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A LIKELTHOOD RATIO TEST REGARDING
TWO NESTED BUT OBLIQUE ORDER
RESTRICTED HYPOTHESES

Giles Warrack and Tim Robertson

ﬁ SUMMARY

In an article in the Journal of Psychiatric Research, [Cadoret,

Woolson and Winokur, 1977] consider two theories regarding the genetic

makeup of patients suffering from unipolar affective disorder. These
two theories imply nested but oblique order restrictions on the

parameters of a statistical model. A likelihood ratio test for these

two restrictions 1is studied.
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1. Introduction.

In this paper we consider a hypothesis test in which both the null and
the alternative hypotheses impose an order restriction upon a set of para-
meters. Specifically, we deal with a situation in which we take independent
samples from k populations, where each population 1s distributed
according to a particular member of an exponential family (we also consider
sanpling from a multinomial population). If we @enote‘bi 61 the para-
meter of interest from the ith population, we consider hypotheses H

0

and HA’ where

(1.1) Hy: 8 ez=...+ekliek1+1=...=ek 2ee 20 T = 8

]

(1.2) H: 6, >8, > k1>ek1+li"'—"'i"'—>-ek'

v
<D
.
.
.
A\
[as]

We note that HA contains HO’ and we wish test HO against HA-HO (HA

but not HO). W
This investigation was stimulated partly by a problem encountered

in psychiatric research. (Winokur et al., 1971] studied data on psychiatric

illnesses afflicting family members of patients suffering from unipolar

affective disorder (u.a.d.). This data strongly suggested a higher rate of certain

kinds of illness in family members of patients who were affected by

u.a.d. early in life than the rate for family members of patients for which

the onset of the disease occurred later in iife. This research suggested

genetic differences between these patients which could be tested using

data on psychiatric illnesses suffered by family members. In Cadoret et al.

two different explanations (theories) are examined which might explain this

phenomenon. The first postulates a qualitative difference whereby

there exist twr qualitacively different genes or groups of genes which




explain the differences between the early onset probands and the late onset

probands. The second postulates differences caused by a single group
of genes with differences between the groups due to the number of genes
(the quantitative theory).

Cadoret et al. (1977) examined data on 6 groups of patients suffer-
ing from u.a.d. The groupings are based upon the age at which the patient
is first affected by the condition. Conclusions regarding the genetic
makeup of these patients were based upon_inferences about the parameters
pi; i=1,2,...,6 where in one case Py represents the proportion of

alcoholic fathers of patients in the ith age group and in another

case it represents the proportion of depressive parents of patients in
the ith group. In terms of these parameters the researchers quantify

the two theories as follows:
of P17 Py T P3P, P5 " P
Hat P2 Pp2P32P,2P52 P

where HO represents the qualitative theory and HA represents the

quantitative theory. The problem is to use the data to decide between HO

and HA—HO; thus this problem falls within the general framework we are
considering.

The hypothesis test represented by (1.1) and (1.2) is a special case
of a large class of problems in statistics where both the null hypothesis

and the alternative impose an order restriction on the parameter set.

Additional research on order restricted hypothesis tests where the null

hypothesis is composite can be found in [Robertson and Wright, 1981] H

and [Dykstra and Robertson, 1982,1983]. An interesting feature of
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the test regarding (1.1) and (1.2) is the null hypothesis behavior of
the distribution of the likelihood ratio statistic which is not what one
might expect in light of previous research in the area of testing
statistical hypotheses under order restrictions. In virtually all of
these previously investigated problems either the null hypothesis is

a similar region for the likelihood ratio test (cf. Barlow et al. (1972))
or homogeneity is the least favorable configuration within the null
hypothesis for the distribution of the likelihood ratio test (cf.
[Robertson and Wegman, 1978, Robertson, 1975 and Robertson, 1978]). By
homogeneity being "least favorable" we mean that for all possible values
of the parameter set, within the null hypothesis region, the likelihood
ratio statistic achieves its supremum when all the 6 are equal.

i
We, however, obtain a rather surprisingly different result which is
described below.
Suppose that the ei are the means of normal populations with

known variances, and suppose that based upon independent samples, we

wish to test H_ against H,-H., where, say

0 AT0
Hy: 6, = 6, = - ekl > ek1+1 = ...= 0
Hy: 6,20, ieklleklﬂ_ 20 .

Then we are faced with the problem that the likelihood-ratio based
statistic, L, is not similar over the null hypothesis region. This time

the 6 € Hy giving sup pe[L > t] is that vector such that the difference
8EH
0

between the first kl components and the second k-k1 components approaches

infinity. Furthermore, this result enables us to show that

(1.3 sup PylL > t) =p[L' > t]




where L' is the likelihood ratio based statistic for testing HO'

' _ '

against HA HO where

(1.4) Hb: 61 = ... = ek 3 ek =" ek
1 1

(1.5) Hy: 6, > ... 1ek1 H ekl+1 2 e 28

The statistic L' is shown to be distributed as the sum of two
independent random variables each of which 1s distributed according to
Bartholomew's chi-bar-squared distribution. A similar result is obtained
in dealing with hypotheses of the form (1.1) and (1.2), in which we
test for a descending trend between £ sets of parameters, with equality
within the sets, or "blocks", against the hypothesis of a descending
trend both within and between blocks.

In Section 2 we consider tests for the normal distribution, and in
Section 3 we use these results to derive asymptotic tests for the

exponential class of distributions and the multinomial distribution.

In Section 4 we illustrate the use of the techniques developed here by

analyzing one of the data sets in [cadoret et al., 1977].

2. Tests for the normal distribution.

We begin by considering the case in which we sample from k
independent normal populations with known variances. We wish to test

Ho against H,-H, where

A0
(2.1) HO: My = My = wee = ukl > uk1+1 = .. 0= q,
(2.2) Hy: w2 my . 2 Wy M 41 2 2 My




If we denote the likelihood ratio by A, then we would reject HO in

favor of HA for large values of the statistic L = -2 log A. We first

introduce some notation.

We take a geometric approach, and use the symbols Ho and

HA to represent not only statistical hypotheses but also subspaces of

k - dimensional Euclidean space, Ek. The subspaces denoted by HO and

HA are closed convex cones. If i = (;l,iz,...,ik) is the vector
of observed sample means obtained from taking samples of size ni: i=1,2,...k
from k normal populations with known variances Oi , then the maximum

likelihood estimate of y = (ul,uz,...uk) under HA(HO) is the projection

of x onto the closed convex cone HA(HO), where

.k
l H, = {y € E7; Yy =Y, = eee = ykl > yk1+1 = ... = yk}
; —tyeEy 2y, )
2
%1
) the projection being taken with respect to weights W=
i

(see Barlow et al., Chapter 2). This projection we denote by

Ew(gJHA) (EW(EJHO)). The 19 component of this vector we denote by
EE(§|HA)i (E!(lc_lﬂo)i).

The statistic L = -2 log A may be written ar
k

! [x, - EGlo) I2w .

k
- - 2
. (2.3 L= ) [x, -E(x|H) 1 w -
. gap 1 ¥ 0T g

Using the notation

Iw to denote the norm in Ek associated with

k
the inner product (x,y). = z XYW, o we may denote L by

- - 2 1 - - 2
(2.4) L= |x- E(EIHO)HE - 'z - EG|H) ”_‘1 .




Using well known properties of projections on closed convex cones

(see Barlow et al., Chapter 2) together with some algebra, L may be

expressed equivalently as

@5 1= lF &2 - e, Glpll2 .

The following inequality is fundamental to the results that

t follow and we state it as a theorem.

THEOREM 2.1. If § € H,, then for any x € EX we have

(2.6) L(x + §) > L(x).

PROOF. We break up the proof into two separate cases. In the

first we consider the case in which

. i
z w,.X w,X
, P O § _ i1
é / 2.7 =, o
K, .
L vy I v
i=1 1=k +1

the weighted average on the left hand side of the inequality sign

being the common value of Ew(glﬂo)i, i=1,2,...,k, and the weighted
average on the right hand side being the common value of

Ew(gjﬂo)i, 1= k1+l,k1+2,...,k. We can, without loss of generality assume

that & = (§,6,...6,0,0,0,...0), where & > O, and we have

k

5 )
w,(x, + 6) w.X
= 11 1=l +1 11
(2.8) _ -
;1
w
g=1 1




The quantity on the left hand side being the common value of

Ew(x + 6[H0)1. 1 <1 f_kl. It i1s straightforward to show that

2 2
(2.9) H@+Q-%Q+M%W!=H5~%®%WE-

We now utilize Theorem 2.1 of Robertson and Wegman (1978), which states
that if C 1s any closed convex cone in Hilbert Space, and if z € C,

then for any y,

2.10) |+ 2 - E(y + z[O

w

< iz - B alo,

Since § € HO C H,, we have

A

2 2
@) -+ 9 - B G+ oln)ll P 2=l - B )l ?

Combining (2.9) and (2.11) we obtain, for the case in question,
L(x + 8) > L(x).

We now consider the case where x 1is a vector such that

. ;
W.x. W,.X
g=p 1 1=k +1 ™
(2.12) o <
. :
w w
=1 1 1=k +1 i

In this case the E_(x|H)),, 1=1,2,...,k,...,k, will have the common

’ 1’
k
izlwixi
value k Let € be the positive difference between the right
Jw
1=1 1




and left hand sides of (2.12) and let g, €€ Hy be the vector with ¢
as its first k1 components and 0's elsewhere. We shall show first that

if gl = (61,61,...,61,0,...,0) and O 5_61 < €, then

(2.13) Lz + 8) 2 L(x).

We shall then in fact  be done, since x + g 1is a vector such

(2.7) holds, and we will then have for any § € Ho that
(2.14) L(x+ 8 +¢) >L(x+¢g) > L(x).

Thus all possible cases will be covered.
To prove (2.13) we need two lemmas. The first is obvious, and

we state it without proof.

LEMMA 2.2. Let {xl’XZ""’xk} and {yl,yz,...,yk} be two sets

and

2 ...2
of numbers such that X 2 X,y z ... 2 A 2 v,

Yx

(2.15) X 0.

Yi T Vi1 1" % 2

Then for any set of positive weights {wl,w

2,...,wk}

k -2 k -2
(2.16) Yw, vy =9 2 Tw (x - %)
i=1 =

where x and y are averages taken with respect to the weights.

LEMMA 2.3. If % is any vector in EX, and if 6 € H,, then

A)1+1

(2.17) Ez(y; + GIHA)i - E!(5+ 8180 4y

> B (x[H,), - B x|R

1=1,2,...,k-1.
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PROOF. The proof follows from noting that the sets on which

Ew(§_+ QJHA) assumes constant values are subsets of the sets on which
Ew(gjﬂA) assumes constant values, and then using the maximum upper

sets algorithm. (See Section 2.3 of [Barlow et al., 1972]).

We now return to inequality (2.13), and note that in the particular
case we are dealing with, using the form (2.5), L(x + éi) and L(x)
may be written respectively as the weighted sum of squares of the

FE(E +_§_1[HA)i and the Eﬂgg‘HA)i around their weighted means.

(We also use the fact, to be found in Barlow et al., that for any

o~ R

k
x € E, and any closed convex cone, H, X WX, = wiEE(EIH)i).

1

Thus we may invoke Lemmas 2.2 and 2.3 to obtain
Lz +6)) > L(x),

and the proof is completed.
The inequality obtained in Theorem 2.1 enables us to obtain the
following result regarding the distribution of the likelihood ratio based

statistic, L(g), over the null hypothesis region.

THEOREM 2.4. Define the hypotheses Hb and HA as follows

1
(2.18) Ho: Hp S Uy = ..o = uk1 3 uk1+1 = e =

(2.19) HA: Hy

|v

> e

v
.
.
| v
=

112 _>_Uk o ukl+1_

1

Let L'(Z) = -2 log A'(z), AM(X) being the likelihood ratio for

testing HO

] L
against HA - HO. Then

sup Pu (L>¢t]=PL'>t¢t] .
uEHO




PROOF. It is clear from the inequality obtained in Theorem 2.1

that if u = (u,u,...,1,0,0,...0), u <H, and u >0, then L(x + )

is an increasing function of u , for x fixed. Since

(2.200 P (L@ > el=p  [LE+w >t]> P LR > t],

we note that for all ¢, Pu [L(g) > t] 1is also an increasing function

of u. Thus we may state that

(2.21) sup Pu[L(g) >t]=1imp [LX) > t].
UEHO Yo

It is easy to show that the expression on the right is equal to
P[L'(X) > t]. To see this we observe that for any given x,

L(x) and L'(x) will coincide if the minimum of x i<k is

i’ e |

greater than the maximum of the X i> kl' As u approaches

infinity, the probability of this event approaches 1. Hence we may
state

(2.22)  sup P (LX) > t]= 1limP [LX) >t] = pPL."(R) > t].
u€H, H

u—>oo

The distribution of L'(z) is easy to derive, and is independent
of E_E HO. To see this we let Ll(z) and LZ(X) be the likelihood

ratio based statistics for testing

Hypt ¥y

against




o a—

HOZ: uk +1 = L. uk

against
a2t Mg ot 2

(Ll(z) = -2 log AI(Z), and Lz(z) = -2 log AZ(Z), the A, being the

i
respective likelihood ratios). Clearly L'(Z) = LI(Z) + Lz(z). L, and

1
L2 are independent, since L1 is a function of the first kl variables
only, and L, a function of the second k-kl. Furthermore, both Ll
and L2 are distributed according to Bartholomew's chi-bar-squared
distribution (see Barlow et at., Chapter 2).

Arguing as in Section 5 of Robertson and Wegman (1978) we find that

the null hypothesis distribution of L' 1s a chi-bar-square distribution
where the coefficients on the various chi-square tail probabilities

can be found by convoluting two sequences of level probabilities

corresponding to linear order restrictions. Specifically

(2.23) pP[L' = 0]

]

Pl(l’kl) Pz(l,k-kl)
and

(2.24) P[L' > t]

E 2
Q Plx; ,>tl ;>0
joq 1 M-2

where Pl(zl,kl) is the probability that EW(KIHAI) assumes £,

distinct values amongst its first k, components and PZ(LZ,k—kl)

is the probability that Ew(ngAZ) assumes 22 distinct values amongst
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its second k—kl components and the sequence {01}:_2 is the convolution
of the two sequences {Pl(zl,kl) ;4= 1,2,...,k1} énd
{Pz(zz,k-kl); L, = 1,2,...,k-k1}. The probabilities Pl(ll,kl)

and Pz(zz,k—kl) are computed undc the assumption that H and

01

H02 are true. Algorithms for their computation are discussed at length

in [Barlow et al., 1972] and an approximation is given in [Robertson
and Wright, 1983].

Thus far we have dealt only with the case in which the null
hypothesis postulates a descending trend between two blocks of parameters.

We may in fact extend our result to cover an arbitrary number of blocks

of parameters. For example consider the problem of testing Ho against

HA—HO where

(2.25) H.: U, = U, = oo =4 24y .o B, =2 > yu = ...
0 1 2 k1 k1+1 k2 k£-1+1

(2.26) Hyr owp > ... 2 uk1 uk1+1 2oeen 2 e 2 W

Here the null hypothesis postulates equality within £ sets of parameters,
and a descending trend between blocks, while HA postulates a descending
trend both within and between blocks.

Theorems 2.1 and 2.4 have natural extensions for this situation,

and in that regard we define the hypotheses H6 and HA as follows:

(2.27) H!: B, = Uy = o00 = W o: oW = ... = Seeeiecel M = ...
of M17 M L k, ’ k, g+l

.
.
v

My 2 - __ukl; uk1+l 2 e 2 My

(2.28) H!: u, > R > ...
At M , P ky_ *l
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Analogous to the inequality for two blocks proved in Theorem 2.1, we may

use induction to obtain for each x,
(2.29) L(x) < L'(x)

where L and L' are the likelihood ratio based statisticis for testing
- ' t_y'
_ Ho against HA HO and HO against HA HO’ respectively,

Similarly, using the inequality we may show that

(2.30) sup PU{L(X) >t} = pP{L'(X) > t].

g:Ho -

The distribution of L'(z) may be easily shown to be distributed as the

sum of £ independent random variables each distributed according to a

* version of Barthomew's chi-bar-square distribution. Thus, we may state
- k 2
(2.31) P[L'"@) >t]l= § q P[xj_l > t] For t >0
j=g+1 3
_ L
' = = -
(2.32) p[L"(X) = 0] 121 P (1,k; -k, )

where the sequence {Qj}§=£ is found by convoluting £ sequences of

level probabilities as in (2.23) and (2.24).

3. Asymptotic tests for the exponential family and the multinomial distributiom.

Because the analysis in this section so closely parallels the work
in [Robertson and Wegman, 1978] and in [Robertson, 197&] we present
only sketches of the arguments. We first consider an exponential family

{f(-;e,r)} which, following Lehmann, 1959 , we parameterize as follows.




(3.1)

(3.2)

(3.3)
(3.4)

We are

to ©

(3.5)

1 (3.6)

We consider the problem of testing H

f(x; 68,1) = exp[pl(e)pz(r)k(x) + s(x,7) + q(8;7)]; 0 € (61,8,); TET

The following assumptions are made:

p1(°) and q(*;t) both have continuous second derivatives on some

interval (01,62) for all Tt € T,
pi(e) >0 for all 8 € (61,92) and for all 1t € T.
q'(0;t) = -6 p{(e)pz(r) for all 6 € (91,62) and for all 1t € T.

thinking of T as fixed so that all derivatives are with respect

Using this parameterization we have

E(k(x) = o

var (k@] = [p](@)p, (]

against HA-H where

0 0

we sample from each of k independent population and

6, =0, = ...=8 iek1+1=“'=e

<
v
av]
v

.. >0, >0 > 0> 0. > 8
L=kt = =

(In this section we consider only two blocks. Extensions of the results
presented here to an arbitrary number of blocks are straightforward. In
the analysis of the unipolar affective disorder data in Section 4 the

distribution is binomial.)

AT s n s . R e P DR L ST R




1 =1,2,...,k,

3.7

where

(3.8)

Suppose we take a sample of size n

~15-
i

L=-21log A

K
-2 Z {n Bipz(r )[pl(e )- pl(E (e|u )1

+ “1[“(51”1)' q(E!(f;IHO)i; (R

-2 Zl{“ieiPZ(T ), (8,)~ Py B, CIERIE

+ “1EQ(51‘T1)' q(;ﬁ(élHA)i; )

n,
g =-L
ei - ny g (X )

and the weights, Wi, are given by

(3.9)

k
-1
w, = [nipz(Ti)] . [jZI njpz(rj)]

from the 1th

population:

and letting A be the likelihood ratio, we have

Using a second degree Taylor series expansion, and equition (3.4) we

may write L 1in the form

k

~ - - 2
(3.10) L=-(7] n,08,p,(r)p,"(a)) + q"(by57)] -[ei-E!(glﬁo)i] }

i=1

¥ 0 N " 2
= = mylegpy (e ey "(ey) + a5t )] - [, (8]H ;17
1=1 W




~

Where a, and b, 1le between 6, and ?ﬂ(elﬂo)i, and c

i and d

lie between 6, and §!(9|HA)1.

i 1 i

~

Using the results of the previous section we obtain the following

result regarding the asymptotic distribution of L.
Theorem 3.1

(3.11)  sup 1lim P[L > t] = P[T' > t]

8€H, np

where

k
T = ] vpie)p,(t X, - E_(x|u), 7
i=1 LA

2
- L vgpjep, (r X, - E (xX[H)) ]

and where X = (XI,XR,...,Xk) is a k dimensional vector of normally

distributed independent random variables with

(3.12) ERX) =0

and

(3.13)  var () = [v;py(0)p,(c )T .
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0 and HA are the closed convex cones associated with the hypotheses

H': 6, =6, =...=0,_ ;60 = ...
k1 k1+1 k

6

-
-

.
@
v
@
|v

; 0 > ... 28,
kl k1+1 k

The constants Yi are defined in the following way. We assume we

are dealing with sets of sample sizes, {n,}, 1=1,...,k, such that

i
n
for each set, El is some constant, cij' We define
h|
Y = ni
1 min {ni}
1<i<k

PROOF, We first consider some arbitrary 8 € HO, and we
define hypotheses HB and HX by dividing the hypotheses

HO and HA in separate parts according to the different values assumed

by 6. This is most easily explained by an example: suppose we are

testing

against
H,: 6, >6,>6,>8
and suppose that 8 1is such that

8, =98, > 65 =6,,
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then we define H8 and H" as follows

A

o
.
<D
v
@D
we
D
v
D

1f o, = " = "o
2 33 then PO HO and HA HA.

Now, using techniques similar to those in [Robertson and Wegman ,
1978] it follows that
k

L—*——%_Z.

1" 2
L yipi(ei)Pz(ri)[ X - E!leﬂo)il

k
” 2
- 151 v P (0P, ()L X, - Ey_()—(lHA)i]

where X and w are as described in the theorem. We denote this
limiting random variable by T". Using the results obtained in this
paper for normal random variables we conclude that

lim Pe[L' >t] = Pe['l‘" >t] < P[T" > ¢t].

n+eo =

>0 then
1 k1+1

To show that the supremum is attained, note that if ek

coincides with H', H" coincides with H' and T" = T'.

0’ A A’

In Section 4 we use Theorem 3.1 to treat the unipolar affective

"
Hy

disorder data mentioned in the introduction.

OOV
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We now treat the case in which we are sampling from a multinomial

distribution, i.e. we have a random vector X where

k k
! X X x
fo (Xypeeesx) = ——— p "1 p*2 ...p. "k, Lx,=n, Jop, =1.
X 1 k xpteaex ! 1 2 ko =1 i (=1 1

3 If we wish to maximize the likelihood subject to the restriction
that the P, satisfy the partial order, the maximizing estimates may be

obtained by taking the unrestricted maximum likelihood estimates,

P, = o’ and projecting them onto the closed convex cone associated with

the partial order. The projection is taken using unit weights (see

Example 2.1 in [Barlow et al., 1972]).

We treat the problem of testing H against H,-H_. where

0 A0

Hot Py =Py ™ oen TR ZPe T TR

> cee ees 2 P

The treatment here closely parallels the work in Robertson (1978).
If A 1is the likelihood ratio , and we let L = -2 log A, then we

have

kK . - k . -
(3.18) L =27 npi[ln E (E]HA)ij - 27 npi[ln E (R|Ho)i]
i=1 i=1

where E(éIHA) and E(éIHO) denote the projections, using equal

weights, of é_ onto HA and HO respectively. Using second degree

Taylor series expansion we may rewrite this as




—— s v4-'I-l!IIu'-I--nnn-I-!E====E=I=.l.llIlIIIIIlIIIIIIIIIIIIII-.-I-WT1
;

-20-

L - 2_ % - o1 - ; 2
(3.1 L= ] np, — [p, -E (p[H),I" - [ np, =5 (p, - E (plH),]
a

i=1 bi i=1 1

-

where bi lies between Py and E (glﬂo)i, and a, lies between Py

and E (pIHA)i. Writing L in this form enables us to prove the following

theorem, analagous to Theorem 3.1 for the exponential family:
THEOREM 3.2

(3.20) sup lim P {L > t] = P[T > t]

£€H0n+w L
where
X 2 K 2
= - | - - \
(3.21) T g p,[2Z; Ep(gl%)i] g A EéZ’“A)ij ,
i=1 i=1
Z=( .Z.) being a vector of k independent normally distributed

17"k

random variables with

(3.22) E(Zi) =0

-1

(3.23) wvar (Zi) =P

' and H! are defined by the closed convex cones

The hypotheses HO A

assoclated with

Hé: Py =Py = ... = pkl; pk1+1 = ee =Py

1. .
HA' p1 > p2 > e 2 pk H pk1+1 2 0.2

1
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PROOF. The proof is similar to the proof of Theorem 3.1 and closely

parallels the proof of Theorem 2 in [Robertson, 1978].

4. An example involving the binomial distribution.

We now consider the problem discussed in Section 1 concerning the
two theories which explain the age of onset of unipolar affective

disorder. The hypotheses in question may be stated as
Byt Py =Py = P32 P, = Ps = Pg
Byt P 2Py 2P32P, 2P;5 2P

where HO represents the '"qualitative" theory of genetic transmission

oty
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and H, the "quantitative' theory. From a mathematical point of view,
the most interesting data set in Cadoret et al. regards the

proportion of depressive parents in males suffering from u.a.d.. For

these data the six sample sizes (i.e. numbers of male probands in each group)
are 66, 174, 134, 166, 116, and 140 and the six relative frequencies

are .212, .103, .149, .145, .086, .100. Any one of several algorithms

in Barlow et al., 1972 can be used to compute the maximum likelihood
estimates restricted by HO and HA. Using the pool adjacent violators
algorithm, we found that the maximum likelihood estimates subject to

H. are .139, .139, .139, .114, .114, .114 and the estimates satisfying

0

HA are .212, .131, .131, .131, .131, .094, .094. The resulting
likelihood ratio has a value of 5.362.

In order to compute a P-valve we must compute

2
) P, (2,,3)P, (1,,3) P [X > 5.362].
3cg4n <6 L2072 2,+2,-2

The values of the level probabilities, P1(£13) and P2(22,3) depend

upon the sample sizes (weights) and can be found using the formulas

on page 140 of Barlow et. al (1972). The resulting P-value is .0648.
Additional details regarding the analysis of this data set and

analysis of the other data from Cadoret et. al may be found in Robertson

and Warrack (1981).

5. Comments.

As noted in the introduction, the null hypothesis behavior of the
distribution of the likelihood ratio test statistic is not what one

might expect in light of previous research in the area of testing




statistical hypotheses under order restriction. Moreover, the test
statistic L', which is a likelihood ratio statistic for testing
" = - = = '_ '
Ho. p1 p2 p3, p4 p5 p6 against HA Ho where
',
Ha? Py 2Py 2 P30 Py 2 Pg 2

Py has Hé(and thus Ho) as a similar
region and has exactly the same null hypothesis distribution as L. This,
together with the fact that L < L' means that L' is uniformly
more powerful than L. This result seems somewhat paradoxical in
that L' does not account for the prior knowledge that Py z.pa. If
we use L' to compute a P-valve for our data set then the observed
valve is 5.783 yielding a P-valve of .0533.

In computing P-values, power considerations may not be too
pertinent since P-values are computed under the null hypothesis and
power says something about the quality of the test when the alternative

is true. It seems to us that the P-value computed using L 1is rather

more representative of the evidence in the data against HO than the

P-value computed using L'.
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