water and sediments of the drainage courses around landfill No. 4 to determine if leachate from the landfill and sludge lagoon are entering the drainage ditch. Set up eight sample stations and analyze for the parameters in List B, Table 6.2.

TABLE 6.1

.

1

:

•

1 ٦

Ň

•

ł

• •

Ì,

.

. .

RECOMMENDED MONITORING PROGRAM FOR PHASE II - ROBINS AIR FORCE BASE

.

Site	HARM Score	Recommended Monitoriny	Comments
Landfill No. 4	73 a.	Utilize geophysical survey techniques to map contaminant plume, if site geology permits.	Geophysical survey performance may be degraded by site geology and wetland environment.
	à	Establish a revised ground-water monitoring program to determine configuration, depth of contamination, and concentrations of contami- nants. Monitoring program should consist of:	Contamination of the shallow aquifer downgradient of this site has been documented by previous ground-water monitoring (LETCO, 1980).
		 Evaluate existing down-gradient monitoring vells along Hannah Road to determine condition. Continue use if well condition is adequate. Abandon and seal (per Section 391-3-2.13 of the Ground Water Use Act of 1974) upgradient well and landfill perimeter wells. Establish new upgradient well, west of 100 feet. Monitor for parameters in List A, Table 6.2. Establish new upgradient wells, west of List A, Table 6.2. Establish new upgradient wells, west of List A, Table 6.2. Establish new upgradient wells, west of List A, Table 6.2. Establish new uptor for parameters in List A, Table 6.2. Establish eight monitoring wells downof regradient at landfill perimeter capable of sampling to depths of 25, 50, 75 and 100 feet. Construct wells of stainless or Teflon0. Monitor for parameters in List A, Table 6.2. If condition permits, use LETCO Hannah Road wells to monitor for parameters in List A, Table 6.2. Establish wells in deeper zones along Hannah Road, to depths of 50, 75 and 100 feet. Analyze for parameters in List A, Table 6.2. Establish wells in deeper zones along Hannah Road, to depths of 50, 75 and 100 feet. Analyze for parameters in List A, Table 6.2. If possible, establish a line of monituter for garanteers in List A, Table 6.2. If possible, establish a line of monitor for parameters in List A, Table 6.2. 	This recommended moni- toring program is more exten- sive than confirming if con- tamination exists. It is in- tended to define the extent of contamination and help determine remedial action.
		par	
sludye Lagoon	77 Mc Ng	Monitoring program described under Landfill No. 4 will include the sludge lagoon.	Landfill No. 4 and the sludge lagoon are too close to moni-

Landfill No. 4 and the sludge lagoon are too close to moni-tor separately.

,

TABLE 6.1 (Continued)

Γ

•_

·_` -∖

÷.

.

•

•

• . •

1979) uur spill (1979)	70	Munitor soil samples for DDT to verify clean up of the site.	Preliminary monitoring has indicated DDT contamination. The soil in the spill area should be removed and replaced with fill
kire Protection Area No. 2	Q 4	Collect soil borings in and around the suspected area of the old pits (100 ft. by 200 ft., 15 in the pit area and 1 out- side the area). The borings should be on 50 foot grid, ten feet deep and soil samples taken at regular intervals and at any interface. Analyses should be per- formed on water extractions and then analyzed for the parameters in List B (Table 6.2).	material then pave over the site.
Landfill No. 1	S	 a. Conduct geophysical survey in the area in and around the landfill (approximately 15 to 20 acres). If geophysical survey techniques do not work then install six monitoring wells into the top of the water table down-gradient of the site (about 10 to 20 feet deep). Sample for floating material. b. Collect surface water samples of leachate stream(s). Analyze for parameters in List A (Table 6.2). 	JP-4 spill (1965) occurred around Landfill No. 1. There- fore monitoring of these sites should be performed jointly.
Landfill No. 2	S B	Establish shallow ground-water quality monitoring system in uppermost aquifer, consisting of one upgradient and three downgradient wells. Construct wells of PVC (Schedule 40) and monitor for para- meters in List A (Table 6.2).	
JP-4 Spill (1965)	57	Conduct monitoring as described under Landfill No. 1.	Should monitor with Landfill No. 1 since they are in the same area.
Hazardous Waste Burial Site	54	Establish shallow ground-water quality monitoring system in uppermost aquifer consisting of one up- gradient and two down-gradient wells. Construct wells of PVC (Schedule 40) pipe and monitor for parameters in List B (Table 6.2).	
Fire Protection Train- ing Area No. 1	52	Monitoring will be included as part of monitoring program at Landfill No. 2.	
Laboratory Chemical Disposal Site	51	Utilize geophysical survey techniques to locate site. If site is identified, collect soil boring as described for Fire Protection Area No. 2.	Unable to determine location of this site. Geophysical sur- vey may be able to detect metal

•••

.....

~ ~

*

67 -

•

•

TABLE 6.1 (Continued)

• • • • • • • • •

Comments

-

ľ

۰.

· • •

•

•

• :

• •

. . .

Site	HARM Score	Recommended Monitoring
Water Supply Wells	I	Conduct a water sample collection and analyses program for water supply wells Nos. 3, 6, 8 and 12. The parameters shown in List A of Table 6.2 should be used for analyses of each sample.
Surface Water Monitoring	ı	Sample water and sediments of the drainage courses from Landfill No. 4 to the base boundary. Set up approximately 8 sampling stations and analyze for the parameters in List A (Table 6.2).

.

.

TABLE 6.2

1 ·

. . .

.

RECOMMENDED LIST OF ANALYTICAL PARAMETERS

List A

.

- -

· . .

Samples from:

Ground-water monitoring wells Leachate Base water supply wells Stream sediment samples Stream water samples

. . .

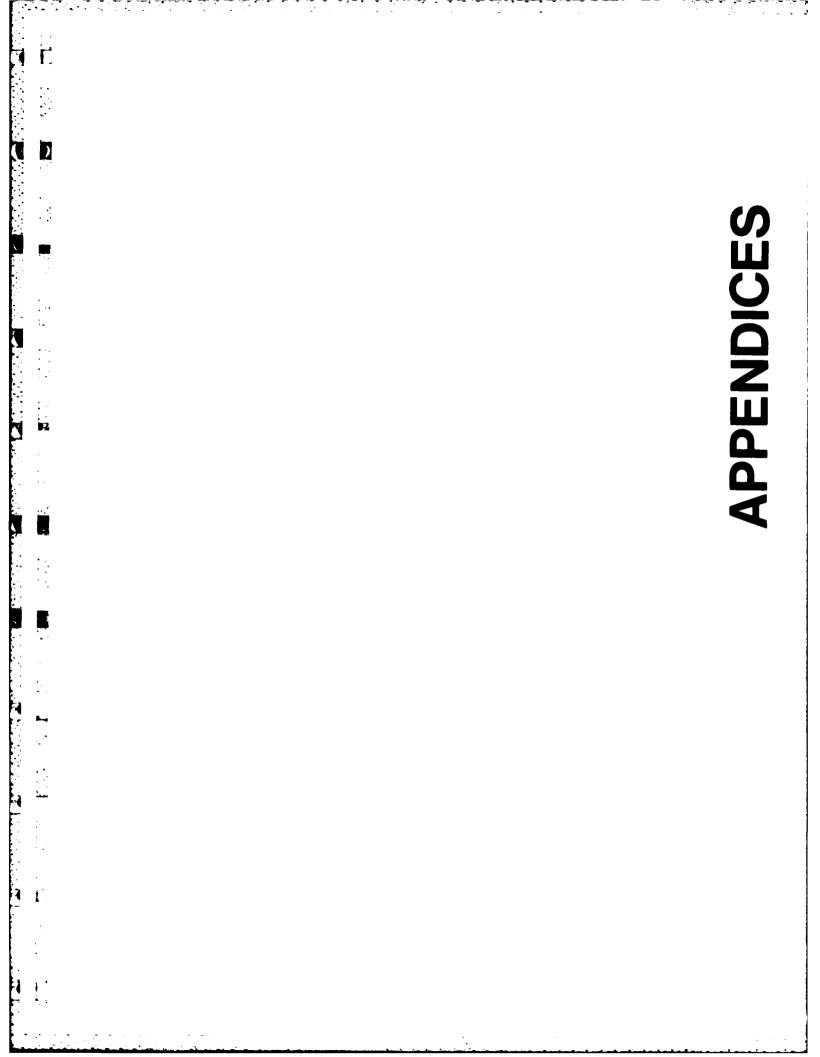
Analyses to include:

GC/MS scan Total organic carbon pH Nickel Phenol Cyanide Copper Zinc Manganese Total dissolved solids Interim Primary Drinking Water Standards (selected list)

Arsenic	Lead	Endrin	2,4,5-TP Silvex
Barium	Mercury	Lindane	Radium
Cadmium	Nitrate	Methoxychlor	Gross alpha
Chromium	Selenium	Toxaphene	Gross Beta
Fluoride	Silver	2,4-D	

List B

Samples from:


Ground-water monitoring wells Water extract of soil borings

Analyses to include:

Interim Primary Drinking Water Standards (see above list) pH Total organic carbon Nickel Phenol Cyanide Copper Zinc Manganese Total Dissolved Solids

., <u>.</u> ί.

APPENDIX A

E

W

C

i.

Ĺ

-

BIOGRAPHICAL DATA

- G. M. Gibbons
- R. M. Reynolds, P.E.
- E. J. Schroeder, P.E.
- M. I. Spiegel
- R. E. Zimmermann, C.P.G.

.

ES ENGINEERING-SCIENCE-

Biographical Data GREGORY M. GIBBONS Sanitary Engineer

[PII Redacted]

(6

D

an a liter an

Education

B.S. in Civil Engineering, 1978, University of Notre Dame M.S. in Sanitary Engineering, 1980, University of Michigan, Ann Arbor.

Professional Affiliations

Engineering-in-Training (Indiana) American Society of Civil Engineers Water Pollution Control Federation

Experience Record

1977-Date Engineering-Science. Technical Specialist (1977). Responsible for reviewing shop drawings and performing general office duties.

Assistant Engineer (1978). Prepared designs, wrote specifications, and reviewed shop drawings.

Engineer (1979). Responsible for design preparation, pilot plant operation, and data analysis. Also in-volved in contract administration.

Sanitary Engineer (1980-Date). Responsible for industrial waste survey, characterization and treatability studies, including field surveys, analyses, interviewing and report preparation. Responsible for field investigation and report preparation for sludge land application EIS at Des Moines, Iowa. Assisted in air pollution source tests and compliance determinations at various industrial facilities. Assisted in EIS preparation for wastewater treatment plant in Hanover County, Virginia. Responsible for design of components of 100-mgd Division Avenue Water Treatment Plant (Cleveland, Ohio). Lead responsibility in process design for electroplating waste treatment system. Project Manager for resource recovery assessment of newsprint for the Commonwealth of Virginia.

1978-1979 University of Michigan, Ann Arbor, Michigan. Laboratory Aide (1978). Teaching Assistant (1979). Responsible for instructing laboratory classes in water quality analysis.

1281

ES ENGINEERING-SCIENCE -

Biographical Data

Randal M. Reynolds

Senior Engineer

[PII Redacted]

.

1-

U

÷.

يت ا

j

•

Education

BChE (Chemical Engineering), 1973, Georgia Institute of Technology, Atlanta, Georgia

Professional Affiliations

Registered Professional Engineer, Georgia #13023 Air Pollution Control Association American Institute of Chemical Engineers (Chapter Secretary)

Experience Record

- 1973-1975 U.S. Environmental Protection Agency, Water Enforcement Branch, Atlanta, Georgia. Chemical Engineer. Responsible for developing draft NPDES limitations for industrial discharges, issuing public notices and final NPDES permits and participating in public hearings concerning NPDES permits.
- 1975-1981 Gold Kist Inc., Corporate Engineering, Atlanta, Georgia. Environmental Process Engineer. Responsible for reviewing and implementing new air quality, NPDES, RCRA and TSCA regulations. Supervised preparation and submittal of air quality, water quality and hazardous waste permit applications. Kept management informed of impact of regulations on existing and future projects.

Served as staff engineer responsible for preparing preliminary designs for air pollution control systems and detailed cost estimates for air system capital projects. Major projects included the preliminary selection of alternatives for a particulate emission control system for a 60,000 lbs/hr industrial steam boiler (peanut hull/wood fired).

1981-Date Engineering-Science, Inc., Atlanta, Georgia. Senior Engineer. Responsibility for developing environmental studies and alternative evaluations for clients.

Randal M. Reynolds, Continued

Project Engineer for Phase I Installation Restoration Program projects for the Department of Defense. Developed hazardous chemical usage, waste generation and waste disposal practice timelines for industrial operations at several Air Force bases. Identified industrial operation disposal practices which could result in migration of contaminants and recommended priority disposal practices requiring further investigation.

Project Engineer assisting in a comprehensive study of the solid waste management program for the City of Roswell, Georgia. Developed conceptual cost estimates for a city operated sanitary landfill and incinerator disposal alternatives.

1

: **-**-

3 : 10 •

2

.

• :

.

Project Manager for development of a Spill Prevention Control and Countermeasures (SPCC) Plan for an industrial facility. Coordinated the design of spill containment structures and recommended structure modifications. Recommended essential spill control and clean-up equipment.

Publications and Presentations

R. M. Reynolds, "Practical Tips - Bagging Sludge?", Pollution Engineering, Vol. 12, No. 7, July 1980, pg. 28.

R. M. Reynolds, "Pulse-Type Fabric Filters in a Soybean Processing Facility," Operation and Maintenance of Air Particulate Control Equipment, R. A. Young, F. L. Cross, Jr., editors, Ann Arbor Science Publishers, Inc., Ann Arbor, Michigan, July 1980, pp. 121-123.

"Operation, Maintenance and Design of Fabric Filters for a Soybean Processing Facility," a slide presentation for the EPA technology transfer serminar, "Operation and Maintenance of Air Pollution Equipment for Particulate Control," April 12, 1979, Atlanta, Georgia.

-2-

ES ENGINEERING-SCIENCE -

Biographical Data

ERNEST J. SCHROEDER

Environmental Engineer Manager, Solid and Hazardous Waste

Education

-

•

17

R

٠.

Ľ

B.S. in Civil Engineering, 1966, University of Arkansas, Fayetteville, Arkansas

M.S. in Sanitary Engineering, 1967, University of Arkansas, Fayetteville, Arkansas

Professional Affiliations

Registered Professional Engineer (Arkansas No. 3259, Georgia No. 10618, Texas No. 33556 and Florida No. 0029175) Water Pollution Control Federation

Honorary Affiliations

Chi Epsilon

Experience Record

1967-1976 Union Carbide Technical Center, Engineering Department, South Charleston, West Virginia (1967-1968). Project Engineer. Responsible for environmental protection engineering projects for various organic chemicals and plastics plants. Conducted industrial waste surveys, landfill design, and planning for plant environmental protection programs; evaluated air pollution discharges from new sources; reviewed a wastewater treatment plant design; and participated on a project team to design a new chemical unit.

> Union Carbide Corporation, Environmental Protection Department, Texas City, Texas (1969-1975). Project Engineer and Engineering Supervisor. Responsible for various aspects of plant pollution abatement programs, including preparation of state and federal permits for wastewater treatment activities.

Operations Representative on \$8 million regional wastewater treatment project and member of design team which made the initial site selection and process evaluation

ERNEST J. SCHROEDER (Continued)

and recommendation. Participated in contract negotiations, process and detailed engineering design, construction of the facilities, preparation of start-up manuals, operator training, and the start-up activities. Designated as Project Engineer after start-up on expansion to original waste treatment unit.

Engineering Supervisor responsible for operation of wastewater treatment facilities including collection system, sampling and monitoring programs, spill control and clean-up, primary waste treatment, wastewater transfer system, biological waste treatment, and waste treatment pilot plants. Developed odor control program which successfully reduced odor emissions and represented Union Carbide at a public hearing on community odor problems.

Led special projects such as an excess loss control program to reduce water pollution losses; sewer segregation program involving coordination and reporting of 38 projects for the separation of contaminated and non-contaminated water; and sludge disposal program to develop long-term sludge disposal alternatives and recover land in present sludge landfill area. Developed improved methods of sampling and continuous monitoring of wastewater.

. بېږې

÷.

-

Union Carbide Corporation, Environmental Protection Project Engineer, Toronto, Ontario, Canada (1975-1976). Responsible for the overall environmental permitting, engineering design, construction and start-up of waste treatment systems associated with a new refinery.

Engineering-Science, Inc., Project Manager (1976-1978). 1976-Date Responsible for several industrial wastewater projects including the following: wastewater investigation to characterize sources of waste streams in a chemical plant and to develop methods to reduce the wastes, sludge settling studies to evaluate settling characteristics of activated sludge at a chemical plant, development of a process document for the design and operation of a wastewater treatment facility at a petrochemical complex, wastewater treatment evaluation which included characterization of wastewater, unit process evaluation, inhibition studies, design review, operations review, preparation of operations manual, operator training and providing operating assistance for waste treatment facilities, various biological treatability studies and bench-scale and pilot-scale evaluation of advanced waste treatment technologies such as granular carbon adsorption, multimedia filtration, powdered activated carbon treatment, ion exchange and ozonation.

ERNEST J. SCHROEDER (Continued)

.

D

.

-

Project Manager for hazardous waste disposal projects involving waste characterization, development of criteria for disposal of hazardous waste, site investigation, preparation of permits, detailed design, construction of facilities and spill clean-up activities.

Deputy Project Manager for industry-wide pilot plant study of advanced waste treatment in the textile industry. Technologies evaluated included coagulation/ clarification, multi-media filtration, granular carbon adsorption, powdered activated carbon treatment, ozonation and dissolved air flotation.

Engineering-Science, Inc., Manager of the Industrial Waste Group in the Atlanta, Georgia office (1978-1980). Responsible for the supervision of industrial waste project managers and project engineers and the management of industrial waste studies conducted in the office. Also directly involved in project management consulting with clients on environmental studies and environment assessment projects, e.g., project manager for several spill control and wastewater treatability projects and for a third-party EIS for a new phosphate mine in Florida.

Engineering-Science, Inc., Manager of Solid and Hazardous Waste Group in the Atlanta, Georgia office (1980-date). Responsible for the supervision of solid and hazardous waste project managers and project engineers and the management of solid and hazardous waste projects in the office. Project activities have included permit and regulatory assistance, environmental audits, waste management program development, ground water monitoring, landfill evaluations, landfill closure design, hazardous waste management, waste inventory, waste recovery/recycle evaluation, waste disposal alternative evaluation, transportation evaluation, and spill control and countermeasure planning.

Project Manager for several Phase I Installation Restoration Program projects for the U.S. Air Force. The objective of this program is to audit past hazardous waste disposal practices that could result in migration of contaminants and recommend priority sites requiring further investigation. Also conducted environmental audits (air, water and solid waste) at several Gulf Oil Company facilities. ES ENGINEERING-SCIENCE -

ERNEST J. SCHROEDER (Continued)

Publications and Presentations

Schroeder, E. J., "Filamentous Activated Sludge Treatment of Nitrogen Deficient Waste," research paper submitted in partial fulfillment of the requirements for MSCE degree, 1967.

يت اربا

.

عبيه

Schroeder, E. J., and Loven, A.W., "Activated Carbon Adsorption for Textile Wastewater Pollution Control," Symposium Proceedings: Textile Industry Technology, December 1978, Williamsburg, VA.

Schroeder, E. J., "Summary Report of the BATEA Guidelines (1974) Study for the Textile Industry," North Carolina Section of AWWA/ WPCA, Pinehurst, North Carolina, November 1979.

Mayfield, R. E., Sargent, T. N. and Schroeder, E. J., "Evaluation of BATEA Guidelines (1974) Textiles," U.S. EPA Report, Grant No. R-804329, February 1980.

Storey, W. A., and Schroeder, E. J., "Pilot Plant Evaluation of the 1974 BATEA Guidelines for the Textile Industry," Proceedings of the 35th Industrial Waste Conference, Purdue University, May 1980.

Pope, R. L., and Schroeder, E. J., 'Treatment of Textile Wastewaters Using Activated Sludge With Powdered Activated Carbon," U.S. EPA Report, Grant No. R-804329, December 1980.

Schroeder, E. J., "Industrial Solid Waste Management Program to Comply with RCRA," Engineering Short Course Instructor, Auburn University, October 1980.

Schroeder, E. J., "Technical and Economic Impact of RCRA on Industrial Solid Waste Management, Florida Section, American Chemical Society, May 1981.

- ES ENGINEERING-SCIENCE -

Biographical Data

MARK I. SPIEGEL

[PII Redacted]

Environmental Scientist

Education

£.

C

8----

ĩ

ĩ

B.S. in Environmental Health Science (Magna cum laude), 1976, University of Georgia, Athens, Georgia
Limnology and Environmental Biology, University of Florida, Gainesville, Florida
Business Administration, Georgia State University

Professional Affiliations

American Water Resources Association Technical Association of the Pulp and Paper Industry

Experience Record

- 1974-1976 U.S. Environmental Protection Agency, Surveillance and Analysis Division. Cooperative Student. On assignment to Air Surveillance Branch, participated in ambient air study in Natchez, Mississippi, and operated unleaded fuel sampling program for Southeast National Air Surveillance Network. For Engineering Branch, participated in NPDES compliance monitoring of industrial facilties throughout the southeast; operation and maintenance studies of municipal waste treatment facilities; and post-impoundment study of West Point Reservoir, West Point, Georgia. Participated in industrial bioassay studies for the Ecological Branch.
- 1977-Date Engineering-Science. Environmental Scientist. Responsible for the conduct of water and wastewater sampling programs and analyses, quality control, laboratory process evaluations, and evaluation of other environmental assessment data. Conducted leachate extraction studies of sludges produced at a large organic chemicals plant to define nature of sludges according to the Resource Recovery and Conservation Act guidelines. Involved in laboratory quality assurance program for the analysis of water samples used in a stream modeling project. Conducted water quality modeling study for Amerada Hess Corporation to determine the assimilative capacity of a stream receiving effluent from a southern Mississippi refinery.

1/82

Mark I. Spiegel (Continued)

Participated in bench-scale industrial treatability studies conducted for the American Textile Manufacturers Institute and Eli Lilly Pharmaceuticals in Mayaguez, Puerto Rico, and in carbon adsorption studies for an American Cyanamid chemical plant and Union Carbide Agricultural Products Division.

Involved in various aspects of several industrial environmental impact assessments including preliminary planning for a comprehensive study for St. Regis Paper Company on a major pulp and paper mill expansion project. Assisted in preparation of thirdparty EIS for EPA and Mobil Chemical Company concerning a proposed 16,000-acre phosphate mining and beneficiation facility. Developed an EIA prior to construction of a pulp and paper complex by the Weyerhaeuser Company in Columbus, Mississippi, which included preparation of a separate document for the Interstate Commerce Commission concerning the construction of a railroad spur to serve the complex. Also involved in formulating the water quality, water resource and socio-economic aspects of an environmental impact assessment for International Paper Company. Participated in large scale site evaluation to determine the suitability and environmental permitting requirements of a site for an east coast brewery for the Adolph Coors Company. Assisted in development of a peat mining and restoration plan for a private concern in coastal North Carolina.

÷۲

<u>.</u>...

<u>.</u> :

-.

۰.

1

- -

Project Manager. Conducted comprehensive process evaluation of an 80 mgd wastewater treatment system for Weyerhaeuser Company. Responsible for a study to determine the leaching characteristics of sludges for a paint manufacturing facility for RCRA compliance. Also managed study for development of a solid waste management plan for a ceramic pottery manufacturer in northern Alabama which included evaluating surface and groundwater contamination potential from the existing disposal site and assisting manufacturer in developing a disposal program acceptable to state agencies.

Participated as project team member for Phase I Installation Restoration Program projects for the Department of Defense. Studies were conducted at five Air Force bases to identify past hazardous waste disposal practices that could result in migration of contaminants and recommend priority sites requiring further investigation. - ES ENGINEERING-SCIENCE-

Biographical Data

ROBERT E. ZIMMERMANN

Geologist

[PII Redacted]

• :-

.

1'3

N

ŧ

Education

B.S. in Geology, 1978, University of Akron, Akron, Ohio
Post baccalaureate Studies - University of Akron - Geology, 1979
M.S. - Envionrmental Geology, University of Akron - Presently working towards degree
Cartographic Certification - 1981 - University of Akron

Professional Affiliations

American Institute of Professional Geologists National Water Well Association Geological Society of America American Society of Photogrammetry

Experience Record

- 1978 1981 Ohio Environmental Protection Agency, Twinsburg, Ohio Geologist
- ... Performed RCRA Site inspections of Hazardous Waste Facilities as part of permit process
- ...Performed site investigations and evaluations for the disposal of hazardous and solid waste materials.
- ...Hydrogeologic studies of ambient groundwater quality in various aquifers in Northeast Ohio.
- ... Performed groundwater contamination studies due to various pollution sources (landfills, chemical disposal sites, salt storage, road salting, brine disposal, etc.)
- ... Hydrogeologic evaluation for injection well sites.
- ...Conducted Surface Impoundment Assessment in Northeast Ohio as required by the Safe Drinking Water Act and completed groundwater pollution potential reports on selected impoundments.
- ... Responsible for the compiling and drafting of final copies of groundwater aquifer maps for State of Ohio.
- ... Worked with general public on water quality and well problems.

Robert E. Zimmer	mann (Continued)
Additional Respo	onsibilities
contamir fill sit Compiled maps, ac Collecte samples; Provided Strategy	and drafted soil capability maps, groundwater quality quifer maps, etc.; ad and interpreted geochemical analyses of groundwater i input for Ohio's proposed Groundwater Protection ; geologic information as needed by Ohio EPA staff and
1981 - Date	Engineering-Science, Inc., Cleveland, Ohio. Geologist. Responsible for setting up groundwates monitoring programs for industry; supervising drilling and well construction of monitoring wells; assessing impact of contaminants on ground- water quality; determining flow rates, directions etc., of groundwater at industrial disposal sites locate and determine new sites suitable for solid and hazardous waste disposal, monitoring ground- water at solid waste facilities; determination of subsurface geology at various locations; hydro- geologic studies at various solid and hazardous waste disposal facilities.
Special Skills	
Certified (Cartographer, drafting abilities, calligrapher

•

.

G

•••

APPENDIX B

. . .

E

D

R.

Ċá

ŝ,

4

1..

ſ

. .

. .

h

C

INSTALLATION HISTORY, ORGANIZATION AND MISSIONS

APPENDIX B

INSTALLATION HISTORY, ORGANIZATION AND MISSIONS

HISTORY

This information was obtained from Robins AFB records.

Robins Air Force Base began in 1941 with the announcement by Congressman Carl Vinson of plans to establish a maintenance and supply depot in the southeast. The original tract of 3,000 acres of land was donated by the City of Macon and Bibb County. Subsequent acquisitions by the Federal Government increased the size of the installation to its present 8,855 acres.

The names "Robins" for the Base and "Warner Robins" for the ALC and the City honor the memory of Brigadier General Augustine Warner Robins, Chief of the Air Corps, Material Division, Army Air Corps, 1935-1939, and Commandant of Randolph Field at the time of his death in 1940.

Officially activated on 1 March 1942 and declared a permanent military installation in 1952, the base today is a multi-mission facility. The original intent was to establish a maintenance and supply depot but the installation also became a training center. Original facilities were both temporary and permanent. After World War II, Robins ceased to be a training center but continued as an Air Material Area of AMC (now AFLC).

A second growth spurt began in 1949 when the Fourteenth Air Force Headquarters moved to Robins where it remained until deactivated in 1960. Headquarters Continental Air Command moved to Robins in 1961. Other factors contributing to the expansion were the Korean Conflict in 1950 and the decentralization of prime responsibility by the Air Material Command to its Air Material Areas.

The largest construction program commenced in 1958 with contracts exceeding 26 million dollars to prepare facilities for the 19th Bombardment Wing as a tenant organization. Runway enlargement and Capehart Family Housing were two of the numerous items of this program. In 1962,

B-1

the runways were further rehabilitated to better accommodate the heavy B-52 and KC-135 aircraft.

Today, Robins AFB, an Air Force Logistics Command installation, is a huge, sprawling military complex of closely related units with diversified missions. The Warner Robins Air Logistic Center is one of five similar organizations in the Air Force. These Centers provide logistics support to the entire Air Force, and it is their mission to keep the United States Air Force Weapons Systems at constant state of readiness.

The Warner Robins ALC determines the parts, supplies, and equipment needed to support the weapon systems for which it is responsible.

The ALC budgets for these items, buys them, stores them, distributes them, repairs and maintains them, and finally disposes of them when they have outlived their usefulness.

In short, the Warner Robins ALC is system manager for 41 aircraft, missile and support systems. In addition, the ALC has 10 program management assignments. The ALC's support mission includes management of 167,000 items in virtually all commodity areas.

The commodity range is from simple hardware items to the free world's most sophisticated aerospace communications and electronic equipment.

The entire Air Force fleet of bombers, fighter-interceptors, reconnaissance, cargo aircraft, and helicopters depends on Warner Robins logistics expertise to fulfill vital logistical needs.

In 1973, the ALC was designed as the Technology Repair Center for airborne electronics, gyros and life support systems. Airborne electronics is one of the largest and most sophisticated repair loads of the new assignments.

The Warner Robins Air Logistics Center has command jurisdiction over the installation with the 2853rd Air Base Group providing the housekeeping functions vital to operation of the installation.

Throughout its 41 years, the relationship of Robins AFB with its neighboring communities has been outstanding. The Base depends upon the local area for many community services and its most important resource people. In turn, Robins AFB is an integral part of the Middle Georgia economy. There is recognition of this dependence as the base and the

в-2

communities work together for a solution of mutual problems and the further strengthening of the ties that bind the two.

. . . .

ORGANIZATIONS AND MISSIONS

-

 \square

:

This information was obtained from the Robins Air Force Base Tab A-1 Environmental Narrative and the Warner Robins-Air Logistics Center Information Handbook, Fiscal Year 1981, prepared by Management and Cost Analysis, Comptroller.

Warner Robins-Air Logistics Center

The Warner Robins Air Logistics Center (WR-ALC) is one of five organizations that provide logistics support to the entire U. S. Air Force. As a worldwide logistics manager, it is one of the vital parts of the Air Force Logistics Command (AFLC) which supports the aerospace forces.

The Center determines the spare parts, supplies and equipment needed to support the weapon systems for which it is responsible. It budgets for these, buys them, stores them, distributes them, and finally disposes of them when they have outlived their usefulness.

Warner Robins ALC currently serves as System Manager - that is, the overall Air Force focal point - for five transport aircraft, seven utility aircraft, five helicopters, eight air-to-air and air-to-ground missiles, seven drones, the F-15 Fighter and B-57 reconnaisance bomber. The latest system management responsibility assignment is the H-60 Helicopter.

Warner Robins ALC's support mission includes management of nearly 200,000 items ranging from single hardware items to the most sophisticated communications and electronic equipment. The entire fleets of Air Force bombers, fighter-interceptors, reconnaissance, cargo aircraft, and helicopters depend on the Warner Robins ALC to fulfill their logistics needs. Other item management responsibilities include bombingnavigation systems, fire control systems, target acquisition systems, airborne radar, airborne electronic warfare systems, propellers, bearings, general purpose automatic data processing equipment, satellite communication equipment, guns and vehicles.

B-3

The largest group of people in the ALC are engaged in repairing, modifying, and overhauling aircraft and equipment. In the aircraft area, this involves depot level repair of the C-141, C-130 and the F-15.

The WR-ALC is also the technology repair center for aircraft propellers, life support equipment, instruments, gyros, and airborne electronics. As Avionics Center of the Air Force, we use some of the most sophisticated equipment and skills anywhere in the world.

The Center has the geographic area logistics support responsibility for most Air Force bases along the eastern coast as well as the Atlantic Missile Test Range, Newfoundland, Labrador, Greenland, Iceland, Bermuda and the Azores.

Tenant Organizations

Robins AFB is the host to many tenants and provides services, facilities, and other support to these organizations. The following list shows the tenant units located on Robins Air Force Base. In addition, Robins AFB supports some 63 off base organizations ranging from high school ROTC detachments to American units in 11 foreign countries.

Robins Air Force Base Exchange (AAFES)

The mission of the Army & Air Force Exchange Service is to: (1) provide merchandise and services of necessity and convenience which are not furnished from appropriated funds to authorized patrons at uniformly low prices.

Robins Air Force Base Commissary (AFCOMS)

The Air Force Commissary Service (AFCOMS) is a centralized commissary system which manages and operates the worldwide Air Force Commissary function.

1926th Communications Squadron (AFCC)

The mission of the 1926 Communications Squadron is to manage, operate, and maintain communications-electronics-meteorological (C-E-M) services and the air traffic control (ATC) services/facilities in support of Robins AFB.

Detachment 5, Air Force Communications Command (AFCC)

The mission of DET 5, AFCC, is to provide communications-electronics (C-E) and air traffic control (ATC) staff support to Headquarters Air Force Reserve (AFRES).

B-4

5th Combat Communications Group (AFCC)

The mission of 5th Combat Communications Group is to provide mobile and transportable communications, aids to navigation, and air traffic control services for use in any area of the world, but primarily in support of the Tactical Air Command.

1839th Engineering Installation Group, Operating Location C (AFCC)

The mission of the 1839th Engineering Installation Group, Operating Location C, Robins Air Force Base, Georgia, is to fabricate AN/TSC-107 (Quick Reaction Package), test, furnish emergency and depot level maintenance of these systems in the field.

Headquarters Air Force Reserve (AFRES)

The United States Air Force Reserve develops, maintains, and provides operationally ready units and trained individuals needed to augment the Air Force in time of war, national emergency or when required to maintain national security.

94th Aerial Port Squadron (AFRES)

The primary peacetime mission of the 94th Aerial Port Squadron is to attain and maintain through training a state of operational readiness that will permit the 94th Aerial Port Squadron to fulfill its mobilization and/or contingency responsibilities.

402d Combat Logistics Support Squadron (AFRES)

The primary mission of the 402d Combat Logistics Support Squadron is to provide highly trained worldwide deployable military teams to accomplish rapid aircraft battle damaged repair and combat packaging and supply operations.

Detachment 6, 3025th Management Engineering Team (AFLC)

The Management Engineering Team (MET) provides manpower, organization, management engineering and management advisory services to all ALC activities.

Detachment 8, 2762d Logistics Squadron (Special) (AFLC)

Det 8 insures equipment, skills, and techniques capable of performing and supporting the system's operational role are compositely programmed, managed, and furnished in keeping with overall program objectives.

NCO Academy/Leadership School (AFLC)

The mission of the NCO Academy and NCO Leadership School is to insure that selected NCOs are prepared to assume supervisory positions, more advanced leadership and management responsibilities, and are able to fulfill their role in the Air Force.

321st Field Training Detachment (ATC)

FTD 321 is an off-campus unit of the U.S. Air Force School of Applied Agrospace Sciences, Sheppard AFB, Texas.

3503d USAF Recruiting Group (ATC)

The Group is responsible for all active duty Air Force recruiting programs in 12 states and Puerto Rico.

14th Flying Training Wing (ATC)

The detachment trains the co-pilots of the 19th Bomb wing.

Office of the Placement Coordinator Zone 2

and Atlantic Theatre (DOD)

The DOD Placement Coordinator, Zone 2/Atlantic Theatre, acts for the Assistance Secretary of Defense (Manpower, Reserve Affairs and Logistics) in implementing and administering various DOD-wide personnel programs in the geographic area of the Southeast and Southwest Civil Service Regions and the Atlantic Theatre.

DCAS Quality Assurance Section (DLA)

DCAS Quality Assurance Section is a management area of Defense Contracts Administration Region Atlanta located in Marietta, Georgia.

Defense Property Disposal Office (DLA)

The Defense Property Disposal Office mission is to receive, segregate, inspect, classify, and store excess surplus and scrap property turned in by all host installation organizations and other generators in the geographical area. Dispose of property through reutilization, transfer, donation, sale and destruction.

Federal Aviation Administration

Radar Approach Control (FAA)

The mission of the FAA Radar Approach Control is to provide for the

management of civil and military air traffic operating within the geographical boundaries of the facility's allocated navigable airspace.

Air Force Audit Agency Area Office

Detachment 960 (AFAA)

The mission of Det 960, Air Force Audit Agency (AFAA) Area Audit Office is to provide all levels of Air Force management with independent, objective, and constructive evaluations of the economy, effectiveness, and efficiency with which managerial responsibilities (including financial, operational, and support activities) are carried out.

Detachment 712, Air Force Office of

Special Investigations (AFOSI)

AFOSI Detachment 712 is a field extension of AFOSI District 7, Patrick AFB, FL. AFOSI investigates fraudulent activities, major administrative irregularities and violations of public trust involving Air Force procurement, disposal, pay and allowance matters, and nonappropriated fund activities.

Area Defense Counsel (USAF)

The Area Defense Counsel's mission is to perform legal defense functions.

Detachment 13, 15th Weather Squadron (MAC)

The mission of Det 13, 15 Weather Squadron is to provide or arrange for the environmental services needed to support the exercise, contingency, and wartime requirements of the Warner Robins Logistics Center and the 19th Rombardment Wing.

Headquarters 19th Bombardment Wing (SAC)

The mission of the 19th Bombardment Wing, Heavy, (BMW) is to develop and maintain operational capability to permit the conduct of strategic warfare according to the emergency war order (EWO) plans as directed by proper command authority.

Procurement Center Representative (SBA)

The Procurement Center Representatives (PCRs) represent the Small Business Administration to the commanding officer of the installation on any procurement or technical matter pertaining to policy or operation SBAs programs or the small business community.

B-7

4400th Mobility Support Flight (TAC)

The mission is to acquire, store, and maintain the Harvest Eagle Air Transportable Housekeeping Package in a serviceable condition for deployments in support of wartime commitments, contingencies, and exercises.

Detachment 3, 2d Aircraft Delivery Group (TAC)

Responsible for the movement of aircraft from the Southern United States and Central and South America.

RAF - Royal Air Force C-130 Liaison Team

This team serves as liaison for the C-130 program between the Royal Air Force and Robins AFB.

RCAF - Canadian Forces Logistics Unit

The first Canadian Forces Logistics Liaison Detachment is to serve as liaison agency between logistics functions at Robins AFB and the Royal Canadian Air Force.

20

1.1

.

RAAF - Royal Australian AF Liaison Office

The Royal Australian AF Liaison Office is to serve as liaison agency between logistics functions at Robins AFB and the Royal Australian Air Force.

U. S. Army Corps of Engineers

This U. S. Army unit is known as the U. S. Army Corps of Engineers, Savannah District. It administers and supervises Air Force and Army construction contracts at Robins and the surrounding areas. It coordinates contract sales of government real estate properties and facilities.

General Accounting Office (USGAO)

The U.S. General Accounting Office is an independent, nonpolitical agency in the legislative branch of the government. It provides the Congress, its committees and members with information, analyses and recommendations concerning operations of the government, primarily the executive branch.

GAO is concerned that the federal departments and agencies through their programs and activities, carry out the mandate or intent of legislation enacted by the Congress.

APPENDIX C

Fŧ

· .

Ē

D

÷

C3

Ľ,

۰. .

۰.

F

I.

SUPPLEMENTAL ENVIRONMENTAL SETTING INFORMATION

APPENDIX C

SUPPLEMENTAL ENVIRONMENTAL SETTING INFORMATION

BIOLOGICAL RESOURCES

1

١

The following information regarding the Robins AFB biological resources was obtained from the Tab A-1, Environmental Narrative, 1976. The information pertaining to threatened and endangered vertebrate species was verified and updated by the Georgia Game and Fish Division (GA Game and Fish Div., 1982).

Robins AFB encompasses natural forests totaling 1,964 acres (60% wetlands) and grasslands with low bush totaling 4,197 acres. The wet ecosystem of the wetlands promotes the growth of hardwoods such as oak and hinders the growth of softwoods such as pine. Floating, submerged and emergent types of aquatic plants are present in the wetlands.

The natural forests and grasslands on-base provide habitat areas for a wide variety of animal life. Large and small game animals and a variety of predatory bird exist on-base. Numerous species of fish and waterfowl inhabit the lakes and wetlands on-base. Several of the animal species are included as threatened or endangered as shown in Table C.1.

SUMMARY OF SURFACE WATER QUALITY DATA

A summary of NPDES water quality sampling data is shown in Table C.2. A summary surface water quality sampling data conducted by 're Base Bioenvironmental Engineering Office is shown in Tables C.3 th. gh C.10. The EPA interim primary and proposed secondary drinking water standards are shown in Table C.11.

INVENTORY OF PESTICIDES

A summary of the current inventory of pesticides on-base is shown in Table C.12.

GROUND-WATER MONITORING - LANDFILL NO. 4

In October 1979 Law Engineering Testing Company (LETCO) was subcontracted to perform a hydrogeologic and ground-water quality study at Landfill No. 4. The objectives of the study were to determine if any ground or surface water contamination was occurring from Landfill No. 4 or the sludge lagoon, determine the magnitude of contamination if demonstrated to exist, and provide other relevant landfill closure information.

The study consisted of an exploratory drilling program, the installation of a monitoring well system and ground and surface water sampling, summarized in a formal report. The study confirmed the presence of several metals and numerous priority pollutants hydraulically down stream and down-gradient of Landfill No. 4 (LETCO, 1980). Recommendations for further studies were included in the formal report. The Phase I IRP report is a follow-on project to the earlier study and supplements the information collected in the previous work.

11

الاربية بشريب يشتهب هبيه بالهبية بالهبية بالابتار فالراهان فالكالا فالكاريب المتراغب

.

-

ſ

Ξ.

THREATENED OR ENDANGERED VERTEBRATE SPECIES POTENTIALLY FOUND WITHIN ROBINS AIR FORCE BASE

Common Name	Status	Habitat
Fish		
Suwannee Bass	Threatened	Unpolluted springs & rivers
Trispot Darter	Threatened	Unpolluted streams
Reptiles and Amphibians		
American Alligator	Endangered	Coastal plain swamps & bayous
Pine Barrens Tree Frog	Threatened	Pine barren swamps
Birds		
Southern Bald Eagle	Endangered	Estuarine shores, rivers
Florida Sandhill Crane	Threatened	Wet prairies and fields
Ivory-Billed Woodpecker	Endangered	Bottom land hardwood stands
Red-Cockaded Woodpecker	Endangered	Old-age pine woodlands
Bachman's Warbler	Endangered	River swamp forest
Mammals		
Florida Panther	Endangered	Large, unmolested swamp, deer available

Source: Robins AFB TAB A-2, Updated 1976 Verified and updated by Georgia Game and Fish Division, 1982

.

(

1

Í

-

۰.

· -

1981 NPDES DATA SUMMARY

	Unit	Requirement	JAN	FEB	MAR	APR	МАҮ	NUL	JUL	AUG	SEP	OCT	NON
Station 001 (Runoff Ditch by Missil	f Ditch h	oy Missile Storage)	ge)										
BOD	mg/1	10.0	5.8	4.7	2.5	2.4	1.6	1.5	2.6	5.1	4.3	2.3	2•5
Oil/Grease Sucrended	mg/1	15.0	3.1	0•6	1.5	1.0	1.3	5.4	2.3	10.3	3.1	2.7	4.8
Solids	mg/1	50.0	1	6.0	4.5	1.3	1.2	1	1.6	3.2	2.4	1.0	2.7
РН	unit	6.0-8.5	6.7	6•9	6.2	6.8	7.3	7.7	7.1	6•9	7.2	6.7	6.7
Station 002 (Runoff Ditch by Ammo Storage	f Ditch h	y Ammo Storage	Area)										
BOD	mq/1	15.0	8•0	6.3	6•9	3 • 8	3.0	1.9	1.4	4.1	3•5 3	2.7	2.2
Oil/Grease	mq/1	15.0	4.6	0•6	1.2	1.9	2.9	3.9	4.1	9.1	5.4	3.8	4.2
ЪН	unit	6.0-8.5	6.6	6•9	8•5	7.3	7.2	7.4	7.4	7.0	6.8	7.4	6.6
Station 003 (Runoff Ditch North SAC	f Ditch 1	North SAC Alert)	_ 1										
BOD	mg/1	15.0	7.0	4.3	3.2	3•5	3•0	1.3	2.0	4.1	2•5	2.6	1.8
Oil/Grease	mg/1	15.0	3.0	0.8	2.1	1.3	1.7	2.1	1.7	11.0	2.6	3.1	8.4
РН	unit	6.0-8.5	6.7	10.3	7.2	6.5	7.3	7.2	7.6	7.3	8.0	6•9	6.7
Station 004 (Hannah Rand Runoff	h Rand Ru	unoff Ditch)											
BOD	mg/1	15.0	5.1		3.7	2.3	1.8	2.0	1.6		2.5		2.0
Oil/Grease	mg/1	15.0	1.8	0.3	1.3	1.5	3.4	1.2	2.9	2.9	6.2	4.7	4.6
рH	unit	6.0-8.5	6.5		7.1	6.9	7.1	7.1	7.1		6.7		6.5
NH ⁻ -N	ma/]	2-0	0.56			, ,	ر ب د	۲ ۲	D D		0010		с с

-

.

• : ••• •

ng:" "1+"

· ·

:

÷ f	-					5	•		·	-			
				TABLE	LE C.2								
			1981		(Continued) PDES DATA S	(Continued) NPDES DATA SUMMARY	~						
Station/Parameter	Unit	Permit Requirement	JAN	FEB	MAR	APR	МАУ	NUC	Inc	AUG	SEP	ocr	NON
Station 005 (Ditch	at End o	of San. Treat.	Plant	No. 2	Pipe)								
BOD	ma/1	15.0	ע הי		ר י	•	t						
Oil/Grease	mq/l	15.0			· · ·	1 u	 		2.4	4.9	а•0	2.9	2.5
рн	unit	6.0-8.5	6-9		- v	יים 10	 • r	0 (- (τ τ τ	.	4.1	4.4	3•2
	mg/1	2.0	0.42	1.12	0.56			2.1	1.2	6.9	7.0	7.1	9.9
n	i	•	5			V •0	0.92	oc•n	96.0	0.84	0.001	0.28	0.2
Station 006 (Ditch by Dependent Pool)	by Depen	dent Pool)											
BOD	mg/l	15.0	4.7	9.6	2	0	۲ ر	0 +	•	•	•	ł	
Oil/Grease	mg/1	15.0	2.3	0.4	1.4		, 1 , 1 , 2	• •	* r • •		- ' - '	8.7	/ •
ЪН	unit	6.0-8.5	7.3	6.4	6.8	6.9	7.4	7.2	2.9	7.4	2.0	0 8 0 9	7•0
Station 008 (Indust)	(Industrial Waste	Treatment	Plant #2)	~									
BOD	mq/l	30.0	2.1	5.0	ر م	ې ۲	r r	[•		1			
Suspended	ì) 	-	1	2.0	•••	r•r	1.1	6 •8	3.7	3.1	3.1	2.9
Solids	mg/1	30.0	13.0	18.0	9.7	6.0	0 v	c d	c u	•		1	
COD	mq/1	150.0	40.0	50.02	38.0						10.0	/•6	6.8
Oil/Grease	mg/1	15.0		1.8	0.00				n		55•0	60.0	40.0
Phenol	mg/1	0.2	0.02	0.0	0,10	- ~ # c	• •••) ()	4 • 4		3•1	8•0	6.1
Cyanide	mg/1	0.35	0-04		20.0			· · ·			0.001	0.01	0.01
Cadmium	mq/l	0.15	0.02					- 0	0•04	<n•1< td=""><td>0.03</td><td>0.04</td><td>0.05</td></n•1<>	0.03	0.04	0.05
Chromium (total)	mg/l	0.45	0.08		0.01	0.01	0.12		70•0	0.13	0.02	0.02	0.01
Zinc	mg/1	0.45	0.08		0.06	0.01				02.0	00	10.0	0.08
Nickel	mg/l	0.75	0.01		0.01	0.12	0, 12				0.18	21.0	0.1
Lead	mg/l	0.15	0.01	0.01	0.01	0.01	0.02	50.0			0.54	0.00	0.04
Copper	mg/1	0.30	0.02	0.04	0.2	0.02	0.18	0.10	0.07			80 • 0	0
pH	unit	6.0-9.0	8 • 8	8.8	8.3	8.9	8.6	8.8	0.0	0.0			80•0
									1	•	> • • •	>	

÷.,

•

and the second second

•__

_

F T

.

C≁5

.

فالمتحالية المراجع

[\

(Continued) 1981 NPDES DATA SUMMARY

NON	1	0	0		0	.01	0.	2	0	7.2
		8	20.0							
ocit		8.0	20.0							7.3
SEP			31.4							7.2
AUG		18.0	31.0							7.3
JUL		19.0	50.0							7.4
NUC		25.0	20.0		18.0	0.2	1.5	1.6	219.0	7.4
МАҮ		21.0	32.0		17.0	0.2	1.6	0.6	TNTC	7.0
APR		27.0	10.0		11.0	0.2	2.0	1.1	1000	7.3
MAR			44.0		25.0	0.02	1.1	0.77	31.00	7.3
FEB		20.0	50.0		13.0	0.02	0.2	0.56	1 0.00	7.9
JAN	lant #1)	16.0	39.0		15.0	0.10	06.0	0.28	1.0 2	7.5 7.9 7.3
Permit Requirement	Treatment P	Not Listed	Ξ		=			2.0		
Unit	rial Waste	mg/1	mg/1		mg/l	mg/1	mg/l	mg/l	N/100 ml	Unit
Station/Parameter	Station 009 (Industrial Waste Treatment Plant #1)	BOD	COD	Suspended	Solids	Phenol	Oil/Grease			PH

TNTC = too numerous to count

.

-· .

-

. . .

. دهد زر

. . .

•.

•

;

• •

.

SUMMARY OF WATER SAMPLE RESULTS FROM MONITORING STATION NO. 001 (Missile Storage Area) March 1979

Day	COD (mg/l)	TOC (mg/l)	Oil & Grease (mg/l)	Fe (µg/l)	K (mg/l)	Na (mg/l)	CN (mg/l)
13	20	7	0.6	2,300	1.3	5.9	0.2
14	20	8	0.3	1,600	1.1	4.5	0.1
15	20	5	(a)	1,000	1.1	4.5	(b)
16	15	7	(a)	280	1.1	4.5	(b)
17	15	9	(a)	2,900	1.0	6.0	(b)
18	14	7	(a)	3,400	0.7	6.0	2.1

(a) Less than detectable limits of 0.3 mg/l.

ۍ د ۱ ۱۰

.

r

R

(b) Less than detectable limits of 0.1 mg/l.

(c) Results for the following parameters were less than the detectable limits shown:

 $NH_3(0.2 \text{ mg/l}), PO_4(0.2 \text{ mg/l}), Cd(10 \mu g/l), Cr^{+3}(50 \mu g/l),$

 Cr^{+6} (50 µg/l), Cu(20 µg/l), Pb(50 µg/l), Hg(5 µg/l), Ni(50 µg/l) and Zn(50 g/l).

1

1

MONITORING STATION NO. 002 (SAC DITCH), NOVEMBER 1978 SUMMARY OF WATER SAMPLE RESULTS FROM

c1 19/1	0	0	0	0	0	0	0
l∱gm	o	0	0	0	0	0	0
D.0. Bg/1	9.0	7.0	6.5	7.5	7.0	7.5	7.0
pH s.u.	7.2	6.8	7.2	7.2	7.2	7.0	7.0
Temp.	68.9	68.9	68.9	68	59	62.6	66.2
Zn µg/l	100	140	84	100	70	70	95
К 89/1	1.6	1.3	0.4	2.0	0.8	0.5	1.3
Na mg/1	28	54.3	16	.31	14.1	2.2	65.5
Ag mg/l	28	(q)	(p)	(q)	(q)	(q)	(a)
Cu µ9/1	38	30	27	29	29	40	35
Cr ⁺³ µ9/1	100	(c)	58	(c)	(c)	(c)	(c)
cd µy/1	16	15	19	25	11	<10	41
Oil ú Grease mg/l	(व)	(q)	(q)	(q)	0.4	0.4	(q)
TOC mg/1	-	(P)	(a)	(a)	(a)	(e)	-
cop ng/1	=	ę	S	11	ę	9	Q
Day	15	16	11	18	19	20	21

Less than detectable limits of 1.0 mg/l Less than detectable limits of 0.3 mg/l Less than detectable limits of 50 g/l Less than detectable limits of 10 g/l Results for the following parameters were less than the detectable limits shown:

CN (0.1 mg/l), Phenol (0.1 mg/l), Cr⁴⁶ (50 µg/l), Pb (50 µg/l)), Ni (50 µg/l), Surfactants (0.1 mg/l).

_____ .

•

•

7

.

.

-

.

...

. .

•

. .

•

:. ----

. . .

R

- . -

٩, .

•

Ľ

2

۰.

SUMMARY OF WATER SAMPLE RESULTS FROM MONITORING STATION NO. 004 (Hannah Rd.,) February 1979

-							ł
CI (1)	•	9	•	•	•	•	•
Phenol (my/l)	(~) ^{66.0}	1.1	0.45 (5)	0.05	a.iu2	0.17	1.5 ^[c]
Surf- act- ants (my/1)	6.3	0.4	•••	0.2		0.2	•
4- 15 11/11	100	ŚĘ	₽	63	2	R	ŝ
cl ⁻ (ay/)	2	20	91	2	28	9	9
ан (1/ен)	à	"	61	77	£	7	"
¥ (1//m)	4	ŝ	-	4	2	•	-
му (1/f-m)	-	-	7	7	7	÷	~
са (m.j/1)	2	22.5	2	70	ī	2	2
دا 11)	5	67	140	6.9	3	(7)	3
64 (1/6 ⁻¹)	(Q)	(P)	(P)	(P)	(P)	(P)	9
(1/6 ⁽¹)	(e)	9	(e)	50	(e)	(e)	E
нд (1/ ₀₁)	3	3	(v)	(9)	9	Ξ	3
Mn (1/6/1)	170	150	140	150	130	53	991
Fe ⁴³ (۱٬۹/۱)	1.1	2.0	2.2	2.2	1.6	1.8	2.4
са (µg/1)	19	ş	30	32	32	62	110
cr ¹⁶ (19/1)	(e)	(e)	(e)	(e)	(•)	27	5
د دا اولا ا	(e)	3	ē	9	3	9	\$
cd (µ ¥ 1)	(Ŧ)	(d,	(9)	(P)	(P)	2	ĝ
2	0.5	0.5	0.4	9.4	9.9	6.5	0.5
	6.9	0.5	0.5	•••	9.6	0.5	•••
Î	(q) ^{8.9}	1919.8	(a) (• •	(a) 5.1	(a) 0. P	(q) ^{5.1}	(q) ⁽¹⁾
011 6 Greene (1/em)	3	•	0.4	9.9	•	•:	1.0
	8	12	s	=	ŗ	2	13
یں۔ 11/رما	1.10	č	20	č	2	35	3
Îm	.	Ŧ	•	2	= 2-	<u>،</u> 9	2

Less than detertable limits of 0.3 mg/l $g_{\rm M}$ for 0.1 mg/l $g_{\rm M}$ gauged Hruff permit limits of 1.0 mg/l Excerds NPUMS permit limits of 0.2 mg/l Less than detectable limits of 30 mg/l limits that detectable limits of 50 mg/l.

•

. ~

1 • •

T

A second

SUMMARY OF WATER SAMLE RESULTS FROM MONITORING STATION NO. 005 (Golf Course Lake), March 1979

CN mg/1	I	2.3	I	ı	I	ı	t
Ca mg/1	12.2	ı	ı	ı	ı	ı	ı
Na mg/1	1.4	2.7	2.3	2.3	0.8	1.1	1.9
К т9/1	0.5	0.5	0.5	0.5	1.5	1.2	1.5
Zn 1/9/1	I	(e)	50	(e)	(e)	(e)	170
Hg µg/1	20	(P)	(q)	(P)	(g)	(P)	(P)
Fe µg/l	1,400	1,800	1,600	1,400	570	800	1,200
Си µ9/1	I	36	65	40	35	0£	<20
РО 4 11	0.3	0.2	0.4	(c)	(c)	(c)	(c)
Oil £ Grease mg/l	(q)	(q)	(q)	(q)	(9)	(q)	νî
TOC mg/l	(a)	(a)	-	(a)	(a)	-	(a)
COD mg/1	0	10	9	9	9	9	ć 5
Рау	20	21	22	23	24	25	26

Less than detectable limits of 1.0 mg/l

Less than detectable limits of 0.3 mg/l) (a) (b)

Less than detectable limits of 0.2 mg/l (c)

Less than detectable limits of 5 $\ensuremath{\nu g}/1$ (P)

Less than detectable limits of 50 $^{\rm lig/l}$ (e)

Results for the following parameters were less than the detectable limits shown: NH_3 (0.2 mg/l), Cd (10 µg/l), Cr⁺³ (50 µg/l), Cr⁺⁶ (50 µg/l), Pb (50 µg/l), and Ni (50 µg/l). (f)

<u>.</u>

-

: :

÷ ;

-

ć

. . .

SUMMARY OF WATER SAMPLE RESULTS FROM HORSE CREEK (HC) AND THE STABLE AREA (006) APRIL 1979

.

17

17

N

İ

Day	COD (mg/l)	TOC (mg/l)	Oil & Grease (mg/l)
table Area			
2	15	5	(a)
3	(a)	4	(a)
4	(a)	4	(a)
5	10	4	(a)
6	6	3	(a)
7	6	(a)	(a)
8	6	3	(a)
orse Creek			
9	15	0.7	(a)
10	10	3	(a)
11	15	4	(a)
12	5	4	(a)
13	5	5	(a)
14	10	5	(a)
15	5	3	(a)

(a) Less than detectable limits of 0.3 mg/l.

(b) Results for the following parameters were less than the detectable limits shown:

 $NH_3(0.2 \text{ mg/l})$, $PO_4(0.2 \text{ mg/l})$ and surfactants (0.1 mg/l).

TABLE	C.8
-------	-----

.

SUMMARY OF WATER SAMPLE RESULTS FROM INDUSTRIAL WASTE TREATMENT PLANT ADDITION

Day	COD (mg/l)	TOC (mg/l)	NH ₃ (mg/1)	NO ₃ (mg/1)	PO <mark>4</mark> (mg/1)	Surfac- tants (mg/l)	Phenol (mg/l)	CN (mg/1)	рН -
1	30	13	7.2	0.5	3.1	0.2	0	0	7.2
2	10	2	3.2	1.9	3.5	0.1	0	0	7.4
3	30	13	8.0	0.3	4.1	0.1	0	0	7.2
4	28	13	4.0	0.8	3.5	0.1	0	0	7.4
5	28	11	3.5	1.0	2.8	0.2	0	0	7.2
6	15	10	2.5	1.2	2.5	0.1	0	0	7.4
7	30	13	4.0	0.9	2.0	0.2	0	0	7.2

(a) Results for oil and greese were less than the detectable limit of 0.3 mg/l.

(b) No sample results were given for the following parameters: Cd, Cr^{+3} , Cr^{+6} , Cu, Fe, Mn, Hg, Ni, Ag, Zn, Ca, Mg, K, Na, Cl⁻, S0₄

ř.,

•

i -

E

, . ·

61

ţ

Į

SUMMARY OF WATER SAMPLE RESULTS FROM MAJOR BASE LAKES, August 8 to October 13, 1978

		DUCK LAKE	AKE		LUNA LAKE	LUNA L	AKE			SCOUT LAKE	KE	
	No. of				No. of				No. of			
	Samples	Min.	Max.	Mean	Samples	Min.	Max	Mean	Samples	Min.	Max.	Mean
Cu, Jg/1	11	0	0	ı		3	0	ı	4	0	0	ı
cr ⁺⁶ , μg/1	11	0	0	I	4	đ	0	ı	4	0	0	1
cr ⁺³ , µ9/1		0	0	١		0	0	ı	4	0	0	ı
NH ₃ , mg/l	11	0	0	I	4	0	0	ı	4	0	0	·
NO3, mg/l	:	0	0	ı	4	0	0	ı	4	0	0	ı
NO2, mg/l	Ξ	0	0	ı	4	0	0	ı	4	0	0	ı
PO4, my/l	11	c	0.4	0.12	4	0	0.18	0.05	4	0	0	ı
Fe, µg/l	10	100	300	160	4	0	100	40	4	0	100	30
s_4 , mg/l	10	0	0	I	4	0	0	ı	4	0	0	ł
Ca, mg/l	-	10	10	10	-	S	5	ŝ	-	ŝ	Ś	S
Cl ⁻ , mg/l	•	2.5	2.5	2.5	-	2.5	2.5	2.5	-	2.5	ı	ı
Pb, 19/1	10	6.8	8.0	7.1	-	5.5	5.5	5.5	-	1	ı	ı

. . .

•

Ş

C

化气电压

ţ

H

SUMMARY OF WATER SAMPLE RESULTS FROM THE WASTE TREATMENT PLANTS

August 8 - December 13, 1978

	rch)	1	Mean	'	ı	ı	4.2	0.96	4 U	7.1		7.5	VE VE	28	6.4
Station 004	(Hannah Road Ditch)		Max.	°	• •	0	8.3	1.0	6.0	5.1	1.2	50	35	30	6.8
St	(Hanna		Min.		0	0	1.6	0.1	0	0.7	0.6	20	30	25	5.5
		No. of	Samples	13	13	13	14	و	و	6	6	9	ŝ	S	9
	, 2 Pipe)		Mean	ı	ı	I	5.2	1.9	0.12	10.3	130	15.4	47.8	22.8	7.3
005	Plt. No.		Max.	0	0	٥	10.5	£	2.4	18	210	18	50	25	7.4
Station 005	1. Treat.		Min.	0	0	0	1.2	-	0.03	5	50	15	40	20	7.2
	(End of San. Treat. Plt. No. 2 Pipe)	No. of	Samples	13	13	13	13	ę	7	10	13	7	7	7	· 7
			Mean	ı	ł	I	7.4	2.5	0.5	2.8	370	65	52.5	22.3	7.2
600	(Ind. Waste Treat. Plt #1)		Max	0	0	0	12.7	5.1	1.0	4.0	500	60	60	30	7.4
Station 009	ste Treat		Min.	0	0	0	m	0.1	0.01	1.8	200	40	50	18	6.8
	(Ind. Wa:	No. of	Samples	13	13	13	13	6	6	10	12	9	9	7	٢
				Cu, µg/1	Cr ⁷⁶ , µg/1	Cr ¹³ , µg/1	NН ₃ , mg/l	NO ³ , mg/l	NO2, mg/l	P04, mg/l	Fe, ug/l	so4, mg/1	Ca, mg/l	Cl, mg/l	РЪ, µ9/1

÷

.

.

T.

÷. :

. • .

.

1

ľ

۰.

EPA INTERIM PRIMARY AND PROPOSED SECONDARY DRINKING WATER STANDARDS

PARAMETER	MAXIMUM LI	EVEL
A. Interim Primary		
Arsenic	0.05	mg/l
Barium	1.0	mg/l
Cadmium	0.01	mg/l
Chromium (VI)	0.05	mg/l
luoride	1.4 to 2.4	mg/l
Lead	0.05	mg/l
Mercury	0.002	mg/1
Nitrate (as N)	10	mg/l
Selenium	0.01	mg/l
Silver	0.05	mg/1
Endrin	0.002	mg/1
Lindane	0.004	mg/l
Methoxychlor	0.1	mg/l
Toxyphene	0.005	mg/l
2,4-D	0.01	mg/l
2,4,5-TP Silvex	0.01	mg/l
Radium	5 pCi/l	
Gross Alpha	15 pCi/1	
Gross Beta	4 millirem/yr	
Furbidity	1 TU	
Coliform Bacteria	1/100 ml	
B. Secondary		
Chloride	250	mg/l
Copper	1	mg/l
Foaming Agents	0.5	mg/l
Hydrogen Sulfide	0.05	mg/l
Iron	0.3	mg/l
langanese	0.05	mg/l
Gulfate	250	mg/l
Cotal Dissolved Solids	500	mg/l
linc	5	mg/l
Color	15 Color Units	
Corrosivity	Non-corrosive	
)dor	3 threshold Odor	Number
ъН	6.5 to 8.5	

-

÷. .

• .*

.

. . . .

C

Ĺ

.

~ ^

4

ROBINS AIR FORCE BASE CURRENT PESTICIDES USED

Insecticides	Herbicides	Rodenticides
Avitral Amdro Baygon Chlordane Cyanogas Cygon	Ansar Borocil Diquat Maintain Retard Round-Up	Zinc Phosphide Bait Pinalyl Bait Diphacinone Bait Strychnine Bait
Dursban Dibrom (Naled) Diazinon Ficam Lindane Malathion	Spike Velpar 2,4-D	
Naptha DDVP Sevin D-Phenothrin		

Source: Robins AFB Bioenvironmental Engineering Files

ANALYSIS OF SOIL SAMPLES COLLECTED FROM THE RADIOACTIVE WASTE DISPOSAL AREA

.....

17

•

, **f**

•

r

.

. •____

Į

.

1

.

rarameters	001108				
		100' from Site (Bottom of Hill)	F S	ite 20' from Site (Up Hill)	50' from Site (Down Grade)
Gross Alpha	pCi/g	20	26	20	20
Gross Beta	pC1/9	17	27	20	24
Potassium 40	pC1/9	71.	1.82	76.	1.24
Cesium 137	pCi/g	.084	1.59	ττ.	.30
Uranium 238	pCi/g	1.07	1.03	1.88	1.87
Radium 226	pCi/g	16.	1.26	1.35	1.66
Thorium 232	pCi/g	1.45	1.34	2.00	2.40
Cobalt 60	pCi/g		.070		

SOURCE: Base reports

. .

APPENDIX D

Ē

••••

,

: .

.

. . .

l

į

.

.

•

.

L

[____

. · .

· -

MASTER LIST

INDUSTRIAL SHOPS

APPENDIX D

.

17 17

F

•

R

Į

MASTER LIST

INDUSTRIAL SHOPS

Name	Present Location (Bldg. No.)	Handles Hazardous Materials	Generates Hazardous Wastes
DIRECTORATE OF DISTRIBUTION (DS*)		
Supply & Equip. Shed	28		
Supply & Equip. Shed	29		
LOX Storage	32		
Hydrogen Fluoride Bldg.	38		
Liq. Fluoride Pump Station	39		
LOX Storage	50		
Supply & Equipment Warehouse	59		
Liq. Fuel Pump Station	70		
Liq. Fuel Pump Station	72		
Liq. Fuel Pump Station	73		
Terminal Air Freight	127		
Supply & Issue Shipping	153		
(Name not listed)**	193		
POL Operations/Qual. Control	194	x	
Liq. Fuel Pump Station	195		
POL Operations/Qual. Control	196	X	
(Name not listed)	209		

* Office symbols used by the Air Force.

** Indicates no name for the facility was listed in the BEE records.

X Indicates presence of hazardous materials or generation of hazardous waste.

.

-

.

Name	Present Location (Bldg. No.)	Handles Hazardous Materials	
Directorate of Distribution (Con	tinued)		
(Name not listed)	211		
Supply & Equipment Warehouse	232		
Shop Shelter	(241-closed)		
Depot MAT Process	247		
Shop Shelter	248		
Logistics Facility Depot	300		
Warehouse Supply & Equip. Depot	301		
Vehicle Fueling Station	303		
Mag Storage	306		
Supply & Equipment Warehouse	309		
Supply & Equipment Warehouse	310		
Storage Igloo	311		
Storage Igloo	312		
Segregated Mag Storage	313		
Supply & Equip. Shed	320		
Supply & Equip. Shed	322		
Chemical Storage	327	x	x
Chemical Storage	328	x	
Bottled Gas Storage	329		
Bottled Gas Storage	330		
Bottled Gas Storage	331		
Supply & Equip Shed	334		

2

;:

.

:

17

.

•

A ...

.

ue j

٠.

ſ

.

Ř

7

Name	Present Location (Bldg. No.)	Handles Hazardous Materials	Generates Hazardous Wastes
Directorate of Distribution (Co	ntinued)		
Supply & Equip Shed	334		
Supply & Equip Shed	335		
Supply & Equip. Shed	336		
Supply & Equip. Shed	337		
Supply & Equip. Shed	338		
Supply & Equip. Shed	339		
Supply & Equip. Shed	350		
Material Process. Depot	351		
Material Process. Depot	354	x	x
(Name not listed)	357		
Material Process Depot	364		
Material Process Depot	365		
Supply & Equipment Warehouse	366		
Supply & Equipment Warehouse	367		
Lumber Shed	372		
Material Process Depot	376		
Supply & Equipment Warehouse	380		
Supply & Equipment Warehouse	385		
Supply & Equipment Warehouse	602		
Material Process Depot	606		
Supply & Equipment Warehouse	641		

- -

· · ·

• • • • •

(1)

· · · · · ·

Name	Present Location (Bldg. No.)	Handles Hazardous Materials	Hazardous			
Directorate of Distribution (Co	Directorate of Distribution (Continued)					
Supply & Equipment Warehouse	660					
(Name not listed)	10091					
(Name not listed)	10094					
(Name not listed)	10187					
(Name not listed)	10188					
DIRECTORATE OF MAINTENANCE (MA)						
Aircraft Division (MAB)						
Hydrogen Fluoride Bldg.	23	х				
Functional Testing	40	х	x			
Nose Dock	44	x	х			
Nose Dock	47	x				
Nose Dock	48	x				
Nose Dock	49	x				
Compress Air Bldg.	53					
Corrosion Control	54	x	x			
Nose Dock	55	x	x			
Paint Shop	89	x	x			
Hazardous Storage	93	x				
(Old Corrosion Control)	(110)	(X)	(X)			
Hazardous Storage	112	x				

.-

• • • •

• 1 •

-

Г. Г.

•

N

.

-

į

Į.

Name	Present Location (Bldg. No.)	Handles Hazardous Materials	Generates Hazardous Wastes
Aircraft Division (Continued)			
(Name not listed)	115		
Aircraft Training Facility	120		
Non-Destructive Inspect.	125	x	
Welding	125		
C-141	125		
C-130 F-15	125 125		
Radio Repair	125		
Engine Repair	125	x	x
Landing Gear	125	х	x
Tire Shop	125		
Sealant Shop	125	Х	
(Name not listed)	145		
F-15 Maintenance	149	х	x
Hazardous Storage	151		
AIRBORNE ELECTRONICS DIVISION (1	MAI)		
Surveillance & Inst. Shop	635		
Bomb Navigation	640	x	x
Radar Navigation	640	x	x
Weapons	640	х	х
Communications Shop	645	x	x
Fire Control Shop	645	X	x

ſ

•

.

-1

-

Name	Present Location (Bldg. No.)	Handles Hazardous Materials	
Airborne Electronics Division	(Continued)		
Electronic Warfare	645	x	
Air Cond. & Engr. Shop	647		
Boresight Shop	675		
INDUSTRIAL PRODUCTS DIVISION (N	1AN)		
Paint Shop	125	x	x
Life Support	128		
Hazardous Storage	132	x	
Pylon Shop	140		
Tubing & Cable	140		
F-15 Shop	140		
Parachute Shop	140		
Turret Shop	140	x	x
Electric Shop	140		
F-15 Pylon	140		
Pneudraulics	140	x	
Propeller Cleaning	140	x	x
Propeller Shop	140	x	x
Machine Shop	140		
Heat Treat Shop	140		
Electroplating Shop	142	2	x

.

•----

t'"

•

Ř

•

. -

ļ

ŧ

Name	Present Location (Bldg. No.)	Handles Hazardous Materials	Generates Hazardous Wastes
Industrial Products Division (Continued)		
Hydrostatic Testing	150	x	x
Battery Shop	150	x	x
(Name not listed)	154		
Physical Lab	165	x	
Chemical Lab	165	х	
Tubing & Cable	169		
Small Motor Repair	169		
Cleaning Shop	169	x	х
Metal Bond	169	x	
Forms and Patterns	169		
Small Motor Mfg.	169		
Plant Services	173	x	
Industrial X-ray	181	x	x
Fabric Shop	181		
Parachute Shop	181		
Paint Shop	605	x	x
Plastics Shop	670	x	x
Radome Strip	680	x	x

DIRECTORATE OF CONTRACTING AND MANUFACTURING (PM)

Maintenance Dock	67		
Aircraft Engine Shipping	148	x	
Precision Measurement Equip. Lab	162	х	x

(

R

R

.

Name	Present Location (Bldg. No.)	Handles Hazardous Materials	Generates Hazardous Wastes
USAF HOSPITAL			
X-ray Lab	700	x	
Dental Lab	700	x	
5 COMBAT COMMUNICATIONS GROU	P (CCG)		
(Name not listed)	600		
(Name not listed)	611		
Generator Shop	615		
Supply & Equipment Warehouse	651		
Vehicle Maintenance	655		
Chemical Storage	656		
Supply & Equipment Warehouse	658		
Supply & Equipment Warehouse	659		
Maintenance Facility	925		
(Name not listed)	948		
(Name not listed)	949		
(Name not listed)	950		
(Name not listed)	951		
Communications Shipping	962		
(Name not listed)	10000		
(Name not listed)	10023		
(Name not listed)	10070		

•

. .

1

4

.

· ` .

.

.

.

-

.

r

R

•

• .

.

. .

. .

ł

:

Name	Present Location (Bldg. No.)	Handles Hazardous Materials	Hazardous			
5 Combat Communications Group	Combat Communications Group (Continued)					
(Name not listed)	10085					
(Name not listed)	10098					
(Name not listed)	10205					
(Name not listed)	10207					
(Name not listed) 1	0212-10218					
19 BOMBARDMENT WING (BW)						
(Name not listed)	1					
Traffic Check House	6					
Ordnance Control Point	8					
(Name not listed)	9					
(Name not listed)	10					
Readiness Crew	12					
Traffic Check House	16					
Aircraft Maintenance Shipping	22					
Engine Test Cell	31	x	x			
Fuel Cell Repair	59	ę	x			
Nose Dock	66					
Nose Dock	67					
(Name not listed)	69					
(Name not listed)	74					

5

. .

C

Name	Present Location (Bldg. No.)	Handles Hazardous Materials	Generates Hazardous Wastes
19 Bombardment Wing (Continued)			
Weapons Shop	75	X	
Propulsion Shop	76	x	
Environmental Systems	76		
Munitions Shop	76		
Multi-Maintenance Shops	79	x	
Corrosion Control	80	x	x
Tire Shop	81	x	
Aerospace Ground Equipment (AGE)	82	x	x
(Name not listed)	85	x	
Equipment Maintenance	86	x	
Munitions Shop	94		
SRAM Missile Shop	100		
(Name not listed)	10001		
(Name not listed)	10004		
(Name not listed)	10006		
(Name not listed)	10007		
(Name not listed)	10079		
(Name not listed)	10080		
(Name not listed)	10082		
(Name not listed)	10102		
(Name not listed)	10120		

a de la caractería de la companya de la co Antenia de la caractería de la companya de l

•_-

•

• ----

1

N

•

.

-

۔ د

i. I

ĩ

Name	Present Location (Bldg. No.)	Handles Hazardous Materials	Generates Hazardous Wastes
1926 COMMUNICATIONS INSTA	LLATION GROUP (CIG)		
(Name not listed)	10148-10154		
(Name not listed)	3		
(Name not listed)	19		
(Name not listed)	26	x	
Aircraft Maintenance	46		
Facility Depot	56		
Communications Center	161		
Base Communications	225		
(Name not Listed)	608		
Vehicle Maintenance	978		
Instrument Repair	1684	х	
2853 AIR BASE GROUP (ABG)			
Graphics Services	321	х	
Photo Lab	321	x	x
BX Gas Station	922	x	x
Auto Hobby Shop	985	x	x
Fuel Vehicle Repair	190	x	x
Vehicle Maintenance	302	x	x
Paint & Body Shop	304	х	x
Auto Maintenance Shop	307	x	x

П

ł

1.7

Name	Present Location (Bldg. No.)	Handles Hazardous Materials	Generates Hazardous Wastes
2853 CIVIL ENGINEERING SQUADRON (CES)		
Tire Shop	308	x	
Fire Training	5	х	
Fire Training	7	х	
Fuel Tank Repair	63	x	
Steam Facility	83		
Fire Station	109	х	
Indus. Waste Treat. Plant (IWTP)	141	х	x
IWTP	147		
Steam Plant	177		
Metal Maintenance Shop	270		
Paint Shop	272	x	x
Plumbing Shop	272		
Refrig. Shop	272		
Structural Shop	272		
Electric Shop	273		
Paint Shop	275	x	X
Generator Shop	286		
Entomology Unit	295, 296	x	
Sludge Dewatering	352	x	x
Grounds Shop	591, 593	x	X

. .

.

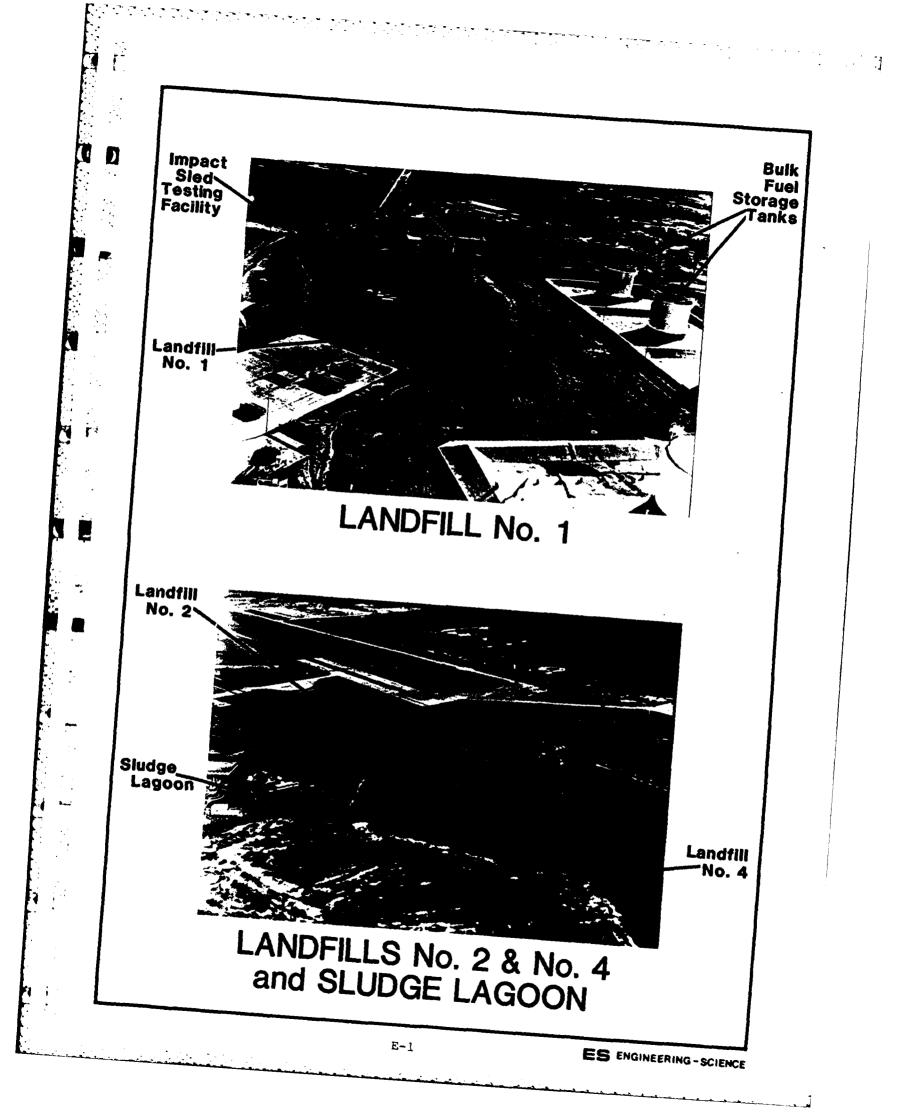
s:

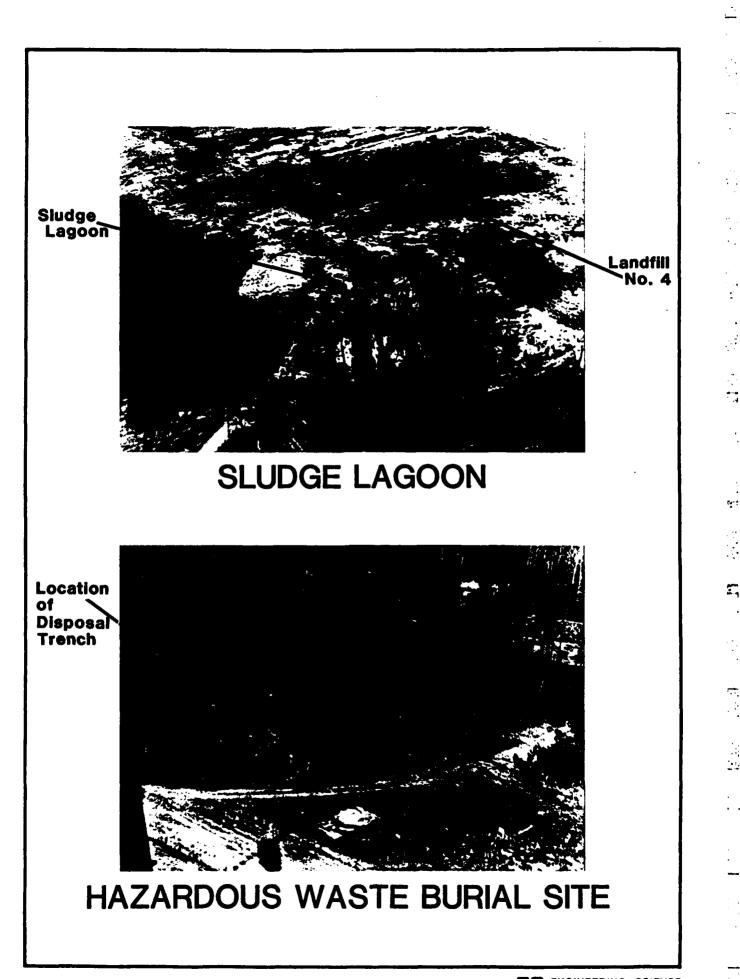
APPENDIX E

.

E

1

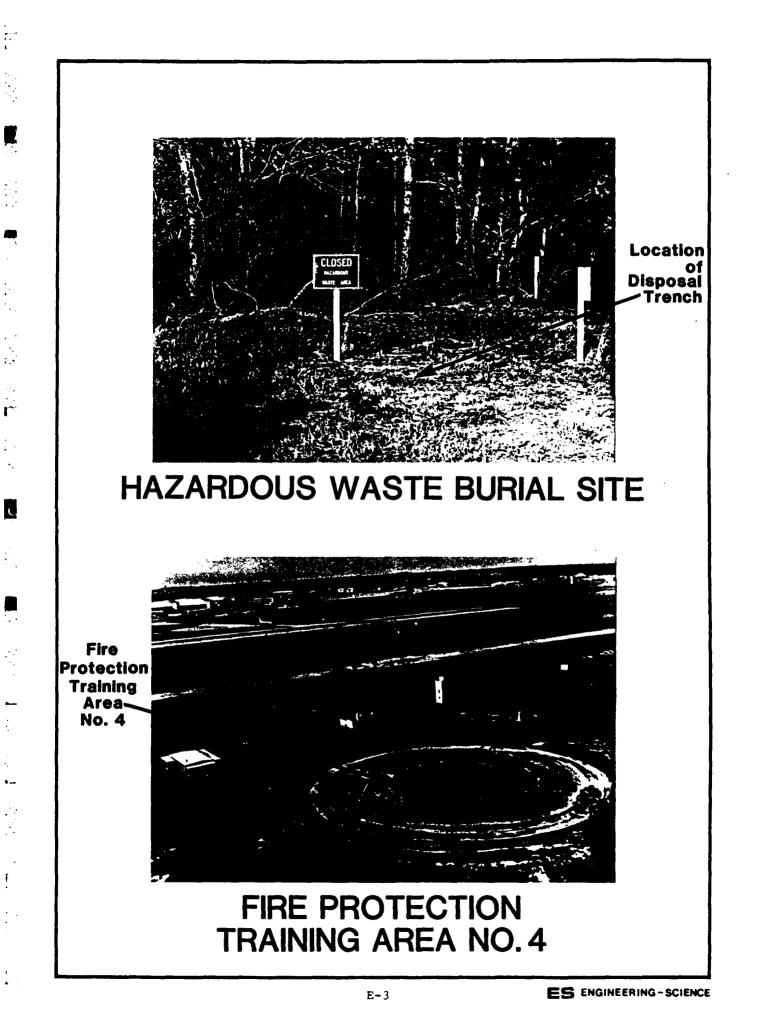

(- ' | . | .


r.,

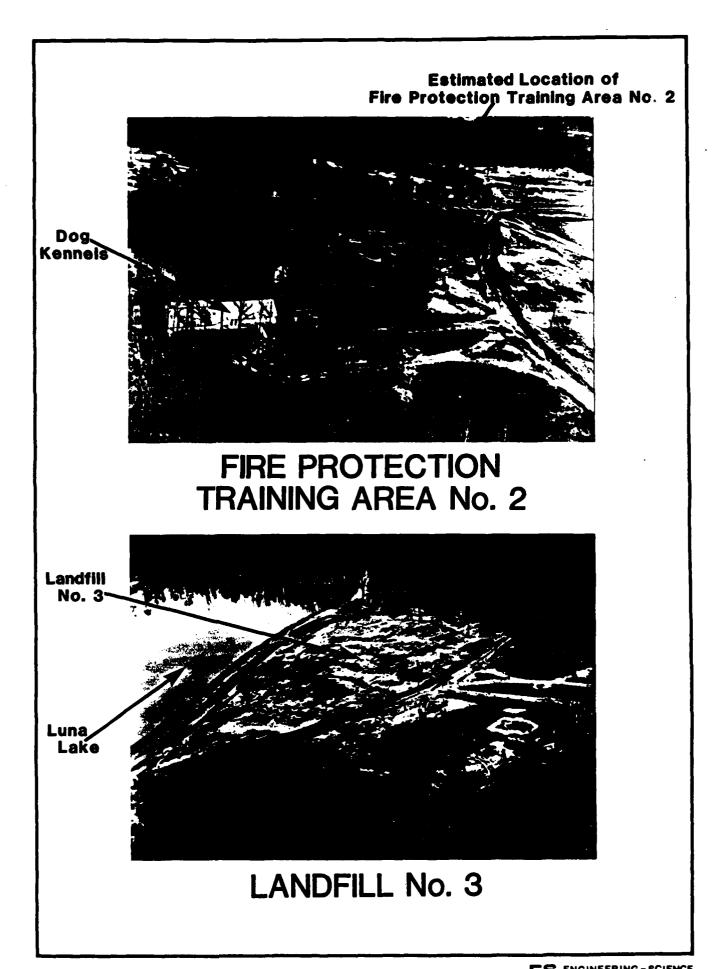
.

.

PHOTOGRAPHS



ES ENGINEERING-SCIENCE


ť

1

ī

1

APPENDIX F

WATER SUPPLY WELL LOGS

Б

•

r I

.

-

ť

Ľ

- City of Warner Robins - Robins AFB TLUILD

110 115 31

F

I P ENVIRONMENTAL PROTECTION DIVISION WATER SUPPLY SECTION 270 WASHINGTON STREET, S.W. ATLANTA, GEORGIA 30334

<u>к</u>,

WELL DATA SHEET FOR PUBLIC WATER SYSTEM (TO BE COMPLETED BY WATER WELL CONTRACTOR)

DF WATER SYSTEM. Warner Robins, Ga - Well No. 1-A COUNTY Houston LOCATED AT No. 1 Water Plant _ TYPE WATER SYSTEM. COMMUNITY____ NON-COMMUNITY_ DRILLER Rowe Drilling Co., Inc. UWNER City of Warner Robins, GA AUGHESS P.U. Hox 1468, Warner Robins, Ga 31 93 Horness P.O. Box 1363, Tallahassee, P132302 PHONE (904)576-1271 LIC. NO .: 72 PHONE WELL DESCRIPTION DATE DRILLED. 6/8/81 STATIC WATER LEVEL 129 FT. PUMPING WATER LEVEL: 149 FT. AT 1557 OPN TOTAL DEPTH: 540 FT. TEST PUMP DATA TYPE DRILLING (INDICATE): DATE TESTED: June 8 # 9. 1981 HOTARY X. PERCUSSION ___ OTHER __ PUMPED X BAILED ESTIMATED . HOLE DIAMETER PUMP RATED 4000 0PM 217 SIZE 25 IN , FROM 120 FT. TO 540 FT. TOTAL CONTINUOUS HAS. TESTED: _____24_ DID WATER LEVEL STABILIZE: YES X NO (USE ADDITIONAL SHEETS IF NECESSARY) HRS. RUN BEFORE STABILIZATION 1 CASING RECORD VIELD 1557 GPM AFTER 24 HRS. OF CONTINUOUS TYPE MATERIAL Black Steel WALL THICKNESS _- 375 DISCHARGE PRESSURE: ____O WATER LEVEL BEFORE TEST: _129_ FT. WERHTI /FUOT TOTAL DRAWDOWN 16 TOTAL DRAWDOWN 16 TOTAL COPY OF DRAWDOWN MEASUREMENTS SIZE 26 IN FROM _0_ FT. TO 120 FT. SILE 16 IN FRUM O_ FT TO 255 FT. SPECIFIC CAPACITY 62.5 CPM/FT. SIZE 12 IN FROM 255 FT. TO 540 FT. NO MINUTES FOR WELL TO RECOVER: _ USE ADDITIONAL SHEETS IF NECESSARY) WAS WELL DEVELOPED AND DISINFECTED: YES X NO ____ WELL SCREEN WERE UNTREATED WATER SAMPLES COLLECTED TYPE MATERIAL 304 Stainless Steel FOR BACTI YES X NO ____ SLE 12 HI, FROM 340, FT. TO 350 FT. FOR CHEMICAL: YES X NO ____ SIZE 12 IN FROM 320 FT. TO 380 FT. PERMANENT PUMP DATA (BY CONTRACTOR OR SIZE 12 IN FROM 420 FT. TO 430 FT. OWNER) PUMP TYPE PUMP LOSS SIZE 12 IN , FROM 440 FT. TO 460 FT. OUTLET SIZE 10 M SIZE 12 IN FROM 510 FT. TO 530 FT POWERED BY 150 HP WAS SLOT SIZE DETERMINED BY SIEVE ANALYSIS: YES 4 NO ... MATE: 1500 000 TOTAL DYNAMIC HEAD: 216 FT. GROUTING PUMP SET AT: 200 FT. w/30 Pt. Tail Pipe TYPE GROUT Neat Portland PUMP DISHNFECTED: YES X. NO ____ APPLIED BY PRESSURE YES X NO ____ DEEP WELL AN LINE, TYPE MATERIAL Gal ... FROM 120FT TO 0 FT FT. 10 ____ FT. ACCESS PORT, DIA. _____ IN FHOM

COMPLETE WELL LOG ON REVERSE SIDE

F-1

6

WELL L	.0G
--------	-----

.

.

. .

• ••

۰.

۰.

-

٠.

·.

. . ·

FINOM FLET	1G FEE1	TYPE MATERIAL ENCOUNTERED	REMARKS	INDICATE WATER BEARING ZONES
0	20	red clay		
20 33	1 33	coarse sand, red brown course sand		
22	83	clay coarse sand		
39 110	110	fine & coarse sand clay		
122 104	164	coarse sand		
190.	205	brown coarse sand & clay		
205	208	clay		
208	286	coarse sand	·····	
<u>-86</u>	294	clay	•	
294	307	coarse sand, little red cl	ay	
307	: 317	clay		
317	372	coarse sand		
372	437	sand		
+37	470	coarse sand		
+70	480	coarse sand, little clay		
+80	523	sand		
523	538	coarse sand, little clay		
538	540	clay		
640	566	coarse sand, little clay		
666	588	coarse sand, very little c	lay	
88	605	coarse sand, very little c	lay	
	1			

(If More Space is Required, Use Additional Sheet)

THIS WELL WAS DRILLED ACCORDING TO THE RULES FOR SAFE DRINKING WATER (CHAPTER 391-3-5) OF THE GEORGIA DEPARTMENT OF NATURAL RESOURCES AND THE INFORMATION ON THIS FORM IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE ٠

٠ _____ LIC. NO.: 72 SIGNED WATER WELL CONTRACTOR'S SIGNATURE DATE 6/9/81

ETURN COMPLETED

È

.

i-

ŝ,

GEURGIA DEFARTMECTION NATURAL RESUUNCES ENVIRONMENTAL PROJECTION DIVISION WATER SUPPLY SECTION 270 WASHINGTON STREET, S.W. ATLANTA, GEORGIA 20234 WELL DATA SHEET FOR PUBLIC WATER SYSTEM (TO BE COMPLETED BY WATER WELL CONTRACTOR) EPD Project No. 79-E-WS-14 AME OF WATER SYSTEM: ____CILY OF Warner Robins, Georgis___ _ COUNTY: Houston OCATED AT HATDET RODIDE TYPE WATER SYSTEM: COMMUNITY XX NON-COMMUNITY WNER City of Warner Robins DRILLER Layne Atlantic Company ADDRESS Post Office Box 669, Albany, Georgia DORESS: . HONE PHONE 912/435-8338 LIC. NO .: 14 "City Well No. 2-A - South Pleasant at City Maintenance Yard" WELL DESCRIPTION DATE DRILLED: May 7. 1979 STATIC WATER LEVEL: _132___ FT. TOTAL DEPTH: 580 FT. PUMPING WATER LEVEL: 235 FT. AT 1.613 GPM TEST PUMP DATA TYPE DRILLING (INDICATE): DATE TESTED: June 13, 1979 ROTARY _X PERCUSSION ___ OTHER __ PUMPED XX____ BAILED _____ ESTIMATED _ IOLE DIAMETER PUMP RATED: ______ GPM ______ 150 SIZE: 32 IN., FROM _0_ FT. TO 125 FT. SIZE: 25 IN., FROM 125 FT. TO 510 FT. TOTAL CONTINUOUS MRS. TESTED: _24 DID WATER LEVEL STABILIZE: YES XX NO SIZE: _____ W., FROM _____ FT. TO _____ FT. USE ADDITIONAL SHEETS IF NECESSARY) HRS. RUN BEFORE STABILIZATION ______ D 1.613GPM AFTER 24 HRS. OF CONTINUOUS **ASING RECORD** YIELD YPE MATERIAL: Black Steel pipe DISCHARGE PRESSURE: ____ PSI WALL THICKNESS: 0.375 Sch. 40 WATER LEVEL BEFORE TEST: 132 FT. WEIGHT/FOOT: Schedule 40 P.E. TOTAL DRAWDOWN: 103 FT. (ATTACH COPY OF DRAWDOWN MEASUREMENTS) SIZE: 26 IN. FROM 0 FT. TO 125 FT. SIZE: 16 IN., FROM 0 FT. TO 250 FT. SPECIFIC CAPACITY: 15.66 GPM/FT. SIZE _12 IN., FROM 250 FT. TO _510 FT. NO. MINUTES FOR WELL TO RECOVER: ____ (USE ADDITIONAL SHEETS IF NECESSARY) WAS WELL DEVELOPED AND DISINFECTED: YESXX NO ____ VELL SCREEN WERE UNTREATED WATER SAMPLES COLLECTED TYPE MATERIAL: Stainless Steel Type 304 FOR BACTI: YES _XXNO ____ SIZE. 12 IN. FROM 274 FT. TO 284 FT. FOR CHEMICAL: YES XX. NO ____ SIZE: 12 IN. FROM 300 FT. TO 310 FT. PERMANENT PUMP DATA (BY CONTRACTOR OR SIZE. 12. IN . FROM 400 FT. TO 440 FT. OWNER) SIZE: 12 IN, FROM 478 FT. TO 488 FT. PUMP TYPE: _____ _OUTLET SIZE ___ 8 SIZE: 12 IN., FROM 495 FT. TO 500 FT. POWERED BY: 40 HP WAS SLOT SIZE DETERMINED BY SIEVE ANALYSIS: YES XX. NO ____ RATE: 600+ CPM TOTAL DYNAMIC HEAD: _202 FT. ROUTING TYPE GROUT ____ Cement PUMP SET AT: _160 FT. PUMP DISINFECTED: YES XX NO _ APPLIED BY PRESSURE YES XX NO DEEP WELL AIR LINE, TYPE MATERIAL: <u>k" galv.</u> LENGTH: 160. FT HOM ____ FT TO _125 FT. FT TO FT. I HC' ACCESS PORT, DIA .: _____ IN

COMPLETE WELL LOG ON REVERSE SIDE

· #5 31

F-3

.

. .

		2	<u> </u>	
FROM FEET	TO FEET	TYPE MATERIAL ENCOUNTERED	REMARKS	INDIGATE WATER BEARING ZONES
0	15	Red Clay		
15	45	Red Clay & White Clay		
45	60 -	White Clay & fine sand		
60	. 75	Coarse white sand & clay		
75	94	Coarse white sand & little c	lay	· · ·
94	109	Coarse sand		
109	123	White 6 red clay - slow		
123	168	Coarse white sand		
168	228	White coarse sand		
228	241	Coarse sand with little clay streaks		
241	256	Coarse sand and little white clay		
256	270	Fine pepper sand - slow		
270	285	Fine sand and red clay		
285	300	Fine sand & little clay stre	aks	
300	315	Coarse sand with little clay streaks		
315	328	Sand with little clay streak	•	
328	343	Coarse sand & clay streaks		
343	359	Sand - little clay streaks -	slow	
359	372	Sand with little clay streak		
372	386	Coarse sand with little clay	streaks	
386	400	White sand little clay stres	1 1 s	
400	415	Sand little white clay		

WELL LOG

.

•

-

1

; <u>.</u>

.

. .

A. -• •

.

÷

• •

::

÷.

. . .

DIST MALL LIC NO 14

LAYNE ATLANTIC COMPANY P. O. BOX 669 ALBANY, GEORGIA 31702

5

FAGM TO FEET TYPE MATERIAL ENCOUNTERED NEMARKS NDCATE WATER BEARING ZOMES 415 430 Coarse sand and little white claw - med.		•	21	۹	
415 430 clay - med. 430 444 White sand with little clay streaks 444 460 Coarse white sand 460 473 Yellow fine sand and clay 473 488 Sand 6 red clay - slow 488 502 Coarse sand little clay - med. 502 532 Fine white sand - tight 532 548 Fine white sand 6 clay streaks 548 561 Fine white sand 6 clay - med. 561 580 Fine sand 6 clay - med. 561 580 Fine sand 6 clay - slow 561 580 Fine sand 6 clay - slow			TYPE MATERIAL ENCOUNTERED	REMARKS	
444 460 Coarse white sand	415	430			
460 473 Yellow fine sand and clay 473 488 Sand & red clay - slow 488 502 Coarse sand little clay - med. 502 532 Fine white sand - tight 532 548 Fine white sand & clay streaks 548 561 Fine white sand & clay - med. 561 580 Fine sand & clay - slow	430	444	White sand with little clay	streaks	
473 488 Sand & red clay - slow 488 502 Coarse sand little clay - med. 502 532 Fine white sand - tight 532 548 Fine white sand & clay streaks 548 561 Fine white sand & clay - med. 561 580 Fine sand & clay - slow	444	460 -	Coarse white sand		
488 502 Coarse sand little clay - med. 502 532 Fine white sand - tight 532 548 Fine white sand 6 clay streaks 548 561 Fine white sand 6 clay - med. 561 580 Fine sand 6 clay - slow	460	473	Yellow fine sand and clay		
502 532 Fine white sand - tight 532 548 Fine white sand & clay streaks 548 561 Fine white sand & clay - med. 561 580 Fine sand & clay - slow 1 1	473	488	Sand & red clay - slow		
532 548 Fine white sand 6 clay streaks 548 561 Fine white sand 6 clay - med. 561 580 Fine sand 6 clay - slow	488	502	Coarse sand little clay - me	d.	
548 561 Fine white sand & clay - med. 561 580 Fine sand & clay - slow	502	532	Fine white sand - tight		
561 580 Fine sand & clay - slow	532	548	Fine white sand & clay stream	ks	
	548	561	Fine white sand & clay - mee	•	
	561	580	Fine sand & clay - slow		
]			
		1			
				•	
				•	
			·		
	· · · · · · · · · · · · · · · · · · ·				

WELL LOG

E

•

ł

۰.

.

•

-

G

.

.

a shah s

F-5

THIS WELL WAS DRILLED ACCORDING TO THE RULES FOR SAFE DRINKING WATER (CHAPTER 391-3-5) OF THE GEORGIA DEPARTMENT OF NATURAL RESOURCES AND THE INFORMATION ON THIS FORM IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE. SIGNED MALL CONTRACTOR'S SIGNATURE DATE - - - - - - - - - - - LIC NO: - - -LAYNE ATLANTIC COMPANY

(If More Space is Required, Use Additional Sheet)

LAYNE ATLANTIC COMPANY P. O. BOX 669 ALBANY, GEORGIA 31702

DEPARTMENT OF NATURAL REDUCTIONS STATE OF CLORCIA APPLICATION FOR A PERMIT TO USE CROUNDWATER PART B - WELL DATA	ي - دور . -
Submit one (1) Form for Each Well	(Print or Type all Information)
APPLICANT CITY OF WARNER ROBINS	
WELL NO. 3 (Key to Attached Location Latitude 32°30'43" N Longitude 83°36	Map) Ground Elevation ft.
WELL CONSTRUCTION DESCRIPTION XX EXIST Name of Aquifer(s) being or to be Util	
TYPE DRILLING (Indicate)	Date Drilled March 1961 Date to be Drilled Driller Layne-Atlantic Co. Driller Layne-Atlantic Co. CROUTINC: XX Yes Type Pressure (cement) From 97 ft., to 0 ft. From ft., to ft. Pumped Test Bailed Estimated Actual Test Date Tested Feb. 24, 1961 Pump Rated 1000/1500 GFM 75 HP Test Yield GFM After 5 k 5 hrs. of pumping Water Leval before Test 105 ft. Drawdown 33/53 ft. Specific Capacity 30.3 / 28.3 GPM/ft. Pump Type Deep Well Turbine Outlet Size 8" Powered by Electric Motor Horsepower 75 Rate 1000 GPP Pumping Level 138/158 Ft. Average Hours Pumped Per Day
NOTE: Detailed well construction specification	tions of a proposed well may be required

1

by the Division upon review of the submitted application.

٩

Complete WELL LOG on reverse side, if available.

.

TO FEET	TYPE MATERIAL ENCOUNTERED	REMARKS	INDICATE WATER BEARING
1	Top Soil		
5	Yellow Sandy Clay		
14	Red Clay		
22	Med. Coarse Sand	-	
32	White Clay W/Sand - Slow		
49	White Clay - Slow		
58	Coarse Sand - Thin Stks White Cla	w	
72	Coarse Sand		
96	Clay W/Stks Sand		
102	Clay - Slow		
108	Clay W/ Stks Sand		
114	Clay - Slow		
146	Coarse White Sand - Soft		
149	Clay	•	
158	Coarse White Sand - Soft		
161	Yellow Clay		
194	Coarse Sand W/Thin Stks of Clay	•	·
198	Yellow Clay - Slow Drilling		
218	Med. Coarse Sand - Soft		
220	Streaks of Clay		
238	Med. Coarse Sand - Soft		
240	Streaks of Clay		

WELL LOG

(If Mans Spean is Required, Lise Additional Sheet)

The above information is true and correct to the best of my knowledge.

Signed

L

... ...

Ē

•

K,

į۳

••

· • •

.

· · ·

R

ļ

-

•- •,

Į

Ş

Date

•

F-7

.

.

	,		No. 3	
	TO FEET	TYPE MATERIAL ENCOUNTERED	REMARKS	INDICATE WATER BEARING ZONES
Ţ	257	Med. Coarse Sand - Soft		······
	265	Lavender Clay - Slow		
	337	Med. Coarse Sand - Soft		
	39 9.	Med. Coarse Sand W/ Thin St	ks of Clay	· · · · · · · · · · · · · · · · · · ·
	400	Streaks of Clay		
	412	Med. Coarse Sand - Soft		
	425	White Clay - Slow Drilling	<u> </u>	
	433	Med. Coarse Sand - Soft		
ļ	440	White Clay - Slow Drilling		
	465	Med. Coarse Sand W/ Stks of	Clay	
	478	White Clay - Slow Drilling		
Ì				
ļ				•
				ļ
		· · · · · · · · · · · · · · · · · · ·		
				· .

(II More Spe w is Aug d, Un

•

The above information is true and correct to the best of my knowledge.

Signed

Ĺ

(:

٩

Date

* Title

5

F-3

••• . i. •-•

.;

-

.

.

.

• •

DEPARTMENT OF MATURAL RESOURCES STATE OF GEORCIA APPLICATION FOR A PERMIT TO USE GROUNDWATER PART B - WELL DATA	
Submit one (1) Form for Each Well	(Print or Type all Information)
APPLICANT CITY OF WARNER ROBINS WELL NO. 4 (Key to Attached Location Latitude 32°36'29"N Longitude 83°36'	
WELL CONSTRUCTION DESCRIPTION XX EXIST Name of Aquifer(s) being or to be Utili	zed Tuscaloosa Group
TYPE DRILLING (Indicate) XX Rotary Percussion Total Depth 390 ft. Bored Static Water	Date Drilled February 1960 Date to be Drilled Driller Layne-Atlantic Co.
Level 122 Ft. DRILL HOLE DIAMETER From 0 ft., to 60 ft., 26 in. From 0 ft., to 390 ft., 25 in. From ft., to ft., in.	<u>GROUTING:</u> X Yes No Type Pressure (Cernent) From 60 ft., to 0 ft. From ft., to ft. From ft., to ft. IEST PUMP DATA
From ft., to ft., in. From ft., to ft., in. CASING RECORD Type Material Steel Wall Thickness 0.312, 0.375 In.	Pumped Test Bailed Estimated Actual Test Date Tested Feb. 20, 1960 Pump Rated 1500 GFM 100 HP Test Yield 1559
Weight/Foot 65.71, 49.56 Lb. Size 20 in. from 0 ft., to 60 ft. Size 12 in. from 0 ft., to 390 ft. Size in. from ft., to ft. Size in. from ft., to ft. Size in. from ft., to ft.	brs. of pumping Water Level before Test 122 ft. Drawdown 60 ft. Specific Capacity 25 GPM/ft.
WELL SCREEN Type Material Stainless Steel Size 12 in. from 240 ft., to 250 ft. Size 12 in. from 320 ft., to 330 ft.	PERMANENT PUMP DATA (if available) Pump Type Deep Well Turbine Outlet Size 10 In. Powered by Electric Motor Horsepower 100 Rate 1500 GPM Pumping Level 182 Ft. GPM
Size 12 in. from 360 ft., to 380 ft. Size in. from ft., to ft. Size in. from ft., to ft.	Averag. Hours Pumped Per Day

E

2

· · ·

. · .

•.*

HOTE: Detailed well construction specifications of a proposed well may be required by the Division upon review of the submitted application.

.

Complete WELL LOG on reverse side, if available.

WELL	rag		
- 44			

.

. ·

The second se

• 7

ţ

13	TO FILT	TYPE MATERIAL ENCOUNTERED	REMARKS	INDIGA SE WATER BEARING ZONES
0	3	Fill Dirt	•	
3	23	Sandy Red Clay		
23	42	Sand w/stks of Clay		
<u>42</u>	47	Clay - Slow	~~~	
<u>47</u>	56	Sand - Soft		
56	73	Clay - Slow	·	
<u>73</u>	97	Coarse Sand - Soft		
97	106	Clay - Medium		
06	124	Clay w/stks of Sand - Soft		
24	154	Coarse White Sand - Soft		
54	178	Coarse White Sand w/thin stks	of Clay - Soft	
78 -	201	Coarse Reddish Sand - Soft		
:01	211	Clay - Medium Drilling		
:11	232	Coarse Reddish Sand - Soft		
:32	236	Clay - Soft		
:36	261	Medium Coarse Reddish Sand -	Soft	· · ·
261	264	Clay - Medium	·	
:64	275	Med. Coarse Sand - Soft - Cut	Rough	· .
275	292	Med. Coarse Sand - Soft		·
292	301	Clay - Slow Drilling		
301	316	Med. Coarse Sand - Soft		
316	318	Clay - Med. Drilling		

(If More Space is Required, Use Additional Street)

٠

F-10

The above information is true and correct to the best of my knowledge.

Date

Signed

ć

Tide

-

. -. .

_

.

,

- 4

ľ

.

• •

TO Pétr	NO. TYPE MATERIAL ENCOUNTERED	REMARKS	INDICATE WATER BEARING ZONES
343	Coarse Sand - Soft- Cut Rough		
346	Clay - Med. Drilling		
360	Coarse Sand W/Stks of Clay- Soft		
380	CoarseWhite Sand - Soft		· .
384	Sandy Clay - Soft		
403	Coarse White Sand - Soft	· · · · · · · · · · · · · · · · · · ·	
405	Clay - Med. Drilling		
432	Coarse White Sand - Soft - Cut I	Rough	
438	Clay Med. Drilling		
485	Med. Coarse White Sand w/stks	of Clay - Soft	
491	White Clay - Med. Drilling		· ·
τ. —	· ,		
		· · · · · · · · · · · · · · · · · · ·	
			• •
			• •
·····			• •

(If Mare Space is Required, Use Additional Short)

.

6

.

_. .

The above information is true and correct to the best of my knowledge.

Title • -----

Date

hed

r :

.

Ŋ

ίr.°

Į.

٠,

F-11

ADMIPOSTENTAL PROFINITION OF CLUB, <u>DIPARTHENT OF NATURAL RESOLUCED</u> STATE OF GEORGIA ADMICATION FOR A PERMIT TO USE GROUNDWATER PART B - WELL DATA	/110 >
Submit one (1) Form for Each Well	(Print or Type all Information)
APPLICANT CITY OF WARNER ROBINS WELL NO. 5 (Key to Attached Location	
Latitude 32°35'44"N Longitude 83°38'	Map) Ground Elevation <u>431</u> ft. <u>42"W</u> (if available)
WELL CONSTRUCTION DESCRIPTION XX EXIS Name of Aquifer(s) being or to be Util	
TYPE DRILLING (Indicate)XXRotaryPercussionTotal Depth422 BoredStatic Water	Date Drilled November 1962 Date to be Drilled Driller Layne-Atlantic Co.
Bored Static Water Level	CROUTING: XX Yes No Type Pressure (Cernent) From ft., to ft. From ft., to ft. Test pumped Test Bailed Estimated Actual Test Date Tested November 27. 1962 Pump Rated 1100 CFM 75 Test Yield GFM After 24 hrs. of pumping Water Level before Test 132 ft. Drawdown 24 ft. Specific Capacity 45.8 GPM/ft. PERMANENT FUMP DATA (if available) Pump Type Deen Well Turbine Outlet Size 8" Powered by Electric Motor Horsepower 75 Rate 1000 GFM Pumping Level 156 Ft. Average Hours Pumped Per Day

~

•

NOTE: Detailed well construction specifications of a proposed well may be required by the Division upon review of the submitted application.

Cooplete <u>WELL LOG</u> on reverse side, if available.

(

Ć

•;

-	· _	WELL I 5	.00-	
IOM-	TO FEET	TYPE MATSRIAL ENCOUNTERED	RELIARKS	INDICATE WATER BEARING ZOILES
0	1	Top Soil		
_1	10	Red Clay		
مد	20	Red Sandy Clay		
20	30	Dark Red Clay		
30	35	Coarse Red Sandy Clay	·····	
35	44	Red Clay		•
44	51	Fine Red Sandy Clay		
<u>51</u>	59	Fine Sand w/Stks of White Clay		
59	74	Fine Sand w/Heavy Stks of Clay		
74	84	Med Coarse Sand		
84	94	Pink & White Clay (Med Slow	·)	
2	105	Red Clay (MedSlow)		
105	: 39	White Clay		
139	148	Sand		
148	155	Coarse Sand #/White Clay		
155	185	Coarse Sand W/Stks of Clay		
185	216	Coarse Sand #/Stks of White C	ay	· · · · · · · · · · · · · · · · · · ·
216	258	Med. Coarse Sand w/Very Litt	e Clay	
258	298	Coarse Sand #/Iron Granules		
298	308	White Clay - Slow		
308	321	Red & White Clay - Slow		
321	332	White Clay - Slow		

WELL LOG-

- - - - -

Ī.

r

.

÷

<u>منہ</u>

ļ

.

(II More Space is Respired, Use Additional Short)

٠

The above information is true and correct to the best of my knowledge.

Signed

Ľ

• Title

Date

.

ĵ,

:

. ÷.,

~

•

	HUUM	WELL	LCG	
-			5	
r	TO FERT	TYPE MATERIAL ENCOUN FERED	REMARKS	INDICATE WATER SEARING
32	339	Pink & White Clay w/Stks of Sc	it Sand	
39	370	Coarse White Sand w/Siks of C	av	·
70	390.	Coarse White Sand w/Possible	Clay Stks	·
90	400	Med. Coarse White Sand w/Stk	s of White Clay	· · · · · · · · · · · · · · · · · · ·
00	430	Coarse Sand w/ Stks of Clay		
30	460	Clay w/Stks of Coarse Sand	;	<u> </u>
	·			
·	·			·
		<u></u>	<u> </u>	<u> </u>
اب	. <u></u>		ļ	<u> </u>
		·		·
			·	
			· · · · · · · · · · · · · · · · · · ·	
				· · ·
	ļ			

۰.

_

j

ه معد -بومبر - - -

(If More Space is Required, Use Addr e i

The above information is true and correct to the best of my knowledge.

Signed Cate

Title

APPLICATION FOR A PERMIT TO USE GROUNDWATER No. 6 PART 6 - WELL DATA Submit one (1) Form for Each Well (Print or Type all Information) APPLICANT_CITY OF WARNER ROBINS	
WELL NO. 6 (Key to Attached Location Nap) Ground Elevation 393 + 1 Latitude 32°37'58"N Longitude 83°37'42"W (if available)	£c.
Wall Thickness 0.312. 0.375. 0.375 in. Test Yield GPM After 24 Weight/Foot 85.73, 62.58, 49.56 Lb. hrs. of pump Size 26 in. from 0 ft., to 70 ft. Water Level before Test 116	

NOTE: Detailed well construction specifications of a proposed well may be required by the Division upon review of the submitted application.

Complete WELL LOG on reverse side, if available.

- .

۰.

F

l

Ļ:

2 • •

> • • :

· ·

• ليغو

ŀ

.

•____

Ľ

	то		INDICATE WATER BEARING
EET	FSET	TYPE MATERIAL ENCOUNTENED REMARKS	ZONES
U	1	Top Soil	
r	18	Sand Clay	
18	32	White Clay	· · · · · · · · · · · · · · · · · · ·
32	47	White Clay & Sand	
47	64 .	Red Clay W/Little Sand	
64	74	Clay .	
74	122	Coarse Sand	
22	130	Clay - White	
30	155	Coarse Sand W/ Stks Clay	
55	180	Med. Coarse Sand	· .
180	185	White Clay	
85	215	Med. Coarse Sand	
21	224	Clay	
24	281	Med. Coarse Sand	
281	296	Sand & Clay	•
296	341	Med. Coarse Sand W/Little Stks of White Clay	
341	357	Med. Coarse Sand W/Some White Clay	
57	369	Coarse Sand	
69	385	Med. Coarse Sand	
85	393	Sand W/Lots of Clay - Clay Washes Out	
93	435	Coarse Sand - Little Clay	
35	464	Coarse Sand W/Stks of White Clay	

WELL LOG

. .

.

.*****. *:•;

-

- 1

1

1

5

(If More Spece is Required, Um Addisional Street)

.

The above information is true and correct to the best of my knowledge.

.

Ć

Signed

0

ŝ,

1

è

Title

ŕ

Date

	nt gt Public Health ply Service	O NOT WRITI
	Venue, S. W.	
		LASS II
• • • •	TA SHEET	LASS HI
	Dr -	
		NDIVIDUAL
STRUCTIONS: Fall So. 7 (Mater)	Plant He. 3):	
ne of Num Synam:	ion Arisons Lireet County IL	usten
pe: Municipel <u> </u>	; Mobile Hames or Trailer Parks	
. No of Lats; Industrial; Commarkial	; Individual; Other	
nerCity of verger Debiles	Draw Cinger-isyme Atlantic Company	r
Address	Adama Georgia	
to Drilling Started James 7 1972	Des Campiond February 1972	
WELL DI	SCRIPTION	
PE DRILLING (Chesk)	GROUTING	
Rotary X	I Turn Grout Counts	
	Type GreatCellents Applied by premireCother	,
Persution	From C FL To 140 FL	
Total depth of WeltFL	From Ft. To Ft.	•
Depth to valuer (SWL) Ft	From F1, T0P1,	
DLE DIAMETER:	TEST PUMP DATA:	
From FL To FL FL FL 32 in.	Pumped Bailed	
12" From FL To FL 25	Estimoned Aptual Test	
From PL To FL in.	Date Tenned Televistery 8, 1972	
From PL To PL PL PL In.	Purse read 1641 OPM MP	Test ing
From PL To FL in.	Viet 1641 GPM star 24	hrs.
	of stabilization	
SING RECORD:	Weter Lovel bolano Test 105	#L
Type Material Steal	DrandownFL Speakly Capacity \$9.0 GPM per	h.
Sine 16 In Frankie O PL To 200 PL	Well developed and Disinferral:	
Size 12 in From 200 PL To 240 PL	• •	
Size In., From Ft. To Ft.	<u> </u>	
Sim From Fr. To Fr.	PERMANENT PUMP DATA (If Available)	
ILL SCREEN :	Pune Type Cinger-Leyne & Bou	ler
Type Menuria Large Stainless Steel Chutter	Outlint Size	
Sure 12 In From 220 Pt To 250 Pt	Powerd by 150 LLOCETIC 10	
Size 12 in From 345 Pt To 365 Pt	Here power 150	
SUP 12 In From 400 Pt. To 430 Pt.	Ret 1500	
Sure In From FL To FL	Pumping Lovel	
	Pump Disinferrid	
- Sior in., From Ft. ToFt.		
- sov PL 10 PL 10 PL	•	•

and the second state of the second
• :

5

-

.

1

K

.

•

••••

.

.....

F-17

	معصفيد	WELL	LOG	· •
Total	each	7	7	
Filer	TO FEET	TYPE MATERIAL ENCOUNTERED	REMARKS	INDICATE WATER BEARING ZONES
1	1	Tep toth		
18 12	17	Cand Clay		
17	15	-hite Clay shite Clay & Cand		
-64 74 100	2 10 /8	Clay		
130	8	Clay-ibite		
180 186	30	Med. Coarse Sand		
215	30	Not. Conros Sand		
224	9	Clay		
281	57	Hed. Conree Land Sand & Clay		
341	45	Hed. Course Land W/Little		
357	16	Med. Course and W/Some White		
3.	39	Coarge Sand		
385	16	Hed. Conree :Eand		
399	8	Eand W/lots of Clay. Clay		
133	12	Course Sand Little Clay		
464	29	Course Sand W/Sthe of White		
		Clay		
138	24	Hed. Sand W/Little Clay		
495	7	Hed. ded Samt W/Little Clay		
50	8	Red Clay V/Little Eand	· · ·	

(If More Space is Required, Use Additional Shart)

This well was drilled according to the Rules and Regulations of the Georgie Department of Public Health and the above information is true and correct to the best of my knowledge.

Signed

(

• •

1

ŀ

Data

John W. Flatt June 15, 1972 Titie District Hanger

.

ś

.

•

۰.

.

APPL	<u>ENVIRONMENTAL PROTECTION DUVISION</u> <u>DEPARTMENT OF NATURAL RESOURCES</u> <u>STATE OF CEORCIA</u> <u>ICATION FOR A PERMIT TO USE GROUNDWATER</u> <u>PART B - VELL DATA</u>	NO Y
Տաետ	hir one (1) Form for Each Well	(Print or Type all Information)
	ICANT CITY OF WARNER ROBINS	Map) Ground Elevation 396 - 1
• • • • • • • • • • • • • • • • • • •	NO. <u>8</u> (Key to Attached Location Latitude <u>32³5'44"N Longitude<u>83⁰38</u></u>	Map) Ground Elevation 396 - f <u>'57'</u> 'W (if available)
WELL	CONSTRUCTION DESCRIPTION XX EXIST	IING PROPOSED
	Name of Aquifer(s) being or to be Util:	ized Tuscaloosa Group
	TYPE DRILLING (Indicate) XX Rotary	Date Drilled <u>August 1970</u> Date to be Drilled
	Percussion Total Depth 430ft. Borad Static Water	DrillerSinger-Layne-Atlantic Co.
	Bornd Static Water Level 101 Ft.	GROUTING: XX Yes No Type Pressure (Cement)
	DRILL HOLE DIAMETER	From 100 ft., to 0 ft.
	From 0 ft., to100 ft., 32 in. From 0 ft., to 430 ft., 25 in.	From ft., to ft. From ft., to ft.
	From ft., to ft., in.	
	From ft., to ft., in. From ft., to ft., in.	TEST PUMP DATA Pumped_TestBailed
1		Estimated 1500 GPM
	CASING RECORD Type Material Steel	Date Tested <u>August 13/ 1970</u> Pump Rated <u>1641</u> GPM 150
	Wall Thickness 0.312, 0.375, 0.375 in.	Test Yield 1641 GPM After 24
	Weight/Foot 85.73, 62.58, 49.56 lb.	hrs. of pump
	Size 26 in. from 0 ft., to 100 ft. Size 16 in. from 0 ft., to 225 ft.	Water Level before Test 101 Drawdown 27
	Size 16 in. from 0 ft., to 225 ft. Size 12 in. from 225 ft., to 430 ft.	Specific Capacity 60.8 GPM/
	Sizein. fromft., toft. Sizein. fromft., toft.	PERMANENT PUMP DATA (if svailable) Pump Type Deep Well Turbine
	WELL SCREEN	Outlet Size 8 in.
	Type Material Stainless Steel	Powered by Electric Motor
	Size 12 in. from 240 ft., to 260 ft. Size 12 in. from 305 ft., to 320 ft.	Rate 1500
	Size 12 in. from 360 ft., to 380 ft.	Pumping Level 128 Ft.
	Size 12 in. from 400 ft., to 420 ft. Size in. from ft., to ft.	Average Hours Pumped Per Day
		· ·

. .

• .-

(

Ũ

(

•

(

•

•

-

E

and the set of the se

Complete <u>WELL LOG</u> on reverse side, if available.

WELL	LOG	
đ		•

÷

- 1

1.1

.-

.

٠.

.

.

••••

•.•

C

.

IOM ET	TO FEET	TYPE MATERIAL ENCOUNTERED	REMARKS	INDICATE WATER BEARING ZONES
<u>ر</u>	15	Red Sandy Clay w/Hard Stks of R	ock	
5	35	Yellow Sandy Clay		
5	42	Sandy Clay		
2	50	Red Clay - Slow		
50	65	Red Clay - Very Slow		
5	80 ·	Red Sandy Clay - Slow		
30	87	Med. Coarse Sand & Little Clay	- Soft	
37	100	Cla y		
<u>)(</u>	126	Coarse Sand w/Small Stks of Clar	<u>y</u>	
26	187	Coarse Sand	<u></u>	
37	274	Med. Coarse Sand		
74	294	Med. Coarse Sand w/Stks of Clay	/	
<u>)</u>	443	Med. Coarse Sand - Soft		·
43	463	Med. Coarse Sand - W/Stks of C	lay	· · ·
<u>53</u>	480	Med. Coarse Sand - Soft		
30	494	Red Sandy Clay - Very Slow		
		<u>.</u>		
	1			

(If Nore Space is Required, Use Additional Sheet)

•

F-20

The above information is true and correct to the best of my knowledge.

C

Signed Date Title

Georgia Departmen	(A of Public Health	•
Water Sup	ply Service	DO NOT WAIT
47 Trinity A Atlanta, Gao		
Atlenta, Geo	*98 30334	CLASS II
WELL DAT		CLASS III
Fo PUBLIC OR COMMUNITY WATER SUPPLY S	•	INDIVIDUAL
Well Ho. 9 (Water		L
INSTRUCTIONS:		
Name of Weser System: Warner Robins Location	on Arrowhead Trail County	H:uston
Type: Municipal; Subdavision No of Loss _		erks
No of Lots; Industrial; Commencial	: Individual 4 Othe	
	· ·	
Comer City of Warner Bobins	Driller Singer-Leyns Atlantic Con	
Address	Addres Albany, Georgia	
Date Drilling Started	Date Compared October 1971	
WELL DE		
TYPE DRILLING (Chesk)	GROUTING	
Reary X	Type GrowtCement	
Percumion	Applied by pressure X)ther
Bortd	From 0 FL To 110	_ FL
Total depth of Well 490 Ft	From FL To	
Depth to water (SWL) _101 Pt	From FL To	Ft.
HOLE DIAMETER:	TEST PUMP DATA:	
From <u>0 </u>	Pumped Tost Beind	
From 0: Ft. To 190 Ft. 25 In.	Estimated Actual Test	
From FL. To FL in.	Dem Tasked October 5, 1971	
From FL To FL, In.	Pump rated GPM	HP Test En
From FL To FL FL in.	Yield GPM efter	h/t.
CASING RECORD:	of stabilization Water Lovel before Test	1 FL
	Drandown 22 32 Pr	PL
Type Meterlei		l mer ts.
Size 26 in From 0 FL To 110 FL		
Size 16 in., From 0 Ft. To 250 Ft.	Well developed and Distributed:	
* Sime 12 In., From 250 Ft. To 490 Ft.		
Size in., From F1 To F1	<u> </u>	No
Size In., From Ft. To Ft	1	
"Steel Sunge 12"x16"	PERMANENT PUMP DATA (If Available)	
WELL SCREEN :	Pure Type Singer-Layne &	Bouler
Type Manniel Layne Stainless Steel Shutter		DORTOL
Size <u>12</u> in, from <u>330</u> FL To <u>340</u> Ft Size <u>12</u> in, from <u>360</u> FL To <u>380</u> Ft		
Size 12 In., From <u>405</u> Ft. To <u>415</u> Ft.	Hore 9 150	
Size 12 In From 460 FL To 480 FL	Pumping Level 1301	

FOR WELL LOG, USE REVERSE SIDE

EH 4.8-0

Ē

.

•

•

. Бл

Ż

-

•

Ľ

. . .

Total Depth	Tuicknes each Stratum	WELL L 9	OG	
(TYPE MATERIAL ENCOUNTERED	REMARKS	INDICATE WATER BEARING ZONES
7	7	Sand		
<u>20</u> 36	13	Sand & Mite Clay Sand W/Little Stka. of White		
		Clay		
50	14	Coarse Sand & White Clay-Slow		
<u>80</u> 127	30 47	Coarse Sand W/Stks. of Unite		
1 89 221	62 32	Med. Coarse Sand Med. Coarse Sand W/Stks of		
231	10	Clay Med. Coarse Sand-Soft	•	
253	22	Mad. Comrse Sand & Stks. of Clay-Soft		
270	23	Med. Cand & Red Clay-Slow		
295	25	Sand & Red Clay-Very Slow		
314 344	19	Coarse Sand-Very Slow Med. Coarse Sand-Saft		
366	42	Med. Course Sand W/Little		
396	10	Red Sand Clay-Slow		
4-	21	Med. Course Sand-Soft		
437	20	Coarse Sand Wome Clay-Slow		
450	13	Sand Clay-Slow		
467	17	Med. Coarse Sand-Soft		
497	30	Med. Coarse Sand M/Little		
		Clay-Soft		
528	31	Sand W/Little Clay-Soft.		
·	<u> </u>		·	
. <u></u>	<u> </u>			
<u> </u>	ļ			

.

١,

W.

(If Mare Space is Required, Use Additional Short)

This well was drilled according to the Rules and Regulations of the Georgia Department of Public Health and the above information is true and correct to the best of my knowledge.

٠

Signed

Dete

J.hn W. Flatt June 15, 1972

(

Title

District Manager

•

.

E,

	STARTED WELLIVID COMPLETEDID
DRAWING OF THE WELL	IOTAL DEPTH ELEVATIONSTATIC WATER LEVEL
	LENGTH SUNFACE CASING SIZE THICKNESS
32	SEMENTED WITHBACKU CEMENT TYPE PACKER
26	THEMEN SE WITH STUDIES 1011 1911 STU SCH 40
	WITH AS SHORD
A have a have have the state	NELL STRAINEN HARE LAYRE SAL 12 LENGT 75 OPENING 7
	WPT WATENESS S.S WeldedCURNECTIONS
	1222 FOLE ORIGING WORK SUMPACE CASHIG. 32 WITH Tri-Cone
	26
	WARDS OF UNAVEL STATES STATES SHOW PLACED
	RIG USED Gardner Denver
	SERIAL NUMBER MARL FOUNDATION
	BOWL BIZE
	SUCTION SIZE
195' - 200'	IS PUMP SEALED HOW
	LUBRICATOR TYPE
-220' 4	AIR RELEASE VALVE TYPE
-225	SIZE SURFACE DISCHARGE TYPE DAYTON COUPLING
	NOTES
	RIG USED TO SET PUMP INSTALLER
	DATE PUMP INSTALLET
	MAKE HP ANT
	SPEED NOULI
411	TOP BEARING
	1 MAKE MODEL \$12E RATIO NO
	SIZE PULLEY TYPE MOTOR FRAME
	MAKE
	SPEED
	TYPE PUEL TALIT MAKE MAG
	MAKE FLEXIBLE SHAFT STE LENGTH BELT LENGTH_
	PUNPOSE FOR WHIGH THIS WATER IS USED
	TEMPERATURE
	TYPE TREATMEN, USED
	IS THERE A DERPICE OVER THE WELL
	*CAN TRUCK OF 2015 (1440) Y 2017 (10 ordinal)
	CONTRASTO NOAL-0150 -
ENGINEERC TROJECT ND: 7106:4	OUR WELL NO. 10
auna esta da 14-	LOCATION OF THE WELL TABOR Drive
E TORT AND	¹ INSTALLED -ON CITY M. Marner Robins
· · · · · · · · · · · · · · · · · · ·	-
	STATE LODING COUNTY HOLDING STATE LODING
	The Contractor Artnur New Construction Co. FAR 1976
	grow in the Flood v Ausociation Corr CAR

-

۰. Ċ

1

ï

.

۰.

WELL NO. 10 CITY OF WARNER ROBINS CONTRACT NO. AL-0150 FORMATION LOG OF THE WELL OR TEST HOLE

		Warner Robins	- 4 86			
INTAL SPTH	Taber 1	•	TOTAL	THICKMEDE		
MPT I	STRATUM	PORMATION	DEPTH	STRATUM		
36	36	Red Sandy Clay- Slow				
66_	-30	Red & White Sundy Clay		+		
96	30	Coarse Sand & Clay	 	4		
116	20	Med. Coarse Sund & Clay. Soft		+		
125	9	White Sandy Clay, Very Slow,	ļ	+		
135	10	White CLay & Sand. Slow.	 			
155	20	Sand & Stks. of White Clay.	ļ			
	ļ	Soft.	 			
185	- 28	Coarse Sand & Little White				أراحا المراقعاتين المحموم كمر
	<u> </u>	Clay. Soft.	MUD PIT	BIZE	_FT. XFT Cut sand	XPT.
::13	30	Coarse Sand. Soft.	BIZE OF	TEST HOLE	THROUGH BANG)
270	.57	Coarse Sand & Little White	TYPE OF	BIT USED T	O CUT UPPER PO	RMATIONS
		Clay Soft.	TYPE MU	D PUMP US	E0	
205	35	Med. Coarse Sand. Soft.			E IN SAND	
325	20	Sand & Red Clay. Very Slow.				
500	175	Coarse Sand & Little Stks. of				
	<u></u>	White Cley_ Soft & Slow				
561	61	Coarse Send & Stks. of Red	<u></u>			
		Clay				
			J			
	<u> </u>					التفسيك سويد فجب ويرو
	<u></u>		-l		TEST DATA	
		[STATIC	WATER LEV	ELIMINARY TEST	PHIAL TEST
	<u> </u>		PUMPEC	5 G. P. M	1613	
				IRE. POUNC	48'	
				D .		
			GUARA		M.1500	
_			QUARA	NTEED PRE	AR. 8, 1977	
_	+	<u> </u>			REMARKS	
	-+	<u> </u>	1			
	+		╣			
			╺╢			
	+	<u> </u>				
	+	<u> </u>				
			-		الما وي روما الي وروم وي رو	
			╢╍┈╷╴╴	Svlve:	ster Yam	
	1		18			
	1	1	Have a a	une Jess	Hendenhall	

.

,

1

•

•

١

٩

No ·).1

DRAWING OF THE WELL	STARTED WELL OCT. 25 1976 AND COMPLETED DOC. 7 19 76 TOTAL DEPTH 440 BLEVATION STATIC WATER LEVEL
32° - 19 - 26°	CEMENTED WITH
	SERIAL NUMBER 82863 MAKE LAVID: FOUNDATION CONCEASE LENGTH COLUMNIOD SIZE 10x1/x21 TYPE011 • 20 LENGTH BOWL SIZE 12TYPETLC STAGES 6 MATERIAL IMPELLER MATERIAL BOWL C.I. WITH Open PORTS AND S.S. SUCTION SIZE 10 LENGTH 30 SUCTION STRAINER GETY CO BUCTION SIZE 10 LENGTH 30 SUCTION STRAINER GETY CO BUCTION SIZE 10 LENGTH 30 SUCTION STRAINER GETY CO BUCTION SIZE 10 SIZE 4.015. VOLTAGE 460 SIZE 4.015. VOLTAGE 460 SIZE 4.015. VOLTAGE 460 SIZE 4.015. VOLTAGE 460 SIZE 2.015. SIZE SURFACE DISCHARGE 10 SIZE 2.007.000
+12 + +12 + == -330 -370 -370 -370 -350	MAKE GE
	TYPE FUEL TANK NO TYPE FUEL NATURAL GAS NO TYPE FUEL NATURAL GAS MAKE STARTER NO TYPE FUEL NATURAL GAS MAKE FLEXIBLE MART BELT LENGTM
	CAN TRUCK OR RIG EASILY GET TO WELL NO-IN HOUSE PUMP HOUSE YOS SIZE HATCH <u>L'X4</u> SIZE HATCH <u>L'X4</u> CONTRACT NO. <u>Al-0150</u> OUR WELL NO. <u>11</u> IN TEST HOLE NO. LOCATION OF THE WELL <u>Saber Streat</u> INSTALLED FOR <u>Cltx of Warner Robins</u> ADDRESS CITY <u>Warner Lobins</u> <u>County Houston</u> STATE <u>Coursi</u> Trime Contractor: Arthur Feu Construction Co buginger : Flood & Appendiates YEAR <u>1976</u>

•

Ë,

No. 11

1

·

· ·

<u>.</u>...

-

•

-

3

- .3

•

ы. ж. ч.

.

. .

.

ŕ

WELL DOLLI DOMESSON NO. AL-OLSO FORMATION LOG OF THE WELL OR TEST HOLE

•

R.

R

(

۰.

 •

٠.

.

STARTED TEST HOLE ______ 19.76. FINISHED HOVENDER _____ TE. 76. TEST HOLE NUMBER

TOTAL DEPTH	THICANESS EACH STRATUM	PORMATION		THICKMEDE EACH STRATUM	P		8	
2	2	hed Sand Clay	<u>, 59</u>	50	Red Sand & C	lay.	Very	Cloy.
<u>.</u>	4	Led Ciny						
	8	Red Sand Cluy						
r	5	Red & White Sandy Clay		L				
	5	Yellow Sand & Clay			<u>.</u>			
.20		Gourse Gravel, Circulation						
		Problems.						
• 5	11	Course Sand & Little White						
		flay			1			
<u>85</u>	27	Coarse Sand & Siks of White		· ·	FT. X	×		T. DE
		Clay. Soft.	SIZE OF	TEST HOLE	THROUGH BANK			
1.6	41	Sand & White Clay. Soft.	TYPE OF	BIT USED T	O CUT UPPER FC		>>>C	
1.55	29	Ned. Coarse Sand & White Clay			ED			
		Soft.	11	NUD USE	E IN SAND			
187	28	Conrse Sand with Stks. of	NOTES					
		White Clay- Soft.						
69	15	Ned. Coarse Sand with Little						
		White Clay. Soft.	ļ					
22	22	Course Sand with Stks. of						
		White Clay. Soft.	 					
<u></u>	<u> </u>	White Clay (No Sumple)Slow.						
2764	45	Ccorse Sand & Little White	l		TEST DATA			
		Clay. Soft.	BTATIC	WATER LEV	ELIMINARY TEST	P3	NAL TEE	T
:14	15	Ecd. Coarse Sand, Little Clay	PUMPED	G. P. M	1613			
		liedium Drilling	DRAWD	RE. POUNI	15			
<u></u>	12	Erd & White Clay, Very Slow.	G P. F.	p. 64.52.		<u> </u>		
	24	Course Sand & Little Clay	GUARAN		55URE			
		Soft.	DATE O	TEST Dec	ember 2, 197	4		
414	<u>•</u> E	Course Sand with Stks. of	₽		REMARKS			_
		White Clay. Soft.						
443	20	Coarse Sand & Little Clay.	_					
		Soft.						
ál.	<u> </u>	Linu & Little Stus. of hid.						
		- Одих	∦)
L*;	10	Und & Red Clay, Close,		-				
184	T T	provational with little Care			A			
		Stow.	DRILLER		ster Yawn			
6.13	i it	Card & Ctks of Log Clay	FIELD SU	Je TTe:	<u>is Dendenheili</u>			

F-26

	100:05	WRLL Fa	NORFOLK, V/ Bobins Field (Georgis Air Dep		£.	H. Smith	•		· •
	Incated	at	lleton in Georgia (near	Magon, 9a					
			d September 2, 19.41 Date					19.4	
				Pinished				29 4	L
	10	RMATIONS /	ND DEPTH OF WELL	DIME	NSIONS OF	CASING A			
	TOTAL DEPTE OF ALL STRATA	DEFTE OF BACE STEATURE	PORMATION POUND AT RACE STRATURE	TOTAL LENGTE OF ALL SCREENS and GASDING	Lingth of MACE MIC. Of SCENES OR CLARKS	BCILEICH OR GANING	MER OF ACREAN OR CARING	GAUGE OF SOLSEN	
	FT. IN.	PT. IN.	Well #1	PT. DI.	FT. DI.		IN.		
		20	Brown sand	76	75	Casing	20	5/16	(nomenter)
	20 40	20	Yellow sand		ing come			•	
	48	8.	Yellowish white sand	50	: 60	Casing	12	60 ,	(tee) / coening
	70	22	Coarse white sand	70	20	Sorean	12	6	
	76	6	Very scarse sand	190	120	Cesing		50 <i>7</i>	17 0 01 11.1
	86	10	Gearse white sand	210	20	\$ares	12	6	Jamen
	95	9	Coarse sand, some chalk						
	122	27	Coarse white sand and fine gravel						
			Signs of obalk 95 to 100 1 ft. wery hard streak at 109	•					
	132	10	Soft coarse white sand						
	136	4	Hard chalk and gravel						
	152	16	Chalk and gravel	: .	: •				
	157	5	Soft coarse white sand	:					
	162	5	Soft shalk and scarse gravel	۹.	· •				
•	167	5	bedium hard course gravel - used						
		_	1 /2 pit of mater	i - F				•	
	172	6	Coarse white sand	ť.					
	177 	5 	. Chalk and gravel			المسير	محمد جلب	• •••••	
	- 207	138 I	- Hard elsy and groval						
	226		Coarse white sand						
	1 .257 . free		Hard streak (7). No sample	i i				•	
	283	16	. Fine white sand	₹					
	270	. 17	Course sand - used water	i i	1	1	•		
	274	4	Very hard gravel		1 w	; ELL DA1) [A :	•	
	290	16 25	Very hard chalk Course sand			eliminary '			
	316 3 18	3	Course sand and little play	Date Test	nd 9-20	1941 Stat	ic Level		
	328	. 10	Coarse sand	Production	1400	GPM Pun	ping Le	vel	
	332	4	Coarse and fine white sand with	73' draw		rmanent 7			
			white clay	Date Test		1941 Stat			
	337	5	Fine sand	Production	000	GPM Acti			
	344	7	Coarse sand, soft	Drawdowr			iping La	val -/ :	
	367	13	Comrse and fine sand - little	Remarks:	36 ho	ur test			
•	362	5	ohalk Very ogarse sand - soft						
		•	to your such a solt of the sol	•					
					P	UMP DAT			
				Shop No.			e Lubr, Sustian		
				Type Heat Depth Set		Size BP to MB	Suction		
				Size Colum			r) gth Suci	ion	
				Type Bow			rth Air		
				No. Stage			harge-	-	
	÷			Cap'y and		Pi	ressure		
					MC	TOR DA	TA:		
				Horsepowe	er	Volt	-		
				RPM Turne		Pha			
•				Type Make		Cycl Frai	les me No.		
	•	-							
									ŕ

		WFLL	DATA					ATION AFB, Ge	orgia		7	WFLL NO. #1	
ΎΛ.	TION (FI)	LOCATIO									CONSTR E	
(T)	YPF		Bldg #				÷				28 0	ctober]	941
L	and the second second	led W	ell (Under	rreal	-		_	acked We	<u>)</u>				
	67 M 65 ft.					NETER 8 in.					PSET O Ít	TING DEP	тн
0	NO ROCO	NC WA	TER LEVEL	-	DRA	WDOWN		51	نفارند درجي	RFC	OVE	RY TIME	
	TEST	DATA			AIR	LINES		GAGES	PE	CIFIC	CAP	ACITY (Ge	i per
	pencity PM	Pumpin	ng i evel	I	Yes	N	0 L	engt b	(1)	GPI OIT	AWDO		
				•	WELL	PUMPI	NG E	QUIPMEN	<u> </u>				
	YPE AND ortical			ne P	una N	o. 17	097						CAPACITY 850 GPM
20	Pt. 6	(1) in.	HEE AND					COLUM					
F			HEAD				TN	UNBER BO		IN EE	AND	TYPE	NO. STAGES
	bove grad		ulow grad X	1	t el		~	4 Stage		12	* RE	NC.	4
	IN AL NO		YPE	MAN			Į,Ļ	RPM	FRAME	PHA		CYCLES	VOL TAUE
	86857		CFU	U.	S. H	otor	75	1800	952	3		60	220/440
L	Yes					al Mot	tors	diesel			_		
1 +85	P 90		PM 1800	DE	SCMP Sr. N	110N 0. 44-	-903	89; Node	1 40300				
		CABING	AND WELL	BCR	SENIN	U MAT	SPC A	LUSED				TTING EPTH	LENGTH
		.											
		pit	casing co	men'			.						
		-											
	f origi	nal 12	2" screen	lin	s at	601	•						
			2" screen		at .	60'							
p 0.	f 8 [#] sc	reen)	line at 10	981				24.51 -	2651	•			4
p 0.	f 8" sc	reen) stee)	line at 10 1 screen a)8' 1t 1	10' -	130'				· ·			
eta Es	f 8" sc ainless Above	steel	line at 10 l screen a was relig)8' 1t 1	10' -	130'				bove			
eta Es	f 8" sc	steel	line at 10 l screen a was relig)8' 1t 1	10' -	130'				bove			
• • • • •	f 8 [#] sc ainless Above Layne	steel well No. 1	line at 10 l screen a was relig	08' 11 11 1ed :	10' -	130'				bove			
p 0.	f 8 [#] sc ainless Above Layne	reen] stee] well No.] 2½n j	line at 10 1 screen a was relin 17097 K 12" Colu	08' 11 11 1ed :	10' -	130'				bove			
0 0. sta (P:)' (f 8" sc ainless Above Layne of 8" X ge 12" 1	reen 1 steel well No. 1 22 n 1 EKMC E	line at 10 1 screen a was relin 17097 K 12" Colu	08' 11 11 1ed :	10' -	130'				bove			
0 0.	f 8" sc ainless Above Layne of 8" X ge 12" 1 f 6" Su	reen ; steel well No. J 22 ⁿ 1 EKMC F	line at 10 1 screen a was relin 17097 K 1½" Colu Bowls)8 ¹ ht 1 hed :	101 -	130'				bove			
0 0.	f 8" sc ainless Above Layne of 8" X ge 12" 1 f 6" Su	reen ; steel well No. J 22 ⁿ 1 EKMC F	line at 10 1 screen a was relin 17097 K 12" Colu)8 ¹ ht 1 hed :	101 -	130'				bove			
0 0.	f 8" sc ainless Above Layne of 8" X ge 12" 1 f 6" Su	reen ; steel well No. J 22 ⁿ 1 EKMC F	line at 10 1 screen a was relin 17097 K 1½" Colu Bowls)8 ¹ ht 1 hed :	101 -	130'				bove			
0 0.	f 8" sc ainless Above Layne of 8" X ge 12" 1 f 6" Su	reen ; steel well No. J 22 ⁿ 1 EKMC F	line at 10 1 screen a was relin 17097 K 1½" Colu Bowls)8 ¹ ht 1 hed :	101 -	130'				bove			1
0 0.	f 8" sc ainless Above Layne of 8" X ge 12" 1 f 6" Su	reen ; steel well No. J 22 ⁿ 1 EKMC F	line at 10 1 screen a was relin 17097 K 1½" Colu Bowls)8 ¹ ht 1 hed :	101 -	130'				bove			1
0 0.	f 8" sc ainless Above Layne of 8" X ge 12" 1 f 6" Su	reen ; steel well No. J 22 ⁿ 1 EKMC F	line at 10 1 screen a was relin 17097 K 1½" Colu Bowls)8 ¹ ht 1 hed :	101 -	130'				bove			1
0 0.	f 8" sc ainless Above Layne of 8" X ge 12" 1 f 6" Su	reen ; steel well No. J 22 ⁿ 1 EKMC F	line at 10 1 screen a was relin 17097 K 1½" Colu Bowls)8 ¹ ht 1 hed :	101 -	130'				bove			1
0 0.	f 8" sc ainless Above Layne of 8" X ge 12" 1 f 6" Su	reen ; steel well No. J 22 ⁿ 1 EKMC F	line at 10 1 screen a was relin 17097 K 1½" Colu Bowls)8 ¹ ht 1 hed :	101 -	130'				bove			

۱.

.

-

1

يتد بر مبد

•

5

÷

<u>.</u>...

.

.

.....

;

.

•••

.

1

E---

WELL TOTAL DEFTH. 360. EXAMPLE STATE WATER LEVEL 371. LENATH BURACE CANNA. ACCHS CEMENT YTTE FACHER. U.327. CEMENTED WITH. ACCHS CEMENT YTTE FACHER. U.327. LENATH BURCH CASHNA. ACCHS CEMENT YTTE FACHER. U.327. LENATH WITH. ACCHS CEMENT YTTE FACHER. U.327. WITH. BILL CASHNA. ACCHS CEMENT YTTE FACHER. U.327. WITH. BILL CASHNA. SACHS CEMENT YTTE FACHER. UNDER CASHNA. WELL STANKE MARK COOL BILL CASHNA. SUBER CASHNA. SUBER CASHNA. WELL STANKE MARK COOL BILL CASHNA. SUBER CASHNA. SUBER CASHNA. SUBER CASHNA. BILE HOLE DILLED FOR WELL CASHNA. CASHNA. 26. WITH. TOTE SUBPLIC CASHNA. NOTES. BILL BORD COOL TUE MARKANA. SUBER CASHNA. SUBER CASHNA. NOTES. GALTANER BLARK WITH. DOW CALL CASHNA. SUBER CASHNA. SUBER CASHNA. ISTE MOLE DILLE DY OR STRAIMER. LUSTANER. SUBER CASHNA. SUBER CASHNA. SUBER CASHNA. ISTE MOLE DILLE DY OR STRAIMER. LENATH CASHNA.		
OUTAL DEFINITION STATES STA	well	STARTED WELL August 13 10 75 AND COMPLETED Sept. 17 10
CEMENTED WITH 400 SACKS CEMENT TYPE PACKER CEMENTED WITH WELL CARING. SIZE 121 WEIGHT_0375 WILL INTE AS DEVICE JOINT 1600 SIZE 121 WEIGHT_0375 WILL WITH AS DEVICE JOINT 1600 SIZE 121 WEIGHT_0375 WILL WITH AS DEVICE JOINT 1600 SIZE 121 WEIGHT_0375 WILL WELL STAINER MARE COOL SIZE 121 LENGTH 50 OFENMOL WELL STAINER MARE COOL SIZE 121 LENGTH 50 OFENMOL SIZE HOLE ORILLED FOR WELL CARING. 26 WITH 1 CORE SIZE HOLE ORILLED FOR WELL CARING. 26 WITH 1 CORE SIZE HOLE ORILLED FOR WELL CARING. 26 WITH 1 CORE SIZE HOLE ORILLED FOR WELL CARING. 26 WITH 1 CORE SIZE HOLE ORILLED FOR WELL CARING. 26 WITH 1 CORE SIZE HOLE ORILLED FOR WELL CARING. 26 WITH 1 CORE SIZE HOLE ORILLED FOR WELL CARING. 26 WITH 1 CORE SIZE HOLE ORILLED FOR WELL CARING. 26 WITH 1 CORE SIZE HOLE ORILLED FOR WELL CARING. 26 WITH 1 CORE SIZE HOLE ORILLED FOR WELL CARING. 26 WITH 1 CORE SIZE HOLE ORILLED FOR WELL CARING. 26 WITH 1 CORE SIZE HOLE ORILLED FOR WELL CARING. 10 WILL CARING WOW AS WELL DEVELOPED. TOST PUMP & ALT HOW SIZE 12 TYPE BELL PUMP & ALT SIZE HOLE SIZE WITH 10 SIZE 1 WITH 10 SIZE 10 WITH WAAT. SIZE HOLES VALVE TYPE. SIZE 1 WITH WAAT. SIZE HOLES VALVE TYPE. SIZE 1 WOTAGER. WOTAKER. DET MARE SIZES VALVE TYPE. SIZE 1 WOTAGER. WITH WAAT. SIZE SUPACE DECHARGE. TYPE OATON COUFLING PRESSURE SUPACE DECHARGE. TYPE OATON COUFLING FOR SALESP VALVE TYPE. SIZE 1 WOTAGER. WITH WAAT. SIZE SUPACE DECHARGE. TYPE OATON COUFLING FOR SALESP VALVE TYPE. SIZE 0 AVTON COUFLING FOR SALESP VALVE TYPE. SIZE 1 WOTAGER. SUPACE MARE USED TO SET PUMP INFALLED. 10 GATE HI OFFRATOR. 100 MARE STATER. MODEL TYPE SIZE AND COUFLING FOR SALESP VALVE TYPE. SIZE AND COUFLING FOR SALESP VALVE TYPE. SIZE NOT COUPLING SIZE SUPACE DOODEL SIZE PLANE. MEDICATION SALESP. SIZE SUPACE DOODEL SIZE SIZE RATCH. SUPER. SIZE MATT. SIZE WITH WELL MODEL. SIZE MATCH. SUPERATURE TAWNER WELL MED. 100 MARE STATER. MODEL SIZE MATT. SUPED. SIZE MATCH. SUPERATURE TAWNER WELL MED. SIZE MATCH. SUPERATURE CAR RE SALESP. TO WEEL MADEL MOD. MARE STATER. MADEWELL SI		
LENGTH WELL CARNOT. 360 SEE TY TYPE PACKER. CAMENTS WITH. 360 STE 12" WEIGHT 0.375 HEIL INNER CARNOT. 360 STE 12" WEIGHT 0.375 HEIL INNER CARNOT. BUIGEL LOCATED. ILCO BELL. STRANER MARE COL. SIZE 12 LENGTH 50. OFFINIOR SIZE HOLE DRILLED FOR SURFACE CARNE. 32 WITH TIL COBE. SIZE HOLE DRILLED FOR SURFACE CARNE. 32 WITH TIL COBE. SIZE HOLE DRILLED FOR SURFACE CARNE. 32 WITH. 12 COME SIZE HOLE DRILLED FOR SURFACE CARNE. 32 WITH. 12 COME SIZE HOLE DRILLED FOR STRANER. 26 WITH. 4 BOCK FLOW MOW WAS WELL DEVELOPED. TOSI FUND. SET HOLE DRILLED FOR STRANER. 26 WITH. 4 BOCK FLOW MOW WAS WELL DEVELOPED. TOSI FUND. SETA OLE DRILLED FOR STRANER. 26 WITH. 4 BOCK FLOW MOW WAS WELL DEVELOPED. TOSI FUND. SETA OLE DRILLED FOR STRANER. 20 MON FALCES. SIZE HOLE DRILLE DY MARE LAYID SETA OLE DRILLE DY MARE DAYID MOW WAS WELL DEVELOPED. TOSI FUND. SETA OLE DRILLE DY MARE DAYID SETA DIE DRILLE DY MARE DIE DAYIE DAYID SETA DIE DRILLE DIE DIE DAYIE DAYID SETA DIE DAYIE DIE DIE DIE DIE DAYIE DIE DAYIE SETA DIE DAILES DAYIE TYPE. SETA HUMBER. 2001 AND		
CEMENTED WITH	}	
Yes BUDDE SUDDE Yes SUDDE Yes BACKPERSONER VALVE SUDDE SUDDE SUDDE WELL STRAINER MARE COOL STZE NOLE DRILLED FOR WELL CASING J2 WITH SUDDE STZE NOLE DRILLED FOR WELL CASING J2 WITH STZE NOLE DRILLED FOR WELL CASING J2 WITH STZE NOLE DRILLED FOR WELL CASING STZE NOLE DRILLED FOR WELL CASING J2 WITH STZE NOLE DRILLED FOR WELL CASING J2 WITH STZE NOLE DRILLED FOR WELL CASING NOW WELL DRIVELOPEN TEST LATING STZE NOLE DRILLED FOR WELL CASING J2 WITH STZE NOLE DRILLED FOR TON WELL CASING NOW WELL DRIVELOPEN TEST LATING STZE NOLE DRILLER FOR TON STZE NOLE DRILLER TON STZE NOLE DRILLER TON NOTES STZE NOLE DRILLER FOR TON STZE NOLE DRIVE TON TON STZE NOLE DRIVE STZE NOLE DRIVE NOTES J2 WITH WHAT STZE NOLE DRIVE STZE NOLE DRIVE STZE NOLE DRIVE SUCTION STRAINER J2 X J2 X Z A YPE DLIER STZE NOLE DRIVE SUCTION STRAINER STZE NOLE DRIVE WITH WHAT STZE NOLE DRIVE STZE NOLE DRIVE STZE NOLE DRIVE STZ		CEMENTED WITH
Image: State in the image: State in		INNER CASING LENGTH 360 SIZE 12" WEIGHT 0.375 WEIL
WELL STRAINER MARE (202) DEEL 12 LENGTH. 50 OPERMING. WELL STRAINLED FOR SURFACE CASING. 32 WITH. TO BIZE HOLE DRILLED FOR SURFACE CASING. 26 WITH. *** YARDS OF SRAVEL USED. 70 HOW PLACED DRIVER (FERLING) 26 HOW WAS WELL DEVELOPE. 701 HOW PLACED DRIVER 4817 HOW WAS WELL DEVELOPE. TON PLACED DRIVER 101 101 HOW WAS WELL DEVELOPE. TON PLACED DRIVER TON PLACED DRIVER NOTES	¥.	
STORE MATERIAL SS (304) with		
************************************	11	TYPE NATERIAL SS (304) WITH CONNECTIONS
BIELE HOLE OFFLUED FOR WELL CASHNG 26	12	
VARDE OF GRAVEL USED 700 BYTANDE HOW PLACED GRAVITY & BRICK PION HOW WAS WELL DEVELOPED. Test Plum & Air HOW WAS WELL DEVELOPED. Test Plum & Air HOW WAS WELL DEVELOPED. Test Plum & Air HOW BEED. GRITCHPEDED. PORTS AND. SERIAL NUMBER. 17097 MAKE LAYRS POUNDATION LENGTH COLUMALOO SIZE & X 14 X 24 TYPE DIL & 10 BOWL SIZE 12 TYPE RKAK STARES & MATERIAL MARELES DITON MATERIAL BOWL CL. WITHOUGED. PORTS AND. SUCTION SIZE & WITH WITHOUS PORTS AND. SUCTION SIZE & WITH WITHOUT STRANGER COM SUCTION SIZE & WITH WITHOUT STRANGER COM SUCTION SIZE & WITH WITHOUT STRANGER COM SUCTION SIZE WITHOUT THE SIZE WITH TYPE MATERIAL SELVENIES AIR RELASS VALUE TYPE. SIZE SURFACE DISCHARGE		BIZE HOLE DRILLED FOR WELL CASING 26WITH
HOW WAS WELL DEVELOPED. TELL PUTD & AIT NOTES. RIG USED. Gardnor-Denver DENLLER S. YEM. SERIAL HUMBER 17097. MARE LEVTD DENGLER S. YEM. SERIAL HUMBER 17097. MARE LEVTD DENGLER S. YEM. DENGLER S. YEM. SERIAL HUMBER 17097. MARE LEVTD DENGLER STREAM 100. BLE S. YEM. SERIAL HUMBER 17097. MARE LEVTD BOWL SIZE 12. YVPE RIGHT MATERIAL BOWL C.L. MATERIAL BOWL C.L. WITHODED. SUCTION STREAM 100. BLE S. MATERIAL BOLL STREAMEL CONTACT SUCTON STALED HOW. UNBRIGATOR TYPE. DATE PUMP STALLED. LUBRIGATOR TYPE. DATE PUMP INSTALLED. DATE PUMP INSTALLED. DATE PUMP INSTALLED. DATE PUMP INSTALLED. MAKE U.S. MP100 PRESUME SUICE TOWNER. PRESUME SUICE MAKE U.S. MP100 PRESUME SUICE MAKE U.S. MP100 PRESUME SUICE TOP BEARING. STATTER. PODEL. PRESUME SUICE MAKE PULLEY. TYPE P	•	
NOTES: NIG USED Gardner-Denver DMILLER S. YSVN SERIAL NUMBER 17097 MARE LAYDE POUNDATION LENGTH COLUMNICO, SIZE & X 13 X 23 TYPE DIL & D DOWL SIZE 12 TYPE REAL STABLE A MATERIAL INFELLER DION MATERIAL SOWLE C.L. WITHOUGH PORTS AND. SUCTION SIZE & "I LENSTH 10' SUCTION STRANGEL COL SUCTION SIZE & "I' TYPE MATERIAL GOLVANTS SUCTION SIZE & "I' TYPE MATERIAL GOLVANTS LUBRICATOR TYPE. SIZE SURFACE DISCHARGE. TYPE SURFACE DISCHARGE. TYPE DIAP INSTALLED. NOTES. RIG USED TO SET PUMP. NOTES. RIG USED TO SET PUMP. NAKE U.S. MP100 PREBUINE GUAGE. NOTES. RIG USED TO WORD BOARNAL SET AND. NAKE MODEL. NOTES. RIG USED TO WHICH THIS WATER IS USED. THMPERATURE. NO. SIZE PULLEY. NAKE STARTER. NO. SIZE PULLEY. NONE. STREME A DERRICK OVER THE WELL NAKE PLENISLE STATES. NO. SIZE NOTES FOR WHICH THIS WATER IS USED. THMPERATURE. STREME A DERRICK OVER THE WELL MAKE STARTER. STREME A DERRICK OVER THE WELL NEIGHT. STREME A DERRICK OVER THE WELL STREME A DER		VARDE OF GRAVEL USED HOW PLACED UPAVILY & DECK FLOW
RIG USED GETCINGT-DERIVET DMILLER S. YEWN SERVAL NUMBER 17097 MAKE LAYDE FOUNDATION LENGTH COLUMNIQUE SEE 8 X 14 X 24 TYPE DILL 0 10		
BERNAL NUMBER 17097 MAKE LAYDS FOUNDATION LENGTH COLUMNIDO. SIZE 8 x 13 x 24 TYPE D11 10 SOWL SIZE 12 TYPE RIAL STARSE MATERIAL MARELLER DID MATERIAL BOWL CLI WITTAGEN NOTES ANATERIAL MARELLER DID MATERIAL BOWL CLI WITTAGEN NOTES WITTAGEN TYPE RIAL SALES UDSNICATOR TYPE SIZE WOLFARE WITTAGEN WITTAGEN UDSNICATOR TYPE SIZE DAYTON COUPLING SIZE WATERIAL SALES NOTES SIZE SURFACE DISCHARGE SIZE DAYTON COUPLING SIZE NOTES SIZE SURFACE DISCHARGE TYPE SIZE DAYTON COUPLING NOTES SIZE SURFACE DISCHARGE SIZE SIZE SURFACE DISCHARGE SIZE NOTES SIZE MATERIAL MUMBER SIZE SURFACE DISCHARGE SIZE SURTACE DISCHARGENE SIZE SURTACE		
LENGTH COLUMN100 SIZE S X 14 X 24 TYPE DIL C US CONCOMPENSION OF THE STATE OF THE S		RIG USED Gardner-Denver DRILLER S. Yawn
LENGTH COLUMN100 SIZE S X 14 X 24 TYPE DIL C US CONCOMPENSION OF THE STATE OF THE S		17007
SOUCL BIEL LZ_TYPE RKML STABLESAATERIAL MAPELLER_DION MATERIAL BOWL_ULT_WITHODED_PORTS AND SUCTION SIZEB"LENGTH_10'SUCTION STRAMER_COM INFORMATERIAL CONTACT AND LUBRICATOR TYPEBERWITHOLERWITHOUSE E BIEL SURFACE DISCHARGETYPE_MATERIAL COLVELING FREELEASE VALVE TYPE SIZE SIZE SURFACE DISCHARGETYPE OAYTON COUPLING PRESSURF CUAGE STREED NOTES INSTALLER STREED NOTES INSTALLER STREED NOTES INSTALLER SATTON INSTALLER DATE PUMP INSTALLED SATELING SATCHET INSTALLER MAKE NODEL SERIAL MUMBER STREED_BOOM MODEL SATCHET INSTALLER SATCHET INSTALLER SATCHET INSTALLER MAKE MODEL SATCHET INSTALLER STREED_BOOM MODEL SATCHET INSTALLER MAKE MODEL SATCHET INSTALLER STREED SIZE FULLEY FOUNDATION INSTALLER MAKE MODEL NO INSTALLEN NO STREED SIZE FULLEY FOUNDATION INSTALLEN TYPE TREATMENT USED TYPE FUEL TANK NO INSTALL SALET MAKE STARTER NO TYPE FUEL NACL MAKE STARTER NO SIZE LENGTH SIZE LENGTH SIZE LENGTH SATE LENGTH SATE CAPACITY STORE FOR WHICH THIS WATER IS USED CAPACITY MAKE STARTER SATE SIZE LENGTH CONTRUCE OR RIG LONGT THE WELL HENGT	· .	SERIAL NUMBER 1 1071 MAKE LAYRE POUNDATION
MATERIAL BOWL CLL WITHODBD PORTS AND BUCTION BIZE B" LENGTH 10' SUCTION STRANGE WITH WHAT BUDBRICATOR TYPE BUDBRICATOR TYPE SIZE WOLTAGE WITH WHAT LENGTH OF AIRLINE 100' SIZE WITH WHAT SIZE WOLTAGE LENGTH OF AIRLINE 100' SIZE WITH WHAT SIZE WOLTAGE HIG USED TO SET FUMP SIZE DAYTON COUPLING PRESSURE CUAGE TYPE NOTES MAKE U.S., MP 100' PRAME AOATE PHASE 3. CYCLE 50. YOUT MAKE U.S., MP 100' PRAME AOATE PHASE 3. CYCLE 50. YOUT MAKE U.S., MP 100' PRAME AOATE PHASE 3. CYCLE 50. YOUT MAKE U.S., MP 100' PRAME AOATE PHASE 3. CYCLE 50. YOUT MAKE U.S., MP 100' PRAME AOATE PHASE 3. CYCLE 50. YOUT MAKE U.S., MP 100' PRAME AOATER RATCHET, MO STARTER MODEL START PLANNER RATCHET, MO STARTER MODEL START PLANNER RATCHET, MO STARTER MODEL MARE MARE MARE	1.	LENGTH COLUMNICO SIZE S X 15 X 25 TYPE OIL LENG
SUCTION SIZE 8" LENSTN 10' SUCTION STRAMER 200 BUCH OF AIRLINE 100' WHERE WITH WHAT LURICATOR TYPE SIZE VOLTAGE LENSTH OF AIRLINE 100' SIZE 1" TYPE MATERIAL SOLVADIES AIR RELEASE VALVE TYPE SIZE SIZE SURFACE DISCHARGE TYPE SIZE SIZE SURFACE DISCHARGE TYPE SIZE RIG USED TO SET FUMP INSTALLER DATE PUMP INSTALLED 16 OATT IN OPERATION MARE U.S. NP100 FRAME 404TP PHASE 3 CYCLE 50 YOLT SPEED 1800 MODEL SERIAL NUMBER TOP SEASING SOLVED TYPE MOTOR FRAME STATER PUMP INSTALLED TO SERIAL NUMBER STATER PUMP INSTALLED TO SERIAL NUMBER STATER MODEL SUTTON SEARING RATCHET IN FLOAT. MARE ULSY NODEL SUTTON SEARING RATCHET IN FLOAT. MARE MODEL PRESSURE SWITCH PLOAT. MARE MODEL PRESSURE SWITCH PLOAT. NO SIZE PULLEY NODEL SIZE RATTO NO SIZE PULLEY NODEL NOTOR FRAME MARE PLEXIBLE SHAFT SIZE LENGTH SOLVAND MARE STARTER NO SIZE LENGTH SOLT NO MARE FLEXIBLE SHAFT SIZE LENGTH SOLT FRAME MARE FLEXIBLE SHAFT SIZE LENGTH SOLT TYPE FUEL MARE FLEXIBLE SHAFT SIZE LENGTH SOLT TYPE SALL TENOTH MARE FLEXIBLE SHAFT SIZE LENGTH SOLT TYPE SALL TENOTH MARE STARTER NO SIZE ALLEY FOUNDATION SALL DURING ON THIS WATER IS USED TYPE TREATURE IN WATER CLEAR CAPACITY SAME MARD SOLT OF THE WELL HOLE MO CAN TRUCK OR THE WELL HO JEE MATCH TYPE TREATORE SOLT OF THE WELL HOLE MO LOCATION OF THE WELL HOLE SIZE MATCH FUMP HOUSE SIZE NOLE TO WHICH THE WELL HOLE MO LOCATION OF THE WELL HOLE SIZE MATCH WHEN HOLK OR THE WELL HOLE IND 1(a) IN TEST HOLE MO LOCATION OF THE WELL HOLE SIZE MATCH FUMP HOUSE SIZE MATCH CONSTRUCTION COMPANY ADDRESS CITY MATHER RODINS AIR FORCE BASE INSTALLED FOR MIG-COUTH CONSTRUCTION COMPANY ADDRESS CITY MATHER RODINS (ALED FOR MIGH CONSTRUCTION COMPANY (ALED CONTINUES NO FEASE COUNTY HOUSE STATE GO		MATERIAL BOWL C.I. WITHODER PORTS AND
B DUMP SEALED HOW	1.	SUCTION SIZE 8" LENGTH 10' SUCTION STRAINER CODE
CLENGTH OF ANLINE LOUSS SEE A TYPE ANTENIAL ELISERATES. AIR RELAGE VALUE TYPE SIZE ANTENIAL ERISER ON COUPLINE PRESSURE GUAGE SPEED NOTES. <p< td=""><td>1 E</td><td>IS PUMP SEALED HOWWHEREWITH WHAT</td></p<>	1 E	IS PUMP SEALED HOWWHEREWITH WHAT
Image: State Superace Discharge State Superace Discharge Type Davton Coupline Size Superace Discharge State Superace Discharge State Discharge State Discharge Notes State Discharge State Discharge State Discharge Make U.S., MP100 FRAME 404TP PHASE 3. Crule 20. Volt State Disconting State Discharge State Discharge State Discharge State Disconting State Disconting State Disconting State Disconting State Disconting State Disconting State Disconting No State Disconting State Disconting No No State Discontin	12	
BIZE SURFACE DISCHARGE TYPE DAYTON COUPLING MOTES BOTES SPEED NOTES INSTALLER SPEED RIG USED TO BET PUMP INSTALLER INSTALLER DATE PUMP INSTALLED IS CATE IN OPERATION DATE PUMP INSTALLED IS CATE IN OPERATION TOP BEARING POTTOM BEARING RATCHET TOP BEARING POTTOM BEARING RATCHET TOP BEARING POTTOM BEARING RATCHET TOP BEARING MODEL SERIAL NUMBER MAKE MODEL SERIAL NUMBER MAKE MODEL MODEL MAKE MODEL MP STARTER MODEL MO MAKE MODEL MARE MAKE MODEL MARE MAKE MODEL MODEL MAKE MODEL MODEL MAKE MODEL MARE MAKE MODEL MARE MAKE MODEL MODEL MAKE MODEL MARE MAKE MARE MODEL <td>Ē</td> <td></td>	Ē	
PRESSURE GUAGE PRESSURE RIG USED TO SET PUMP INSTALLER DATE PUMP INSTALLED 10 PRESSURE SWITCH PLOATE SERIAL NUMBER PRESSURE SWITCH STARTER PRESSURE SWITCH PURPOR MODEL STARTER MODEL STARTER MODEL MAKE MARE MAKE MARE MAKE MARE MAKE MARE	1	
NOTES RIG USED TO SET PUMP DATE PUMP INSTALLER DATE PUMP INSTALLER DATE PUMP INSTALLER DATE PUMP INSTALLER SPEED 1800 MAKE U.S. MP100 SPEED 1800 SPEED 1800 MAKE STARTER PRESSURE SWITCH SIZE PULLEY TYPE MODEL SIZE PULLEY TYPE MODEL SIZE PULLEY TYPE MODEL MAKE	12	
DATE PUMP INSTALLED 19 04TE IN OPERATION 19 MAKE U.S. MP100 PRAME 404TP PHASE 3 CYCLE 20 VOLT SPRED 1800 MODEL BOTTOM BEARING RATCHER. TOP BEARING BOTTOM BEARING RATCHER. TOP BEARING MODEL PRESSURE SWITCH PLOAT. MAKE MODEL PRESSURE SWITCH PLOAT. SIZE PULLEY TYPE MOTOR PRAME MAKE MODEL NO SIZE RATCO NO SIZE PULLEY TYPE MOTOR PRAME MAKE STARTER MODEL NUMBER. SPEED SIZE PULLEY POUNDATION TYPE FUEL TANK MAKE MAG NO MAKE STARTER NO MAKE STARTER NO MAKE STARTER NO TYPE FUEL TANK MAKE MAG NO MAKE STARTER NO MAKE STARTER NO MAKE STARTER NO TYPE FUEL TANK MAKE MAG NO MAKE STARTER NO MAKE STARTER NO MAKE STARTER NO SIZE LENGTH SED. THEREATURE WHICH THIS WATER IS USED TEMPERATURE NO MARE PLEXIBLE SHAFT SUBED TOP TREATHENT USED. STHERE A DERNICK OVER THE WELL NEIGHT TYPE - CAN TRUCK OR RIG BAMLY GET TO WELL PUMP HOUSE SIZE MATCH OUR WELL NO. 1(a) THEIR WELL NO. 1(a) IN TEST HOLE MO LOCATION OF THE WELL ROBINS AIR FORCE BASE INSTALLED FOR MID-SUBS COUNTY HOUSTON STATE, CO HILE CONTREL NO. 100000 STATE COUNTY HOUSTON STATE, CO HILE CONTREL NO. 100000 STATE COUNTY HOUSTON STATE, CO HILE CONTREL NO. 100000 STATE COUNTY HOUSTON STATE, CO		
DATE PUMP INSTALLED 19 04TE IN OPERATION 19 MAKE U.S. MP100 PRAME 40/1P PHASE 3 CYCLE 20 VOLT SPEED 1800 MODEL SERIAL NUMBER RATCHET 1 TOP BEARING BOTTOM BEARING RATCHET 1 TOP BEARING MODEL STEE RATO NO SIZE PULLEY TYPE MOTOR PRAME MAKE MODEL NO SERIAL NUMBER SPEED SHEE PULLEY POUNDATION NO MAKE STARTER NOOEL NO SERIAL NUMBER SPEED SHEE PULLEY POUNDATION NO MAKE STARTER NO TYPE FUEL MAKE MAG NO MAKE STARTER NO TYPE FUEL BEATH BEAT LENGTH BEAT LENGTH MAKE PLEXIBLE SHAFT SHEE LENGTH BEAT LENGTH TYPE TREATMENT USED FM IN THE WELL NEIGHT TYPE THEATMENT USED IS THERE A DERNEK OVER THE WELL NEIGHT TYPE TOPE CAN TRUCK OR RIG LAMLY SET TO WELL PUMP HOUSE SIZE MATCH DISCO SIZE MATCH CONTT RACT NO. 13254 - 171 OUR WELL NO. 1(a) THEIR WELL MO. 1(a) IN TEST HOLE MO LOCATION OF THE WELL ROBINS AIR FORCE BASE INSTALLED FOR MIGH CONSTRUCTION COMPANY ADDRESS CITY MATTER ROBINS COUNTY HOUSLON STATE CE	.	
MAKE_U.SHP100 PRAME_404TP PHABE_3 CYCLE_50_VOLT MAKE_1800 MODEL		
SPRED_1800_MODELBOTTOM_BEARINGRATCHET RATCHET TOP BEARINGPRESSURE SWITCHRATCHET RATCHET STARTERPRESSURE SWITCHRATTO NO SIZE PULLEYTYPE MOTOR FRAME NO MAKEMODELNFRATTONO SERIAL NUMBERNO SPEEDSHEE PULLEYFOUNDATION NO TYPE FUEL TANKNO TYPE FUEL MAKE MAGNO MAKE STARTERNO TYPE FUEL MAKE STARTERNO TYPE FUEL MAKE STARTERNO TYPE FUEL MAKE PLEXIBLE SHAFTNE WATER CLEARCAPACITY SANDNARDHEDE PM PURPOSE FOR WHICH THIS WATER IS USED TEMPERATURE]	DATE PUMP INSTALLED
SPRED 1800 MARE BOTTOM BEARING STARTER PRESSURE SWITCH PRESSURE SWITCH PLOAT STARTER MODEL MARE MARE MARE MARE MARE MARE MARE STARTER MARE MARE MARE		MAKE U.S. HP 100 PRAME LOLTP PHASE 3 CYCLE 50 WALT
STARTER	5	
Star MAKE	15	
B SIZE PULLEY	1.	STARTER PRESSURE SWITCH PLOAT
BIZE PULLEY	e la	
MARE MODEL MP SERIAL NUMBER SPEED SHEE PULLEY POUNDATION TYPE FUEL TANK MAKE MAG NO MARE STARTER NO TYPE FUEL MARE FLEXIBLE SHAFT SHEE LENGTH PURPOSE FOR WHICH THIS WATER IS USED SELT LENGTH PURPOSE FOR WHICH THIS WATER IS USED TEMPERATURE TEMPERATURE IS WATER CLEAR CAPACITY SAND MARDNEDS PH IRON TYPE TREATMENT USED IS WATER CLEAR CAPACITY SAND MARDNEDS PH IRON TYPE TREATMENT USED IS THERE A DERRICK OVER THE WELL HEIGHT TYPE TREATMENT USED IS THERE A DERRICK OVER THE WELL HEIGHT FUNP HOUSE SIZE HATCH PUMP HOUSE SIZE MATCH TYPE CAN TRUCK CR RIG LAMELY GET TO WELL SIZE MATCH 171 OUR WELL NO 1(a) THERE MODE NO 171 OUR WELL NO 1(a) THERE MODE NO 171 INSTALLED FOR MODINE COUNTY HOUS LON STATE INSTALLED FOR MID-SOURS <td>Š</td> <td></td>	Š	
SPEED	•	
TYPE FUEL TANK MAKE MAGNO		
MAKE PLEXIBLE SHAFT	Ĭ	SPEED SIZE PULLEY FOUNDATION
MARE PLEXIBLE SHAFT	Ţ	
PURPOSE FOR WHICH THIS WATER IS USED TEMPERATURE		
TEMPERATURE IS WATER CLEAR CAPACITY BAND MARDNEDS PH IRON NACL TYPE TREATMENT USED IRON NACL IS THERE A DERRICK OVER THE WELL HEIGHT TYPE CAN TRUCK OR RIG CAMLY GET TO WELL PUMP HOUSE SIZE HATCH GONT RACT NO. 13254 GONT RACT NO. 13254 OUR WELL NO. 1(a) THEIR WELL NO. 1(a) IN TEST HOLE NO LOCATION OF THE WELL NOBINS AIT FORCE BASE INSTALLED FOR MID-South Construction Company ADDRESS CITY WATHER RODINS COUNTY HOUSION STATE_ CO		
BANDNARDNESSNONNONNACLNONNONNACLNTPE TREATMENT USEDNTPE WELLNEIGHTTYPENTPEN		PURPOSE FOR WHICH THIS WATER IS USED
CAN TRUCK OR RIG LAMLY SET TO WELL PUMP HOUSE	<u>د ا</u>	TEMPERATURE IS WATER CLEAR CAPACITY
CAN TRUCK CR RIG LAMLY GET TO WELL PUMP HOUSE	12	
CAN TRUCK CR RIG LAMLY OST TO WELL PUMP HOUSE SIZE HATCH GONT RACT NO. 13254 - 171 OUR WELL NO. 1(a) THEIR WELL NO. 1(a) IN TEST HOLE NO. LOCATION OF THE WELL Robins Air Force Base INSTALLED FOR Mid-South Construction Company INSTALLED FOR Mid-South Construction Company ADDRESS CITY Warner Robins COUNTY Houston STATE CO HALB CONTRACT NO. 15(9650.75-C-0083)		
PUMP HOUSE SIZE MATCH GONTRACT NO. 13254 - 171 OUR WELL NO. 1(a) IN TEST HOLE NO. OUR WELL NO. 1(a) IN TEST HOLE NO. LOCATION OF THE WELL MO. 1(a) IN TEST HOLE NO. LOCATION OF THE WELL MO. 1(a) IN TEST HOLE NO. INSTALLED FOR MID-South Construction Company ADDRESS CITY Warner Robins COUNTY HOUSLON NATE CO	5	
OUR WELL NO. 1(a) THEIR WELL NO. 1(a) IN TEST HOLE NO. LOCATION OF THE WELL Robins Air Force Base INSTALLED FOR Mid-South Construction Company ADDRESS CITY Warner Robins COUNTY Houston STATE CO		
OUR WELL NO. 1(a) THEIR WELL NO. 1(a) IN TEST HOLE NO. LOCATION OF THE WELL Robins Air Force Base INSTALLED FOR Mid-South Construction Company ADDRESS CITY Warner Robins COUNTY Houston STATE CO		
OUR WELL NO. 1(a) THEIR WELL NO. 1(a) IN TEST HOLE NO. LOCATION OF THE WELL Robins Air Force Base INSTALLED FOR Mid-South Construction Company ADDRESS CITY Warner Robins COUNTY Houston STATE CO		GONTRACT NO. 13854 - 171
LOCATION OF THE WELL Robins Air Force Base INSTALLED FOR Mid-South Construction Company ADDRESS CITY Warner Robins COUNTY Houston STATE Ge		
INSTALLED FOR Mid-South Construction Company ADDRESS CITY Warner Robins COUNTY Houston STATE Go		
INSTALLED FOR Mid-South Construction Company ADDRESS CITY Warner Robins COUNTY Houston STATE GO	ļ	LOCATION OF THE WELL Robins Air Force Base
ADDRESS CITY Warner Robins COUNTY Houston STATE GO	ļ	
1417 Contract No. 16(19650-75-C-0083	l	
14FP Contract No. F09650-75-0-0083	ş	ADDRESS CITY HUTTHET RODITIS COUNTY HOUSLON STATE 000
		ATD Company No. ISSOCRE RE. C. 00000
Hedrill Well No. 1 Freiget No. WR 134-5		AFF CONTRACT NO. (F09650-75-0-0083

		No.1A					÷
	•'	Contract	No. 1326	4			
		FORMATION LOG OF TH		OR TES	T HOLE		
ARTED	TEST HOL	AUR. 20 10 75 PINISHED AL	ig. 26	19.75 TEE		I	
CATIO	Well No.	i (a) old Well No. 1, Bldg. No. 180	SEC	TE.	- RANGE	ELEVATION	! '
TOTAL DEPTH	THICRMEDE EACH STRATUM	PORMATION	TOTAL	THICKNESS EACH STRATUM	/	'SRMATION	
10	10	Filled Sand & Clay	·				
2(;	10	Sandy Clay - Slow				đ	
37	17	Sand & Little Clay-Soft					
70	33	Sandy Clay - 50'					
26	56	Sand & Stks. of White Clay-					,
		Soft					4
155	29	Sandy W/Hard Stks. of Clay			;		
77	22	Sand & Little Clay - Soft.			••	6.200	
192	15	White Clay & Sand - Slow					
216	24	Sand - Little White Clay-	MUD PIT		.FT. X	x'	PT. DEEP
		Soft			CUT SAND	0	
244	28	Coarae Sand - Soft			D GUT UPPER P		
260	16	Coarse Sand Little Clay -	TYPE MU				
		Soft			E IN SAND		
277	17	Red Sand Clay - Slow	TYPE OF	Set 15/	of 26" cas	ing and grou	ited in
				100 4 4/4			
364	87	Coarse Sand & Little Clay		Diace.	Before compl	l <u>eting test</u>	hole.
364	87	Coarse Sand & Little Clay Soft.		Diace.	Before compl 1 was locate fill soil co	l <u>eting test</u>	hole.
	87 25			Diace.	Before compl	l <u>eting test</u>	hole.
		Soft.		Diace.	Before compl	eting test ad on side (onditions of	hole.
		Soft. Coarse Sand & Stks. of Clay=		Diace.	Before compl	eting test ad on side (onditions of	hole.
		Soft. Coarse Sand & Stks. of Clay=		Diace.	Before compl	eting test ad on side (onditions of	hole.
364389		Soft. Coarse Sand & Stks. of Clay=		place, This wai in back	Before compl L was loosis fill soil co TEST DATA	Lating test ad on side (onditions of (hole.
		Soft. Coarse Sand & Stks. of Clay=		place, This wai in back	TEST DATA	eting test ad on side (onditions of	hole.
		Soft. Coarse Sand & Stks. of Clay=	STATIC PUMPER	place, This wai in back	TEST DATA TEST DATA LIMINARY, VET (EL 37)	Lating test ad on side (onditions of (hole.
		Soft. Coarse Sand & Stks. of Clay=	STATIC PUMPER	Place, This wai in back in back water Lev o G. P. M RE. POUME	TEST DATA TEST DATA Lining Y, TEST 1613 TEST DATA	Lating test ad on side (onditions of (hole.
		Soft. Coarse Sand & Stks. of Clay=	STATIC PUMPEC PRESSU GRAWD	place, This wai in back in back in back reserved water Lev G P. M RE. POUNE DWN	TEST DATA TEST DATA Linumany TEST 1613 1613 1613 1613	Lating test ad on side (onditions of (
		Soft. Coarse Sand & Stks. of Clay=	STATIC PUMPEC PRESU DRAWD G. P. F. GUARAN	Place, This wai in back in back in back water cev of 0. P. M RE. POUNE OWN D OTEED G. P.	Before compl uss loost fill soil co fill soil co rest para 1613	Phila	
		Soft. Coarse Sand & Stks. of Clay=	STATIC PUMPEC PRESU DRAWD G. P. F. GUARAN	Place, This val in back in back in back reserved on back on back o	Before compl uss loost fill soil co fill soil co rest para 1613	PHIAL T	
		Soft. Coarse Sand & Stks. of Clay=	STATIC PUMPEC PRESU DRAWD G. P. F. GUARAN	Place, This wai in back in back in back water cev of 0. P. M RE. POUNE OWN D OTEED G. P.	Before compl uss loost fill soil co	PHIAL T	
		Soft. Coarse Sand & Stks. of Clay=	STATIC PUMPEC PRESU DRAWD G. P. F. GUARAN	Place, This wai in back in back in back water cev of 0. P. M RE. POUNE OWN D OTEED G. P.	Before compl 1 was loost fill soil co	PHIAL T	
		Soft. Coarse Sand & Stks. of Clay=	STATIC PUMPEC PRESU DRAWD G. P. F. GUARAN	Place, This wai in back in back in back water cev of 0. P. M RE. POUNE OWN D OTEED G. P.	Before compl 1 was loost fill soil co	PHIAL T	
		Soft. Coarse Sand & Stks. of Clay=	STATIC PUMPEC PRESOU ORAWD G. P. F. GUARAN DATE O	Place, This wait in back in back in back of P. M RE. POUNE OWN P TREED G. P. ITEED G. P. ITEED G. P.	Before compl 1 was loost fill soil co	Philad T	
		Soft. Coarse Sand & Stks. of Clay= Soft	STATIC PUMPEC PRESOU ORAWD G. P. F. GUARAN DATE O	Place, This wait in back in back in back of P. M RE. POUNE OWN P TREED G. P. ITEED G. P. ITEED G. P.	Before compl 1 was loosis Pill soil co rest DATA ELIMINARY, THET (1613 1614 1751 1617 1	Philad T	
		Soft. Coarse Sand & Stks. of Clay= Soft	STATIC PUMPEC PRESOU ORAWD G. P. F. GUARAN DATE O	Place, This wait in back in back in back of P. M RE. POUNE OWN P TREED G. P. ITEED G. P. ITEED G. P.	Before compl 1 was loosis Pill soil co rest DATA ELIMINARY, THET (1613 1614 1751 1617 1	Philad T	
		Soft. Coarse Sand & Stks. of Clay= Soft	STATIC PUMPEC PRESOU ORAWD G. P. F. GUARAN DATE O	Place, This wait in back in back in back of P. M RE. POUNE OWN P TREED G. P. ITEED G. P. ITEED G. P.	Before compl 1 was loosis Pill soil co rest DATA ELIMINARY, THET (1613 1614 1751 1617 1	PHAL T	
		Soft. Coarse Sand & Stks. of Clay= Soft	STATIC PUMPEC PRESOU ORAWD G. P. F. GUARAN DATE O	place, This waiting the second se	Before compl 1 was loosis Pill soil co rest DATA ELIMINARY, THET (1613 1614 1751 1617 1	PHAL T	

1

F-30

્ય

£

.

. .

			• • • • • • • • • • • • • • • • • • • •		·········	
		eliston in (
141		tartedSeptember 19, rillingSeptember 27,		-		
			-	Ootober		- R.J
		NS AND DEPTH OF WELL	DIME	NEIONE OF CASING	AND SCREEN	
TOTA DEPT OF AL STRAT		CH POBMATION POUND AT BACE	TOTAL LINGTE OF ALL SCREDUS and CARDING	LINNETIE OF BPECIF BACE SEG. SCRIEE OF SCRIEEN OR OR CASENG CASEN	N SCREEN GA	
FT.	IN. PT .	IN. Well #2	PT. IN	FT. IN.	IN.	. .
45	45	Fine brown send	75	.75 Casin	g 20 5/16	Cereried Jones
67	22	Medium white and yello		sing commences 5	61-6".	
72	5	Fine white cand		1	•	
78	£	 Course sand and gravel hard 	- very (25th	d 7. " "		
80	2	Clay				
95	16	Coarse dark sand				
108	13	Medium white sand - so	f t			
122	14	Clay and chalk - soft				
100	. 10	Coarse sand and gravel	- soft,			
		used 2 pits of water				
173	33	Very soft white sand -	used water			
195	22	Coarse white sand - ou	t medium .			
199	4	Clay	•			
205	6	Fine and and shalk				
210	5	Fine white sand			•	
215	5	Fine white sand and oh	alk :			
220	5	Clay and gravel	•	··· ·		
225	5	Coarse gravel - hard			• •	
250	. • • •	Coarse white sand, Gut Used 1/4 pit or wate		1-4-1-1-1		
		, Genree White same - m	E 1	1 <u>k</u>		
250	10	Fine white sond - medi	Lun			•
. 260	10				÷ .	
265	. 5	Coarse * * - hard		WELL D	ATA:	
270	δ	Coarse gravel - hard		Preliminar	•	
290	20 pottom o	Chalk and gravel f well 255*	Date Test Production	ted 10-5 19 41 8 n 900 to GPM P 925 GPM Permanen	umping Level	
	ünder-re	amed from 125 to 170	Date Test	ed 19 S	tatic Level	
	and	from 225 to 255	Production		ctive St. Level	
			Drawdown Remarks :		umping Level	
				PUMP D.	ATA:	
			Shop No.	T	ype Lubr.	
			Type Head		ize Suction	
			Depth Set		•	
			Size Colum		ength Suction	
			Type Bow		ength Air Line	
			No. Stage		ischarge-	
			·· Cap'y and		Pressure	
			:	MOTOR D		
			Horsepow		oltage	
			RPM Type		hase Volea	
			Make		rame No.	
				E MARTINE - C. H		

Ē

K

-

I (

SECTION STALL.

.

Level L

1852

¥

STAR DELLA CALLARY CLARENCE

-

F-31

ALC: LAN

والمعطي والمتعلق والمناصب والمعاصلة المراكبة المراكبة المراكبة المراكبة المحاطية والمعالمة والمعالمة والمعالية

Sec. Sec.

ß

•

STARTED TEST HOLE LOCATION -- SEC

TOTAL DEPTH	THICKNESS EACH STRATUM	PORMATION	TUTAL DEPTH	THICKNESS EACH STRATUM	10	RMATION
3	8	Ted and There	II			
<u> </u>		Tan and Alline Day				
3.	1:					
		State in internation				
2	48	Willie Dept.				
•	:1	This find whitthe fills of	li			
		in v				
·	:2	Scores Cand w/Little Stka				
	•	Second Day				
	<u>::</u>	Cond w bittles Chas: Copt			FT. X	
	1.	<u> Mine Mine wellitelle Paud-</u>			CUT BAND	
		That of the wanted Out:		BIT USED TO	O CUT UPPER FOI	RMATIONS
		i . AV	TYPE MU	D PUMP US		
<u> </u>	<u></u> 1	lie hiddlori	DRILLING	FRESSUR	E IN SAND	
•••	· · ·	Paud-and?		MUD USED	<u>laynito</u>	
	23	thed- Tan, flow				
·	30	then within the path of Midne				
. <u></u>		<u>- 1945 : 2000</u>	}			
<u>.</u>		Const- New 25-01				
<u></u>		With Chy wittel and-	}			
		A same Caless	 			
	44	led. Yourse Cand w/little			TEST DATA	
		Prka. Dr White Clay-		PAI WATER LEV	ELIMINARY TEST	FINAL TEST
		erv Port	PUMPED	G P. M		
		The second state white where	DRAWDO	RE POUND	5	
		· · · · · · · · · · · · · · · · · · ·	GPF	D	23.27	
-,		and the second states	11	TEEL G P Teed Pres		
	 		 		REMARKS	
				د د دهه روین کارند :		
	ļ		 			
. <u> </u>	! 		J			<u> </u>
	ļ		,		• • • • • • • • • • • • •	
			A DESCRIPTION OF TAXABLE PARTY.	the second s		
	+	· · · · · · · · · · · · · · · · · · ·				

• • . . - 1 Ç. 44 -+ . . . • . ----. · ·

1

F-32

£,

Ē		(No.2
	ALL MEASUREMENTS TAI		M (GROUND) (TOP OF FOUNDATION) (TOP OF CASING) (TOP BASE PLATE)
	DRAWING OF THE WELL	TO	ARTED WELL JULY I. IS 24 AND COMPLETED August 2 18-74 TAL DEPTH 370 ELEVATION STATIC WATER LEVEL 501 NGTH BURPACE CABING 1501 SIZE 26" THICKNESS 0.375
		LE: VIVO	IMENTED WITH
		NUMP RECORD	RIAL NUMBER MAKE FOUNDATION NGTH COLUMN \$IZE TYPE 9 20- LENGTI DWL SIZE TYPE STAGES MATERIAL IMPELLER SHA STERIAL SOWL WITH PORTS AND SHA COTION SIZE LENGTH SUGTION STRAINER PUMP SEALED NOW WHERE WITH WHAT BRICATOR TYPE SIZE VOLTAGE NGTH OF AIRLINE SIZE TYPE MATERIAL R RELEASE VALVE TYPE SIZE DAYTON COUPLING LESSURFACE DISCHARGE TYPE DAYTON COUPLING
	-236	DA MA	G USED TO SET PUNP
	-252	O TO	ARTER PRESURE SWITCH FLOAT
			AKE MODEL BIZE RATIO NO ZE PULLEY TYPE NOTOR FRAME
	-285 -295		AKE MODEL HP
	- 340 - 340	DENERAL DENERAL DENERAL	IRPOSE FOR WHICH THIS WATER IS USED MUNICIPAL for Base IMPERATURE IS WATER CLEAR YFS CAPACITY 900 IND MONE HARDNESS 5 PH 5.6 IRON
	5" Juines Q 145'		CONTRACT NO. 131/2 - 100
ſ	، تذکی این 3 میں 1 میں 3 میں 1 میں 3 میں 1 میں 1 میں	LC	STALLED FOR BOLLADA ADD. STOL PROL
		י נו 11	DERESS CITY <u>derner coling</u> COUNTY <u>Houston</u> STATE, George antract No. 109660-74-0376 d-footh donotruction Co. amen Rolling, so apply the Contractor YEAR1974

Ľ

														<u>, · · · ·</u>
		WFL	L DATA			Ī			AFB, Geo	rgia		1	WELL NO.)
EL F	VATION (FI)	LOCATIO		 64								UNSUN F	
•	TYPF Drilled	Well	(Underream			1 -	Pac	ked	Well)					
E	DEPTH				DIA	MET							TING DEP	י וודי
i. L	247 ft.		ATER LEVEL			8 AWD	in.					120	ft. Ry TINE	
	32	ſt.												
Well	TES1 capacity	DAT TPum	A ping l evel	╂	<u> </u>	T	1	1	AGES	_ SPE (_ (t)	CIFIC GPI		ACITY (Ge 	i per
95	O GPM			I	Y+5	1	No			_	DR	AWDO		
		DNAK	E		WELL	. PUI	MPIN	<u>g fq</u>	UIPMENT					CAPACITY
P U	Vertica SUCTION					No.	144	.28						950 GPN
M	3016M	(F)	SIZE AND	LEN	GTH				COLUMN 8 in					
P		_ T	HEAD	1 7	1.01				MBER BOW	n.s	SIZE	AND	TYPE	NO STAGES
	Above gen	"	Below grad						4 Stage			RKH	-	4
M	SERIAL NO).	TYPE KF	MA	κε . Β.		- 1	HP 100	RPM 1765 N	FRAME		SF.	CYCLES	VOL TAGE 220/440
0	STANDBY	POWE		MA	KE						<u> </u>			SIZE
T O	YES		RPM		SC IDI	חודים			Nr. LC-	•				l
R	135			Ğ	8501	ine	Èng	ine	135 HP					- Philade
		CASH	NG AND WELL	SCR	EENI	NG N	IATE	RI AL.	USED				rting Epth	LENGTH EACH
75	" of 20"	pit (casing come	nted	in	pla	ce.							
Te	- of onig	4	12" screen				611							
													· • • •	
To	p of 8" s	cree	n line at l	281	- 6"		. · · · .							
84	stainles	s ste	eel screen	at 1	.30 -	- 15	0' a	nd 2	27 - 247	1				
NC	TE: Abov	e ve	ll was reli	ned	in M	lav)	1954	to	data as	shown				
	ove.											+	 .	
PU	MP: Layn	e no.	. 14428									–		
12	• • 8 10 • 0	X 22	" ¥ 1½" Col							. .				
4	Stage 12"	ккн	C. Bowls											
	' of ó" S	ucti	on									1		
Ge	ar Drive:	Jol	nnson 1 1/3	- 1	• • • • • • • •							1		······································
							-							
ļ	.								· •		. .	+		<u> </u>
											••••	l		
) 				- 1		-		-						
:														···
۱														1 (20)
м	EORM 990, A	um s	r					F-3	4				Ч	uge 1 of 2 Puge

• ••

Ì

i. i. .

–

、	0. 7- =-	· · · · · · · · · · · · · · · · · · ·	LAYI	NE ATLANT		ANY L	··	æ.
A.	-	ELL For		NORFOL	.K, VA.	· .	• •	
·	Lucatod at		. <u>n</u>	Or n Line n.	Gureie)	County, 2	State Georgia	
							•• •• •	_ 19 19
						-	•	
		IATIONS AN	D DEPTH OF WELL	•			IG AND SCREEN	
	TUTAL Depth of All Strata	DEPTH OF EACH STRATUM	PORMATION FOUND	AT RACE STRATUM	TOTAL LENGTR OF ALL BCREENS and CASINGS	EACH SEC.	BPECEPY RIZE OF HCREEN BCREEN UR OK CASHIG CASING	GAUGE OF WORKEN
	FT. IN.	PT. IN.	•	• • •	PT. IN.	PT. 1N.	IN.	
						75 C	-4-,e]°	
ſ		1 0 0	the second second second	1.6.1	(35+ tc) 190		an an 10	
			ter veti Servet	el:	210		trens 12	
-		7	to en la constante		2. F		ning]?	
	_		he was	Parte - acres	- 205	20 34	2341 27 10	
	<u></u>		1-1-1 C Ch-11-	be not				
			himpe prove (···· v-1. 8··*				
		ı. با د	n official and a second s	vi vtan Vi poft				
		ាង ខ	With any a	week veey sof	т С+			
	י היו	י יו	o vello.	thite mand, so cond				
	160 1	ାନ୍ ପ	Carse fine	white sond, s	oft	-		
	inc), יי	1770			•		
		5 0 7	balk & grovel Not corrected					
		Гr н	led. control of	ite s. nd				
	247	6 C	led. 6 hard wh bolk corase		4			
	267	15 C	hojk 6 mmd -		•			
	272 1	15 X	ed. fine sand led. coopse so	nd				
			Coarse white s led. coarse wh		•	÷		
	205 1	15 3	carse spra	ch: 1k		, . į .	1 .	
·	1.		Corse voite s		1 · · · ·	 −	· · ·	
and the second s		5 (C	oarse wand & p	gravel		; 1	; •	
1		6 C	lny w chalk	am () + a ³				;
	540	7 0	narse sand & halk		. `			
			hrlk, clay + a and clay - be					
	J 4			and a there		WEL	L DATA:	
						Prelim	inary Test	
					Date Tested	19	Static Level	30
					Production	GPM	Pumping Level	l
						Permi	nent Test	
					Date Tested	19	Static Level	
					Production Drawdown	GPM	Active St. Lev	
					Remarka:		Pumping Love	
(PUM	P DATA:	
					Shop No. 1	11.06	Type Lubr.	
					Type Head		Size Suction	
					Depth Settiz		to MB)	
					Size Column	l	Length Suctio	
·					Type Bowl		Length Air Li	<u>ne</u>
					No. Stages		Discharge-	
					Cap'y and H		Pressure	
						MOLO	R DATA:	
					llorsepower		Voltage	
					•		+	
					RPM		Phase Cycles	
	_			F-35	•		Phase	

.

e e este este este en el

Ē

• •

i.

!

1

.

• •

	- .	WFLL	DATA					ATION ATION	Heorgia		WELL NO)
£	VATION (FI)	LOCATIC Bldg		······································					DATE 10 Oct	Constri F.	ND#.U +2
	-	Well	(Underre	med	Grave]	L = P	acke	d (· · ·)				
	DEP TH 298 ft.	•			DIAM	ETER 8 in				PUMPSET	TING DE	PTH
	ORIG STAT		TER LEVEL	-	DRAV	VDO WN	l			RECOVE	RY TIME	
1		DATA	ig i evel	-	AIR L	INES		GAGES	SPE(al per
	DO GPM			I	Yes	N	<u> </u>	ngt h		DRAWDO	WN E	
	TYPE AND Vertical	MAKE	ine Layr					UIPMEN	r			CAPACITY 1300 GPM
	SUCTION (10 ft. 8	Ft)	SIZE AND		<u> </u>			COLUM 8 in				
	· · ·		HEAD					UMBER BO		SIZE AND	TYPE	NO. STAGES
	Above grad		low grad		tel			5 Stage		12" RE		5
	SERIAL NO 95128		(PE	MAI U.	KE 8. Not	OTS	нр 100	RPM L800	FRAME 7128	PHASE 3	CYCLES 60	VOL TAGE 220/440
	STANDBY	POWER										
	NO				KE							\$12 E
	NO HP		PM		KE SCRIPT	TON						a ze
	HP	RS		DE	SCRIP T		ERIAL	. USED			TTING EPTH	SIZE LENGTH EACH
51	НР	rd Casing	AND WELL	DE.	SCRIP T	MAT	ERIAL	. USED				LENGTH
	4HP	CASING	AND WELL	DE . SCRI	SCRIPT EENING in pl	MATI	ERIAL	. USED				LENGTH
- PI	HP of 18" r	RS CASING Dit can nal 1:	AND WELL	DE SCRI	SCRIPT EENING in pl	MATI	ERIAL	. USED				LENGTH
ot –	P P <t< td=""><td>PS CASING Dit can mal 1: reen ;</td><td>AND WELL sing come 2⁹⁹ screen line at 1</td><td>DE SCRI nted</td><td>SCRIPT SENING in pl • at 6</td><td></td><td></td><td></td><td></td><td>D</td><td></td><td>LENGTH</td></t<>	PS CASING Dit can mal 1: reen ;	AND WELL sing come 2 ⁹⁹ screen line at 1	DE SCRI nted	SCRIPT SENING in pl • at 6					D		LENGTH
n ot ot	HP of 18" p of origino of origino of 8" sc stainless	RS CASING Dit can nal 1: creen : stee:	AND WELL sing come 2" screen line at 1 L screen	DE SCRI nied lin Ol:	SCRIPT EENING in pl • at 6 at 190				1 ¹ - 296	D		LENGTH
n ot ot	P P <t< td=""><td>RS CASING Dit can nal 1: creen : stee:</td><td>AND WELL sing come 2" screen line at 1 L screen</td><td>DE SCRI nied lin Ol:</td><td>SCRIPT EENING in pl • at 6 at 190</td><td></td><td></td><td>and 276</td><td>,1 - 296</td><td>D</td><td></td><td>LENGTH</td></t<>	RS CASING Dit can nal 1: creen : stee:	AND WELL sing come 2" screen line at 1 L screen	DE SCRI nied lin Ol:	SCRIPT EENING in pl • at 6 at 190			and 276	,1 - 296	D		LENGTH
	HP of 18" p o of origi o of 8" sc stainless of 8" 1 Stage 12"	RE CASING Dit can nal 1: reen : stee: 1 11/: HKHC 1	AND WELL sing come 2" screen Line at 1 L screen L6" X 21"	DE SCRI nied lin Ol:	SCRIPT EENING in pl • at 6 at 190	MATI	210'	and 276	y' - 296	D		LENGTH
	HP of 18" r of of origi of 6" sc stainless of 8" I	RE CASING Dit can nal 1: reen : stee: 1 11/: HKHC 1	AND WELL sing come 2" screen Line at 1 L screen L6" X 21"	DE SCRI nied lin Ol:	SCRIPT EENING in pl • at 6 at 190	MATI	210'	and 276	,1 - 296	D		LENGTH
	HP of 18" p o of origi o of 8" sc stainless of 8" 1 Stage 12"	RE CASING Dit can nal 1: reen : stee: 1 11/: HKHC 1	AND WELL sing come 2" screen Line at 1 L screen L6" X 21"	DE SCRI nied lin Ol:	SCRIPT EENING in pl • at 6 at 190	MATI	210'	and 276	,' - 296	D		LENGTH
	HP of 18" p o of origi o of 8" sc stainless of 8" 1 Stage 12"	RE CASING Dit can nal 1: reen : stee: 1 11/: HKHC 1	AND WELL sing come 2" screen Line at 1 L screen L6" X 21"	DE SCRI nied lin Ol:	SCRIPT EENING in pl • at 6 at 190	MATI	210'	and 276	,' - 296	D		LENGTH
	HP of 18" p o of origi o of 8" sc stainless of 8" 1 Stage 12"	RE CASING Dit can nal 1: reen : stee: 1 11/: HKHC 1	AND WELL sing come 2" screen Line at 1 L screen L6" X 21"	DE SCRI nied lin Ol:	SCRIPT EENING in pl • at 6 at 190	MATI	210'	and 276	, - 296	D		LENGTH
	HP of 18" p o of origi o of 8" sc stainless of 8" 1 Stage 12"	RE CASING Dit can nal 1: reen : stee: 1 11/: HKHC 1	AND WELL sing come 2" screen Line at 1 L screen L6" X 21"	DE SCRI nied lin Ol:	SCRIPT EENING in pl • at 6 at 190	MATI	210'	and 276	,* - 296	D		LENGTH
	HP of 18" p o of origi o of 8" sc stainless of 8" 1 Stage 12"	RE CASING Dit can nal 1: reen : stee: 1 11/: HKHC 1	AND WELL sing come 2" screen Line at 1 L screen L6" X 21"	DE SCRI nied lin Ol:	SCRIPT EENING in pl • at 6 at 190	MATI	210'	and 276	,• - 296	D		LENGTH
	HP of 18" p o of origi o of 8" sc stainless of 8" 1 Stage 12"	RE CASING Dit can nal 1: reen : stee: 1 11/: HKHC 1	AND WELL sing come 2" screen Line at 1 L screen L6" X 21"	DE SCRI nied lin Ol:	SCRIPT EENING in pl • at 6 at 190	MATI	210'	and 276	,• - 296	D		LENGTH
	HP of 18" p o of origi o of 8" sc stainless of 8" 1 Stage 12"	RE CASING Dit can nal 1: reen : stee: 1 11/: HKHC 1	AND WELL sing come 2" screen Line at 1 L screen L6" X 21"	DE SCRI nied lin Ol:	SCRIPT EENING in pl • at 6 at 190	MATI	210'	and 276	,* - 296	D		LENGTH
	HP of 18" p o of origi o of 8" sc stainless of 8" 1 Stage 12"	RE CASING Dit can nal 1: reen : stee: 1 11/: HKHC 1	AND WELL sing come 2" screen Line at 1 L screen L6" X 21"	DE SCRI nied lin Ol:	SCRIPT EENING in pl • at 6 at 190	MATI	210'	and 276	y - 296	D		LENGTH

• . .

•. • 1 ; . 7 • •. • • . . ----. ֥ • • -1 . . .

-

..... LA ALC: N .

.

R

Ν

٠.

•

F-36

NORFOLK. VA. LOG OF WELL For Children Mar (Gent 4) Located at 1011gran in incr. County, State 201 mg4 Date Drilling Started..... Date Started .19... Finished Drilling Finished Kay ----FORMATIONS AND DEPTH OF WELL IMMENSIONS OF CASING AND SCREEN TOTAL DEPTH OF ALL STRATA CHEEN OR CARDIG DEPTE OF BACK STRATUM GAUGE OF SCREAM PORMATION POUND AT RACE STRATUM I SEC. ... **PT**. FT. DN. FT. IN. IN. PT. IN. IN. 9.31 - 13 - - 14. 10 10 Top soil î٨ ol clar TT VP1 n: bit clay crewes
ef clay crewes
 training crewes
 training crewes
 training clays clays clays
 the challes clays clays find
 the challes clays clays find
 the challes clays clays find
 the challes clays
 the challes clays
 the challes clays
 the challes
 the . 76 5 **n** - 1 ine Source soud & clay slow drilling Source soud & clay, med. drilline Source soud & soft drilling Blue clay, slow drilline Due & white chalk, clay, modium drilline Send. fest drilling Ļ-30 90 20 in יזר **n**: 1 ~. 10 50 177 Produm drilling Tend, fast drilling "hite clay, out hand Fime white sand, cut fast & rough, used water Coarse sand, soft drilling Course white sand, soft drilling 40 20 28 24-10 23

٠.

1

.

:••

12

. , •

÷

.

. :

.....

-2

WELL DATA: Preliminary Test Date Tested Production Date Tested Permanent Test Date Tested Permanent Test Permanent Test 19^{1.} Static Level Production Permanent Test CPM Active St. Level Drawdown Remarks: Pumping Level

PUMP DATA: Shop No. Type Lubr. Type Head Size Suction Depth Setting (BP to MB) Size Column Length Suction Type Bowl Length Air Line No. Stages Discharge-Cap'y and Head Pressure MOTOR DATA: Horsepower Voltage RPM Phase Type Make Cycles Frame No.

		e Flela ju Houston		· ••••••• •••••••		unty, State	G	norgia (= 4)
_ Located : Date Dri	a. Iling Started	April 25 19 56 Dat	e Started	3		pr11 19		10:56
	shed Drilling		Finished		ey 24		•	19.
708	MATIONS AI	ND DEPTH OF WELL DIM	ENSIONS	OF C	ANNG	AND SCREE	N	
TOTAL DEPTE OF ALL STRATA	DEPTH OF EACH STRATUM	PORMATION FOUND AT RACE STRATUM	TOTAL LENGTH ALL SORE SHE CARD	OF ENS	LINOTI BACE S OF SCILL DR CAS	BC. SCREEN IEN OR	SIZE OF SCHEEN OR CARNO	GA UGE OF PCREEN
PT. IN	PT. IN.		. PT	EN.	FT. 1	Ы.	DN.	
1	1	Tep Boil	52	' 4	52	Ceeing	20	Commented in place
19	18	hed Clay and Sand	Top of	e an	een 1	ine is at	er face)
33	24	Send & Gravel	. 195	•	195	Coeing	12	
45	12	Pine Sand	220	1	z (Çesing	10	
56	น่	Keelin	230	Ξ.	10 į	Sezoon	-10	
60	9 .	Pine Band & Clay	300	· ·	70	Gesing	10	
105	40	Course Sand Boft	310		10	Screen	10	
111	6	Cevity-no seturns	830		20	Casing	10	
121	20	Coaree Sande Soft	350	•	20	Screen	10	
140	9	Coares Sand & Clay	360	•	10	Cesing	10	
152	12	find Band & Clay	370	:	10	Screen	10	
165	. 13	Fine Sand with Clay	385	•	10	Casing	10	
186	21	Sive & Chalky Cisy, Soft	iDotten	e of l	ب نما ۲	ad mall 1	s et 38	5° with steel
204	18	Chalky Clay, Mud. Drilling	plate	teld	nd ag		n line.	
231	27	Hed. Cottres Sand	•	i				
236	5	Chalky Clay, Slow Brilling	ł.					
248	12 .	Caszas Sand, Soft	l R	1				
260	12	Course Sand, very Little slay	2	i	i i	i	i	
340	30	Course and sith this stundes	2				;	
		of Kaplin	F	i	i i	t	•	
360	29	Course Sand, Boft	· F	{	: 1	ļ		
375	6	Course Sand with a little alow	2	1	!	i.	i	! #
	121	Send & Class. and. delline	÷	+	╇╼╼╍╇	<u>i</u>	- .	i i
	17	A state of the same to a substant of the same	÷	4			-	
	10	Geares Sand, soft.	1	1			·	
440	38	Course White Sand with stroks	1	1		ł		
:			ŧ	ł		WELL DA	I TA:	:
			i			Preliminary		
	· · ·		; Date !	Teste		•	tic Leve	H
	•		Produ			GPM Pu		
			i Produ	C11011		Permanent		
			- Franka I	marka	د		atic Lev	al
			Date					Level 39*
			Draw					Aval 87'
			Disw	ulwas I	tan w	mine tes	1 12 10	ves, installed
	. :	•	Kem	from:	ald y	m11 #4.		
		•						
			1					
			4 3			PUMP DA	ATA:	
			Shop	No.1	1860	T	ype Lube	, OLI
					77 8		ae Sucti	
					:inj 00			
				Colm	-	X H L		ction 28°
					12"			ir Line 100*
				Stage			incharge	
			Cap			-	Pressur	
				,		MOTOR I	-	
	-		****	epow	. 60	V	oltage 2	20/440
				i 18			these	3
			кг = Туре				ycles	60
			• 7 14	-		_		

-. . .

¢.

950

Frame No.

trical de

LAYNE AILANTIC COMPANY

NORFOLK, VA.

۰.

۰. ٠.

Ē

×.

e.

.

5

. • -

ł

Ľ

t

1)884				.					Henry	
		ted	-			-	-			
Fi.		ling 300 25		"Inishe	د ه	1 7 .2				
PO	BHATJONS	AND DEPTH OF WELL						CARING A	JID SCR	
TOTAL DEFTE OF ALL STRATA	of Back Fraction	FORMATION FOUND AT BACE STRAT		TOTA LENOTI ALL SCR and GAR	L,			STREET	SELE OF OR CASING	GAUGE OF SCHUM
PT. 'IN				71 .	: IN.				D .	•
10	20	Sap Soll	ŀ	80	:	80	!	Costag	18	Compled in Fine
20	10	let elsy i gravel	ł		:					
5	5	had along & search sand. Cu hard. Istale white shalk		Tap a	x 11	- 50		Line at	barta	•(:)
30	5 :	white shalk, elay, also dril	1ing	800	1	800		Casing	22	
10	. 20	Sand & alay alaw drilling		20	1	10	1	Jarven	- 12	
70	30 '	Course ease, fast drilling	Ę	360	!	90		Costing	12	
90	* 20 j	. Course anni à alor, gad. dri	line	270	1	20	i :	Jeren.	. 12	•
บร	5	Course and a soft drilling	1	290	1	80		Castag	. 12	
15	20	film aloy, alow drilling		300		20		Jesen.	. 22	ı
175	50 i	- Has & white shalk, alay and	h antá	ing 3	i p	6	i	Costa	122	
221.	. b	Sand, East drilling		370		30		Barren.	1 28	: 1 *
23h	. 20 !	ilitite elays out hand				1	1	1	•	4
312	1 # 1	-Fine while send, out dust a wood water		-				1	• • •	•
272 🕚	. 10	Course and, saft drilling		Hotla	L of	Canad	İstə	i wall a	1	
11		General state mants and dell	asm. I.		ا.		i		L	
W. I.			A			i	4.4	i	i.	
25		Charge white stad, SOIL CHI.								
380 .	5	Compose white send, small has white share		L	•					

Old Well # 4 has been discontinued, done away with . and new well d'illed .

		•
• •	WÉLL	DATA:
	Prelimin	ary Test
Date Tested	19	Static Lovel
Production	GPM	Pumping Level
	Perman	ent Test
Date Tested 7/2	ر ¹⁹ ل	Static Level 32º (?)
Production 775	GPM	Active St. Level 32º (?)
Drawdown 47		Pumping Level 79*
Remarks: Ann	Last 13	inurs Justalled ans put
		June 6, 1951.

1 i

No.4

.

PUMP	DATA:
Shop No. 11860	Type Lubr. 011
Type Head TFG25	Size Suction 8ª
Depth Setting 1.0 BP	to MB)
Size Column	Length Suction 10*
Type Bowl 12º RELC	Length Air Line
No. Stages 5	Discharge-
Cap'y and Head	Pressure
MOTO	R DATA:
Horsepower 6.	Voltage 220/140
RPM 1750	Phase 3
Туре (г)	Cycles 60
F-39'14	Frame No. 70

£

.

			ATA							corria		R	WELL NO	
. F	VATION (FL)		LUCATION Bldg #			^			<u>u ()</u>			• •	14 UNSIK 1	
	FYPF		0105 #	040								24 5.	ну 1956	
	Drilled Wel	1 (1	Inderream	nd Gr	_	_		i he	11)	····-				
	DEPTH 385 ft.					METER 8 in.						MPSET OOTL.	TING DEF	PTH
	URIG STATIC	WAT	ER LEVEL		DRA	WDOWN					+		Y TIME	
_	39 ft. TEST DA													
et 1			g i evel			LINES	L.	engl		- ^{SP}		CAP/ M	\СІТҮ (G) — —	Al per
	Ó GPN			L I	Yes	N					D	AWDO		
_	TYPE AND MA	VE	<u> </u>	W	ELL	PUMPI	NG F	QUI	PMENT					
2	Vertical 1	Turt	ine Laj	me F	, mab	No. 1	1860)						CAPACITY 900 GPM
) 	SUCTION (F1) 28 ft. 8 in		SIZE AND	LENG	TH				OLUMN 8 in.					
2			HEAD				IN	. I	SER BO		512	AND	TYPE	NO STAGES
	Aboye gend		hav grad	Tol	*		7	r	Stage			" RKL		
	SEMAL NO.		PE	MAK	Ē			-7 -7	_	FRAME	-		CYCLES	5 VOLTAGE
6														
r	STANDART FOR NO	ER.		MAAK	E.									SEZE
) ?	MP.		*	DES	CRIP	TION								,
	,													
	CAS	ц MG	AND WELL	SCRE	Ender	6 MATI		. W4			·		TING	LENGTH
	CAR	I IIIG.	AND UPLL	SCRE	J. Miles	G MATI	CRIAL	F 84	5£.Ð				TING PTH	LENGTH EACH
52	CAN • of 20 ⁴⁴ pit						CTRA	E 193	5E.D					
	' of 20" pit	CAI	ing comen	nted	in p	olace.			SE.D					
		CAI	ing comen	nted	in p	olace.			SE.Þ					
To	' of 20" pit	C8.4	ing comen	nted	in p	olace.			SED					
To 12	' of 20" pit p of 12 X 10"	CA.	ing comen	nted	in p	olace.			SED					
To 12	<pre>' of 20" pit p of 12 X 10' " pipe to 19! " pipe from 1</pre>	C&4 * 80 5*	to 220'	ated	in p grow	nd su	ríac		SED					
To 12 10	" of 20" pit p of 12 X 10" " pipe to 19!	CA4 * 80 5' 195'	to 220'	ated	in p grou	nd su	ríac		58.D					
To 12 10	<pre>' of 20" pit p of 12 X 10" " pipe to 19! " pipe from 1 " stainless s</pre>	CA4 * 80 5' 195'	to 220'	ated	in p grou	nd su	riac 0 23		SE.D				P7H	
To 12 10	<pre>' of 20" pit p of 12 X 10" " pipe to 19! " pipe from 1 " stainless s</pre>	CA4 * 80 5' 195'	to 220'	ated	in r grou	220 [°] t	o 230	01 01	SE.D				P7H	
To 12 10	<pre>' of 20" pit p of 12 X 10" " pipe to 19! " pipe from 1 " stainless s</pre>	CA4 * 80 5' 195'	to 220'	ated	in p grou 	220° t 330° t	rfac 0 234 0 314 0 354	01 01	SE.D				P7H	
To 12 10	<pre>' of 20" pit p of 12 X 10" " pipe to 19! " pipe from 1 " stainless s</pre>	CA4 * 80 5' 195'	to 220'	ated	in p grou 	220' t	rfac 0 234 0 314 0 354	01 01	SE.D				P7H	
To 12 10	<pre>' of 20" pit p of 12 X 10" " pipe to 19! " pipe from 1 " stainless s</pre>	Ca.1	to 220'	ated at	in <u>r</u> grou 	220° t 330° t	rfac 0 230 0 310 0 350 0 370	01 01 01		956, b			P7H	
To 12 10 10	<pre>' of 20" pit p of 12 I 10" " pipe to 19! " pipe from 1 " stainless s "" E: Attempte</pre>	cas " sc 5; 195; stee	to 220'	ated at	in <u>r</u> grou 	220° t 330° t	rfac 0 230 0 310 0 350 0 370	01 01 01		956, b			P7H	
To 12 10 10	<pre>' of 20" pit p of 12 X 10' " pipe to 19! " pipe from 1 " stainless s " stainless s " stainless s " stainless s " stainless s " stainless s</pre>	ca.4 * sc 5; 195; stee *	to 220' l screen	ated at	in <u>r</u> grou 	220° t 330° t	rfac 0 230 0 310 0 350 0 370	01 01 01		956, b			P7H	
To 12 10 10	<pre>' of 20" pit p of 12 I 10" " pipe to 19! " pipe from 1 " stainless s "" E: Attempte</pre>	ca.4 * sc 5; 195; stee *	to 220' l screen	ated at	in <u>r</u> grou 	220° t 330° t	rfac 0 230 0 310 0 350 0 370	01 01 01		956, b			P7H	
To 12 10 10 10 10	<pre>' of 20" pit p of 12 X 10' " pipe to 19! " pipe from 1 " stainless s " stainless s " stainless s " stainless s " stainless s " stainless s</pre>	ca.4 * sc 5; 195; stee 	to 220' creen line to 220' l screen o reline o. 1860	line old	in <u>r</u> grou 	220° t 330° t	rfac 0 230 0 310 0 350 0 370	01 01 01		956, b			P7H	
To 12 10 10 10 10 10	<pre>' of 20" pit p of 12 X 10' " pipe to 19! " pipe from 1 " stainless s " stainless s " " stainless s " stainless s</pre>	ca.4 * sc 5; 195; stee 	to 220' l screen o reline o. 1860	line old	in <u>r</u> grou 	220° t 330° t	rfac 0 230 0 310 0 350 0 370	01 01 01		956, b			P7H	
To 12 10 10 10 10 10	<pre>' of 20" pit p of 12 I 10' " pipe to 19! " pipe from 1 " stainless : " stainless</pre>	ca.4 * sc 5; 195; stee 	to 220' l screen o reline o. 1860	line old	in <u>r</u> grou 	220° t 330° t	rfac 0 230 0 310 0 350 0 370	01 01 01		956, b			P7H	
To 12 10 10 10 10 10 10 10 10 5 1	<pre>' of 20" pit p of 12 X 10' " pipe to 19! " pipe from 1 " stainless s " stainless s " " stainless s " stainless s</pre>	cast " so 5' 19	to 220' l screen o reline o. 1860	line old	in <u>r</u> grou 	220° t 330° t	rfac 0 230 0 310 0 350 0 370	01 01 01		956, b			P7H	
To: 12 10 10 10 10 10 10 10 10 10	<pre>v of 20" pit p of 12 X 10" " pipe to 19! " pipe from 1 " stainless s " stainless</pre>	cast " so 5' 19	to 220' l screen o reline o. 1860	line old	in <u>r</u> grou 	220° t 330° t	rfac 0 230 0 310 0 350 0 370	01 01 01		956, b			P7H	
Top 12 10 10 10 10 10 10 10 10 5 1	<pre>v of 20" pit p of 12 X 10" " pipe to 19! " pipe from 1 " stainless s " stainless</pre>	cast " so 5' 19	to 220' l screen o reline o. 1860	line old	in <u>r</u> grou 	220° t 330° t	rfac 0 230 0 310 0 350 0 370	01 01 01		956, b			P7H	

APLC NAPE BA AU**s s**

1.5 ۰.

1

•

-

-

.

.

1.4

.`

.

.....

	.•				LAYNE ATLANTIC C Albany, Georg		-1 I N	•			No.C	1	- •
	LOG OF				Abbins Air Force Base	•		de1	1 N	•. 5 (1 1963)
	Located Date D				EB in Houston July 25 in 1963 Date S	tertod		Ceu	nty, :	State) 1 0 19	
			Drilli		4	Finished							
وي التقليم وي التكان	T	1	ORMA'	TION	B AND DEPTH OF WELL	DING	NBIO	NS OF	CAS	ING AND I	CREEN		
وير المحمد اليرية المحمد ال	TOTA	L	NET			TOTAL		LENG	-	SPECIFY	-	GAUGE	
	DEPT OF AL STRAT	L	OF M		PORMATION FOUND AT EACH STRATUM	LENGTH ALL SCR	OF	BACH OF SC	HORSE	OR GANDING	OR CASENG		
		-	<u> </u>	1	ļ				_	CASING			
	π	IN.	FT.	IN.		· FT.	IN.	PT.	15.		P.,		
	<u> </u>	1	1_		Ico 2011	- 40	L	-90		ces ing	20		Gesine
	1 12.	_	11	₽-	send Cley	· · · · · ·	-C		1 1		67 - 1	}	· · -
• •••	29	.	14		Coape			- 3301	2	iae st	arts	-88 -9	round
• •	38 -	• •	130	} •;		···				surfa	6 . .		
• • • •	50	1	13 28	†	Coarse diste Sand	293		133		casing			
	52	[15	[Cley+ little Send	263 310		10		dereen Caaime			auyo -51
	23	 	30-	 _	Coares band	28-		• •			-		auge St
·	- 25	┨	 6 ∶	 	61ey	250			_	ceeing	-]
	40	<u>+</u>	-22 -	-	Geerse band	265		15	-			-#7-1	augo - 58
	185-	†	-25-	†-	Goeres Send with stks.	870 ·		->	-	Casing		<u> </u>	<u> </u>
	he	1-	31	Ľ	of yellow clay Coarse Sand	860 850	1	10		C		#7-9	euge SS
	26	ļ	10		Coopee bend, stks	· · ·	L		of	sasing Scree		Ne 0 3	
	Ì		ļ	<u> </u>	white clay					ted. As			
	236.		10.		Gley	ĥ		-					
•		†	102		Coarse Sand and little	1	þti	T - '	••	Layne			F
	30		62	Γ	White cley. Coarse tang and tune	>	hul	tes	5		67 g	auge.	
		l		L	white clay	ľ							
		ļ. ,		l	····	1							
• • •		 		Ł	• · · · · · · · · · · · · · · · · · · ·	1	1						 · ·
• . •			<u> </u>	1-		ţ	1	ł	-	· · • · · ·			t
						1	•	_	1-				
····		ļ		1.		1] .]].]
• -		+ -	.	<u>ا</u> . –	· ·· · · · ·					'ELL DA'			
		+	<u>}</u>	·[Date 1	l'este	d j			ic Level		
	-	t	<u> </u>			Produ	ction	- 11			ping L	evel	· · · · · · · · · · · · · · · · · · ·
							_	-		rmanent			
		ļ	 	ł		Date 7		₩/ 🖬	8	19 Stat GPM Acti	ic Leve	.49.1.	· · · ·
• •		+	 	•		Produ Drawe		230			iping L		8 .
•		ŀ.	<u>† : :</u>	-	anan sasan s anan sasan sa	Rema		_20			-		● · ·
· -		[L			Tatal.	0732 1 m M	, .				-	ars. Is
.		 	<u>-</u>		Changed existing John-	Boto		i th		angb		enu v Fy en	
	+	╂	 -	┢╌	SY100 Seriel No. 7723		. . .		P	UNPDAT			••••••••••••••••••••••••••••••••••••••
		†	1	-	Tram 1111 to 111-	Shop 1	No. 1	246			e Lubr.	<u> </u>	
		.	[]	1		Туре	Head	. 	9 B.		Suction	- 1 62-11	
				\vdash	Rew Continental Engine Speed 1800 RPM, Type	Depth Size C		ing 1	30	BP to MI	t) Th Suc		1
		ŀ	.		R0572.	Type		16.0	17 1	وسرت ا		Line 1	4
	1 ·	ŀ			· · · · · · · · · · · ·	No. 8	Lague	14") ' 5	B NI		harge-	. 1	E 3 -
			ł	ľ		Cap'y		-			CASU PP		
						I			M	OTOR DA			
	ł		1	1		RPM	now	^{ar} 1	٥ن	Volt Pha	· 4	40 .	
	l l					Туре	1	800	.,	Сус		3 60	
	1	1	1	Ł	i	Mahr		C F	1		me No.	60 952	

•.-.....

.

٠.

		Ro illin	bias Stari	ed	July 25 19 63 Date S)ia —	(••11	. N ty, 1	Btate	1805	1 9		• 8) :
		1	ORMA	TION	S AND DEPTH OF WELL	DIME	NSIO	S OF	CAR	NG AND I	CREEN			· · · · ·
	TOTA	i	DARP OF L		FORMATION FOUND AT BACK STRATUM	TOTAL		LENOTE E		APSCIPY ACRESS				
	OP AL STRAT	1	STRA			ALL SCRI		OP SCRI	100		OR CARDIN	or solution		٠
	PT.	IN.	FT.	IN.		FT.	IN.	FT.	IN.		P.,			
		[1.		100 - 2011	60		50						
	12		11.		wand Clay		C			teting t in -2		- rit 010	1088 2	
	25 .		-14		Coarse-Land	.	-6	-		tne	arts			.
	34 -	 -	130	} •;		-			• • • •	surfa	56.			-
•••••	30 76		12 28	<u> </u>	Coarse dilte band	253				sector				-
	¥2		15	[Clay- little send	b10		10-47					avye	33
- -	23_	[36		Coaree - 5and	328	$\lfloor - \rfloor$		- 1	:450eg	-	-#7		55
	26				Cley		{ \$	- 6	I	ing			 	
	40 185		-31 -25		Geerse band	265	-	-15		67948		-#7	ande.	
					Geerse Gend with sthe.	370 ·· -880 ·	[]	-10		estag				
	<u>+16</u> _		31.		Coerse Sand	840	ΙĪ	10		Green Satise	12	** * *	auga	•••
4	†26		10		Cosse-vend, stas-of-		bet	· · ·	51	16290		he es	L	• -
	236		10	-	milto clay.			- 1	••	wd -we	14.		[
	34		02-		Clay Ceases Sand and little					• • •				·
					white-eley.	s	bté hut	- 1		Løyne Føen		lale: nuge.	b 5te	-
	30		92	· -	Coarto tand and suns									-
					white-clay			ŀ		••• • •				
			·		· · · · · · · · · ·		11					 _ •		•
			h					·-·					-	
• • • •							┝╌┤		-+					· ····
								+		•••••				
	•						•••			ELL DAT				
				· _		Date 1	Cantad	a		liminary 19 Stati			• •	
			- · · - •			Produ	-	-	н,	.	ping L		- ·	
						<u> </u>	· · · · · · · · · · · ·	****		manent 7			• · · ·	
		• • • •				Date 1		1/28	1	9 Stati	c Level	451		
	· -				na an crain a c	Produ Drawd	- 17	2 20	G	PM Activ	ve St. L ping La	evel 	• .	-
						Remar	rika :	201				15	•	-
-									_	umped 180 -			hys.	Ihu
					Changed existing John- son Gear Drive Model					ING PI				16
• · · · •					BY100 Seriel No. 7723	+				UMP DAT			y-* *	·
		h			Trom 1171 to 171	Shop)	No. 1	2868			Lubr.		•	
		1				Type I	Head	TEA?	- -		Suction	104		
	1		-		New Continental Engine Speed 1800 RPM, Type	Depth Size C	Setti	^{ng} t 1	v -	BP to MB		inn i	١	
	I .				RU572.	Size G Type 1			† # .		th Suci	aon Line 12	•	
	l				· · · · · · · · · · · · · · · · · · ·	No. St	Agos	ι∠‴Ri 5	<u>K 61</u> (harge-	13	(1*	
·					· ·	Сир'у					CESUIC			
-	ļ		ļ			1.			N 10	TOR DA				
1	4					liornej RPM	power	10	Û	Volta Phar	4	40		
	1					Туре	16	900		Cych		3		
1					1			CFU				0		

. `.

· · ·

-

· . .

· _

. .

..

۰.

٠. ۰

.

. .

÷

.

-

.

iasi ess

. •

		For <u>widding dank (tall</u>)		، .	,)Co	unty.	State	Georg	10
		arted							
1	Finished D	rilling	- Finishe	1	June				
	FORMATIC	NS AND DEPTH OF WELL	DI	MENS	IONS OF	F CAN	ING AND	SCREEN	<u>ا ا</u>
TOTAL Depth Op all Strat.	OFE	ACH FORMATION FOUND AT EACH STRATUM	TOT LENGI ALL SC and CA	'H OF REENS	LENGTI EACH OF SCH UR CAS	SEC.	SPECIFY SCREEN OR CARING	SIZE OF SCREEN OR CASENG	
FT.	IN. FT.	IN.	FT.	IN	. FT. !	IN.	,(IN.	
25	25	ad coudy elsy	80		80	ie	Casing	18	
<u>.</u>	ŗ	hite clay	200		140	(Cesing	12	!
			. 210	•	, 10	<u> </u>	Screen	12	7
1 ₄ -1	10	lough sind clay	360		50	10	Casing	• ;	•
			270		10		Screen		ļ.
77	30	ເດັດກາວອີ່ສານເດື	200		50		Cusing	•	
	•		300		10		Screen	· i	: 1
<u>.</u>	50	Coarse soudy cloy	360		60	•	Casing	· ;	
	•		370		10		Screen	, 10	
115	2	Joanse saud, roft			1 '	:		 •	
374	ሪስ	. Thus (white clay .		•	• •			. i	l
00l+)ri	Soft sind						i	
··?!	: 10	Hn al white aloy		!	1 - 1			i . . Í	
n (n	28	Fine white sand		1	1	1			
255	93	Coarde white dand							

for inga is for legue at a

E

.

.,

.

-

Preliminary Test

WELL DATA:

Date Tested 6/10	9 18 50	Static Level 23
Production 700	GPM	Pumping Level
		nent Test
Date Tested	19	Static Level
Production	GPM	Active St. Level
Drawdown		Pumping Level
Remarks:		

PUMP DATA:

Shop No. 11	Type Lubr.
Type Head	Size Suction
Depth Setting	(BP to MB)
Size Column	Length Suction
Type Bowl	. Length Air Line
No. Stages	Discharge-
Cap'y and Head	f Pressure

F-43

											_	
							TALLA				WHEL NO	
VATION (OCATIO			Ro	bins A	FB, Ge	orgia	DATE	M5	NDEX
					# 51	1					ctober 19	
TYPF Drille	d Well	. (Unc	ierrean	ed (Grave	1 - Pa	acked	Well)				
DEPTH 390	<u>n.</u>					ETER 10 in					ITTING SEP ft.	PTH
ORIG ST	ATIC W		LEVEL		DRA	WDOWN	-				ERY TIME	
	45 ST DAT					It.		GES	PEC		PACITY (G	d per
cepacity	Pung	ping 1 5 ft.	eval	I	Yes	N	• 121	rth ft.	- 10		=	•
					VELL	PUMPI		IPMENT				
TYPE A Vertic			Levn	e Pi	umo N	6. 12	8684					CAPACITY 1050
SUCTIO	N (Ft)		ZF. AND					COLUN	-			
30 1		HE	AD					L IBER BC	0 in.		0 TYPE	NO. STAGES
Above g	r and	Belou	grad	To	t al		5	Stage		12" RE	NC	5
SERIAL		TYPE	•	MA	KE S. Mo		HP		FRAME 982-4	PHASE	CYCLES 60	VOL TAGE 220/440
328387		CPU R		MA	KE		100	•	70.0-A		1.00	220/440 322
Yes HP		RPM			scrip		ited S	es)				l
154		180	0		odel		~~					
						-)//						I ENCTL
	CANN	IG AN	D WELL	SCR				USED		_	ET TING DEP TH	LENGTH EACH
) ¹ of 20 ⁴					EENIN	G MAT	ERIAL	USED		_		
) of 20"	pit c	asin		ated	EENIN in p	G MAT	ERIAL	USED		_		
reen lin	pit c	rts a	g cases t groun	ated ad si	in p urfac	G MAT	ERIAL	USED		_		
reen lin	pit c	rts a	g cases t groun	ated ad si	in p urfac	G MAT	ERIAL	USED		_		
ereen lin	pit c se star Layne	rts a	g cases t groun	ated ad si	in p urfac	G MAT	ERIAL	USED		_		
D' of 20 ⁴ creen lir otal 40 ⁴ creen #7 <u>27E</u> : Thi	pit c star Layne gauge	stain	g camen t grown nless s	nd su	in p urfac	G MAT			ell.	_		
creen lin otal 40°	pit c star Layne gauge s well	stain stain	g comen t grown nless s drille	nted Interi	in p urfac 1 shu	GMAT				_		
creen lir otal 40° creen #7 <u>YTE:</u> Thi <u>JHP: 130</u>	pit c me star Layne gauge s well 0 ¹ of 1	stain stain l was	g camen t groun nless s drille l ² x 2	nted Interi	in p urfac 1 shu	GMAT			ell.	_		
breen lir otal 40° creen #7 <u>MP: 130</u> Stage 12	pit of 1	stain stain L was L was	g camen t groun nless s drille l ² x 2	nted Interi	in p urfac 1 shu	GMAT			•11.	_		
breen lir otal 40° creen #7 <u>MP: 130</u> Stage 12 0° of 10°	pit of 1 successful to the second sec	stain stain L was L was L was L was	g comen t grown nless s drille l <u>2ⁿ X 2</u> ls	ated at su	EENIN in p urfac l shu o rep Colum	G MAT	the ol	d #5 1	•11.	_		
breen lir otal 40° creen #7 <u>MP: 130</u> Stage 12 0° of 10°	pit of 1 successful to the second sec	stain stain L was L was L was L was	g comen t grown nless s drille l <u>2ⁿ X 2</u> ls	ated at su	EENIN in p urfac l shu o rep Colum	G MAT	the ol	d #5 1	• 11 .	_		
breen lir otal 40° creen #7 <u>MP: 130</u> Stage 12	pit of 1 sugard ended and a sub-	stain stain l was lo X C Bow ion	g comen t groun nless s drille l <u>2" X 2</u> ls	ated ates at to the to the to the to	EENIN in p urfac l shu o rep Colum	G MAT	the ol	d #5 1	ell.	_		
btal 40° btal 40° creen #7 <u>2TE:</u> Thi <u>2TE:</u> Thi Stage 12 D' of 10° <u>2TE:</u> Cha	pit c me star Layne gauge s well of of 1 " hKMC ' Sucti unged e	stain stain l was lo X lon exist	g comen t groun nless s drille 12" X 2 15 ing Joh	ated ad su steel	EENIN in p urfac l shu o rep Colum n Gea	G MAT	the ol	d #5 1	ell.	_		
btal 40° btal 40° creen #7 <u>MP: 130</u> Stage 12 D° of 10° <u>OTE: Cha</u> bdel 3910	pit c me star Layne gauge s well of of 1 " hKMC ' Sucti unged e	stain stain l was lo X lon exist	g comen t groun nless s drille 12" X 2 15 ing Joh	ated ad su steel	EENIN in p urfac l shu o rep Colum n Gea	G MAT	the ol	d #5 1	ell.	_		
btal 40° btal 40° creen #7 <u>MP: 130</u> Stage 12 D° of 10° <u>OTE: Cha</u> bdel 3910	pit c me star Layne gauge s well of of 1 " hKMC ' Sucti unged e	stain stain l was lo X lon exist	g comen t groun nless s drille 12" X 2 15 ing Joh	ated ad su steel	EENIN in p urfac l shu o rep Colum n Gea	G MAT	the ol	d #5 1	•11.	_		
btal 40° btal 40° creen #7 <u>MP: 130</u> Stage 12 D° of 10° <u>OTE: Cha</u> bdel 3910	pit c me star Layne gauge s well of of 1 " hKMC ' Sucti unged e	stain stain l was lo X lon exist	g comen t groun nless s drille 12" X 2 15 ing Joh	ated ad su steel	EENIN in p urfac l shu o rep Colum n Gea	G MAT	the ol	d #5 1	ell.	_		
btal 40° btal 40° creen #7 <u>MP: 130</u> Stage 12 D° of 10° <u>OTE: Cha</u> bdel 3910	pit c me star Layne gauge s well of of 1 " hKMC ' Sucti unged e	stain stain l was lo X lon exist	g comen t groun nless s drille 12" X 2 15 ing Joh	ated ad su steel	EENIN in p urfac l shu o rep Colum n Gea	G MAT	the ol	d #5 1	ell.	_		
btal 40° btal 40° creen #7 <u>MP: 130</u> Stage 12 D° of 10° <u>OTE: Cha</u> bdel 3910	pit c me star Layne gauge s well of of 1 " hKMC ' Sucti unged e	stain stain l was lo X lon exist	g comen t groun nless s drille 12" X 2 15 ing Joh	ated ad su steel	EENIN in p urfac l shu o rep Colum n Gea	G MAT	the ol	d #5 1	••••••••••••••••••••••••••••••••••••••	_		

`.'

11

•

. ..

F-44

۰.

÷ .

.

•

E

.....

:

											\sim	• • • • •
•	WALL D						ATIUN	-			WILL N	}
						obin	S AFB	, Ge	orgia	Loir	E CONSTR I	
EVATION (F)	LOCATION		3							July 1943	
TYPE	He11 (Underrean	ad Gr		1	o oko	d Well	1)				
DEPTH	mett (بيستعث	<u> </u>	IETBR	-				PUNPS	ETTING D	PTH
311 rt.						<u>8 in</u>					00 ft.	انزیکا کی معنجدیت ہے
ORIG STA 45 ft.	TIC WAT	ER LEVEL		DRA	ADO A	N				RECOV	ERY TIME	
	DATA			AIR	LINES	_	GAGE	ş	SPEC		PACITY (C	ial per
I cepacity 500 GPM	Pumpia	g i evel	ļ	Y es	X I	10 ^L	mgt b			GPM DRAW		
	1		W	ELL	PUMP	ING R	QUIPM	KNT				
TYPE AN Vertica		ne Layne	Pum	o No	. 496	516						CAPACITY 1500 GPM
SUCTION		SIZE AND					COL	UMN				
30 rt.		8 in. HEAD				TÑ	UNIE		<u>s in.</u>	MER A	NP TYPE	NO. STAGES
Above gra	d 8.	low grad	Tol	al								
SERIAL N		PE	MAK	E		THP	R	PM]	FRANE	PHAN	e CYCLE	S VOLTAGE
RJJ22100		ĸ	G.			150	17	75	6542	3	60	220/440
	Yes		NAK W	y. a.uke	sha							
HP 145	86	M 1750	DES	CRIP	TION Nr.	11.5-	CNK .					
1 145	CARING	AND WELL	1								SETTING	LENGTH
											DEPTH	EACH
of 18"	pit cas	ing submi	Ltted	in	place	•						
op of 12 ^m	screen	line at	531									
								.				+
2" screen	set as	follows:	151	•	161*							- <u>+</u>
	·		221	<u> </u>	231'							
			251	• _	261'							
												+
			301		311'						<u></u>	
IMP:												
"8 10 100	Column											
						• • • •=						- {
001 of $2\frac{1}{2}$	tubin	<u> </u>								+		
00' stainl	ess sta	el shaft									·	
2 48 10 10	uction											1
			<u>.</u> . for -		unde	• • • • •		مام	ted	1		
		micarion :	rot b	um b	Guide	1. MOI	K COD	ψ) T.Q.				
new soncr			•••							1		
								-				
June 1964			•••					-			, , ,	
·					,			-				

AT 10123 9945, AUG 58

•

1.1.1.1

r

•

.

.

.

.

F

Ľ

ъ. . .

Page 1 of 2 Pages

en anticipation and an icipation and anticipation and anticipation and anticipation and anticipation and anticipation and anticipation and anticipation and anticipation and anticipation and anticipation and anticipation and anticipation and anticipation and anticipation

	LOG OF WEL	NUKP		PANY	; • • • • • • • • • • •
	Located at M	L For Robbins Field (Well # 6)	OLK, VA.		
				County, State	Go zgin
	Date Drilling S Finished I		Date Started Finished	July 29	/ 19 42
		- The Super Property of the Super-		IONS OF CASING AN	
	الوبد البالية الثناء والثانية والأعداد وي	IONS AND DEPTH OF WELL		BENERSTAND IN TRACE CARE IN	ده در ولايهم
	DEPTE	PTN ' BACE - FORMATION FOUND AT BACH STRATU: ATUM	i TOTAL LENGTE OF ALL SCREDS and CARDIGS	EACH SEC. SCREED	
······································	FT. DL: FT.	; i IN.	FT. D	i, FT. IN.	IN.
	8 8	Red clay, cut slow	80	80 Crsin	18
	36 28	Brown sand, fast drilli	in: 151	98 Casin	12
	40 4	White chalk clay	'161	10 Bcree	n 1.2 #7
	60 20		ir112-221	60 CHSIN	r 12
	: ·	ing	⁶ 231	10 Scree	
	100 40		· · ·	20 .Crsin	-
		drilling	261	10 Scree	
	157 . 57	Coarse white sand, medi drilling		40 Cosin	
	199 22	(lumps of white clay)	311 ium	10 Scree	n 12 #7
	230 31 240 10	Fine white sand, cut so Sand & chalk clay, medi drilling	, ,		• ;
	300 60		11100		
	315 1	Fine white sand, medium			
	.367	Sandy clay, slow drill:	ing j		
1	-4		•	Preliminary Test	
•				/21 19+3 Static La	
1		:	· Production 750		
į			Date Tested	19 Static L	
•			. Production	GPM Active S	t. Level
•			Drawdown	Pumping	: Lovel
			Remarks:		

. -

1

.

۰.

. •

.

<u>ن</u>

•

.

- -

.

•

Horsepower RPM

Туре

Make

5

Voltage

Frame No.

Phase Cycles

		·	- Base - Canabart	Officia	UCLISE					•••
og of Wei	LL For	Bobins Air Fore			Cour		State Co	ergia		***
ocated at	Robins		19 58 Date S		Sep!	L. 8	3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		19 58	•••
te Drilling	Started	5ept. 17				. 28	*****		19 50	
Finished	Drilling	<u>Ost. 9</u>	<u>19</u>	Finished		. :				
F	ORMATION	IS AND DEPTH OF WE		DIMENS		CAS	ING AND	BCREEN	-	r
TOTAL	DEPTH	e a los alientes en recome de la companya de		TOTAL			SCILLING SCILLING	- SIZE OF	GAUGE	<u>.</u>
DEPTH I	OF BACE	PORMATION POUND	AT BACE STRATUR	ALL SCREE		ALC: N	OR CARING	OR CARDIG	SCREED!	4 •
STRATA	1	1	an an an an an an an an an an an an an a		• P • • •	.	، معرف	t -	-	<u>*</u>
FT. IN.	PT. IN			FT.	IN. ' ''T.	IN.		IN.	•	j
		ورور فانعبر المبت الاردامي الم		145	166		Casing	20		Pit
3 '	3	Top Boil		AB O	1			_		-
15	12	Red Send			:				CORDITIE	d in place
10 10	50	Send with thin s	treaks clay	Top of	schoen	1210	is at			•
83	18	Coarse sand			ì		,	•		
	20	Coarse sand with	cley particles	200	60		easing	. 12		a
.uo 125	20	Coarse sand		266	66	:	Casing	10		
161	24 J	Yellowish coarse	sand.	286	20		Screet	10	. #7 S.	B •
_	7	Grey clay & som		215	29	1 2	Casing	10		-
68		White Course sa		225	10	1	Serven	10	¥7 S.	·S.
196	2 6	• • • •		240	15	i i	Casing	10	#	
195	1	Streak of Clay		350	10	1	Serees	10	#7 8.	B •
203	1	Gray Coarse San	1		70		Cosins	10	,	r
	17	Mixture of Clay	s. Carry & Maise	429		1 .	+	10		8.
230	10	White Coarossan	, in the second s	430	10	}	Screen	1	1	T
24	12	Clay with stress	its of college and	440	. 20		Casing	10	مندور	1
2	13 1	Ibits Course as		Botte		Hef.	Line "O			4
	1.3	Kanlin		Betten	of com	plot	al mala	10 440		. .
256		Soft sold.								
264	1 7 1	Inalia	•	-		7				
266	2			and and the second	t te	1			No. of the local division of the local divis	
					, .	Ĵ,				
325	50		h thin streaks of	r -			•			,
+ ,	1 -	elay				:	• *	•†		
339	4	Maalin		4		·		•		
200	15			4	•	•	•	•		
	•	Course send. Se		4	ı .	!	•	1	•	r.
	30	•	h this streaks of	dlay		:				
400 ·	15		clay than above.		•					
414	. 14	Pink clay. Sle	-	1	i	:	1	÷	•	
430	16	Course white se	nd			V	VELL DA	TA:		-
490	60	Course white se	nd with very this	5	-	Pı	eliminary	Test		
		streaks of keel	-	Date T	ested		19 Sta	tic Love	1	
				Produc	tion		GPM Pu	mping L	evel	
							ermanent			
				Date T	ented Oct		1958 Sta		38	
				-	tion 992		GPM Act		-	i
					own 24'					r
				Remark				ubiu g r	evel 62"	

-

D

:

, · Γ.

.

ţ

Į.

PUMP DATA: Shop No. 39690 Type Lubr. 011 Type Head TF018 Size Suction

F-47

Depth Sater- 1. ca

8• 6

		<u> </u>											\frown	<u> </u>
		WFLL	DATA			-	bins		HUN Fe, Ge	orgia		(WPLL NO	
EL.F	ELEVATION (F1) LOCATION DATE CONSERVENDED Bldg # 1004 18 December 1958													
	TYPF											8 14	cember 1	928
W.	<u>}</u>	d Wel	1 (Underrea	med				be	Well)					
1. 440 ft. 8 in. 100						rting Def ft.	P T H							
l.		TIC W	ATER LEVEL		DRA	WDOW	ž				REC	OVE	RY TIME	
		DAT/	A	Γ	AIR	24 LINES	AND	G۸	GES	SPE		CAP	ACITY (G	l per
	cepacity DO GPM	Pamp	ing level	II	Yes	N	0 L	eng	1 h	– (0)	GPI	AWDO	II	
	T	.			WELL	PUMPI	NG E	QU	PMENT					
P	TYPE AN Vertica		E bine Layn	e Pu	nap No	. 396	90							CAPACITY 1100 GPN
U M	SUCTION 10 ft.	(Ft)	SIZE AND				<u> </u>	T	COLUMI	N 8 in.				
p			HEAD			<u> </u>	N	UM	BERBO		9 2E	AND	TYPE	NO STAGES
	Above grm		Batow grad	To	ot el			5	Stage		12	in.	RICHC	5
	SERIAL NO		CFU	MA			HP		RPH	FRAME		SE	CYCLES	
M O	STANDBY POWER MAKE					3		60	220/440 SIEE					
T No														
R	HP		RPM	DE	SCRIP	TION						_		
	CASING AND WELL SCREENING MATERIAL USED SETTING LENGTH DEPTH EACH													
16	51 of 2011	nit	casing com											
						prace	•							
To	p of 12" 1	K 10"	screen lin	ne l	401									
12	" pipe 140	0' to	2001											
30	-pipe and	i <u>e</u> cri	een line b	low	•									
10	" stainler	ss st	eel screen	set	at:	2661	- 28	61					- Landands C.e.	·····
						315'	- 3	25						
- -						3401			<u></u>					<u></u>
														·····
420' - 430'														
PUMP: Layne No. 39690														
100" of 8" 1 1 11/16" X 22" Column														
5 5	itage 12"	KKMC	Bowls										I	 -
10	of d" Su	uction	n	•••	-							[•
· · · · · · · · · · · · · · · · · · ·														
				•										
												[
												1		1

. . . .

. .

. .

7

.

ي ۽ و : سورو

.

····|

.

• • •

NE EDRM 996, ADG 58

C

Page 1 of 2 Pages

ĥ

LAYNE ATLANTIC COMPANY

Ξ.

Ē

K

ن ا

٠.

.

شا

Þ

F___

.

. •

#8

1

4

ocated at	ELL For			County,		rgio	
ate Drillu	ng Started	Ostober 20 1920 Date S	started	<u></u>	23		19 29
Finishe	d Drilling		Finished				
	PORMATION	IS AND DEPTH OF WELL	DIMENA	IONS OF CA	SING AND	SCREEN	
TOTAL		PORMATION POIND AT RACE STRATUM	TOTAL	LENOTE OF		STLE OF SCREEN	GATOR OF
OF ALL	OF BACE	FURNETING FURNU &T BAUK STRATUR	ALL SCREEN			08 GA8010	ACT TO A CONTRACT OF A CONTRACT.
		*		N FT. IN		IN.	
PT. IN	. PT. IN		, , , , , , , , , , , , , , , , , , ,			_	
7	7	ت. در ا	42	\$ 2	Cestny	20	Pit Cesing committee in pices
20	21	Boft send		neen Line	4a -4		•••••••••••
36	12	Course com & clay	12" Hei 170	170	Gasing	12	
%	_ 40	Sani, ioft Clay, Slow	710	10	Servel	12	n
81	5	Course and with this streaks of	274	96	Casins	12	
104	121	Kaolin	200	10 \	Serven	12	m
11:	11	Clay with send. Siem	285	7	Cosing	12	
176	63	General sand with very thin streak	ديد ه	20	Serven	12	87
		of aloy. Deillos foot.	375	60)	Cooling	12	_
110		Compar some with elsy. Soft	385	10	Seren	12	n
201	19	Cooper same with a little elay.	g 400	.15	Geeing	12	
217	10	Contro soul à clay. Mailum	i Dett	un of mu	ugh 1800 1 dansk d	•	peter.
241	24	Contros sons. Soft.	Can	iotoi val			. .
292	-	Kaplin, Slee drilling.	· ·	•	•		-
246	15	Maplia with this stances and.			•	:	L
216		Realls with heavy cald.	the second	. din da			
230 j		of along. Median Soft. realis, Sion orthismy. Media with course and. Soft.	1	· · · ·	•	:	
366 360	1 9 1 2	Yollow sandy clay. Slaw. Coasse sands. Soft.	1				
347	2	Gler. Show detiling	1 ·				
377	20	Course sand anti-					
393	21	Glay. Slow drilling		1	WELL DA	TA:	
607	•	Coupes some with streaks of aloy			Preliminary		_
411	4	Pink clay. Slow	Date Te			tic Leve	· .
421	_ 10	distant of elays with this stand	Producti		GPM Put		evel
431	10	of parts. Hotium. Rod aloy. Slow drilling	Date Te	stoches 2	Permanent		1 9 *
44	10	Bad and white eigy. Some cond.		ion 101 500			
474	33	Sensy set and yallow aloy.	Drawdo	W2 30"	Pu	mping L	aval 39" - 39"
412	14	Course yellow sami, toft,	Remark	1: 235 195	t 17 hours	1. Pu	aped 1500 gam
495	2	Yellow and white elay.					Cookinstics Gear
506	13	Course white cand.			ko Motoo	Discol	499-t English as
511		Keelin - Slow deilling.	Standby.		10111410 ID 4	ά λ ι.	
522	11	Coupes white cand.	Shop No		PUMP DA	.TA : pe Lubr.	
			спор мо Тутя И	STOL4	4 ¥1 Siz	e Suctio	6 •
			Denth S	etting 10°	(RP to M		
				and set of the	-	ngth Suc	tion 10 ⁴
			Type Bo	12" AG	ii Lei	ngth Air	Line 40 *
·			No. Stay	res 0.20	Die	charge-	
			Сар'у ал	nd Head 🎒		Pressure	
			Horsepo	Wer D		tage _,	
			RPM L Type C		Ph	ue 5 :les 60	

F-49

á

					INSI	า้ม.เ	VIIMK		-	tan Ese	401
		LI. DATA					.	art i			718
EL E	VATION (FC)	LOCATIO Eldg #								Constante a aros - Postor	anter (
W	TYPE Drilled We	lì (Underream	ned	Grav	Fa	.cku					
Ŀ	DEPTH 400 ft.			1)1 A	METER	in.	•••••••••••			ELESCION DIFE	111
և Լ.		WATER LEVEL		DRA	WIXUWN		<u>.</u>		RECOVE		
<u> </u>	9 ft TESI DA				LINES		·				
	capacity Pu	nping level		Yes		1	mgt h		CHICCAP GPM		u j • 1
90	O GPM		I				OUIPMENT	<u> </u>	DRAWD	NAS	
þ	TYPE AND MA	KE furbine Layı		· · ·			VUI - MILINI			·	CAPACITY 900 GPM
Ŭ	SUCTION (Pt).			_		(22)	COLUM	4			900 GFM
M P	10 ft. 8"	HEAD.				- 15		8 in.			
	Above grad	Below grad	To	L al,		-	UMBER BC 5 Stage		SIZE AND	••••	NO STAGES
	SERIAL NO.	TYPE	MAI	Ē	ŋ		RPN			TCYCLES	
M	1089523	CFU	u.s	. Mo		75	1800	44.5P	3	60	2 20/ 440
U T	STANDEL POR		***		banks -	- Ko	rse, Die	sel			SIZE
0 R	1117 90	1800	DE:		TION Nr. 49	B-4	=18\$				
	ÇAR	NG AND WELL								TTING	LENGTH EACH
	<u> </u>									ee in	EACH
82	' of 20" pit	casing come	nted	in	place.						
То	p of 12" scr	een line at (grou	nd s	urface.	•					
12	" stainless	steel screen	set	at:	170'	- 1	801				
					278*	- 2	881				
					2951	- 3	15'				
		می این اور این می می می این این این این این این این این این ای	بر در در ال						in the second		
	P: Layne No										
80	' of 8" X 12	" X 22" Colum					. 				
5	Stage 12" RK	IC Bowls									
10	' of 8" Suct:	Lon									
		<u></u>	÷					•· ••• · •	+ -		
	<u> </u>				·	•	-				
			· ·		<u></u>	<u> </u>					
		<u> </u>			-					- ·· - ·	

.

.

--

.

•

• •

•

.

1

•.;

AF FORM 996, AUG 58

• .

. .

0

2

.

Page 1 of 2 Pages

.

APPENDIX G

5

Ē

рт 121 15 г.

Ç.:

<u>i</u> :

-

۰.

<u>.</u>

۰.

Ľ

Ľ

.

HAZARD EVALUATION METHODOLOGY

APPENDIX G

•

USAF INSTALLATION RESTORATION PROGRAM HAZARD ASSESSMENT RATING METHODOLOGY

BACKGROUND

e e

17

Q

•••

-

L

The Department of Defense (DOD) has established a comprehensive program to identify, evaluate, and control problems associated with past disposal practices at DOD facilities. One of the actions required under this program is to:

"develop and maintain a priority listing of contaminated installations and facilities for remedial action based on potential hazard to public health, welfare, and environmental impacts." (Reference: DEQPPM 81-5, 11 December 1981).

Accordingly, the United States Air Force (USAF) has sought to establish a system to set priorities for taking further actions at sites based upon information gathered during the Records Search phase of its Installation Restoration Program (IRP).

The first site rating model was developed in June 1981 at a meeting with representatives from USAF Occupational Environmental Health Laboratory (OEHL), Air Force Engineering Services Center (AFESC), Engineering-Science (ES) and CH₂M Hill. The basis for this model was a system developed for EPA by JRB Associates of McLean, Virginia. The JRB model was modified to meet Air Force needs.

After using this model for 6 months at over 20 Air Force installations, certain inadequacies became apparent. Therefore, on January 26 and 27, 1982, representatives of USAF OEHL, AFESC, various major commands, Engineering Science, and CH_2M Hill met to address the inadequacies. The result of the meeting was a new site rating model designed to present a better picture of the hazards posed by sites at Air Force installations. The new rating model described in this presentation is referred to as the Hazard Assessment Rating Methodology.

PURPOSE

The purpose of the site rating model is to provide a relative ranking of sites of suspected contamination from hazardous substances. This model will assist the Air Force in setting priorities for follow-on site investigations and confirmation work under Phase II of IRP.

This rating system is used only after it has been determined that (1) potential for contamination exists (hazardous wastes present in sufficient quantity), and (2) potential for migration exists. A site can be deleted from consideration for rating on either basis.

DESCRIPTION OF MODEL

Like the other hazardous waste site ranking models, the U.S. Air Force's site rating model uses a scoring system to rank sites for priority attention. However, in developing this model, the designers incorporated some special features to meet specific DOD program needs.

-44

52

The model uses data readily obtained during the Record Search portion (Phase I) of the IRP. Scoring judgments and computations are easily made. In assessing the hazards at a given site, the model develops a score based on the most likely routes of contamination and the worst hazards at the site. Sites are given low scores only if there are clearly no hazards at the site. This approach meshes well with the policy for evaluating and setting restrictions on excess DOD properties.

As with the previous model, this model considers four aspects of the hazard posed by a specific site: the possible receptors of the contamination, the waste and its characteristics, potential pathways for waste contaminant migration, and any efforts to contain the contaminants. Each of these categories contains a number of rating factors that are used in the overall hazard rating.

The receptors category rating is calculated by scoring each factor, multiplying by a factor weighting constant and adding the weighted scores to obtain a total category score. The pathways category rating is based on evidence of contaminant migration or an evaluation of the highest potential (worst case) for contaminant migration along one of three pathways. If evidence of contaminant migration exists, the category is given a subscore of 80 to 100 points. For indirect evidence, 80 points are assigned and for direct evidence 100 points are assigned. If no evidence is found, the highest score among three possible routes is used. These routes are surface water migration, flooding, and ground-water migration. Evaluation of each route involves factors associated with the particular migration route. The three pathways are evaluated and the highest score among all four of the potential scores is used.

1

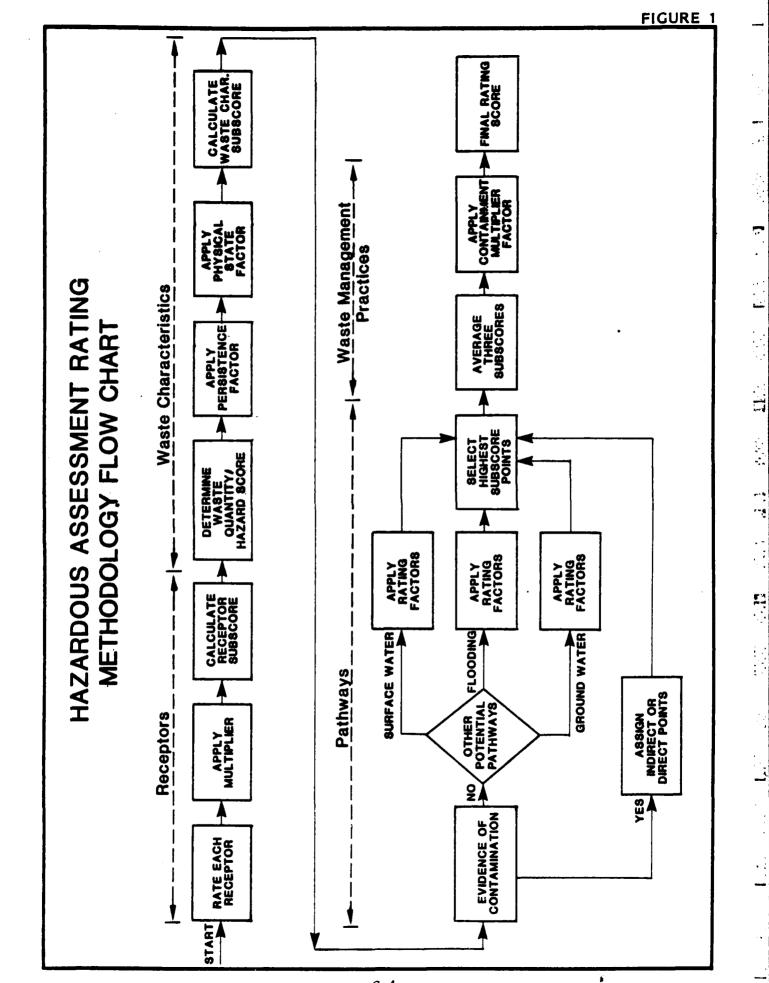
• ·

•

12

r.

: -


Ľ

t

1

The waste characteristics category is scored in three steps. First, a point rating is assigned based on an assessment of the waste quantity and the hazard (worst case) associated with the site. The level of confidence in the information is also factored into the assessment. Next, the score is multiplied by a waste persistence factor, which acts to reduce the score if the waste is not very persistent. Finally, the score is further modified by the physical state of the waste. Liquid wastes receive the maximum score, while scores for sludges and solids are reduced.

The scores for each of the three categories are then added together and normalized to a maximum possible score of 100. Then the waste management practice category is scored. Sites at which there is no containment are not reduced in score. Scores for sites with limited containment can be reduced by 5 percent. If a site is contained and well managed, its score can be reduced by 90 percent. The final site score is calculated by applying the waste managment practices category factor to the sum of the scores for the other three categories.

.

.

٠. ٠.

.

-٠.

•

FIGURE 2

HAZARDOUS ASSESSMENT RATING FORM

- -----

Page 1 of 2

NAME		SITE	
LOCAT		I	
DATE		OPERATION	
OWNER,	/07	ERATOR	
CONSIL	115	/DESCRIPTI	
SITE	RAT	ED BY	

I. RECEPTORS

.

- ° ° -

·••

1...

T

<u>.</u>

N

-

÷ .

 \mathbf{L}

ł

1

Rating Factor	Factor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
A. Population within 1,000 feet of site		4		
B. Distance to nearest well		10		
C. Land use/zoning within 1 mile radius		3		
D. Distance to reservation boundary		6		
E. Critical environments within 1 mile radius of site		10		
F. Water quality of nearest surface water body		6		
G. Ground water use of uppermost aquifer		9		· · · · · · · · · · · · · · · · · · ·
E. Population served by surface water supply within 3 miles downstream of site		6		
I. Population served by ground-water supply within 3 miles of site		6		

Subtotals

ź

Receptors subscore (100 X factor score subtotal/maximum score subtotal)

IL WASTE CHARACTERISTICS

- A. Select the factor score based on the estimated quantity, the degree of hazard, and the confidence level of the information.
 - 1. Waste quantity (S = small, M = medium, L = large)
 - 2. Confidence level (C = confirmed, S = suspected)
 - 3. Hazard rating (H = high, M = medium, L = low)

Factor Subscore A (from 20 to 100 based on factor score matrix)

B. Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B

_____ × _____ = .

X _

C. Apply physical state multiplier

Subscore B X Physical State Multiplier = Waste Characteristics Subscore

FIGURE 2 (Continued)

IL PATHWAYS

٠...

Rating Factor	Factor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score	•
	10-31	MULCAPLES			

A. If there is evidence of migration of hazardous contaminants, assign maximum factor subscore of 100 points for direct evidence or 80 points for indirect evidence. If direct evidence exists then proceed to C. If no evidence or indirect evidence exists, proceed to B.

Subscore

Page 2 of 2

B. Rate the migration potential for 3 potential pathways: surface water migration, flooding, and ground-water migration. Select the highest rating, and proceed to C.

1. Surface water migration

Distance to mearest surface water	8	
Net precipitation	6	· · · · · · · · · · · · · · · · · · ·
Surface erosion	8	
Surface permeability	6	
Rainfall intensity	8	
	Subtota	

Subscore (100 X factor score subtotal/maximum score subtotal)

2. Flooding 1

Subscore (100 x factor score/3)

3. Ground-water migration

Depth to ground water	8	1	<u> </u>
Net precipitation	6		
Soil permeability	8		
Subsurface flows	8		
Direct access to ground water	8		

Subtotals

Subscore (100 x factor score subtotal/maximum score subtotal)

C. Highest pathway subscore.

Enter the highest subscore value from A, B-1, B-2 or B-3 above.

Pathways Subscore

IV. WASTE MANAGEMENT PRACTICES

A. Average the three subscores for receptors, waste characteristics, and pathways.

Recept	LOCS
Waste	Characteristics
Pathwa	y s

Total divided by 3

Gross Total Score

5. Apply factor for waste containment from waste management practices

Gross Total Score X Waste Management Practices Factor = Final Score

TABLE 1

Ľ

•

.

Ì

•

. .

E

٠. ۰.,

HAZARDOUS ASSESSMENT RATING METHODOLOGY GUIDELINES

니	RECEPTORS CATEGORY					
	Rating Factors	0	Rating Scale Levels	vels 2.		Multiplier
Ż		0	1 - 25	26 - 100	Greater than 100	-
.	B. Distance to nearest water well	Greater than 3 miles 1 to 3 miles	1 to 3 miles	3,001 feet to 1 mile	0 to 3,000 feet	01
i.	C. Land Use/Soning (within 1 mile radius)	Completely remote A (zoning not applicable)	Agricultural e)	Commercial or industrial	Residential	G
<u>.</u>	. Distance to installation boundary	Greater than 2 miles	1 to 2 miles	1,001 feet to 1 mile	0 to 1,000 feet	
m	E. Critical environments (vithin 1 mile radius)	Not a critical environment	Natural areas	Pristine natural areas; minor wet- lands; preserved areas; presence of economically impor- tant natural re- mources susceptible to contamination.	Major habitat of an en- dangered or threatened apecias; presence of recharge area; major wetlands.	2
.	F. Water guality/use designation of nearest surface water body	Agricultural or Índustrial use.	Recreation, propa- gation and manage- ment of fish and wildlife.	Shellfish propaga- tion and harvesting.	Potable water supplies	Ś
ษ	G. Ground-Water use of uppermost aguifer	Not used, other sources readily available.	Commercial, in- dustrial, or irrigation, very limited other water sources.	Drinking water, municipal water availabie.	Drinking water, no muni- cipal water available; commercial, industrial, or irrigation, no other water source available.	6
H.	H. Population served by surface wat∩r supplies within 3 miles down- stream of site	a	1 - 50	51 - 1,000	Greater than 1,000	w
:	I. Population served by aquifer supplies within 3 miles of site	o	1 - 50	51 - 1,000	Greater than 1, 000	v

`- .

HAZARDOUS ASSESSMENT RATING METHODOLOGY GUIDELINES (Cont'd)

WASTE CHARACTERISTICS ÷

Hazardous Waste Quantity --**v**

8 = Small quantity (<5 tons or 20 drums of liquid) M = Moderate quantity (5 to 20 tons or 21 to 85 drums of liquid) L = Large quantity (>20 tons or 85 drums of liquid)

Confidence Level of Information A-2

C = Confirmed confidence level (minimum criteria below)

o Verbal reports from interviewer (at least 2) or written

information from the records.

o Knowledge of types and quantities of wastes generated by shops and other areas on base.

o Based on the above, a determination of the types and quantities of waste disposed of at the site.

S = Suspected confidence level

reports and no written information from the records. o No verbal reports or conflicting verbal

•_.

• ,•

quantities of hazardous wastes generated at the base, and a history of past waste disposal practices indicate that these wastes were disposed of at a site. o Logic based on a knowledge of the types and

A-3 Hazard Rating

16	2	Sax's Level 2 Bax's Level 3	Flash point at 80°F Flash point less than to 140°F	3 to 5 times back- Over 5 times back- ground levels ground levels
Rating Scale Levels		Sax's Level 1	Flach point at 140°F to 200°F	i to j times back- ground levels
	0	Sax's Level 0	Flash point greater than 200°F	At or below background levels
	Hazard Category	Toxicity	Ignitability	Radioactivity

Use the highest individual rating based on toxicity, ignitability and radioactivity and determine the hazard rating.

Points	m 17 -
Hazard Rating	High (H) Međium (N) Low (L)

. . -• ____ ; . . ----. -. .

í.

•

.

Ē

.

N.

•

.

.

. .

F

•

ن

. . .

ļ

- -- --

L

HAZARDOUS ASSESSMENT RATING METHODOLOGY GUIDELINES (Cont'd)

II. WASTE CHARACTERISTICS (Continued)

Waste Characteristics Matrix

Hazard Rating	21	x x	-	# Z	X 1 X X	ZZUU	1 1 X	-
Confidence Level of Information	υ	υυ	w	υυ	ສບສບ	യ ഗ ഗ മ	υαα	ø
Bazardous Waste Quantity	L	2 2	r	σΞ	리 그 포 0	0 X X J	89 X 33	Ø
Point Rating	100	80	70	60	20	9	30	20

Notes:

•--

For a site with more than one hazardous waste, the waste quantities may be added using the following rules: Confidence Level

Confirmed confidence levels (C) can be added
 Suspected confidence levels (S) can be added
 Confirmed confidence levels cannot be added with

suspected confidence levels

Waste Hazard Rating

o Wastes with the same hazard rating can be added o Wastes with different hazard ratings can only be added in a downgrade mode, o.g., MCM + SCH = LCM if the total quantity is greater than 20 tons.

LCM (80 points). In this case, the correct point rating for the waste is 80. having an MCM designation (60 points). By adding the guantities of each waste, the designation may change to Example: Several wastes may be present at a site, each

• ٠.

B. Persistence Multiplier for Point Rating

Multiply Point Rating From Part A by the Following	1.0	6.0	0.8	
Persistence Criteria	Metals, polycyclic compounds, and helocaneted budrocerbone	substituted and other ring compounds	Straight chain hydrocarbons Easily biodegradable compounds	

<u>.</u> '

C. Physical State Multiplier

Multiply Point Total From te A and B hu the Bollowin

Parts A and B by the Following	1.0 0.75 0.50
Physical State	Liquid Sludge Solid

81 A A 1 A A

Ł

HAZARDOUS ASSESSMENT RATING METHODOLOGY GUIDELINES (Cont'd)

III. PATHWAYS CATEGORY

A. Evidence of Contamination

Direct evidence is obtained from laboratory analyses of hazardous contaminants present above natural background levels in surface water, ground water, or air. Bvidence should confirm that the source of contamination is the site being evaluated. Indirect evidence might be from visual observation (i.e., leachate), vegetation stress, sludge deposits, presence of taste and odors in drinking water, or reported discharges that cannot be directly confirmed as resulting from the site, but the site is greatly suspected of being a source of costamination.

B-1 POTENTIAL POR SURPACE WATER CONTAMINATION

Rating Pactor	0		2	ſ	Multiplier
Distance to nearest surface water (includes drainage ditches and storm sewers)	: Greater than 1 mile	2,001 feet to 1 mile	501 feet to 2,000 feet	0 to 500 feet	8
Net precipitation	Less than -10 in.	-10 to + 5 in.	+5 to +20 in.	Greater than +20 in.	Ŷ
Surface erosion	None	Slight	Moderate	Bevere	80
Surface permeability	0% to_15% clay (>10 ² cm/sec)	154 to 301 clay 394 to 5074 clay (10 to 10 cm/sec) (10 to 10 cm/sec)	30% to 50% clay (10 to 10 cm/sec)	Greater than 50% clay (< 10 cm/sec)	Q
Rainfall intensity based On 1 year 24-hr rainfall	<1.0 inch	1.0-2.0 inches	2.1-3.0 inches	>3.0 inches	8
B-2 POTENTIAL FOR FLOODING					
Floodplain	Beyond 100-year floodplain	In 25-year flood- plain	In 10-year flood- plain	Floods annually	-
B-3 POTENTIAL FOR GROUND-WATER	R CONTAMINATION				
Depth to ground water	Greater than 500 ft	50 to 500 feet	11 to 50 feet	0 to 10 feet	
Net precipitation	Less than -10 in.	-10 to +5 in.	+5 to +20 in.	Greater than +20 in.	Q
Soil permeability	Greater than 50% clay (>10 ⁻⁶ cm/sec)	301 to 503 clay 151 to 303 clay (10 to 10 cm/sec) (10 to 10 cm/sec)	10 10 to 10 clay (10 to 10 cm/sec)	0% to_15% clay (<10 ⁻² cm/sec)	0
Subsurface flows	Bottom of site great- er than 5 feet above high ground-water ievel	Bottom of site occasionally submerged	Bottom of site frequently sub- merged	Bottom of site lo- cated below mean ground-water level	æ
Direct access to ground N water (through faults, fractures, faulty well casings, subsidence fissures,	No evidence of risk a,	Low rísk	Moderate risk	High risk	œ

Ž.

•

.

•

ø

÷ .

.

•••

F

ą

i i

HAZARDOUS ASSESSMENT RATING METHODOLOGY GUIDELINES (Cont'd)

IV. WAS'TE MANAGEMENT PRACTICES CATEGORY

This category adjusts the total risk as determined from the receptors, pathways, and waste characteriatics categories for waste management practices and engineering controls designed to reduce this risk. The total risk is determined by first averaging the receptors, pathways, and waste characteristics subscores. À.

B. WASTE MANAGEMENT PRACTICES FACTOR

The following multipliers are then applied to the total risk points (from A):

Waste Management Practice

Multiplier

No containment 1.0 Limited containment 0.95 Fully contained and in 0.10 full compliance 0.10	•	Surface Impoundments:	cover o Liners in good condition	c Sound dikes and adequate freeboard	o Adequate monitoring wells		Fire Proection Training Areas:	en concrete surface and berms	<pre>o Oil/water separator for pretreatment</pre>	irm o Bifluent from oil/water separator to plant
No containment Limited contain Fully containe full complia	Guidelines for fully contained:	Landfills:	o Clay cap or other impermeable cover	o Leachate collection system	o Liners in good condition	o Adequate monitoring wells	Spills:	o Quick spill cleanup action taken	o Contaminated soil removed	<pre>o Soil and/or water samples confirm total cleanup of the spill</pre>

.

General Note: If data are not available or known to be complete the factor ratings under items I-A through I, III-B-1 or III-B-3, then leave blank for calculation of factor score and maximum possible schre.

تاریخ <mark>از داریخ است. از داریخ استان استان میشود در استان استان از این از این استان ماندان ماندان در این از این ا تولید استان میشود استان میشود استان استان استان از این از این از این از این از این میشود استان ماندان میشود از ا</mark>

of runoff treatment

APPENDIX H

.

R

|...

1

1.

E

SITE RATING FORMS

21.

SITE RATING FORMS

· •

• • •

. . .

r M

R

,

Þ

--

·_.`

Þ

2

TABLE OF CONTENTS

Site	Page
Sludge Lagoon	H-1
Landfill No. 4	H - 3
DDT Spill at Pesticide Storage Area	н - 5
Fire Protection Training Area No. 2	H-7
Landfill No. l	H-9
Landfill No. 2	H-11
JP-4 Spill (1965)	H-13
Hazardous Waste Burial Site	H-15
Fire Protection Training Area No. 1	H-17
Laboratory Chemical Disposal Site	H-19
Landfill No. 3	H - 21
Fire Training Pit No. 3	H-23
Radioactive (Solid) Waste Burial Site	H-25

Page 1 of 2

57

NAME OF	SITE	Sludge Lagoon						
LOCATION		North of and Adjacent to Landfill No. 4						
DATE OF	OPERAT	ION OR OCCURRENCE 1962 to 1978						
OWNER/OP	ERATOR	Robins AFB						
COMMENTS								
SITE RAT	SITE RATED BY 1 I lowerley							

I. RECEPTORS

. . .

· · · · ·

. . . .

. . .

Rating Factor	Factor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
A. Population within 1,000 feet of site	2	4	8	12
B. Distance to nearest well	3	10	30	30
C. Land use/zoning within 1 mile radius	2	3	6	9
D. Distance to reservation boundary	2	6	12	18
E. Critical environments within 1 mile radius of site	2	10	20	30
F. Water quality of nearest surface water body	0	6	0	18
G. Ground water use of uppermost aquifer	1	. 9	9	27
H. Population served by surface water supply within 3 miles downstream of site	0	6	0	18
I. Population served by ground-water supply within 3 miles of site	3	6	18	18
		Subtotals	103	180

Receptors subscore (100 X factor score subtotal/maximum score subtotal)

II. WASTE CHARACTERISTICS

A. Select the factor score based on the estimated quantity, the degree of hazard, and the confidence level of the information.

1.	Waste quantity (S = small, M = medium, L = large)	L
2.	Confidence level (C = confirmed, S = suspected)	С
3.	Hazard rating (H = high, M = medium, $L = low$)	H
		100

Factor Subscore A (from 20 to 100 based on factor score matrix)

- B. Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B
 - 100 ... 1.0
 - 100 x 1.0 100
- C. Apply physical state multiplier

Subscore B X Physical State Multiplier = Waste Characteristics Subscore

100 **x** 0.75 **-** 75

77

					Page 2
11	PATHWAYS				-
		Factor Rating		Factor	Maximu Possib
_	Rating Factor	(0-3)	Multiplier	Score	Scor
A.	If there is evidence of migration of hazardous direct evidence or 80 points for indirect evid evidence or indirect evidence exists, proceed	ence. If direct evi	n maximum facto idence exists t	or subscore a hen proceed t	of 100 pc co C. If
				Subscore	100
в.	Rate the migration potential for 3 potential pumigration. Select the highest rating, and pro-	athways: surface wa	ter migration,	flooding, an	nd ground
	1. Surface water migration				
	Distance to nearest surface water		8		
	Net precipitation		6		
	Surface erosion		8		
	Surface permeability		6		
	Rainfall intensity		. 8		
			Subtotals		
	Subscore (100 X f	actor score subtotal	/maximum score	subtotal)	N/A
	2. <u>Plooding</u>		1		
		Subscore (100 x f	actor score/3)		_N/A_
	3. Ground-water migration				
	Depth to ground water				
	Net precipitation		6		
	Soil permeability		8	· · ·	
	Subsurface flows		8		
	Direct access to ground water		8		
			Subtotals	<u> </u>	<u>N/A</u>
		ctor score subtotal	/maximum score	subtotal)	
c.	Highest pathway subscore.				
	Enter the highest subscore value from A, B-1, B	3-2 or 8-3 above.			100
			Pathways	Subscore	100
	WASTE MANAGEMENT PRACTICES				
	Average the three subscores for receptors, wast	e characteristics	and nethere		
	Average the three substores for receptors, was	Receptors	and parnways.		57
		Waste Characteristic Pathways	CS		$\frac{75}{100}$
		Total 232	divided by 3	= Gros	77 Total S

Ľ

77

x 1 .0

. .

Page 1 of 2

.....

Ξ.

. 1

÷

Μ

С

Н

80

NAME OF	SITE	Landfill No.	4					
LOCATION	1	Southeast of	Industrial Waste Treatment Plant No. 1					
DATE OF		ON OR OCCURRENCE	1965 to 1978					
OWNER/OF	PERATOR_	Robins AFB						
	COMMENTS/DESCRIPTION							
SITE RAT	TED BY	1 beloveder						

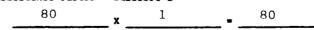
I. RECEPTORS

.

Rating Factor	Factor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
A. Population within 1,000 feet of site	3	4	12	12
B. Distance to nearest well	3	10	30	30
C. Land use/zoning within 1 mile radius	2	3	6	9
D. Distance to reservation boundary	2	6	12	18
E. Critical environments within 1 mile radius of site	2	10	20	30
F. Water quality of nearest surface water body	0	6	0	18
G. Ground water use of uppermost aquifer	1	9	9	27
H. Population served by surface water supply within 3 miles downstream of site .	0	6	0	18
I. Population served by ground-water supply within 3 miles of site	3	6	18	18
		Subtotals	107	180
				59

Receptors subscore (100 % factor score subtotal/maximum score subtotal)

II. WASTE CHARACTERISTICS


A. Select the factor score based on the estimated quantity, the degree of hazard, and the confidence level of the information.

1.	Waste	quantity	' (S	-	small,	M	•	med	ium,	L	-	large)	t.
----	-------	----------	------	---	--------	---	---	-----	------	---	---	--------	----

- 2. Confidence level (C = confirmed, S = suspected)
- 3. Hazard rating (H = high, M = medium, L = low)

Factor Subscore A (from 20 to 100 based on factor score matrix)

B. Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B

60

C. Apply physical state multiplier

Subscore B X Physical State Multiplier = Waste Characteristics Subscore

80 x 0.75

·_*

IL PATHWAYS

Ē

K

-

•

••

F

•

R

•

İ

L

	Rati	ng Factor	Factor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
•	dire	there is evidence of migration of hazardous of ect evidence or 80 points for indirect evider dence or indirect evidence exists, proceed to	nce. If direct ev	gn maximum facto: idence exists the	r subscore en proceed	of 100 points to C. If no
					Subscore	100
•		e the migration potential for 3 potential pat ration. Select the highest rating, and proce		ater migration,	flooding, a	and ground-wates
	-	Surface water migration				
		Distance to mearest surface water		8		
		Net precipitation		6		
		Surface erosion		8		
		Surface permeability		6		
		Rainfall intensity		8		
				Subtotals		N/A
		Subscore (100 X fac	tor score subtota	l/maximum score :	subtotal)	
	2.	Flooding		1		
			Subscore (100 x	factor score/3)		N/A
	3.	Ground-water migration				
		Depth to ground water	1	8		1
		Net precipitation		6		
		Soil permeability		8		
		Subsurface flows		3		
		Direct access to ground water		8		
				Subtotals		
•	Hig	Subscore (100 x fac	tor score subtota	1/maximum score :	subtotal)	N/A
	Ent	er the highest subscore value from A, B-1, B-	-2 or B-3 above.			
				Pathways	Subscore	100
V.	. w/	ASTE MANAGEMENT PRACTICES				
	Ave	rage the three subscores for receptors, waste	characteristics.	and pathways.		
		I	Neceptors Naste Characterist Pathways			59 60 100
			Total 219	divided by 3		<u>73</u> Total Score
	λpp	ly factor for waste containment from waste ma	anagement practice	8		
	Gro	ss Total Score X Waste Management Practices 1	factor = Final Sco	c e		
		-	73	x 1.0	_	73

Page 1 of 2

NAME OF SITE	DDT Spill at Pesticide Storage Area
LOCATION	Asphalt Pad Adjacent to Building 295
DATE OF OPERATION	OR OCCURRENCE 1979
OWNER/OPERATOR	Robins AFB
COMMENTS/DESCRIPT	
SITE RATED BY	belingeden

•••••

I. RECEPTORS

Ŕ

Δ

Rating Factor	Factor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
A. Population within 1,000 feet of site	3	4	12	12
B. Distance to nearest well	3	10	30	30
C. Land use/zoning within 1 mile radius	2	3	6	9
D. Distance to reservation boundary	3	6	18	18
E. Critical environments within 1 mile radius of site	0	10	0	30
F. Water quality of nearest surface water body	0	6	0	18
G. Ground water use of uppermost aquifer	1	9	9	27
H. Population served by surface water supply within 3 miles downstream of site	0	6	0	18
I. Population served by ground-water supply within 3 miles of site	3	6	18	18
		Subtotals	93	180
Receptors subscore (100 X factor s	score subtotal	L/maximum score	subtotal)	51

Receptors subscore (100 X factor score subtotal/maximum score subtotal)

II. WASTE CHARACTERISTICS

λ.	Select the factor score based on	the	estimated	quantity,	the	degree	of	hazard,	and	the	confidence	level	of
	the information.												

 Confidence level (C = confirmed, S = suspected)
3. Hazard rating (H = high, M = medium, L = low)
Factor Subscore A (from 20 to 100 based on factor score matrix)
Apply persistence factor Factor Subscore & X Persistence Factor = Subscore B

1. Waste quantity (S = small, M = medium, L = large)

60 1.0 60 x

C. Apply physical state multiplier

в.

Subscore B X Physical State Multiplier = Waste Characteristics Subscore

60 1.0 60 X .

S С н

60

:

Page 2 of 2

1.1.1.2

.

PATHWAYS				
	Factor Rating		Factor	Maximum Possible
Rating Factor	(0-3)	Multiplier	Score	
If there is evidence of migration of hazard direct evidence or 80 points for indirect e evidence or indirect evidence exists, proce	widence. If direct evi			
			Subscore	100
Rate the migration potential for 3 potential migration. Select the highest rating, and		ter migration,	, flooding, a	nd ground-wa
1. Surface water migration				
Distance to nearest surface water				
Net precipitation		6		
Surface erosion		8		
Surface permeability		6		L
Rainfall intensity		8		
	· · · · · · · · · · · · · · · · · · ·	Subtotal		
Subscore (100	X factor score subtotal	./maximum score	subtotal)	
2. Flooding		1	-	
	Subscore (100 x f			
3. Ground-water migration				
-	1	8		1
Depth to ground water		6		
Net precipitation				+
Soil permeability		8		
Subsurface flows				
Direct access to ground water	LL			<u> </u>
		Subtotals	·	
Subscore (100	x factor score subtotal	/maximum score	subtotal)	
Highest pathway subscore.				
Enter the highest subscore value from A, B-	-1, B-2 or B-3 above.			
		Pathway	s Subscore	100
			<u></u>	
WASTE MANAGEMENT PRACTICES				
Average the three subscores for receptors,	waste characteristics,	and pathways.		
	Receptors	- •		51
	Waste Characteristi Pathways	CS		60 100
	211	Almided Ser 9	_	70
	Total	divided by 3		ss Total Sco
Apply factor for waste containment from was	ste management practices	ł		
Gross Total Score X Waste Management Pract:				
· · · · · · · · · · · · · · · · · · ·		x <u>1.0</u>	_	70

Ē

•

•

.

الارد الارد المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع ال مراجع المراجع ال

H-6

Page 1	Of.	2
--------	-----	---

-

-

NAME	of	SITE	Fir	e Protection Training Area No. 2
LOCAT	NOI		Near	Northwest Corner of Luna Lake
DATE	OF	OPERA	TION OR	OCCURRENCE Mid-1950's to mid-1960's
OWNER	₹/O₽	ERATO	R	Robins AFB
COMME	NT	/DESC	RIPTION	May have been several pit areas between Luna & Scout Lakes
SITE	RAT	ED BY	2	belusedn

I. RECEPTORS

۰.

Rating Factor	Factor Rating (0-3)	Multiplier	Factor Score	Maximum Possible <u>Score</u>
A. Population within 1,000 feet of site	1	4	4	12
B. Distance to nearest well	3	10	30	30
C. Land use/zoning within 1 mile radius	1	3	3	9
D. Distance to reservation boundary	2	6	12	18
E. Critical environments within 1 mile radius of site	0	10	0	30
F. Water quality of nearest surface water body	1	6	6	18
G. Ground water use of uppermost aquifer	1	9	9	27
H. Population served by surface water supply within 3 miles downstream of site .	0	6	0	18
I. Population served by ground-water supply within 3 miles of site	3	6	18	18
		Subtotals	82	180
Receptors subscore (100 % factor s	core subtotal	/maximum score	subtotal)	46

II. WASTE CHARACTERISTICS

R

λ.	Select the factor	score base	d on th	e estimated	quantity,	the	degree	of hazard,	and	the	confidence	level	of
	the information.												

	2.	Confiden	ce lev	el (C	= confi	rmed, S	= sus	pected)			
	3.	Hazard r	ating	(H =)	nigh, M	= mediu	m, L =	low)			
			Fac	tor Si	bscore	A (from	20 to	100 base	d on facto	score	matrix)
в.		ly persis tor Subsc				Factor	= Sub	score B			
						100	_ × _	0.9		90	<u> </u>
c.	λpp	ly physic	al sta	ite mui	Ltiplier						

1. Waste quantity (S = small, M = medium, L = large)

Subscore B X Physical State Multiplier = Waste Characteristics Subscore

90	x	1.0	=	90

_L____ _C____

H

100

A TANATA TATA TAY MARKED A TAYATA

1

. PATHWAYS

Ē

R

.

-

.

5

:

•

•

:

Ì

जन्म सन्दर्भन सन्दर्भन

•

.

Rat	ting Factor	Factor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
đ	f there is evidence of migration of hazardous con lrect evidence or 80 points for indirect evidence vidence or indirect evidence exists, proceed to 1	e. If direct evi	n maximum facto dence exists th	or subscore of ien proceed to	100 points C. If no
				Subscore	N/A
Ra	ate the migration potential for 3 potential path ligration. Select the highest rating, and process	ways: surface wa d to C.	ter migration,	flooding, and	ground-wate:
1.	. Surface water migration				
	Distance to nearest surface water	3	8	24	24
	Net precipitation	1	6	6	18
	Surface erosion	0	8	0	24
	Surface permeability	1	6	6	18
	Rainfall intensity	3	8	24	24
		 	Subtotals	60	108
	Subscore (100 X fact	or score subtotal	/maximum score	subtotal)	55
2.	. Flooding	0	1	0	3
		Subscore (100 x f	actor score/3)		0
3.	. Ground-water migration			-	
-	Depth to ground water	2	8	16	24
	Net precipitation	1	6	6	18
	Soil permeability	2	8	16	24
	Subsurface flows	1	8	8	24
	Direct access to ground water	0	8	0	24
	Direct access to ground water	<u>_</u>	Subtotals	46	114
					40
	Subscore (100 x facto	or score subtotal	/maximum score	subtotal)	
	ighest pathway subscore.				
EI	nter the highest subscore value from A, 8-1, 8-2	or B-3 above.			
			Pathways	Subscore	55
. V	VASTE MANAGEMENT PRACTICES				
A	verage the three subscores for receptors, waste (characteristics,	and pathways.		
	Wa	ceptors ste Characteristi thways	CS		46 90 55
	To	tal191	divided by 3		64 Total Score
Aj	pply factor for waste containment from waste man	agement practices			
G	ross Total Score X Waste Management Practices Fac	ctor = Final Scor	e		
		64			

. . . .

Page 1 of 2

EL .

PM PF4

50

NAME OF SITE	Landfill No. 1
LOCATION	East of Second Street near Fuel Storage Tanks
DATE OF OPERA	TION OR OCCURRENCE 1946-1951
OWNER/OPERATO	RRobins_AFB
COMMENTS/DESC	RIPTION Site was previously filled with sandy loam
SITE RATED BY	E Jeleseder

te de la composición de la composición de la composición de la composición de la composición de la composición

L RECEPTORS

Rating Factor	Factor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
A. Population within 1,000 feet of site	2	4	8	12
8. Distance to nearest well	3	· 10	30	30
C. Land use/zoning within 1 mile radius	2	3	6	9
D. Distance to reservation boundary	2	6	12	18
E. Critical environments_within 1 mile radius of site	0	10	0	30
F. Water quality of nearest surface water body	0	6	0	18
G. Ground water use of uppermost aquifer	1	9	9	27
H. Population served by surface water supply within 3 miles downstream of site .	0	6	0	18
I. Population served by ground-water supply within 3 miles of site	3	6	18	18
		Subtotals	83	180
Recentors subscore (100 % factor s	core subtotal	l/maximum score	subtotal)	46

Receptors subscore (100 X factor score subtotal/maximum score subtotal)

II. WASTE CHARACTERISTICS

A. Select the factor score based on the estimated quantity, the degree of hazard, and the confidence level of the information.

1.	Waste quantity (S = small, M = medium, $L = large$)	M
2.	Confidence level (C = confirmed, S = suspected)	<u> S </u>
3.	Hazard rating (H = high, M = medium, L = low)	<u> </u>

Factor Subscore A (from 20 to 100 based on factor score matrix)

B. Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B

<u>50 x 1.0 = 50</u>

C. Apply physical state multiplier

Subscore B X Physical State Multiplier = Waste Characteristics Subscore

50 x 1.0 = 50

Page 2 of 2

IL PATHWAYS

T

Ŋ

•

...

.

-

Į

.

Ľ

Ratis	ng Factor	Factor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score		
. If the direct of the direct	there is evidence of migration of hazardous of ect evidence or 80 points for indirect eviden dence or indirect evidence exists, proceed to	ce. If direct evid	n maximum fact dence exists t	or subscore o hen proceed t	of 100 points to C. If no		
				Subscore	80		
	e the migration potential for 3 potential pat ration. Select the highest rating, and proce		ter migration,	flooding, ar	nd ground-wate		
1.	Surface water migration						
	Distance to nearest surface water	1	8	8	24		
	Net precipitation	1	6	6	18		
	Surface erosion	1	8	8	24		
	Surface permeability	1	6	6	18		
	Rainfall intensity	3	8	24	24		
			Subtotals	52	108		
	Subscore (100 % fac	tor score subtotal,	/maximum score	subtotal)	48		
2.	Flooding	0	1	0	3		
		Subscore (100 x f	actor score/3)		0		
3.	Ground-water migration		,	1			
	Depth to ground water	2	8	16	24		
	Net precipitation	1	6	6	18		
	Soil permeability	2	8	16	24		
	Subsurface flows	1	8	8	24		
	Direct access to ground water	0		0	24		
	Subtotals 46						
	Subscore (100 x fac	ctor score subtotal	/maximum Score	subtotal)	40		
. Hig	hest pathway subscore.						
Ent	er the highest subscore value from λ , B-1, B-	-2 or B-3 above.					
			Pathway	s Subscore	80		
•							

المستحديات والماها سنعاب فالتاهات فالتاحك المارا الما

H-10

Page 1 of 2

42

 \mathbf{L}

s

Н

70

- |

1

NAME OF SITE	Landfill No. 2	
LOCATION	North of Second Street near Main Runway	
DATE OF OPERATI	ION OR OCCURRENCE 1951 to 1963	
OWNER/OPERATOR_	Robins AFB	
COMMENTS/DESCRI	Site was previously filled with sandy loam.	
SITE RATED BY	E / Juliander	

L RECEPTORS

Rating Factor	Rating (0-3)	Multiplier	Factor Score	Possible Score
A. Population within 1,000 feet of site	0	4	0	12
B. Distance to nearest well	3	10	30	30
C. Land use/zoning within 1 mile radius	2	3	6	9
D. Distance to reservation boundary	2	6	12	18
E. Critical environments within 1 mile radius of site	0	10	0	30
F. Water quality of nearest surface water body	0	6	0	18
G. Ground water use of uppermost aquifer	1	9	9	27
H. Population served by surface water supply within 3 miles downstream of site -	0	6	0	18
I. Population served by ground-water supply within 3 miles of site	3	6	18	18
		Subtotals	75	180

Receptors subscore (100 X factor score subtotal/maximum score subtotal)

II. WASTE CHARACTERISTICS

- A. Select the factor score based on the estimated quantity, the degree of hazard, and the confidence level of the information.
 - Waste quantity (S = small, M = medium, L = large)
 Confidence level (C = confirmed, S = suspected)
 Hazard rating (H = high, M = medium, L = low)

Factor Subscore A (from 20 to 100 based on factor score matrix)

B. Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B

C. Apply physical state multiplier

Subscore B X Physical State Multiplier = Waste Characteristics Subscore

<u>70 x 0.75 = 52.5</u>

Page 2 of 2

IL PATHWAYS

E T

Ĩ,

• • •

•

• •

-

..

Ì

:

R	ati	ng Factor	Factor Rating (0-3)	Multiplier	Factor Score	Maximum Possibla Score
.	If dire	there is evidence of migration of hazardous co ect evidence or 80 points for indirect evidenc dence or indirect evidence exists, proceed to	e. If direct evi	n maximum facto	or subscore of	of 100 points
					Subscore	80
		e the migration potential for 3 potential path ration. Select the highest rating, and procee		ter migration,	flooding, an	nd ground-wate
	1.	Surface water migration				
		Distance to nearest surface water	3	8	24	24
		Net precipitation	1	6	6	18
		Surface erosion	1	8	8	24
		Surface permeability	1	6	6	18
		Rainfall intensity	3	8	24	24
				Subtotals	68	108
		Subscore (100 X fact	or score subtotal	/maximum score	subtotal)	63
	2.	Flooding	0	1	ο	3
			Subscore (100 x f	actor score/3)		0
	3.	Ground-water migration				
		Depth to ground water	2	8	16	24
		Net precipitation	1	6	6	18
		Soil permeability	2	8	16	24
		Subsurface flows	2	8	16	24
		Direct access to ground water	0	8	0	24
			H,,,,,,,	Subtotals	54	114
		Subscore (100 x fact				47
	_	thest pathway subscore. For the highest subscore value from A, B-1, B-2	? or B-3 above.	Pathways	Subscore	80
	•	ASTE MANAGEMENT PRACTICES		and pathwave.	<u></u> .	
		rage the three subscores for receptors, waste	characteristics,	and backselet		
		Wa	characteristics, eceptors aste Characteristi athways			42 52.5 80
A.	Ave	Re Wa Pa To	eceptors nate Characteristi athways otal	cs divided by 3		52.5
A.	λ γ e	Re Wa Pa	aceptors aste Characteristi athways otal nagement practices	cs āivided by 3		52.5 80 58

H-12

برقار فالمتنج بتم المائيمة <u>ماسم رحم مرابعا</u>

Page 1 of 2

. 4 13

89 m

:

•

_

•

•

50

NAME OF SI	JP	-4 Spill
LOCATION_	PO	L Bulk Storage Area
DATE OF OF	ERATION OR	OCCURRENCE 1965
OWNER/OPER	ATOR	Robins AFB
COMMENTS/D	ESCRIPTION	Leak in four-inch diameter JP-4 supply line
SITE RATED	BY	Aduración

L RECEPTORS

. . .

Rating Factor	Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
A. Population within 1,000 feet of site	2	4	8	12
B. Distance to nearest well	3	10	30	30
C. Land use/zoning within 1 mile radius	2	3	6	9
D. Distance to reservation boundary	2	6	12	18
E. Critical environments within 1 mile radius of site	0	10	0	30
F. Water quality of nearest surface water body	0	6	0	18
G. Ground water use of uppermost aquifer	1	9	9	27
B. Population served by surface water supply within 3 miles downstream of site	0	6	0	18
I. Population served by ground-water supply within 3 miles of site	3	6	18	18
		Subtotals	83	180
Receptors subscore (100 % factor s	core subtota	L/maximum score	subtotal)	46

Receptors subscore (100 X factor score subtotal/maximum score subtotal)

II. WASTE CHARACTERISTICS

- A. Select the factor score based on the estimated quantity, the degree of hazard, and the confidence level of the information.
 - L____ 1. Waste quantity (S = small, M = medium, L = large) 2. Confidence level (C = confirmed, S = suspected) 3. Hazard rating (H = high, M = medium, L = low) <u>_M___</u>

Factor Subscore A (from 20 to 100 based on factor score matrix)

B. Apply persistence factor Factor Subscore A X Persistence Factor = Subacore B

> 50 **x**____0.9 **-** 45

C. Apply physical state multiplier

Subscore B X Physical State Multiplier = Waste Characteristics Subscore

x <u>1.0</u> 45 45 .

н-13

					Page 2 of 2
L PATHWAYS					
Rating Factor		Factor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
direct evidence of	nce of migration of hazardous cont x 80 points for indirect evidence. Act evidence exists, proceed to B.	If direct ev:	gn maximum fact idence exists t	or subscore then proceed	of 100 points for to C. If no
				Subscore	80
B. Rate the migration migration. Select	n potential for 3 potential pathwa t the highest rating, and proceed	ys: surface with C.	ater migration,	flooding, a	nd ground-water
1. Surface water	· · ·				
Distance to n	Barest surface water	2	8	16	24
Net precipita	tion	1	6	6	18
Surface erosic	'n	N/A	8	-	
Surface perme	bility	1	6	6	18
Rainfall inte	nsity	3	8	24	24
			Subtotals	52	84_
	Subscore (100 X factor	score subtotal	L/maximum score	subtotal)	62
2. Flooding		0	1	0	3
	Su	bscore (100 x i	factor score/3)		0
3. Ground-water	nigration				
Depth to ground	xd water	2	8	16	24
Net precipita	tion	1	6	6	18
Soil permeabi	Lity	2	8	16	24
Subsurface flo	2W8	1	8	8.	24

______ Subtotals 114 ____40

8

Subscore (100 x factor score subtotal/maximum score subtotal)

0

C. Highest pathway subscore.

.

r

. .

÷., ţ.

• *,

•

•

. .

•

1

Enter the highest subscore value from A, B-1, B-2 or B-3 above.

Pathways Subscore 80

0

24

.

IV. WASTE MANAGEMENT PRACTICES

Direct access to ground water

A. Average the three subscores for receptors, waste characteristics, and pathways.

H-14

		Receptors Waste Characteris Pathways	tics			46 45 80
		Total171	divided	by 3 -	Gros	s Total Score
9.	. Apply factor for waste containment from waste m	anagement practic	es.			
	Gross Total Score X Waste Management Practices	Factor = Final Sc	ore			
		57	x	1.0	-	57

Page	1	of	2

-.7

•

1.2.2.

.

.

.....

__M___ __C

> <u>н</u> 80

NAME OF SITE	Hazardous Waste Burial Site
LOCATION	Near Radioactive (Solid) waste Disposal Site
DATE OF OPERATIO	N OR OCCURRENCE 1976, 1977
OWNER/OPERATOR	Robins AFB
COMMENTS/DESCRIP SITE RATED BY	tion [] Johnseder

I. RECEPTORS

Rating Factor	Factor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
A. Population within 1,000 feet of site	1	4	4	12
B. Distance to nearest well	3	10	30	30
C. Land use/zoning within 1 mile radius	0	3	0	9
D. Distance to reservation boundary	3	6	18	18
E. Critical environments within 1 mile radius of site	0	10	0	30
F. Water quality of nearest surface water body	0	6	0	18
G. Ground water use of uppermost aquifer	1	9	9	27
E. Population served by surface water supply within 3 miles downstream of site	0	6	0	18
I. Population served by ground-water supply within 3 miles of site	3	6	18	18
		Subtotals	79	180
Receptors subscore (100 X factor s	core subtotal	/maximum score	subtotal)	44

II. WASTE CHARACTERISTICS

A. Select the factor score based on the estimated quantity, the degree of hazard, and the confidence level of the information.

	1.	Waste quantity (S = small, M = medium, L = large)
	2.	Confidence level (C = confirmed, S = suspected)
	3.	Hazard rating (H = high, M = medium, L = low)
		Factor Subscore A (from 20 to 100 based on factor score matrix)
в.	App	ly persistence factor

Factor Subscore A X Persistence Factor = Subscore B

80 x 1.0 80

C. Apply physical state multiplier

Subscore B X Physical State Multiplier = Waste Characteristics Subscore

80 x 1.0 80

Page 2 of 2

M. PATHWAYS

•

:. 100

4

-

.

• •

E

Net precipitation 1 4 Surface erosion 1 4 Surface permeability 1 6 Rainfall intensity 3 8 Subscore (100 X factor score subtotal/maxim 5 Subscore (100 X factor score subtotal/maxim 5 Subscore (100 X factor score subtotal/maxim 0 1 6 Subscore (100 X factor score subtotal/maxim 1 2 8 Net precipitation 1 Soil permeability 2 Subsurface flows 1 Direct access to ground water 0	nce exists th r migration, 8 6 8 6 8 6 8 5 Subtotals axisum score 1	subscore flooding, a 8 6 8 6 24 52 subtotal) 0	to C. If no <u>N/A</u> and ground-wate 24 18 24 18 24 18 24 108 48 3
migration. Select the highest rating, and proceed to C. 1. Surface water migration Distance to mearest surface water Net precipitation Surface erosion Surface permeability Rainfall intensity Subscore (100 X factor score subtotal/maxim Subscore (100 X factor score subtotal/maxim Subscore (100 X factor score subtotal/maxim Subscore (100 x factor Subscore	8 6 8 6 8 Subtotals aximum score 1 tor score/3) 8	<pre>\$</pre>	24 18 24 18 24 108 48 3
migration. Select the highest rating, and proceed to C. 1. Surface water migration Distance to mearest surface water Net precipitation Surface erosion Surface permeability Rainfall intensity Subscore (100 X factor score subtotal/maxim Subscore (100 X factor score subtotal/maxim Subscore (100 X factor score subtotal/maxim Subscore (100 x factor Subscore	8 6 8 6 8 Subtotals aximum score 1 tor score/3) 8	8 6 8 6 24 52 subtotal) 0	$ \begin{array}{r} 24 \\ 18 \\ 24 \\ 18 \\ 24 \\ 108 \\ 48 \\ 3 \\ \end{array} $
1. Surface water migration 1	6 8 6 8 Subtotals aximum score 1 tor score/3) 8	6 8 6 24 52 subtotal) 0	18 24 18 24 108 48 3
Distance to mearest surface water 1	6 8 6 8 Subtotals aximum score 1 tor score/3) 8	6 8 6 24 52 subtotal) 0	18 24 18 24 108 48 3
Net precipitation 1 6 Surface erosion 1 6 Surface permeability 1 6 Rainfall intensity 3 8 Subscore (100 X factor score subtotal/maxim 5 Subscore (100 X factor score subtotal/maxim 0 1 2. Flooding 0 1 Subscore (100 X factor score subtotal/maxim 3. Ground-water migration 0 1 Depth to ground water 2 8 Net precipitation 1 6 Soil permeability 2 8 Direct access to ground water 0 8 Direct access to ground water 0 8	6 8 6 8 Subtotals aximum score 1 tor score/3) 8	6 8 6 24 52 subtotal) 0	18 24 18 24 108 48 3
Surface erosion 1 4 Surface permeability 1 4 Rainfall intensity 3 8 Subscore (100 X factor score subtotal/maxim 5 Subscore (100 X factor score subtotal/maxim 0 1 0 1 2 8 5 Net precipitation 1 6 Soil permeability 2 8 Subscore flows 1 8 Direct access to ground water 0 8	8 6 8 Subtotals aximum score 1 tor score/3) 8	8 6 24 52 subtotal) 0	24 18 24 <u>108</u> <u>48</u> 3
Surface permeability 1 6 Rainfall intensity 3 8 Subscore (100 X factor score subtotal/maxim 5 Subscore (100 X factor score subtotal/maxim 0 1 2. Flooding 0 1 Subscore (100 X factor score subtotal/maxim 2. Flooding 0 1 Subscore (100 X factor score subtotal/maxim 3. Ground-water migration 2 8 Net precipitation 1 6 Soil permeability 2 8 Direct access to ground water 0 8 Subsurface flows 1 6 Subsurface flows 1 8 Subsurface flows 0 8	6 8 Subtotals aximum score 1 tor score/3) 8	6 24 52 subtotal) 0	18 24 108 48 3
Rainfall intensity 3 8 Subscore (100 X factor score subtotal/maxim 5 Subscore (100 X factor score subtotal/maxim 0 1 Subscore (100 x factor 1 6 Subscore (100 x factor 1 6 Soil permeability 2 8 Subsurface flows 1 6 Direct access to ground water 0 8	8 Subtotals aximum score 1 tor score/3) 8	24 52 subtotal) 0	24
Subscore (100 X factor score subtotal/maxim 2. Flooding 0 1 Subscore (100 x factor 3. Ground-water migration Depth to ground water 2 8 Net precipitation 1 6 Soil permeability 2 8 Subsurface flows 1 8 Direct access to ground water 0 8	Subtotals axisum score 1 tor score/3) 8	<u>52</u> subtotal) 0	<u>108</u> <u>48</u> <u>3</u>
Subscore (100 X factor score subtotal/maxim 2. Plooding 0 Subscore (100 x factor 3. Ground-water migration Depth to ground water 2 Net precipitation 1 Soil permeability 2 Subsurface flows 1 Direct access to ground water 0 Subsurface flows 0	aximum score 1 tor score/3)	subtotal) 0	<u>48</u> <u>3</u>
2. Flooding 0 1 Subscore (100 x factor 3. Ground-water migration Depth to ground water 2 8 Net precipitation 1 6 Soil permeability 2 8 Subsurface flows 1 8 Direct access to ground water 0 8	1 tor score/3) 8	0	3
Subscore (100 x factor 3. Ground-water migration Depth to ground water 2 8 Net precipitation 1 6 Soil permeability 2 8 Subsurface flows 1 8 Direct access to ground water 0 8	tor score/3)	· ·	·
3. Ground-water migration Depth to ground water 2 8 Net precipitation 1 6 Soil permeability 2 8 Subsurface flows 1 8 Direct access to ground water 0 8			~
Depth to ground water 2 Net precipitation 1 Soil permeability 2 Subsurface flows 1 Direct access to ground water 0			0
Net precipitation 1 6 Soil permeability 2 8 Subsurface flows 1 8 Direct access to ground water 0 8			1
Soil permeability 2 Subsurface flows 1 Direct access to ground water 0	6		24
Subsurface flows 1 8 Direct access to ground water 0 8		6	18
Direct access to ground water 0 8	8	16	24
S	8	8	24
	8	0	24
Subscore (100 x factor score subtotal/maxim	Subtotals	46	114
	aximum score	subtotal)	40
Highest pathway subscore.			
Enter the highest subscore value from A, $B-1$, $B-2$ or $B-3$ above.			
		Subscore	48
·	Pathways	GUDBGULE	

.

Page 1 of 2

÷.,

•

...

U

...

1

.

50

NAME OF SITE Fire Protection Training Area	No. 1			
LOCATION Second Street near Bulk Fuel St	torage Tank			
DATE OF OPERATION OR OCCURRENCE 1943 to mid-1950)'s			<u></u>
OWNER/OPERATOR Robins AFB				
COMMENTS/DESCRIPTION Exact location not deter	cmined			
SITE RATED BY E / Johnseder				
1. RECEPTORS				
	Factor		Teetee.	Maximum
Rating Factor	Rating (0-3)	Multiplier	Factor Score	Possible Score

·. .

A. Population within 1,000 feet of site	1	4	4	12
B. Distance to nearest well	3	10	30	30
C. Land use/zoning within 1 mile radius	2	3	6	9
D. Distance to reservation boundary	2	6	12	18
E. Critical environments within 1 mile radius of site	0	10	0	30
F. Water quality of nearest surface water body	0	6	0	18
G. Ground water use of uppermost aquifer	1	9	9	27
H. Population served by surface water supply within 3 miles downstream of site	0	6	0	18
I. Population served by ground-water supply within 3 miles of site	3	6	18	18
		Subtotals	79	180
Receptors subscore (100 % factor s	core subtota	l/maximum score	subtotal)	_44
II. WASTE CHARACTERISTICS				
A. Select the factor score based on the estimated quanti the information.	ty, the degr	ee of hazard, a	nd the confi	dence level (
1. Waste quantity (S = small, M = medium, L = large)				M
2. Confidence level (C = confirmed, S = suspected)				<u> </u>
3. Hazard rating (H = high, M = medium, L = low)				<u> </u>

Factor Subscore A (from 20 to 100 based on factor score matrix)

B. Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B

50 **x** 1.0 **•** 50

C. Apply physical state multiplier

(6

Subscore B X Physical State Multiplier = Waste Characteristics Subscore

50 x 1.0 50

Rating Factor		Fa ctor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
If there is direct evide	evidence of migration of ha	zardous contaminants, assig ct evidence. If direct evi	n maximum fa	ctor subscore	of 100 point
				Subscore	N/A
	ration potential for 3 pote Select the highest rating,	ntial pathways: surface wa and proceed to C.	ter migratio	n, flooding, a	ind ground-wa
1. Surface	water migration				
Distance	to nearest surface water	2	. 8	16	24
Net prec	ipitation	1	6	6	18
Surface	erosion	N/A	8	_	-
Surface	permeability	1	6	6	18
<u>Rainfall</u>	intensity	3	88	24	24
			Subtota	1s <u>52</u>	84
	Subscore	100 X factor score subtotal,	/maximum sco	re subtotal)	62
2. Flooding		0	1	0	3
	ater migration	2	8	16	24
	ipitation	1	<u>6</u>	6	18
	meability	2		16	24
	ce flows	1	8	8	24
	ccess to ground water	0	8	0	24
<u></u>			Subtota	1 s 46	114
	Subscore	100 x factor score subtotal,	/maximum sco	re subtotal)	40
Highest math	way subscore.			••	
	ghest subscore value from A	, B-1, B-2 or B-3 above.			
	-		Pathw	ays Subscore	62
WASTE MA	NAGEMENT PRACTICES				
Average the	three subscores for recepto	rs, waste characteristics,	and pathways	•	
	•	Receptors			44
		WASte Characteristi Pathways	C S		<u>50</u> 62
		Total 156	divided by 3	•	52
			•		ss Total Sco

.

t

l

<u>с</u>.

•

•

Ì

-

Ľ

• • •

-. ____ × ____

1.0

52

52

=

. . .

Page 1 of 2

NAME OF SITE	Laboratory Chemical Disposal Site
LOCATION	Near Luna Lake
DATE OF OPERATION	OR OCCURRENCE 1962 to 1964
OWNER/OPERATOR	Robins AFB
COMMENTS/DESCRIPT	TON One time disposal of expired shelf life chemicals
SITE RATED BY	1 Idenada
	•

I. RECEPTORS

.

Rating Factor	Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
A. Population within 1,000 feet of site	1	4	4	12
B. Distance to nearest well	3	10	30	30
C. Land use/zoning within 1 mile radius	1	3	3	9
D. Distance to reservation boundary	2	6	12	18
E. Critical environments within 1 mile radius of site	0	10	0	30
P. Water quality of nearest surface water body	0	6	0	18
G. Ground water use of uppermost aquifer	1	9	9	27
H. Population served by surface water supply within 3 miles downstream of site .	0	6	0	18
I. Population served by ground-water supply within 3 miles of site	3	6	18	18
		Subtotale	76	180

Receptors subscore (100 X factor score subtotal/maximum score subtotal)

II. WASTE CHARACTERISTICS

- A. Select the factor score based on the estimated quantity, the degree of hazard, and the confidence level of the information.
 - Waste quantity (S = small, M = medium, L = large)
 Confidence level (C = confirmed, S = suspected)
 Bazard rating (H = high, M = medium, L = low)

Factor Subscore A (from 20 to 100 based on factor score matrix)

B. Apply persistence factor Factor Subscore A X Persistence Factor - Subscore B

60 x 1.0 = 60

C. Apply physical state multiplier

Subscore B X Physical State Multiplier = Waste Characteristics Subscore

60 **x** 0.5 **.** 30

42

М

С

М

60

3

0

61

51

Rating Factor	Factor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
. If there is evidence of migration of hazardous of direct evidence or 80 points for indirect evidence evidence or indirect evidence exists, proceed to	contaminants, assignce. If direct evi	n maximum facto		
			Subscore	80
Rate the migration potential for 3 potential part		ter migration,	flooding, a	nd ground-wates
migration. Select the highest rating, and proce	ed to C.			
algration. Select the highest rating, and proce				
• • •	2		16	24
1. Surface water migration		6	16 6	24
1. Surface water migration Distance to nearest surface water				
1. Surface water migration Distance to nearest surface water Net precipitation	2	6	6	18
1. Surface water migration Distance to nearest surface water Net precipitation Surface erosion	2 1 0	6	6 0	18 24
1. Surface water migration Distance to mearest surface water Net precipitation Surface erosion Surface permeability	2 1 0 1	6 8 6	6 0 6	18 24 18

0 0 2. Flooding 1

Subscore (100 x factor score/3)

3. Ground-water migration

Ē

. ۰.

;

Ţ.

•

È

₹.

E

Depth to ground water	2	8	16	24
Net precipitation	1	6	6	18
Soil permeability	2	8	16	24
Subsurface flows	1	8	8	24
Direct access to ground water	3	8	24	24
		Subtotals	70	114

Subscore (100 x factor score subtotal/maximum score subtotal)

C. Highest pathway subscore.

.

Enter the highest subscore value from A, B-1, B-2 or B-3 above.

80 Pathways Subscore

IV. WASTE MANAGEMENT PRACTICES

A. Average the three subscores for receptors, waste characteristics, and pathways.

Receptor	5			42
Waste Ch Pathways	aracteris	tics		<u> </u>
Total	152	divided by 3	•	51 Gross Total Score

8. Apply factor for waste containment from waste management practices

Gross Total Score X Waste Management Practices Factor = Final Score

۰.

_ × __ 1.0 51

.

.

Page 1 of 2

÷

.

.

. . . .

53

46

S S H

40

NAME OF SITE	Landfill No. 3
LOCATION	West Side of Luna Lake
DATE OF OPERATION	OR OCCURRENCE 1964
OWNER/OPERATOR	Robins AFB
COMMENTS/DESCRIPT	
SITE RATED BY	" Junaler

L RECEPTORS

1.1.1

Ę

· . .

Rating Factor	Factor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
A. Population within 1,000 feet of site	1	4	4	12
B. Distance to nearest well	3	10	30	30
C. Land use/zoning within 1 mile radius	1	3	3	9
D. Distance to reservation boundary	2	66	12	18
E. Critical environments within 1 mile radius of site	0	10	0	30
P. Water quality of nearest surface water body	1	6	6	18
G. Ground water use of uppermost aquifer	1	9	9	27
H. Population served by surface water supply within 3 miles downstream of site .	0	6	0	18
I. Population served by ground-water supply within 3 miles of site	3	6	18	18
		Subtotals	82	<u>180</u>

Receptors subscore (100 X factor score subtotal/maximum score subtotal)

II. WASTE CHARACTERISTICS

A. Select the factor score based on the estimated quantity, the degree of hazard, and the confidence level of the information.

1.	Waste quantity (S = small, M = medium, L = large)
2.	Confidence level (C = confirmed, S = suspected)
3.	Hazard rating (H = high, M = medium, $L = low$)

Factor Subscore A (from 20 to 100 based on factor score matrix)

- B. Apply persistence factor
 - Factor Subscore & X Persistence Factor = Subscore B
 - <u>40</u> **x** <u>1.0</u> **-** <u>40</u>
- C. Apply physical state multiplier

Subscore B X Physical State Multiplier = Waste Characteristics Subscore

40 x 1.0 40

. PATHWAYS

.

Ē

.

k

.

• •

(

.

•

.....

F

. . .

If there is evidence of sigration of hazardous contaminants, assign maximum factor subscore of 100 points direct evidence or 80 points for indirect evidence. If direct evidence exists then proceed to C. If no evidence or indirect evidence exists, proceed to B. Subscore	Rati	ing Factor	Factor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
Bate the signation potential for 3 potential pathways: surface water signation, flooding, and ground-wate signation. Select the highest rating, and proceed to C. 1. Surface water signation Distance to meanest surface water 3 8 24 24 Met precipitation 1 6 6 18 Surface excession 0 8 0 24 Surface permeability 1 6 6 18 Rainfall intensity 3 8 24 24 Subscore (100 X factor score subtotal/sexisum score subtotal) 56 2. Flooding 0 1 0 3 Subscore (100 X factor score/3) 0 0 3 3. Ground-water signation 1 6 6 18 Subscore (100 x factor score/3) 0 0 3 0 3. Ground-water signation 1 6 6 18 Solipermeability 2 8 16 24 Net precipitation 1 6 24 24 Subscore (100 x factor score subtotal/sexisus score subtotal) 24 24 Direct access to gr	. If dig	there is evidence of migration of hazard rect evidence or 80 points for indirect e	ous contaminants, assign vidence. If direct evid	n maximum fact	tor subscore of then proceed t	of 100 points
sigration. Select the highest rating, and proceed to C. 1. Surface water sigration Distance to mearest surface water 3 8 24 24 Net precipitation 1 6 6 18 Surface erosion 0 8 0 24 Surface scosion 0 8 0 24 Surface scosion 0 8 0 24 Surface permetbility 1 6 6 18 Mainfall intensity 3 8 24 24 Subtotals 60 108 108 56 Subscore (100 X factor score subtotal/maximu score subtotal) 56 3 Cound-water sigration 0 1 0 3 Subscore (100 x factor score/3) 0 0 0 3 Subscore flows 2 8 16 24 Net precipitation 1 6 6 18 Soli permeability 2 8 16 24 Net precipitation 1 6 6 18 Soli permeability 2 8 0					Subscore	0
Distance to mearest surface water 3 s 24 24 Met precipitation 1 6 6 18 Surface ecosion 0 8 0 24 Surface ecosion 3 8 24 24 Surface ecosion 3 8 24 24 Subscore (100 X factor score subtotal/maximum score subtotal) 56 10 2 1 0 3 0 3 0 1 0 3 0 3 0 1 0 3 0 2 4 10 1 0 3 0 2 16 24 9 16 24 16 24 16 24 16				ter migration	, flooding, an	nd ground-wate
Met precipitation 1 6 6 18 Surface ecosion 0 8 0 24 Surface permeability 1 6 6 18 Painfall intensity 3 8 24 24 Subtotals 60 108 108 Subscore (100 X factor score subtotal/saxinum score subtotal) 56 3 Subscore (100 X factor score subtotal/saxinum score subtotal) 56 2 Flooding 0 1 0 3 3 Subscore (100 X factor score/3) 0 0 3 3 Ground-water sigration 1 6 6 18 Soli permeability 2 8 16 24 Subscore (100 x factor score subtotal/saxinum score subtotal) 24 24 Subscore flowe 2 8 16 24 Subscore (100 x factor score subtotal/saxinum score subtotal) 47 41 Subscore (100 x factor score subtotal/saxinum score subtotal) 47 5 114 5 54 114 Subscore. 20 8	1.	Surface water migration				
Net precipitation 0 s 0 24 Surface permeability 1 6 6 18 Bainfall intensity 3 8 24 24 Subtotals 60 108 Subscore (100 X factor score subtotal/maximum score subtotal) 56 2. Flooding 0 1 0 3 Subscore (100 X factor score (100 x factor score/3) 0 0 3 Subscore (100 x factor score/3) 0 0 3 Subscore (100 x factor score/3) 0 0 3 Subscore (100 x factor score/3) 0 0 3 3. Ground-water migration 1 6 6 18 Soil permeability 2 8 16 24 Subscore (100 x factor score subtotal/maximum score subtotal) 24 24 24 Subscore (100 x factor score subtotal/maximum score subtotal) 47 Highest pathway subscore. 47 47 Enter the highest subscore value from A, B-1, B-2 or B-3 above. 26 26		Distance to mearest surface water	3	8	24	24
Surface greesebility 1 6 6 Bainfall intensity 3 8 24 Subtotals 60 108 Subscore (100 X factor score subtotal/saxinum score subtotal) 56 2. Flooding 0 1 0 Subscore (100 X factor score subtotal/saxinum score subtotal) 56 2. Flooding 0 1 0 3. Ground-water sigration 0 1 0 Depth to ground water 2 8 16 Soil permeability 2 8 16 Subscore (100 x factor score subtotal/saxinum score subtotal) 47 Subscore (100 x factor score subtotal/saxinum score subtotal) 47		Net precipitation	1	6	6	18
Surface primetricity 3 3 24 24 Rainfall intensity 3 8 24 24 Subtotals 60 108 Subscore (100 X factor score subtotal/maximum score subtotal) 56 2. Plooding 0 1 0 3 Subscore (100 X factor score/3) 0 3 3 6 108 Subscore (100 x factor score/3) 0 3 3 0 3 Subscore (100 x factor score/3) 0 3 3 16 24 Net precipitation 1 6 6 18 3 3 0 24 Subsurface flows 2 8 16 24 3 3 0 24 Subscore (100 x factor score subtotal/maximum score subtotal) 47 47 Highest pathway subscore. Enter the highest subscore value from A, B-1, B-2 or B-3 above. Pathways Subscore 56		Surface erosion	0	8	0	24
Subscore (100 X factor score subtotal/saxisus score subtotal) 56 2. Flooding 0 1 0 3 Subscore 0 1 0 3 Subscore 00 x factor score/3) 0 0 3. Ground-water migration 1 6 6 18 Soil permeability 2 8 16 24 Subscore flows 2 8 16 24 Subscore flows 2 8 16 24 Direct access to ground water 0 8 0 24 Subscore (100 x factor score subtotal/maximum score subtotal) 47 Highest pathway subscore. Enter the highest subscore value from A, B-1, B-2 or B-3 above. Pathways Subscore 56		Surface permeability	1	6	6	18
Subscore (100 X factor score subtotal/maximum score subtotal) 56 2. Flooding 0 1 0 3 Subscore (100 x factor score/3) 0 3 3. Ground-water migration 0 1 0 3 Depth to ground water 2 8 16 24 Net precipitation 1 6 6 18 Soil permeability 2 8 16 24 Subscore flows 2 8 16 24 Subscore flows 2 8 16 24 Direct access to ground water 0 8 0 24 Subscore (100 x factor score subtotal/maximum score subtotal) 47 Highest pathway subscore. Enter the highest subscore value from A, B-1, B-2 or B-3 above. Pathways Subscore 56		Rainfall intensity	3	8	24	24
2. Flooding 0 1 0 3 Subscore (100 x factor score/3) 0 3 3. Ground-water migration 0 1 0 3 Depth to ground water 2 8 16 24 Net precipitation 1 6 6 18 Soil permeability 2 8 16 24 Subscore flows 2 8 0 24 Subscore flows 2 8 0 24 Subscore (100 x factor score subtotal/maximum score subtotal) 47 Highest pathway subscore. Enter the highest subscore value from A, B-1, B-2 or B-3 above. Pathways Subscore 56				Subtotal	60	108
2. Flooding Subscore (100 x factor score/3) 0 3. Ground-water migration 2 8 16 24 Depth to ground water 2 8 16 24 Net precipitation 1 6 6 18 Soil permeability 2 8 16 24 Subsurface flows 2 8 16 24 Direct access to ground water 0 8 0 24 Subscore (100 x factor score subtotal/maximum score subtotal) 47 Highest pathway subscore. Enter the highest subscore value from A, B-1, B-2 or B-3 above. Pathways Subscore 56		Subscore (100	X factor score subtotal,	maximum score	subtotal)	56
Subscore (100 x factor score/3) 0 3. Ground-water sigration 1 6 2 8 16 24 Met precipitation 1 6 6 6 16 24 8 16 24 Subsurface flows 2 8 16 24 Subscore flows 24 Subscore flows 24 Subscore flows 24 Subscore flows 24 Subscore flows 24 Subscore flows 24 Subscore flows 24 Subscore flows 24 Subscore flows 24 Subscore flows 54 114 3 3	2.	Flooding	0	1	0	3
3. Ground-water migration Depth to ground water 2 8 16 24 Net precipitation 1 6 6 18 Soil permeability 2 8 16 24 Subsurface flows 2 8 16 24 Direct access to ground water 0 8 0 24 Subtotals 54 114 Subscore (100 x factor score subtotal/maximum score subtotal) 47 Highest pathway subscore. Enter the highest subscore value from A, B-1, B-2 or B-3 above. Pathways Subscore 56			Subscore (100 x fa	actor score/3		0
Depth to ground water 2 8 16 24 Net precipitation 1 6 6 18 Soil permeability 2 8 16 24 Subsurface flows 2 8 16 24 Direct access to ground water 0 8 0 24 Subscore (100 x factor score subtotal/maximum score subtotal) 47 Highest pathway subscore. Enter the highest subscore value from A, B-1, B-2 or B-3 above. Pathways Subscore 56	٦.	Ground-water migration				
Net precipitation 1 6 6 18 Soil permeability 2 8 16 24 Subsurface flows 2 8 16 24 Direct access to ground water 0 8 0 24 Subscore (100 x factor score subtotal/maximum score subtotal) 47 Highest pathway subscore. Enter the highest subscore value from A, B-1, B-2 or B-3 above. Pathways Subscore 56	3.			.	16	24
Soil permeability 2 8 16 24 Subsurface flows 2 8 16 24 Direct access to ground water 0 8 0 24 Direct access to ground water 0 8 0 24 Subscore 0 8 0 24 Subscore (100 x factor score subtotal/maximum score subtotal) 47 Highest pathway subscore. Enter the highest subscore value from A, B-1, B-2 or B-3 above. Pathways Subscore 56						
Subsurface flows 2 8 16 24 Direct access to ground water 0 8 0 24 Subtotals 54 114 Subscore (100 x factor score subtotal/maximum score subtotal) 47 Highest pathway subscore. Enter the highest subscore value from A, B-1, B-2 or B-3 above. Pathways Subscore 56						
Direct access to ground water 0 8 0 24 Subtotals <u>54</u> <u>114</u> Subscore (100 x factor score subtotal/maximum score subtotal) <u>47</u> Highest pathway subscore. Enter the highest subscore value from A, B-1, B-2 or B-3 above. Pathways Subscore <u>56</u>						
Subtotals <u>54</u> <u>114</u> Subscore (100 x factor score subtotal/maximum score subtotal) <u>47</u> Highest pathway subscore. Enter the highest subscore value from A, B-1, B-2 or B-3 above. Pathways Subscore <u>56</u>		Subsurface flows				
Subscore (100 x factor score subtotal/maximum score subtotal)		Direct access to ground water	0	8 1	0	24
Highest pathway subscore. Enter the highest subscore value from A, B-1, B-2 or B-3 above. Pathways Subscore56				Subtotals	54	114_
Enter the highest subscore value from A, B-1, B-2 or B-3 above. Pathways Subscore56		Subscore (100 :	x factor score subtotal	/maximum score	subtotal)	47
Pathways Subscore56	. Hig	ghest pathway subscore.				
	Ent	ter the highest subscore value from A, B-	1, B-2 or B-3 above.			
				Pathway	ys Subscore	56
	•					
	. AV	erage the three subscores for receptors,	waste characteristics, a	and pathways.		
. Average the three subscores for receptors, waste characteristics, and pathways.			Receptors Waste Characteristic			<u>46</u> <u>40</u> 56
Waste Characteristics 40				ivided by 3		47 Total Score
Receptors46Waste Characteristics40Pathways56						
Receptors 46 Waste Characteristics 40 Pathways 56 Total 142 divided by 3 = 47	. Apj	ply factor for waste containment from was	te management practices			
Receptors 46 Waste Characteristics 40 Pathways 56 Total 142 divided by 3 47 Gross Total Score		• •	•	•		

H-22

•

	Page	1	of	2
--	------	---	----	---

NAME OF SITE	Fire Training Pit No. 3
LOCATION	North of Existing Site in SAC area
DATE OF OPERATION	OR OCCURRENCE Mid-1960's to 1969
OWNER/OPERATOR	Robins AFB
CONSERVES/DESCRIPT	ION
SITE RATED BY	1 filizader
•	

I. RECEPTORS

- 121

.

Rating Factor	Factor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
A. Population within 1,000 feet of site	0	4	0	12
B. Distance to nearest well	3	10	30	30
C. Land use/zoning within 1 mile radius	1	3	3	9
D. Distance to reservation boundary	2	6	12	18
E. Critical environments within 1 mile radius of site	0	10	0	30
F. Water quality of nearest surface water body	0	6	0	18
G. Ground water use of uppermost aquifer	1	9	9	27
H. Population served by surface water supply within 3 miles downstream of site .	0	6	0	18
I. Population served by ground-water supply within 3 miles of site	3	6	18	18
		Subtotals	72	180

Receptors subscore (100 % factor score subtotal/maximum score subtotal)

II. WASTE CHARACTERISTICS

A. Select the factor score based on the estimated quantity, the degree of hazard, and the confidence level of the information.

1.	Waste quantity (S = small, M = medium, L = large)
2.	Confidence level (C = confirmed, S = suspected)
3.	Hazard rating (H = high, M = medium, L = low)
	Factor Subscore A (from 20 to 100 based on factor score matrix)

B. Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B

____40____**X** ___1.0____**=**___40____

C. Apply physical state multiplier

Subscore B X Physical State Multiplier = Waste Characteristics Subscore

40 x 1.0 = 40

•••• . $\overline{\mathbf{C}}$ ٤. 2 ÷ ÷ نېنه ا ا -. 2.4 . ÷

40

M S

М

40

Page 2 of 2

for

.

😵 🗃 a de la sector de la constante de la constant

-

M. PATHWAYS

F

.--...

•

ξ Γ.

Ë

If there is evidence of migration of hazardous contaminants, assign maximum factor subscore of 100 point invidence will be a subscore for a size of a size size a size of a size	Ra	ating Factor	Factor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
Atte the migration potential for 3 potential pathways: surface water migration, flooding, and ground-water migration. 1. Surface water migration Distance to meanest surface water 3 8 24 24 Ret precipitation 1 6 6 18 Surface erosion 0 8 0 24 Surface permeability 1 6 6 18 Rainfall intensity 3 8 24 24 Subscore (100 X factor score subtotal/maximum score subtotal) 56 56 2. Flooding 0 1 0 3 Subscore (100 X factor score subtotal/maximum score subtotal) 56 2. Flooding 0 1 0 3 3. Ground-water migration 56 108 50 3. Ground-water migration 0 1 0 3 3. Ground-water migration 1 6 18 Subscore (100 X factor score subtotal/maximum score/3) 0 0 3. Ground-water migration 1 6 18 Soli permeability 2 8 16 24	đ	direct evidence or 80 points for indirect evidence.				
<pre>migration. Select the highest rating, and proceed to C. 1. Surface water migration Distance to mearest surface water 3 8 24 24 Met precipitation 1 6 6 18 Surface erosion 0 8 0 24 Surface permeability 1 6 6 18 Rainfall intensity 3 8 24 24 Subtotals 60 108 Subscore (100 X factor score subtotal/maxisum score subtotal) 56 2. Flooding 0 1 0 3 Subscore (100 X factor score/3) 0 3. Ground-water migration Depth to ground water 2 8 16 24 Subtotals 60 18 Subscore (100 X factor score subtotal/maxisum score subtotal) Subscore (100 X factor score subtotal 4 Subtotals 2 Subscore (100 X factor score subtotal/maxisum score subtotal) Subscore (100 X factor score subtotal 4 Subtotals 2 Subscore (100 X factor score subtotal 4 Subscore (100 X factor score subtotal 4 Subscore (100 X factor score subtotal 4 Subscore (100 X factor score score 3 Subscore (100 X factor score score 3 Subscore (100 X factor score score 3 Subscore (100 X factor score 3 Subscore (100 X factor score 3 Subscore (100 X factor score 3 Subscore (100 X factor score 3 Subscore (100 X factor score 3 Subscore 3 Subscore (100 X factor score 3 Subscore 3 Su</pre>					Subscore	<u>N/A</u>
1. Surface water migration Distance to mearest surface water 3 8 24 24 Mathematication 1 6 6 18 Surface scosion 0 8 0 24 Surface permeability 1 6 6 18 mainfall intensity 1 6 6 18 mainfall intensity 3 8 24 24 Subscore (100 X factor score subtotal/maximum score subtotal) 56				ter migration,	flooding, a	nd ground-wa
Distance to nearest surface water 3 8 24 24 Met precipitation 1 6 6 18 Surface erosion 0 8 0 24 Surface permeability 1 6 6 18 Bainfall intensity 1 6 6 18 Bainfall intensity 1 6 6 18 Bainfall intensity 3 8 24 24 Subtotals 60 108 56 108 Subscore (100 X factor score subtotal/maxisus score subtotal) 56 56 2 1 0 3 3 Subscore (100 X factor score/3) 0 0 3 3 2 8 16 24 Net precipitation 1 6 6 18 Soil permeability 2 8 16 24 Subscore flows 1 8 8 24 Direct access to ground water 0 8 0 24 Subscore (100 x factor score subtotal/maxisum score subtotal) <t< td=""><td></td><th></th><td>ю C.</td><td></td><td></td><td></td></t<>			ю C.			
Difference to marger sufficient water 0 1 0 0 1 0 3 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 0 1 0 3 0 0 1 0 3 0 0 1 0 3 0 0 1 0 3 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	-	3	.	24	24
Surface erosion 0 8 0 24 Surface perseability 1 6 6 18 Bainfall intensity 3 8 24 24 Subscore (100 X factor score subtotal/maximum score subtotal) 56 108 Subscore (100 X factor score subtotal/maximum score subtotal) 56 2. Plooding 0 1 0 3 Subscore (100 X factor score subtotal/maximum score/3) 0 3 3. Ground-water migration 1 6 6 18 Bepth to ground water 2 8 16 24 Net precipitation 1 6 6 18 Soil permeability 2 8 16 24 Subscore flows 1 8 8 24 Direct access to ground water 0 8 0 24 Subscore (100 x factor score subtotal/maximum score subtotal) 40 Highest pathway subscore. 40 14 Enter the highest subscore value from A, B-1, B-2 or B-3 above. 50						+
Surface permeability 1 6 6 18 Bainfall intensity 3 8 24 24 Subtotals 60 108 Subcore (100 X factor score subtotal/maxisum score subtotal) 56 2. Plooding 0 1 0 3 Subscore (100 X factor score subtotal/maxisum score subtotal) 56 2. Plooding 0 1 0 3 Subscore (100 x factor score/3) 0 0 3 3. Ground-water sigration 1 6 6 18 Soil permeability 2 8 16 24 Subscore flows 1 8 8 24 Direct access to ground water 0 8 0 24 Subcore (100 x factor score subtotal/maxisum score subtotal) 40 Righest pathway subscore. 40 14 Enter the highest subscore value from A, B-1, B-2 or B-3 above. 50						
Name Joint Content of the second state o						
Subscore (100 X factor score subtotal/maximum score subtotal) 56 2. Flooding 0 1 0 3 Subscore 100 x factor score/3) 0 0 3. Ground-water migration 1 6 6 18 Soil permeability 2 8 16 24 Subsurface flows 1 8 8 24 Direct access to ground water 0 8 0 24 Subscore 100 x factor score subtotal/maximum score subtotal) 40 Highest pathway subscore. 46 114 Enter the highest subscore value from A, B-1, B-2 or B-3 above. 56						+
Subscore (100 X factor score subtotal/maximum score subtotal) 56 2. Flooding 0 1 0 3 Subscore (100 x factor score/3) 0 0 0 3. Ground-water migration 2 8 16 24 Net precipitation 1 6 6 18 Soil permeability 2 8 16 24 Subscore flows 1 8 8 24 Direct access to ground water 0 8 0 24 Subscore (100 x factor score subtotal/maximum score subtotal)		Rainfall intensity	<u> </u>			
2. Flooding 0 1 0 3 Subscore (100 x factor score/3) 0 0 3 3. Ground-water migration 2 8 16 24 Net precipitation 1 6 6 18 Soil permeability 2 8 16 24 Subscore flows 1 8 8 24 Direct access to ground water 0 8 0 24 Subscore (100 x factor score subtotal/maximum score subtotal) 40 Highest pathway subscore. Enter the highest subscore value from A, B-1, B-2 or B-3 above. 16						
Subscore (100 x factor score/3) 0 3. Ground-water migration 2 8 16 24 Net precipitation 1 6 6 18 Soil permeability 2 8 16 24 Subsurface flows 1 8 8 24 Direct access to ground water 0 8 0 24 Subscore (100 x factor score subtotal/maximum score subtotal) 40 Highest pathway subscore. Enter the highest subscore value from A, B-1, B-2 or B-3 above. 56		Subscore (100 X factor		maximum score		·
3. Ground-water migration 2 8 16 24 Net precipitation 1 6 6 18 Soil permeability 2 8 16 24 Subscret flows 1 8 8 24 Direct access to ground water 0 8 0 24 Subscore (100 x factor score subtotal/maximum score subtotal) 40 Highest pathway subscore. Enter the highest subscore value from A, B-1, B-2 or B-3 above. 56	2	2. Flooding	0	1	0	
Depth to ground water281624Net precipitation16618Soil permeability281624Subsurface flows18824Direct access to ground water08024Subtotals46114Subscore (100 x factor score subtotal/maximum score subtotal)40Highest pathway subscore.Enter the highest subscore value from A, B-1, B-2 or B-3 above.		Sut	score (100 x f	actor score/3)		0
Net precipitation 1 6 6 18 Soil permeability 2 8 16 24 Subsurface flows 1 8 8 24 Direct access to ground water 0 8 0 24 Subscore (100 x factor score subtotal/maximum score subtotal) 40 Highest pathway subscore. Enter the highest subscore value from A, B-1, B-2 or B-3 above. 50	3	3. Ground-water migration	,	,		,
Soil permeability 2 8 16 24 Subsurface flows 1 8 8 24 Direct access to ground water 0 8 0 24 Subscore 100 x factor score subtotal/maximum score subtotal) 40 Highest pathway subscore. Box of the subscore value from A, B-1, B-2 or B-3 above. FG		Depth to ground water	2	8	16	24
Subsurface flows 1 8 8 24 Direct access to ground water 0 8 0 24 Subtotals 46 114 Subscore (100 x factor score subtotal/maximum score subtotal) 40 Highest pathway subscore. Enter the highest subscore value from A, B-1, B-2 or B-3 above. FG		Net precipitation	1	6	6	18
Direct access to ground water 0 8 0 24 Subtotals 46 114 Subscore (100 x factor score subtotal/maximum score subtotal) 40 Highest pathway subscore. Enter the highest subscore value from A, B-1, B-2 or B-3 above. 50		Soil permeability	2	8	<u>16</u>	24
Subscore (100 x factor score subtotal/maximum score subtotal) 40 Eighest pathway subscore. Enter the highest subscore value from A, B-1, B-2 or B-3 above.		Subsurface flows	1	8	8	24
Subscore (100 x factor score subtotal/maximum score subtotal) Highest pathway subscore. Enter the highest subscore value from A, B-1, B-2 or B-3 above.		Direct access to ground water	0		0	24
Enter the highest subscore value from A, B-1, B-2 or B-3 above.				Subtotals	46	114
Enter the highest subscore value from λ , B-1, B-2 or B-3 above.		Subscore (100 x factor	score subtotal,	/maximum score	subtotal)	40
Enter the highest subscore value from λ , B-1, B-2 or B-3 above.	1	Highest pathway subscore.				
	1	Enter the highest subscore value from A, B-1, B-2 or	B-3 above.			
	-			Pathwavs	Subscore	56
				-		
		WASTE MANAGEMENT PRACTICES				
•		• • • • • • • • •		anı pernways.		40
Average the three subscores for receptors, waste characteristics, and pathways.		Waste	Characteristic	58		40
Average the three subscores for receptors, waste characteristics, and pathways. Receptors 40 Waste Characteristics 40			-	·· · · · · -		56
Average the three subscores for receptors, waste characteristics, and pathways. Receptors Waste Characteristics Pathways 56		Total	136	divided by 3	= Gro	
Average the three subscores for receptors, waste characteristics, and pathways. Receptors 40 Waste Characteristics 40		Apply factor for waste containment from waste manage	ment practices			
Average the three subscores for receptors, waste characteristics, and pathways. Receptors 40 Waste Characteristics 40 Pathways -56 Total 136 divided by 3 Gross Total Sec 45	1					
Average the three subscores for receptors, waste characteristics, and pathways. Receptors Waste Characteristics Pathways Total 136 divided by 3 = 45		Gross Total Score X Waste Manadement Practicas Facto	,			

<u>.</u>.

· · ·

н-24

Page 1 of 2

- -

•.`

-

٠.

25

. -

٠.

دد،

• • •

٠. -

2

.

44

·. 4

NAME OF SITE	Radioactive (Solid) Waste Burial Site
LOCATION	Facility No. 8315 near Pistol Range
DATE OF OPERATION	OR OCCURRENCE 1940's to 1950's
OWNER/OPERATOR	Robins AFB
COMMENTS/DESCRIPTI	(ON
SITE RATED BY	1 Juliander

I. RECEPTORS

. .

h

Rating Factor	Factor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
A. Population within 1,000 feet of site	1	4	4	12
B. Distance to nearest well	3	10	30	30
C. Land use/zoning within 1 mile radius	0	3	0	9
D. Distance to reservation boundary	3	6	18	18
E. Critical environments within 1 mile radius of site	0	10	0	30
F. Water guality of nearest surface water body	0	6	0	18
G. Ground water use of uppermost aquifer	1	9	9	27
H. Population served by surface water supply within 3 miles downstream of site .	0	66	0	18
I. Population served by ground-water supply within 3 miles of site	3	· 6	18	18
		Subtotals		180

Receptors subscore (100 X factor score subtotal/maximum score subtotal)

II. WASTE CHARACTERISTICS

A. Select the factor score based on the estimated quantity, the degree of hazard, and the confidence level of the information.

1. Waste quantity (S = small, M = medium, L = large)	S
2. Confidence level (C = confirmed, S = suspected)	<u> </u>
3. Hazard rating (H = high, M = medium, L = low)	L
Factor Subscore A (from 20 to 100 based on factor score matrix)	30

B. Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B

C. Apply physical state multiplier

Subscore B X Physical State Multiplier = Waste Characteristics Subscore

Page 2 of 2

-

M. PATHWAYS

5

K

, , , ,

.

-

;

•

Ľ

	ing Factor	Factor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
dir	there is evidence of migration of hazardous or rect evidence or 80 points for indirect evidence idence or indirect evidence exists, proceed to	ce. If direct evi			
				Subscore	_ND
miç	te the migration potential for 3 potential path gration. Select the highest rating, and proces		ater migration	, flooding, ar	id ground-wat
1.	Surface water migration	1 1 1	- 1	8	24
	Distance to nearest surface water	1	8	6	18
	Net precipitation		6		24
	Surface erosion	0		0	
	Surface permeability	1	6	6	18
	Rainfall intensity	3	8	24	24
			Subtotal		108
	Subscore (100 X fac	tor score subtotal	L/maximum score	subtotal)	41
2.	Flooding	0	1	0	3
		Subscore (100 x i	factor score/3)	0
3.	Ground-water migration				
	Depth to ground water	2	8	16	24
	Net precipitation	1	6	6	18
	Soil permeability	2	88	16	24
	Subsurface flows	1	8	8	24
	Direct access to ground water	0	8	0	24
			Subtotal	s 46	114
			JUDICICAL.		
	Subscore (100 x fac	tor score subtotal		subtotal)	40
			l/maximum score	subtotal) ys Subscore	<u>40</u> <u>41</u>
Ent	Subscore (100 x fac gheat pathway subscore.		l/maximum score		
Ent	Subscore (100 x fac ghest pathway subscore. ter the highest subscore value from A, B-1, B-	2 or B-3 above.	l/maximum score Pathwa		
En(Subscore (100 x fac ghest pathway subscore. ter the highest subscore value from A, B-1, B- /ASTE MANAGEMENT PRACTICES erage the three subscores for receptors, waste R	2 or B-3 above.	l/maximum score Pathwa and pathways.		
En(Subscore (100 x fac ghest pathway subscore. ter the highest subscore value from A, B-1, B- /ASTE MANAGEMENT PRACTICES erage the three subscores for receptors, waste R M	2 or B-3 above. characteristics, eceptors aste Characterist:	l/maximum score Pathway and pathways.	ys Subscore	<u>41</u> <u>44</u> <u>14</u>
Ent . W Av	Subscore (100 x fac gheat pathway subscore. ter the highest subscore value from A, B-1, B- /ASTE MANAGEMENT PRACTICES erage the three subscores for receptors, waste R W P T ply factor for waste containment from waste ma	2 or B-3 above. characteristics, eceptors aste Characterist: athways otal 99 nagement practices	Pathway and pathways. ics divided by 3	ys Subscore	$ \begin{array}{r} $
Ent . W Av	Subscore (100 x fac ghest pathway subscore. ter the highest subscore value from A, B-1, B- /ASTE MANAGEMENT PRACTICES erage the three subscores for receptors, waste R W T	2 or B-3 above. characteristics, eceptors aste Characterist: athways otal 99 nagement practices actor = Final Score	Pathway and pathways. ics divided by 3	ys Subscore	$ \begin{array}{r} $

H-26

APPENDIX I

E

Ţ.

[...

ĺ.

REFERENCES

APPENDIX I

v - .

REFERENCES

Chow, V. T., 1964, Handbook of Applied Hydrology, McGraw-Hill Book Company, New York, New York.

.

F

L

Fenn, D. G., Hanley, K. J., and DeGeare, T. V., 1975, Use of the Water Balance Method for Predicting Leachate Generation from Solid Waste Disposal Sites, U. S. Environmental Protection Agency publication EPA/530/SW-168.

Georgia Department of Natural Resources, 1976, Geologic Map of Georgia.

- Georgia Game and Fish Division, Department of Natural Resources, 1982, Telephone conversation with Ken Grahl, Fort Valley office, March 30, 1982.
- Giger, W. and Molnar-Kubica, E., 1978, Tetrachloroethylene in Contaminated Ground and Drinking Waters, Bulletin Environ. Contamination Toxicol. Vol. 19, No. 4, April, pp. 475-480.
- Herrick, Stephen M., 1961, Well Logs of the Coastal Plain of Georgia, Georgia Geological Survey Bulletin Number 70.
- Herrick, Stephen M., 1965, A Subsurface Study of Pleistocene Deposition Coastal Georgia, Georgia Geological Survey Information Circular 31.
- Herrick, Stephen M. and Vorhis, Robert C., 1963, Subsurface Geology of the Georgia Coastal Plain, Georgia Geological Survey Information Circular 25.
- Law Engineering Testing Co., 1980, Final Report, Ground Water Monitoring Program, Landfill Closure, Robins Air Force Base, Warner Robins, Georgia.
- LeGrand, H. E., 1962, Geology and Ground-Water Resources of the Macon Area, Georgia, Georgia Geological Survey Bulletin Number 72.
- Mitchell, Gail D., 1979, Potentiometric Surface of the Principal Artesian Aquifer in Georgia, Georgia Geological Survey Hydrologic Atlas Number 4.
- Pollard, L. D. and Vorhis, R. C., The Geohydrology of the Cretaceous Aquifer System in Georgia, Georgia Geological Hydrologic Atlas Number 3.

Robins Air Force Base, TAB A-1, Environmental Narrative, Updated 1976.

I-1

Roberts, P.V., McCarty, P.L., Reinhard, M. and Schreiner, J., 1980, Organic Contaminant Behavior During Ground-Water Recharge, Journal Water Poll. Control Fed., Vol. 52, No. 1, January, pp. 161-171.
SGB/Bioenvironmental Engineers Office, Stabilization of DDT Spill. January 4, 1980. Robins AFB, Georgia.

- Sonderegger, J. L., Pollard, L. D., and Cressler, C. W., 1978, Quality and Availability of Groundwater in Georgia, Georgia Geological Survey Information Circular 48.
- Talley, et al., Non-Potable Water Chemical Testing 1978-1979. Bioenvironmentaln Engineering Services Division, U.S. Air Force. Robins AFB, Georgia.
- Thomson, M. T., Herrick, S. M., and Brown, E., 1956, The Availability and Use of Water in Georgia, Georgia Geological Survey Bulletin 65.

-

ins m,-,

- 1

.

APPENDIX J

•

<u>.</u>

6

-

F.

[....

E

GLOSSARY

APPENDIX J

GLOSSARY OF TERMINOLOGY AND ABBREVIATIONS

. . . .

AF: Air Force

Ē

ς.

5.1

12

ir:

E

AFB: Air Force Base

AFFF: Aqueous Film Forming Foam

AFLC: Air Force Logistics Command

AFR: Air Force Regulation

AFSC: Air Force Systems Command

AG: Adjutant General

Ag: Chemical symbol for silver

AGE: Aircraft Ground Equipment

Al: Chemical symbol for aluminum

ALIPHATIC SOLVENTS: Those solvents derived from straight chain hydrocarbon compounds.

AROMATIC SOLVENTS: Those solvents derived from benzene whose molecule contains one or more carbon rings.

ARTESIAN: Ground water contained under hydrostatic pressure

AQUICLUDE: Poorly permeable formation that impeeds ground-water movement and does not yield water to a well or spring

AQUIFER: A geologic formation, group of formations, or part of a formation that is capable of yielding water to a well or spring

AQUITARD: A soils formation which impedes groundwater flow

AVGAS: Aviation Gasoline

Ba: Chemical symbol for barium

BESD: Bioenvironmental Engineering Services Division

Cd: Chemical symbol for cadmium

•_____

CERCLA: Comprehensive Environmental Response, Compensation and Liability Act

CES: Civil Engineering Squadron

CIRCA: About; used to indicate an approximate date

CLOSURE: The completion of a set of rigidly defined functions for a hazardous waste facility no longer in operation

CN: Chemical symbol for cyanide

COD: Chemical Oxygen Demand, a measure of the amount of oxygen required to oxidize organic and oxidizable inorganic compounds in water

COE: Corps of Engineers

CONFINED AQUIFER: An aquifer bounded above and below by impermeable beds or by beds of distinctly lower permeability than that of the aquifer itself

CONTAMINATION: The degradation of natural water quality to the extent that its usefulness is impaired; there is no implication of any specific limits since the degree of permissible contamination depends upon the intended end use or uses of the water

Cr: Chemical symbol for chromium

Cu: Chemical symbol for copper

DASC: Direct Air Support Center

DET: Detachment

DISPOSAL FACILITY: A facility or part of a facility at which hazardous waste is intentionally placed into or on land or water, and at which waste will remain after closure

DISPOSAL OF HAZARDOUS WASTE: The discharge, deposit, injection, dumping, spilling, or placing of any hazardous waste into or on land or water so that such waste or any constituent thereof may enter the environment or be emitted into the air or discharged into any waters, including ground water

DOD: Department of Defense

DOWNGRADIENT: In the direction of decreasing hydraulic static head; the direction in which ground water flows

DPDO: Defense Property Disposal Office - previous designation R&M, Redistribution and Marketing DUMP: An uncovered land disposal site where solid and/or liquid wastes are deposited with little or no regard for pollution control or aesthetics; dumps are susceptible to open burning and are exposed to the elements, disease vectors and scavengers

EOD: Explosive Ordnance Disposal

[

ECM: Electronic Countermeasures

EFFLUENT: A liquid waste discharge from a manufacturing or treatment process, in its natural state, or partially or completely treated, that discharges into the environment

EPA: U. S. Environmental Protection Agency

EROSION: The wearing away of land surface by wind or water

EPHEMERAL AQUIFER: An aquifer usually near the surface which is only temporary in nature

FAA: Federal Aviation Administration

FACILITY: Any land and appurtenances thereon and thereto used for the treatment, storage and/or disposal of hazardous wastes

Fe: Chemical symbol for iron

FLOOD PLAIN: The lowland and relatively flat areas adjoining inland and coastal areas of the mainland and off-shore islands, including, at a minimum, areas subject to a one percent or greater chance of flooding in any given year

FLOW PATH: The direction or movement of ground water and any contaminants that may be contained therein, as governed principally by the hydraulic gradient

GROUND WATER: Water beneath the land surface in the saturated zone that is under atmospheric or artesian pressure

GROUND WATER RESERVOIR: The earth materials and the intervening open spaces that contain ground water

HALF-LIFE: The time required for half the atoms present in radioactive substance to disintegrate

HARDFILL: Disposal sites receiving construction debris, wood, miscellaneous spoil material

HAZARDOUS WASTE: A solid waste, or combination of solid wastes, which because of its quantity, concentration, or physical, chemical or infectious characteristics may cause or significantly contribute to an increase in mortality or an increase in serious, irreversible, or incapacitating reversible illness; or pose a substantial present or potential hazard to human health or the environment when improperly treated, stored, transported, or disposed of, or otherwise managed

HAZARDOUS WASTE GENERATION: The act or process of producing a hazardous waste

HEAVY METALS: Metallic elements, including the transition series, which include many elements required for plant and animal nutrition in trace concentrations but which become toxic at higher concentrations

Hg: Chemical symbol for mercury

HQ: Headquarters

INCOMPATIBLE WASTE: A waste unsuitable for commingling with another waste or material because the commingling might result in generation of extreme heat or pressure, explosion or violent reaction, fire, formation of substances which are shock sensitive, friction sensitive, or otherwise have the potential for reacting violently, formation of toxic dusts, mists, fumes, and gases, volatilization of ignitable or toxic chemicals due to heat generation in such a manner that the likelihood of contamination of ground water or escape of the substance into the environment is increased, any other reaction which might result in not meeting the Air, Human Health, and Environmental Standard

INFILTRATION: The flow of liquid through pores or small openings

IRP: Installation Restoration Program

KETONE SOLVENTS: Organic solvents containing a ketone functional group

LEACHATE: A solution resulting from the separation or dissolving of soluble or particulate constituents from solid waste or other man-placed medium by percolation of water

LEACHING: The process by which soluble materials in the soil, such as nutrients, pesticide chemicals or contaminants, are washed into a lower layer of soil or are dissolved and carried away by water

LETCO: Law Engineering Testing Company, Marietta, Georgia

LINER: A continuous layer of natural or man-made materials beneath or on the sides of a surface impoundmnet, landfill, or landfill cell which restricts the downward or lateral escape of hazardous waste, hazardous waste constituents or leachate

LOX: Liquid Oxygen

LYSIMETERS: A thimble or cup device used for extracting ground water samples at various depths

MAC: Military Airlift Command

MAS: Military Air Service

MGD: million gallons per day

MOA: Military Operating Area

Mn: Chemical symbol for manganese

MONITORING WELL: A well used to measure ground-water levels and to obtain samples

Mr/hr: millirem/hour; a measure of radioactivity

MSL: Mean Sea Level

Ni: Chemical symbol for nickel

OEHL: Occupational and Environmental Health Laboratory

ORGANIC: Being, containing or relating to carbon compounds, especially in which hydrogen is attached to carbon

O&G: Symbols for oil and grease

OT&E: Operations, Training and Evaluation

Pb: Chemical symbol for lead

PCB: Polychlorinated Biphenyls are highly toxic to aquatic life; they persist in the environment for long period and are biologically accumulative

PERCOLATION: Movement of moisture by gravity or hydrostatic pressure through interstices of unsaturated rock or soil

PD-680: Cleaning solvent, safety solvent, Stoddard's solvent

pH: Negative logarithm of hydrogen ion concentration, measurement of acids and bases

PL: Public Law

POL: Petroleum, Oils and Lubricants

POLLUTANT: Any introduced gas, liquid or solid that makes a resource unfit for a specific purpose

RCRA: Resource Conservation and Recovery Act

RECHARGE AREA: An area in which water is absorbed that eventually reaches the zone of saturation in one or more aquifers

RECHARGE: The addition of water to the ground-water system by natural or artificial processes

RECON: Reconnaissance

· · · ·

SANITARY LANDFILL: A land disposal site using an engineered method of disposing solid wastes on land in a way that minimizes environmental hazards

SATURATED ZONE: That part of the earth's crust in which all voids are filled with water

SLUDGE: The solid residue resulting from a manufacturing or wastewater treatment process which also produces a liquid stream

SOLID WASTE: Any garbage, refuse, or sludge from a waste treatment plant, water suply treatment, or air pollution control facility and other discarded material, including solid, liquid, semi-solid, or contained gaseous material resulting from industrial, commercial, mining, or agricultural operations and from community activities, but does not include solid or dissolved materials in domestic sewage; solid or dissolved materials in irrigation return flows; industrial discharges which are point source subject to permits under Section 402 of the Federal Water Pollution Control Act, as amended (86 USC 880); or source, special nuclear, or by-product material as defined by the Atomic Energy Act of 1954 (68 USC 923)

SPILL: Any unplanned release or discharge of a hazardous waste onto or into the air, land, or water

STORAGE OF HAZARDOUS WASTE: Containment, either on a temporary basis or for a longer period, in such a manner as not to constitute disposal of such hazardous waste

TAC: Tactical Air Command

TOXICITY: The ability of a material to produce injury or disease upon exposure, ingestion, inhalation, or assimilation by a living organism

TRANSMISSIVITY: The rate at which water is transmitted through a unit width under a unit hydraulic gradient

TREATMENT OF HAZARDOUS WASTE: Any method, technique, or process including neutralization designed to change the physical, chemical, or biological character or composition of any hazardous waste so as to neutralize the waste or so as to render the waste nonhazardous

UPGRADIENT: In the direction of increasing hydraulic static head; the direction opposite to the prevailing flow of groundwater

USAF: United States Air Force

V: Chemical symbol for vanadium

WATER TABLE: Surface of a body of unconfined ground water at which the pressure is equal to that of the atmosphere

Zn: Chemical symbol for zinc