~r
AD-A123 784  STATISTICAL ANALYSIS OF THE EFFECT OF PHASE 171 \
QUANTIZATION ON ARRAY ANTENNA SIDELOBES(U) ROME RIR )
. DEVELOPMENT CENTER GRIFFISS AFB NY R A SHORE JUN 82
UNCLRSSIFIED RADC-TR-82-190 F/G 28/14 NL




EEFEEER
EEEE
- ERE

ETE
E
133

m

o

——

l||||

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

4




DTIC FILE OOPY

Robert A. Shore

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, NY 13441

DTIC

e ELECTERD
%) N o }
), JAN241983 B

a3 By BN

D

S intouse Roport 4 K3
o June 1982 . :
- \ |
(A .’ o
= STATISTICAL ANALYSIS OF THE EFFECT |
<« OF PHASE QUANTIZATION ON ARRAY
= ANTENNA SIDELOBES




]

This report has been reviewed by the RADC Public Affairs Office (PA) and is
releasable to the National Technical Information Service (NTIS). At NTIS it will
be releasable to the general public, including foreign nations.

RADC-TR-82-190 has been reviewed and is approved for publication.

APPROVED: %@M

PHILLIP BLACKSMITH
Chief, EM Techniques Branch
Electromagnetic Sciences Division

APRROVED: /D7, ’ M

ALLAN C. SCHELL
Chief, Electromagnetic Sciences Division

FOR THE COPMANDERW ﬂ /L%\u,

JOHN P. HUSS
Acting Chief, Plans Office

If your addreas has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC ( EEC ), Hanscom AFB MA 01731. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.




Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
REPORT DOCUMENTATION PAGE BEFORE. COMBLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NOJ| 3. RECIPIENT'S CATALOG NUMBER
RADC-TR-82-190 D A13-376y 82-263
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

STATISTICAL ANALYSIS OF THE EFFECT OF In-House
PHASE QUANTIZATION ON ARRAY ANTENNA

6. PERFORMING ORG. REPORT NUMBER

SIDELOBES

7. AUTHORC(a) 8. CONTRACT OR GRANT NUMBER(s)

Robert A. Shore

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK .
AREA & WORK UNIT NUMBERS

Deputy for Electronic Technology (RADC/EEC) .

Hanscom AFB 61102F

Massachusetts 01731 2305J304
t1. ZONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Deputy for Electronic Technology (RADC/EEC) June 1982

Hanscom AFB 13. NUMBER OF PAGES
Massachusetts 01731 64

14 MONITORING AGENCY NAME & ADDRESS/if different from Controlling Otfice) 15. SECURITY CLASS. (of this report

Unclassified

52, DECL ASSIFICATION DOWNGRADING
SCHEDULE X
N/A

16 DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17 DISTRIBUTION STATEMENT ‘of the abstract entered in Block 20, if different from Rerort)

18 SUPPLEMENTARY NOTES

RADC Project Engineer: Robert A, Shore, EEC

19 wEv WORDS /Continue »n reverse side 'f necessary and identtiy by block n aber)
[.inear arravs

Phase error

Statistical analvsis

ZT\AasTRA’:’ Continae on reverse side {f necessary and rdentify by block numtbert

-7 Gencral expressions for the mean und variance of the power at an arbi-
trary location in the pattern are derived for a lincuar array of isotropic, equi-
spaced elements. The phases of the element excitation coefficients ure
assumed fo be set by digitol phuse shifters, cousing random phase errors
uniformly distributed in the interval of plus to minus the least significunt bit of
the phuse compind, Approximations valid for smull phase errors (N{)“‘ > 1)
dre obtuined. For Lirpe orravs, the varianee of the powetr ot a location where

fhe crvor-free pattern has o null is approximotely cquul to the squure of tue
EoRM -.\d
DD a5y 1473 Unclassified

SECUR'TY CLASSIFICATION OF Tu S PAGE ‘When Dara Frtered




Unclassified
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20, (contd)

mean of the power, An expression is obtained for the probability distribution
©6f the amplitude and power of the error field assuming the error-free field is

real and there are sufficient elements in the array for the Central Limit
Theorem to be applied. For small phase errors, and points not halfway
between grating lobes, the expression reduces to the Rice-Nakagami distribu-
tion. It further reduces to the Rayleigh distribution at points where the error-
free pattern has a null. Expressions for the pattern power mean and variance
| [for an array of arbitrary size obtained directly are consistent with those
| obtained by assuming a large number of array elements and using the Central
L Limit Theorem to derive the probability distribution of the pattern power.
-._> The theoretical results are compared with Monte Carlo computer simula-
tion's, The Kolmogorov-Smirnov test usually shows close agreement between
the simulation and the theoretical results. However, the test also shows that
the depths of multiple nulls are not statistically independent when there are
multiple nulls in the error-free pattern; the probability distribution of the depth
of the least deep null is closer to the distribution predicted for a single null
than it is to the distribution for multiple nulls.

A

Accession For
NTIS GRA&I XLJ
DTIC TAB 0

Unannounced 0
Justification

By.
{ Pistribution/ |
Availabirli_tyl Coders L
Avail and/or
Dist Special

v
. W
AP ERIDS QY T HS YT Las 4 o

. ‘.A" N 0

I

P WP TP I 2N

O B
+

‘..‘ St

'
4

'
TV T S AR o

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Datae Entered)




Contents

1. INTRODUCTION 5
2. ANALYSIS 7
2.1 Mean of the Power 8

2.2 Variance of the Power 10

2.3 Probability Distribution of the Power 21

3. NUMERICAL RESULTS AND DISCUSSION 42
3.1 Single Null 42

3.2 DMultiple Nulls 46

3.3 Non-Null Sidelobe Location 51

4. CONCLUSIONS 54
REFERENCES 57
APPENDIX A: Proof of Theorems Used in the Analysis 59
lustrations

1. Sample (1) and Theoretical (2) Cumulative Distribution Functions

of Power at the Error-free Pattern Null Location 8 = 20. 3989...° 45
2. The Cumulative Probability Distribution Function
CM(pz) = {1 -exp (-021M for M =1, 2, and 3 46

3. Sample (1) and Theoretical (2) Cumulative Distribution Functions
of the Maximum Value of Power at the Two Error-free Pattern
Null Locations § = 20.3989...° 48

i

!
!

e

— Ak A

L




NI N U WP Wy |

Sample (1) and Theoretical (2) Cumulative Distribution Functions
of the Maximum Value of Power at the Two Error-free Pattern
Imposed Null Locations 8 = 20, 78° and 21, 2°

Sample (1) and Theoretical {(2) Cumulative Distribution Functions
of the Maximum Value of Power at the Two Error-free Pattern
Imposed Null Locations 8 = 12° and 72°

Sample (1) and Theoretical (2) Cumulative Distribution Functions
of the Maximum Value of Power at the Two Error-free Pattern
Imposed Null Locations 8 = 20, 78° and 21, 2°; Theoretical CDF
is for One Error-i‘ree Pattern Null Location

Sample (1) and Theoretical (2) Cumulative Distribution Functions
of Power at the Error-free Pattern Non-null Location 8 = 20. 1°

Sample (1) and Theoretical (2) Cumulative Distribution Functions
of the Power at the Location § = 30°, Midway Between Grating
Lobes of the LError-free Pattern

Values of the Rician Cumulative Distribution Function Calculated
With the Asymptotic Expression, Compared With Values
Obtained by Numerical Integration

Mean and Variance of the Probability Density Function of the
l.east Deep Null Among M Locations

lustrations

49

50

52

53

55

Tables

34

38




Statistical Analysis of the Effect of Phase
Quantization on Array Antenna Sidelobes

1. INTRODUCTION

There is currently considerable interest in using phased arrays with digital
phase shifters for adaptive nulling. However, the quantized output of a digital phase
shifter differs from the ideal value. This difference between the actual and ideal
phases is reflected in a corresponding discrepancy between the actual pattern and
the ideal or error-free pattern. Of special concern for adaptive nulling applica-
tions is the fact that phase quantization errors can cause shallower nulls, reducing
the ability of the array to reject interference from particular directions. There-
fore, understanding the influence of phase quantization errors on array antenna
patterns is important.

A standard technique used to eliminate the spurious quantization lobes, similar
to grating lobes, that result from a periodic phase quantization error distribution
across the elements of an array, is to randomize the phase shifters by inserting
a constant phase shift which differs from element to element. 1 The phase quantiza-
tion errors can then be regarded as independent of each other. Any general study
of the effect of such phase quantization errors on array patterns is necessarily
statistical in nature, focusing on statistical parameters of the phase-error induced
pattern perturbations such as the mean and variance of the power at a specified

(Received for publication 7 July 1982)
1. Skolnik, M. 1. (1980) Introduction to Radar Systems, McGraw-Hill, New York, p. 321,
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pattern location. Since the magnitude of the phase quantization errors has a maxi-

N, .
mum value of 7/2 b“, where Nbit is the number of bits in the phase shifters, it is
natural to base a statistical description of the pattern perturbations on the assump-
tion that any particular set of element weight phase errors is obtained by drawing
each phase error independently (with replacement) from an underlying population of
Npit ., Nbit
, w2 ]

This report describes the statistical properties of the sidelobes of linear arrays

phase errors uniformly distributed in the interval [-7/2

whose element phases are independently and uniformly distributed. The array
elements are assumed to be isotropic and equispaced and to have a deterministic
but arbitrary amplitude taper. A number of investigations have been devoted to
various related aspects of this subject, 2 and in considerable part this report is
designed to bring together, for convenient reference and in self-contained form,
results that are well established in the literature.

We begin by investigating tne mean and variance of the power at an arbitrary
pattern location. No conditions are imposed regarding the number of array ele-
ments., The resulting expression obtained for the variance of the power is believed

to be new. Approximations valid for small phase errors (N, .. >4) are obtained from

the general expressions for the mean and variance. We theglfierive an expression
for the probability distribution of the amplitude and power of the perturbed field
under the assumptions that the error-free field is real and that the number of
elements in the array is sufficiently large for the Central Limit Theorem (CLT) to
be applied. We specialize this distribution, first to the case of small phase errors
and ordinary sidelobe locations (locations not halfway between grating lobes), and
then to the important case of sidelobe locations for which the error-freec pattern
has a null. We sbow that under the conditions for which the CLT is valid, the exact
expression for the variance of the power obtained with no restriction on the number
of elements reduces to the expression obtained by means of the CLT and the prob-
ability distribution of the power.

The statistical distribution of power at the least deep null among several loca-
tions for which the error-free pattern has a null is then obtained by assuming
independence of the null depths at two or more locations and multiplying together
the probability distributions for the individual nulls. The theoretical analyvsis is

2. See for example, Ruze, J. (1952) The effect of aperture errors on the antenna
radiation pattern, Nuovo Cimento Suppl., Q(No. 3):364-380; Allen, J.L. (1961)
Some extensions of the theory of random error effects on array patterns,
Chap. IlI, Phased Array Radar Studies, 1 July 1960 to 1 Julv 1961, M.I T.
Lincoln Lab Tech. Rep. 236; Skolnik, M. 1. (1980) Nonuniform arrays,

Chap. 6 of Antenna Theory, Part 1, Collin, R.E., and Zucker, F.J. (Eds.)

McGraw-Hill, N.Y., pp. 318-321; Steinberg, B.D. (1976) Principles of
Aperture and Array System Design, Chaps. 8, 9, and 13, John Wilev, N. Y.,
s*gnfrm, v.S. (197 1) gtatxstxcal Antenna Theory, Chap. 7, Golem Press,

Boulder, Colorado.
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concluded by deriving the distribution of power at locations halfway between grating
lobes, Again we demonstrate consistency between the exact expression for the
variance of the power and the expression derived from the CLT under the assump-
tion of large arrays. Following the theoretical analysis, we describe the results

of computer simulations performed to compare with theoretical results.

2. ANALYSIS

In this section we derive expressions for the mean and the variance of the
power, and the probability distributions of the amplitude and power, at a given
direction of the pattern of a linear array of equispaced isotropic radiators, given
that the phases of the array elements are subject to random errors. To investigate
the effect of phase shifter quantization on the array pattern, we take the mean,
variance, and probability distribution over an ensemble of arrays; in each member
of the ensemble, we assume the phases of the elements to have mutually independent

random deviations & from their ideal values, uniformly distributed in the interval
Nbit Npit
[—77/2 , W2 where Nbit

Let d be the spacing between the array elements and assume the phase refer-

is the number of bits in the phase shifters.

ence center to be the center of the array. Let W be the ideal complex weight
(that is, the weight in the absence of phase shifter errors) of the nth element, and

let én be the corresponding random phase error. Then the error-free field patternis
N

jd u
Fo(u) = E w e D
0 n

n=1

and the pattern in the presence of phase errors is
N . .
id  jd u
P = 2, w_ e Me D (n
= n
n=1
where
, W N-1 o1 -
o= = (n-1, n=12, ..., N

and

u = kd sin #
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with
! k= 21/) s
s - o
{ and § the angle measured from broadside to the array. : :
P-'. ., i
3 2.1  Mean of the Power .
g
We first obtain an expression for the ensemble average of the power at a given o
direction of the pattern. The pattern power of a member array is given by ]
s % 3(6 -6 ) jd -d )u )
IFwl2=FwF w=2 D ww'e P ™ 0o m (2) o
n m
n m 1
- ‘1
so that we seek the ensemble average, iF(u)l . In calculating lF(u)] 2 we make . .
use of the theorem that the expectation of a product of mutually independent random ‘
variables is equal to the product of their expectations, 3 Hence, in the double
summation in Eq. (2) we separate the terms for which n# m and hence Gn and bm _
are independent) from those for which n=m (and hence Gn = ﬁm). For n=m, the - .*

contribution to the ensemble average is simply R

2w, |? <

n
while for n# m we have

E E e jwn-sm) J‘dn'dm)u
w_w_ e e
n m
n m
n#m "
]
T
i - ¥
5|2 = J(dn-dm)u @
= leJ E Z wowoe P
n m g
n#m o
where we have made use of the fact that K
[} '.u
i -0 ) 5 30 2
10" %m 1% I%m _ ' jo -- -
e = e e = fe 4
. Npit . Nbit] _.
with 8 a random variable uniformly distributed in |-7/2 , T2 ]smce the
phase errors are assumed to be identically randomly distributed for all elements
of the array. The ensemble average of the power is then
-
3. Feller, W, (1968) An Introduction to Probability Theory and Its Applications, |
Vol, 1, 3rd Ed., John Wiley, N. Y., pp. 222-230. _ 4
8 '."i
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2 id -d_)u
, 2 2 30 Ny =%y
[ = Z |wn| + J' Z E wow e
n n m
n¥m
2 id_-d_u
_ |38 Ry =9
i ( nz § Yn¥m ©
2 2
+ (1-'« ‘ y 2o lw |
n
But
Z g j(dn_dm)u . N ¥ 12
~ ~ wowoe = I«o(u)bo (u) = Fo(u)
so that
2 2 2 —4
’F(u) - :Tg‘ \r‘om s ( - ;Tﬂ )Z lw |2
n

The calculation of el® is straightforward. For phase errors uniformly dis-

Npit
tributed in the interval [~ A, A}, A= 7/2
A
v _ 1 id
e Sy e dd
-A
- su}sA . (3)
Hence
ejﬁ 2 _ {sinA 2
- A
and

T [ ()] 2o @

n

Fwl = . Fo(u)

2 : 2
‘ ( sin A
The ensemble average power pattern is thus the superposition of two terms, the
first of which is the error-free power pattern multiplied by a factor whose magni-~
tude is less than unity for & >0, and the second is independent of the direction.
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. sin A . 2 . 2 . .
torA=0, A -} and | F(W® reduces to | O(u)‘ . In applicutions to phase
shifters with muany bits (Nbit > 4),
4 2
sin A" - A~
A = -
and
FE— - p 2
‘l’(u)i“ = {1- A.z ‘l’ (u)’z ¢ A E [w |2 (5)
! 3 ) 3 o n

At u null of the error-free pattern

— . 2 .
fa]© = l:l - (ﬂl—é) ] Z [ w ,2, F(u=20 (6a)
A N n [¢]
A2 2
== |wn| , Nbi’( >4, (6b)

n

Note that for each extra bit of the phase shifters, A2 is multiplied by a factor of 1/4
and hence the average power at a null of the error-free pattern decreases by 6 dB.
The significance of the filling-in of the nulls of the error-free pattern due to phase
errors is usefully assessed in relation to the peak value of the error-free pattern.

For error free weights such that the phase varies linearly across the array, the

2 .
peak powcr is <Z |Wn|> . Dividing Eq. (6a) by this quantity to normalize it, we

—, o T
(——"5‘]{, 7oL (252) ](i e

obtain

I

2.2 Varianee of the Power

Next we obtaln an expression for the variance of the power

v




-
: y T
Vur('l"(u)]z )= [ll"(u)|2 - [l"(u)l“]

. . 2 .
Since we have already found |l' (u)| , we must determine

')
= [|1~‘(u)|“]

O VRN
- ' l"(u)["

il
[| Fu| “)] = Z
1n

As above in obtaining an expression for the average power, we procecd by grouping
the terms of the quadruple summation according to whether or not equalities hold

among the indices.

m P4

(1)  All four indices are equal

n=m=p=q

(2) three indices equal

(2a)
(2b)
(2¢)
(2d)

n=ms=p¥q
n=m=q#p
n=p=gF m

m=p=q#n

(3) two pairs of indices cqual

(3a)
(3bh)
(3¢)

n-m, p=q, n¥p
n=p, m=¢, n#ém

n=q, msp, nFgm

(4) two indices equal

(10
(-tb)
(4¢)
(4d)
(de)
(4D

n=m, nép, niq, p#q
n=p, n#m, n#q, miq
n=q, n¥Fm, n#p, mip
m=p, m#n, m#q, nzrq
m=q, m¥n, m#p, n#p

p=d, p#n, pfm, ndm

(5) no indices equal

We treat each of these cases in tuen,

(1) nemepag

+0 -0 ) {d -d +d -du
n p q - n m pq

E E:E:“ w o owow
nom p o«

‘The following cases must be distinguished:
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.
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is simply

- T T T T T T W e w

The contribution of the corresponding terms in the quadruple sum of Eq. (8)

2w It

n

(2a) n=m=p#q.

where Go(u) is the pattern corresponding to the weights l\\'n{ 2 W that is,

(2b)

n

n#q

p
n#p

© 1

W0

o

The contribution of the appropriate terms in the quadruple sum is

n

. .8 =8 jd_-d )
Z Z ’“’ IZW W" (3 n q c n a
= S n n gq
2 . . jd_-d u
Z E'W'zw woe 09
" S n n g
n#q
2 . . j(d_-d )u
[Z % 12y 8 o]
n q n a n
9
=551 | .. 4
[(.O(u) 1 O(u) - Z |wn| ]

N id u
. _ 2 : 12 .. 7n
(-O(u) = |\\n| w, e
n=1
n=m=q#p

llere the contribution of the quadruple sum is

¢ ¢
p

o T =8 jd_-d_)u
Z Z i\\'n|"\vnw pon pon

2 ) id_-d
FEE e
n 7 n n p
n¥p
2 d_=-dJu
DD DR E Rt D DT
mulr n np = n

n

2
- . . _ E
h [(,”(u) 1 U(u) Z l“nl ] .
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(2¢) n=p=q¥m

By symmetry, the contribution of these terms is the same as that for (2a).
(2d) m=p=q#n

By symmetry, the contribution of these terms is the same as that for (2b).
(3a) n=m, p=q, n#p

The contribution of the appropriate terms in Eq. (8) is

202 gl P hwgl® = 20 30 b 1P w1 - 20 )

n p n
n#p

n

(Z 'wn|2)2 IMALE

(3b) n=p, m=q, n{m

The contribution of these terms is

-~ 0wy 20 -8_) j2Ad -d )u

A\ W e e
n m

n m

n#m

. 2 .
Z Z % 2d -
e’ 26‘ n m Wrzl wr2 jald,-dpu

m e

n#m

2 .o j2d_-d_)u
SR [ 2wl Wit T 3 lwn|4]
n m n
—5|2 j2d_uj2
= e'] Z w2 e n - Z |W |4
n n n n
—75| 2 2 4]
= leJ .H (u) - E Iw |
(o) n J
n
where
N .
j2d_u
H () = nz:l wi e 7. (10)

Note that !Io(u) is the pattern of an array whose weights are the squares of the given
array and whose elements are spaced twice as far apart.
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(3¢) n=q, m=p, n¥m
By symmetry, the contribution of these terms is the same as that for (3a).
(4a) n.m, nfp, n#q, p#q

The corresponding terms in Eq. (8) contribute

Z Z Z (anz wOw * me‘j(dp-dq)u

nop oq p A
p#q
nfp, nfq
2 . id_-dju
SN0 D MEMREIILIR A
! n P q
n p q
ptq
ntp, nfq
2 , . . id_-d Ju .
= :ml [ZZZ]W!ZW w(}e P a -ZZ‘WIZ|W|2]
' ' n p q n p A n P n p
n £p, nkq n#p

— 2 . d -d
FEZZ 2w, w
n p aq n P g

2w Md,-d)u ) v Md -d) 4
- ZZq) w12 w w e > L I lPww,e DINFN

n
ntq nip
D0 JRPRLIPIEYS SEPIL
n p n
(512 . : itd_-d
= .u-'St [Fo(“) F()*(u); |wnfz - Zn:zq !wnlzwn wq*e n 4
\ i(d_-du
+ Z ‘wnﬁ ~Z E |wn;3wp wnye n + E (wnf4
n n p n
(Z : z>z] .
) w |
n
n

>4

A




with (}r)(u) given by Eq. (9),

(4b) n=p, n¥m, nfq, m#y

The contribution of these terms is

Z Z Z . 28 -0 -5 j(2d -d_~-d)u
n m q ww fw te noomo g 4 n m q
n m q

. ]
0
miq -.-—‘J#

néim, nfq

75 5.2 . % J2d_-d_-d )
= el (e %) Z Z Z wi wow Y e noomo o9

n m q !
mt¥q

n{im, n¥q

: : 2 i(2d_-d_ -d )u
7206 - * )

BINEZ AP [2 Zszwr*w A
- n o9 n m q
= n¥m, n#q

TR ]
n n

n m :
ném 1
o
: — 2 . ; i(2d_-d_ -d)u oo
TSR L
n m q nom q re o
y . id -d jd_-d ) I
-ZZ Iv\ izww*e noaq -ZZ 'w |2w w*e n.om S
el n n q n m n n m S
n#q n#m :4
B
. , J2(d_-d_)u B
z ! 4 2 %2 J n m 4 -
- lw i - Z E woow e + w -9
n n n m n m Zn: ’ nl R
—x —x 2 N . . (d -d )u . ;
) - * ) < J .
: (‘"2 (e "6) [Hn(u) FO z(u) - Z Z (w “w w e M 9 i
= & n n q [ J
B
4 2 K .i(dn-d )u 4 *
I VAENLED 3 MR P I D D PR
n m n
720 -0 2 * y
= el 20 (7D, [ H () F_*2w) - 26 () F *w - [H w2 +2 2, |w |4] e
(o] o (o] o n n -~
where Go(u) is given by Eq. (9) and Ho(u) by Eq. (10).
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(4c) n=q, n#m, n#p, m#p

By symmetry, the contribution of these terms equals that of (4a).
(4d) m=p, m#n, miq, n#q

By symmetry, the contribution of these terms equals that of (4a).
(4e) m=q, m+¢n, m#p, n#p

By symmetry, the contribution of these terms equals the complex conjugate
of that of (4b).
(4f) p=q, p#n, p#m, n#m

By symmetry, the contribution of these terms equals that of (4a). Hence of
the six cases for which exactly two indices are equal, four are equivalent to (4a)
and two are complex conjugates.

(5) no indices equal
These terms contribute
4 o . jd -d_+d ~d
T2 2 2y v fuow SO Im g
n m P Q@ n m p

q
no indices equal

= |;]F6-|4 {Z Z Z Z T *w - B ej(dn-dm+dp'dq)u
n m p q n m p

q

4 * 4 & 4
- ; lw |* - Z[Go(u) F ol - 2 lw | ] . z[c;0 @ F - 25 lw | ]

- z[(zn: |wn|2)2 ) Zn: |wn|4] . ['Ho(“”Z i § |wn|4]
XU Z lw)? - 2 re (G T, w) (§ |WH\2>2

+ 2 Z |Wn|4]
n
- 2 Re [Ho(u) Fo*z(u) - 2G_(u) Fo*(u) - [H (W 2,9 }:n |wn|4]}
- |_J"5 4

4 2 2
el?| [IFO(u)I -4|Fo(u)| ; Iwnl + 8 Re [Go(u)Fo (u)]

e 2
+ TH ]2 - 2 Re[Ho(u) F_ 2(u)] + 2 (En: lwnlz) -6 Zn: Iwn|4] .
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T To obtain the first equality we have simply pooled the results of the preceeding
3 cases.

The average of the squared power, |F(u)| : . is equal to the sum of the con-
tributions of the separate cases we have analyzed. Equation (7) shows that to

calculate the variance of the power we must subtract the square of the average
power from the average of the squared power. From Eq. (4) the square of the
average power is given by

2 i—=14
<|F(u)|2) ='eJ6| IFo(u)|4 + 2

+(1-2

Subtracting Eq. (11) from [Fu)l® and combining terms, the variance of the power
is found to be

—2 - 2
) 5 . 2 2
ol ‘ (1 - e’ ' ) |Po(u)| Zn Iwnl

;75‘4)<}: Iwnl2)2 ) (11)
n

—=2
e'la‘ +

i

=2
Var (|F(u)|2)=2 eJG, ((l- e

2)( > |wn|2> |F0(u)|2

n

— 2 : 12 e
-4 eJ6 (1+ ,eJZG’ -2 eJG' ) Re[Go(u)Fo (u)]
— 2 —=| 2
[ (497 - ) 2
2|e e le |} Re [Ho(u)lo (u)]

+

—12 - 2
elo’ -‘e”&‘) [ H (w2
o)
J

(P - ) |
(- Y ()
(-

+

. o
n

—2 —72 — 2 —14 R
o Y EL] I REL] Y WL A LT eJ°’ ) (Z 1w 4) ]
o n ®

We have shown above, in Eq. (3), that for phase errors uniformly distributed in the

N, . . - .
: _ _ .5 bit "J5 _ sinA o j20 _sin 2A

interval (-A, A], A =17/2 ey e Similarly = —5x— and so -
L
]
®
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Vi (!F(u)|’)) - 2(smA) [ | - (.smA) ](E |wn‘2) iL‘o(u)l-
A n

. 2 :
) [1 + E’m ZA -2 ( 51_‘;3) ] Re [(}b(u) e (u)]
512A> [( sin ) . %] Re[llo(u) ¥, "‘tu)]

]
[V

+
— f !
A

+

(2T ()

sina )%, (sin2a\%_ , (sina)’ sin2a
& IS A 24

v 6 (ﬂ%)‘l] (Z lwnl4> (12)

n

—
]
o

where (_v (u) and H (u) are given by Egs. (9) and (10) respectively. As above for the
average powor p‘i’(tern. the variance of the power is the superposition of terms

that are direction dependent and terms that are direction }ndepender}t (that is,
cmnidirectional). For A =0 (that is, no phase errors), 512 A and su21A2A are both
unity and Eq. (12) reduces to zero as required. In applic:ations to Qhase shifters
with many bits we can approximate the combinations of SIZA and sz iA that

appear in Eq. (12) by their small angle forms thus obtaining after some manipula-

2
d[‘< |I (u)l ) =

2
2A 7.2 2 . 2 8 .4 Lo
(-5 A )(En: |wn| ) lbo(u)| -5 AT Re [G (W) F_(u)]

tion

2 4
2A 3.2 L2 A 2
- 5= (1= 285 Re [Hy(W F - “(w] + 55 [H (Wl
A

T

2
2\ 2 4 4
(2 16,03) - 2 8 (X 1w,l®). wy2a s a

n n

hd

1
d i .

K]

. '

.. . Y
e e vt w
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At a null of the error-iree pattern, the variance of the power is given by

, o F {w=0
var (Jr@) (% °=

. 2

[<sinAA )3 ) siréiA]z l_(w!? [] _(sinAA)z] (Z lwnlz) 2

>4

Yoit 7 2 2\ 6 4
= T [lﬂoml +(Z w ! ) -5 (E lw, | )] (14)

n n

It is of interest to estimate the relative contribution of the three terms within the

square brackets on the left hand side of Eq. (14). For phases of the error-free weights
-id ug
varving linearly over the array we can write wos a e "% and so from Eq. (10)

. 24 (u-u)
R A n S
[Io(u) = £, 4. ° .

it
n

tience Ho(u) has a maximum magnitude of Zai at those directions for which

u=u, : mrn or cquivalently
=

kdsin @ kdsing :mn

5
or

) . by
sin § = sin ¢ + m
S 7q

If, for example, d/Aa=1 and 0% = 0 then in the visible region Ho(u) = Zaf‘ when
sin (=0, + 1/20r n:0”, 1+ 30°. As u moves awayv from these points, Ho(u) falls
off rapidlv, especiallv for arravs with a strong taper of the amplitudes of the

2

s\ 2
can be neglected compared to (Z | w [2') .

. . ' |
error-free weights, and so ll{()(u)‘
n

n
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As far as the relative contribution of the terms E]wn[ > and Y z|wn| is
concerned, applying Cauchy's inequality (Ref. 4) we obtain

AIRLED> [(iwn|2)"’] <(Z ey 17)°

and applying Chebyshev's inequality (Ref. 5) we obtain

CE e Z ()T (2 )’

n

so that
6 Z/W |4
6 . 5 n n < 8 (15)
S_N_——_ZT_S'
(2, 2)
n

Note that the left "'<" in Eq. (15) becomes equality for the case of a uniform ampli-
tude array, and that the right "'<" becomes equality for the case of an urray with
all amplitudes except for one equal to zero. Furthermore it can be shown (see

Appendix A) that for any amplitude taper describable by a polynominal in n, the

4. Cauchy's Inequalitv:

: . . (equality for a, = ¢b
. 2 2 k k
kzz:l % Pk kzl k RZ] by ¢ constant),

See Abramowitz, M. (1972) Flementarv analytical methods, Chap. 3 of Handbook of

Mathematical Functions, M. Abramowitz and I. Stegun, (Eds.), llover, N. V.

5. Chebvshev's Inequality:

fta, 2a, >a, > Za . ]
1 %2 T n o
! R > )
i b1 )_ b3 bn :
s T
. n n n »
R
. 2 (Za) (2w .
k-1 k=1 k=1 -
See Abramowitz, 1\1.4. »
. 1
- J
l @ 20 . '.'1
s - 9
f R
1 ]
b <
b 1
h 1
d -
- -
*.- - . - a 4 4 r3 R e » - bt i — el
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units in which the quantity is measured. [The ratio of the standard deviation {(that

| S A

g

1

<

.

4 2\? ]

!‘ ratio of Z | wn| to < Z | wn| ) is proportional to 1/N as N becomes large. Hence -7 '4

A for large arrays and any usual amplitude taper, % Z |wn| 4 is of the order of 1/N N 1

2 : ]

compared with (E ‘Wn' 2 and can be neglected. ]

It is often useful to eXpress the variance of a quantity relative to the square of S

- b
the mean of the quantity, thus giving a measure of variance divorced from the actual o
S ’

is, the square root of the variance) to the mean is known as the coefficient of varia-

. tion.] If Eq. (14) is divided by the square of Eq. (6b) we obtain :
4 ]
|Ho(u)|2-6 Z|w| et

! Var lF(u)|2) -1+ 5 m n__ (16)
'
,L

[ TFwi?] (2 1w,02)

RN W

( Note that, to within the restriction that A is small enough for (sin A)/A and _
1 (sin 2A)/(2A) to be well approximated by their small angle forms, the ratio of the e A
’ variance of the power to the square of the mean power at a direction for which the '
' error-free pattern has a null is independent of the magnitude of the phase errors.
In accordance with the discussion of the previous paragraph, if u is not in the

: vicinity of those points for which Ho(u) has its maxima, and if the number of

‘ elements in the array is large, the second term on the right hand side of Eq. (16) T
,r can be neglected compared with one and so the variance of the power is approxi- o ' §
'Ei mutely equal to the square of the mean of the power. Equivalently, the standard

:

deviation of the power is approximately equal to the mean of the power,

. .
! 2.3 Probability Distribution of the Power . A

Having derived expressions for the mean and variance of the power, we now
obtain the probabiiity distribution of the amplitude of the field in a given direction
of the pattern. By a simple transformation, we can then also obtain the probability
distribution of the power in a given direction. Our procedure is essentially that of

Allen2 and Beckmann, 6 We first resolve the field into its real and imaginary

v T
‘f components, each of which is given by a sum of N terms (N = number of elements
3 in the array) involving trigonometric functions of the random phase errors. Since

:'-_ A the phase errors are assumed to be mutually independent, the terms of the sums ]

" are independent random variables. We assume that N is sufficiently large (and that -

4 . )

r = -4

6. Beckmann, P. (1967) Probability in Communication Engineering, Harcourt, ' ]

Brace and World, Inc., New York, pp. 59-63. 1
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no one term dominates the sum) for the Central Limit Theorem to apply, and so
infer that the real and imaginary parts of the field are Gaussian distributed. It is
straightforward to calculate the mean, variance, and covariance of the real and
imaginary field components. We then transform from cartesian to polar coor-
dinates and obtain the probability distribution of the amplitude of the field by inte-
grating the joint probability distribution of the amplitude and phase of the field with
respect to the phase,

io
Referring to Eq. (1), let the error-free weights be represented by a e n
Then
jo, 36 jd u
F(u):Z a e Re Mg N
noon
v, 36
= Z a_e De 1
n
n
where
xpn =0, t dnu .
Then
X = Re{F(u)] = zn: a, cos (tl/n+ én) (17a)
= Zn: a, (cos wn cos Gn - sin tpn sin 6n) (17b)
and
Y = Im[F(u)] = § a  sin (\pn + 6n) (18a)
= g ay (sin l,l/n cos On + cos \I/n sin Gn) . (18b)

Since our interecst is in large arrayvs, and since for such arravs no one element can
be singled out as dominant, we can apply the Central Limit Theorem to assert that
the real and imaginary parts of the field are random variables with a joint bivariate
Gaussian probability distribution, The statistics of this distribution are completely
determined by the means, variances, and covariance, so that our task is to calcu-

late these quantities.
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The phase errors, On, are assumed to be identically and uniformly distributed

N, . N, .
in the interval [-7/2 blt, n/2 blt]. Hence
sin 5n= 0
_sin A _ T
Efb_n— —x A= —Nb_E (19)
2

and thus from Egs. (17b) and (18b), the means of the real and imaginary parts of
the field are

T _ sin A
X = - En: an Cos wn
_ sin A -
= 388 Re(F_(u)], (20)

and

- _ sin A i .
Y = A annsmd/n

in A .
= S“; Im (F_(W] . (21)

To calculate the variances of the real and imaginary parts of the field, ci

and oi,, we write Eqs. (17a) and (18a) in the form
2 %, x
n’ “n
n
Y = Z Yo' ¥n

n

X

1t
f1

a cos W, + Gn)

a sin(l[/n + Gn)

and use the theorem that tne variance of a sum of independent random variables

: . 3 .
equals tne sum of their variances” to give

02 =% o2
n n

<
- N
t
™
Q
< ™
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and

:Twl

I}
oo} —

jol

5

=2
xT - X
n n
2 =2
Yn n
sin A | .
A dp Cos Wn,

«

sin A 2 a2 coszw
A n n

o] —

sin A

(o

. 2 ~ al
a_ cos (d/n + Gn)

1
2

1
2

1
2

oo —

1
2

2
> an [1+ cos(2z[/n)]

ai {1 + cos[Z(Wn + Gn)] }

3]

[1 + cos(2t[/n) cosiZ5n) - Sin(2¢/n) sinz25n5]

9 .
a. [1+Sl—nz§A cos (21,(/n):| .

«

a

d

(

e ——
ai sin (t[/n + ﬁn)

2
n

2
n

sin A
A

2
2 .2
—A—_) ap sin an

2 3
) a [1- cos(21,l/n)] s

{1-cs e, wo |

[1_

sin 2A
2A

cos(zdxn)]
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where we nave made use of the trigonometric identities

2 1

cos 9:§(l+cos 20) (22)
sin2 [°] =%(1 - cos 20).
Hence

2 . 2 .
2 1 sin A 2 1 sin A sin 2A 2
o —5[1-< A ) ]an-§[<A ) - ZA] ancos(ZWn)

. 2 .
sin A sin 2A 2
[( A ) - —35x ] a, cos (21{/n)

and
. . 2 . 2
2 1 sin A 221 sin A sin 2A .2
Ux i [1 ) ( A > ]; dn -2 [ ( A ) i 2A ] ? dn €08 (2wn)
(23)
. . 2 . 2 .
2 _ 1 _ [ sinA 2 1 sin & sin 2A 2
CIY—-E-[I < A ) ]En dn+§[< A > - 53 ]Zn:ancos(b#n).
(24)

The covariance of the real and imaginary parts of the field is defined by

Now, from kgs. (17b) and (18b),

XY = Zn: Zn_‘: aja (cos Wn cos Gn - sin l,l/n sin 6n) (sin V/m cos 6m + cos l,l/m sinﬁm,

nt m

n

1 2 =
+ 3 ; ag sm[?iwn+ 0 ) (25)

where, as above, we have separated the double summation into the terms for which
n# m and hence én and ém are independent, and the terms for which n=m. The

double summation in lig. (25) reduces to

25
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m

. 2
(-SEA—A) Z Z una cos Lpn sin l,l/m

because of Eq. (19), and

il

% § a2 sin]?iwn + 5n5 %Z ale [sin(2y ) cos(25n) + cos(2\,bn) sin325n)']

n
n

_ 1 sin 2A 2 .
=5—3x— ~ ansm(ZvJ/n).

Hence

Y
XY = <&AA_) [Zn: Zm: a_a cosy siny - 2 ai cos Y sin w“]

n

‘
0S|
w
z
[ M B
Bles
>
=M
o
=
n
<
>
[
:ﬁ

and

- 2 .
o1 sin A _sin 24 2 . ,
oy - h [(__A ) 2A..] 3y sin 24y

We have thus obtained expressions for all the quantities —means, variances,
and covariance —needed to define the joint pr'obability distribution of the real and
imaginary parts of the field. Although it is possible to proceed to obtain the dis-
tribution of the amplitude of the error field for the general case of a complex
error-free field, 6 for our purposes here it is sufficient to restrict attention to the
case of a real error-free field. If Im[Fo(u)] = 0, we see from Eqg. (21) that T=0,
Furthermore, if the imaginary part of the field is zero, then the amplitudes of the

array element weights must be even-symmetric and the phases of the weights odd-




symmetric with respect to the center of the array. * Hence the covariance of the

real and imaginary parts of the field vanishes. We then have

-+ _ sinA
X—T Fo(u) (26)
Y=0 (27)
. 2 . 2 .
2 1 sin A 2 1 sin A sin 2A 2
9= 2 [1_ (T) ];an ] [( A ) T T 2A ] Zn:ancos(Zt//n)
(28)
2 .
2 _ 1 sin A 2 1 sin A sin 2 A 2
fod (5 R - [ee) 5] B
(29)
UXY= 0

and the joint probability distribution of the real and imaginary parts of the field is

given by
=2 2
1 -X Y
p(X,Y) = 70,0 ©XP [‘ (X 2) - ) ] . (30)
- XY 20x 20’Y

We now transform to polar coordinates letting

X = |F| cos ¢
Y = |F| sina (31) .
dxdY = |F| d|F| do oK
so that F| is the amplitude and 8 the phase of the field. Note that since ‘_-7 |
e ]22 24 v2 o A
F|¢= X%+ Y, the mean power is given by .
[F]? = X2+ 2
=Y2+V2*0X2+0Y2 .
e
Dl
7. Oppenheim, A,V., and Schafer, R.W. (1975) Digital Signal Processing,
Prentice -Hall, New Jersev, pp. 24-26,
27 g
1
1
X
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and hence from Eqs. (20), (21), (23), and (24), we have in general (that is, with
no restriction to real error-free fields)

. 2 . 2
E7 - (58) irgwi®e [1- (32 )5 22

in agreement with Eq. (4) which gives the average power obtained more directly
above. Substituting Eq. (31) into Eq. (30),

pF|, 6) = |F| exp[- (|F| cos g - %2 . UF| sin9)2]
2n oy 9y 20, 20, °

o)

| F| 1 lFizcosze-25(-|Flcos€+f2+fF,|zsin29
2r o0, ©Xp - i 2 2 *
X"y o, o
X Y

Using the trigonometric identities of Eq. (22) we obtain

. | F| 1 1 1 2 X% 7
p(lxl. o) - Mo, 0y e"P[‘z(_r——z) R ——zJ
Iy O'Y 20X

[*) o)

exp ['41( 12 '_2'1 ) |F!2cos (26) +*2_X|F| cose]
X Y %

,Fl -D -Pcos(26) +Q cos@
e e

2170XUY
where
p-L1(_1 LY k|2 + x° (32a)
=3 *z"—z) P} a
g. o,. 20,
X Y X
1 1 1 2
[):I<0 -02_)([’ (32b)
X Y
Q = Z‘_Qz_' ] (32¢)
o
X
28
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The probability distribution of the field amplitude is then found by integrating
ptl I|, 8) with respect to @,
2r

plrh j (frl, 9rde

0

= 2J pUlFi, #)do

0

]

- ~'.Ol‘i0 Pt
i x \

witere

P o (2 ) oS
I-—J C} cos(20)+ Q cosp Jdo .
0

Proceeding @5 in Reference 6 we obtain an expression for the integrul 1in terms of

a series of modified Bessel functions.  First, using the identities in Reference 8

o
Leos g _ Z € ll,‘/') cos k0, ¢ = { 1, k=0
k= 0 ¢ ‘ 2, k40
1, (-7) = (—1)k ['_,(/.)
we can weite
oC
w2y (20 <
GPos B R CR e 1 (P cos (2k0)
-0 k
=0 that
] i
P D, St (P)j QoS os(2kg) dp .
K= 0 k™ Jo

Then, using the relation in Reference 8

i

1 (2) :éf 2980 Losng) de
n 7 0

8. Olver, F,W.J, (1972) Bessel functions of integer order, Chap. 9 in Handbook

of Mathematical Functions, M. Abramowitz and 1. Stegun, Eds., Dover, N, Y

pp. 378 37T,
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we have

f QR eos e cos(2kf) do =7 I, (Q

so that

@

1=1 2 € L (P) Ly, (@)
k=0 =

and the desired probability distribution of the field amplitude is

o0
pllFD= 0—'% C_D Z (-1)k €y Ik(P)I
.Y k=0

2k(Q) (33)

with D, P, and Q given by Egs. (32a-c). The distribution can be normalized by letting

2 <2

B 2—‘2—2- (34a)

O, +0
N Y

|f| = ——2__|I|=2 (34b)

JUX +O&
and

g..

K = 0_\ (34c¢)
X

so that 82 is the ratio of the constant component of the power to the average power
in the fluctuating component of the power, and K is a measure of the asymmetry in
the average proportion of the fluctuating component of the power associated with
the real and imaginary parts of the field. Substituting Eq. (34) into Eq. (33) we
obtain

2 2 2
pleh = Bl 1ol exp [ (155 ) (524 22K 1012))]
2K

o0
4
k K -1 2 2
x 2 -D°1 ( | £] ) I B(1+K) |f] |. (35)
k=0 k\ 4g? 2k

30




Curves of this distribution are given by Beckmann in References 9 and 10, The
probability density function of the power can be obtained if desired from the prob-

ability density function of the field amplitude by the relations in Reference 6

2 1 -
piF|2(|F| ) = 3TFT p|F|(|b|> (36)
2 1
pmz(lfl )= g7 pie] (Irh

using the notation pv(x) to mean the probability density of the random variable y as
a function of x. ’

The combinations of SiZA and SHAZA appearing in kqgs. (28) and (29) for the

variance of the reul and imaginary parts of the field can be replaced by their
small angle forms for N,_., >4 thus vielding

bit
02*A2 Z’Z—ZachSZ(d u+ o) (37)
X 5 = “n = “n n ®n
2
2_A 2 2 1 -]
o =g [Z a+ Z a_ cos 2(dnu+on)J . (38)
n n . ]
The second term within the square brackets is (for real fields) the function Ho(u\ :
encountered earlier {see q. (10)] in the course of obtaining an expression for the & |
variance of the power. We showed above (see p. 19) that Ho(u) can be neglected ' {
9
compared to a”

unless u is close to the points, midwayv between grating lobes,
for which |H0(u)[ takes on its maximum value. Then

.1
9. Beckmann, P., und spizzichino, A, (1963) The Scattering of Electromagnetic o
Waves From Rough Surfaces, Pergamon Press, Macmillan, Now York, .
Appendix F. 5
10. Beckmann, I’. (1963) Statistical distribution of the amplitude and phase of a .
mulliply scattered ficld, J. Res. Natl, Bur, $td,, D, 66(No. 3):231-240. 9
VA -l
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"
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1
R
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2
2 2 _ A 2 _ 2
g =07 = & En an-o (39)

and K=1. Since IO(O)= 1 and Ik(0)= 0 for k# 0, Eq. (35), which gives the probability
density of the normalized field amplitude, reduces to

plel) = 21l exp [ 16+ 1] o(ex)

or
|F| X2 . IFIZ) X|F|
p(|F|) = —2—0 exp (- -——-—2—-—20 Io —2—0 (40)

a distribution known as the Rice-Nakagami distribution and treated in slightly

different forms in detail by Rice11 and by Norton et al in Reference 12.

11. Rice, S.0O. (1954) Mathematical analysis of random noise, reprinted in
Selected Papers on Noise and Stochastic Processes, N. Wax. (Eds.),
Dover, New York, pp. 239-241.

12. Norton, K.A., et al (1955) The probability distribution of the amplitude of a
constant vector plus a Rayleigh-distributed vector, Proc. IRE :1‘3: 1354-1361.

'Nor'ton et al discuss the complement of the cumulative distribution function of the

probability density function

p(r):;zz r exp [ - (1 + rz)/kz] I < Eg-)

which is obtained from Eq. (40) via the correspondence

r=F| - IR +1, k%= 202

Figure 4 of Norton et al contains plots of the complement ot the cumulative distribu-
r-1
k
notation this is e?uivalenf to plotting the complement of the cumulative distribution

function of lP.l -

tion function of

for various values of the parameter K= 20 loglo(k). In our

> X for various values of K= 10 log (20 2). Rice discusses the
2

probability density function
v 4 a?

p(v) = v exp (- ) 158 (av)

which can be obtained from Eq. (40) by letting
IX|
o

g

He gives plots of both p(v) and its cumulative distribution function,
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For our purposes it is somewhat more convenient to follow Rice's normalization

B R b
vE SGes = (41)
For small values of the parameter a the cumulative distribution function
V2 + a2
C(v) :L vexp |- —my— I0 (av) dv (42)

can be obtained by numerical integration. For large values of a Rice obtains an
asymptotic expansion for C(v) in inverse powers of @ by first replacing Io(a v) by

its large argument asymptotic form, given in Reference 8,

av
Lav) ~ —=—— (1+av)
o V2mav
so that
1/2 5
()*—1— = l+——1- ex A
ptv 27 \ @ av p 2
v 1/2 V-
and then expanding a 1+7;v—v in a series of powers of and integrating

term by term. The resulting expansion through terms 0_3 is

Civ) *%+%erf( v-a>

vz

2 2
1 v-ao 1+(v-a) (v-oa)
- —_— 1- +——— ex S . (43)
201\/271 [ ta 8§ a ] p[ ]

In Table 1 we compare values of the Rician cumulative distribution function obtained

by performing the integration in Eq. (42) numerically (using the IMSL routine
DCADRE) with values obtained using the asymptotic form of Eq. (43), It is seen
that the asymptotic form gives an excellent fit to the exact values for a > 3.

If we further specialize our results and consider the probability distribution of
the amplitude at a direction for which the error-free pattern has a null, then X
given by Eq. (26) equals zero and p(lFl ) in Eq. (40) reduces to the Rayleigh
distribution

p(|I"|) = |lé—'—exp <- ll'i’;).
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According to Eq. (36), the probability density function of the power is then the
exponential distribution

12 1 Ik

P .)(l}! ): -—Z exp - _T . (44)
[1]° 20 20
The mean power is given by | 12
13
[+ o) -
2 2

lf!zz —1—, p|2 e 20 d(lFl2)=2022%— Z ai (45)

207 JO n

in agreement with kq. (6b). The variance of the power is obtained from

w , - 1EL
? 2 P 2 :
- <[J"|“—(l-‘!2) e 20 d(lFlZ)
207 0
o0 —_)’_2 2
= —lvj vPe 27 ay - x|
20°J0

2 (20%)% - (2032
4 2
(20%% = & <; di) ) (46)

Comparing Eq. (46) with the expression in Eq. (14) for the variance of the power at
a null of the error-free pattern obtained earlier and neglecting Ho(u) in Eq. (14)

to be consistent with the assumption made in obtaining Eqs. (39) and (40), we see
that Eq. (14) contains the extra term % Z |wn|4. This apparent discrepancy is
explained by the fact that our derivation of the probability distribution of the ampli-
tude and power is based on the application of the Central Limit Theorem and so is
an approximation to the actual probability distribution. This approximate distribu-

tion approaches the actual distribution as the number of elements in the array, N,

becomes large, provided no one amplitude of the element weights can be singled out
as dominant. Our derivation of the expression for the variance of the power

[Eq. (14)] involved no approximation and so cannot be expected to be identical to the
expression for the variance obtained by applying the Central Limit Theorem except
under the same conditions that the Central Limit Theorem applies. But we have
seen earliezr (see p, 20) that z lwnl4 is of the order of 1/N compared with

( Z[ wn{ 2) for any amplitude taper described by a polynomial (that is, any usual
amplitude taper) and indeed for such tapers no one aré\plitude is dominant. Hence

% Z ‘ wn( 4 can be neglected compared to { Z‘wn‘ 2) under exactly the conditions
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for which the Central Limit Theorem applies, thus yielding agreement between
Eqgs. (46) and (14). Note that the approximate equality of the variance of the power
and the square of the mean power demonstrated above in connection with Eq. (186)
approaches actual equality as the number ot elements in the array increases and the
probability distribution of the power approaches the exponential distribution for
which, as we have seen, the variance is exactly equal to the squarc of the mean.
When nulls are placed in array patterns adaptively, the presence of multiple
sources of interference can make it important to have nulls at each of several
different directions. Accordingly it is of interest to consider the effect of quantized
phase errors on the pattern at several directions simultaneously, for each of which
the error-free pattern has a theoretically pertect null. It is then natural to examine
the distribution of the least deep null among the several different directions, since
the least deep null may serve as a limiting factor in determining the performance
of the array. Now, the probability that the least deep null is less than or equal to
a given level is equal to the probability that the pattern at all the specified direc-
tions is less than or equal to that given level, Jf we muke the simplifyving assump-
tion that, for a given distribution of phase errors across the arrayv, the null depths

at any two locations for which the error-free pattern has a null are independent of

each other, then we can obtain the desired probability simiply by multiplving together

the probuabilities that cach null is less than or equal to the given level, But from
the discussion ubove [see Eq. (44)], the probability distribution of the power at any

location for which the error free pattern has a null is given by

]2 )2 e
CUrptey = ——2—5 e ddEi®)y = 1 -0 7 . 47)
: 0

Hence the cumulative probability distribution of the least deep null among Al loco-
tions for which the error-free pattern has perfect nulls is given by
el M
202
C,o i = 1-e . 49

The corresponding probability densityv function is

poUEldy e —4 ¢ (rlh
M TR
T T i
7 —
M 20 20
2‘—-2 1 -¢ (&
20
35
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M-1
pM(§)= M(l-e_q) e S

where we have let

¢- P12
20

The mean and variance of this distribution can be calculated analytically using
the formula given in Reference 13

e M-1 M-1
f ¢V e - ac= oMl rewy 3 0k M;{l)__l__y,
0 ' (M - k)

To obtain the mean we let v=2 so that
M-1

- k { M-1 i
T-0""'m X (-1 ( >——2
k=0 k (M - k)
and
?
[K]% = 202 7.

To obtain the variance we let v=3. lHence

> M-1 :
Var(€) Mfo e? (1-e7%) ¢S ac -2

o0
M-1 k{DM-1 1 2
Ml Tk (M) 1 e
k= 0 K/ -x)

and

2
\'at'(‘l-’\z) = (202) Var(g) .

13. Gradshteyn, L. S., andRyzhik, L. M. (1980) Table of Integrals, Series, and
Products, Acudemic Press, pp. 317, 333,
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For the first few values of M we have the results in Tablg}.

..
iz |

r
@

by

.
L iy
= -
: Table 2. Mean and Variance of the Probability Density Function
: of the Least Deep Null Among M Locations L
o
M g Var (€) ’ m'.'q
2 2 .
1 1 1 |F|° = 20°T :
9 9 2 -
2 3/2 5/4 Var(lFl ) = (207) Var() : ]
2 .
3 11/6 49/36 202 - A” Z az o
3 n p
4 25/12 205/144 B
[
b

Note that for M= 1, the values for the mean and variancg of the least deep null agree
with those found above [compare with Eqs. (45) and (46)] for a single null. 1

The final special case we shall consider here is that of the probability distribu- _,'.-.;
tion of the amplitude and power at directions midway between grating lobes. For .
a linear phase variation, ¢ _= -dn ug, of the element weights across the arrav, these :

n
directions are given by ;

uzu T mun. .
S .4

Since the focus of this report is the influence of phase errors on sidelobe levels we
will restrict our attention to the case of m odd. (If m is even there is a grating
lobe at the location u, The assumption that m is odd is not immediately needed
here but is required in demonstrating agreement between the exact expression for . ..ﬁ
the variance of the power derived earlier and the expression derived below from
the probability distribution of the amplitude and power for this special case.} For

these directions it is easily verified that

Z ai cos [2(¢n+ dnu)]z + Z ai (49) . .

n n
- 4

so that from the approximations (37) and (38), either

- 2 _A 2
=0, 00 =5 ) at (50)

L

or
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(7; = 0, 0‘3 =z é— R (51)

[SV]
(3]

according as the plus or minus sign respectively is taken in liq, (49). Rather than
attempting to specialize the general expressions we have derived above for the
probability distribution of the amplitude and power to cover these cases, it is much
simpler to derive the desired distributions starting with the variances of the real
and imaginary parts of the field, Egs. (50) or (51). (The means of the real and

imaginary parts of the field are, from Eqgs. (26) and (27), given by SIZA Fo(u)

and 0 respectively.)

For the first case, Eq. (50), the amplitude of the field is given by
[ ¥ = (X2+ \'2)1/2 so that Y=+ (| I I 2 -22)1/2. Using the formula for the probability
distribution of a function of a random variable7 and the fact that Y is Gaussian

distributed we have immediately

s

S 1/2 . 20..2
pileh-L (2 / ¥ e %y ¥ 2 X
Oy AT (lr]2-x 9! | S

The probability density of the power is, from Eq. (36), given by

_r]%-x2
g
g2 ] 1 Y
p  LUE[%) = — T3 e |
[#]? (2.)17% (|12 -x4!

‘|2 > XZ
0'Y

and a short calculation then gives the cumulative distribution function of the power,

COFI®) = exf [(%Lz-\—) ] L)% %2 (52)
70,

where erf(z) is the error function,

“ 2
erf(z) = 2 f c‘t dt.
i 0

‘/',_

The mean power is given by

- _dr®-x%3
2 20,2
THE — fz ¥ —_ Y oadrl®.
39
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Making the substitution v = |F|2 - X'z. dv = d(lF‘z). and using the formulas given

in Reference 13

i 1/2 [ n-+ n
n- - ——
- - - 2
fxl/ch'x=<-7-;-> , fx E-ep'xdx=771/2%'g"""znz 1#
0 ¢ 0
(53)
we find
12 =<2 40,2 = 1-Az Fz()+“‘222 (54)
T Yy ° T ) oW T T & %y
in agreement with Eq. (5).
The variance of the power is given by
LS <
[~ o]
14 20, _
ent®o T2 (r]*-x%

Muking tne same change of variables used in obtaining the mean and again using

Eqg. (53) we find taat tne variance of tne power is

vard Fl% = 20\,4
4 2
_ 24 2
- 28 ( zn, dn) . (55)

Comparing the approximation (55) with tne exact (to witnin tue small phase error
approximation) expression for the variance of tne power given by Eq. (13) and noting
tnat for the special case we are considering [Io(u) = ar21 cos |2 dn(u - us)] = Z ai,
we see that tne exact expression contains several terms in addition to those in the
approximation (55). Similarly to our discussion on p. 35 of the apparent discrepancy
at a pattern null between tue exact expression for the variance, and the expression
obtained from tne Central Limit Theorem and the probability distribution of the
amplitude, it can be snown (see Appendix A) that the extra terms can be neglected
for lurge arrays and so the two results agree.

For the second case, we consider the approximation (51), and begin by noting
tnat the error-free pattern has 32 null at the directions we are considering. Since

Zaicos[Zdn(u -ug)j= - 3 a, cos(2d (u- u )] = -1 and hence

40
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cos [2dn (u- us)]

cos 32[5-;—1- -(n-l)] mn

cos[(N-1) mnm)

= ~1

so that
(N~-1l)mw=xm, % 37, 257, °**
'..'4
and :

(N-1)m==%1, £3, £5, -+,

o T ™
.".'.‘ co e PR

But then ..a
B
cos[d (u-u)]= cos {[-N;—l -(n—l)] mn} ;

= (- 1)(n-l)m cos(l\l-1 mn)

L

2

- ny t el Ld Lk o8 Ad
.
'
.

since (N - 1)m is odd and so

- o

Fo(u) = ; a cos[dn(u-us)] =0, :‘ 3

4

Since the error-free pattern has a null, the mean of the real part of the field, AR

X, equals zero. Thus |F] = |X] and the probability density of the amplitude and :;T"—w
power are -
_lr]® o]

C

pr]) === (%)Uze 2ox

x ' o

N J

and

@
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20 .
X
2 1 e
p (Ir|%) =
|F|2 (ZUTUZ oy il

respectively. These density functions are identical with those obtained for the first

case by the substitutions X <« 0, OYZ <-—>0X2, so that the mean and variance

of the power are

T 2
[F[° = 0y
2
_ A Z 2
T - - dn
and
var (| F|%) = 2".\'4

(56)

I
I
o
™
»
3
S ——
&

respectively. Comparing the approximation (56} with the more exact expression
given by Eq. (13) for the variance, noting that all the terms in the approximation

(13) containing Fo(u) are zero because of the null in the error free pattern and that

2 2\2 il 4.
‘Ho(u)‘ 2-(2 an) . and recalling that Z an is of the order of 1/N compared to
(Zaﬁ for large N, we see that the two expressions for the variance are in

agreement,

3. NUMERICAL RESULTS AND DISCUSSION

I.xample calculations in this section give results that are compared with re-
sults obtained in the analvsis of the preceding section, We consider here the dis-
tribution ol the power at (1) a single null, (2) multiple nulls, and (3) a non-null

sidelobe location,

3.1 Single Null

We begin with the distribution of the power at a direction for which the error-

free pattern has a perfect null, For concreteness we consider a broadside arrav of

42
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79 elements with half wavelength spacing and a 40 dB Chebyshev taper. The phases
of the array elements are assumed to be set with 8 bit digital phase shifters, The
error-free pattern of the array has a null at 20,3989, .. ° between the 13th and 14th
sidelobes. Calculating the mean power at this location using Eq. (4) we find

IFI2 =0.8072x 1075 = -60.9 dB

and calculating the variance of the power from Eq. (12),

12

var (|F|?) = 0.6351 x 10712,

hence, the standard deviation of the power equals 0.7969 X 10'6. Note that the
standard deviation of the power is approximately equal to the mean power, in agree-

ment with the discussion following Eq. (16). The contribution to the variance of

first three terms on the right hand side of Eq. (12) is effectively zero because of oy
the null of the error-free pattern; the contribution of the fourth term (in ‘H (u) !2) ..;_..;
equals 0. 84 X 10™17, the fifth term equals 0. 65 X 10”12, and the last term equals .
0.17 X 10-13. Thus, as was shown on p. 20, .Ho(u)‘z is negligible compared to , 4

< le “) (except at directions halfway between grating lobes). and, as dis-
cussed on p. 20 and proved in Appendix A, the term in le is of the order of

1/N compared with the term in <2lw 12 ? “h"j

We compute the probability distribution of the power at the same location from R
Eqgs. (28) and (29) with the result, 03\_ = 0,405 X 10 -6 and OY = 0.402 X 10 -6 with L
the term in Zai equal to 0,403 X 10-8 and the term inzai cos (21,bn) equal to ) ‘
0, 145 x 10_8 and hence negligible compared to the term Z an as was shown in the - :

discussion of Eq. (38). The parameter B of the normalized probability distribution,
Eq. (34a), is effectively zero because of the pattern null, and the parameter K given
bv Eqg. (34c) is equal to 0,996, Since K =1 and X=0, we expect the probability

distribution of the power to be well approximated by the exponential distribution S

given in Eq. (44) with a mean of —13— Z 2. = 0,8072 X 10 -6 and a variance equal to
the square of the mean, 0.6516x 10-12, Note that the variance of the power cal-

culated assuming the exponential distribution of the power is quite close to the value
of 0.6351 x 10712

To verify the above theoretical results we wrote a computer program to ran-

obtained from the exact expression for the variance,

domly perturb the phases of an equispaced array and calculate the resulting power
at a specified angle, given the number of elements, the spacing, the amplitude
taper, and the number of bits of the phase shifters, Each phase is independently
perturbed rrom its error-free xalue bv a random number taken from a uniform

blt' “/) blt

distribution in the interval {-7/2 }. A sample size of 1000 patterns was
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3
L—(TI taken for a 79 element, half wavelength spacing, 40 dB Chebyshev tapered array. .
T The mean power at the location 6 = 20.3989...° was found to be 0. 8043 X 10.6 ,
b 12 :

and the variance to be 0.6167 X 10~

sults. In l'igure 1 we show a computer generated plot (obtained using the IMSL

» in close agreement with the theoretical re-

mmaml

routine USPC) of the sample cumulative probability distribution and the theoretical

distribution of Eq. (47). (The letter M indicates that both curves share the same '
print location.) The close fit of the two curves is apparent. To further check the @
agreement of the saumple and theoretical cumulative distributions, a Kolmogorov-
Smirnov test (described in Reference 14) was performed using the IMSL routine S
NKsS1. The maximum absolute difference between the sample cumulative distribu- )
tion and the theoretical exponential distribution, Dn (n=size of sample, here equal
to 1000) was found to be 0.0228, the statistic z:ﬁ D, = 0.72, and the probability ‘@
of obtaining 4 value of z equal to or greater than 0. 72 was found to be 0, 68 so that
there is no reuson to reject the hypothesis that the exponential distribution is the
underlying population distribution of the power.

A similur set of calculations was performed for a nu.' that was imposed on the

79 clement, 40 dB Chebyshev pattern by small phase perturbations, using an itera-
tive technique described in Reference 15, The results do not differ in any significant
way from those obtained for the "nutural” null and need not be described here.

For reference purposes it is useful to have a plot of the normalized exponential
cumulative probability distribution of the power at a direction for which the error-
frec pattern has a null. In Figure 2 we have plotted the cumulative probability
distributions [ Eq. (48)]

Y|
\ 2 2
(.M(p ) = [1 -exp(-p )]

for M=1to 3 as a function of 10 loglo (pz) where p2 is the power normalized by

202 with -
2 2 L
y 2 sin A ) 2 ( )
) = - H e 4
20 [1 ( A Z in/z a, »
n n
2 2 X
. 4 22 ( ) o7 -
= =3 Z a, 2 a A= g
n n 9 bit s
T
X
The curve M= 1 is the exponential cumulative probability distribution. (The curves o
for other values of M are relevant to the discussion below of multiple nulls.) As e 3
an example of the use of this plot, in the case considered above Nbit= 8 so that ;.4
(Becausce of the length of Reference 14, References 14 and 15 will not be listed here.
See References, page 57.)
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A= ‘7/256 = 0.012, The sum Zdn normalized by Zan

2

2

more than -64. 9 from the mainlobe) is 0. 5.

A SN TN >PWOD O

is calculated to be
0.01608 so that 20™ = 0.8072 X 10.6 = -60, 9 dB. The probability of a null depth
20 dB below 20‘2 (-80. 9 dB from the mainlobe peak) is then seen to be 0.01, and
the probability of a null depth 10 dB below 202 (-70. 9 dB from the mainlobe) is
0.095. The probability of a value of power more than -4 dB below 202 (that is,
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Figure 1. sSample (1) and Theoretical (2) Cumulative Distribution Functions of . A
Power at the Error-free Pattern Null Location § = 20, 3989...°. Half wave- _—
length spacing is used in u 7i9-element, 40 dB Chebyshev tapered array with S
phase errors uniformly distributed in {-A, A}, A = Sl = 0,012 (M indicates
) . : 256 .
that both curves share the same print location) .
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3.2 Multiple Nulls

We next describe computations to compare with the analytic results obtained
for the distribution of the least deep null among several directions for each of
which the error-free pattern has a perfe-t null. We showed in the previous section
that, if we make the simplifying assumption that the null depths at any two different
locations are statistically independent of each other, the cumulative distribution of
the least deep null among M locations is given by kqg. (48). In the first computa-
tion performed here, we took a sample of 1000 random perturbations of the phuses
of the 79 element, half wavelength, 40 dB Chebyshev array with Nbif =
examined the distribution of the least deep null between the locations 6 = 20, 3984, ..
and 21, 9620...°. These locations are the nulls between the 13th and 14th sidelobes,

8, and

3

and between the 14th and 15th sidelobes, respectively. The values predicted for

the mean and variance of the sample on the basis of Eq. (48) (sce Table 2) arc

. 9 . g _ J
Il - 2 (20% = 3 (0.8072 > 1070 = 01211 107 -
2 - A
and
16 .
= 1
1
4
]
o




var(|F|? = %(202)= 0.8145 x 10712

The values calculated from the sample of 1000 were

Tk

F 12

= 0.1123 X 1072, var (|F|? = 0.7297 x 10712,

1000 11000
reasonably close to the predicted values although differing somewhat more in rela-
tive terms than the corresponding results for a single null at § = 20.3989...°
described above. The computer generated plot of the sample and theoretical
cumulative distribution functions is shown in Figure 3. Comparing Figure 3 with
Figure 1 shows that the fit of the theoretical with the sample cumulative distribu-
tion function (CDF') is somewhat poorer for the two-null case especially in the
middle portion of the plot. Note that the sample CDF is fairly consistently higher
than the theoretical CDF indicating that a greater proportion of the sample values
of the least deep null are to be found in a lower part of the range of power than is
predicted by the theoretical distribution. A Kolmogorov-Smirnov test was per-
formed on the sample. The maximum absolute difference between the sample and
theoretical CDF's, Dn’ was 0. 07, the statistic z = 2, 21, and the probability of
obtaining a value of z equal to or greater than 2. 21 was found to be 0. 0001 indicating
that the hypothesis that the underlying population distribution of the sample is des-
cribed by the theoretical distribution given by Eq. (48), should be rejected.

A similar computation was performed for the case of two nulls imposed on the
79 element, 40 dB Chebyshev pattern by small phase perturbations at the locations
0 = 20.78° and 21. 2° (approximately the left -3 dB point and the sidelobe peak of
the 13th sidelobe). The sample mean and variance were

Tk 6

a = - r o 2 _ . -1z
F|% g0 = 0-9044 X 1077, Var(|F|%) o0 =0.7196 X 107°%.

A plot of the sample and theoretical CDF's is shown in Figure 4. Here the diver-
gence between the two distributions is clearly apparent, the sample distribution
being significantly higher than the theoretical distribution over almost the entire
range. This of course is reflected in the considerably lower value of the sample

mean compared with the theoretical mean. The Kolmogorov-Smirnov test gave
b =0 2080, 2 = 6,58, and Prob z 2 6. 58 = 0. 0000.
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The fact that the sample CDF is consistently higher than the theoretical CDF
indicates, as mentioned above, that a significantly greater proportion of the sample
values for the leust deep null are below those predicted by the theoretical distribu-
tion, and suggests that the null depths at closely spaced locations of the pattern are
not indcpendent of each other as was assumed in deriving the theoretical CDF given
by Eq. (48). If the null depth is low at one location it tends to be low at the other
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Figure 4.
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the Maximum Value of Power at the Two Error-free Pattern Imposed Null
Locations 8 = 20.78° and 21.2°. Half wavelength spacing is used in a
79-clement, 40 dB Chebyshev tapered array with phase errors uniformly

distributed in [-A, A], A = 2L56 = 0.012 (M indicates that both curves share
the same print location)

location as well.

was performed in which nulls were imposed on the basic 79 element, 40 dB

Chebyshev pattern at the widely spaced locations § = 12° and 72°, and a sample

taken of 1000 values of the least deep null among these two locations.

mean and variance were
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As a check on the validity of this hypothesis, another calculation
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0.1177 = 10°° (-59.3 dB), Var(}F|®) = 0.7747 x 107 %,

and the plot of the sample and theoretical CDF's is shown in Figure 5, The much
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closer fit of the sample and theoretical CDF's than in Figure 4 is apparent and is

i
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reflected in the Kolmogorov-Smirnov test which guve

Dn =0.025, 2=0.776, Probz 2z 0.7i6 = 0.58,
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indicating consistency of the sample and theoretical CDF's,
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The high statistical correlation between the null depths at neighboring loca-
tions has interesting implications for nulling with phased arrays employing digital
phase shifters when closely spaced nulls are desired. It means that the assumption
of independence of null depths gives an overly conservative estimate of the prob-
ability that the null depths at two or more closely spaced locations (for each of
which the error-free pattern has very deep nulls) will both be less than a given
level. Suppose, for example, that the probability of a single null being 20 dB below
207 is 0.1, Then under the assumption of independence we would conclude that the
probability that two adjacent nulls were both less than 20 dB below 202 was 0.01
(see Figure 2 in which the theoretical CDF, Eq. (48), is plotted for n=1, 2, and 3).
In fact, however, things are not all that bad and the probability that both nulls are
less than 20 dB below 202 may well be closer to 0,1 than 0. 01, To illustrate the
fact that the one null theoretical CDI may give a better fit to the two null sample
data than the two null theoretical CDF, in Figure 6 we plot the sample CDF of Fig-
ure 4 {corresponding to nulls at 20.78° and 21, 2°) along with the single null
theoretical CDVF. The single null theoretical CDF is clearly closer to the sample
CDF than is the two-null CDI (z= 2, 65 under the assumption of the one-null CDF
whereas z=6,58 for the two-null CDF). We also performed a similar computa-
tion for the case of three nulls at § = 20.78°, 21.2°, and 21. 8°, and found that the
one -null theoretical CDF gave a better fit to the three-null sample distribution than
either the three-null or two-null theoretical CDF's (z=4.59 under the assumption
of the one-null theoretical CDF, whereas z= 9,43 for the three-null CDF and 4, 89
for the two-null CDF). It would be interesting to studv in detail the quantitative
dependence of the correlation of null depths on the angular separation of the null
locations and on other factors such as the magnitude of the quantization error, the
number and spacing of the elements, and the amplitude taper. Such an investiga-
tion, however, lies beyond the scope of the present study and we limit ourselves
here to drawing attention to the fact that such a correlation is important in deter-

mining the null depths in the error pattern at closely spaced null locations.

3.3 Non-null Sidelobe Location

To verify the results obtained in the previous scction for the theoretical dis-
tribution of power at a non-null sidelobe location not halfway between grating lobes
Isce the discussion of Eq. (38)], a sidelobe location of 8 = 20, 1° was chosen in the
13th sidelobe of the 9 element, 40 dB Chebyshev pattern. In Figure 7 we show the
computer generated plot of the sample CDF based on 1000 samples of phase errors
with Nbif = 8, and the theoretical Rician CDF calculated using the asvmptotic form
(43). Forthisvalueof 8, the parameter a= 202§= 8. 99 so that the asymptotic form

is an excellent upproximation to the exact integral of the Rician probability

.;4
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distribution function. The close fit of the sample and theoretical distribution func-

tions is apparent and is corroborated by the results of the Kolmogorov-Smirncv
test: :3 =0.02, z='0.63, and Prob 2z 0,63= 0. 82.
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Null Location. Half wavelength spacing is used in o 79-clement, 40 dI3
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Figure 7. Sample (1) and Theoretical (2} Cumulative Distribution Functions of

Power at the Error-free Pattern Non-null Location § = 20.1°. Half wavelength L

spacing is used in a 79-element, 40 dB Chebyshev tapered array with phase S

errors uniformly distributed in (-A, A], A = ~1 = 0.012 (M indicates that both Y )
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curves share the same print location) o

For the case in which a non-null sidelobe location is halfway between grating

lobes, the theoretical mean, variance, and CDF, are given respectively by the

approximations (54) and (55), and by Eq. (52). To compare with these theoretical X i]
results, a sample distribution was generated starting with a 79 element, one wave-~ T
length spacing, 40 dB Chebyshev taper broadside array, and introducing random o
N, . N, . .

phases uniformly distributed in the interval [-7/2 blt, w2 blt] with Nbit = 8. The )
o
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' sample mean and variance of the power at the locations 8 = 30°, halfway between ‘
E‘n grating lobes, based on a sample size of 1000, were0. 1019 X 10-3and 0.1345 X 10-“ :_'-j
; respectively as i:(l)linpared with the theoretical values of 0.1018 X 10-3 (-39. 96 dB) A
. and 0, 1303 X 10 . In Figure 8 we show computer generated plots of the sample
' and theoretical CDF's., The two plots appear to agree well but this apparent agree-
b ment is not corroborated by the Kolmogc ~ov-Smirnov test which gives Dn= 0, 075, s
z=2,37, and Prob z=22,37=0, 0000. The explanation of this discrepancy between ®
the result of the Kolmogorov-Smirnov test and the close agreement of the theoretical ] i
and sample mean, variance, and distribution function plots, lies in the fact that the . ;
theoretical results are based on the approximations (50) which preclude any varia- - )
tion of the real part of the field. As a result, the theoretical power distribution o
[‘ has no values of power less than ».:
. o
<? - <l-é-;)1"02(u). ]
o
&l In fact, however, the real part of the field has a very small but non-zero variance _v._i
} (if the variance of the real and imaginary parts of the field are calculated using 4
Ligs. (28) und (29) wefindthato? =0.8104 x 107! ando? = 0.8072 X 107°) so that i
4 number of the sample values of power are slightly smaller than the theoretical 3
- lower limit, This results in a significant aifference between the sample and 1
) theoretical distribution functions at the very beginning of the range of power which, i .;
although not apparent in the plots, makes itself felt as a sufficiently large value -
of l)“ to result in u Kolmogorov-Smirnov rejection of the hypothesis that the sample e j
ot distribution of power is well described by the theoretical distribution., Apart :
from tis difference 1n behavior at the lower limit of the range in power, the
tneoretical and sumple distributions agree well as is evidenced by the plots and by ) ) %
the respective values for the mean and variance. '.:1
5
. CONCLESIONS ) ]
L
in this rerort we have analvzed the statistical distribution of sidelobe power of ~
a Haear areay of 1sotropic, equispuced elements whose excitation coefficients are T
subjcct to random phase errors. Since our studv was motivated by the desire to
describe the errors introduced in the array pattern by the use of digital phase . -
shifters to set the excitation phases, the random phase errors were assumed
. s . . SVbit . Nbit X2
throughout to be uniformly distributed in the interval [-7/2 , /2 ] where C
Nbif is the number of bits in the phase shifters.
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We began by deriving general expressions for the mean and variance of the
power at an arbitrary pattern location, and obtained small phase error approxi-
mations valid for Nbit > 4. We showed that for large arrays, the variance of the
power at a sidelobe location for which the error-free pattern has a null is approxi-
mately equal to the square of the mean of the power.

We then derived a general expression for the probability distribution of the
amplitude and power of the error field under the assumptions that the error-free
field was real and that the number of elements in the array was sufficiently large
for the Central Limit Theorem to be applied. This general expression was then
specialized to the case of small phase errors and ordinary sidelobe locations (loca~
tions not halfway between groting lobes). For this case the distribution of sidelobe
amplitude is described by the Rice-Nakagami distribution. At a pattern location
for which the error-free pattern has a null, the Rice-Nakagami distribution reduces
to the Rayleigh distribution, and the probability distribution of the power is then
described by the exponential distribution, The expressions for the mean and
variance of the power obtained using the exponential distribution were compared
with the general expression for the mean and variance of the power obtained earhier,
and the two sets of expressions shown to be consistent under the assumption of
large arrays used in deriving the probability distribution of the power. Assuming
statistical independence of the depth of null at two or more sidelobe locations for
which the error-free pattern has a null, an expression for the statistical distribu-
tions of the least deep null among several locations was obtained by multiplying
together the distributions for the individual nulls. Finally, the distribution of power
at locations halfway between grating lobes was obtained starting with expressions
for the variance of the real and imaginary parts of the field, and showing that at
such points the variance of either the real or imaginary part of the field is approxi-
mately equal to zero.

Following the theoretical analysis, Monte Carlo-type computer simulations
were performed to compare with the theoretical results, Extensive use was made
of the Kolmogorov-Smirnov test to test the hypothesis that the sample distribution
of power generated by the simulation could be regarded with high probability as
being drawn from the corresponding underlying distribution obtained theoretically.
In general, close agreement between the simulation and theoretical results was
obtained. However, the assumption of statistical independence of null depths at
several locations for which the error-free pattern has a null was shown to be
invalid for closely spaced nulls. The correlation between the null depths at closely
spaced locations increases the probability of the shallowest null having a given
minimum depth from the independent-multiple null probability to a value close to
the probability of a single null of that depth.
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Appendix A

Proof of Theorems Used in the Analysis

In this appendix we prove two results used in the analysis section of the report.
The first result, made use of on pp. 20 and 35, is that for any taper of the

amplitude lwn| of the element excitation coefficients describable by a polynomial

N

2w |*

n= 1 x L (A1)
N N *

()

To prove (A1) we start with the assumption that the amplitudes of the excitation
coefficients can be expressed as a polynomial of degree M,

M Kk
lwl= 20 a (1-28%%), n=12..., N (A2)
k=0

with M and the ay independent of N. Eq. (A2) in effect defines a family of element
amplitudes, each member of the family corresponding to a particular value of N,
The form of the argument of the polynomial is chosen to equal +1 arﬁl -1 for n=1 and
N respectively. Expanding Lq. (A2) and collecting terms in (';I;_ll we can write
M K
bw, ! = kz::o b, %) . (A3)
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Then Iwnl raised to some integral power P is in turn a polynomial, of degree MP

MP

k
-1
[w |FP= Z c (n—_)
n' T & %k N-1
and
N N MP k
3w P X c, (B2l
n-1 ¢ n=1 k=0 ¥ N-1
> oo L e
n-1
= (] ( )
k=0 kn=l -1
MP N-1
= Z ck——l—E nk .
k=0 (N-1) n=1

N-1
k. . .
Now z: n" is a polynomial of degree k+ 1 in N-1,
=1
N-1

k k1
nz=:1 n=d +d (N-D+ o +d (N-D<HD,

Hence for large N

N-1
1 Z k
n = d (N-1) = d N
(N—I)E i k+1 k+1
and
2 | w IP = c, d N=N c, d ;
= n koo K k41 = k k+1
N
that is, Z | w |P is proportional to N regardless of the value of P. (The
n=1 n N
proportionality constant does, of course, depend on P.) It follows that Z Iwn|4
N 5 \2 5 n=1
is proportional to N and Z lwnl is proportional to N~ so that
n=1
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as claimed.

The second result, used in the discussion of the approximation (55), is that at
a pattern direction midway between grating lobes,

u=u m7, m odd (A4)
for which
N N
2 2
Ho(u) = nz—:l a_ cos (2 dn (u - us)] =+ HZI a_ . (A5)

the general expression (13) for the variance of the power is equal to
N 2

4
2A 2
5 YZ%I“%I (A6)

plus terms of the order of 1/N and higher compared to (A6). For convenience
we give (13) again here:

A<<1
Var(|F(u)|2) =
9 N
24 7 .2 24 2
T(I-I—5A )( r::ﬁ |wn| )]FO(U)I
8 .4 0 282 3.2 e
- 25 A% Re (G ) F_“(w)] - 22— (1- 3a ) Re [H_(WF_"(u)
N N
4 4 2 4
A 2 A 2 2A 4
+—-g- |Ho(u)| +'—9< ngl Iwnl ) - —1—5" n;l anI (13)

where, under the assumption of real error-free fields used in deriving the approxi-
mation (55)

N

F_(u) = nzz:l |wn| cos [d_(u-u)) (A7)
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and
N
G, (u = n;l lwnl3 cos [d_ (u-u)] (A8)
with
a =1 oy,

n 2

Of the six terms on the RHS of (13), the fourth and fifth are equal for the
special case {Eq. (A5)] we are considering, while the last is of the order of 1/N
compared to the sum of the fourth and fifth terms because of (A1). Hence we focus
our attention on the first three terms of the approximation (13), The first and third

terms combine to give

N
4 4 h 2 .2
zs—A ( Z |Wn| )PO (u) .

n=1
Now from Eq. (A4)

2d (u-u)=2 2[5_5_1.- (n- 1)]m1r

and hence
cos |2 dn (u- us)] = cos |[(N-1) m7]
so that, for Eq. (A5) to hold, (N - 1)m must be an even integer. (Since m is odd

this implies that for the case we are considering there are an odd number of array

elements.) But then
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T rrr“""v‘ N ]ﬂ

Tl

-

N

Fo(u) = nz_:l |wn| cos [dn (u —us)]

N

= Z |wnl cos {[N—;l - (n-l)}mﬂ}

n=1
N

= Z Iwnl (- pin-Dm o (E——é—l- mn)
n=1

N
= 2 2 -0 |
n=1 n
or
Fo(u)=t[|w1| - |w2| + |w3| -t 4 IWNf] .

T

(A9)

As above in proving the proportionality (A1) we assume that the amplitudes of the
element excitation coefficients can be expressed as the polynomial in Eq. (A2) and

hence, using Eq. (A3)

Mz

F (u) (-1

v |
M K
-1 n-1
-oh Y p [ B-L
1 K=o k N-1

N
1 n-1
=+ 2,0 —L o Y oy
k=0 K (N-1)* n=h

N-1

=]
I
—

Mz

s
2

k

=

1 n _k
=% b — Z (-1y " n" .
k=0 k(N-l) n=1

N
But Z (- nk is a polynomial of degree k in N- 1,
n=1

N-1

n k -k
nz=:1 D nf=d s d (N-D 4 e g (N-D)

so that for large N
M

F(w=2 ) b d
o} k=0kk
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that is, Fo(u) for large N behaves as a constant independent of N. Hence, using

the proportionality (A1)

N
4 4 2 2
EA (2: |wnl) FO (u)

n=1

N
4 2
2A <§: ‘w|2>
9 n

n=1

2|

so that the sum of the first and third terms of approximation (13) is of the order
1/N compared to the sum of the fourth and fifth terms.

As far as the second term of (13) is concerned, just as Eq. (A9) follows from .,,.“_.".}
Eq. (A7), so

N
_ n-1 3
Go(u) =+ Z: :1 (- 1) fwn,

and in the same way that we established the approximation (A10), a similar
4
relation holds for Go(u) with the summation on k having the upper limit 3M instead ]
of M. It follows that the second term is of the order 1/N2 compared with the sum "
of the fourth and fifth terms of approximation (13). Hence, as claimed, for the
special case we are considering, the expression (13) for the variance of the power ', ’ }
is given by expression (A6) plus terms of the order 1/N and higher compared to (A6]. .
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