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COMPUTATIONAL COMPARISON OF VALUE ITERATION ALGORITHMS
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Abstract: This paper describes a computational comparison of value iteratiom

algorithms for discounted Markov decision processes.
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_1. INTRODUCTION

:>This note describes the results of a computational comparison of value
iteration algorithms suggested for solving finite state discounted Markov
decision processes. Such a process visits a set of states S = (1,2,...M) \

When it is in state 1 , one can choose an action k from the finite

\

action set Ki , and then receive an immediate reward r:

ability pk the process will be in state j at the next period. The
ij

and with prob—-

object is to maximize, v(i) , the maximum discounted reward over an in-
: /
finite horizon starting in state i , where B8 is the discount factor. It /

ig well known [1] that v(i) satisfies the optimality equatiom //

/
{k 1o o)
v(i) = max {r, + 8 Pey V } 7
1 1 B 1.1
kek, j=1 1 _— Q.1

e a
P

7

/
We record the time for value iteration algorithms to obtain e-optimal

T e e T

solutions, v_, to (1.1), (i.e. Ivn -v|_ <¢, vhere [v|_ = m:x[v(i)l)
on randomly generated problems. We look at three classes of fifteen prob-

lems each with 8 =9 and ¢ = .0001, where v(i) 2 2,000. Class 1 prob-

lems have 100 states and between 2 and 7 actions per state; class 2 have
40 states and between 2 and 70 actions per state, whereas clasa 3 have
10 siates and up to 500 actions per state. Details of how the problems
are generated and computing facilities used are given in [12].

ku’~->‘1n Section two we describe the schemes examined and the various bounds
that can be used for stopping them. Section three concentrates om one
scheme that did well in the comparison -~ ordinary value iteration - and
looks at various methods for eliminating non-optimal actions both

permanently and temporarily.
VAN
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2. SCHEMES AND BOUNDS

The scheme usually described as value iteration is

v ,,(i) = max vk(i) = max rk + B ? pk v (j) (2.1)
n+l keK, n keK, i g1 4
which was discussed in [1,3]. In analogy with the notation of linear

equations we call this Pre-Jacobi (PJ). This analogy leads us to think of

the following alternative schemes.

Jacobi (J): vn+l(1) = ::; {(r: +8 } P:j Vn(j))/(l‘Bpgi)} (2.2)
i

¥t

i-1
k
Pre-Gauss-Seidel (PGS): v .. (i) = max {ti +8 2 pij vad

keK j=1
+8 jzi pij vn(j)} (2.3)
i-1
Gauss-Seidel (GS): Ve = (Aggv (i) = keK (r +8 Z pij Vo3
+ Df kv @) ra-8p5,) 2.4)
y jmi+1 Pig Yal P11 )
Successive over Relaxation (SOR): vn+l(i) = w(AGsvn)(i) + (l-w)vn(i) (2.5)

(PGS) was suggested by Kushner [4], Porteus [8] and Reetz [10]; (J) and
(GS) is found in [9] and SOR in [5]. Experiments with SOR suggested a

value of w = 1.28 for robust and speedy convergence.




We require bounds on the iterates of the scheme to ensure we stop when
Va is within a specified value of the optimal v of (1.1). One can use
the L noorm bound, which says 1f ||Q||_ < a <1 for all possible
transition matrices in the scheme
v = max{sk + kan}

o+l kK

then |v - vn+l|°‘§ o |vn+1 - vnlw/(l—a) . For (RPJ), (J), (PGS) and (GS),
it i{s trivial to show the corresponding Q's have L, norm less themn B8 .
For S.0.R. we estimate a by Ivn+l - vnlwllvn - vn_1|w and substitute in
(2.6) to get a heuristic bound.

Porteus [7] described tighter bounds for these schemes, exploiting the

non-negativity of the elements of Q im (2.6). They require cal-

M R¥
culation of a: = 2 q?j for the maximizing action k at each iterate,
and we call these 1;: P.C. bounds - (Porteus with calculation). In [12]
we describe how to estimate the u: initially, which avoids the calcula-
tion at each step, but gives looser bounds, which we denote P.N.C. =~
(Porteus no calculation). For the (PJ) scheme we also use the second order
bounds (S.0.) described in [11], which uses the last three iteration values
to get a tighter lower bound than Porteus's bound.

The results are given in the following table where (Av) is the average
C.P.U. time for solving the fifteen problems, S.D. the standard deviation
of the C.P.U., time, and N the number of problems that method was quickest

at solving.
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TABLE 1

CLASS 1 (100 STATE) | CLASS 2 (40 STATE) | CLASS 3 (10 STATE)

METHOD | BOUNDS
AV, S.D. N. AV, s.D. N. AV, s.D. N.
PJ |PcepNC| 1.66 | .11 | 15 | .79 | .10 {14 | .54 | .07 | 4
so | 169 .12 | o .80! .11 1| .54 .08|11
3 | 1, l11.88| .59 | o 1438 2.27| o | 7.66 | 1.14 | 0
PN 110.49 | .63 | 0 |11.55 ! 2.05 | 0 | 6.90 | 1.09 | o
1 | 6.8 | .33 o 862|134 o] s518| .82 o
Ps | PC | 6.59| .33 | 0 | 8.3 [1.32] o | 5.03| .81 0
INC | 6.60 | .33 | O | 8.40|1.33; o0 | 5.01| .81 o©
L, | 655 .32 | o 813|141 0| 3.99| 61| o
s | pc | 632| 36| o 7.77|1.38] o 3.90] .61 o0
pc | 6.25| .32 | o 770 141 | o f 3.83( .61 o
soR | 1, | 33| 22| o 400 55| 0o 1.8 .30 o

For Jacobi, the P.C. bound is the same as the P.N.C. bound and so the
latter must be faster as it involves less calculation. It is obvious from
Table 1 that P.J. with Porteus bounds performs very well, and in the next
section we concentrate on this scheme and apply elimination of non—optimal

actions.

3. ACTION ELIMINATION

MacQueen [6] described how for any bounds ome can observe a test to
identify actions that cannot optimize the right hand side of (1.1l) and so
can be permanently eliminated from the calculation. Applying MacQueen's
bounds [6] and Porteus's bound [7] for the PJ algorithm leads to the

following tests to eliminate action k in Ki permanently.
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MacQueen V() < v (1) + Bla_ - b )/(1-8) (3.1)

Porteus Vi) < v + 6@ - b _)/a-8) (3.2)
where a = min(vn(i) =V @) b = mix(vn(i) = v @) .

We looked at four ways of implementing these tests.

ML. At nth iteration, calculate and store vn(i) for each i . Then
calculate a and bn . Recalculate v:(i) and use (3.1) to test
for elimination.

M2. At n':h stage, calculate and store all vﬁ(i) . Hence calculate

vh(i) > 3, b and test for elimination using (3.1) without

n
recalculating vi(i) .

Pl. At n+1th stage, calculate vi+l(i) , starting with action k that
maximized v:(i) at previous stage. Apply (3.2) as soon as you cal-
culate each v§+1(i) using as d the one that gives maximum

k
vn+1(i) so far calculated, see [7].

h k

P2. At n+l® stage, calculate and store vn+l(i) . Then using

d
vn+1(i) = vn+1(i) apply (3.2).

As Table 2 shows M2 is far superior to M1, but Pl and P2 give similar
results. All three cut the average time by a half though.

Hastings and Van Nunen [2] pointed out that one could also eliminate
actions temporarily, i.e. actions that will not be the optimizing actions
at the next iteration of the PJ algorithm. This is based on the inequality
K ]

k
gD 2V () = v () - 8 jzl (b

vk+s(i) -v

u ) (3.3)

n+i-1 = %n+y-1

L
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If the R.H.S. of (3.3) is positive k will not optimize the n + sEE

iteration, and in that case, at the n + s + LEE iteration we need only

subtract another B(bn+s - an+s) from this positive number to test if k
could be optimal. If action k is not eliminated at the n + sEE

k
iteration, vn+s(i) - vn+s(i) is stored for the test at the next iterationm.

We looked at four ways of implementing these two elimination procedures.

Recall that the n + IEE iteration consists of the following sequence of

calculations.
(1) Kk (11) (I11) Kk
an’bl:x - vn+l(1) _— vn+1(i) - an-i-l’bn-i-l ) (1)

TEMP HVN. Hastings and Van Nunen [2] suggested the temporary elimination
test be made at (I) and if k was not temporarily eliminated then v§+l(i)

was calculated. The permanent elimination test was made at (II) using

d

(3.2) with Vo4l

(1) replaced by a lower bound vn(i) + Ban . 1If the
action is not permanently eliminated, vn(i) + Ban - v:+l(i) (rather than
vn+l(i) - v:+l(i)) is stored TEMP + Pl. Temporary elimination occurs at

(1) and permanent elimination at (II) using Pl .

TEMP + P2. Again this has temporary elimination at (I) and permanent

elimination at (III) using P2 .

TEMP + M2. Temporary elimination occurs at (I) and in this case V§+l

1)
was stored until (IV) and then the M2 technique used. 1If action k was
not eliminated vn+1(i) - v:+l(i) was stored for the temporary elimination
test of the next iteration, which followed immediately.

In this case when permanent and temporary elimination are done at

the same stage, it is obvious that any action which is permanently eliminated

would also be temporarily eliminated.




This leads us to ask is it worth permanently eliminating, so

TEMP ONLY Perform the temporary elimination test at (I). If action k is not

k
eliminated vn+1

k
vn+l(i) - vn+1(i) at stage (III) for the next temporary elimination test

1

-

v — —— v
N RPN R (LU
RN St .o '

‘s

(i) 1is stored through state (II) and changed to

APPSR
. LI

at (1IV).
Table 2 describes the results and shows that temporary elimination
further cuts the time by 25%, and that pure temporary elimination might

be particularly good on large scale problems.

TABLE 2

CLASS 1 (100 STATE) | CLASS 2 (40 STATE) | CLASS 3 (10 STATE)

METHOD -
AV. S.D. N. AV. S.D. | N. AV. S.D. | N.
Ml 1.51 .09 0 0.67 .08 0 0.42 .06 0
M2 0.81 .05 15 0.36 .04 | 15 0.25 .03 1 15
Pl 0.87 .05 0 0.43 .05 0 0.26 .03 0
P2 0.88 .05 0 0.45 .05 0 0.28 .04 0

TEMP HVN 0.62 .03 0 0.27 | 0.03 0 0.21 .03 0

TEMP + P1 0.60 .04 0 0.25 .02 3 0.20 03 11

TEMP + P2 0.58 .03 0 0.26 .02 0 0.23 .03 0

TEMP + M2 0.59 .04 0 0.22 .04 2 0.21 .03 4

TEMP ONLY 0.55 .03 15 0.22 .04 | 10 0.21 .03 0

Our object has not been to obtain a best buy, but to give some idea of
the merits of the various schemes, bounds and improvements. Obviously for
more structured problems, algorithms which exploit the structure will be

at an advantage.
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