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Abstract

A normal mode model is used to predict signal coherence for a sound

source moving horizontally in shallow water. In the model, modal amplitude or

modal phase are assumed to fluctuate. The fluctuations are ascribed to the .

effect of the surface or bottom roughness on sound propagation. For frequen-

cies at which only a few modes are imp, tant, namely water depths of the order•

of 1 .5 wavelengths, model coherence was calculated for sensor configurations

in the plane containing source and receivers.

For source motion towards the receivers, it was found that for phase

and amplitude fluctuations the coherences obtained are identical and that the

coherence, which can drop to zero over a few wavelengths, is ind!pendent of

the fluctuation distribution width.- 1hu.&6i-turnm'ouC that, kfor source

motion towards the receivers, coherence is controlled by mode strengths and

mode propagation constants. In contrast, if the source is in motion in a

circle about a vertical array, coherence depends upon the distribution width,

and for the same distribution width coherences for phase fluctuations are pro-

portionately lower than those for amplitude fluctuations.c ot ooeoa ' oi
0
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INTRODUCTION

Our long-term aim is to predict spatial signal coherence for an

acoustic continuous wave source in shallow water. We are interested in

situations where the shallow water surfaces - bottom, top, or both are rough

enough to affect the sound propagation significantly. It is assumed that the

surface roughness produces fluctuations of the mode amplitude or the mode

phase. The effect of such fluctuations on signal coherence is our primary

concern here. In particular we wish to model the signal coherence for those

low frequencies at which only a few modes exist. Normal mode theory

predicts that sound will be propagated predominantly as trapped modes and

that for sufficiently low frequencies only a few modes can exist. That the

sound does indeed propagate as a few modes has been confirmed for at least one

Arctic shallow water location2 ,3.

Spatial coherence has been modeled by P.W. Smith, Jr. for deep ocean

environments where a multipath model is appropriate4 . This multipath model

and others based on a multipath analysis such as that of Jobst5 are com-

putationally cumbersome for the low frequencies we are modeling. Recently

- U.E. Rupe described a model6 for calculating phase coherence in a shallow

* water waveguide where the single frequency source had significant extent and

the infinitesimal elements of the source were assumed to radiate incoherently.

*His model uses a mode analysis for the sound propagation, and in this respect

it is similar to the model presented here. However his source is stationary

and he only presents results for vertically separated receivers. The purpose

of his model was to throw light on the relationship between source charac-

teristics and received signal. Furthermore, roughness was limited to a small

sinusoidal ripple on the surface.

In a regime with only a few modes present, a deterministic or statisti-

cal approach working directly from surface profiles could be attempted.

Instead, to make the problem more tractable and to give the results more

general significance, we assume that the roughness has produced fluctuations

of mode amplitude or of mode phase but not both. The distribution of mode
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amplitude or phase is our starting point. We assume a family of such distri-

butions and draw conclusions that are general to the extent that the distribu-

tions are appropriate. The model does not relate the coherence to the

roughness of the waveguide boundaries.

Our model enables a calculation of coherence for a sensor pair of

arbitrary separation and for arbitrary excitation of the normal modes.

However, in this report, only vertical and endfire-horizontal hydrophone pairs

are considered, and source motion is restricted to being towards the array or

perpendicular to the vertical plane containing the sound source and array.

The coherence information calculated from the model enables a more informed

definition of experiments to measure coherence under rough surface conditions.

The model also indicates at what depths arrays might best be deployed to maxi-

mize gain or to investigate coherence. Furthermore the results also have some

bearing on the choice of vertical, horizontal or inclined arrays and indicates

what spacings might be most suitable in such arrays.

THEORY
The situation modeled is that of a single frequency sinusoidal sound

source in shallow water. As shown in Figure 1, sound from the source is

received by hydrophones that may be at any depth but must lie in the same ver-

tical plane as the source. Source motion may be in the vertical plane con-

taining the source and the receivers, or perpendicular to the plane, but

motion is restricted to being horizontal. The sound propagation is modeled as

trapped normal modes with fluctuations of phase or amplitude. These fluc-

tuations are attributed to the rough overlying ice surface or the rough bot-

tom.

*'-. The amplitude for the modes was calculated for a solid ice layer

overlying water with a solid bottom. The sound velocities are shown in Figure

1." For the low frequency results presented, only two trapped slowly moving

modes are present. In the modal analysis, energy travelling at higher speeds

is associated with the bottom and, for such means of transmission, little

energy is found in the water column. It has also been confirmed by experiment

V
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SOURCE

STATIONARY WATER =1.0
RECEIVERS

------------------------------------- _ BEDROCK 2.

SOUND VELOCITY (m/sec) 2/(2
MODE AMPLITUDE a11 /2

2000 4000 0 1.0 0 5 10
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Figure 1 *The geometry, physical parameters of the shallow water propaga-
tion model, and amplitudes of modes 1 and 2 are shown. Source
motion is either in the plane containing source and receivers or
perpendicular to the plane.
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that the amount of energy propagated at these speeds is relatively insignifi-

cant compared to that propagated in the slowly moving modes2 . For simplicity,

the fast moving modes are ignored and only the slowly moving modes are

included in the model.

Phases or amplitudes of the modes were considered to fluctuate as a

result of the source moving through a waveguide of variable depth. The fluc-

tuations were modeled by the distribution
7,

P(x) = exp(Kcosx)/(2 Io(K))

where lo(K) is the modified Bessel Function of the first kind order 0 and

exp(x) denotes ex. This distribution ranges from a uniform distribution for

K=O, to the case where the phase is known when K= o. Figure 2 illustrates the

shape of the distribution for several values of K. It can be seen that for

K=10 the effective width of the distribution has already narrowed considerably

from that for K=O.

1.2

K=10

1.0-
K=5

.8

.4-

K=1..K=0K=

.2"

. .;.2 - f - K " 0

r -r/2 0 7r/2 X

Figure 2. Shape of the fluctuation distribution for various values of K.
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Coherence Assuming Phase Fluctuations

Numerous trapped normal modes and attenuating modes are generated at

the source. In the model we consider only the slowly moving low frequency

trapped modes that arrive at the receivers, and for each mode i we calculate

from the normal mode model an amplitude and phase represented by the complex

number ai. This amplitude and phase is calculated at the source depth and the

range of the first receiver. At the receiver depth an amplitude and phase

represented by bi for receiver 1 and ci for receiver 2 is also calculated from

. the normal mode model. If we represent the Fourier transform of the input

signal by xi(w) and assume no mode conversion in the vicinity of the receivers,

we can write the output Zi(w) as,

N

Zi(w) = Z aibixi(w) (1)

i=1

where we have not as yet introduced fluctuations of phase produced by boundary

roughness or other causes. The phase of each mode has a fluctuation which

varies with the range of the source but is the same at each hydrophone. This

implies that the receiver separation is small compared to the distance tra-

velled by the source between successive realizations of the fluctuating phase.

When the fluctuations are included, the received signal is

N
Z Z1 ( )  a i ab i xi()exp(j ei)

~i:1

N (2)
Z2 (W) E aicixi(w)exp(JOi)

i=i

i where the distribution for ei is given by,
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P(ei ) exp(Kicosi)/(27TIo(Kj)). (3)

In order to simplify the final result we replace the complex quantities

ai , bi , ci by their magnitude and phase. The phase shift for the ai is that

determined by the length of the propagation path from the sound source to the

first receiver. This phase shift *i we associate with ai as the phase shift

affects the signal at both receivers. There is also a phase shift produced by

*i the extra propagation path between receivers that is included in ci .

Thus, ai becomes aiexp(ii)

bi becomes bi

ci  becomes ciexp(iO)

where ai, bi, ci are real after the substitution. To calculate the coherence

of the received signal we use the coherence definition,

2 2 22- 2
2 (W) =I Zl1(W ) 2,(W) 1Z / (W~() 2 z(W)2) (4)

where denotes the complex conjugate and the bar denotes an ensemble average.

For the case N=2, equations 2 and 3 were substituted into equation 4 and the

integrations necessary to obtain expected values were carried out. For the

case of horizontal source motion perpendicular to the line joining source and

receivers, which will be called circumferential motion, the integrations are

described in Appendix A. Thus,

I a 1
2 b 1c 1exp(j 0 )+A (2 albla2c 2 expJ(f 2 "+e2

+ a2b2a cexpj($1 - 2+O1)3+a2 b202exp(jo2) 12
2 2 2 21(5

a1 b +2A aba2b os(-2)+a b2 1 .
11 12 1 12 12 2

I a12c12+2A12alCla 2C2C°cos( 1" 2 01"_2)+a22 2 I

II(K2 )II(K2 )A12 1 o(K1)Io(K2

0 1 0'2



In the event that source motion is horizontal and in the plane of the

source and receivers, which we call radial source motion, then a further

integration is required over the variable 1-2 in the evaluation of the

expected values of the coherence. When the integration is carried out over an

integral number of periods, terms in Equation 5 that contain Aij will drop out

for i#j. Consequently, for radial motion, signal coherence is not affected by

phase fluctuations and therefore does not depend on how the fluctuations are

distributed. The resulting coherence is that given by Equation 5 when K=O

since Aj,j=O if K=O.

The requirement that we integrate over an integral number of periods of

1- 2 implies that in an experiment to obtain a coherence estimate, the

measurement must be carried out over the period taken for an integral number
or a very large number of mode interference maxima to pass from the first

receiver to the second receiver.

Further simplification of Equation 5 for the case of radial motion

shows that, in the expression for the phase shift, the receiver separation

only occurs as the argument of a cosine function. Thus the coherence shows a

cosinusoidal dependence on sensor separation. In fact, the model p.'edicts

that the coherence would periodically peak at unity as the receiver separation

increases. However, in practice the assumptions of the model would not be

satisfied and at large separations the coherence would peak at less than

unity.

Coherence Assuming Amplitude Fluctuations

In the case of amplitude fluctuations the amplitude al of the first

mode was assumed to be distributed as,

expCKcos(r(a - )/c)]
P~a (6)P(a1  2a (K)

where, 0 al2 <2

4
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It was also assumed that the sum of the energies in the two allowed

modes at the source depth is constant,

a2
2 = 1-a1

2.

This was thought to be reasonable and was computationally con-

venient. Consequently, whereas for phase fluctuations a different distri-
bution width can be used for each mode, for amplitude fluctuations the

. model only allows identical distributions for each mode. In a manner

analogous to that for phase fluctuations, Equations 2 and 6 are substituted

into Equation 4 and the integrations carried out as described in Appendix

B. For the case of two modes and circumferential source motion the

coherence is,

la blcexp(P j)+b O28expj(O2- 1+ E)

: -+ b c OexpJ( 1  +a )+(l-"a)b2c2exp(J 02  2

2 2 11_ J 2Yl (W) _- (7)

tac 2 +2blb2 cos( 1_0 )+( 1-a)b2
2 .

1 1 2 1 2 1 2talC 1 2+2a 1o aC2C° co( 10 -2 +0 1 -02 ) + ( 1-ac )2 2

where 8 =n/8+91/(2I (K)3 E J (nn)I (K)/n0 1 nn=1

4-;

-4 "
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As for phase fluctuations, simplification of Equation 7 reveals that

the coherence is a cosinusoidal function of the receiver separation.

In the case of radial source motion, integration over an integral

number of periods of the variable fI-02 is required. As a consequence of

the cosinusoidal dependence on 4-' 2, all terms containing 8 have a zero

coefficient in Equation 7. Therefore, as in the case of phase fluc-

S tuations, the coherence is independent of whether or not amplitude fluc-

tuations are present or how fluctuations are distributed.

TECHNIQUES OF NUMERICAL EVALUATION

Because the calculations involved in Equation 5 and 7 require the

difference of two nearly equal quantities, special care must be taken with

significant digits. This is particularly true in the evaluation of the

*modified Bessel Function I(K) for large arguments and in the evaluation of

8 in Equation 7. Coefficients for calculating I(K) were taken from the

Handbook of Mathematical Functions8 and $ was evaluated with Simpson's

rule. The time required to calculate signal coherence is sufficiently

small that a grid of 22,500 coherence values can be calculated and plotted

in a few minutes. Consequently it was feasible to produce a catalogue of

coherence plots to investigate how factors such as sensor separation, sen-

sor depths, distribution widths, energy distribution between modes and

source-receiver separation affect coherence. In this way coherence proper-

ties not immediately apparent from Equations 5 and 7 were investigated.

DISCUSSION OF RESULTS

Presentation of results is simplified by the similarities between

coherences assuming phase fluctuations and those assuming amplitude fluc-

tuations. For radial source motion the results are, in fact, identical

regardless of the type of fluctuation and only one case needs to be pre-

sented.

4

:4
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When the source is in circumferential motion the coherence is the
0

same for amplitude and phase fluctuations provided that a -a 12 as can

be seen from Equations 5 and 7. In this case only coherences for phase

fluctuations need be presented. To evaluate the coherence for a given K

and for the case of amplitude fluctuations the equivalent K value for

phase fluctuations is found as illustrated in Figure 3.

The results presented below are those for phase fluctuations. Those

for amplitude fluctuations are very similar and can be easily deduced. For

example it can be seen from Figure 3 that coherences for amplitude flue-

tuations for K=0.1 and ai2 = 0.3 are equivalent to those for K=O for phase

fluctuations. Since coherence increases with increasing K, this means that

coherences for amplitude fluctuations start at higher values and remain

higher than those for phase fluctuations. This higher coherence for given

K and the dependence of coherence upon the relative energy in the modes

are the only differences between the coherences predicted for modes with

fluctuating phase and those with fluctuating amplitude.

Coherence for Radial Source Motion

As mentioned earlier Equations 5 and 7 lose all dependence upon the

distribution width for radial source motion. In fact, Equations 5 and 7

reduce to the same result, so that calculated coherences for amplitude or

phase fluctuations are identical. These simplifications for radial source

motion mean that coherence will depend only on source depth, receiver

depths, signal frequency, and receiver separation. Put another way this

implies that for radial source motion, the coherence depends only on

receiver separation and the relative energy in the two modes at the

receiver depths.

(a) Horizontal Separation of Receivers

Figure 4 illustrates the coherence (squared) as a function of

separation for the situation in which the modes are equally excited. At a

depth corresponding to a zero of one of the modes the coherence is unity,

as shown in Figure 4 and, as the depth changes from the zero, the total

energies in the two modes approach one another and the coherence deteriora-

tes. At equality of the energies, which occurs at a depth of 0.80 or 1.50
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0.9

0.8

0.7

0.6 2

0- 01Z.
0.5 - 20 - a I=0.3 1

20-a a0.

0.4 a,- 0.

0.3

0.2

0.1

0.01 0.10 1.00 10.00 100.00

i
o K

8 2Figure 3. The graphs give the value of - as a function of K and a1

for amplitude fluctuations and A12 as a function of K for phase

fluctuations. Equal values of - and A12 produce identical
a12

coherences. Horizontal lines will intercept the a-- and A1

curves for parameter values that produce equal coherences for

circumferential motion.
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W (b'11.

W- 0.8
D

n 0.6

) 0.4z
W 0.2
0

0.0'

0 1.05 2.10 3.15 4.20
RECEIVER SEPARATION IN WAVELENGTHS

Figure 1. Coherence squared is plotted for a source moving towards two
horizontally separated receivers (a) at a zero of the second
mode, (b) near the surface and (c) at 0.80 or 1 0 wavelengths

" depth. The water depth is 1.5 wavelengths and al 0.5.

wavelengths, the coherence becomes zero when the receiver separation is 4.2

wavelengths or the phase shift e1-e2  is 3600. The theory predicts that
the cosinusoidal curves shown in Figure 4 recover to unity over the next
4.2 wavelengths. However the assumptions on which the theory is based are

violated at larger separations so that estimates of coherence would be too

large for these larger separations.
*,4..
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A continuous plot of coherence against depth for horizontally

13 separated receivers in water of 1.5 wavelengths depth is presented in

Figures 5, 6 and 7. Coherences on the diagonal correspond to those for a

horizontal separation of 4.2 wavelengths. At closer separations the

-,- coherences will be larger as illustrated by Figure 5. In the next two

paragraphs these coherences on the diagonal, ZIZ2, will be discussed.

SQUQRED

/ . /.!

. W.0VEI ENCTHS

Figure 5. Coherence squared for a sound source at a depth of 1 wavelength
(a12/a22  9, i.e near zero of second mode). The source is
moving horizontally in the vertical plane containing source and
receivers. A water depth of 1.5 wavelengths, a horizontal
hydrophone separation of 4.2 wavelengths and phase fluctuations
are assumed with K=O.

.........
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Figure 6. Coherence squared for a sound source at a depth of 1.2 to 1 .5

wavelengths (aj2/a22 = 1, i.e. near the bottom). The source is

moving horizontally in the vertical plane containing source and
:i:receivers. A water depth of 1.5 wavelengths, a horizontal

hydrophone separation of 41.2 wavelengths and phase fluctuations
are assumed with K=.

* A'-,

HC OHE Pt N't
- '--•v' "

Figure 7. Coherence squared for a sound source in the upper half of the
water column (a2/alf = 9). The source is moving horizontally
mvin the vertical plane containing source and receivers. A water

re r Atdepth of 1.5 wavelengths, a horizontal hydrophone separation of
hr o s aof.2 wavelengths and phase fluctuations are assumed with K=O.

p ,.-',

4
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If the bottom is horizontal and the bottom roughness is sufficiently

small compared to a wavelength mode conversion is unlikely. If there is no

mode conversion, Figure 5 represents the modeled signal coherence for a

source in the vicinity of the zero of the second mode at a depth of 1.04

wavelengths. The source depth can be determined from a12 /a22 by consulting

Figure 1. Similarly Figure 6 represents signal coherence for a source near

the bottom while Figure 7 applies to a near surface source.

From the model results we see that for horizontally separated sen-

sors near the zero of the second mode, the coherence is near unity while

that for receivers near the bottom or top can be zero. Differences of

depth from the zero of the mode of about 0.1 wavelengths would not signifi-

cantly change the coherence from unity.

(b) Simulations Vertical and Horizontal Separation of Receivers

Examination of points off the diagonal in Figures 5, 6 and 7 reveals

that there are pairs of depths almost symmetrically displaced above and

below the zero of the second mode at 1 wavelength depth that always show

good coherence. This occurs because the 1800 phase shift brought about by

the horizontal hydrophone separation is completely compensated by the phase

reversal that results from the vertical separation of the two hydrophones

above and below the zero of the second mode. The depths are not exactly

symmetric about 1 wavelength because the first mode strength changes slowly

with depth and the second mode is not exactly antisymmetric about the zero.

(c) Vertical Separation of Receivers

Figures 8, 9 and 10 show coherence for vertically separated sensors

with no horizontal separation. Therefore, the useful information occurs

off the diagonal Z1=Z2. Figures 8, 9 and 10 parallel the source depths of

4 Figures 5, 6 and 7. For radial source motion it can be seen that good.

coherence can be obtained regardless of the source depth for sensors near

the bottom or near the surface. Assuming no mode conversion, the range of

depth pairs that give good coherence is usually larger at the surface,

4 especially for a sound source just below the surface (Figure 8). Good

coherence can be expected over an array up to 0.6 wavelengths long

suspended Just below the surface regardless of source depth.
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Figure 8. Coherence squared for a sound source moving horizontally in the
vertical plane containing source and receivers. Motion is

* towards a pair of receivers that only have vertical separation.
The source depth is approximately 1 wavelength (al2/a2 2 = 9,
i.e. near the zero of the second mode). Phase fluctuations with

* -. K-0 and a water depth of 1.5 wavelengths are assumed.

70-
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a 0 . r TV6 ( bT
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/

Figure 9. Coherence squared for a sound source moving horizontally in the
vertical plane containing source and receivers. Motion is
towards a pair of receivers that have only vertical separation.
The source is near the bottom (a 1

2 /a 2
2 = 1) in water 1.5 wave-

lengths deep. Phase fluctuations with K=O are assumed.

Coherence for Circumferential Source Motion

For radial source motion coherence depends upon the receiver separa-

tion and relative energy in the two modes. However, for circumferential

motion, coherence also depends upon the distribution width, type of fluc-

tuation, and distance from the source to the first receiver. The rela-

tionship between coherences assuming phase fluctuations and that assuming

amplitude fluctuations was discussed earlier so that only the phase fluc-

tuation case need be discussed here. Coherence for vertically and for

horizontally spaced receivers is discussed in the following paragraphs.

With all of the possible arbitrary receiver configurations with vertical

and horizontal separation only those of special interest are considered.
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(a) Horizontal Separation of Receivers

Figures 11, 12 and 13 illustrate coherence for receivers on the bot-

tom assuming circumferential source motion. Coherences for three source

receiver ranges are shown. The parameter K, which determines the fluo-

* tuation distribution width as illustrated in Figure 2, is varied for each

i range. The curve for K=O is cosinusoidal and represents the coherence that

• *. would be measured for circumferential motion at K=O, or for radial motion

and any K. Clearly the coherence for circumferential motion, K_>, departs

*significantly from that for radial motion. Space does not permit a repro-

duction of the coherences for all possible depths and ranges. However the

- results for other depths and ranges are indicated by the results in section

(a) below.

iI QHOR E NC E

/

w Figure 10. Coherence squared for a sound source moving horizontally in the
vertical plane containing source and receivers. Motion is
towards a pair of receivers that have only vertical separation.
The source is in the upper half of the water column (a2

2 /a12

9) in water 1.5 wavelengths deep and phase fluctuations with
K-O are assumed.
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COHERENCE

SOSIuQQED

ZOHFRO RECEIVE..

SI' SD "'" :

-~0000

Figure 11 . Coherence squared for a source near the bottom moving perpen-
dicular to the vertical plane containing the source and
receivers. The modes are in phase at the first receiver,
al2/a2 2 = 1, and the receivers are on the bottom in water 1.5
wavelengths deep Phase fluctuations are assumed.

COHERENCE

SE ;SQUAR" -

F QOM EC >.IE ' " 7

///

Figure 12. Coherence squared for a source near the bottom moving perpen-

dicular to the vertical plane containing the source and
receivers. The modes are a quarter wavelength out of phase at
the first receiver, a 2 /a 2 2 1, and the receivers are on the
bottom. Water depth is 1 .5 wavelengths deep and phase fluc-
tuations are assumed.

- .0 . . . . . . .
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Figure 13. Coherence squared for a source near the bottom moving perpen-
dioular to the vertical plane containing the source and
receivers. The modes are a half wavelength out of phase at the
first receiver, a12 /a2

2 = 1, and the receivers are on the bot-
tom. Water depth is 1.5 wavelengths and phase fluctuations are
assumed.

(b) Vertical Separation of Receivers

From an examination of a large number of coherence plots three

results can be stated regardless of relative mode strength at the

receivers. Firstly, as the distribution narrows, i.e. as K increases, the

.ean coherence for all depth pairs increases. Secondly, as the range phase

shift (f1-*2) between the modes increases to 3600, the range of depths

-' extending down from the surface over which coherence is high increases.

p.. This is illustrated by Figures 14 and 15. Thirdly, as K increases, the

ooherence becomes more sensitive to the range phase shift between the

modes.
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4'I

D~ r H C0 Srs. S j.
, C /

Figure 14. Coherence squared for vertically separated receivers and a
source moving perpendicular to the vertical plane containing
source and receivers. The modes are in phase at the first
receiver and al 2 a2  corresponding to a source near the
bottom in water of 1 .5 wavelengths depth. Phase fluctuations
with K=50 are assumed.

COH4ERENCE

"" ' SQur. O

.fl41 I NCE

PT. 4 ,1 /

Figure 15. Coherence squared for vertically separated receivers and a
source moving perpendicular to the vertical plane containingI
source and receivers.* The modes are a half wavelength out of
phase at the first receiver and aj 2 /a 2 

2 = 1 corresponding toa
source near the bottom in water 1 .5 wavelengths deep. Phase
fluctuations with K=:50 are assumed.
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Coherences for signals received by a vertical array with circum-

ferential source motion can be used as a measure of the fluctuation distri-

bution width. A narrow distribution is associated with good coherence over

at least the upper 0.6 wavelengths. A strong dependence of coherence on

the range between source and receivers is also indicative of a narrow

distribution.

(a) Simultaneous Vertical and Horizontal Separation of Receivers

For circumferential source motion about an array of receivers with

vertical and horizontal separation three results were found. As for a

purely vertical array, mean coherence and sensitivity of the coherence to

the phase shift between the modes increases with decreasing distribution

width. On the other hand, the region of good coherence always found for a

purely vertical array is not always present below the surface if the

receivers have both vertical and horizontal separation.

MODEL IMPLICATIONS FOR SIGNAL COHERENCE MEASUREMENTS

Under conditions for which the model is appropriate, it indicates

what sort of coherences we can expect over the octave bands for which the

water depth is of the order of 1.5 wavelengths. At such frequencies the

sound is propagated by a few modes with very different phase velocities and

it is best modeled as modal propagation. In this report it has been shown

that coherence depends upon numerous parameters and that in order to

investigate signal coherence experimentally it is necessary to isolate con-

*l ditions under which the value of these parameters can be determined.

The results of the study suggest that a vertical array with sensors

approximately 0.2 wavelengths apart over the whole water column and a hori-

zontal array four to eight wavelengths long should enable the parameters of

the model to be measured. In order to resolve expected coherence

* variations the vertical array spacing should be less than 0.2 wavelengths

near the zero of the second mode and larger elsewhere. Six hydrophones in

.... each array should be sufficient. This array configuration should also be

appropriate for measuring signal coherence in shallow water. Such arrays

span those spacings over which signal coherence is likely to be high and

therefore would also be suitable for providing some array gain.

4°.

"..-_
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In an experiment to investigate signal coherence radial source

motions would enable the relative mode strengths and mode propagation

constants to be measured while circumferential motion would enable the

distribution width to be measured. For radial source motion experimental

measurements can be carried out for any practical sensor configuration,

and long straight tracks may be used. However for circumferential motion

circular tracks centered on the receivers can be used only for vertical

arrays. For horizontal arrays circumferential motion can be approximated

by motion on circular paths of large radius centered on the receivers. The

circular path must however be short so that the source remains near the

end-fire position relative to the receivers. In this way sufficient

samples can be collected to make a reasonably precise estimate of the

-. coherence.

CONCLUSIONS
The model has enabled the calculation of an extensive set of signal

coherences for endfire horizontal arrays and for vertical arrays. Without

knowing the precise way in which phase or amplitude fluctuate certain 7.

general coherence results have been obtained. These are applicable to

shallow water in the vicinity of 1.5 wavelengths depth. It has also been

suggested that a vertical array through the water column and a horizontal

array a few wavelengths long should enable the modal properties and fluc-

tuation parameters to be defined.

Several general coherence results were obtained for the shallow

water regime. Horizontal source motion in the vertical plane containing

source and receivers produces coherence values which do not depend on the

distribution width and are independent of whether phase or amplitude fluc-

tuations are assumed. In contrast the generally higher coherences for

source motion perpendicular to the plane containing source and receivers

depends upon the type of fluctuation and the fluctuation distribution

width. It was also found that the lowest coherences that can be obtained

assuming phase fluctuations are substantially lower than can be obtained

assuming amplitude fluctuations. For either type of motion coherence loss
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.K for horizontally separated hydrophones occurs over a few wavelengths. For

vertical arrays good coherence regions are found near the surface and in

the vicinity of the zeros of the modes.

The model is not likely to be valid for hydrophone separations

- greater than a few wavelengths nor at substantially higher frequencies, for

. which a greater number of propagating modes exist. However for pairs of

higher order modes, still at low frequencies, the coherence will show simi-

lar characteristics repeated through the water column a number of times

equal to the number of zeros in the higher order modes.

6.

K .... <
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APPENDIX A

COHERENCE SQUARED FOR PHASE FLUCTUATIONS

From equation 2

NZ = £ biakba*ik ml eJem (Al)

i,k,lm-1

where 6 is the fluctuating phase distributed as defined by P(8) Equation 3,

and 6ijwml implies no mode conversion in the vicinity of the receivers,
simplifying Al we have

2 N
z " aibi b~expJ(Oi-ek) (A2)

i,kal

similarly

2 N
z 2 z E aiciac~expJ(ei -k) (A3)

i,k:l

N
ZTZ2 z E aibia~c~expJ(ek-ei)

i,k-l

Substituting A2, A3, and A4 into 4 yields,

4N Ir2
' f Z aibia kck " ! !expJ(Okei+K cosek +icosei)deidek3 I

2 ik=l

• 1 aibakbk expj(ei-k+Kkcosek+Kicose ididO k •

i,k=l -iT Tr

N iT Tr

a camc expJ(ei-" +K cose +K cose )di dO 3.. iikk K kk k i I i k"

i,k'1 -f -r

.... .... .... ...
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To evaluate A4 we need to evaluate integrals in the form

7r

WO (epQ+Kcose) /2tjdO

co if Oaexp (Kc os 6) d (A5)

Z I (K)

See page 376 of Abramowitz and Stegun8 for the evaluation of the

integral. Substituting this result in Equation A and setting N=2 produces

Equation 5. This substitution requires that the 61 are independent.
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APPENDIX B

COHERENCE SQUARED FOR AMPLITUDE FLUCTUATIONS

For amplitude fluctuations the signal coherence is evaluated in a

manner analogous to that for phase fluctuations. It is necessary to eva-

* luate,

Zi 2(w) Z 1(w)Z2*(w)P(a1 )da 1 2(
0

To simplify the evaluation we specialize to two modes. We also use

the fact that the distribution of a2 is specified by the distribution of

a12  i.e. a22  1 -a,2 , first evaluating coherence for source motion per-
* pendicular to the line joining source and receivers.

Expanding B1 we have,

SZ1 ()= f (a 2b +2a a bb*ab )P(a )d52
0

2Let x =al then,

2a ~ 2a~ 2a

Z b1 2 xP(x)dx*2b b2  f 'x-(-x) P(x)dx + b 2 f(1-x)p(x)dx (B2)
0 0 0
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similarly

2- 222

Z(w)Z2 (w) ; (a2 bl +ala 2(b2O1 +ba 2*)+a2
2 b2o2 )P(a1

2 )da1
2

-. 0

2a 2a
= blcl* f xP(x)dx+(b2cal+b~c2

3 ) f v' - - TP(x)dx
1 o

2a

+ b2a2' f (1-x)P(x)dx (B3)
0

Thus it is necessary to evaluate

(a) fxP(x)dx

0

2o

(b) f -x)P(dx
0

2at
(a) f Aitrri-T P(x)dx

0

2ax
(a) Clearly f xP(x)dx =

0

20,
(b) From (a) it follows that f (1-x)P(x)dx a 1-a

0

2 2at

*--- ~xd a (K) f FV'I-i exp(-Kcoueirx/cl))dx (B'4)

To evaluate this integral numerical evaluation was used except in

i  the case where a= 0.5. For a= 0.5,

! 1

- = Z- jy [f.,x(1-x) exp(-Koos(2wx))dx
0 0

4.1
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We can write Vx(1-x) as a Fourier series by using expressions given in

Gradshteyn9  pp. 4I25, 1059,

1
8 :81(K) f exp( -Kcos2irx)dx

0 0

21 W.-~ E J1(w) n f exp(-Kcos(2wx))cos2rnxdx
0 n=1 0

Let y :27rx

81 () fexp(-Kaosy)dy +27r1 (K)
0I 0 0 n=1 n

f exp(-Kcosy)cosnydy.
0

00 J(wn)I n(K)
w8+21 (K)n(B

0 n=1

The results from Equations B5, B6 and B9 are substituted into B1 and B2.

The result is then substituted into 14 to give Equation 7.


