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A LIKELIHOOD RATIO TEST REGARDING

TWO NESTED BUT OBLIQUE ORDER

RESTRICTED HYPOTHESES

Giles Warrack and Tim Robertson

SUMMARY

In an article in the Journal of Psychiatric Research, [Cadoret,

Woolson and Winokur, 19771 consider two theories regarding the genetic

makeup of patients suffering from unipolar affective disorder. These

two theories imply nested but oblique order restrictions on the

parameters of a statistical model. A likelihood ratio test for these

two restrictions is studied.
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1. Introduction.

In this paper we consider a hypothesis test in which both the null and

the alternative hypotheses impose an order restriction upon a set of para-

meters. Specifically, we deal with a situation in which we take independent

samples from k populations, where each population is distributed

according to a particular member of an exponential family (we also consider

sampling from a multinomial population). If we denote by e1  the para-

meter of interest from the ith population, we consider hypotheses H 0

and HA, where

(1.1) H0 e = e2 = ... +k >ek+l = ... = ek2 > ... > ek _l+ 1 = =

(1.2) HA eI  
8 2 ... k > k+l > ... > ... > ... > k

A~ ~ 1

We note that H contains H0, and we wish test H against HA-H (H

A H0  0  A 0 A

but not H0 ).

This investigation was stimulated partly by a problem encountered

in psychiatric research. [Winokur et al., 1971] studied data on psychiatric

illnesses afflicting family members of patients suffering from unipolar

affective disorder (u.a.d.). This data strongly suggested a higher rate of certain

kinds of illness in family members of patients who were affecled by

u.a.d. early in life than the rate for family members of patients for which

the onset of the disease occurred later in life. This research suggested

genetic differences between these patients which could be tested using

data on psychiatric illnesses suffered by family members. In Cadoret et al.

two different explanations (theories) are examined which might explain this

phenomenon. The first postulates a qualitative difference whereby

there exist two qualitacively different genes or groups of genes which
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explain the differences between the early onset probands and the late onset

probands. The second postulates differences caused by a single group

of genes with differences between the groups due to the number of genes

(the quantitative theory).

Cadoret et al. (1977) examined data on 6 groups of patients suffer-

ing from u.a.d. The groupings are based upon the age at which the patient

is first affected by the condition. Conclusions regarding the genetic

makeup of these patients were based upon inferences about the parameters

Pi; i = 1,2,...,6 where in one case pi represents the proportion of

alcoholic fathers of patients in the ith  age group and in another

case it represents the proportion of depressive parents of patients in

the ith  group. In terms of these parameters the researchers quantify

%, the two theories as follows:

H 0: Pl = P2 = P3 > P4 m P5 = P6

HA: Pl 2 - P3 - P4 - P5 - P6

where H0 represents the qualitative theory and HA  represents the

quantitative theory. The problem is to use the data to decide between H0

and HA-H0; thus this problem falls within the general framework we are

considering.

The hypothesis test represented by (1.1) and (1.2) is a special case

of a large class of problems in statistics where both the null hypothesis

and the alternative impose an order restriction on the parameter set.

Additional research on order restricted hypothesis tests where the null

hypothesis is composite can be found in [Robertson and Wright, 1981]

and [Dykstra and Robertson, 1982,1983]. An interesting feature of
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the test regarding (1.1) and (1.2) is the null hypothesis behavior of

the distribution of the likelihood ratio statistic which is not what one

might expect in light of previous research in the area of testing

statistical hypotheses under order restrictions. In virtually all of

these previously investigated problems either the null hypothesis is

a similar region for the likelihood ratio test (cf. Barlow et al. (1972))

or homogeneity is the least favorable configuration within the null

hypothesis for the distribution of the likelihood ratio test (cf.

[Robertson and Wegman, 1978, Robertson, 1975 and Robertson, 1978]). By

homogeneity being "least favorable" we mean that for all possible values

of the parameter set, within the null hypothesis region, the likelihood

ratio statistic achieves its supremum when all the 80 are equal.

We, however, obtain a rather surprisingly different result which is

described below.

Suppose that the 8i are the means of normal populations with

known variances, and suppose that based upon independent samples, we

wish to test H0  against HA-H0 where, say

HO: 1 = 2 = ... = k > ... = k

H0: 01 2 ... k k+1 .- k

H~ a> > +1k > >8
A~ 1-2-- -k > ek 1 +- k*

Then we are faced with the problem that the likelihood-ratio based

statistic, L, is not similar over the null hypothesis region. This time

the 8 E H0  giving sup p8[L > t] is that vector such that the difference
OEH o

ET0
between the first kI components and the second k-kI components approaches

infinity. Furthermore, this result enables us to show that

(1.3) sup P0[L > t] = PEL' > t]
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where L' is the likelihood ratio based statistic for testing H0

against H A ' - H ' where

(1.4) H;: 1 = ... =k ; ek1+ 1  . ek

(1.5) HI: 1  > ... > ) ; +1 > ... > E)

AA ek k

The statistic L' is shown to be distributed as the sum of two

independent random variables each of which is distributed according to

Bartholomew's chi-bar-squared distribution. A similar result is obtained

in dealing with hypotheses of the form (1.1) and (1.2), in which we

test for a descending trend between I sets of parameters, with equality

within the sets, or "blocks", against the hypothesis of a descending

trend both within and between blocks.

In Section 2 we consider tests for the normal distribution, and in

Section 3 we use these results to derive asymptotic tests for the

exponential class of distributions and the multinomial distribution.

In Section 4 we illustrate the use of the techniques developed here by

analyzing one of the data sets in [Cadoret et al., 1977].

2. Tests for the normal distribution.

We begin by considering the case in which we sample from k

independent normal populations with known variances. We wish to test

H against H -H where
0 AO0

(2.1) H0: 2 'k -1 1k+1 I" =

(2.2) HA: >1 - 2 "'" > + ? " k
A ~ ~ 1 1k
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If we denote the likelihood ratio by A, then we would reject H0  in

favor of H A for large values of the statistic L - -2 log A. We first

introduce some notation.

We take a geometric approach, and use the symbols H 0  and

HA  to represent not only statistical hypotheses but also subspaces of

k
k-dimensional Euclidean space, Ek . The subspaces denoted by H0  and

H A are closed convex cones. If x = (x1 ,x2 , .... Xk) is the vector

of observed sample means obtained from taking samples of size ni: i-1,2,...k

from k normal populations with known variances a 2 then the maximum

likelihood estimate of V = (Pl,2, ... k) under HA(H0) is the projection

of x onto the closed convex cone HA(H0), where

H = {y E E Yl = Y2  ' Yk > Yk 1 + k

H {y E Ek:y 1 >y > > y
A 2 k

2cli

the projection being taken with respect 
to weights w 1 =

i n i

(see Barlow et al., Chapter 2). This projection we denote by

Ew(xIHA) (Ew(1H0 )). The Ith  component of this vector we denote by

Ew &H A) i (Ew(v O)i) 

The statistic L - -2 log A may be written af

k 2 k

(2.3) L [-x - Ew(XHo)i]0 wi - x -E(IHA)i]2 W "

Using the notation 1I.I1w to denote the norm in Ek associated with

k

the inner product (x,Y)w = xiYiwi , we may denote L by
-- i=1

2 ,, ( I A [2

(2.4) L x - E(xH 0) 11 w - x-E(iH)12
0w -A w
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Using well known properties of projections on closed convex cones

(see Barlow et al., Chapter 2) together with some algebra, L may be

expressed equivalently as

(2.5) L = HIF (x1HA)1 w - IIEw(lH0)112

The following inequality is fundamental to the results that

follow and we state it as a theorem.

THEOREM 2.1. If 6 E H0 , then for any x E Ek we have

(2.6) L(x + 6) > L(x).

PROOF. We break up the proof into two separate cases. In the

first we consider the case in which

kl k

X wixi I wix i
(2.7) iffi1 > i=ki+l

k1I k
Swi  I wi

ifi i=k 1+1
1

the weighted average on the left hand side of the inequality sign

being the common value of Ew(XIHo)i, i f= 1,2,...,k, and the weighted

average on the right hand side being the common value of

E_(xjH o ii = k +1,k +2,...,k. We can, without loss of generality assume

that 6 = (6,6,...6,0,0,0,...0), where 6 > 0, and we have

kl k

' wi(xi + 6 x
i=l 1~l~

(2.8) 
>

kl k

i= i=k1+1
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The quantity on the left hand side being the common value of

Ew(x + S1Ho)i, 1 < i <_ k1. It is straightforward to show that

(2.9) Il(x+ 6) - E_(x + 61H0 )l w 2 -- - E_(xlH )11 2

We now utilize Theorem 2.1 of Robertson and Wegman (1978), which states

that if C is any closed convex cone in Hilbert Space, and if z E C,

then for any y,

(2.10)11 (y + z) - E_( + z1C) {{w < [ - EW(YjC) I_ X

Since 6 E H0 c HA, we have

(2.11) -I(x+ 6) - Ew(x + 6IHA)I 2 211E - Ew(X1HA) 2

Combining (2.9) and (2.11) we obtain, for the case in question,

L(x + 6) > L(x).

We now consider the case where x is a vector such that

klI k

I wxi I Wixi
i=1 i=k +1

(2.12) <
k 1 k
I w i  I w

i=1 i=k1+1

In this case the EW(xIHoi, i1,2 ... k, ,k, will have the common

k
I wixi

value k Let c be the positive difference between the rightkki
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and left hand sides of (2.12) and let E, cE H 0  be the vector with c

as its first k 1  components and O's elsewhere. We shall show first that

if 6 1 = ( 1 5...,,0...O) and 0 < 6i < E, then

(2.13) L(x + 6i L(x).

We shall then in fact be done, since x + E is a vector such

(2.7) holds, and we will then have for any 6E H0that

(2.14) L(x + 6 + c) > L(x + c) > L(x).

Thus all possible cases will be covered.

To prove (2.13) we need two lemmas. The first is obvious, and

we state it without proof.

LEMMA 2.2. Let {x,lx x2' .. 'x k and {yly 2,.. yk~ be two sets

of numbers such that x 1 2 X 2 . xk X. l Z1  y 2  y k. and

(2.15) y - yi > x1 x1 1  > 0.

Then for any set of positive weights fwi,W 2...,wk

(2.16) k w ~ (y 2 > k w -2

where x and y are averages taken with respect to the weights.

k'
LEMMA 2.3. If x is any vector in E ,and if 6 E H A, then

(2.17) Ew (x + 61H A i - E w(x + 61H A )i+l > E w(XIH A) i - E (xIH A )i+l

i = ,2 ..... k-1
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PROOF. The proof follows from noting that the sets on which

E W ( + 6HA) assumes constant values are subsets of the sets on which

E (xlHA) assumes constant values, and then using the maximum upper
w A

sets algorithm. (See Section 2.3 of FBarlow et al., 1972)).

We now return to inequality (2.13), and note that in the particular

case we are dealing with, using the form (2.5), L(x + 61) and L(x)

may be written respectively as the weighted sum of squares of the

Ew(x + 6liHA)i and the Ew(XIHA)i around their weighted means.

(We also use the fact, to be found in Barlow et al., that for any

k k k
xE E , and any closed convex cone, H, I wixi == -Wi E w (xjH) i ).iwl i

Thus we may invoke Lemmas 2.2 and 2.3 to obtain

L(x + 61) > L(x),

and the proof is completed.

The inequality obtained in Theorem 2.1 enables us to obtain the

following result regarding the distribution of the likelihood ratio based

statistic, L(K), over the null hypothesis region.

THEOREM 2.4. Define the hypotheses H' and H' as follows
(I A

(2.18) H P: i1  = 2 = k k +1 =

(2.19) HA' jj > j2 > "'" W k k+ 1 > ... > Vk

Let L'(X) = -2 log A'(R), A'(R) being the likelihood ratio for

testing H0  against H A - HO. Then

sup P [L > t] = P[L' > t]
PEH 0
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PROOF. It is clear from the inequality obtained in Theorem 2.1

that if V = (V,1, .... 0)0 ,..0) 14 0  and p > 0, then L(x + )

is an increasing function of P , for x fixed. Since

(2.20) P L(X) > t] = P [L(X + p) > t] > P [L(X) > ti,

we note that for all t, P EL(X) > t] is also an increasing function

of p. Thus we may state that

(2.21) sup P [L(X) > t] = lim P [L(X) > tj
PEH 0  P -*C P -

It is easy to show that the expression on the right is equal to

PLL'(R) > t]. To see this we observe that for any given x,

L(x) and L'(x) will coincide if the minimum of xi, i < k1 is

greater than the maximum of the xi, i > k I. As W approaches

infinity, the probability of this event approaches 1. Hence we may

state

(2.22) sup P [L(X) > t] = lim P [L(R) > t] = PL,'(R) > t]
pEH 0 11- VI -

The distribution of L'(X) is easy to derive, and is independent

of p E H0. To see this we let L,( ) and L2(X) be the likelihood

ratio based statistics for testing

H0 1  = = =kl

against

HAl: 1 2 k 1' k

Hi



and

H 02: k+1 = k

against

HA2 : "k +1 > > "'" Ik

(L1 (X) = -2 log AI(X), and L2 (X) = -2 log A2(X), the Ai being the

respective likelihood ratios). Clearly L'(X) = L (X) + L2(X). L1 and

L2 are independent, since L is a function of the first k variables

only, and L2  a function of the second k-k1 . Furthermore, both L1

and L2  are distributed according to Bartholomew's chi-bar-squared

distribution (see Barlow et at., Chapter 2).

Arguing as in Section 5 of Robertson and Wegman (1978) we find that

the null hypothesis distribution of L' is a chi-bar-square distribution

where the coefficients on the various chi-square tail probabilities

can be found by convoluting two sequences of level probabilities

corresponding to linear order restrictions. Specifically

(2.23) P[L' = 0] = P1 (1,k1 ) P 2 (l,k-k1 )

and

k 2
(2.24) P[L' > t] = I QI P[×y-2 > t] ; t > 0

i=3

where PI( 1 9,k1 ) is the probability that Ew (IHAl) assumes 1I

distinct values amongst its first k, components and P2(2,k-k1)

is the probability that ECw(IHA2) assumes A2 distinct values amongst
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its second k-k components and the sequence [O k is the convolution
11 1-2

of the two sequences (P1( 1,k1 ) ; £ . 1,2,...,k 13 And

(P2 (£2 k-k1 ); £2 = 1,2...,k-k13. The probabilities P1 ( 1 ,k )

and P2 (A2,k-k1 ) are computed undc the assumption that H01 and

H02 are true. Algorithms for their computation are discussed at length

- in [Barlow et al., 1972] and an approximation is given in [Robertson

and Wright, 1983].

Thus far we have dealt only with the case in which the null

hypothesis postulates a descending trend between two blocks of parameters.

We may in fact extend our result to cover an arbitrary number of blocks

of parameters. For example consider the problem of testing H 0  against

H -H where

A 0

(2.25) H 0 : i = 1 2 "'" k z 1  .k.+1 = Z '"- > U "k +1 k

(2 .2 6 ) H A : P 1 > ' . > k > 1 k + 1 > . . > > " k "

Here the null hypothesis postulates equality within £ sets of parameters,

and a descending trend between blocks, while HA postulates a descending

trend both within and between blocks.

Theorems 2.1 and 2.4 have natural extensions for this situation,

and in that regard we define the hypotheses H and H' as follows:
0 A

(227 "; 1 = =J 11k; 1 kl1+1 P k 2  jk£ A1 +1 P
(2.27) HO: > V > >. P =  "'.;''' > "'" >

A 1 2k1 k1 k2 k-(2.28) HA: 141 2 u2 > "' 1 kl; 14kl+l > "' 1 k2 ;' ''k£l+1-"'" 14k

-------------------------- --- a -
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Analogous to the inequality for two blocks proved in Theorem 2.1, we may

use induction to obtain for each x,

(2.29) L(x) ; L'(x)

where L and L' are the likelihood ratio based statisticis for testing

H against H -H and H; against Hj-H', respectively.
0 AO 0

Similarly, using the inequality we may show that

(2.30) sup P (L(X) > t] = P (L'(X) > t].
EHo U -

ptH 0

The distribution of L'(X) may be easily shown to be distributed as the

sum of I independent random variables each distributed according to a

version of Barthomew's chi-bar-square distribution. Thus, we may state

k2

(2.31) P[L'(R) > t] = 2 q eX For t>0

j 1 j >t]

e

(2.32) P[L'(R) = 0] = H Pi(l,ki-kiI)
i=1

)k

where the sequence (Q k= is found by convoluting A sequences of

level probabilities as in (2.23) and (2.24).

3. Asymptotic tests for the exponential family and the multinomial distribution.

Because the analysis in this section so closely parallels the work

in [Robertson and Wegman, 1978] and in [Robertson, 1978] we present

only sketches of the arguments. We first consider an exponential family

[f(.;e,T)) which, following Lehmann, 1959 , we parameterize as follows.
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(3.1) f(x; 0,T) - exp[pl(O)P 2(T)k(x) + s(x,T) + q(O;T)]; 9 E (01,82); T E T

The following assumptions are made:

(3.2) p1(.) and q(.;T) both have continuous second derivatives on some

interval (61,a2) for all T E T.

(3.3) p'(8) > 0 for all e E (alte2) and for all T E T.
1 1' 2

(3.4) q'(0;t) = -e p(e)P 2 (T) for all 6 E (01,02) and for all T E T.

We are thinking of T as fixed so that all derivatives are with respect

to 9 . Using this parameterization we have

(3.5) E[k(XN =

(3.6) var [k(X)] = [p (e)P 2 (T) -

We consider the problem of testing H0  against HA-HO where

we sample from each of k independent population and

H e >~~ a* 60 1 2 ... k k+1= k

HA: 01 a 2 > .- k > k +l> > ... > .. > k

(In this section we consider only two blocks. Extensions of the results

presented here to an arbitrary number of blocks are straightforward. In

the analysis of the unipolar affective disorder data in Section 4 the

distribution is binomial.)

I
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Suppose we take a sample of size ni  from the i th population:

I 1,2,...,k, and letting A be the likelihood ratio, we have

(3.7) L - -2 log A

k
- 2 n 01 P2 (- l)EPl( )- pl(E(01Ho)i)1

+ n 1 [q(Ep;Ti)- q(Ew(IH0)1 ; T i)

k
-2 [ {nieiP2 ( i)[P(8i)- p 1 (E(IH A) i

+ ni[q(1;Ti)- q(Ew(IHA)i; Ti)]}

where

ni
(3.8) 1  i k(X ij

and the weights, wi, are given by
k

(3.9) wi = [niP 2 (t)] • E I n-P21(T

J=1

Using a second degree Taylor series expansion, and equition (3.4) we

may write L in the form
k2

(3.10) L= - ni[eiP2 (ri)pl"(ai) + q"(bjri)] [e-E(eIH0 )1 ]21
i=

{-X nie iP2(Ti)P,"(c i ) + q"(d 1 ;Ti)]-Cei-E H 01A)il2 I

i= 1
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Where a and bi  lie between 0 and EW(1H0 )V, and ci and di

lie between and EW(0IHA)i.

Using the results of the previous section we obtain the following

result regarding the asymptotic distribution of L.

Theorem 3.1

(3.11) sup lim PEL > tJ = PET' > t]
EH 0 n

where

k
T1= YiP(Oi)P2 (Ti)[x - E(XIH;)i]2

i=1

SYiPeiP2 (T i)EX i - Ew(XIH')i, 2
-~ ~~~ Anni-, i iy

and where X = (XI,X2,...,Xk) is a k dimensional vector of normally

distributed independent random variables with

(3.12) E(Xi ) = 0

and

(3.13) var (Xi) = [yip (i)P 2 (Ti)] -
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H; and H' are the closed convex cones associated with the hypotheses

H': 0 = 0 2 = ... = 0k ek1+1 = ... - 8k

H': > 2  > ... > 6 6k+1 > ... > kA 1 - 2- *>k' 0 k k*

The constants yi  are defined in the following way. We assume we

are dealing with sets of sample sizes, {n }, i-1,...,k, such that
ni

for each set, n is some constant, cii. We define

ni

S min fn i }
1<i<k

PROOF. We first consider some arbitrary OE H 0, and we

define hypotheses H" and H" by dividing the hypotheses
0 A

H and H in separate parts according to the different values assumed
0 A

by 6. This is most easily explained by an example: suppose we are

testing

H0 1 Z > 3 4

against

HA 1 2 - 3 - 4

and suppose that 0 is such that

a1 e 2 > 83 0 4,

L .....
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then we define H" and H as follows

0 A

H": e ; e = 60 1 2;3 4

H": e e;
A 1- '2 '3-'

If 0 3  then H = 10  and HA  HA *

Now, using techniques similar to those in [Robertson and Wegman,

19781 it follows that

k
L yiP (ai)P2 (T )[ X, -Ew(XIH") ]2

-1 w-1 01

k -2k ii(6i)P22 ) A i x E(XIH")i]

- x Y 1 e) 2 ( 2 1  ACJX1

where X and w are as described in the theorem. We denote this

limiting random variable by T". Using the results obtained in this

paper for normal random variables we conclude that

lim P [L' > t] = Pe[T"> t] r P[T' > t].
n4® --

To show that the supremui, is attained, note that if ek > ek +l then

H" coincides with H' H" coincides with H', and T" = T'
0 0' AA'adT T.

In Section 4 we use Theorem 3.1 to treat the unipolar affective

disorder data mentioned in the introduction.
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We now treat the case in which we are sampling from a multinomial

distribution, i.e. we have a random vector X where

(xs .... x k f Plx p1  2 2 "p. k k xi
_ KXl*.k!k i-I i-I

If we wish to maximize the likelihood subject to the restriction

that the pi satisfy the partial order, the maximizing estimates may be

obtained by taking the unrestricted maximum likelihood estimates,

X i
- and projecting them onto the closed convex cone associated withPi n '

the partial order. The projection is taken using unit weights (see

Example 2.1 in [Barlow et al., 1972]).

We treat the problem of testing H0  against H A-H0 where

H0 : p =p =.. kl - kl+l

0 P= P2 k > "" + Pk

HA: P 2 > ........ > Pk"

The treatment here closely parallels the work in Robertson (1978).

If A is the likelihood ratio , and we let L = -2 log A, then we

have

k k

(3.14) L =2 npi[ln E (.2H A) I] - 2X npiEln E (pI 0)i]i=1 ~

where E(pJH A ) and E(pIHO) denote the projections, using equal

weights, of p onto H and H respectively. Using second degree
A 0

Taylor series expansion we may rewrite this as

%x
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1 2
(3.15) L I np 2 n 1

i np 2 Pi [p 2 E p ~[ 1 -E (pIHA)i]
- =1 bi  1 11 a

where b lies between pp and E (PHO)V and ai  lies between p

and E (PIHA)i . Writing L in this form enables us to prove the following

theorem, analagous to Theorem 3.1 for the exponential family:

THEOREM 3.2

(3.20) sup lim P [L > t] P[T > t]
pEH 0n n-*o -

where

k 2 k 2

(3.21) T = XPi[zi - Ep(ZIH0)i] - I_ pi[Zi - E(ZIHQ)],

z (Z1, ...Zk) being a vector of k independent normally distributed

random variables with

(3.22) E(Z i) = 0

(3.23) var (Zi) 1 1P1

The hypotheses H and H' are defined by the closed convex conesTh hpthse 0 HA

associated with

H1 1
0i Pl P2 = "" = Pkl; Pkl ~ =  ' k

H':p+>..>
SPI P2 > " > Pk I k1 1 k

- - ------ --... . .-- -- -- - Pat .p
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PROOF. The proof is similar to the proof of Theorem 3.1 and closely

parallels the proof of Theorem 2 in [Robertson, 1978].

-l

4. An example involving the binomial distribution.

We now consider the problem discussed in Section 1 concerning the

two theories which explain the age of onset of unipolar affective

disorder. The hypotheses in question may be stated as

H0: P, P2 = P3 > P 4 = P5 =
P6

H A Pl > P2 > P3 > P4 > P5 > P6

where H0  represents the "qualitative" theory of genetic transmission

'ID

. .. . . .. .. ...r -- -_ _ __.. .V .
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and HA the "quantitative" theory. From a mathematical point of view,

the most interesting data set in Cadoret et al. regards the

proportion of depressive parents in males suffering from u.a.d.. For

these data the six sample sizes (i.e. numbers of male probands in each group)

are 66, 174, 134, 166, 116, and 140 and the six relative frequencies

are .212, .103, .149, .145, .086, .100. Any one of several algorithms

in Barlow et al., 1972 can be used to compute the maximum likelihood

estimates restricted by H0 and H . Using the pool adjacent violators

algorithm, we found that the maximum likelihood estimates subject to

H0 are .139, .139, .139, .114, .114, .114 and the estimates satisfying

HA  are .212, .131, .131, .131, .131, .094, .094. The resulting

likelihood ratio has a value of 5.362.

In order to compute a P-valve we must compute

P(91,3)P2(i23) P E2>5.6]

1 2-3 < 9+Z2 < 6 P1Z93P2U23)PEi+X I+2- 2 >5.3621.

The values of the level probabilities, P1 (Y1 3) and P2(02,3) depend

upon the sample sizes (weights) and can be found using the formulas

on page 140 of Barlow et. al (1972). The resulting P-value is .0648.

Additional details regarding the analysis of this data set and

analysis of the other data from Cadoret et. al may be found in Robertson

and Warrack (1981).

5. Comments.

As noted in the introduction, the null hypothesis behavior of the

distribution of the likelihood ratio test statistic is not what one

might expect in light of previous research in the area of testing
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statistical hypotheses under order restriction. Moreover, the test

statistic L', which is a likelihood ratio statistic for testing

H: = P against H'- H 0 where
0 p1 =p 2 =p 3 ' P4 = p 6  A 0

H': P1 > p2 > p3, P4 > p5 > p6, has H (and thus H ) as a similar

region and has exactly the same null hypothesis distribution as L. This,

together with the fact that L < L' means that L' is uniformly

more powerful than L. This result seems somewhat paradoxical in

that L' does not account for the prior knowledge that P3 > P4. If

we use L' to compute a P-valve for our data set then the observed

valve is 5.783 yielding a P-valve of .0533.

In computing P-values, power considerations may not be too

pertinent since P-values are computed under the null hypothesis and

power says something about the quality of the test when the alternative

is true. It seems to us that the P-value computed using L is rather

more representative of the evidence in the data against H 0  than the

P-value computed using L'.
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