
AD-A12 71B SOFTWARE DEVELOPMENT METHODOLOGIES AND RDA ADA 1/2
METHODOLOGIES: CONCEPTS RN..(U) CALIFORNIA UNIV IRVINE

UNCLASSIFIED P REA TR-O 2F/G 9/2 N

EohEohEohEEEE
smmhEEEEEmhhhE
EhEmhhEEEEEmhI
EhmmhhEEEohhEEE

lii .32

lllllii LAB6

11- - _

1rt .25 tiiii2-1.4 1.6

MICROCOPY RESOLUTION TEST CHART

t4A.ONAL BUREAU OF STANOAROS-1963-A

'4:i:i.

-w

I

Software Development
Methodologies and Ada

olet

Ada Methodologies:

Concepts and Requirements

44

: " Ada Methodology Questionnaire Summary

Comparing Software Design

Methods for Ada: A Study Plan

4C

C.Z

SE CO VCL A -SFIt DO ', DO. Or .N I C.S fh, o e e L., d
." RPORTDOCUENTAION AGEREAD INSTRUCTION.F

REPOT DCUMNTATON AGEBEFORE COMPLETING FORM

.", R 6-1 UIhBSE- 12 GOVI ACCESSION NO.I 1 3 RECIPIENT'$ CAT ALOG NUM BE l

6I 7 TIT LE teJnd Subfllir, 5 1 YPL'F OF REPORT II PE RIOD COVERED

.t Software Development Methodologies and Ada;I
Ada Methodologies Concepts and Requirements., Draft Report
Ada Methodology Questionnaire Summary, *. PERFORMINGORG. REPORT NUMBER
Comparing Software Design

7. AUTHOR(a) B. CONTRACT OR GRANT NUMBER(a)

-Peter Freeman and Anthony I. Wasserman

, 9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA 6 WORK UNIT NUMBERS

University at California, Irvine

II CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Ada Joint Program Office (AJPO) November, 1982
13 NUMBER OF PAGES

Arlington, Virginia
14 MONITORING AGENCV NAME 6 ADDRESS(ei dillerent from Conlrolling Office) 15. SECURITY CLASS. (of thie report)

U
Is. DECLASSIFICATION, DOWNGRADING

SCHEDULE

Ic DISTRIBUTION STATEME-,.T (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTIN STATEMENT (of the abstrrct entered In Block 20. It dlfferent Irom Report)

IS. SUPPLEMENTARY NOTES

This document is also known as "Methodman."

1. KEY WORDS (Continue on reverse side if neceesary and Identify by block number)

Computer Software Scftware development
Ada Management information systems.
Programming Support Systems

* 20. ABSTRACT tConginue on reverse @#do If necessary mnd Identify by block number)

The document is divided into three sections as indicated by its
" subtitles. The concepts of software development methodologies

as they relate to the computer programming language Ada, are
presented in this first draft document.4I

DD oFR.m, 1473 -o.Y.O. oil I NOV. .s ISoDSOL.,0

DD , A 17 UNCLASSIFIED
S-'N 0102- LF- 0)4- 6601 SECURITY CLAi_ FIC;ATIOR OF THIS PAGE fW~Ien 01. Entered.

Ada Methodologies:

Concepts and Requirements

4

Department of Defense

Ada Joint Program Office

Ada TM Methodologies:
Concepts and Requirements

Ave-o#vmO For

14 Distributicr/
2~ 11 ! --)t I

November 1982

TMAda is a trademark of the U.S. Department of Defense (Ada Joint Program Office).

I

/ PREFACE

As I observed in Ada® Letters ("The Need for a Programing Discipline to
Support the APSE", Vol. I, No. 4, pp 21-23, May/June 82), we will not realize
the full potential of Ada until we are able to define a software development
methodology complete with management practices which can in turn be supported
by automated tools. I announced in that paper that Professors Freeman and
Wasserman had agreed to prepare a first draft of a "Methodman". This document
is the promised draft.

- Although I believe that Professors Freeman and Wasserman have done a superb
job of defining the desirable characteristics of a methodology to support the
software development process, we recognize that it is incomplete and must be
refined. Just as Strawman was refined to produce Steelman, and Pebbleman was
refined into Stoneman, this document is being circulated for comment that will

* assist in the refinement process.

Many software activities (both technical and managerial) are independent of
the programming language. Indeed, although the Ada language and the APSE
provide a basis for better support for a software discipline, the development
of a total life-cycle methodology expands the scope of the Ada Program. On
October 8, 1982, Dr. Edith W. Martin, Deputy Under Secretary of Defense for
Research and Advanced Technology, announced plans for a DoD Software
Initiative. This initial version of "Methodman" may be viewed as an initial
function of the initiative. It demonstrates the essential role that the Ada
Program will play in the initiative and concurrently, the need for the
initiative to press for technology innovation beyond Ada.

The Ada Program has received substantial benefit from public interaction. The
distribution of this draft is another important step in continuing that
interaction. It is also indicative of the professionalism of Peter Freeman
and Tony Wasserman that they consent (as did Dave Fisher and John Buxton) to
subject their work for public scrutiny and comTent.

Constructive camments should be sent to the Ada Joint Program Office, Suite
1210, 801 N. Randolph St. Arlington, VA 22203.

/ar Druffel, Lt. Colonel, USAF
Director
Ada Joint Program Office

4

UNIVERSITY OF CALIFORNIA

.7' - BERKELEY D AVI IRVINE • LOS ANGELES * RIVERSIDE S SAN DIEGO * SAN FRANCISCO SANTA BARIARA * SANTA CDL7

November, 1982

This document has benefited greatly from the many valuable comments that we
have received on its previous drafts. We are thankful to everyone who gave
us both written and verbal comments during the preliminary review process,
and appreciate their contributions. These people include: B.N. Barnett,
L.A. Belady, M. Brodie, R. Bruno, G. Estrin, R. Fairley, H. Fischer, R.L.
Glass, S. Gutz, H. Hart, H. Hess, R. Houghton, C.A. Irvine, M.A. Jackson,
L. Johnson, E. Koskela, J. Lancaster, J. Larcher, B. Liskov, P.C.
Lockemann, I. Macdonald, J.B. Munson, E.J. Neuhold, D.L. Parnas, L. Peters,
K.T. Rawlinson, D.J. Reifer, W. Riddle, C. Rolland, T. Standish, H.G.
Stuebing, W. Tichy, R. Van Tilburg, L. Tripp, C. Tully, J. Wileden, M.
Zelkowitz, and N. Zvegintzov.

We included a selected bibliography in an earlier draft, but have decided
against its inclusion in this report, since a bibliography would have
recognized the work of some while amitting that of others. It should be
apparent that our ideas have been shaped by a vast amount of work both
inside and outside DoD over the past 15 years, and that our role here was
to consolidate this body of work and to establish a framework from which
methodologies could be developed and enhanced. We gratefully acknowledge
this debt to our colleagues who have contributed to the present
understanding of software development methodologies.

We especially wish to thank Lt. Col. Larry Druffel, who sponsored this
effort, and provided the framework in which we could accomplish the work.
Finally, we appreciate the assistance of USC Information Sciences Insitute
for handling the administrative aspects of this work.

An I. Wasserman Peter Freeman
Medical Information Science Information and Computer Science
University of California, San Francisco University of California, Irvine

4

TABLE OF CONTENTS

I. INTRODUCTION

2. RATIONALE .

2.1 Analysis and modeling 4
2.2 Functional specification 4
2.3 Design 5
2.4 Implementation 5
2.5 Validation and Verification 5
2.6 Management Procedures 6

3. REQUIREMENTS FOR A SOFTWARE DEVELOPMENT METHODOLOGY 6
3.1 Support for Entire Development Process and Transitions between Phases 7
3.2 Support for Communication among Interested Persons 8
3.3 Support for Problem Analysis and Understanding 8
3.4 Support for Top-Down and Bottom-Up Development 8
3.5 Support for Validation and Verification 8

- - 3.6 Support for Constraints 9
3.7 Support for the Software Development Organization 9
3.8 Support for System Evolution 9
3.9 Automated Support 93.10 Support for Software Configuration Management 10
3.11 Teachability and Transferability 103.12 Open Ended 10

4. RELATIONSHIP TO ADA PROGRAMMING SUPPORT ENVIRONMENT (APSE) 10

5. METHODOLOGY EVALUATION 11
5.1 Technical Characteristics 11
5.2 Usage Characteristics 13

* 5.3 Management Characteristics 14
, 5.4 Economic Characteristics 15

6. CONCLUSION 15

bb

'I. INTRODUCTION
4This document rationalizes the need for the use of coherent software development

methodologies in conjunction with Ada nt its programming support environments (APSE's)
and describes the characteristics that such methodologies should possess. It is recognized that
software development, particularly for embedded systems, is increasingly done in the context of
overall systems development, including hardware and environmental factors. While there is a
strong need for integrated systems engineering, this document focuses on the software issues
only.

-- Emphasis is thus given to the process by which software is developed for Ada applications,
not just with the language or its automated support environment. The development activity
yields a collection of work products (including source and object versions of Ada programs).
These work products are valuable not only through the development phase, but also through
the entire lifetime of the system as modifications and enhancements are made to the system,4-.

The analysis, design, and development of complex systems, such as those to be
programmed in Ada, must be controlled through a collection of management procedures and
technical methods. Differences in organizational structures, applications, and existing
approaches, however, make it impractical to prescribe a single methodology that can be
uniformly followed.

Accordingly, this paper identifies requirements for software development methodologies,
as was done in the sequences of documents leading to the "Steelman" and "Stoneman" reports.
A preliminary version of these requirements has been used to evaluate some existing
methodologies for software development. These requirements can serve as a basis for evolving
methodologies and for creating new ones oriented to the special problems of embedded systems
to be implemented in Ada. The emphasis, then, is on the conceptual basis for software
development methodologies.

As with the work leading to the design of Ada and the specifications for Ada
Programming Support Environments, this work builds upon, but is not constrained by, the
current set of methodologies and development practices. Instead, this document sets down
some underlying principles. Thus, there are no references to specific techniques or to existing
standards, based on the belief that improved methodologies can be developed from the
foundation established here. Of course, such standards and techniques have influenced the
requirements identified here.

An important assumption throughout this document is that the methodology used for
creating systems should be preeminent over the tools used in it. In other words, tools should
support a methodology, and not the other way around.

There is also very little emphasis on Ada itself, except in the discussion of
implementation. Other aspects of the development methodology are described on the
assumption that Ada is the target programming language. However, most of the concepts are
based on currently understood notions of software engineering and programming methodology,
and are therefore not tightly coupled to the programming language. Indeed, many of the
requirements for a software development methodology are largely independent of the target
programming language.

2. RATIONALE

A key assumption of modern software development practices is that increased effort in the
earlier stages of development will be reflected in reduced costs for testing and evolution*
(maintenance). Such effort is intended both to prevent errors from being introduced into the

4 . system, and to detect any such errors at the earliest possible time. The resulting software will

"The word 'evolution* is used rather than "maintenance' throughout this document to refer to the three activities
of repair, adaptation, and enhancement that may occur after initial development. The term *evolution" is intended to
better describe the actual situation without the traditionally negative connotation of 'maintenance.'

K- 2

be of higher quality and will be more likely to fulfill the needs of its users.
The unifying notion is that of a coherent methodology, a system of technical methods and

management procedures that covers the entire development activity. A methodology can be
%.: supported by automated tools; the collection of available tools provides a "programming support

environment," which can, among other things, aid developer communication and productivity.
Within a metlhodology, it is important to be able to review the progress of the work at various
intermediate checkpoints. In this manner, it becomes possible to identify problems in projects
at earlier stages and to take corrective action.

An important concept in discussing methodologies is the "life cycle", a model of the
activities that comprise the software development and evolution of a system. There are
numerous life cycle models in use, with still others described in the literature. Each of these
models forms a framework for describing the steps of system development and the products
that are produced at each step. Rather than adhere to a single existing model, this document
follows a model that is representative of many (but not all) of the models, so that one can easily
relate it to others.

The specific phases and names vary from one model to another, but typically include
analysis, functional specification, design, implementation, validation, and evolution, defined as
follows:

Analysis - a step concerned with understanding the problem and describing the activities,
data, information flow, relationships and constraints of the problem; the typical result is a
requirements definition;

Functional specification - the process of going from the statement of the requirements to
a description of the functions to be performed by the system to process the required data;
functional specification involves the external design of the software;

Design - the process of devising the internal structure of the software to provide the
functions specified in the previous stage, resulting in a description of the system structure,
the architecture of the system components, the algorithms to be used, and the logical data
structures;

Implementation - the production of executable code that realizes the design specified in
the previous stage;

Validation the process of assuring that each phase of the development process is of
acceptable quality and is an accurate transfce mation from the previous phase +;

Evolution - the ongoing modifications (repair, adaptation to new conditions, enhancement
with new functions) to a system caused by new requirements and/or the discovery of
errors in the current version of a system.
This sequence of phases separates analysis and functional specification activities, based on

the observation that the product of analysis is a functional specification, but that the functional
specification may only address a portion of the problem that has been analyzed. (Note that

i "specification" is used both as a verb to denote a process and as a noun to denote a work
product.)

Throughout develooment and evolution, there are aspects of management and
communication, including documentation, validation, budgeting, personnel deployment, project
review, scheduling, and configuration management, that serve to tie the stages together and
provide the organizational environment in which the technical procedures .can be made

4 -effective.

+Note that validation is not simply a single phase, but rather a step performed as part of each phase. Thus, vali-
dation of design is the process of determining that the design is a valid transformation from the functional specification.

"0

3

IThe combination of technical procedures with management techniques should create a
synergistic effect in which the resulting process provides significantly greater improvement in
the production of software than would be provided by either the technical or the management
elements alone.

In short, one cannot choose a tool, a management practice, or any other element of the
total environment without considering that element in its relation to the other parts of the
development system. This concept is illustrated by Figure 1.

PROCEDURES
• AND PRACTICESJ

Help Select Provide
Automated VisibleTools Structure

Provide Coordinate
Management and
Information Guidek "+SOFTWARE

DEVELOPMENT
METHODOLOGY

• , TECHNICAL
AUTOMATED METHODS AND

TOOLS TECHNIQUES

Support Methods

Determine Needed Technical Tools

Figure I SOFTWARE DEVELOPMENT METHODOLOGY

. .,

4

It is essential that management and technical elements be synergistic. It can be seen from
Figure I that management methods provide guidance in the use of technical methods, while the
technical methods serve to provide the intermediate results that make management possible.
The importance of this concept in the context of a methodology is that one cannot look at
technical or management elements alone, but rather must look at their combination. Before
proceedirzg with the requirements for a methodology to support Ada, it is useful to describe the
roles of various development phases in somewhat greater detail.

2.1 Analysis

Analysis of the problem at hand is the essential first step of any software development
activity. Without such analysis, it is impossible to proceed; furthermore, an inadequate job of
analysis is virtually certain to lead to project failure, since poor understanding of the problem
makes it impossible to produce a good specification.

Successful analysis involves communication with users and customers for the system, who
can describe their needs. Analysis also involves communication with the eventual developers
of the system, who must be able to evaluate implementation feasibility and to describe any
design or implementation constraints.

Because of the complexity of systems, key tools for analysis must support problem
decomposition, through any of a variety of schemes, including: procedural decomposition, data
abstraction, data flow, processing sequence, or transaction modeling. Graphical notations are
especially helpful in showing the interrelationships of system components to one another and in
facilitating the communication process.

A particularly effective method for analysis is modeling, representing the problem and/or
the real world situation in a formal (mathematical or graphical) notation. The evolving model
can be used as the basis for communication and for understanding the tasks that will comprise
the system. In some instances, an executable model, or a prototype of some part of the system,
may be built to assist in the analysis process. In others, properties of the model may be
exploited to learn more about the subject (for example, whether certain activities may occur in
parallel).

2.2 Functional Specification
A functional specification is a description of "what" the system will do. Whereas analysis

serves to describe the problem and to identify requirements, the functional specification is the
first statement of the system's intended behavior. Thus, it contains a statement of the system
functions, the external interfaces, the required data items, and requirements upon performance,
design, and implementation.

Functional specifications have many different roles within the software life cycle,
including the following:
- The functional specification is a means for precisely stating the software system

requirements. At this stage, the technical realization of the system model is documented
in as much detail as possible. The functional specification can be compared against the
requirements definition to ascertain the correspondence between the specification and the
needs.

0 The functional specification provides insight into the problem structure and is used during
the design phase as a checkpoint against which to validate the design. Typically, there will
be an iteration between specification and design, as insight into some of the system
construction problems help to clarify the functional specification.

0 The functional specification is the basis against which validation is performed. Clearly,
one cannot validate a program in the absence of an unambiguous functional specification.

S I-Such a functional specification is essential whether validation is carried out through,
acceptance testing or through formal proof of program correctness.

. Modifications and enhancements to a system throughout its operational lifetime require an
understanding of the system functions, as documented in the functional specification.

"0

5

During evolution, the functional specification can help to locate those system functions
that must be changed, and can then be revised accordingly.

The implication of this multifaceted role is that a functional specification must be able to
serve (to some degree) each of these four different functions. In practice, this means that
functional specifications must have both a formal and an informal component.

Throughout the remainder of this paper, the term "specification" refers to a functional
specification. This usage should be distinguished from a more general usage in which each
stage is a "specification" of what is to be done in the subsequent stage. In that usage, a detailed
description of the logic of a sorting algorithm would be considered as a specification for Ada
code to be written. Thus, this document refers to "the design" where others might use the term
"the design specification."

2.3 Design
The process of software design permits the developer to determine more precisely the

feasibility of implementing the functional specification, to analyze alternative system structures,
to develop algorithms for the solution of the problem, and to define detailed constraints upon
the implementation. In summary, it is a stage at which the primary concern is with the internal
structures from which the software will be built.

The internal design activity can be separated into two phases: architectural design and
detailed design. (In very large systems, one can separate design into more than two phases.)
Architectural design is concerned with recognition of the overall software structure and the
interconnection of program pieces, while detailed design is more concerned with the sel -tion
of algorithms and data structures that are appropriate to the fulfillment of specific sy.tem
functions.

One of the key goals of the design process is to simplify the subsequent stages of coding
and testing. At the end of the design phase, virtually all of the key decisions -oncerning
program organization, logical data structures, and processing algorithms will have been made,
with the intent of making code production into a straightforward transformation of the design
into an executable representation.

The output of the design activity is a software blueprint that can be used by the Ada
programmer(s) to implement the system without having to refer back to the functional
specification and without having to make unwarranted assumptions about the requirements.

2.4 Implementation

Implementation of systems, in this instance, involves the production of executable Ada
code. The code should reflect the structure of the design and perform the functio's) specified
for the system. The code should adhere to the precepts of structured programming, with
emphasis on comprehensibility of code. It is important to note that coding is only a small
portion of the overall software development activity; good coding cannot make up for poor
analysis or design.

In general, the comprehensibility of programs written in a high-leve! language can be
achieved through uniformity of programming style, use of mnemonic names for procedures and

4l data, judicious inclusion of comments, and avoidance of unrestricted control flow.
Comprehensibility of Ada programs is further enhanced by use of the information hiding
properties of modules (package), minimization of interaction between tasks and exceptions,
minimization of the different choices for digits and for delta in a single program, and careful use
and documentation of tasking statements such as guarded select, delay and terminate.
2.5 Validation and Verification

4d = Validation is the process of determining that a aystem correctly performs those functions,
described in the functional specification. Verification is a process to ensure that each phase of
the development process correctly carries out the intent of the previous step. One must verify
the code against the system design, which in turn has been verified against the functional
specification for the system. Together, they provide assurance of system quality.

Validation of programs (code) may be done through either testing or formal proof of
correctness. Although there has been much work on mathematical proofs of program
correctness, most code is verified end validated through testing, which may be described as a
series of controlled experiments to provide empirical evidence that a program behaves properly
(and provides the desired results for broad classes of anticipated inputs).

Testing is normally done in three stages: -module testing, integration testing, and
acceptance testing. In module testing, individual program units are tested for correctness. In
integration testing, two or more modules are joined and tested together, to see if they work
properly together and to make certain that the interfaces mesh. Finally, acceptance testing
determines whether the system conforms to its functional specification.

In general, errors found in module and integration testing reflect errors made during
design or implementation, while errors found during acceptance testing reflect specification
errors -- incomplete, inconsistent, incorrect, or ambiguous statements of what the system was
to do. The most serious aspect of this situation is that the errors that were made first are
detected last! An error in the requirements definition may not be caught until the entire
system has been constructed and tested; such an error may require massive changes in the
system design and implementation. It'is for this reason that analysis and design errors are the
most expensive kind of errors, and that efforts such as formal reviews of design and code have
a significant payoff in terms of development costs.

2.6 Management Procedures

As noted earlier, a software development methodology is actually a blend between a
collection of technical procedures and a set of management techniques that can result in
effective deployment of project personnel, predictability of project schedule, budget, and
outcome, accurate estimation of software properties, and the final result of a high-quality
system that meets the needs of its users throughout the lifetime of the system.

Management of software development involves both management of people and
management of the software product. The former involves issues of supervision of individual
and project .progress, and selection of appropriate team organizations and individual
assignments. The latter focuses on deciding when a system is ready to be released and
controlling the means by which it (and its subsequent versions) are released and modified.
Furthermore, the management activity includes selection and revision of the technical
procedures that are to be used by the systems organization.

The discipline provided by software development techniques leads to an environment in
which management becomes possible, primarily because these techniques require the creation
of intermediate products, e.g., specifications and designs, that can be reviewed and used to
measure progress. Discipline refers to the adherence to a systematic procedure for the process
of software production, a procedure that can be followed and repeated for a large class of
software projects.

3. REQUIREMENTS FOR A SOFTWARE DEVELOPMENT METHODOLOGY

The goal of a software development activity is the effective creation of a set of work
products, comprising an operational system and its supporting documents. For every software
system, there are desirable qualities, such as reliability, correctness, evolvability, and efficiency,
just to name several of the most common. A software development methodology should
assure, to the greatest extent possible, that these system qualities are achieved. Furthermore,
the methodology should make it possible to decide among different system qualities, rather
than restricting the choice.

Many approaches have been proposed and used for creating systems. There is every,
indication that these approaches will be refined and that new approaches will be introduced in
the future. Furthermore, it seems clear that many of these approaches can be successfully used

7

to develop systems implemented in Ada. Our notion of a methodology is that of a system of
methods and tools, carefully chosen and integrated to support both the development and
evolution processes.

The purpose of this section, then, is to establish a framework for development
methodologies through a set of requirements for a methodology. The list of requirements is
given first, and each requirement is then discussed at greater length.

A methodology should:

1. cover the entire development process, simplifying transitions between project phases;

2. enhance communication among all interested persons at all stages of development;

3. support problem analysis and understanding;

4. support both top-down and bottom-up approaches to software development;

5. support software validation and verification through the development process;

6. facilitate the capture of design, implementation, and performance constraints in the
system requirements;

7. support the software development organization;

8. support the evolution of a system throughout its existence;

9. be supported by automated aids;

10. make the evolving software product visible and controllable at all stages of
development;

11. be teachable and transferable;

12. be open-ended.

* 3.1. ENTTRE DEVELOPMENT PROCESS

A methodology should cover the entire development process. It does little good to have a
-4 methodology for software design if there is no systematic procedure to produce the functional

specification used for the design and the Ada program(s) that must be created from the design.
In other words, it should address all of the phases discussed in Section 2, from analysis through
evolution.

The methodology should facilitate transitions between phases of the development cycle.
When a developer is working on a particular phase of a project (other than requirements

*analysis), it is important to be able to refer to the previous phase and to trace one's work. At
the design stage, for example, one must make certain that the architecture of the software
system provides for all of the specified functions; one should be able to identify the software
module(s) that fulfill each system function. During implementation, it should be easy to
establish a correspondence between modules in the system design and program units, and
between the logical data objects from the design stage and the physical data objects in the
program.

It is important to note that one must be able to proceed not only forward to the next
phase of the life cycle, but also backward to a previous phase so that work can be checked and
any necessary corrections can be made. This phased approach to software development makes
it clear that information lost at a particular phase is generally lost forever, with an impact on the

-4

resulting system. For example, if an analyst fails to document a requirement, it will not appear
in the functional specification. Eventually, during acceptance testing (or perhaps during system
operation), that failure will be recognized and it will be necessary to make modifications to the
system.
3.2 ENHANCE COMMUNICATION AMONG INTERESTED PARTIES

A methodology should enhance communication among all of the different persons
involved in a software development project at all of the different stages of development.
Among the paths of communication that should be supported are those among developers and
users, developers and customers, developers and their managers, and among developers
themselves.

Written documents serve to support this communication by providing a record of
decisions and agreements. At times, such documents may be informal, simply recording a
piece of information or an agreement. This approach is particularly useful when a document is
intended for someone without specialized knowledge of software development. However,
precise communication among technically knowledgeable individuals is enhanced by the use of
formal notations, including graphical representations and specialized languages. Examples of
such notations are data flow diagrams, HIPO diagrams, algebraic specification of data types, and
Ada. The methodology should prescribe the forms of documentation and representation that
will be used for this technical communication at all stages of the development process.

3.3 SUPPORT FOR PROBLEM ANALYSIS AND UNDERSTANDING

A methodology should support effective problem-solving techniques. It should
encompass intellectual processes to support problem decomposition.

Modeling is a particularly important aspect of this objective. There exist techniques for
activity and data modeling. Formal modeling techniques should be based upon a suitable set of
primitives for the application domain. For embedded systems, concepts such as external
interfaces and concurrent processes should be included. The resulting model should serve to
answer questions about the problem domain and can be used to define the scope of interest for
the system. Unless one has suitable tools for analysis of the problem, one cannot easily
produce a functional specification or a satisfactory system.

Problem solving techniques are used to decompose the problem and to create the model.
Techniques such as data abstraction, data flow diagrams, functional decomposition, transaction
modeling, and state machines have been effectively used for this purpose in the past. The goal
of this phase is to determine the structure of the problem -- the interrelation of the parts of the
problem.

3.4 SUPPORT FOR TOP-DOWN AND BOTTOM-UP DEVELOPMENT

The methodology should support a variety of different approaches to system design and
development. While systems are often modeled or analyzed using methods of top-down
decomposition, there are typically low-level constraints, such as interface requirements, for
which a bottom-up approach is necessary. Efforts to reuse software designs and/or code,
including the use of packages, also leads to the use of bottom-up techniques to develop
software. Finally, design constraints, such as performance requirements, necessitate the
creation and testing of low-level aspects of a system before many of the high-level aspects have
been developed.

Thus, the methodology must not constrain the development organization to follow either
a pure bottom-up or a pure top-down approach to software development, but should allow any
combination of the two in system design and implementation.

3.5 SUPPORT FOR VALIDATION AND VERIFICATION

The methodology must support determination of system correctness throughout the life
4 cycle. System correctness encompasses many issues, including not only the correspondence,

between the results of one stage of development and the previous stage, but also the extent to
which the system meets user needs. Accordingly, the methodology must not only be concerned

9

with techniques for validation of the complete system, but also must give attention to obtaining
the most complete and consistent verification of each work product throughout the
development. For example, the methods used for analysis and specification of the system
should make it possible to trace later system development back to the requirements and
functional specification.

The methodology must prescribe a strategy for assurance of system quality. Test
planning, document review, design and code walkthroughs and/or inspections should be
integrated in the methodology, with emphasis given to early error detection and correction. A
test plan should establish standards for test coverage, a means for measuring that coverage, and
the acceptable quality criterion.

3.6 SUPPORT FOR CONSTRAINTS

A methodology should facilitate the inclusion of design, implementation, and performance
constraints in the system requirements. Embedded systems to be constructed in Ada often
have severe requirements on memory utilization, real time response, use of specific machine-
dependent features, or integration with other hardware or software systems. Experience has
shown that severe constraints have a major detrimental effect on system development.

It should be possible to state these requirements using the methodology. Furthermore, it
should allow them to be incorporated into each subsequent stage and verified. This
requirement may necessitate the use of analytical tools and/or construction of prototype
systems.

3.7 SUPPORT FOR THE SOFTWARE DEVELOPMENT ORGANIZATION

The methodology must, above all, support the intellectual efforts of the designers and
other technical people. Beyond this, it should support the software development organization
that has been chosen for the project at hand. It must be possible to manage the developers and
the developers must be able to work together. This requirement implies the need for effective
communication among analysts, developers, and managers, with well-defined steps for making
progress visible throughout the development activity. The intermediate products generated by
the methods and tools, such as a detailed design or an acceptance test plan, can be reviewed by
the organization so that progress can be effectively measured and so that quality can be assured.

The methodology must support the management of the project. It should include
methods for cost estimation, project planning (scheduling), and staffing. It should also specify
methods for ongoing review of project progress, such as design walkthroughs and code
inspections. The management procedures should maintain a project handbook and library,
showing project history, project plans, and the evolving software product(s). Finally, the
management procedures should identify an evolving set of standards and conventions that can
be applied to all projects.

3.8 SUPPORT FOR SYSTEM EVOLUTION

The methodology should support the eventual evolution of the system. Systems typically
go through many versions during their lifetimes, which may last eight to ten years or more.
New requirements arise from changes in technology, usage patterns, or user needs, and these
changes or additional requirements must be reflected in a modified system. In many ways, the
evolution activity is a microcosm of the development process itself. The development
methodology can assist this evolutionary activity by providing accurate external and internal
system documentation, and a well structured software system that is easily prototype and
modified by those making the system changes.

3.9 AUTOMATED SUPPORT

Wherever possible, the methodology should be supported by automated tools that
improve the productivity of both the individual developer and the development team. This

* -. collection of tools, and the way in which they are used, constitute a "programming support
environmetit." (Note that the word programming is not used in the sense of "coding" here, but
rather in a more general sense.) A partial set of recommended tools for such an environment

10

~ are described in the "STONEMAN.
The tools should be integrated so that they may communicate via a common database and

so that they can work effectively with one another. Furthermore, these tools should be linked
to the methods so that the tools support the management methods and technical practices.
3.10 SOFTWARE CONFIGURATION

The methodology should maintain the visibility of the emerging and evolving software
product and its supporting work products. All of these items should be placed in the database
of the associated Ada Programming Support Environment.

The underlying notion is that of software configuration management. All of the
components of a software development project must be identified, collected, and controlled in
order to assure proper distribution of the finished system and its supporting work products, as
well as to assist in evolution of the product and version control.

The methodology must be applicable to a large class of software projects. While it is clear
that different methodologies will be needed for different classes of systems and for different
organizational structures, an organization should be able to adopt a methodology that will be
useful for a sizeable number of programs that they will build. Certainly, it makes little sense to
develop a methodology for each new system to be built.
3.11 TEACHABILITY AND TRANSFERABILITY

The methodology must be teachable. Even within a single organization, there will be a
sizeable number of people who must use the methodology. These people include not only
those who are there when the methodology is first adopted, but also those who join the
organization at a later time. Each of these people must understand specific techniques that
comprise the technical aspects of the methodology, the organizational and managerial
procedures that make it effective, automated tools that support the methodology,and the
underlying motivations for the methodology.

Transferability of the methodology is greatly aided by teaching materials, including user
documentation, organized courses, exercises, and examples.
3.12 OPEN-ENDED

A methodology should be open-ended. It should be possible to introduce new technical
and managerial methods, as well as to create new tools, and thereby modify the methodology.
Techniques and tools evolve through a process of "natural selection", whereby newer, more
effective techniques and tools, supplement or replace existing ones.
4. RELATIONSHIP TO ADA PROGRAMMING SUPPORT ENVIRONMENT (APSE)

The "STONEMAN" Report defines three levels of programming support environment for
4 Ada.

KAPSE - A Kernel APSE supporting basic functions of operating systems, database, and
communication support. This Kernel can provide tool portability from one computer
system to another.

MAPSE - A Minimal APSE providing a methodology-independent set of essential tools to
support the Ada programmer. These tools include language editors, translators,

t14 configuration management, loading, linking, and static and dynamic analysis tools.

APSE - fuller support for development of Ada programs, including tools for
requirements, specification, design and management. An APSE offers a coordinated and
complete set of tools which is applicable at all stages of the systcm life cycle.
It is the full APSE that provides the linkage to specific methodologies for system

development. The APSE exists to support the methodology (not the other way around), since
the toolset should be a means to an end and not an end in itself.

a

Specifically, STONEMAN describes a database as the central feature of an APSE system.
(It should be noted that this usage of "database" differs from its more traditional data-processing
usage.) The database acts as the repository for all information associated with each project
throughout the project life cycle.

The automated tools of the methodology (see 3.8) comprise the APSE. They are used to
create, modify, analyze, transform, and display objects in the database. The workproducts
produced by the methodology are included in the database for a project.

Thus, the APSE and the methodology have a symmetric relationship. The methodology
defines the tools at the APSE level (building upon the MAPSE), while the APSE provides the
central repository needed to support teamwork and quality control in the methodology.

The methodology and the tools, in turn, are part of a more general software development
environment, as shown in Figure 2. This broader notion of environment includes the software
developers, the organization to which they belong, and the physical workspace in which
software development takes place.

There are many influences within the workplace that affect the productivity of software
developers, including access to computers, privacy and noise levels in working areas, ergonomic
considerations of terminals, and availability of reference materials, including books and
journals. There is little doubt that such factors can have significant bearing on the productivity
of developers, regardless of methodology and tools, and further study must be done on
identification and measurement of the most significant factors so that every possible step is
taken to enhance the ability of software development organizations to produce the best possible
systems in the minimum interval of time.

5. METHODOLOGY EVALUATION

In a strict sense, every software development organization already has a methodology for
building software systems. While some software is developed according to modern practices of
software development, most of it is built in an ad hoc way. Accordingly, it is best to view the
discussion of software development methodologies from the perspective of changing current
practices, replacing them with new techniques that improve the process of software
development and the quality of the resulting products.

The process of change requires an understanding of the strengths and weaknesses of the
existing methodology, as well as an evaluation of the strengths and weaknesses of new
methods, techniques, and tools. While the general requirements for methodologies presented

*@ in Section 3 provide a framework for modification and evaluation of methodologies, more
specific criteria for evaluation can also be identified. Unfortunately, few of these criteria are
quantifiable. Furthermore, differences in organizational structures, software development
practices, and system characteristics make it difficult to assign relative weights to the criteria.
(Individual organizations, considering their own specific needs, may be able to do so, however.)

The criteria are divided into four major categories: technical, usage, management, and
economic. Some of the allocations to categories is arbitrary. The ordering within categories has
no significance.

5.1 Technical Characteristics

Q By technical characteristics we mean features that pertain to the support of various
technical concepts by the method.

oa

12

SOFTWARE
DEVELOPMENT
ENVIRONMENT

YILSSOFTWARE POUT

Figue 2 MoanareDeoment nviom

Inomto4ud

13

Function Hierarchy - A situation can be represented in which a function at one level is
actually composed of several interconnected functions that exist at a level of greater
detail.

Data Hierarchy -The concept of data classes; a situation can be represented in which a
set of data at one level is actually composed of several interrelated pieces of data that
exist at a level of greater detail.

Interfaces - The concept of having distinct and well-defined boundaries between
processes or sets of data. Software systems and the large information systems of which
they are a part should contain many distinct parts. Each part should have a clear
definition so that it can be dealt with as a separable unit. If this is the case, then we
have interfaces, or connections, between the various parts.

Control Flow -Representation of the sequence in which processes will take place.

Data Flow - Representation of the flow of information types between various processing
elements and/or storage elements in the system.

Data Abstraction - The concept of hiding information about the implementation of a
data type and providing a set of implementation-independent functions for use of the
data type.

Procedural Abstraction - an algorithm for carrying out some operation is abstracted to a
single name that can be used to invoke to procedure without knowing the details of its
implementation. (Transactions are an instance of this case.)

Parallelism - a situation in which two or more cooperating sequential processes are
concurrently in execution.
Safety - the avoidance of run-time failures which could lead to the loss of life or the

occurrence of other catastrophic consequences.

Reliability - the absence of errors that lead to system failure.

Correctness - fidelity to functional specifications.

.4l 5.2 Usage Characteristics
Usage characteristics refer to those features relating to the methodology's application to

development situations. These include:

Understandability - How easy it is for someone who is interested in the system being
developed, but not especially knowledgeable in the technique, to understand the results
of the development.

Transferability - The degree to which the method or tool can be successfully taught to
personnel not previously familiar with it. This includes not only how easy it is to teach
and learn, but also how well formulated it is.

Reusability - The ease with which previously created designs, code, or other work
products can be reused in a new project.

Computer Support Existence of automated tools which can be easily obtained and
which aid in the use of the methodology or some of its steps.

14

Life-Cycle Range -The span of phases in the development life-cycle over which the
tools or method can be usefully applied. This must by necessity be an approximate
measure.

Task Range - The span of tasks to which the item may be usefully applied. Traditional
classifications of software applications (business, scientific, systems, etc.) are not very
useful for this evaluation. There are scientific and business problems that share the
same problems while there are other tasks that say, within the business category, are
quite dissimilar.

Cohesiveness - The extent to which the technical methods, management procedures,
and automated tools may be combined to support the methodology.

Extent of Usage - A judgment as to how widespread the current usage of the
methodology is.

Ease of phase transition - The extent to which information developed at one phase of
development supports work to be done at a subsequent phase (e.g. from analysis to
design).

Decision highlighting -- the ability of a technique to make visible and highlight key
technical or project decisions (e.g. choice of data structures, nearness to completion of a
project); the ability of a technique to illuminate the consequences of a development
decision.

Validation - the extent to which the methodology assists in the determination of system
correctness

Repeatability - the extent to which similar results are obtained when the methodology
(or an included aspect) is applied more than once to the same problem.

Ease of change to work products - the amount of effort required to modify a work
product when some aspect of requirements, specification, or design is changed.

5.3 Management Characteristics

These are the factors that relate to the ability of an aspect of the methodology to enhance
the management of software development activities.

Manageability - The degree to which the method or tool permits standard management
techniques of estimation, in-process status checking and control to be applied. The
evaluations are based on the existence of well-defined steps and intermediate products
which make management possible and the existence of management techniques

* :applying specifically to the method at hand.

Teamwork - the extent to which the methodology and the development environment
aid, rather than hinder, teamwork.

Phase Definitions - the identification within the methodology of development phases
that represent intermediate stages of the development process.

* -, Work products - the documents and systems that result from application of the
methodology.

Configuration management - the way in which the methodology and/or its tools

i6

1.

provides for organization, tracking, and maintenance of the emerging work products,
including control of releases and multiple versions.

Exit criteria - the way in which phases of development and work products are defined to
provide explicit stopping or exit criteria for each stage of development.

Scheduling - the methodological support for project scheduling.

Cost estimation - the methodological support for cost estimation.

5.4 Economic Characteristics
Use of a software development methodology should also produce tangible economic

benefits in software quality and the productivity of the software development organization, so
that one should also consider the following aspects:

Local benefits (with respect to phase) - Compared to informal/traditional ways of
carrying out the processes of a given phase, how much improvement can be expected
through the use of a given tool or method?

Life cycle benefits - the benefit of a method relative to a particular stage, adjusted for
the relative importance of that stage in the overall life ,;ycle.

Cost of acquisition - the cost of obtaining training, tools, rights, etc. to use the
methodology or some associated tool or technique.

Cost of use - the operational cost (computer time, forms, etc.) of using the
*methodology or some associated aspect.

Cost of management - the cost of managing the methodology or some associated
technique.

6. CONCLUSION
The purpose of this document is to present the rationale for software development

methodologies and to establish a framework for the description and creation of such
methodologies in conjunction with embedded systems and Ada Programming Support
Environments. To a iesser extent, we have tried to identify areas where additional research and
development are needed before full methodological support becomes available.

There are many ways in which systems can be constructed and many tools that can be
used. There are many existing methodologies and many more are likely to emerge based on
different concepts of problem solving, approaches to system structuring, and organizational
structures. The emergence of several widely used methods for analysis, specification, and
design, combined wih compatible APSE's, should lead to a small set of technical approaches to
the specification, design, development, and validation of Ada programs, yielding standardized

4 forms of work products.
Although the management aspects will differ among organizations, the narrowing of

alternatives for technical methods and tools can contribute to enhanced maintainability of
embedded systems. Subsequent work can recommend and/or develop technical methods that
satisfy the framework described in this document. Such work can then aid in identifying tools
that can be built in support of methodologically-oriented APSE's. The eventual integration of

4 ,management procedures with suitable APSE's and Ada Methodologies can thereby further the
goals set out when the Ada program was first undertaken.

4i

Ada Methodology

Questionnaire Summary

4

4

a -

4i

Ada Methodology Questionnaire Summary

Maria Porcella
Peter Freeman

Information and Computer Science
University of California, Irvine

Irvine, CA 92717

Anthony I. Wasserman

Medical Information Science
University of California, San Francisco

San Francisco, CA 94143

November, 1982

4

41

a .

TABLE OF CONTENT.:

1. INTRODUCTION 2
2. QUESTIONNAIRE DESCRIPTION 2
3. SURVEY RESULTS 2
3.1. SUMMARY OF THE RESULTS 3
3.2. DETAILED DISCUSSION OF THE RESULTS 3
3.2.1 Key Concepts 5
3.2.2 Results by Questionnaire Subsection 5

GENERAL METHODOLOGY ISSUES 5
TECHNICAL ASPECTS 10

Technical Concepts 10
Workproducts 13

Prescribed Workproducts 13
Representation Schemes 13

Ada Compatibility 19
Quality Assurance 19

A UTOMA TED SUPPORT 19
Automated Aspects 24
Detailed Summary of Specialized Automated Support 24

MANAGEMENT ASPECTS 24
USAGE ASPECTS 24

• • TRANSFERABILITY 30
4. CRITIQUE OF THE SURVEY 30
5. CONCLUSION 33
6. APPENDIX 1: Identification of Methodology Developers 34
7. APPENDIX 2: Original Questionnaire and Cover Letter 39

LIST OF TABLES

Table 1: Methodologies Summarized 4
Table 2: Key Concepts and Mechanisms 6

Table 3: Software Development Life Cycle Coverage 9
Table 4: Methodology Applicability 11
Table 5: Technical Concepts Supported 12
Table 6: Workproducts and Representation Schemes 14
Table 7: Ada Compatibility 20
Table 8: Quality Assurance Methods 21
Table 9: Automated Aspects 25
Table 10: Detailed Summary of Specialized Automated Support 27
Table 11: Management Aspects 29
Table 12: Usage Aspects by Methodology 31
Table 13: Transferability Aspects 32

ai

2

1. INTRODUCTION

In Spring, 1982, we developed a questionnaire on software development methodologies, identified 48
methodologies to be surveyed, and sent the survey to the developers of these methodologies. The
intent of the survey was to gather conceptual, technical, and usage data of a general nature and, more
specifically, to relate the data to potential methodology usage in an Ada development environment,
wherever possible. The intent was not to describe any particular methodology in detail. The results of
the survey are presented here in a form that captures the factual results and suggests a first level of
generalization of the state of the art in software development methodology.
A questionnaire was chosen as the instrument for conducting the survey because resource constraints
prohibited a more thorough survey method, such as interviewing. The questionnaire contained a combi-
nation of free-form and multiple-choice questions. This allowed respondents to describe the methodol-
ogy in their own terms, as well as in standardized terms.
We tried to identify as many methodologies as possible, but we are certain that some were overlooked.
Also, there are other methodological aspects that remain unaddressed. We believe, however, that our
coverage of the field and our interpretation of the responses conveys an accurate representation of each
approach and the state of the art. In this report, we assume that the reader is familiar with concepts of
software development methodologies. We, of course, take full responsibility for our conclusions and
interpretations.

-2. QUESTIONNAIRE DESCRIPTION
The questionnaire (reproduced as Appendix 2) consisted of several parts:

(1) Identification - Asked for administrative information about the methodology, its developer, the
preparer of the questionnaire, and the primary contact for future queries.

(2) General Methodology Issues - Sought broadly descriptive data about the key concepts of the metho-
dology, its coverage of the software development life cycle and its perceived suitability in specific
application domains.

(3) Technical Aspects - Explored the technical procedures used in the methodology and the mechan-
isms for representing some important technical aspects such as the visible workproducts, quality
assurance procedures, and points of Ada compatibility. By "workproducts" we mean the documents
and system products (internal and deliverable) that result from application of the methodology.

(4) Automated Support - Asked the respondent to describe the specialized automated tool support for
the methodology, to ascertain its availability/portability, and to define the hardware environment

needed for that support.

(5) Management Aspects -Delved into the methodology's coverage of the project, product, and people
management aspects of software development. In particular, the product management dimensions

d of configuration control and evolution were explored because of their importance to integrated
programming environments.

(6) Usage Aspects - Sought information about the experience with using the methodology in organiza-
tions, including the required effort for introducing the methodology, and the extent of projects
and organizations involved.

(7) Transferability - Explored some technology transfer issues including the available transfer mechan-
isms and problems of introduction of new techniques into organizations.

.3-

3. SURVEY RESULTS

Of the 48 people/organizations who received the questionnaire, 29 responded (60 percent). However,
two of the responses were apologies for not being able to answer the questionnaire. Appendix 1 lists
the organizations associated with all the methodologies for which we received a positive response (27 in
all). This summary only includes details on 24 of the responses, however. Three methodologies (DAI-
SEE, DCDSM, and SSDM) were not included because they are still in the experimental stage and have
not been used on any projects.

We have made little effort to evaluate the claims of the respondents. While we believe that all of the
responses were made in good faith, the reader is cautioned to interpret "a methodology supports..." to
mean "a methodology claims to support....".

Considering the length of the survey, we regard the response as excellent and extend our thanks to all
of the respondents. We feel that the response indicates a growing interest in exploring software
deve!opment methodologies.

3.1 SUMMARY OF THE RESULTS

The survey responses provide us with a good picture of the current stock of methodologies on which
we can base some initial generalizations. The generalizations fall into the following categories: life cycle
coverage, software development process, automated support, and management support.

Life Cycle Coverage
The methodologies may be grouped into three categories according to their life cycle coverage: those
that cover the initial phases of the life cycle, up to design; those that cover from the initial phases up to
implementation; and, those that attempt to control the life cycle of the product through its evolution.

Software Development Process

An second generalization we can make is that there is value placed on certain processes involved in
software development: modelling activities, consistency checking procedures, formalized procedures for
specification verification and validation, a trend toward the use of formal specification languages, use
of graphical/diagrammatic representation schemes, as opposed to narrative, to capture systems docu-
mentation, management procedures, functions, and data.

Automated Support

There is also a general trend toward development and use of automated tools to support the methodol-
ogy in the areas of document preparation, computer aided design and modelling, prototyping, code gen-
eration, database/data dictionary support, etc. The methodologies may be placed into four basic
categories for this purpose:
1) those without automated support and no plans for such support;

2) those that plan to develop automated aids, but which presently have none;
3) those providing tools in a general support environment that have been created independently of

the methodology;

4) those where there is a tight coupling with the tool environment (specialized tool support for
specific aspects of the methodology).

Management Support
4 As far as management issues are concerned, the methodologies surveyed differ substantially on whether

they directly provide management guidance, and on what type of guidance they provide. Most metho-
dologies are sensitive to some combination of project, technical, and people management issues; but
only slightly more than one-third attempt to provide guidance on all three dimensions.
3.2 DETAILED DISCUSSION OF THE RESULTS

Our detailed discussion first present key concepts, then the results by questionnaire subsection. Table 1
lists the 24 methodologies (with the acronyms for each) used for this analysis. If the developeg did notprovide an acronym for the methodology, we created one and use that acronym throughout this report.

* ' No significance should be attached to these assigned names beyond this report.

.4

METHODOLOGIES SUMMARIZED

Methodology
Mnemonic Full Name of Methodology

ACM/PCM Active and Passive Component Modelling
DADES Data Oriented Design
DSSAD Data Structured Systems Analysis and Design
DSSD Data Structured Systems Development
EDM Evolutionary Design Methodology
GElS Gradual Evolution of Information Systems
HOS Higher Order Software
IBMFSD-SEP Adaptation of IBM Federal Systems Division

Software Engineering Practices
IESM Information Engineering Specification

Method
ISAC Information Systems Work and Analysis of

Changes
JSD Jackson System Development
MERISE
NIAM Nijssen's Information Analysis Method
PRADOS Projektabwicklungs- und Dokumentationssys-

tern
REMORA
SADT Structured Analysis & Design Technique
SARA System ARchitect's Apprentice
SD System Developer
SA-SD Structured Analysis and Structured Design
SDM System Development Methodology
SEPN Software Engineering Procedures Notebook
SREM Software Requirements Engineering Metho-

dology
STRADIS STRuctured Analysis, Design and Implemen-

tation of Information Systems
USE User Software Engineering

Table 1: Methodologies Summarized

4

5-

3.2.1 Key Concepts
Although a subsection of the questionnaire asked specifically for the key concepts or principles underly-
ing the methodology, key concepts were discussed indirectly in many of the free-form questions. We
have tried to extract the general ideas of each methodology, wherever stated, and have gathered them
in this section. The key concepts may be realized in practice by diverse mechanisms -- for example,
"bottom-up design" and "top-down design" are two fundamentally different practices for achieving the
goal of "improved manageability of software production".
In constructing Table 2, we first collected the conceptual information contained in the set of question-
naires. We extracted this information verbatim, in most cases. We then analyzed the results for some
logical presentation. The key concepts fell into two major categories: guiding methodological concepts,
and specific mechanisms for achieving software production. Each of those categories was further organ-
ized into broad classes: general, automation, technical, management, and user relations. Table 2 is then
a synthesis of the responses, using the respondents' terms insofar as possible, and combining common
responses.
NOTE: The individual concepts and mechanisms are listed without any specific attempts at lateral
correspondence between the two columns.

3.2.2 Results by Questionnaire Subsection
The following discussion presents the responses by subsections of the questionnaire. The major subsec-
tions of the questionnaire were as follows: identification, general methodology issues, technical aspects,
automated support, management aspects, usage aspects, and transferability.

We have organized the data into tables where appropriate, and reported it in a more informal way if
there were no obvious dimensions for comparison.

GENERAL METHODOLOGY ISSUES
The following subsections summarize the responses on software development life cycle coverage and
applicability.

Software Development Life Cycle Coverage
The data on life cycle coverage (from question 2) is summarized in Table 3, where we attempted to
match the life cycle phases described by the respondents to the life cycle phases outlined in "Ada
Methodologies: Concepts and Requirements," (AJPO, November, 1982). We have analyzed the
responses beyond the simple answers given to question 2, drawing inferences from other sections of the
questionnaire. Often the respondents just listed phases covered, and misunderstandings concerning the
meaning of terms made it necessary for us to delve further into the questionnaire.

Table 3 shows that nearly all methodologies support "Architectural" Design and Functional Specification
(23 & 24 of 24 respectively). We emphasize "Architectural" because "Detailed" Design cannot be

O included in these figures. Most respondents did not refer to "Detailed Design" specifically. "Design" was
the most common response; and we judged that to be too general.
Seven-eighths (21 of 24) provide support for the implementation level. More than half (14 & 13 of 24,
respectively) support requirements analysis and/or evolution, and more than half (14 of 24) have a dis-
tinct validation phase.

Another way of viewing these results is that about one-sixth (4 of 24) of the methodologies provide
support only through the architectural design stage; another seven provide support only through imple-
mentation and/or :'alidation; and the rest consider post-construction and evolution. Thus, the metho-
dologies fall into 3 basic categories along this dimension, as shown below:

4m

-6-

KEY METHODOLOGICAL CONCEPTS & MECHANISMS
Guiding Methodological Concepts Specific Mechanisms for Achieving

for Software Production Software Production

GENERAL GOALS: GENERAL FEATURES:
Simplicity Use of "state-of-the-art" methods,
Balance between simplicity and tools, and management

complexity techniques
Control of complexity Proven procedures (based on
Rigor experience)
Apply to any problem domain Provide a software development

model (scenario)
Improve the quality of software

products
Systematic, step-by-step design

A UTOMA TED PROCESSES:

Simulation of man-machine
A UTOMA TION GOALS: dialogues

Rapid prototyping
Automate life cycle processes that are

conventionally done manually and Transform user requirements
redundantly into Functional Specification

Integrated family of tools Specification library
Provide graphical tools Verify Functional Specification

Transform specifications into
implementation

Automatic programming

Automatic documentation
Report generation

Test generation
Consistency checking

Table 2: Key Concepts & Mechanisms

- -

4

-7

KEY METHODOLOGICAL CONCEPTS & MECHANISMS
Guiding Methodological Concepts Specific Mechanisms for Achieving

for Software Production Software Production

TECHNICAL FEA TURFS:

Implementation-independent design
Logically guaranteed requirements

definition

Explicit specification & modelling
of the environment in which a
system will exist

TECHNICAL GOALS: Data (entity) modelling
Event (activity) modelling

Criteria given for all technical aspects Integration of time representation
Formalization of specifications and logical data model

and design
Verification of specification and Provide a language for recording

design decisions specification and design decisions
Provide an explicit model of the Algebra of structures (set-to-set

real world relationships)
Overall optimization of Graphical representation

logical/physical data
and processing architectures Information hiding

Support design of concurrent Modularity
hardware and software systems Module interface design

User interface (dialog) design

TECHNICAL STRATEGIES:

Concentration on system outputs
Specific sequencing of data

modelling and functional
decomposition

Parallel (independent) approach to
modelling data and process

Simulation
Prototyping
Top-down design
Bottom-up design
Bottom-up implementation
Top-down testing

Table 2: Key Concepts & Mechanisms
(continued)

)-8

KEY METHODOLOGICAL CONCEPTS & MECHANISMS
Guiding Methodological Concepts Specific Mechanisms for Achieving

for Software Production Software Production

PRODUCT MANAGEMENT GOALS: MANAGEMENT PRACTICES:

Provide quality control Use central knowledge base
Provide version control Use existing software
Provide configuration management
Provide an explicit model of the "Teamwork" working environment

software development process Role definitions
Evolutionary planning of tasks

PROJECT MANA GEMENT GOALS:
Workproduct definitions

Improve the manageability of software Workproducts on appropriate forms
production Validated workproducts

Improve the efficiency of software
production Author/Reader Cycle

Improve the SE practices of Wide distribution for review
programmers in the organization Workproduct reviews by author,

100% centrally verified consistency team, and management
Improve productivity over the entire

life cycle Provide estimation and scheduling
techniques

USER/DEVELOPER COMMUNICA- USER INVOLVEMENT PRACTICES:
TION:.

Formal validation of models and
Balance between user involvement and specifications by user

systematic software development Formal customer acceptance testing
User envolvement in requirements User orientation & control of the

definition development process

Table 2: Key Concepts & Mechanisms

(continued)

.9

SOFTWARE DEVELOPMENT LIFE CYCLE COVERAGE ___

Methodology Req'mnts Functional Desg Implemen- Valida- Evolu-
_________ Analysis Specification egn tatiofl tion tion

ACM/PCM x x x x x
DADES ISAC* x X
DSSD x x x x x x
DSSAD x x x

EDM x x x x x x
GEIS x x x x
HOS x x x x x
IBMFSD-SEP x x x

IESM x x x x
ISAC x x xIJSD x x x x
MERISE x x x x x x

NIAM x x x x x
PRADOS x x x x x x
REMORA x x x x

UTSADT x x x

SARA x x x x x
SA-SD x x x x x x
SD x x x
SDM x x x x x

SEPN x x x x x
SREM DCDSM*% x x x x x
STRADIS x x x x x x
USE ______ x x x ____ x

Table 3: Software Development Life Cycle Coverage

Key:
x - phase covered by the methodology

- methodology is coupled with this other methodology,
* tool, method, etc.

S - partial coverage
- does not cover detailed design
% - in developmental stages

blank phase not covered

. 10-

Through
Implementation

Through and/or Through
Design Validation Evolution

DADES DSSAD ACMIPCM*
ISAC GEIS DSSD"
SADT JSD EDMO
SD REMORA HOS

SARA IESM
IBM-FSD MERISE*
SEPN NIAM

PRADOS*
SA-SD*
SDM
SREMO
STRADIS*
USE

The methodologies under the "Through Evolution" column that are flagged by an asterisk ("*) span the
entire life cycle. However, they may not support each phase of the life cycle. For example, some do
not have a distinct requirements analysis phase; others do not distinguish various intermediate phases.
While support for the entire life cycle is essential for a software development methodologies, there are

few current methodologies that fulfill that requirement. Since most of the methodologies do nct support
the entire life cycle, we would have expected more of the respondents to describe how their methodolo-
gies could be used with other techniques to cover the entire life cycle. However, this was not done,
perhaps due to the way the question was interpreted. "A system for developing systems" may not have
suggested "complete life cycle coverage" to the respondent despite our intent.

Methodology Applicability

The responses on applicability (Table 4) come from questions 4 & 5 of this portion of the question-
naire. Both questions were objective, with explicit instructions on how to respond. Even so, some
responses answered question 4 "yes" or "no" when we asked for more specific suitability categories;
hence, some entries in the table are "x" where they ought to be "W", "S", etc.

The methodologies surveyed are most suitable for data processing and database systems (21 of 24) and
least suitable for expert systems and artificial intelligence applications (4 o 24). Approximately half of
them (13 of 24) are well-suited to embedded, real-time systems. Moreover, only a few (HOS, SREM,
and with a slight exception, SADT) are well-suited for all application domains. Also, while most (15 of
24) are intended for use on systems of all sizes, some methodologies (7 of 24) may not be appropriate
or affordable for small systems and a small number of methodologies (2 of 24) may not be appropriate
for large systems.

.,4 Suitability of a particular methodology, or set of methodologies, for an Ada environment will depend
partly on the needs of the development organization, such as its concerns for a range of applications
and project size. The variable applicability reported suggests that a software development organization
will need to acquire some expertise in evaluating methodologies with respect to its specific organiza-
tional needs.

TECHNICAL ASPECTS

.4 The following subsections report the data gathered on technical concepts, workproducts and representa-
tion schemes, compatibility with Ada programming features, and quality assurance techniques.

Technical Concepts

Table 5 summarizes methodology support for certain technical concepts: function
hierarchy/decomposition, data hierarchy/decomposition, interface definitions, data flow, sequential con-
trol flow, parallelism, and formal program verification. The question was answered in many ways,

4which accounts for the simple reporting scheme. We had asked "how" the concept was supporled, and
received answers like "Not at all", "Satisfactorily', and "via data flow diagrams. A combination of the
two latter type responses was what we had sought.

One-third (8 of 24) of the methodologies support all the technical concepts we identified. When formal
program verification and concurrency (which are the least supported, 13 & 17 of 24 respectively) are
ignored, the presence of "complete" technical support increases substantially. In that case, three-fourths

________METHODOLOGY APPLICABILITY
________Application Type _____Size

Methodology Embedded Sci/Eng 0/S Tools DP/DB Expert/Al Sm Med Lg

ACM/PCM I I I S W S .. x x
DADES S I I S W I .. x x
DSSAD W W S S W S x X
DSSD W W S W W IE x x X

EDM W W JE W W JE x x x
GEIS I I W W W I x X x
HOS W W W W W W x X x
IBMFSD-SEP X x x x x

IESM S I S W W I x x x
ISAC I W S W W I x x x
JSD W S/W W W W IE x x x
MERISE W S S S W IE x x x

NIAM S S S W W W x x x
PRADOS S W S W W I x x x
REMORA W S I W W I x x x
SADT W W W W W.S W x x x

SARA W W S S S I x x
SA.SD W W W W W I x x x
SD S S S W S x x ..
SDM S S W W W S x x X

SEPN W S I 5 5 I x x$
SREM W W W W W W X x
STRADIS W W W W W x x x
USE IW I W W S x x IEj

Table 4: Methodology Applicability

* Key:
W -well suited
S -satisfactory

I -inappropriate

0 x -suitable

(W or S not specified)
IE - insufficient experience

-no answer
$ -"Large is 250K lines, 75-100 effort years"

blank - is not suitable

Sci/Eng -Scientific/Engineering

0/S - Operating Systems
DP/DB - Data processing, database
Al -Artificial intelligence

-12-

______________TECHNICAL CONCEPTS SUPPORTED ________

Function Dat Interface Vai? Cocu I Formal
Methodology Hierarchy/ Hierarchy/ Definitions Flow Con trol rency/ Program

Decomp. Decomp. _______Flow Parallelism Verification

ACM/PCM x x x x x x x3DADES x x x
DSSAD x x x
DSSD x x x x x x

EDM x x x x x x
GEIS x x x
HOS x x x x x x x
IBMFSD-SEP x x x x x x x

IESM x x x x x x x
ISAC x x x x x x
JSD x x x x x
MERISE x x x x x x

NIAM x x x x x x
PRADOS x x x x x
REMORA x x x x x x
SADT x x x x x x

SARA x x x x x x x
SA-SD x x x x x x
SD x x x x
SDM x x x x x x

SEPN x x x x x x
SREM x x x x x x x
STRADIS x x x x x x
USE x I x I x fX I x I x I x

Table 5: Technical Concepts Supported

.41 Key:
x -concept supported by the methodology
blank -concept not addressed

.13-

(18 of 24) of the methodologies in our study support those concepts.
This result is open to several interpretations:

(1) our list of technical concepts may exceed the set that is necessary and sufficient for a methodol-
ogy;

(2) few methodologies provide comprehensive technical support for problem solution and system
development;

(3) users of the methodologies implicitly use these concepts, but haven't recognized them explicitly.
We believe that there is some truth to each of these interpretations.
Workproducts

Table 6 lists the prescribed workproducts and the representation schemes used by each methodology. By
"representation schemes" we mean the graphic and textual notations (e.g. Petri nets, data flow diagrams,
formal specification language) by which the relevant information is captured and communicated.
We have made little attempt to classify the responses because we wanted to avoid, as much as possible,
misrepresenting the data; moreover, specialized developer terminology, coupled with sparse informa-
tion, precluded such analysis. Hence, most of the table entries use the terminology provided by the
respondent.
However, we have tried to draw some conclusions about the workproducts and representation schemes
used. One observation is that, "prescribed workproducts" and "representation schemes used" were often
interpreted as the same "objects". This was not anticipated, since our intent in asking the two questions
was first to identify "what" was the organized output of each phase, and then to identify specifics on
"how" that output was captured, or what various forms that information took.
The discussion of the results of this subsection is divided into two parts: prescribed workproducts and
representation schemes.
PRESCRIBED WORKPRODUC7S

The most frequently prescribed workproducts were Specifications and Designs. In addition, a frequently
mentioned "workproduct" was a library or data dictionary. In addition, methodologies having database
support (DSSD, GELS, NIAM, SARA, and SREM) mentioned the capability of producing some
number of reports (what we would call "workproducts") that were not specifically identified.
For most of the methodologies, workproducts identified were those that were produced up to but not
including the code. Therefore, we had to infer "code" from other information about the methodology
(e.g. support through implementation). A few methodologies (SARA, SEPN, and STRADIS) men-
tioned explicit test environment workproducts. Only STRADIS and IBM/FSD-SEP explicitly men-
tioned post-construction workproducts.
These are interesting results relative to the life cycle coverage (Table 3). The implementation phase,
for example, is shown as being supported extensively, despite no explicit methodological guidelines for

O' workproduct production. It appears that prescribed workproduct definitions and phases of direct life
cycle coverage do not have a one-to-one correspondence; hence, it seems that workproducts are not
well-integrated into methodologies. Lastly, only STRADIS specifically mentioned management workpro-
ducts although many other methodologies have them in some form (e.g. project models, schedules,
etc.).
REPRESENTA TION SCHEMES

". Representation schemes generally, take the form of data flow diagrams, structure charts, state machine
diagrams, entity-relationship diagrams, other types of graphs, program design language (PDL), and data
dictionaries. Many of the methodologies with database support mentioned some formal specification
language as the mechanism for capturing that data. In general, the objects of the modelling process are
data, activities or operations, and their relations. (Note: It was not clear from many of the responses
whether "time" was featured as a subject to model.)

* - What is noteworthy is the emphasis on graphical representation schemes and 'predicate-calculus-based
specification languages, which lend themselves to machine processing. Moreover, the two' schemes

- 14-

WORKPRODUCTS & REPRESENTATION SCHEMES
Methodology Prescribed Representation

Workproducts Schemes Used
ACM/PCM Specifications Graphical: for data &

Object & Action schemes operations
and skeletons Predicate logic:

Hierarchy of data Functional Specifications
abstractions and
operations

DADES Formal Specifications Data flow: Architectural
Architectural Design Design

Narrative Tables:
requirements

Formal spec language
Diagrams: describe sub-

systems, process
structure

DSSAD Jackson-type data Jackson-type data
structure diagrams structure diagrams

Interaction diagrams Interaction diagrams
DSSD Structured Require- Functional data flow

ments Definition diagrams
Structured System/Data Entity (contextual)

Base Design (Library) diagrams
Structured Program Assembly line diagrams

Design Input/Output Diagrams
Event structures

EDM Standardized sheets for: Data flow diagrams
Requirements Hierarchical charts
analysis Data structure tables
Specification Relational schemes
Design control flow diagrams
(all other tasks) Interface design

GElS Specifications Chart: function/data
Library (of Specs) relationships

HOS Formal Specifications: AXES spec language:
(in a library) data type axioms,

Graphical control maps primitive operations,
Program code control structures, and

other formal mechanisms
Graphical control maps

_ _ _ _ _ Functional hierarchies

Table 6: Workproducts & Representation Schemes

*, ,

L . 15-

WORKPRODUCTS & REPRESENTATION SCHEMES
Prescribed RepresentationMethodology Workproducts Schemes Used

IBMFSD-SEP Workproducts for each State machine diagrams
software engineering Structure charts
practice (SEP) Program design language

Design (PDL)
Programs: (in configured

controlled libraries)
IESM All workproducts defined Sentences: formal System

by the Specification
METHOD Axioms: (defined by the

System Specification: METHOD)
measurable objectives Data flow diagrams

___-._ of the system
ISAC Activity model of current Activity graphs (A-graphs)

situation Information flow graphs
Activity model of chosen (I-graphs)

change alternative Component graphs
Change plan (C-graphs)
Activity model with Process tables (P-tables)

information subsystems Data system design graphs
Priority plan for infor- (D-graphs)

mation subsystems
Detailed information

analysis models
Equipment-independent

data system model
Equipment-adapted

data system model
JSD Entity & Action lists Tree Structures (diagrams

Entity Structures & texts)
(Trees) Data flow diagrams

System Specification Database diagrams
Structure Texts (like (optional)

attribute grammars)
System implementation

diagrams
Executable text (JCL, pro-

gramming language,
etc.)

Database design

Table 6: Workproducts & Representation Schemes
(Continued)

a"

4

16

WORKPRODUCTS & REPRESENTATION SCHEMES
Prescribed RepresentationMethodology Workproducts Schemes Used

MERISE Standard set of documents Process diagrams
at each definite phase: (Petri nets)

Entity-relationship
planning, problem spec, diagrams
design, verification, Bachman diagrams
simulation, coding, Data flow diagrams
prototype, construction, Programming trees
commissioning, launch-
ing and maintenance

NIAM Knowledge Base: Integrat- Decomposition schemes
ed software information Information flow diagrams
system capable of generat- Information structure
ing system documentation, diagrams
cross-refs, and other Information dictionary
reports Formal spec language:
Process descriptions process descriptions

PRADOS Requirements SADT diagrams: analysis
Solution Concept DSA diagrams (Datenstruk-
Designs tur analyse) (based on
Code entity-relationship

model)
Data structure charts:

design module
specifications

Nassi-Shneiderman
diagrams: (programming)

REMORA Conceptual Schema: Formal spec language:
relations of static conceptual schema
and dynamic aspects Diagrams:

Logical Schema: logical 3-alternate graph
data schema and conceptual schema
transactions Logical data graph

Synchronization schema Transactions sequen-
Code cing graph

SADT Models (composed of Diagramming language:
diagrams) Activity diagrams

Kits: for review and Data diagrams
approval procedure State diagrams

Node indexes and trees Text
Large schematic Glossary

diagrams algorithmically Node Index (Table of
derived from single Contents)
or multiple models Schematics (for walk-

throughs)

Table 6: Workproducts & Representation Schemes
(Continued)

-*-

17-

WORKPRODUCTS & REPRESENTATION SCHEMES
Prescribed Representation

Workproducts Schemes Used
SARA Requirements document Represent structure:

Design models: SLI (modules, sockets,
structural (SLi), interconnections)
behavioral (Graph Represent behavior:
Model of Behavior), GMB (control flow,
Module Interface data flow,
Description interpretation domains)

Reports: from analysis MIL (Ada specification
and Test Environment parts)

QA requirements
document

Detailed design
specification

Evaluation transcripts
SA-SD Analysis: Data Flow Diagrams

Structured specification Structure charts
Data Dictionary Data structure diagrams
Mini-specification Finite state diagrams
State Transition Model Decision tables
Design: Program design language
Design specification (PDL)
Database Design
Operational constraints
Physical constraints
Implementation:

structured code
SD Concept structure: Graphical (with additional

(requirements spec) texts)
Database Design Data flow diagrams
Conceptual schema Concept structures
Access path

specifications
Algorithm specifications
Code

SDM Over 100 forms: "All such [axioms, DFD's,
Each task within each finite state diagrams]
activity within each design techniques fit..."
phase prescribes
one or more products

SEPN "Each SEPN describes a "Each SEPN contains a
specific work product and recommended standard for-
each is defined in terms of mat."
standard symbology,
forms, or criteria to be
met."

Table 6: Workproducts & Representation Schemes
(Continued)

18

WORKPRODUCTS & REPRESENTATION SCHEMES
Prescribed Representation

Methoology Workproducts Schemes Used

SREM Requirements Definition Stimulus-response R NET
Software Requirements (based on graph-model

Specification theory)
Documentation from Formal requirements
queries to requirements statement language
database Relational database

description
STRADIS Initial Study Report Data Flow Diagrams

Detailed Study Report (requirements)
Draft Requirements Static & Dynamic Data
Statement Models
Outline Physical Design Design Data Flow Diagrams
Total Requirements (transition between

Statement Analysis and Design)
Design Statement System structure charts:
Accepted But Unin- "sub system" design

stalled System PDL: program design
Installed System Docu-
mentation Package

Management forms:
____ for planning and control
USE Specification: Data Flow Diagrams

Dialogue design Data models (E-R models,
Database design semantic hierarchy

Architectural Design: models)
Structure charts Augmented Transition

Detailed design Diagrams
Prototype Structure charts
Source code (in PLAIN) (Architectural design)

Program design language
(PDL)

First-order predicate-
calculus (behavioral
abstraction)

Table 6: Workproducts & Representation Schemes
(Continued)

I

r r.-

-19-

often exist together, in complementary relationship. For example, the information needed to perform

automated consistency checking will often need to be captured in a machine-processable form, as well
as in graphical or textual form for human review and understanding.

Ada Compatibility
rTable 7 summarizes the response to question 4, which was aimed at uncovering how well the methodol-

ogy supported design to a detailed level, and how well that design mapped into specific Ada features.
In general, the question was answered in a straightforward fashion. However, there seemed to be some
confusion over the intent to use Ada as a design language Several respondents concluded that we were
asking the question from that point of view. Hence, their answers addressed the appropriateness of
Ada as a design language.

Also, there was an objection to the question on the grounds of implementation-independence -- a
defensive reaction that might have been anticipated. However, considering the specificity of this survey
to Ada development environments, the issue cannot be ignored.

Of the total number of responses for this question (24x6=144), 24 were answers of "not known".
They are represented in the table by "?". In addition to those, another 30 items (represented by "...")

were not answered in "yes", "no", or "not known" terms. When combined, they represent more than
one-third of the answers in the table (54 of 144). That set of "responses" intersects 18 of 24 metho-
dologies, indicating that many of the methodology developers have yet to give attention to the map-
pings between their technical representations and the Ada language. This would have to be done before
we could determine the real mix of support for detailed design and implementation in Ada.

If we look at the four Ada constructs (packages, tasks, generics, and exception handling) we find that
only one-fourth (6 of 24) of the methodologies claim to support them all. Moreover, while it appears
that there is ample power in those methodologies for mapping into Ada constructs, it is not clear how
direct the mappings are. Many responses had a flavor of conjecture, e.g., "could be expressed by...".
The methodological representations may have the potential to express certain detailed design aspects,
without explicitly demanding them. In that case, the mappings would only be obvious to very
knowledgeable designers and programmers. Thus, although most methodologies support detailed
design into Ada, designers may need extensive training and experience with Ada to develop their intui-
tion regarding the "practicality" of implementing the design in Ada.

While only a few (4 of 24) methodology developers stated that there are no serious incompatibilities
between their methodology and Ada, most do not know (or ignored the question). Three, however,
pointed to incompatibilities between Ada and database/ data modeling applications. Again, though, the
response indicates limited familiarity with Ada on the part of the methodology developers.

Quality Assurance
Table 8 summarizes the findings on quality assurance and validation measures prescribed by each
methodology. Again, the table simply records the responses in slightly edited form.

In general, all methodologies appear to apply some quality assurance techniques to their workproducts,
or outputs. Author/reader cycle, reviews, structured walkthroughs, design and code inspections, were
the most common forms of quality assurance techniques mentioned. Validation proc.r ures against the
completed system are also common, however, differing as to when they occur. ,....er the system is
validated be the developer before release by consistency checking, simulation, and other forms of inter-
nal testing, or it is subject to acceptance tests by the user upon delivery.

Some methodologies include automated quality assurance and validation techniques for consistency
• checking and other forms of testing. However, for the most part the techniques are performed manu-

ally.

A UTOMA TED SUPPOR T

The questions on automated support address existence of tools and the range of environments in which
those tools can be used. We also attempted to determine the extent to which use of the tools is

* required with the methodology, and the future plans of the developer to provide'additional tool support.

Flexibility of the tools was also a consideration. Consider a set of automated aids that are tightly cou-
• pied to a methodology. The tight coupling may give the methodology a "well-integrated" rating. but4,

20

ADA COMPATIBILITY
Ada Construction Machine Serious

Methodology Exception Represen- Incompat-
Packages Tasks Generics Handling tation ibility?

ACM/PCM yes no yes yes no Database%
DADES ? ? ? ? ?
DSSAD
DSSD yes yes ? yes ? ?

EDM ? ? ?
GEIS no no no no no
HOS yes yes yes yes yes no
IBMFSD-SEP yes ? yes yes yes ...

IESM yes yes yes yes no
ISAC yes yes ... no yes no
JSD yes ? no ? ? ?
MERISE yes yes yes yes no ...

NIAM yes yes ? ?...
PRADOS
REMORA yes yes yes possible no no
SADT yes yes yes yes yes no

SARA yes yes yes yes no
SA-SD yes yes ... yes ... Database&
SD yes yes yes
SDM yes yes ... yes yes

SEPN no no no no no yes
SREM yes yes yes yes no yes

STRADIS ?
USE yes yes no yes no Database&

Table 7: Ada Compatibility

Key:
- "Not known"

- no answer
yes - methodology supports mapping into Ada feature
no - methodology does not support mapping into Ada feature
% - Query language
& - Modelling/Design; I/0

* ,

Ob

-21-

QUALITY ASSURANCE METHODS
Methodology QA methods applied How the completed system is validatedto workproducts against the original requirements

ACM/PCM Author/reader cycle: Formal verification (partial)
(Object/Action Schemes Testing the prototype
& Skeletons)

Testing/Formal verification:
"____ Specifications

DADES Formal validation: Consistency/ Derivabili ty analysis
Specifications
Architectural design

DSSAD Structured walkthroughs "User interaction at each stage of the
design to confirm correctness"

DSSD Structured walkthroughs System outputs validated against
Formal testing techniques: output requirements

design, test Physical requirements (volumes,
frequencies) checked

_Calculation rules validated
EDM Team review Same as QA for workproducts.

Review by author
Management review
Computer-aided testing:

machine-readable workpro-
ducts

GEIS Author/reader cycle End-user feedback
HOS Automated analyzer: "Validation done DURING develop-

Specification ment
Resource allocation tool through use of automated tools

(RAT): Code guaranteed at each phase. Final 'over-all'
correct validation is superfluous."

IBMFSD-SEP Design & code inspections Hierarchical software test
Testing: (unit & product) Product specification testing

MIL standard specification testing
IESM Consistency checks: Automated tests

Specification statements "The original requirements" are well
Documentation review specified in the system
Structured walkthrough specification."
Small implementation steps
Test data generation
Automated testing

ISAC Structured walkthroughs "Documentation in property tables of
4 Inspections how the original requirements

are fulfilled"
Prototype experiments

Table 8: Quality Assurance Methods

4

II

• 22-

QUALITY ASSURANCE METHODS
Methodology QA methods applied How the completed system is validated

to workproducts against the original requirements
JSD Author/reader cycle Manual checking (transformation

Structured walkthroughs of specification to
Inspections implementation)

MERISE Record of designer/user Internal test runs & benchmarks
dialog Formal user test runs
Formal design inspection Operation center & maintenance team
Formal user validation of testing
models
and specifications
Prototype development
Author/reader cycle
Structured walkthroughs
Inspections
Benchmarks and testing

NIAM Formal verification of Acceptance test
information flow
diagrams
(IFD's) and constraint
definitions

Analyze constraints
Walkthroughs
Impact-mechanism (shows

impact of change in
specifications)

PRADOS Author/reader cycle: "No explicit methods!"
SADT diagrams

Structured walkthroughs:
designs

Inspections: code
REMORA Automated consistency By simulation

checks:
conceptual schema

Simulation of conceptual sche-
ma
Alternative logical solution

evaluation
SADT Author/reader cycle Cross-referencing:

Structured walkthroughs from notation on diagrams
Some automatic Walkthrough sessions with the

consistency checking user/specifier
*Graphical notation forms a

_____ rigorous formal language."

Table 8: Quality Assurance Methods
(Continued)

4

r

- 23 -

QUALITY ASSURANCE METHODS
Methodology QA methods applied How the completed system is validatedto workproducts against the original requirements

SARA Syntactic & semantic Test environment (on design models
consistency checks: and actual system)
(QA requirements
document & module
interface definition)

Behavior models
Interactive simulation
Evaluation using the Test

Environment
Control flow analysis of

Test Environment
SA-SD Author/user cycle: "By comparing completed system

(Structured spcification) with original structured
__"_ Structured walkthroughs specifications"

SD Author/reader cycle

SDM Author/reader cycle "Acceptance tests at three or more
Structured walkthroughs levels are recommended"
Inspections
Testing

_ _ _ Formal verification
SEPN Structured walkthroughs Internal "independent test"

Static & dynamic modeling Formal customer acceptance test
Formal (customer) review
Periodic management review
Formal testing

SREM Design reviews Dynamic validation of performance
Automatic data flow requirements using simulation

analysis of R-nets and post processing
Static consistency/

completion checks on
requirements database

STRADIS Softwt. -. QA plan matrix Each version of system acceptance
Structured walkthroughs: tested:

' small workproducts Test cases (from detailed
Technical/management logic requirements applied to
reviews: each system version

major deliverables Heavy user involvement in process
Use of specialists/auditors: of validation

to review database
design, test cases,
requirements

USE Structured walkthroughs: "Not prescribed by the methodology;
design both verification & testing

Transition diagrams are feasible"
Consistency checks

Table 8: Quality Assurance Methods
(Continued)

-24-

tight coupling may also contribute to difficulties in portability -- of all or part of the methodology --
thereby diminishing the desirability of the methodology.
The results of the Automated Support section of the questionnaire are presented below in two subsec-
tions: Automated Aspects and Detailed Summary of Specialized Automated Support.
Automated Aspects
Table 9 summarizes the responses to all the questions of the Automated Support section. It should be
noted that no attempt has been made to standardize or clarify the table entries for "Equipment
Required", which ranged from minicomputers to mainframes. Thus, someone wishing to use a specific
tool set would have to make further investigation into the specific hardware/software environments in
which the tools may be used.
Half of the methodologies (12 of 24) have specialized automated support, with another four planning
for it in the future. It was very difficult to determine how "specialized" that automated support was. A
positive response could denote a very limited tool set.
Most of the methodologies with tool support (10 of 12), make their tools are publicly available. How-
ever, only 2 of the tool sets are in the public domain. Half (6 of 12) of the methodologies with tool
support expect problems with portability of their tools. In general, then, one should expect consider-
able cost and/or effort in acquiring the tools associated with a methodology.
Detailed Summary of Specialized Automated Support

Table 10 gives a detailed overview of the automated support identified for each methodology. It was
difficult to determine the tool class from the name of the tool -- all that was asked was the name and an
optional/required indication. Respondents rarely stated whether use of the tool was "optional" or
"required".
Most of the automated tool support is for document preparation. However, it is not entirely clear that
the support was "explicitly developed to support (your] the methodology". (The mention of operating
systems/programming environments in Table 9 suggests that specialized documentation support was not
developed; however, the responses were too sparse to determine this with certainty.)
There are also efforts in other areas, e.g., consistency checking, testing, validation, prototyping, simula-
tion, code generation, and automatic documentation generation. However, we cannot judge their "spe-
cialized" nature (as mentioned above), nor their effectiveness, from the information obtained. Their
mention is worthy of note, though, to show the "state of the art".
MANAGEMENT ASPECTS
Table 11 summarizes the questions in the Management Aspects portion of the questionnaire. While
some methodologies directly address management issues, others explicitly do not. One respondent
noted that "one of the prime values of the methodology is that it can be brought into an environment
and not adversely impact the management philosophy".
However, a methodology that prescribes "nothing" for managing people and projects may have an
adverse impact. We believe a methodology should be an integrated system of technical and managerial
procedures, since the technical work is done by human beings who must be managed and who must
coordinate their activities with others.
Most of the methodologies (15 of 24) claim to directly address management issues. However, in gen-
eral, it appears that even when a methodology attempts to give management support, the extent of that
support varies considerably. Only 9 of the 24 methodologies attempt to cover all three management
issues: project, technical, and people. Of those that cover management issues at all, nearly all attempt
technical management issues (13 of 15); project management issues are often coupled with them as
well (12 of 13). Of those that address people management (II of 15), most are in terms of prescribing
"team" organizations (8 of 11). A small number (3 of 11) use "matrix" organization.
USAGE ASPECTS

The questions on a methodology's usage were aimed at discovering how easy the methodology has been
to use, and to determine the extent of its use. Presumably, if a methodology has beeri used in
numerous organizations, or on many projects, there has been sufficient feedback on its ease of use to

6J

-25.

________AUTOMATION ASPECTS
T~cfi ools ____Portability

Methodology Tool Equipment publicly Some Signif Not
________ Support? Required available? Easy problems problems Easy

ACM/PCM no ______ ______ __

DADES TBD ______

DSSAD TBD ___ ____ no x __________

DSSD yes IBM, Honeywell, yes x
Univac, Perkin-

___________ Elmer__ _ _ _ _ ___ _ _

EDM TBD Dec 2060, Vax I11 not yet_____________
GEIS yes TI DS990, DX1O in 1983 x

_________ ~w/ Cobol _ _ _ _ _ _ _ _ _ _

HOS yes Vax CPU with licensed x
VMS 0/S with only
>1MB memory,
100MB disc; VT->
100 terminals
with Digital
Engineering
Retro-Graph

___________ ____ ___ board______ _ _ __ _ _ _ _

0V IBMFSD-SEP no S/370 MVS _____ ___ ____x

IESM TBD will be ___ x ___

]SAC no_____ ___

JSD TBD__ _ _ _ _ __ _ _ _

MERISE yes IBM370,38; yes$$
CHB64,66;
Univac VS9,
1 100; CDC Cyber
170; Burroughs
B4700, B6800,
C74;
Siemens BS200 _____ ____

4NIAM yes CPU, S/W en- yes x
vironment, tools,
plotters, graphics

_________ terminal_______ ___ ___ ___ ______

4 Table 9: Automated Aspects

- -- -

26

________ _____AUTOMATION ASPECTS
1 1Tools __ __Portability

Methodology Tool Equipment publicly Some Signif Not
________ Support? Required available? Easy problems problems Easy

PRADOS TED Unix 0/S Not yet. _______

REMORA yes Pascal compiler & yes x
__________ _______ standard 0/S______ ___ _____

SADT yes CDC yes x
Cybernet,DEC

___________ PDP- 11, Unix V7 __ ___________ _ _

SARA yes MIT-Multics, yes* x
Vax-Berkeley
Unix (TM)

_________ (TED) _ _ _ _ _ __ _

SA-SD no** ________ _____ x_____
SD no _________ _____ ______

SDM no____ __

SEPN yes Unix/PWB on no x
Vax 11/780;
PSL/PSA;
AMDAHL for
simu-

___________ ________ lators, compilers ______ ________ __:,SREM yes CDC 7600, Cyber yes* x
74/174/175; Vax
11/780; graphics
consoles,
Pascal/Fortran
compilers;

_____________ _________ plotters________ __________

STRADIS yes Tektronix 4113
display unit; Tek-
tronix 4653 hard
copy unit; 256KB
extra memory;

* TSO/MVS 0/5;
IBM370 compati-

_____________ ble mainframe __ ____ ____ _____

USE yes Unix V7 or 4.1 Some x
BSD now;

__________ _______ ______________ more 6/83 _ _ _____

Table 9: Automated Aspects
(Continued)

Key:
-public domain

6 TED - to be developed
S-"depending on the environment*

-developed by clients

27

DETAILED SUMMARY OF SPECIALIZED AUTOMATED SUPPORT __

Doc. Transfor- Code Testing/ Simulation/ DBI CnfgMethodology Prep. mation Gen Checking Prototype Lib Mgmt

ACM/PCM __ _ _ __ _ _ _ _ _ _ __ _

DADES __ _ _ _ _ _ _ _ _ _ _ _ TBD _ _ _ _ _ _ _ _

*DSSAD Design
_____ ____ (TBD) _

DSSD Reqmts, TBD
Specs,

___________ Design _______ ____ ______ _______ _ _

EDM Design TBD sonmc
testing of
design
solution

rGEIS Reqmts(o), r
Specs(o),

___________ Design (o)? _____ ____ ______ _________

HOS Specs, S->D x Validation
Design D->C at each

___________ _________ ___________ ______ phase________ _ _

IBMFSD-SEP Specs?, Testing x
___________ Design? ____ ______ ______

IESM __ _ Testing _ _ _ _ _ _ _ _

ISAC _

JSD?______ __ _ _ _ _ __ _ _ _ _ ___ _

MERISE o Bench- x 0
marks,

___________ __________ ___________ ______ Testing ___________

NIAM Reqmts?, R->S?? Ifor prototype x
Specs?, S->D?? DBMS

____ ____ Design? D->C(TBD) _ _ __ _ _ _ _ _ _ __ _

PRADOS __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _

REMORA Specs(o), x some simulation x x
*Design (o) consist. (0)

checking;
verification
of syntax

semantics

Table 10: Detailed Summary of Specialized Automated Support

28

DETAILED SUMMARY OF SPECIALIZED AUTOMATED SUPPORT_____
Doc. Transfor- Code Testing/ Simulation! DB/ CnfgMethodology Prep. mation Gen Checking Prototype Lib Mgmt

SADT Reqrnts?,
Specs?,

___________Design?_______

SARA Reqmts?, R->S?? Test simulation
Specs?, S- >D?? environ- (o*)
Design? D- >C?? ment;

consist.

SA-SDchecks

SD ________ ____

5DM _______ ______

SEPN Reqmts?, Static & 0 o
Specs?, dynamic
Design? modelling

____________ _____________(r _____ ___W_

SREM Reqmts(o/r), Data flow simulation
Specs (o), analysis; 0
Design (o) Static

consist.

data base
checks;

STRADIS Design?______ ___ ___

USE R->S(TBD) x Consist. o o TBD
S- > D(TBD) checks

Table 10: Detailed Summary of Specialized Automated Support
(Continued)

Key:
blank -no automated support reported
TBD -to be developed
r -required tool
0 optional tool
x - tool exists (don't know if required or optional)

0 - strongly recommended
? - "specialized" support questioned by reviewers
?? - was difficult to determine the nature of

the transformations
4R->S - Requirements -> Specifications

5-> D - Specifications -> Design
D->C - Design.-> Code

-29

-MANAGEMENT ASPECTS
Address Range of Directly Address _____

Methodology Mgmt Management Issues Version Config Validate System
________ Issues Project Tech People Control Mgmt Wrkpdcts Evolution

ACM/PCM no
DADES no
DSSAD no
DSSD yes x x .. x x yes

EDM yes x x team x
GEIS no
HOS yes x x x yes
IBMFSD-SEP yes x x x x x x CR

*IESM yes x x x x yes
ISAC yes x x team x
JSD no
MERISE yes x x team, x x x

matrix

NIAM yes x matrix x x yes
PRADOS yes x x team x
REMORA no
SADT yes x x team x

SARA no
SA-SD yes x x
SD no
SDM yes x team x x yes

SEPN yes x x team x x x CR
SREM yes x x team x yes
STRADIS yes x x mhtrix x x x yes
USE yes .. x x _____ yes

Table 11: Management Aspects
4 Key:

-no answer
blank - not provided
CR - customer responsibility
x -supports management aspect

.30-

K.

K give some confidence to the rating provided by the respondent.
The responses to this section are summarized in Table 12. The preparers, in general, judge their metho-

,w-dologies to be easy or moderately easy to use. Only one respondent judged the use as difficult, noting
that according to our frame of reference, any methodology would be difficult.

Most of the methodologies have limited usage experience when measured by numbers of projects and
diffusion into other organizations. Nearly half of the methodologies (11 of 24) have been used on 10
or fewer projects. Of these, two have been used only in academic environments on student projects.
From other information in the questionnaires, we deduced that at least 7 of 24 are being developed in
academic environments. They are identified in the table by "$. The projects they report could also
have been student projects; our survey did not obtain that information, however. It might have been
useful to discriminate experience on "student" and "industry" projects.

Only about one-third (9 of 24) of the methodologies have been used in more than ten (>10) organi-
zations. All but one of those methodologies were developed by non-academic organizations.

It is unclear from the answers how reany organizations have used a methodology on more than one
project. Such replies would have been useful, if we had anticipated it, since repeated use of a metho-
dology signifies some degree of satisfaction with it.

TRANSFERABILITY

Factors having a significant impact on how easily a methodology is "diffused" into organizations can be
classified under the term "Transferability". These factors include the public availability of the metho-
dology itself, of reading material describing it, the availability of seminars or consultancy assistance, and
the average time that it takes for people and organizations to assimilate its ideas and methods.

Table 13 summarizes the questions in the Transferability section. There was a little overlap between the
questions on seminars, so the representation is a collapsed set.
Most of the methodologies surveyed are publicly available, with only 4 of the 24 not accessible to the
public. Two-thirds (16 of 24) are the subjects of reading materials that are easily obtained. Moreover,
consultancy and private seminar offerings are widespread (19 of 24, in both cases). Public seminar
offerings exist for more than four-tenths (10 of 24). Finally, licensing arrangements for documentation
can be made in one-third (9 of 24) of the cases.

Of the 24 respondents, eleven (11) estimate that developer training time would be 1-3 months; and,
.- another eleven (11) estimate that developers need at most 1 month of training. Only 2 other respon-

dents anticipated more than 3 months' training time. The expected training time for managers, for all
methodologies except NIAM, was the same or less as for developers. On the other hand, the times
given for an organization to learn a methodology were, on the average, two to three times greater than
for the developers. One-third (8 of 24) expect it to take more than 6 months for an organization to
"learn the methodology".

4. CRITIQUE OF THE SURVEY

As we reflect on the survey and the responses, we see elements that proved to be very useful, along
.4 with others that we would change should we prepare another similar questionnaire. The most obvious

criticisms focus on the format of the questions.

The objective questions, while designed to be easier to report, did not provide as much useful informa-
tion as we had hoped. We often felt that our terms were misinterpreted or that the developer of the
methodology did not relate accurately to a question. This effect was particularly noticeable in the
responses to "ease of use."

The free-form responses, on the other hand, allowed the preparer to say as little or as much as was
desired. In general, responses were very rich in detail. However, the loosely structured answers made
the job of reporting the results more difficult. To complicate things even more, our occasional
parenthetical remarks or examples, to give a frame of reference, usually caused the question to be
answered only in those terms. Moreover, some questions were answered with attachments of existing
documentation and, in one case, sales literature. This material then had to be sifted for relevant infor-

41 mation. Conversely, when a free-form question was answered more briefly, there was a tenqdency to
lapse into the jargon of the methodology, falling short of providing clear data. Thus, responses to the

I.

-31-

________ USAGE ASPECTS BY METHODOLOGY
_______ Degree of Difficulty _____ Usage Experience

Methodology Easy Moderate Moderate Difficult # of # of
to Use Ease Difficulty to Use Projects Organiz'tns

ACM/PCM$ x 2-10 none
DADESS -x 2.10' none
DSSAD x 2-10 2-10
DSSD x >10 >10

EDMS X >10 2-10
GEIS x 2-10 none
HOS >10 2-10
IBMFSD-SEP x 2-10 2-10

IESM x 2-10 2-10
ISAC x >10 >10
JSD x 2-10 2-10
MERJSE x >10 >10

NIAM x >10 >10
PRADOS x 2-10 2-10
REMORAS x 2-10 2-10
SADT x >10 >10

SARA$ x > 100 2-10
SA-SD x >10 >10
SDS x x 2-10' none
5DM x >10 >10

SEPN x >10 >10%
SREM x >10 >10
STRADIS x >10 >10
USES ____ x _____2-10 2-10

Table 12: Usage Aspects by Methodology

Key:
.. no answer
0 - only student projects
so- *primarily" student projects
% 15-20 "organizations" within

parent organization
S -currently in a university development

setting

0 -32.

________ ______ TRANSFERABILITY ASPECTS________
Is it Teaching Aides/Devices Sei.,inar Average Months

Methodology publicly Public Licn'd Consult- Offerings TrainingTime$
________available? Docs Docs ancy Pub Priv Dvlpr Mgr Org

ACM/PCM yes x x 1-3 1-3 6
DADES yes x 1-3 <2122
DSSD yes x x x 1-3 < 1 6

DSSD ~~yes x xx x x 13 <1 61

EDM yes x A x x < I <1I
GEIS yes x x x <1I <1I
HOS yes x x x x <1I <1I varies
1BMFSD-SEP no x 1-3 1-3 3

IESM yes x x x x x <1I <I <1I
ISAC yes x x x 1-3 1-3 1-3
JSD yes x x x x x < 1 .. 3
MERISE yes x x x x x <1I < 1 6

NIAM yes x x x x x 1-3 3-6 12
PRADOS yes x x x 1-3 1-3 ..
REMORA yes x x x x <1I < 1 1-3
SADT yes x <1I <1 I 1

SARA yes x x x x 1-3 1-3 6-9
SA-SD yes x x x 1-3 1-3 1-3
SD no <1I <1I
5DM yes x x x 1-3 <1 1

SEPN no > 6 > 6 12
SREM no x x <1I < 1 1-2
STRADIS yes x x x x <1I <1I <1I
USE yes x ____ x L..... x 1-3 1-3 6

'4 Table 13: Transferability Aspects

Key:
blank -no provision

-no answer

.33-

free form questions had to be treated in an impressionistic and subjective way.
Another problem was confusion about terminology. There was specific difficulty in understanding
whether what we meant by "requirements" and "specifications" in the questionnaire was what the
respondent meant. It was also unclear whether "Requirements Analysis" and "Functional Specification"
were viewed as distinct phases, each with specific outputs, i.e. "requirements definition" and "functional
specifications".

EThe terms "requirements", "functional requirements", "requirements specifications", "specification", "sys-
tem requirements", were all used by the respondents to label the initial phase(s) (and output) of the
life cycle. The interchangeable and combinatorial use of "requirements" and "specifications" leads us to
believe that there is not yet a consensus on the discrete processes involved in the early stages of the life
cycle. Similarly, it was difficult to determine whether the Design phase included Detailed Design as
well as Architectural Design.
As a result, we would have done better to include some standard definitions of these terms to give a
common basis for discussing these phases.

S. CONCLUSION
Several points stand out in our surveyof software development methods:
(1) Some methodologies are process oriented while others are data oriented; few methodologies

integrate process and data orientations in more than a cursory way;
(2) Most methodologies are quite new and have seen little widespread use; many are still at the

research stage;
(3) Many issues were not well addressed by the results we obtained, especially tools, management,

and training;
(4) It is clear that we have missed some methodologies through oversight, ignorance, or inability to

obtain information from their developers;
(5) We believe that developers answered the questionnaire truthfully; nonetheless, it is clear that

more objective information on methodologies is needed, especially in the areas of applicability and
transferability;

If one steps back from the field, the range of methodologies is not really very great; this implies that an
integration of several different methodologies may be quite possible (necessary?).
In summary, though, we feel that our questionnaire accurately captured the "state of the art". No one
methodology stands out as being "superior", with strengths and weaknesses observed in many. As with
other attempts to survey and classify methodologies, the lack of well-understood dimensions severely
limits one's ability to compare and contrast them. We hope that these results will help in the evolution

S0 of methodologies and the development of new ones that satisfy the requirements for methodologies
cited in "Ada Methodologies: Concepts and Requirements."

4

ai

-34.

IDENTIFICATION ASPECTS (from returned questionnaires)
Other Contacts

Methodology Developer Questionnaire Future
Preparer Queries

ACM/PCM Michael Brodie same same
Computer Corporation of America
575 Technology Square
Cambridge, MA 02139
tel: (617) 491-3670

DADES Antoni Oliv6 same same
Facultat D'Informatica
Univ. Politecnica de Barcelona
c/ Jordi Girona Salgado, 31
Barcelona (34) Catalonia
SPAIN
tel: 34 + (93) 2048252 (x 294)

DAISEE Arne Solvberg same same
Dept. Computer Science
Univ. of Trondheim
7034 Trondheim-NTH
NORWAY
tel: 47 + (7) 993438

DCDSM J. Mack Alford same same
TRW, Huntsville Laboratory
213 Wynn Drive
Huntsville, AL 35805
tel: (205) 830-3214

DSSAD Colin Knight same same
23 Carlton Road
Caversham, Reading RG4 7NT
ENGLAND
tel: 44 + (734) 470440

DSSD Ken Orr & Assoc., Inc. J.Highsmith J.Highsmith
715 East 8th Street
Topeka, KS 66607
tel: (913) 233-2349

(800) 255-2459
EDM George Rzevski same same

School of E.E. & Comp.Sci.
Kingston Polytechnic
Kingston-upon-Thames

_ _ _ ENGLAND

Appendix 1 -- Identification of Methodology Developers

.35.

IDENTIFICATION ASPECTS (fronm returned questionnaires) ___

Other Contacts
Methodology Developer Questionnaire Future

Preparer Queries
GEIS Veikko Keha same same

Pursimiehenkatu 3 A 7
00150 Helsinki 15
FINLAND

____________tel: 358 + (0) 637324
HOS Higher Order Software, Inc. same Tech: R.Smaby

806 Massachusetts Ave. Mgmt: R.Mace
Cambridge, MA 02139

___________tel: (617) 661-8900 _______

IBMFSD-SEP Donald O'Neill same same
IBM Federal Systems Division
6600 Rockledge Drive
Bethesda, MD 20814

___________tel: (301) 428-2197
IESM Dr. Basil N. Barnett same same

DMW Information Resource
Management, Ltd.

Spa House
11/17 Worple Road
Wimbledon, London SW19 4JS
ENGLAND

___________tel: 44 + (1) 9469109
ISAC Mats Lundeberg same same

Institute for Development of
Activities in Organizations

Stureplan 6, 4 tr
S-114 35 Stockholm
SWEDEN

___________tel: 46 + (8) 233990
JSD Michael Jackson same same

Michael Jackson Systems Ltd.
6 17 Conduit Street

London WIR 9TD
ENGLAND

___________tel: 44 + (1) 4996655 _____ ______

4 Appendix I -- Identification of Methodology Developers
(Continued)

4

36-

IDENTIFICATION ASPECTS (from returned questionnaires)
Other Contacts

Methodology Developer Questionnaire Future
Preparer Queries

MERISE 1st release: A. Rochfeld A. Rochfeld
A. Rochfeld G. Panet G. Panet
SIS- 20 (SEMA) SEMA - 16-18
20 Place Napoleon 1 rue Barbes
92080 Paris La Defense 92126 Montrouge
FRANCF. Cedex
tel: 33 + (!) 7764302 FRANCE

tel: 33 + (1) 6571300
NIAM International Center for R. Meersman G.J.A. Liesveld

IAS-Development (Control Data Control Data
Control Data Belgium Belgium) Belgium
Raketstraat 50 G. Verheyen
1130 Brussels (Control Data
BELGIUM B.V. Holland)
tel: 32 + (2) 2421080 J.C. Van Markenlaan 5

P.O. Box 111
2280 AC Rijswijk
HOLLAND
tel: 31 + (70) 949344

PRADOS SCS Scientific Control Kurt Hellinga same
Systems G.m.b.H SCS G.m.b.H

Oehleckerring 40 1II. Hagen 43
2000 Hamburg 62 4300 Essen I
WEST GERMANY WEST GERMANY
tel: 49 + (40) 531030 tel: 49 + (201) 233091

REMORA Collette Rolland same same
Univ. Paris Sorbonne
12 Place du Pantheon
75231 Paris Cedex 05
FRANCE
tel: 33 + (1) 3292140 (x612)

SADT SotTech, Inc. Clarence G. Feldmann same
460 Totten Pond Rd. Douglas T. Ross
Waltham, MA 02154

_tel: (617) 890-6900
SARA Prof. Gerald Estrin Ms. Mary Vernon M. Vernon

Computer Science Dept. Dr. Gerald Estrin D. Berry
3732 Boelter Hall, UCLA B. Bussell
Los Angeles, CA 90024 G. Estrin

_ _ _ tel: (213) 825-2786

Appendix 1 - Identification of Methodology Developers
(Continued)

4

37

IDENTIFICATION ASPECTS (from returned questionnaires)
Other Contacts

Methodology Developer Questionnaire Future
Preparer Queries

SA-SD T. DeMarco, E. Yourdon, David M. Bulman D. Bulman
L. Constantine, Pragmatics, Inc.
Yourdon, Inc. 3032 Masters Place
1133 Avenue of the Americas San Diego, CA 92123
New York, New York 10036 tel: (714) 565-0565
tel: (212) 730-2670

SD Hannu Kangassalo same same
Univ. of Tampere
Dept. of Math. Sciences/

Computer Science
P.O. Box 607
33101 Tampere 10
FINLAND
tel: 358 + (31) 156778

358 + (31) 681636
SDM Gerald F. Hice same same

w/ Dr. W.S. Turner
L.F. Cashwell

CAP Gemini, Inc.
301 Maple Ave. W.
Tower Building
Vienna, VA 22115
tel: (703) 938-2207

SEPN Software Engineering Div. T. Snyder, R.R. Willis
Hughes Aircraft Company SEPN Director
Box 3310 tel: (714) 732-2922
Fullerton, CA 92634 R.R. Willis

tel: (714) 732-1488
SREM J. Mack Alford same same

TRW, Huntsville Laboratory
213 Wynn Dr.
Huntsville, AL 35808
tel: (205) 837-2400

SSDM Colin J. Tully same same
Dept. of Computer Science
University of York
Heslington
York YOI 5DD
ENGLAND
tel: 44 + (904) 59861

Appendix 1 -- Identification of Methodology Developers
* (Continued)

IDENTIFICATION ASPECTS (from returned questionnaires)
Other Contacts

Methodology Developer Questionnaire Future
Preparer Queries

STRADIS McDonnell Automation Co. James E. Armstrong same
(acquired from Improved
System Technologies)

Dept. K277
Building 302, Level IE
P.O.Box 516
St. Louis, MO 63166
tel: (314) 233-2626

USE Anthony I. Wasserman same same
Medical Information Science
Room A.16
Univ. of California, San Francisco
San Francisco, CA 94143
tel: (415) 666-2951

Appendix I .- Identification of Methodology Developers
(Continued)

i-

:4

-39-

L Appendix 2: Original Questionnaire & Cover Letter

UNIVERSITY OF CALIFORNIA, SAN FRANCISCO

BER .KELEY • DAVIS IR.INE • LOS ANGELES • RIVERSIDE SAN DIEGO • SAN FRANCISCO " SANTA BARBARA • SANTA CRUZ

SECTION ON SAN FRANCISCO, CALIFORNIA 94143
MEDICAL INFORMATION SCIENCE
(415) 666- 2951

15 June 1982

Dear Colleague:

We are presently conducting a study of software development methodologies for the Ada Joint
Program Office (AJPO) (U.S. Department of Defense). AJPO has asked us to perform this
study to determine the present state of methodologies and to identify desirable characteristics of

such methodologies, giving attention to compatibility with Ada and Ada Programming Support

Environments.

One key step of that study is to conduct a survey of existing methodologies. We have prepared

the enclosed questionnaire toward that end, and hope that you will be able to assist us by
completing and returning the questionnaire at your earliest opportunity (no later than 1
August).

a We recognize that it is a lengthy questionnaire and that not all aspects of it will be applicable

for all of the different methodologies that we are trying to survey. Accordingly, we have

divided the questionnaire into sections, and hope that you will complete as many of these

sections as are relevant to your work.

We are particularly interested in obtaining the general information on the methodology, along

with methods of transferability. If you can send us (one copy to each, if possible) a complete

set of documentation on your methodology, our study will be greatly facilitated.

We have also included a Preface to the questionnaire that describes our outlook on

methodologies, and hope that this Preface will serve to motivate, as well as to explain why we

have chosen this particular organization.

We will greatly appreciate any help that you can give us, and will send you results on this

survey during the Fall. Please feel free to contact either one of us using the mail or electronic

mail addresses shown below if you have any questions or comments.

Thank you very much for your help.

Very truly yours,

Prof. Anthony I. Wasserman Prof. Peter Freeman
Medical Information Science Information and Computer Science

University of California University of California
San Francisco, CA 94143 Irvine, CA 92717

(415) 666-2951 (714) 833-6064

ARPAnet: waserman@berkeley freeman@usc-eclb
UUCP: ucbvax!waserman ucbvax !ucivax !freeman

Im

"40-

SOFTWARE DEVELOPMENT METHODOLOGY

Preface

The purpose of this questionnaire is to obtain basic information on existing software
development methodologies, particularly as they may be used in conjunction with programs to
be written in Ada.

Our view is that a methodology must support a process covering the entire software
development activity, from the original concept of the problem through the release of a
properly functioning system, and should assist with the ongoing evolution of the system. A
methodology thus must include both technical methods and management procedures that are
employed within a development environment. The methodology may also be supported by
automated tools.

Application of the methodology yields one or more work products, such as specifications,
design documents, and program code. These work products are used to assure the quality of
the system and to support future evolution of the system.
We recognize that approaches to software development vary widely, and that creators of
methodologies have focused on different aspects. We are aware that some approaches
emphasize certain parts of the overall software development process, while omitting others.
Similarly, we have seen that approaches vary in their relative treatment of technical issues,
management, and organizational topics.

Accordingly, the questionnaire gives primary attention to general issues rather than seeking low
level details concerning the application of the methodology. We have attempted to keep the
size of the questionnaire to a minimum.

If you need more information, or have any questions, please contact either:

Anthony I. Wasserman Peter Freeman
Medical Information Science Information and Computer Sciences
University of California, San Francisco University of California, Irvine
San Francisco, CA 94143 Irvine, CA 92717

(415) 666-2951 (714) 833-7403
ARPAnet: waserman@berkeley freeman@usc-eclb

-41-

SOFTWARE DEVELOPMENT METHODOLOGY

QUESTIONNAIRE

IDENTIFICA TION

Name of methodology:

Name, address, organization, and telephone number of developer:

Name, address, organization, and telephone number of person completing

this questionnaire (if different from above):

Who should be the primary contact for further information?

4

a

4

al

.42-

GENERAL METHODOLOGY ISSUES

- 1) What are the key concepts or underlying principles that guided the creation of the
methodology or its application?

2) What phases of the software development process are covered by your methodology (e.g.,
specification, design, verification, coding, prototype construction)?

3) To what extent does your methodology form a system for developing systems?

does so in the context of one phase (e.g. design)
__ does so in the context of several phases

does so if coupled with other methodologies (list below)

_ issue not addressed

4) For each of the following application areas, please indicate the relative suitability of your
methodology using (1) well suited, (2) satisfactory, (3) inappropriate:

___ embedded systems/process control/device control
'4 __ scientific/engineering systems

___ systems programming
software tools
data processing/database systems
expert systems/artificial intelligence

5) Is the methodology appropriate for

_ small systems (< 6 person-months; < 2000 lines of Ada code)
.__ medium systems (up to 3 person-years; 2000 - 10,000 lines)

larger systems-,

4,

TECHNICAL ASPECTS

1) METHODOLOGY OVERVIEW
What methods are spelled out to guide the development process? (If possible, identify a
sequence of steps, including iteration where appropriate, that one should follow).

U

2) TECHNICAL CONCEPTS
For each of the following concepts, how (if at all) does your methodology support the
concept?
a) function hierarchy/decomposition

b) data hierarchy/data abstraction

c) interface definitions

d) data flow

e) sequential control flow

f) concurrency/parallelism

g) formal program verification

3) WORK PRODUCTS
a) What work products are prescribed for users of the methodology, and how are they

defined?

b) What representation schemes (e.g., axioms, data flow diagrams, finite state
diagrams) are used?

c) What additional forms of documentation are recommended? Is there a prescribed
format for documentation? (Please attach copies of forms or recommended
formats.)

4) ADA COMPATIBILITY
Assume that your methodology is being used for the specification and design of a system
that will be programmed in Ada. For each of the following Ada features, how (if at all)
does your methodology facilitate mapping your specification or design into Ada?
a) packages (data abstraction)

b) tasks

c) generics (packages, types)

d) exception-handling

e) machine representation

Are there any important aspects of your specification or design methods that do not
map well to Ada? If so, name them.

5) QUALITY ASSURANCE
For each work product, state the method, if any, used to assure the quality of the product
(examples: author/reader cycle, structured walkthroughs, inspections, testing, formal
verification).

What is the explicit means by which the completed system is validated against the original
requirements?

a

-

.45.

A UTOMA TED SUPPORT

1) Please list the names of any automated tools/environments that have been explicitly
developed to support your methodology. For each tool, indicate whether its use is
optional or mandatory.

2) What equipment and/or facilities (hardware, operating system, computer, etc.) are needed
to use these tools?

3) Are the tools publicly available? Briefly describe acquisition method and costs.

4) Please estimate the portability of your tools.
easy to transfer to other environments
some problems (< I month work)
significant problems (1-,2 months work)

___ not easily portable

MANAGEMENT ASPECTS
1) Does the methodology specifically address management issues?

Yes _ No
(If no, skip the remainder of this section.)

2) Indicate the range of management issues:
project management only (examples: budget, schedule)

___ technical management only (examples: quality of design, completeness of specs)
comprehensive (both)

3) What are the basic approaches used for managing people? (Examples: team organizations,
matrix management.)

4) What are the basic approaches used for managing the product? (Examples: validated
workproducts, configuration management, version control)

5) Does the methodology specifically address software configuration management? If so,
how?

6) Does it specifically address maintenance (evolution) management? If so, how?

4

4

4

-47.

USAGE ASPECTSL
1) How would you characterize the usability of the methodology?

- easy to use
moderately easy
moderately difficult
difficult

(Relative difficulty may be characterized by the number of formal steps
that must be followed and by the level of specialized education/training
needed by the developer.)

2) How many projects have relied primarily upon the methodology?

-none 1 2-10 __ more than 10
3) How many organizations, other than yours, have employed the methodology?

-_none 1 2-10 _morethan 10

TRANSFERABILITY

Assume that a software development organization wishes to learn and use your methodology.
1) Is the methodology publicly available? _ yes _ no

V 2) By which approaches may one learn the methodology? (Check all that apply.)

public documentation, e.g. textbooks, reference manuals, journal articles
proprietary documentation (available through licensing)
consultancy
private (in-house) seminar or workshop

- public seminar or workshop

3) Please list the primary, publicly available sources of documentation on the methodology.
Please include the publisher's name for books.

4) Are there seminars, workshops or tutorials on the methodology?

Regularly scheduled public sessions
In-house seminar by arrangement
Neither

5) How much training is required for the typical developer to learn the methodology?

less than I month _ 1-3 months _ 3-6 months _ > 6 months
6) How much training is required for the typical project manager to learn the methodology?

"~ _ less than I month _ 1-3 months _ 3-6 months _ > 6 months
7) How long would it take before an organization could effectively use the methodology on a

medium-sized (2-3 person year) project?

d

I- - - - - .- * .

Comparing Software Design

Methods for Ada: A Study Plan

*.

I

Comparing Software Design

SMethods for Ada:

a Study Plan

Peter Freeman

Information and Computer Science

University of California, Irvine

Irvine, CA 92717

Anthony I. Wasserman

Medical Information Science

University of California, San Francisco

San Francisco, CA 94143

November
1982

.4

TABLE OF CONTENTS

MOTIVATION AND PROBLEM FORMULATION 2
DESCRIPTIVE OVERVIEW 3
STUDY PLAN 6

Prime Contractor 6
Advisory Board 6
Design Teams 8
Implementation Teams 8
IV&V Team 8
Maintenance Teams 9
Project Phases 9
Phase 1 - Initiation 9
Phase 2 - Design 10
Phase 3 - Construction 11
Phase 4 - Change 12
Phase 5 - Evaluation 12
Phase 6 - Reporting 13

DISCUSSION 13
Overall Structure 13
Prime Contractor 14
Advisory Board 14
Design Teams 14
IV&V Team 14
Maintenance Teams 14
Phase I - Initiation is
Phase 2 - Design 15
Phase 3 - Construction 16
Phase 4 - Change 16
Phase 5 - Evaluation 16
Phase 6 - Reporting 17

FURTHER STUDIES 17
ACKNOWLEDGMENTS 17
APPENDIX I - Suggested Methods for Study 18
APPENDIX 2 - Design Problem 19
APPENDIX 3 - Observational and Data Collection Requirements 22
APPENDIX 4 - Maintenance Manual Outline 24
APPENDIX 5 - SADT Model of Project Plan 25

4'

4

o2-

*4W MOTIVATION AND PROBLEM FORMULATION
Many recommendations have been made for improving the process of software development over

the past 30 years. High level languages, timesharing systems, and programming techniques are among
the ideas that have been successfully used. Many other ideas have been proposed, but not used
extensively, making it difficult to determine their effectiveness.

The discipline of software engineering has emerged over the past decade as a focal point for
efforts to improve both the quality of software products and the process by which they are created and
maintained. After initial attempts in which isolated methods were developed to address different phases
of the software lifecycle, recent work has concentrated on integration of methods.

The integration of technical methods with management procedures across the software lifecycle
yields a methodology for software development - a process that can be systematically followed from the
initial system concept through product release and operation. The methodology may be supported by
automated tools, which may also be integrated into a programming support environment. Finally, the
methodology and the programming support environment are normally used in a work setting, one or

- more physical locations in which the software development occurs.
While one would like to evaluate software development methodologies objectively, it is very

* .difficult to do so since they are dependent upon the programming support environment, the software
development organization applying the methodology, and the physical setting where the organization
works. As a result, there are many variables to control, including the methodology itself, the level of
training of the developers in the methodology, the execution speed of software tools in the support
environment, the typing speed of the developers, and the degree to which the workspace permits
uninterrupted concentration on the task at hand.

Thus, it is not possible to construct precise experiments involving methodologies in the same
manner as one might perform experiments in psychology, using control groups and a limited number of
independent variables. Nor is it possible to conduct experiments similar to those in the natural
sciences, since it is difficult to obtain meaningful, statistically significant numerical data that
characterizes well what can be observed in this type of situation. However, we believe it is possible to
obtain useful information from carefully designed investigations of specific aspects of methodologies.

Accordingly, we have chosen to focus on one of the most critical components of any
methodology: its technical design methods. We believe that this focus is appropriate and important
because of the technical imporatnce of good design, the fact that consideration of design methods is the
natural next step after consideration of the programming language used for construction, and the bridge
it provides to management aspects of methodologies. In this context, we have formulated a study that
provides information on the following question:

What is the effect of various software design methods on the maintainability of systems,
specifically, ones that are constructed in Ada?

In short, we want to know which method helps to produce the most maintainable systems.
Furthermore, we wish to focus still further on design methods for architectural (or structural)

aspects of software design. We believe that ample attention has been paid to the detailed design aspects
of software development (relative to efforts expended in other areas) and believe that it is extremely

* important to unde stand which methods help most in establishing good software structure. The
importance of structure (at the module organization level) is well understood by those who have looked
deeply at the problem of software maintenance [e.g., L.A. Belady and M.M. Lehman, "A Model of
Large Program Development,' IBM Systems Journal 15,3 (1976), pp. 225-252J. What is less well
understood is the effectiveness of different methods (or classes of methods) in helping software
developers achieve a "good" structuring of a system (measured in terms of how easy it is to maintain
the resulting system). Thus, a refined version of the key question of this study is':

How well do various software design methods help structure systems built in Ada, as measured
by the ease of maintenance of the resulting system?

.3-

There are, of course, many other aspects of software development methodologies that could be
addressed, just as there are other aspects of software design methods to investigate (for example, the
correctness of the resulting systems). Our choices are motivated by our perceptions of the relative
importance of the various aspects at this stage of knowledge about software development and in concert
with the overall objectives of the Ada program. Likewise, in the hope of making a clear advance in our
understanding of methods, we have chosen to focus on software development rather than the larger
sphere of system development. If this and other investigations shed light on the software development
problem, then we can consider extension of those results to the systems domain.

In line with these goals, we have organized this study to:
(I) control the influence of automated support environments, software development organizations

and physical workspace on the results;
(2) control differences in ability and training of developers;
(3) separate the structuring aspects of a method from the other factors of development;
(4) provide objective data on the impact of the methods;
(5) seek out ideas from various methods that might be cross-pollinated.

DESCRIPTIVE OVERVIEW
Figure 1 illustrates the overall structure and flow of information of the comparative study. This

section contains an overview of the study, which is expanded in the next section.
The study concentrates on one primary issue: the impact of alternative technical design methods on

the maintainability of Ada code To the extent possible, all parameters of the study have been chosen to
maximize the collection of objective information on this issue. The basic elements of the study
include:
- experts in each of several methods (see Appendix 1) create architectural designs for a specific

problem (see Appendix 2);
- each design is implemented in Ada and checked out by each of several implementation teams,

resulting in multiple implementations of each design;
- each implementation is modified by each of several maintenance teams;
- the impact of the architectural design methods on the maintainability of the resulting Ada-coded

systems is evaluated and reported.
Throughout the pian we have made assumptions and set parameters to control the variability of

the investigation. To the extent that we have succeeded in this, the evaluation results at the end will
provide new insight into the relative ability of various technical design methods to reduce the cost of
system evolution.

.4 The investigation will be managed by an organization experienced in project management and
DoD procedures. This prime contractor will run the investigation "development" as though it were a
normal contract; greater than normal oversight will be needed, however, to perform data collection. A
separate contractor will perform an informal independent verification and validation (IV&V) function to
insure that each "deliverable" (design, code, documentation, etc.) me ts the substantive requirements of
the project.

A single problem (presented in Appendix 2), representative of Ada applications, has been chosen
as the basis for the design and experimental study. We are not concerned here with how easy it is to
learn or use different techniques, so established experts will be used to produce the best possible
designs for each method. Wherever feasible, the creatorts the substantive requiremc-its of the project.

A single design problem (outlined in Appendix 2) has been chosen that is representative of a
fairly broad sample of the problems for which Ada is intended. We are not concerned here with how

4 easy it is to learn or use different techniques, so established experts will be used to produce desi ns that
are as near perfect an application of each method as possible; wherever feasible, the creaor of a

LEGEND:

DTj Design Team i
CTi = Construction Team i
MTi = Maintenance Team i

Ueto Construct Change
2eho Systems Systems

Changes Contrut Cang

Stu, Evluatton Repoots

FucinlUse C3Cag vlain eot
Spciictins Method Construct Changems dii3 Syystes

Specifiesigon Mehorontuc king- oife

Sesystetes

44

Figure 1: Comparative Study Information Flow

method will be utilized to produce the design.
Variability in implementation (caused by learning effect of multiple implemen tations by a single

team and difference in ability) will be controlled by using multiple implementation teams, already
expert in Ada, to code each design. To further control variability, each implementation team will
implement the systems in a different order, providing a basis for statistical analysis of the resulting data.
The implementation teams will be responsible for performing detailed design, coding in Ada, unit and
integration testing, and validation (with the assistance of the IV&V teams) of the correctness of the
resulting systems.

The starting place for the implementation efforts will be an architectural design that essentially
includes the information described in section 3 of Appendix 4. The key aspects of that set of
information is a specification of the modules of a system (via descriptions of their inputs, outputs,
technical constraints, and brief statement of intended function) and the interconnections between them.

It is expected that implementation will uncover problems with the architectural design.
Procedures will be established to record minor fixes made by the implementers, to decide on problems
that should be fixed by the designers, and to permit them to make such changes.

Evolution of each system will be carried out using a maintenance manual (see Appendix 4)
composed of the design and implementation documentation, and specific maintenance instructions.
Multiple maintenance teams will be asked to pereful measurement of the effort required to make
modifications. Secondary information will be obtained from the subjective evaluations of all parties
involved in the study. (See Appendix 5)

This structural overview of the study defines the general outlines of the investigation. The next
section provides detailed explanation of each aspect, a detailed project plan, and some justifications for
the particular choice of investigation parameters we have made. More extensive discussion of the
investigation rationale is provided in the Discussion Section.

0.-

a

-6.

STUDY PLAN
This section presents the proposed comparative study plan in detail; the following section,-DISCUSSION, presents rationale not covered here. The overall project is broken into six phases of

activity. Figure 2 indicates these major phases and shows the major project personnel involved in eachphase. Our presentation is organized by first discussing each major participant and then describing each

phase of activity.

Prime Contractor
The entire comparative study must be under the management control of a single organization;

the substantive control of the project, however, will be shared with the Advisory Board. Specific
characteristics and responsibilities include:

The contractor must be familiar with DoD procedures and (in general terms) the software
development methods and philosophies involved in the study.

The contractor must not have any proprietary interest in any of the design methods in the study
and cannot supply any of the other personnel (e.g. IV&V team).

The contractor should provide support and administrative direction to the Advisory Board.

The contractor must make this general plan specific by setting milestones, delivery dates, etc.

The contractor must insure that all requested data is collected.

The contractor must monitor and be responsible for the successful completion of the study.

The contractor must draft the final technical summary of the study.

The contractor publishes and disseminates results.

The contractor provides liaison with other AJPO and Ada-community activities.

Precise details of subcontracting are not our concern except that we must note that: a) the Prime
Contractor must have the authority as well as the responsibility to make sure that the study is
successfully completed, and; b) contracting details must not be allowed to interrupt or interfere with
the substantive work in any way that would prejudice the results.

4 Advisory Board
-,- The overall control of the study will be the primary responsibility of the Prime Contractor. A

high-level Advisory Board will share responsibility for substantive technical decisions. We suggest a
board of fewer than 10 persons composed of one or more members from:
- AIPO
- prime contractor (technical person not under the control of the project manager);
" defense contractor (not otherwise involved in the study and with no financial interest in any of

the design methods);

- non-defense system developer;

- academia;
- the Ada community at large (chosen in as representative a fashion as possible).

S"All members should be technically competent and capable of substantivel; reviewing and
contributing to the work being conducted in the study.

4i

77-

PARTICIPANT ACTIVITY

Maintenance
Teams

Cons truction
Teams . 4-o-0

LEGEND:

D T Contact PointDesign Teams -- A Meeting

- Primary
IV & V Team - . - --. Activity

- Secondary
Advisory Board &AA A AA AA AA-A AA Activity

Prime Control , -

Time (weeks) it 1, , 1 .1 , fit I ,,,f ,,ill J 11,,1,,1,

PHASE 0

0 0 t

.1 a b

10 -4 0
40 >C0

'C4

.4 Figure 2: Study Plan

8.

The Board should be financially and administratively supported by the Prime Contractor. A
specific budget should exist for obtaining specialized assistance (e.g. someone expert in running studies
of this type) if the Board decides it needs additional information in order to fulfill its review
responsibilities.

The duties of the Board include:
reviewing and approving the detailed project plan;
reviewing and approving the choice of design methods and teams, implementation teams,
maintenance teams, and IV&V teams;
reviewing and approving the problem statement, measurements to be taken, IV&V procedures,
and all other major technical decisions;

- making an independent evaluation of the data taken and presenting a written report to the prime
contractor for inclusion in the final report;

- reviewing and approving the release of the final technical summary of the study;
writing and publishing en independent evaluation of the study's methodology (to permit
improvement of future studies).

Design Teams
There will be one design team per method chosen for study. Wherever possible, the design team

shall include the developer of the method. The organization (number of people, management
structure) of each design team is determined by that team, subject to the requirements and constraints
noted below in the description of each Phase of work. In some instances, there may be only a single
designer on the design team.

No design team should employ more than one method nor participate in more than one design
effort that is a part of this study. No member of a design team shall participate in any other phase of
the study except as noted.

The design team is responsible for preparing the relevant sections of the maintenance manual (see
Appendix 4) and transmitting that manual with the design.

The objective of this phase is to obtain the best possible design in each method under reasonable
project constraints.

Implementation Teams
Implementation teams will be responsible for implementing each design in Ada on a common

machine. Members of the teams should be knowledgeable in Ada. Each team is responsible for
delivering a final maintenance manual for each design in addition to carrying cut the coding and

4 checkout.
Each team should be highly capable in transforming designs to a uniform style of Ada code. The

implementors must make sure that each design works as specified. Care must be taken to limit design
changes made by the implementors and to permit limited rework of a design by the designers.

4I YJ V Team

This team should be independent of the methods and the other teams. Its responsibility is to
ensure that the workproducts produced meet the project standards. Although a single IV&V contractor
should be used, it is likely that individual teams will be assigned to each design and implementation
team.

4

9-

Maintenance Teams
The maintenance teams are a critical factor in the study and must be carefully chosen. Their

responsibilities and characteristic. include:
making specified changes to all systems in the study;

* updating maintenance manuals to reflect the changes;
recording required data;

* recording subjective observations on the ease oi" change in each system;
Members of maintenance teams should be representative of personnel that might be found in an

Ada application situation:
- they should be competent in Ada coding, but not experts;

they should not have a detailed knowledge of any design method;
- they should have experience in reading and understanding design documentation;
- they should have significant experience in maintaining software.

The attempt is to simulate a maintenance group that may be called upon to modify Ada code in
an embedded system without having participated in the design or coding process, working only from a
complete maintenance manual.

Project Phases
For each phase, we will define the primary focus and list the major deliverables, activities, and

considerations.

Phase 1 - Initiation

Focus : Detailed planning and initiation of study.

Deliverables : Detailed project plan, detailed technical requirements, contracts with participant teams and
Advisory Board.

Activities:
- form Advisory Board;
- select and contract with all participant teams; the number of design methods to be selected

should be five or fewer;
- refine statement of problem(s);
- refine measurements to be taken;
- outline final report;

- establish secondary information to be collected;
establish IV&V procedures;

- establish study monitoring mechanisms;
establish liaison with other AJPO and Ada-community projects.

Considerations:

The Advisory Board should be involved from the start and assist in making all technical decisions.

4 .It is advisable to choose design methods that are representative of a class of methods, ratoer than
choosing competetive methods that belong to the same class.

i

* -.

-10

The design problem stated in Appendix 2 is of moderate size so that the designer can illustrate the
design method clearly, and so that others can comprehend the basic concepts of the design
method. Ideally, the design methods should also be applied to a design problem of significant size,
e.g., several months of design work, which is more characteristic of large-scale embedded systems
applications. However, time and cost considerations may make it infeasible for the design methods
to be applied to a large scale problem, and the results from the medium-sized problem of
Appendix 2 may have to suffice.

Every care should be exercised to review the functional specfications thoroughly before design
begins to prevent changes or misunderstandings during design. We suggest a meeting of all design
teams and the Advisory Board before design begins.

Phase 2 - Design

Focus : Design of system by different design teams to satisfy Problem Statement (N different methods
plus a control group using no explicit method)

Deliverables : One design by each team, draft of maintenance manual IV&V design report, design
measurements, design observations.

Activities
- technical design by each design team;
- observation and data collection on design acti-vities;
- verification that each design meets the functional specification, stops short of

implementation, and is representative of that particular method;
- abstracting of design information to produce draft maintenance manual.

Considerations:

An upper bound on the time for design should be established, but each design team should have
sufficient time in their judgment to produce as good a design as possible usirg their technique;
Modifying this consideration, however, is the requirement that the design should be produced in a
straightforward manner with only normal time permitted for review and rework Specifically,
complete redesign and excessive polishing is not to be permitted. The Advisory Board should
determine appropriate limitations.

.4 Complete data collection and observational requirements and techniques must be established in
advance -- suggestions are made in Appendix 3.

An IV&V team member should be assigned to each design team to make independent observations
and to relieve designers of the burden of data collection (insofar as possible). (This consideration
may not apply for a small design problem);

Any questions or changes regarding the prob!em requirements that arise during the design must be
handled explicitly by the project monitor; such questions should be transmitted to the Prime
Contractor in writing, who should prepare a written reply, with the advice of the Advisory Board if
necessary;

Each design method is assumed to provide its own definition of what information (and in what
form) results from applying the method. This definition must be made explicit and revigwed by
the Advisory Board to insure conformity with the information outlined in Appendix 4, Section 3.
In those cases where application of the design method leads to the production of executable code,
it is necessary to define an artificial product that stops short of code production.

-11

The study is not a race between methods. Rather it is a comparison of design methods of different
types;

The IV&V function is intended primarily to make sure that the study requirements have been
fulfilled, not to check the technical accuracy or quality of the design;

As a control on the investigation, one system should be developed using no explicit design
method. An N+ 1st design team should be selected for this purpose and instructed to develop the
system to the point where it is ready for the implementation team. It must be insured in advance
(by looking at previous work of this team) that they will not use any specific method or design
representation. Their design, however, should be documented in whatever way they would
normally do it. (It may be difficult to find an appropriate group, since many groups that do not use
an explicit design method jump directly from the functional specification to coding.)

Any major inconsistencies in the design found by the IV&V team must be corrected by the design
*team before that design is turned over to the implementors;

The design deliverable must contain all information about the design that is needed by the
implementors. It should be documented in a complete and easy to use manner and contain any
information about the design representation that is needed for implementation.

The maintenance manual is outlined in Appendix 4. The draft produced in this phase should
contain all information about the design needed by the maintainers. This information should
describe the design representation (charts, etc.) so that both the design documentation and the
code can be maintained. The manual should not include information that is pertinent only to the
implementors.

Phase 3 - Construction

Focus: Production of wcrking Ada code for each design.

Deliverables: Compied code, complete maintenance manual, IV&V implementation report.

Activities:
detailed program design;

coding;
data collection and observation;

- IV&V of implementation;
completion of maintenance manual.

Considerations

Each implementation must be as true to its design as possible; the implementors must not take
* liberties with the design even if it seems wrong, inefficient, etc.

Standard Ada coding must be employed.

Coding style guidelines will be established and followed.

.4 .A standard test must be established so that each implementation can be checked.

The IV&V will validate the correct operation.

4

12 -

The maintenance manual must be completed and verified to be complete for the maintenance
activity.

Phase 4. Change

Focus: Change of each system to meet a specific set of change requests.

Deliverables: Changed systems, IV&V maintenance reports, measurements and observations.

Activities
- code changing;

design changing;
. observation and data collection on maintenance activity;

IV&V of changes.

Considerations:

It is critical and essential that the design and implementation teams not know the nature of thechanges during original design. We suggest that the Advisory Board develop the set of changes to
be made after all designs are completed but not release them until the implementations are done.

As with the implementation, the changes are to be made and tested for accuracy against a standard
set of tests.

The IV&V effort will verify the changes and validate the system operation.

All changes should be reflected in both the code and the maintenance manuals to keep the design
documentation consistent with the system.

Careful measurement must be made in order to differentiate the time necessary to make the
change from the time necessary to change the documentation.

Phase 5 -- Evaluation

Focus : Evaluation of the impact of different designs on maintenance from several different
perspectives.

Deliverables: Individual evaluation reports, final report.

Activities:
* evaluation of the correctness of changes to the design by each design team;
* evaluation of all changes to the code by the implementation teams;

evaluation of the change process by the maintenance teams;
* evaluation of the changes by the Advisory Board;
* collection and summary of individual reports by Prime Contractor.

Considerations:

Individuals and teams involved in the study will perform an evaluation and write a report on their
perceptions of the relation between the maintainability of each system and the design metlhod used

74

13

to produce it.

The Prime Contractor has the responsibility for going beyond these individual reports, to
generalize from all of the data, observations, and individual evaluations collected in earlier phases.
The Advisory Board will assist in refining this final report.

Phase 6 - Reporting

Focus: Distribution of results to the technical community.

Deliverables: Distribution of reports, successful completion of conference.

Activities:
- widespread distribution of report;

- conference to present and discuss results;

Considerations

The results of this study will not be definitive and will be open to interpretation in most instances.
It is essential that an open forum be held to permit discussion of the results, questioning of the
methods used, and investigation of the data collecting techniques.

DISCUSSION

In this section we provide rationale for some aspects of the study presented in the previous
section and discuss several alternatives.

Overall Structure

We have tried to follow the lifecycle of development currently used by many software contractors.
That does not imply that we think that it is necessarily the best approach (e.g. it does not involve the
use of prototyping which is increasingly seen as a valuable development tool); rather, our objective has
been to make this study as realistic as possible in terms of modelling those environments where Ada
development methods will be used.

We have focused on architectural design because that explicit design methods, more than
anything else, can significantly improve the maintainability of the code that is later produced. Of course,
other phases and activities are important. For example, management structures and technical review
procedures may be even more important than any particular design method in determining
maintainability. However, we felt it was well beyond the capability of controlled investigation to
compare alternative management strategies. Since design immediately precedes coding in Ada, it is the
natural target for study and improvement.

The overriding principle we followed in devising the entire study was simplicior. We feel strongly
that careful investigation of a specific question can be more valuable that a more broadly-based study
providing less detailed data. In support of this position, we point to the impact of Dijkstra's use of
structured programming and levels of abstraction in the development of T.H.E. operating system [E.W.
Dijkstra, "The Structure of the 'THE' Multiprogrmming System," CACM 11,5 (1968), pp. 341-346!,
Baker and Mills' [F.T. Baker, "System Quality Through Structured Programming," Proc AFIPS 1972
FJCC pp. 339-3431 use of structured programming technology in the New York Times experiment, and
Parnas' use of information hiding in the design of his KWIC system [D.L. Parnas, "On the Criteria to
be Used in Decomposing Systems into Modules," CACM 15,12 (1972) , pp 1053-10581. None of these
cases yielded statistically significant results and the results were open to interpretation (to put itmildly).
Yet they have had an extremely strong impact on the thinking of software developers and have been
widely adopted. A large measure of their impact was due, we believe, to their narrow focus, so that
one associates project success with the particular new items of technology being employed.

-

-14-

We do not anticipate a strong differentiation between the various design methods employed.
Indeed, it would not surprise us if the final conclusion is that what has been shown is that the use of
any explicit design method produces significant improvements in maintainability. While the "true
believers" know that already, a convincing demonstration would go far toward facilitating the adoption
of improved methods.

We note, also, that the conduct of this study is intended to provide a clear model of the use of
good software engineering project principles. This is part of the motivation for use of IV&V, external
reviewers, and other devices.

Prime Contractor

A prime contractor was specified to maintain fidelity to the way business is done in the Ada-
community and to have a single point of control and responsibility for the project. We have purposely
left most of the details of the study in outline form to permit the Prime Contractor to refine the plan to
fit the specifics of the actual investigation. This, coupled with the responsibilities of the Prime
Contractor mean that the organization fulfilling that role must be highly capable of providing technical
as well as managerial leadership.

Advisory Board

There are three primary reasons for having an Advisory Board. First, it provides the necessary
technical overview for the entire study, performing detailed tracking of the investigation. While the
Prime Contractor could do this alone, we believe that it is better to separate, at least partially, the day-
to-day contract administrative matters from the technical advising so that neither is shortchanged.
Second, since this study could have a large impact, it is important to get the very best guidance possible
from as wide a segment of the technical community as possible. Third, the Board can serve as a
resource for guidance for the Prime Contractor.

Design Teams

It would be interesting to have multiple designs based on each method in order to obtain quasi-
statistical results. This, however, introduces many more problems (capabilities of different groups, for
example) than it solves. As we noted above, we are striving to obtain some results that can be as
strongly interpreted as possible. Thus, we have chosen to skirt around issues such as whether a
particular method can be applied in production environments by someone other than its inventor. (All
of the methods we have suggested have previously been successfully transferred.)

We do not want the design teams to get into very low-level detailed design because we want to
stress the ability of different methods to facilitate good structure.

We have specified expert programmers versed in Ada to help control the effects of differing ability
further. Data on the implementation process can yield information about the relative ease of
implementing various design. That is not the focus of the experiment, however, because there is

4relatively little effort spent on that phase anyway.

IV& V Team

We have specified an IV&V team to mirror the actual development culture that is increasingly
used in DOD work. Furthermore, it provides a simple way to assure that the technical work of the
study conforms to plan. Finally, it will introduce an added guarantee of objectivity and, through their
observational activities, partially free the development teams from the distraction of record keeping
required by the nature of the study.

Maintenance Teams

It is often argued that the best programmers should be assigned to the maintenance activity. We
do not disagree with that philosophy, but have observed that it rarely happens. Instead, our model has
beer. that maintainers are faced with a broken (or inadequate) piece of equipment. They are given an

. instruction manual to go with their limited knowledge of the design process that created the piece of

;4

15 -

equipment. Their task is to fix the equipment. We have used that analogy with appropriate changes to
Smake it fit the software situation.

Phase I - Initiation
We noted above that we understand that this plan will need to be refined at the start of the study

Sto make it fit the actual situation at that tme and pla-e. We would urge, however, that changes in
structure or intent be made sparingly and only after caretul review.

A standard procedure in an investigatiok of this type is to run a pilot study (perhaps on only one
method) to help refine the details of this plan. We strongly recommend that this be done in this case.
Methodological experimentation in general and especially in the software area is still at a rudimentary
stage so that it is impossible to specify accurately data collection procedures, establish control and
coordination mechanisms, and forsee other problems in advance. With a pilot study, we feel that the
refined investigation can be reasonably assured of success; without one, we feel that the danger of a
fatally flawed investigation is very great.

The problem selection -- an electronic mail system comparable to the UC Berkeley mail system
developed in the Computer Systems Research Group -- was governed by several considerations,
including the following:

- a realistic problem of moderate size, i.e., nontrivial, but not huge;

- limited expert knowledge needed;

- a problem involving real time processing and potential concurrency;

- suitable for programming in Ada, involving Ada features such as tasks, packages, and exception
handling;

- balance between process design and data design;
- a number of different possible solutions.

One activity may need explication -- outlining the final report during project initiation. We are
strong believers in objective-oriented activity. By outlining the final report at the start of the project
those people responsible for its content (the Prime Contractor and the Advisory Board) will be forced
to think through more precisely what information they must collect during the investigation.

As noted above, there is only limited experience with measurement of parameters of interest in this
type of investigation. This experience, though, shows that the measurement activities should be
planned from the outset and that ample time and resources should be allocated for data collection
during the investigation.

Phase 2 - Design

We have tried to strike a balance between letting designers have as much time as needed to
produce a "perfect" design (necessary if we want an accurate test only of the technical capabilities of the
method) and reality in which there is never enough time to design to perfection.

Making observations and collecting data in this type of investigation takes a surprising amount of
time and effort. Since this would not normally be a part of a development effort (we and others would
argue that it should be, but it usually isn't) we don't want these activities to interfere with the
development any more than necessary. Our solution is the introduction of an IV&V team member as an
adjunct to each design team (the same should be done during implementation and change as well) to
help with the data collection. All of the teams must expect to devote some effort to data collection,
however.

Change during the design effort is inevitable since we are not working from formal specifications
that can only be interpreted in one way. Careful review of the problem statement and a face-to-face
meeting between all developers and the project management at the beginning should serve to prevent

-- many of the problems. For those that do arise, it is essential that everyone have the informatiop so that
design won't differ because of differences in knowledge about the problem statement.

-4 .-

16-

The use of a "control group" that is not using any specific design technique (indeed, it must be
guaranteed that they are not using anything that even comes very close to a specific method -- we want
them to use the old "seat of the pants", scribbles on an envelope approach) is almost buried in the
project description above. This is not intended to downplay its significance. Rather, we wish to
emphasize that having this control group is an integral part of the study plan since comparison to the
old, informal way of doing things is perhaps the most important comparison that can be made. We
recognize, however, that there are many "non-methods"; the Advisory Board can help define the control
situation.

The requirement that the delivered design contain all information needed by the implementors
stems from two factors. First, that it is a reflection of a fundamental software engineering principle.
Second, it forces the designers to record their results and not leave things in their heads to be extracted
(with some pain to both parties) by the implementors. The need for some interfacing and rework is
noted above, however.

The same principle applies to the maintenance manual, but is even more important in that case.
Maintainers of systems rarely have the luxury of direct contact with the developers -- that is one of the
factors that makes maintenance so expensive. The critical issue in this investigation is to determine the
impact of various methods on the maintenance of the resulting system. The impact, we hypothesize,
may come through two channels -- via improved structure in the design itself and via improved
structure in the documentation.

We reason that for most (if not all) of the methods that may be studied, competent programmers
should be able to understand the results of applying the method with only a minimum of training (to be
supplied by the documentation itself). Further, we believe that this same minimal training will permit
the maintenance team not only to use the design to help speed up and improve the quality of the
maintenance activity but also to record their changes in altered editions of the design. An interesting
point raised by one researcher (Rob Kling) is that the work style of the design teams may have more
influence than the method they use. While this may be true, we do not know how to control for it and

rcan only warn the investigators to be on the lookout for such effects.

Phase 3 - Construction
We have chosen to divide the development activity at the end of architectural design for the

technical and technology transfer reasons outlined above. This means that the construction teams must
carry out detailed design. We have not specified the precise methods they should follow in doing this
but we recommend the use of stepwise refinement using an Ada-oriented program design language
(PDL).

An alternative to the entire structure of this part of the investigation would be to have each
design team implement its design as well. While this would simplify the design of the investigation, we
believe it would seriously degrade the information obtained as to the effectiveness of alternative design
methods.

Phase 4 - Change

We believe that more than one maintenance team, representing different organizations, should be
chosen. Each maintenance team would have exactly the same task -- to prepare a set of revisions to
design and code delivered for each of the designs.

* Phase 5 - Evaluation
We are asking for evaluation by as many different people as possible since we believe that the

subjective evaluations will be an important adjunct to the data collected. Indeed, if several more or less
independent groups concur in their subjective evaluations, then this will strengthen (or weaken) the
objective data that is collected. It will also help make the results more believable to the community.

4i

17

Phase 6- Reporting

The purpose of holding a workshop to present the results is not to argue about them, but rather
to permit the community to probe how the results were obtained in as much detail as desired. This willbe beneficial in exposing weaknesses that can be corrected in future investigations as well as making the

results more believable (because they are open to inspection) to the community.

FURTHER STUDIES

If the software field is in its infancy (as is often said), then objective investigation, let alone
experimentation in the true sense, has not even been conceived. It would be superfluous for us to
outline other possibilities here (a recent issue of Software Engineering Notes [vol. 7, no. 1 contains

* . several concrete proposals), but we would note the value of replicating this (or any) investigation
several times in different circumstances.

We do want to emphasize two things, however. First, we strongly believe that objective
investigations of the ways in which software is developed must be carried out to permit us to make
more rational decisions regarding the way we organize and carry out system development. Second, the
investigative process must be refined greatly from its present state.

ACKNOWLEDGMENTS

Our work was aided by the results of the ACM SIGSOFT Symposium on Tool and Methodology

Evaluation, as published in Software Engineering Note% vol. 7, no. 1 (January, 1982), pp. 6-74. We
appreciate the comments given on the initial draft of this document by Ruven Brooks, Bill Curtis, Rob
Kling, and Ben Shneiderman; those of Deborah Boehm-Davis and Elizabeth Kruesi were especially
detailed and instrumental in preparation of the final draft. We are grateful to Susan Richter for doing

-i . the artwork and assisting with the text editing and formatting.

0i

0

18

APPENDIX I - Suggested Methods for Study
We have identified upwards of 40 methodologies for software development and have sent

questionnaires to the creators of these methodologies. (See "Ada Methodology Questionnaire
Summary," by M. Porcella, P. Freeman, and A.I. Wasserman.) While we may have overlooked some
approaches, we believe that we have identified those that have been most widely used.

In selecting methodologies to be compared, we have used four subjective criteria:

1) widespread use

2) publicly available documentation

3) use of the method within DoD

4) mapping of design or specification primitives to Ada

However, not all of the recommended methodologies satisfy all of the criteria.
We also have sought to identify methods spanning a range of formalism. On that basis, we

recommend that the comparative study choose from the following methodologies:

1) STRADIS (McDonnell Douglas)

2) Yourdon

3) Jackson Design Method

4) HOS (Higher Order Software)

5) ISAC (Mats Lundeberg)

6) SALT (SofTech)

7) SARA (G. Estrin, UCLA)

Other potential candidates if broader diversity is desired, are:

1) HDM (SRI International)

2) Wellmade (Honeywell)

3) User Software Engineering (A.I. Wasserman, U.C. San Francisco)

4) Warnier/Orr (Ken Orr & Associates)

5) PSL/PSA (D. Teichroew, U. of Michigan)

.. 19

APPENDIX 2 -- Design Problem

This problem is divided into two parts: an initial design problem, which should be designed and coded
in Ada, and a set of requested changes that should be given to a maintenance team for redesign and
code modifications.
This is a moderate sized design problem, exhibiting elements of real time processing and concurrency,
and necessitating both process and data design. It is suitable for programming in Ada, and represents a
problem of realistic interest to the Ada community.

*The moderate size is intended to strike a balance between a trivial problem that can be solved without
the aid of any design methods and the mammoth design problems that characterize many of the larger
command-and-control systems.
If time permits, the Prime Contractor could construct a much larger design problem for the design
teams. However, we do not believe that such an exercise would be cost effective in showing the
efficacy of design methods.

The Problem Statement
We wish to design and build an electronic mail system for a distributed setting. The setting consists of
one or more local networks, each of which are known by an alphanumeric name of 1 to 8 characters,
e.g. berkeley. These local sites are connected by common carrier to the ARPA network.
Each local site has one or more machines. If a local network has more than one machine, each is
named by a single letter (upper or lower case).

Every machine has one or more users, each of whom has a login code of 1 to 8 alphanumeric letters,
e.g., druffel. Each login name is unique on a machine, but the same login name may exist on any
number of machines within the entire system. Thus, an individual may have any number of login
names, not necessarily the same, on any number of machines at any number of sites.
Valid addresses may therefore be described by the following syntax:

[machine ":I loginname ["@" site]

The following constructs are thus permissible:

freeman
jones@dec
v:waserman

,0 A:good@texas

There are, within the network, a known set of sites at any time. Furthermore, there is a known set of
local machine identifications at each site.
The command

* mail addressee

will then accept text to be sent to the addressee at the designated site and machine. Input is accepted
until the input stream receives an EOF character (ctrl-D). An alternative form is to transmit a file to
the addressee. This is accomplished with the command

mail addressee < fname
w io

- . where fname is a file for which the user has read/copy permission.

- 20 -

If mail cannot be sent to addressee, the message is returned to the person sending the message,

preceded by the text

Could not send mail to "addressee" -- text follows

It is then seen by the user as a message sent to oneself.

When a user logs into a given machine, the system will print the message

You have mail.

if mail has arrived for the user (according to that login name for that machine) since that user's
previous login. (Note: if necessary for your solution, you may assume that transmission of the message
occurs within a day, but is not necessarily immediate.)

The user can then access the mail by typing the command

mail

with no parameters. If there are no waiting messages (the user simply typed the mail command in the
absence of the "You have mail" message), the system will reply

No mail.

Otherwise, the system will produce a list of unread messages, in the following form

N sender date lines/chars

where N is an integer, sender is the login name and site of the sender of the message, date is the time
that the message was received, lines tells how many lines are in the message, and chars gives the
number of characters in the message. (Note that antransmitted messages, as described above, are
returned in this manner.)
Thus, the list might appear

I freeman@eclb Sep 12 13:50 25/1204
2 waserman@berkeley Sep 12 14:25 40/1723

The user may then issue the following commands:

N typing a number causes the message to be printed; N must be
a valid message number or a diagnostic will be printed

dN causes message N to be deleted

s fname causes most recently printed message to be stored in a local
file named fname

h prints the header line for all unprocessed messages

q quit, saving any unread messages for the next login

4 -7

21 -

Thus, the following sequence of commands would cause message 1 to be printed and deleted, and
'K. message 2 to be printed and saved in file berk.12Sep before quitting.
,;

dl

2
s berk. 12Sep
q

Required Modifications
We wish to make the following set of modifications to the system described above. The result of this
set of changes should be a revised design document and revised code, along with supporting
documentation showing the affected modules and the relevant design decisions. Wherever possible, the

module changes should be linked to the changed requirements.

(1) Allow user names to by 1 to 10 characters instead of 1 to 8 characters.

(2) Permit a message to be sent to more than one user at a time. This may be accomplished in two
different ways:

a) mail addresseelist
where addresseelist is a sequence of (I or more) addressees
with names separated by commas, e.g.,
mail a:smith, J:williams, casey@bat

b) mail alias
where alias is a predefined string in a file of aliases that
creates an equivalence between the alias and a list of addressees.
Thus, the entry

friends - a:smith, J:williams, casey@bat

would cause the command

mail friends

to have the same effect as the command in part a).

(3) Add the reply command (r) to permit the user to reply directly to the most recently processed

message. Thus, if one had read a message from freeman@eclb, the command

r

would accept input from the user and transmit it to freeman@eclb. Similarly, the command

r < fname

I I4 would transmit the contents of file fname to freeman@eclb.

(4) Add the list command (1) to permit the user to obtain a list of all unprocessed messages in the

same format as is given in response to the original mail command.

4,

4r

22

S'"APPENDIX 3: Observational and Data Collection Requirements

NOTE: These requirements are only in outline form at this point. They must be expanded and
refined before the actual study is carried out. A good reference for additional suggestions on
data collection is Part V of Tutorial: Models and Metrics for Software Management and Engineering
by Victor R. Basili (IEEE Computer Society).

We suggest the following information, at least, be collected at each stage:

DESIGN

team information
names of all participants
technical background of each

environment description
working conditions
on-line aids

technical activity
accurate record of actual hours worked by individual
breakdown into categories, including

background research
meetings
working group sessions

individual technical work
documentation (low creative component)
non-project activity (interruptions, etc.)

* where possible, measurements should be on 1/4 hour breakdown

technical results
number of modules
number of distinct data structures
pages of documentation
characters of documentation

CONSTRUCTION

team information as above

technical activity as above, but modified to include
coding
waiting for system
correcting compile errors
interpreting design
seeking clarification of design

results to include
4number of Ada statements

number of declarations
number of characters in Ada representation

23 -

CHANGE

t team information

technical activity
time spent understanding change requests
time spent understanding design
time spent understanding code
time spent making changes to code
time spent making changes to design
time spent compiling changes

technical results
lines of code changed
number of modules changed

p4"-

.0

:I

iD-Ai23 7±6 SOFTWARE DEVELOPMENT METHODOLOGIES AND ADA ADA - 2/2
METHODOLOGIES: CONCEPTS AN..(U) CALIFORNIA UNIV IRVINE

UNCLASSIFIED P REA TR. O 2F/G 9/2 NL

.... -. o

,,4

DIj-

11.6

imm

1111162Illl 1.81

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS- 1963-A

'4 b-

-4

-24 -

APPENDIX 4: Maintenance Manual Outline

The Maintenance Manual must contain all information that the maintainers of a system need in
order to make changes efficiently. The precise content of the information will depend on the
design method used, but the format of the document should be approximately the same for each
method.

1. SYSTEM OVERVIEW

1. 1 Basic purpose of system
1.2 Functional description of operation
1.3 Implementation considerations
1.4 Operational considerations
1.5 Guide to Maintenance Manual

2. SYSTEM SPECIFICATION

2.1 Complete definition of all external functions
2.2 Complete definition of all external data items
2.3 Complete definition of all internal functions
2.4 Complete definition of all internal data items
2.5 All constraints (design, implementation, operation)

3. SYSTEM STRUCTURE

3.1 Overview of system modularization
S3.2 Logical data definitions

3.3 Module Interface definitions
3.4 External module definitions

4. IMPLEMENTATION

4.1 Detailed design of modules
4.2 Physical data structures
4.3 Code listings

25

APPENDIX 5 -- SADT Model of Project Plan
A complete SADT model consists of two kinds of diagrams: activity diagrams (called actigrams)

and data diagrams (called diagrams). The view of an actigram is that data objects flow between
activities while the view of a datagram is that activities during their operation access data objects. The
only difference is the center of attention. Only actigram models will be discussed in this appendix.

THE ELEMENTS OF AN ACTIGRAM

An actigram depicts three to six activities which are represented as boxes. The limit on the
number of activities depicted helps to limit the amount of information a reader of an actigram must
deal with. The boxes of an actigram are connected by arrows which represent data objects. Actigrams
are data-flow diagrams. This means that the activity of a box takes place only when the data objects
represented by incoming arrows to a box are present.

The positions of the arrows on the box determines what type of data an arrow represents as shown
in Figure 5.1. When input, control, and mechanism objects are present, the activity uses the mechanism
as an agent to transform the input data objects into the output data objects under the guidance and
constraints of the control data objects. Activity names should be verbs, while data object names should
be nouns. Each activity must have at least one control and output.
A double headed dotted arrrow may be used as a shorthand in SADT to denote data relations between
activities as shown in Figure 5.2.

THE STRUCTURE OF AN SADT MODEL

Each actigram is an elaboration of an activity box in a higher-level diagrsm called the parent
diagrsm. If a page number appears in parentheses just outside the lower righthand corner of an activity
box, then this number specifies the page of the actigram which elaborates the box. The inputs,
outputs, controls, and mechanisms used in an actigram are the same as those as those on the
corresponding activity box in the parent diagram. Each actigram should include from three to six
activity boxes.

The highest-level actigram of a model is the only exception to the three to six activity rule and it
presents only one activity, the one being modeled. The inputs, outputs, controls, and mechanisms
which are used in the rest of the model are specified on this highest-level actigram called A-0. The A-0
actigram represents the context in which the system being modeled operates. As a part of the context
the A-0 actigram explicitly states in prose the purpose of the model and from what viewpoint the model
was made.

.

.4

:-4

CONTROL

INPUT
OUTPUT

MECHANISM

Figure 5.1

denotes

and

denotes

Figure 5.2.

p.A

UL

asp

U, il
-. R

100

4D-

~i

0

Pr 0

I--

LU

I.-A
o& w

20

0 -
S us

CL

I-r

LL c

uii

x W

4.

Lou
J1

*1 i0
LU

E
W,

hA

LuW P eo

22

a,

r4x

U

1T1

