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1. INTRODUCTION

""NThis note describes the results of a computational comparison of value

iteration algorithms suggested for solving finite state discounted Markov

decision processes. Such a process visits a set of states S - (l,2,...M)

When it is in state i , one can choose an action k from the finite

action set Ki , and then receive an imediate reward rk and with prob-

; k
ability p the process will be in state j at the next period. The

object is to maximize, v(i) , the maximum discounted reward over an in-

finite horizon starting in state i , where 8 is the discount factor. It

is well known [1] that v(i) satisfies the optimality equation

k M kv)
v(i) ma ri + a P vi (1.1)

ie //"j

We record the time for value iteration algorithms to obtain c-optimal

solutions, vn , to (1.1), (i.e. 1vn - vl. < e , where vl. - maxlv(i)l)
i

on randomly generated problems. We look at three classes of fifteen prob-

lems each with 8 - 9 and e - .0001, where v(i) - 2,000. Class 1 prob-

lems have 100 states and between 2 and 7 actions per state; class 2 have

40 states and between 2 and 70 actions per state, whereas class 3 have

10 states and up to 500 actions per state. Details of how the problems

are generated and computing facilities used are given in [12].

In Section two we describe the schemes examined and the various bounds

that can be used for stopping tha. Section three concentrates on one

scheme that did well in the comparison - ordinary value iteration - and

looks at various methods for eliminating non-optimal actions both

permanently and temporarily.
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2. SCHEMES AND BOUNDS

The scheme usually described as value iteration is

vt(i)amayVk(i) max r k+B j- ivn(i) (2.1)
1 keK kcK ii

which was discussed in 11,3]. In analogy with the notation of linear

equations we call this Pre-Jacobi (PJ). This analogy leads us to think of

the following alternative schemes.

.. Jacobi (J): vn+l(i) -max (r + a P v ))(sp (2.2)

•kcK i  j n i
ma{ ax r. B Vni)/ l-8 j)

- Pre-Gauss-Seidel (PGS): vn+ (i) max frk + P k v Q)
-.l i J j-l

+ B I P k v M}(2.3)

k i-l
Gauss-Seidel (GS): v (i) ( + v-j

n+l (AGSv) i) (rk i Pij n+lJ
J-1

M k VnJ) iSk)J

v ))/ -sp k(2.4)
E i jl n (lBii}O~J -i+i

Successive over Relaxation (SOR): v+ (i) - w(Asv)( ) + (1- )v (i) (2.5)

(PGS) was suggested by Kushner [4], Porteus [8] and Reetz [101; (J) and

(GS) is found in (91 and SOR in [5]. Experiments with SOR suggested a

value of w - 1.28 for robust and speedy convergence.
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We require bounds on the iterates of the scheme to ensure we stop when

v is within a specified value of the optimal v of (1.1). One can use

* -' the L. norm bound, which says if a Q L < < 1 for all possible

transition matrices in the scheme

S= maxs + Qkv } (2.6)
k

then Iv - Vn+ll. < Ivn+1 -vnIJCl) . For (PJ), (J), (PGS) and (GS),

it is trivial to show the corresponding Q's have LW norm less then B

For S.O.R. we estimate a by IV+l - vnI,/Ivn - Vnl[ - and substitute in

(2.6) to get a heuristic bound.

Porteus [7] described tighter bounds for these schemes, exploiting the

non-negativity of the elements of Q in (2.6). They require cal-

culation of ai - q k for the maxdmizing action k at each iterate,

and we call these the P.C. bounds - (Porteus with calculation). In [12]

we describe how to estimate the a k initially, which avoids the calcula-

tion at each step, but gives looser bounds, which we denote P.N.C. -

(Porteus no calculation). For the (PJ) scheme we also use the second order

bounds (S.O.) described in (Ill], which uses the last three iteration values

to get a tighter lower bound than Porteus's bound.

The results are given in the following table where (Av) is the average

C.P.U. time for solving the fifteen problems, S.D. the standard deviation

of the C.P.U. time, and N the number of problems that method was quickest

at solving.
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TABLE 1

CLASS 1 (100 STATE) CLASS 2 (40 STATE) CLASS 3 (10 STATE)
METHOD BOUNDS

AV. S.D. N. AV. S.D. N. AV. S.D. N.

PJ PC-PNC 1.66 .11 15 .79 .10 14 .54 .07 4

So 1.69 .11 0 .80 .11 1 .54 .08 11

J L 11.88 .59 0 14.38 2.27 0 7.66 1.14 0

PNC 10.49 .63 0 11.55 2.05 0 6.90 1.09 0

L 6.86 .33 0 8.62 1.34 0 5.18 .82 0

PGS PC 6.59 .33 0 8.34 1.32 I 0 5.03 .81 0

PNC 6.60 .33 0 8.40 1.33 0 5.01 .81 0

L 6.55 .32 0 8.13 1.41 0 3.99 .61 0

GS PC 6.32 .34 0 7.77 1.38 0 3.90 .61 0

PNC 6.25 .32 0 7.70 1.41 0 3.83 .61 0

SOR Lf 3.30 .22 0 4.00 .55 0 1.86 .30 0

For Jacobi, the P.C. bound is the same as the P.N.C. bound and so the

latter must be faster as it involves less calculation. It is obvious from

Table 1 that P.J. with Porteus bounds performs very well, and in the next

section we concentrate on this scheme and apply elimination of non-optimal

actions.

3. ACTION ELIMINATION

MacQueen [6] described how for any bounds one can observe a test to

identify actions that cannot optimize the right hand side of (1.1) and so

can be permanently eliminated from the calculation. Applying MacQueen's

bounds [6] and Porteus's bound [7] for the PJ algorithm leads to the

following tests to eliminate action k in Ki permanently.
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MacQueen Vk(i) < v (i) + $(a - b )/(1-0) (3.1)n a n a

Porteus vn(i) < vn(i) + a2(a_ - bnl)/(l-0) (3.2)

where an  min(vn(i) - Vl(i)) , bn  max(vn(i) - Vl(i))
n a - -

We looked at four ways of implementing these tests.

thMl. At n iteration, calculate and store v (i) for each i . Thenn

calculate a .and b Recalculate vn(i) and use (3.1) to testaclae a a nn

for elimination.

th kcM2. At n stage, calculate and store all v (i) . Hence calculateU

v (i) , an , b and test for elimination using (3.1) without

recalculating v W
n

P1. At n+lth  stage, calculate vk (i) , starting with action k that
n+l

maximized vk(i) at previous stage. Apply (3.2) as soon as you cal-

culate each vk (i) using as d the one that gives maximum
n+l

kv.+(i) so far calculated, see f7].

P2. At n+lth stage, calculate and store vk (i) . Then using
n+l

dv +l(i) - v+l(i) apply (3.2).

4 As Table 2 shows M2 is far superior to Ml, but P1 and P2 give similar

results. All three cut the average time by a half though.

Hastings and Van Nunen [2] pointed out that one could also eliminate

actions temporarily, i.e. actions that will not be the optimizing actions

at the next iteration of the PJ algorithm. This is based on the inequality

4 vk+s(,.) - Vn+s(i) > v ) - vn ( 1 ) - (bn+j - an+j_ 1 ) (3.3)
j5l
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th
If the R.H.S. of (3.3) is positive k will not optimize the n +

iteration, and in that case, at the n + s + l - iteration we need only

subtract another 0(bn+ s - a n+s) from this positive number to test if k

th
could be optimal. If action k is not eliminated at the n + 8-

iteration, v M- vi k () is stored for the test at the next iteration.
n~s n+s

We looked at four ways of implementing these two elimination procedures.

th
Recall that the u + 1- iteration consists of the following sequence of

calculations.

a , (I ) (II) vk
anb n 1--- 0 vn+l() -- an+-'bn+l - n+2(i)

TEMP HVN. Hastings and Van Nunen [2] suggested the temporary elimination
~k

test be made at (I) and if k was not temporarily eliminated then V+(i)

was calculated. The permanent elimination test was made at (II) using

(3.2) with v dl(i) replaced by a lower bound v (i) + $a . If the
.+l n

action is not permanently eliminated, v (i) + $a - v k W)(rather than
n an v+(i

VnIl(i) W k- k()) is stored TEMP + Pl. Temporary elimination occurs at

(I) and permanent elimination at (II) using P1 .

TEMP + P2. Again this has temporary elimination at (I) and permanent

elimination at (III) using P2

k
TEMP + M2. Temporary elimination occurs at (I) and in this case v (i)

n+l

was stored until (IV) and then the M2 technique used. If action k was

not eliminated v (i) - vn k(i) was stored for the temporary eliminationn+l l

- test of the next iteration, which followed immediately.

In this case when permanent and temporary elimination are done at

the same stage, it is obvious that any action which is permanently eliminated

would also be temporarily eliminated.
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This leads us to ask is it worth permanently eliminating, so

TEMP ONLY Perform the temporary elimination test at (I). If action k is not

k
elmn te prr veta o

vn+l(i) is stored through state (II) and changed to

Vn+l(i) - vn+l(i) at stage (III) for the next temporary elimination test

at (IV).

Table 2 describes the results and shows that temporary elimination

further cuts the time by 25%, and that pure temporary elimination might

be particularly good on large scale problems.

TABLE 2

CLASS 1 (100 STATE) CLASS 2 (40 STATE) CLASS 3 (10 STATE)
METHOD

AV. S.D. N. AV. S.D. N. AV. S.D. N.

Ml 1.51 .09 0 0.67 .08 0 0.42 .06 0

M2 0.81 .05 15 0.36 .04 15 0.25 .03 15

P1 0.87 .05 0 0.43 .05 0 0.26 .03 0

P2 0.88 .05 0 0.45 .05 0 0.28 .04 0

TEMP HVN 0.62 .03 0 0.27 0.03 0 0.21 .03 0

TEMP + Pl 0.60 .04 0 0.25 .02 3 0.20 .03 11

TEMP + P2 0.58 .03 0 0.26 .02 0 0.23 .03 0

TEMP + M2 0.59 .04 0 0.22 .04 2 0.21 .03 4

TEMP ONLY 0.55 .03 15 0.22 .04 10 0.21 .03 0

Our object has not been to obtain a best buy, but to give some idea of

the merits of the various schemes, bounds and improvements. Obviously for

more structured problems, algorithms which exploit the structure will be

at an advantage.
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