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ABSTRACT

Satellite infrared imagery off the California coast,

near Pt. Sur, show thermal patterns associated with an up-

welling center; the patterns frequently curl cyclonically
when interacting with the warmer California Current. This
pattern shows sharp thermal fronts, easily identified in

ﬂl satellite IR images, that are strongly correlated with nutri-
$§ ent fronts during the early stages of upwelling. With sea

R truth data available, it was feasible to calibrate satellite
f! , derived sea surface temperature, by applying radiative trans-

fer theory, and to infer nutrient concentrations from their

linear inverse correlat® ns with temperature. Thus, it was
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possible to calibrate satellite thermal fields to produce
maps of nutrient distributions. When the inferred relation-
ships were applied over representative regions of the upwelling

center, standard deviations of 0.5°C, 1.7 uM and 0.1 uM were

computed for temperature, nitrate and phosphate, respectively.
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I. INTRODUCTION

This thesis is a study of the possibility of calibrating
infra-red satellite images from limited in-situ temperature
data, and the possibility of whether chemical (specifically
nitrate and phosphate concéntrations) mesoscale variability
may be inferred from corresponding satellite detected thermal
patterns in an upwelling zone ([Traganza, 1980].

Very high resolution infrared radiometry, with a spatial
and amplitude resolution -~1.0 km and ~0.5 °C, respectively,
have been successfully used in locating and sensing sea
surface temperature contrasts in upwelling zones [Traganza
et al., 1980; Bowman et al., 1977]. Due to the development
in radiative transfer theory and satellite imagery it is
possible to calibrate: this satellite derived temperature
when sea truth data are available, and the atmospheric mois-

ture distribution is uniform.

Surface temperature and nutrient maps can be generated

using these corrected satellite derived temperatures, and

4 nutrient to temperature correlations, because active upwelling
?Q systems in an early stage of development are expected .o have
k strong inverse linear correlations between nutrients and

'- temperature. The recurrent formation of "a cyclonic upwelling
system" off Pt. Sur, California {[Traganza, Conrad and Breaker,
1980] offers a unique opportunity to simultaneously investi=-

r? ’ gate the accuracy of satellite generated surface maps for

™y
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temperature and nutrients, and the influence that coastal

upwelling has on surface nutrient concentrations when it
brings nutrient-rich waters into the euphotic zone. This
appears to be a major factor regulating the standing stock
and production of phytoplankton in coastal waters [Eppley et
al., 1979]. And, because phytoplankton are the primary pro-
ducers in the pelagic ecosystem, supporting the foodweb, it
will be of interest to obtain a wider and instantaneous pic-
ture of the nutrient concentrations, which only a satellite
can give, although indirectly.

Thermal gradients detected by IR imagery identify potential
site of high biomass which may be confirmed by Coastal Zone
Color Scanner (CZCS) data [Traganza, 198l1]. This data can
reveal subtle variations in the concentration of phytoplank-
ton pigments and has a potential application for the study
of large=-scale patchiness in phytoplankton distributions

[Hovis et a'., 1980].

12
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II. METHODS

A. CRUISES

Sea truth data were obtained from the cruises conducted
aboard the Naval Postgraduate School's research vessel R/V
ACANIA on 10 and 11 June 1980 and 29 October 1980.

To ensure coverage of the cyclonic moving feature updated
satellite information regarding its approximate location, size,
center and orientation, was sent prior to each cruise and
sometimes during the cruise by Mr. Breaker, the staff ocean-
ographer at the National Environmental Satellite Service (NESS)
Station, in Redwood City, California. R/V ACANIA positions
within this "cyclonic upwelling system,"” centered a few
kilometers southwest of Point Sur, were determined by LORAN-C
which has good coverage in this region. Temperature and nutri-
ents were measured in situ every two minutes at a depth of
2.5 m. Seawater temperature was sensed by a thermistor, and
recorded continuously on a strip chart. For calibration and
monitoring of the equipment sea surface temperature was also
measured by bucket thermometer. Surface nutrient concentra-
tions were recorded and analyzed every two minutes according

to the Technicon Industrial Method [Hanson, 1980].

B. SATELLITE IMAGERY
Three satellite images of the region offshore Central

California were analyzed and calibrated. They were chosen

13




because they were cloud-free over the upwelling feature and
: taken during or very close to the cruise time.
;g The infrared (10.5 to 12.5 uM) data recorded in the

satellite orbits were analyzed at the NASA-Ames Research

Center, in a computer equipped with the Interactive Digital
Image Manipulation System (IDIMS), which is a comprehensive
software package developed by Electromagnetic Systems Labora-
tories, Inc. With this software package, the author could
"zoom" magnify and pseudo-color the displayed image under
"joystick" control. Some 8-by-10 inch color Polaroid prints
were taken, as shown in Plates 1, 2 and 3. A computer print-
out (picprint), with the recorded count values (radiometric
units of measurement) was also obtained (Figs. 1, 8, 15). To
navigate on it, and because there were no geographical coor-
dinates on the picprint, the author used a computer program
developed by Lundell (1980). The purpose of this program
is to determine the line and pixel number of a geographical
location given the locations latitude and longitude, of a
landmark location (line, pixel, latitude and longitude) and
the period and inclination of the satellite orbit.

With the image navigational problem solved, it was possi-
ble to draw portions of the R/V ACANIA cruise tracks on the
picprint in order to compare the digitized satellite tempera-

tures with the in-situ values.

14
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C. INFRARED RADIOMETRY

l. Temperature Degradation

The usefulness of satellite observations depends on
the ability of the radiometer to view the sea with little
error introduced by the atmosphere. This error, which can

be substantial even in a relatively clear air, is mainly in-

Ff duced by atmospheric attenuation of the infrared radiance
due to absorption by water vapor. According to Maul and
g! Sidran (1973), this effect varies from small values for arc-

tic atmospheres to fairly high values, ca. 10°C for tropical

atmospheres. In mid-latitudes, this attenuation may introduce
errors on the order of 2 to 6°C.
Water, both as vapor and as clouds, is the primary

source of error. Even in cloud-free atmospheres, where scatter-

ing of infrared radiance is negligible, the magnitude of ab-~

E“ sorption and the variability of the moisture field presents

ﬁ- a severe problem., Theoretically, the influence of water vapor
can be calculated if the absorption coefficient of water vapor

as well as the vertical temperature and humidity profiles are

!
e

known. However, this requires radiosonde data for a study

area, which is rather the exception. Even using an isolated

RAMLBL LR Sass Bl & gemegn
- .o

sounding the temperature accuracy is limited to 1°C [Maul and
¢ sidran, 1973].

= Failure to detect the increase in humidity, due to
clouds, leads to 2 to 5°C errors in the calculations. Even
Ei . in clear atmospheres, the water vapor can reduce the apparent

sea surface temperature by 4 to 8°C. Furthermore, the

-
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presence of moisture markedly attenuates surface temperature
gradients across an oceanic front [Maul et al., 1978].

Because the influence of clouds is the most difficult
variable to estimate and to correct for, the cloud-free satel-
lite observations, present during this study, minimized the
atmospheric errors and simplified the radiative transfer
equation because scattering of infrared radiance could be
neglected.

Adding to these atmospheric errors and increasing the
total deviation between satellite derived temperatues and
in-situ temperatures, are errors originating at the sea sur-
face, due to the very strong absorption (a) of infrared
photons on it. This produces a very thin optical depth
(zl/l = 1/a), on the order of ca. 0.006 mm for the ég. 10.5
uM to 12.5 uM IR spectral window. As a consequence, the IR
radiation measured by the radiometer originates in the upper
0.006 mm of the sea surface, and may not represent slightly
deeper temperatures, as those obtained by the thermistor at
2.5 m on the R/V ACANIA cruises. The very thin "skin" at
the top of the ocean is in a quasi-laminar viscous sub-layer,
dominated by molecular fluxes, which are the reason for the
discrepancy between the sea surface temperatures sensed remctely
by infrared and by in-situ methods. The difference is usually
on the order of ca. 0.5 to 1°C, with the in-situ values
warmer [Stewart, 1979].

All these errors originating in the atmosphere and at

the ocean surface will be corrected indirectly in this study

16




by correlation between temperature derived radiances from
satellite and in-situ data. The author will assume negli-
gible both water vapor gradient and temperature discrepancy
(between satellite derived and in-situ temperatures) gradi-
ent within the area.

2. Planck Function

The sea surface emits thermal infrared spectral radi-
ance (L) as a function of the wavelength (A), the sea surface
temperature (T) and zenith incidence angle (8) according to

the equation
L(x,9,T) = e(r,8)B(Xx,T)

where 8(A,T) is the Planck Function,

2
B(rx,T) = 2he Watts-steradian'l-m 3

s A>. [exp (hc/kTH) -1]

‘ where

2 h = pPlanck's constant = 6.626196 x10 >% joule.sec
Ei » = wavelength of emitted radiation, meters

2

- c = speed of light = 2.997925 x10° m.-sec”!

- k = Boltzmann's constant = 1.380622 x10 2> joule'x™!
4

f' T = temperature, K

f. The Planck Function gives the spectral radiance emitted
73

»! by an ideal blackbody. However, the sea surface is not an

17
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ideal blackbody and emits less radiation. The factor e(i,8)

accounts for this fact, and is called Emissivity, e(x,0)

8 (sea surface, K)
B (blackbody, K)

e(r,8)

Because its averaged value over the IR spectral window (10.5
ym to 12.5 um) remains near ca. 0.98 for 3 ca. 0° to 40°,
this value was used in the computations of radiances.

|
|
3. Radiative Transfer Theory 1

Absolute measurements of sea-surface temperature could,
in theory, be produced from solutions of the radiative

transfer equation,

L(TA) = LO(TS)'T(pO) + L,
where
L(TA) = radiance measured b{ the satellite radiometer
in watts.steradian~l.m~3

<]
L]

temperature obtained by inverting the Planck's
function for the measured value of radiance
in K

total radiance emitted from the surface _
at temperature Ts in watts-steradian~l.m

LO(TS) 3

atmospheric transmittance between the
pressure levels ca. 0 (top of the atmos- ‘
phere) and Py (sea level)

t(po)

L, = path radiance due to the isotropic thermal
emission of photons by the atmosphere along
the propagation path from the sea surface
to the radiometer in watts-steradian~-l.m”

. b AAISANERES
T T
: RERES
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using detailed atmospheric observations and multi-channel
satellite radiometers. In this study, such data were not
available, and therefore, a simpler scheme was used of
necessity. To derive the parameters t, the atmospheric trans-
mittance, and L,, the path radiance, both sets of satellite
and in situ temperature observations in the observed frontal
zones, where thermal differences are large enough to reduce
the relative errors due to satellite measured thermal noise
(e.g., caused by variable moisture over the area) and due to

a coarse AVHRR (Advanced Very High Resolution Radiometer)
temperature resolution of 0.5 °C*. More precisely, linear
regression analysis was done on both sets of temperature
derived radiances versus elapsed distance along the cruise
track, in frontal regions (Figs. 2, 9, and 16). Assuming that
the sea surface temperature gradient is much larger than the
moisture gradient, then IVLOI >> |vL,|, then by the radiative

transfer equation
T = VL/VLO; - < 1
within a very few percent. The ratio of the slopes of the

regression lines will give then, the transmittance, . The

other atmospheric correction factor in the radiative transfer

*Although the inherent quantization of the AVHRR is -0.2 K
at 285 K, the NESS station in Redwood City can only record
eight bits of the 10 bits transmitted by the satellite, thus
degrading the resolution to 0.5 K in the data available for
this study.

19
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equation, the path radiance, L,, can be estimated using the
intercepts with the Y-axis of the satellite and in-situ radi-
ances regression lines, respectively L' and L!, knowing that

= ¢
L mlx + L

and

= '
Lo m2x + LO

where m, and m, are the slopes of the satellite and in-situ

radiance regression lines. Taking in account the relationship
between the slopes of both lines, 1 = ml/mz, and substituting
in the radiative transfer equation, the equation for the path

radiance is obtained:
L, = L' - t-L}

Finally, knowing both transmittance, :, and path
radiance, L,, any apparent (measured by the AVHRR) sea surface
temperature was corrected for using the radiative transfer

equation, with reasonable accuracy (residual std. dev. 0.5°C).

D. LINEAR REGRESSION AND CORRELATION COMPUTATIONS

Least squares linear regressions, designed to minimize
the sum of the squares of the deviations of the data points
from the straight liné of best fit, were performed in nitrate
versus phosphate, nitrate versus temperature and phosphate

versus temperature. Regression lines were also generated for

20
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radiances, computed from in situ and satellite temperatures,
versus elapsed distance along the portions of the cruise track
with strong temperature gradients and nearest in time to the
satellite overpass. The slopes and y-intercepts from the
regression lines were computed from the equation

inyi - Ninyi

m =
2 2
(zxi) - Nin

o
]

y -~ mx

The population correlation coefficient was also computed

for the nutrient regression lines, using the equation

where Oy and cy are the standard deviations of the % and y

values, respectively.
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III. RESULTS

A. 9 JUNE 1980 SATELLITE IMAGERY

Several satellite images off Central California prior to
and including 9 June, showed a "tongue" of upwelling water
within an early stage of development, near Pt. Sur. |

The best cloud-free image was taken by the satellite NOAA-
6, in its orbit number 4954, at 0250 GMT 9 June 1980. The
infrared (10.5 uym to 12.5 um) data recorded in this orbit was
analyzed, at the NASA-Ames Research Center, in a computer
equipped with the IDIMS. Plate 1 shows the black and white
copy of the pseudo-color image processed. A computer print-
out (picprint) with the recorded count values was also obtained.
With the identification of several geographical locations
(Pt. Sur, Pfeiffer Pt. and Lopez Pt.) and using the computer
program developed by Lundell (1980), the portion of the R/V
ACANIA cruise track nearest in time to the satellite overpass
was drawn on it (Fig. 1l). Temperatures were digitized along
the cruise track and compared with the in-situ values (Fig. 2).
Regression lines were computed for both in-situ and satellite
temperature derived radiances, in the regions with strong
gradients, viz., between elapsed distance ca. 4 km to 16 km,
30 km to 60 km and 64 km to 83 km. From the comparison between
these lines, averaged values for the transmittance ca. 0.693
and the path radiance ca. 2,150,000 Watts-steradian=l.m™> were

computed. Using these values in the radiative transfer
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Plate 1.

NOAA-6 satellite image of the California coast
for 9 June 1980. Letters associated with color
grades represent averaged temperatures, over a
pixel, measured by the radiometer (see Table I
for radiometric count, temperature, nitrate and
phosnhate values).
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Figure 2. 1In-situ temperature (straight line) and

satellite temperature (line with circles)
versus elapsed distance along a portion of
the cruise track of the 9-10 June 1980
cruise.
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equation it was poséible to correct the satellite temperatures
associated with the count values (Table I).

The sea surface nutrient distribution was obtained from
its correlation with the in-situ thermal distribution. Linear
regression analysis between nitrate and temperature, phos-
phate and temperature, and nitrate to phosphate yielded slopes
of -3.55, -0.27 and 12.79 respectively, and y-axis intercepts
of 49.27 uM, 4.72 uM and -12.25 uM respectively (Figs. 3, 4
and 5). The correlation coefficients were r = -0.96, r = -0.96
and r = 0.98 respectively. From this analysis a nutrient
concentration was computed for each calibrated satellite
temperature (Table I).

Sea surface temperature nitrate and phosphate maps were
generated by "zoom transfering"* the thermal pattern in the
IR satellite image to a navigational chart. Each isopleth
is the average of the temperature or nutrient concentration

on each side (Figs. 6, 7 and 8).

B. 11 JUNE 1980 AND SATELLITE IMAGERY

A strong "cyclonic upwelling feature" [Traganza, E.D.,
et al., (1980); Traganza, E.D., Austin, D., (1981)] is shown
in the image taken by the satellite NOAA-6, in its orbit num=-
ber 4983, at 0350 GMT 11 June 1980. Plate 2 shows the black

and white copy of the pseudo-color image processed with IDIMS.

*This was done using zoom transfer scope, an optical
device used to superimpose one magnified and linearly
stretched image on another, so that spatial features may be
transferred by tracing with a pen.
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Table I

Calibration Table of the satellite image for 9 June 1980
(the '*' represents values below limit of detection)

1
b Color Satellite Corrected Nitrate Phosphate
' Grade Count Temperature (°C) Temperature (°C) NO, (uM) pof‘(mm

K 103 12.90 14.92 * 0.69

104 12.47 14.31 * 0.85

1 105 12.03 13.68 0.73 1.02

13.37 1.83 1.11

H 106 11.59 13.06 2.93 1.19

12.75 4,05 1.28

G 107 11.15 12.43 5.16 1.36

12.11 6.30 1.45

F 108 10.70 11.79 7.44 1.54

11.48 8.56 1.63

E 109 10.26 11.16 9.67 1.71

10.84 10.82 1.80

D 110 9.81 10.51 11.96 1.88

' 10.19 13.11 1.97

C 111 9.36 9.87 14.25 2.05

9.55 15.40 2.14

B 112 8.91 9.22 16.55 2.23

> 8.90 17.70 2.32

& A 113 8.46 8.57 18.85 2.40
&
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o Figure 6. Sea surface temperature maps in °C for 9 June
b 1980 inferred from satellite IR imagery.

4 Contour interval is one radiometric unit of
g measurement (1 count = 0.5°C).
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Figure 7.

PRI U S PPy WL

Sea surface nitrate map for 9 June 1980,
generated by correlation with sea surface
temperature distribution given by IR imagery.
Contour interval is one radiometric unit of
measurement (1 count - 0.5°C). Nitrate con-
centrations are given in uM.

32




{y‘.f.fﬂrz'" RS ABELT A (

=

L -

=

Figure 8. Sea surface phosphate map for 9 June 1980,
generated by correlation with sea surface
temperature distribution given by IR imagery.
Contour interval is one radiometric unit of
measurement (1 count Z 0.5°C). Phosphate
concentrations are given in uM.
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Plate 2. NOAA-6 satellite image of the California coast

PR PAr W W

for 11 June 1980. Letters associated with color
grades represent averaged temperatures, over a
pixel, measured by the radiometer (see Table II
for radiometric count, temperature, nitrate and
phosphate values).
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The computer printout (picprint) was also navigated, using
the computer program developed by Lundell (1980), in order

to draw on it the portion of the R/V ACANIA cruise track
nearest in time to the satellite overpass (Fig. 9). Tempera-
tures were digitized along the cruise track and compared with
the in-situ values (Fig.1l0). Regression lines were computed
for both in-situ and satellite temperature derived radiances,
in the regions with strong gradients, viz., between elapsed
distance ca. 219 km to 223 km, 223 km to 230 km and 240 km

to 262 km from the comparison between these lines, averaged
values for the transmittance ca. 0.525 and the path radiance

ca. 3,320,000 watts.steradian L.m”>

were computed. Using
these values in the radiative transfer equation, a calibration
table for the satellite temperatures associated with the count
values was constructed (Table II).

The sea surface nutrient distribution was obtained from
its correlation with the in-situ thermal distribution. Linear
regression analysis between nitrate and temperature, phosphate
and temperature, and nitrate to phosphate yielded slopes of
-4.26, -0.29 and 14.46 respectively, and y-axis intercepts of
57.67 uM, 4.85 uM and -13.54 LM respectively (Figs. 11, 12
and 13). The correlation coefficients were r = -0.97, r = -0.96
and r = 0.99 respectively. From this analysis a nutrient

concentration was computed for each calibrated satellite

temperature (Table II).
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Figure 10. In-situ temperature (straight line) and
satellite temperature (line wi-=h circles)
versus elapsed distance along . portion of
the cruise track of the 11 June 1980.
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Table II

Calibration Table of the satellite image for 11 June 1980
(The '*' represents values below limit of detection)

Color Satellite Corrected Nitrate  Phgsphate
Grade Count Temperature (°C) Temperature (°C) NO3 (uM) PO4 (uM)

L 105 12.03 15.17 * 0.48
K 106 11.59 14.48 * 0.68
J 107 11.15 13.80 * 0.87
I 108 10.70 13.10 1.82 1.07
‘ 12.76 3.27 1.17
H 109 10.26 12.41 4.76 1.27
12.06 6.26 1.37
G 110 9.81 11.70 7.79 1.48
. 11.35 9.28 1.58
!l F 111 9.36 11.00 10.78 1.68
o  10.65 12.27 1.78
B E 112 8.91 10.29 13.80 1.88
9 9.94 15.29 1.98
D 113 8.46 9.58 16.83 2.09
9.22 18.36 2.19
c 114 8.00 8.85 19.94 2.30
8.49 21.48 2.40
B 115 7.54 8.12 23.05 2.51
7.76 24.59 2.61
A 116 7.08 7.39 26.17 72
.
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Figure 11. Nitrate versus temperature with the regression

line for 11 June 1980.
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Sea surface temperature, nitrate and phosphate maps were
generated by "zoom transferring"* the thermal pattern in the
IR satellite image to a navigational chart. Each isopleth
is the average of the temperature or nutrient concentration

on each side (Figs. 14, 15 and 16).

C. 29 OCTOBER 1980 SATELLITE IMAGERY

The image taken by the satellite NOAA-6, in its orbit
number 6967, at 1640 GMT 29 October 1980, shows a different
cold feature, compared with the one from the June 1980 cruise.

In this case, there is an elongated "tongue" of cold water.

Plate 3 shows the black and white copy of the pseudo-
color image processed with IDIMS, in the NASA-Ames Research
Center. The computer printout was again navigated using the
computer program developed by Lundell (1980), in order to
draw on it the portion of the R/V ACANIA cruise track nearest
in time to the satellite overpass (Fig. 17). Temperatures
were digitized along the cruise track and compared with the
in-situ values (Fig. 18). Regression lines were computed for
the in-situ and satellite temperature derived radiances, in
the regions with strong gradients, viz., between elapsed dis-
tance ca. 21 km to 51 km, 51 km to 70 km and 170 km to 191 km.
From the comparison between these lines, averaged values for
the transmittance ca. 0.685 and the path radiance ca. 2,05%,000
watts-steradian™t.m™3 were computed. Using these values in

the radiative transfer equation, a calibration table for

*
See previous footnote.
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map in °C for 1l
satellite IR imagery.
radiometric unit

= 0.5°C).
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measurement (1 count = 0.5°C). Phosphate
concentrations are given in uM.
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Plate 3. NOAA-6 satellite image of the California coast
for 29 October 1980. Letters associated with
color grades represent averaged temperatures,
over a pixel, measured by the radiometer
(see Table III for radiometric count, tempera-
ture, nitrate and phosphate values).
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Figure 18. 1In-situ temperature (straight line) and
satellite temperature (line with circles)
versus elapsed distance along a portion
of the cruise track of the 29 October 1980
cruise.
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the satellite temperatures associated with the count values
was constructed (Table III).

The sea surface nutrient distribution was obtained from
its correlation with the in-situ thermal distribution. Linear
regression analysis between nitrate and temperature, phosphate
and temperature, and nitrate and phosphate yielded slopes of
-1.27, -.09 and 13.60 respectively, and y-axXis intercepts
of 25.26 uM, 2.26 uM and -6.94 uM respectively (Figs. 19, 20
and 21). The correlation coefficients were r = -0.71, r = -0.70
and r = 0.94 respectively. From this analysis a nutrient
concentration was computed for each calibrated satellite
temperature (Table III).

Sea surface temperature, nitrate and phosphate maps were
generated by "zoom transferring" the thermal pattern in the
IR satellite image to a navigational chart. Each isopleth
is the average of the nutrient or nutrient concentration on

each side (Figs. 22, 23 and 24).

19




T e wow e

...............

Table III

Calibration table of the satellite image for 29 October 1980

S A Al st ~:'-v-"1

Color Satellite Corrected Nitrate Phgsphate
Grade Count Temperature (°C) Temperature (°C) NO, (W) PO, (uM)
K 100 14.20 18.49 1.83 0.67
J 101 13.77 17.89 2.59 0.73
I 102 13.34 17.28 3.36 0.78
H 103 12.90 16.66 4.15 0.83
G 104 12.47 16.06 4,91 0.88
F 105 12.03 15.44 5.70 0.94

15.13 6.10 0.96
E 106 11.59 14.81 6.49 0.99
14.50 6.89 1.02
D 107 11.15 14.19 7.28 1.04
13.87 7.69 1.07
C 108 10.70 13.55 8.09 1.10
13.24 8.49 1.13
B 109 10.26 12,93 8.88 1.15
12.61 9.29 1.18
A 110 9.81 12.28 9.70 1.21

S 0 U S S




30.
n
L
L
20.
z |
w -
—
o o -
|+ =
o
— -
=z ] ®
10.
-
3
9
:! 0' l I ) ! 1 I . ] ! 1
8. 10. 12. 14. 16. 8.
=
= TEMPERATURE, °C
2/
[
Figure 19. Nitrate versus temperature with the
- regression line for 29 October 1980.
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Iv. DISCUSSION

Inferring sea surface nutrient concentrations from satellite

derived thermal patterns appears feasible in regions of strong

upwelling, where the nutrients to temperature correlations

- are very high. However, some errors are to be expected. The
computer program developed by Lundell (1980) to navigate on
ﬁl the picprint can introduce an error in the position of the

- cruise track on the order of two lines and two pixels apart

(distance ~ 2 km) [Lundell, 1980]. With the identification

of three landmarks (Pt. Sur, Pfeiffer Pt. and Pt. Lopez) on
the picprint, the author could compute a r.m.s. error of ca.
0.9 lines and 1.3 pixels for the 9 June 1980 cruise track, ca.
1.0 lines and 2.1 pixels for the 11 June 1980 cruise track,
ca. 0.8 lines and 1.8 pixels for the 29 October 1980 cruise
track. These errors are smaller than expected due to the
proximity of the landmarks, and they will not significantly

influence the accuracy of the thermal calibration. However,

the process of averaging the transmittance and path radiance

values obtained for each sharp temperature gradient along the
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portion of the cruise track will add a significant error.
Taking this into account, the author computed a std. dev.
£0.25°C, #0.13 °C and $0.56°C for the calibrated temperature
values on 9 June 1980, 1l June 1980 and 29 October 1980,
respectively. From these values we can conclude that the

temperature accuracy increases if we apply the radiative
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transfer equation in regions with sharp temperature gradients,
as in upwelling fronts. With these errors for the thermal
maps, it would be expected to find errors of 9% and 4% for

the nitrate and phosphate values in the maps respectively,

on 9 June 1980, 3% and 2% for the nitrate and phosphate values
in the maps respectively, on 11 June 1980, and 8% and 10% for
the nitrate and phosphate values in the maps respectively,

on 29 October 1980. Also, there are small additional errors
due to imperfect temperature vs. nutrients correlations, that
are negligible when applied in regions of strong upwelling.

The quality and the accuracy of the results depends upon the
uniformity of the agé of the upwelled surface waters (com-

pare correlation values in June and October, in Table IV).

It therefore seems reasonable to assume that in an upwelling
zone, the major patterns of nutrient concentrations can be
inferred using satellite IR imagery and limited in-situ thermal
and nutrient data, and even be used in the construction of a
biochemical model, or further, of a predictive model in frontal

zones.
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TABLE IV

Summary Table of Nutrients vs.
Temperature Linear Regression
Analysis

DAY Linear Regression Equations Correlation

N - nitrate (uM) P - phosphate (uM)
T - Temperature (°C)

e — e Shaatans 4 -
R R P L. . AR
L S B ooty
P s e . RN ¢ N
2
.

9 June N = =3.53T7 + 49.27 -0.96
P = =-0.27T + 4.72 -0.96

11 June N = =4.26T + 57.67 -0.97

‘ P = =0.29T + 4.85 -0.96
29 October N = <=1.27T -~ 25.26 -0.71

h P = -0.09T + 2.26 -0.70
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