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Statistical Analysis of the Effect of Phase
Quantization on Array Antenna Sidelobes

1. INTRODUCTION

There is currently considerable interest in using phased arrays with digital

phase shifters for adaptive nulling. However, the quantized output of a digital phase

shifter differs from the ideal value. This difference between the actual and ideal ,.-

phases is reflected in a corresponding discrepancy between the actual pattern and -

the ideal or error-free pattern. Of special concern for adaptive nulling applica-

tions is the fact that phase quantization errors can cause shallower nulls, reducing

the ability of the array to reject interference from particular directions. There- . 0

fore, understanding the influence of phase quantization errors on array antenna

patterns is important.

A standard technique used to eliminate the spurious quantization lobes, similar

to grating lobes, that result from a periodic phase quantization error distribution
across the elements of an array, is to randomize the phase shifters by inserting

a constant phase shift which differs from element to element. The phase quantiza-

tion errors can then be regarded as independent of each other. Any general study

of the effect of such phase quantization errors on array patterns is necessarily
statistical in nature, focusing on statistical parameters of the phase-error induced

pattern perturbations such as the mean and variance of the power at a specified

(Received for publication 7 July 1982)

1. Skolnik, M. 1. (1980) Introduction to Radar Systems, McGraw-Hill, New York, p. 32 1.
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pattern location. Since the magnitude of the phase quanti7ation errors has a maxi-
N bit

mum value of n/2 N  
, where Nbit is the number of bits in the phase shifters, it is

bit

natural to base a statistical description of the pattern perturbations on the assump-

tion that any particular set of element weight phase errors is obtained by drawing

each phase error independently (with replacement) from an underlying population ofbi bit]

phase errors uniformly distributed in the interval [-7r/2 bit y1 2 b.O

This report describes the statistical properties of the sidelobes of linear arrays

whose element phases are independently and uniformly distributed. The array

elements are assumed to be isotropic and equispaced and to have a deterministic

but arbitrary amplitude taper. A number of investigations have been devoted to2
various related aspects of this subject, and in considerable part this report is

designed to bring together, for convenient reference and in self-contained form,

results that are well established in the literature.

We begin by investigating the mean and variance of the power at an arbitrary

pattern location. No conditions are imposed regarding the number of array ele-

ments. The resulting expression obtained for the variance of the power is believed

to be new. Approximations valid for small phase errors (Nbit >4) are obtained from

the general expressions for the mean and variance. We then derive an expressioit

for the probability distribution of the amplitude and power of the perturbed field

:* under the assumptions that the error-free field is real and that the number of

elements in the array is sufficiently large for the Central Limit Theorem (CLT) to

be applied. We specialize this distribution, first to the case of small phase errors

and ordinary sidelobe locations (locations not halfway between grating lobes), and

then to the important case of sidelobe locations for which the error-free pattern

has a null. We show that under the conditions for which the CLT is valid, the exact

expression for the variance of the power obtained with no restriction on the number

of elements reduces to the expression obtained by means of the CLT and the prob-

ability distribution of the power.

The statistical distribution of power at the least deep null among several loca-

tions for which the error-free pattern has a null is then obtained by assuming

independence of the null depths at two or more locations and multiplying together .

the probability distributions for the individual nulls. The theoretical analysis is

2. See for example, Ruze, J. (1952) The effect of aperture errors on the antenna
radiation pattern, Nuovo Cimento Suppl.,(No. 3):364-380; Allen, J. L. (1961)
Some extensions of the theory ofrandom error effects on array patterns,
Chap. III, Phased Array Radar Studies, 1 July 1960 to 1 July 1961, Al. I. T.
Lincoln Lab Tech. Rep. 236; Skolnik, l. I. (1980) Nonuniform arrays,
Chap. 6 of Antenna Theory, Part 1, Collin, R. E., and Zucker, F. J. (Eds.)
McGraw-Hill, N.I., pp. 318-321; Steinberg, B.D. (1976)Principles of
Aperture and Array- System Design, Chaps. 8, 9, and 13, John iley, N.Y.
Shifrin, Y. S. (1971) Statistical Antenna Theory, Chap. 7, (;olcm Press,
Boulder, Colorado.
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concluded by deriving the distribution of power at locations halfway between grating

lobes. Again we demonstrate consistency between the exact expression for the

variance of the power and the expression derived from the CLT under the assump-

tion of large arrays. Following the theoretical analysis, we describe the results

of computer simulations performed to compare with theoretical results.

2. ANALYSIS

In this section we derive expressions for the mean and the variance of the

power, and the probability distributions of the amplitude and power, at a given

direction of the pattern of a linear array of equispaced isotropic radiators, given -

that the phases of the array elements are subject to random errors. To investigate

the effect of phase shifter quantization on the array pattern, we take the mean,

variance, and probability distribution over an ensemble of arrays; in each member

of the ensemble, we assume the phases of the elements to have mutually independent

random deviations 6 from their ideal values, uniformly distributed in the interval
/2 N b it Nbi"7T 2 , / 2bt] where Nbi t is the number of bits in the phase shifters.

Let d be the spacing between the array elements and assume the phase refer-

ence center to be the center of the array. Let w be the ideal complex weight

(that is, the weight in the absence of phase shifter errors) of the nth element, and

let 6 be the corresponding random phase error. Then the error-free field pattern is
n

i. (uL = wv n j  :.( 10d n
W n

n= I .. !

:nd the pattern in the presence of phase errors is

N 5 jd
n n (1)

n=l n

whtce re,

n=-- - (n-i), n: 1,2..... N

and

u = kd sin .

7
I,



with

k 27/

and 0 the angle measured from broadside to the array.

2.1 Mean of the Power

We first obtain an expression for the ensemble average of the power at a given "

direction of the pattern. The pattern power of a member array is given by
=' ' Z Z j" 6 (n-6m) J(dn-dm)U

I I F(u)12  F~u)F*u) = w w e e (2)
n M n mn

so that we seek the ensemble average, IF(u), 2 . In calculating ,F(u),2 we make

use of the theorem that the expectation of a product of mutually independent random
3variables is equal to the product of their expectations. Hence, in the double

summation in Eq. (2) we separate the terms for which n# m and hence 6 and 66m). For n= m h O.

are independent) from those for which n= m (and hence 6 n  
6 m For n m. the

contribution to the ensemble average is simply

n

while for n# m we have
SJ(dn-d )u

(d n m )
W nwm e n e

n m

n: n in
'IV

: en in m
n ni

where we have made use of the fact that

S 2 0l
e j(6 n -  m = e n e -e j6 1 2 

-

with 6 a random variable uniformly distributed in [ 7 2 bt /2 since the

phase errors are assumed to be identically randomly distributed for all elements

of the array. The ensemble average of the power is then

3. Feller, W. (1968) An Introduction to Probability Theory and Its Applications,
Vol. 1, 3rd Ed. , John Wiley, N.Y., pp. 222-230.

8



.n +nnw m e

n4m

1~2  ~ jw e(dn -d )u
' Wn e

n n w

+. '-K 1 2) w[

But

Sw e(d d = * (u)F (u) (])) 2U

n m o o

so that

12 11oU2 + (--- 2) iWni 2

Th(ru) a0~ of 2 1wn1

The calculation of e is straightforward. For phase errors uniformly dis-

tributed in the interval [-A, Al, A= Tf2 N bit

A -w
i. e2 ej  d6

sin A
S(3)

I lence

and - .

(u sin A F 2 Fi(sinA)' \212 (4
n

The ensemble average power pattern is thus the superposition of two terms, the

first of which is the error-free power pattern multiplied by a factor whose magni-

tude is less than unity for A >0, and the second is independent of the direction.

* 9



Vol r 0, siA - I and iF(u) reduces to F: fl) 2. In applications to phase -

shifters with many bits (Nbit > 4).

( 2--

(- -4 ) _ 2 + 3 (5)
n

At L null of the error-free pattern "

F7.(U) [2 =Wn - x 2," (u)= 0 (6a)
n A/ n 0

9
AT 2r

* -- ~ wi.N bit > 4 (6b) .0

n

Note that for each extra bit of the phase shifters, A is multiplied by a factor of 1/4

and hence the average power at a null of the error-free pattern decreases by 6 dB.

The significance of the filling-in of the nulls of the error-free pattern due to phase

errors is usefully assessed in relation to the peak value of the error-free pattern.

For error free weights such that the phase varies linearly across the array, the

peak power is( I nWnL2. Dividing Eq. (6a) by this quantity to normalize it, we

obtain /

2V 2
sin A F(u) 0

n n

n~(z W )2 bit >4.

2.2 Variance of [lie Power .

Next w- obtain ain expression for the variance of the power

10 U
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I- " - . .. " -

[,1 ,+-.

Var(l()! )2 [I~ 2 - o

'2

Since we have altreadv found ( we Ilust deterine

- (1 4 0 -0 ) ( 4 I 4( i I

L t L'ILS i| e'i ltO 1'* 0 ii P

WI W |w W( IIe n il ) (

As above in obtaining an expressio lfor the ave rag, powe t, we p toceed by g tnuping

the tetis of the quad rt)le sui tait iorn according to whetlhel op llt vqualiti(., hold

among the indices. The following cases must be distinguished:

(1) All fot indices are eqtual

(2) three indices eqttal
(2a) iini 1 4 q

(2b) n -q :

(2c ) ii pl qni
(2(j) tnl p q:1n 1

(3 ) tw pairs of ind tes qt(lt ll

(3,1) rill , p~q. n 1

(3h) nrp. t11=q, n ;'

(tc) n- q, l --p, n14101

(4) t indio'.s vqezal

(4c) n n, n t, nl , p: ! (p

(-4t ) n-q. n m, nt , in 114(4d) ni-p, nm n, jl:tp, t11:1l(1

(40) m~) r:n, 114p, 114t1)

(5) nio indices '(jt; l.

4 , II- - V. .
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The contribution of the corresponding terms in the quadruple sum of Eq. (8)

is simply

n
n

(2a) n=m=p4q.

The contribution of the appropriate terms in the quadruple sum is

2 j( - 6 ) j(dn -dq)U

Sn n q

1. n qq
'" n4q

qn q

n q

= 7rI 2  [ ~ I~w (d ~d)u
n11 qn

i eJ Lu q ;n2 Wn q n WnJ4

2 1, 14
= "~G (;ou) F o(u)- . ,

n

where G (U) is the pattern corresponding to the weights W 2 that is,0 n nN d
G (u)= IW n 1  C j  (9)"

• = 1 n 
"-

(2b) n=m=q4p A

IHere the contribution of the quadruple SUm is

2 - n i7dp - d n)i

n 4 1)

i-- 2  2 j(d - d n)u~ 1 WI W C

n p
n pn.

121

ppf -n

2 jd - d 
-L

12 ' "'

= ~ ~oLII (a -4

*1 12



(2c) n=p=q#m 

By symmetry, the contribution of these terms is the same as that for (2a).

(2d) m=p=q~n

By symmetry, the contribution of these terms is the same as that for (2b).

(3a) n=m, p=q, n~p

The contribution of the appropriate terms in Eq. (8) is

Z I Z Wn 2l w 1 2 --  ; wnI2 ww 12 - Wn4

n p n p n
n~p

=: (22 IwnI ) n -1 2 iw i

(3b) n=p. m=q. n~m

The contribution of these terms is

W 2 w2 *2 e j2(6 n-6 m) j2(dn dm )u
n  m n m

n m
n:m

j2612 E E w 2 w*2  j2(d -d)u

n m n m e

n: m

2 ~2 j2(d d )u I]= e 2 [ E 2 e*2 e j( nwj1
n m n. ...

22 41 I

n n4
n n

*j : 0(u) E 1w 41j

where

N j2d

2 n2
f 0(u) n=l n e (10)

Note that If (U) is the pattern of an array whose weights are the squares of the given
0

array and whose elements are spaced twice as far apart.

6 13
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(3c) n-q, m=p, n~m

By symmetry, the (')ntribution ol these terms is the same as that for (3a).

(4a) n ni, nil), njq, pjq

The corresponding terms in Eq. (8) contribute

'jO2 , (p- ) ej(d p-dq u
1" 2 w w e p q e

n p q p q

p- q

n p, n "qq"

- ' [~ ~ i j w i2 w w * 1(dp ( dq u

we'
n p qq

n I p, n q-

- 2 w w1 e p- q I,]
ti 1) c In 1

Se-Fz [ * Iq IWjWW*e~p d '  
* e1([Wn''W

iq

n p, n q n: p :

4 ~ ~ ~ ( ''~ d )u )

e-12[E E E 1WnI2 w ep dq)U

n p q

w j e (d n -dq )u12ej(dp dn)  14
jWn

12 
w n  " e E E , n] Wpn -e p ~ ]

n q n n q ni p n n n'

n (I n/ p

E 4

(I w 2) 2]
- nl2 t w C)I(~ I l

n p n i

F' 0 F (u) E -Wni2 E  E nWn,2  n j(dn d )u

n n q

E w - lw -w w e 14n 14
n n p n nn n p n

E W
n

n .

• n rn

2 E w n

n

• 14



with (; (u) gi en by Eq. (9).

(4b) n=p, nim, n~q n q --
The contribution of these terms is

n t . W * 20n -
0 -*q) j(2dn d -d )u

ni II q w- vv w e n In q e n m q

il qq

i / m, n q (

)2 E ' w2 w I J (2d -d m -d )u

n m q
n m q

in q

nnl, n/q

. --- 2 n x w2 * * J(2dn-d -q )u

n m q n to q
n#in, n q

E F, w2 w eJ(nd)]
n I n n

21 j( d d d )

=j ( w 2w w e n- m q 6. %W

n mq q

.. ,~ 2 (i d-d )u j(d d)uiE 2 (nn q 2 w * ~ n  - m )
I I w w e , q 1 w eni q l q n n mqI n mT

n/ q n "n

1 4w 2  
j 2 (d -d )u 4]w a w w.2 e nm + Wd4un r1 Inl n

IInt In n .

2 * 2I 1 2 w n qU

+ w 1 ,lw w e j(d n  - dmi ) u  + j 14 -H ( ) (
En 1n !  E, ) Em [ n Wn wn n 0 0 w]-HUH(

* jU(e T) [ 11(u) F *(u) -
2 G(u) F (u) H (U) 2 + 2 E 1w 14

n

where Go(u) is given by Eq. (9) and H0 (u) by Eq. (10).

15 '
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(4c) n=q, n4m, ntp, m4p

By symmetry, the contribution of these terms equals that of (4a).

(4d) m=p, men, m~q. n~q

By symmetry. the contribution of these terms equals that of (4a).

(4e) m=q, mtn, m~p, n~p

By symmetry, the contribution of these terms equals the complex conjugate

of that of (4b).

(4f) p=q, pen. p~m. n~m

By symmetry, the contribution of these terms equals that of (4a). Hence of

the six cases for which exactly two indices are equal, four are equivalent to (4a)

and two are complex conjugates.

(5) no indices equal

These terms contribute

'4 (d ww ww e -d m +dp -dqu

n m p q n m p q
no indices equal

-- 14 .j.(d ndn-d +d d )u

n m p q 

.m 
pq

- w n - 2[Go(u) F0 (u) - Wn14 - 2[G 0(U) F0(u) 1w 14]
n n n g

-2 1 wn 12 _ w 1 n4 1 Ho¢U)l 2 lw 0n4

n 
n

":+ 2 1 wn 4  ""0

n

o[HF(u) F 1w 2 G 2 ( F (u) IHo(u)2 +2 Wn / 4

n1 7 F (u) - (u)E 1 2 e[ (u)- F)2 2 '. (
0 0 n n 0 n'

+ IHo(u) 12 2 Re[Ho (u) Fo 2 (u] + 2 I n w 12)2 6 , I W4]

16
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To obtain the first equality we have simply pooled the results of the preceeding - 0
cases.

The average of the squared power, F(u), is equal to the sum of the con-

tributions of the separate cases we have analyzed. Equation (7) shows that to

calculate the variance of the power we must subtract the square of the average

power from the average of the squared power. From Eq. (4) the square of the

average power is given by

( i) e ,o(u)1, + 2 ej ( -e )F,(u)1, I ,w,.
n

+(1  2  1 wn1) 0 (1)

Subtracting Eq. (11) from F(u) and combining terms, the variance of the power

is found to be

Var (I Fu,) 12 2 je ((, 11(2 ( I wIw 2) I,.,(u)2

n

4.i t - (1 + , ) 2 2 )Re[G,(u) Fo*u).])

- H (u) 2 (u)

+ _j1 eI'261D 2 I1o~uI

We have shown above, in Eq. (3), that for phase errors uniformly distributed in the

interval I-A, A] = /Nbit --T sinA Simiharly '~snA ads

+i 2&- ) 2 
s

S17 S

S
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i ".-

Vr(F(u)) 2 sin A ~ 1 (sin)J ~ 1 12) 1 (u) 1 2

2 sin 2
-4( 1 [+ in2 -2 He G )(11) ((Il (u)A [ 2A A.

- 2siA 2 ( ) 2  
-sin 24] ~ Hu ()

2 [sil A) - Re IA Ii (u) F (u

where G (u) and H! (u) are given by Eqs. (9) and (10) respectively. As above for the

.. average power pattern, the variance of the power is the superposition of terms

• that re direction dependent and terms that are direction independent (that is.

+s(in 
A) sin 2A]22

omnidirectional). For A =0 (that is, no phase errors), -s- and 2A are both ,

unity and Eq. (12) reduces to zero as required. In applications to phase shfters

with many bits we can approximate the combinations of sin and si2 that

12)2

appear in Eq. (12) by their small angle forms thus obtaining after some manipula-

tion 

n-

2i A02+(i A2 sn),sn2
4a(I ( 47N

2.3 11 -5 A2) l Wn ) IFo(U)l 2 4- Fe [Go(U) Fo :(u)]

4

" - 2 2  3 2 ' 2A 4  2" 
"

1 n- ) lie 1olU) o 
(u)] + - o(U)"

+ 6 (6n I IV n (1 )

-T

-2A'
apea inE.(2 ytersalagefrsUhsotiigatrsm aiua
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At a null of the error-free pattern, the variance of the power is given by

I-'
F (u) -0

Var (iF(u) 2  o 0 ,

1(sinA) sin 2 A] u12 [ _(sin '1 2 12A 02 w n2

+(sin 2A ) (sin& ) in

+ 6(--a-- n

bit .- Ilo(u)l j + 2)n 2 - ( In4 . (14)

nn

It is of interest to estimate the relative contribution of the three terms within the

square brackets on the left hand side of Eq. (14). For phases of the error-free weights
-jd u

varying linearly over the array we can write w = a e and so from Eq. (10)
n n

H (u) 2 .1d 1 (u -u(u) 
2  

s

II

Hence H (u) has a maximum magnitude of Ea2 at those directions for which
0 n

U= u ) i7T or equivalently

kd sin 0 kd sin N ) m7

or

sin 0 = sin 0 ± ms T .7'1t

I F. for examiple, d/,A = 1 and 0 0 then in the visible region H (u) = a2 when
S n

sin P = 0, - 1/2 or 1) 0', - 30' . As u moves away from these points, H (u) falls
0

off rapidly, especially for arravs with a stronQ taper of the amplitudes of the

er ror--ree we ights, and so if0(u) 1 can be neglected compared to I'A'2 -

19i1
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As far as the relative contribution of the terms ( 1,.2,1)2 and :1wnI 4 is

concerned, applying Cauchy's inequality (Ref. 4) we obtain

and applying Chebyshev's inequality (Ref. 5) we obtain

N N

w ' = N 1 [Wn2 )2> ( 1 
' w n ! 2  2

so that

6 14
6 < n n <6 (15)

WN ~ 1 ( 2)2-
n

/

Note that the left "<" in Eq. (15) becomes equality for the case of a uniform ampli-

tude array, and that the right "n" becomes equality for tile case of an array with

all amplitudes except for one equal to zero. Furthermore it can be shown (see

Appendix A) that for any amplitude taper describable by a polynominal in n, the

4. Cauchv's Inequality: 
.

12 n 
a b

(equality for ak I"k
kI k kl k- I k k c constant).

See Abramowitz, %l. (1972) Elementarv analytical methods, ('hap. 3 of Handhook of
Mathematical Functions, M. Abramowitz and I. Steaun, (Eds. I over, N.Y.

5. Chehvshev's Inequality:

Ifa a

h1 ;:F2 3 5 . b

n E a b nj

g n E ( k) ( k)k I k = l k = l-

-4
See Abramowitz. M..
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raitio of I w n 4 to ( w n 1 w2)2 is proportional to 11N as N becomes large. Hence -

6 'i 4

for large arrays and any usual amplitude taper, 6 EI Wn1 is of the order of 1/N

copa red with 1
compnred w Iw and can be neglected.n

It is often useful to e press the variance of a quantity relative to the square of

the mean of the quantity, thus giving a measure of variance divorced from the actual

units in which the quantity is measured. [The ratio of the standard deviation (that

is, the square root of the variance) to the mean is known as the coefficient of varia-

tion. ] If Eq. (14) is divided by the square of Eq. (6b) we obtain

Var IF(u)) _ 1+ I0o(U) - Iwnn (16)

Note that, to within the restriction that A is small enough for (sin A)IA and

(sin 2A)/(2A) to be well approximated by their small angle forms, the ratio of the

variance of the power to the square of the mean power at a direction for which the

error-free pattern has a null is independent of the magnitude of the phase errors.

In accordance with the discussion of the previous paragraph, if u is not in the

vicinity of those points for which H (u) has its maxima, and if the number of
0

elements in the array is large, the second term on the right hand side of Eq. (16) V

can be neglected compared with one and so the variance of the power is approxi-

mately equal to the square of the mean of the power. Equivalently, the standard

deviation of the power is approximately equal to the mean of the power.

2.3 Probability Distribution of the Power -9

Having derived expressions for the mean and variance of the power, we now

obtain the probability distribution of the amplitude of the field in a given direction

of the pattern. By a simple transformation, we can then also obtain the probability

distribution of the power in a given direction. Our procedure is essentially that of

Allen 2 and Beckmann. 6 We first resolve the field into its real and imaginary

components, each of which is given by a sum of N terms (N = number of elements

in the array) involving trigonometric functions of the random phase errors. Since

the phase errors are assumed to be mutually independent, the terms of the sums

are independent random variables. We assume that N is sufficiently large (and that

6. Beckmann, P. (1967) Probability in Communication Engineering, Harcourt,
Brace and World, Iiic., New York, pp. 59-63.
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no one term dominates the sum) for the Central Limit Theorem to apply, and so

infer that the real and imaginary parts of the field are Gaussian distributed. It is ,

straightforward to calculate the mean, variance, and covariance of the real and

imaginary field components. We then transform from cartesian to polar coor-

dinates and obtain the probability distribution of the amplitude of the field by inte-

grating the joint probability distribution of the amplitude and phase of the field with

respect to the phase. ion

Referring to Eq. (1), let the error-free weights be represented by a en

Then

S Jn j~ jn jd u

F(u) an e e n n
n

j4'j
a =Zn e n

n

where

n n + dn u

Then

X - Re[F(u) = a cos Pn + 6n) (17a) S
n 11 n n

a (cos 1P cos 6 - sin pn sin 6 n (17b)
n

and

Y = Im[F(u)] = a sin (tn + ) (18a)
n

0.

a (sin 4/ cos 6 + cos 4/ sin 6 ) . (18b)an (in n cs n

n

Since our interest is in large arrays, and since for such arrays no one element can

be singled out as dominant, we can apply the Central Limit Theorem to assert that

the real and imaginary parts of the field are random variables with a joint bivariate W

Gaussian probability distribution. The statistics of this distribution are completely

determined by the means, variances, and covariance. so that our task is to calcu-

late these quantities.

* 2



* -U

The phase errors, 6 , are assumed to be identically and uniformly distributedN bi N 2 bit]

in the interval [-7T/2 bit / 2  Hence

sin =0n

_ sinA It
n -(19)

2 bit

and thus from Eqs. (17b) and (18b), the means of the real and imaginary parts of

the field are

si= - - E- anCosn
n

sin A
- A Re IF 0 (u) ] , (20)

and

sin -A _s si n an sn
n

sin A 'W
I n [F (U)] . (21)

To calculate the variances of the real and imaginary parts of the field, a 2
2 Xand a y wewrite Eqs. (17a) and (18a) in the form

xn , xn a n cos (n + 6)n

n Yn' Vn = n sin(tn + 6
nn n

and use the theorem that toe variance of a sum of independent random variables
3equals tne sum of their variances to give

* f n VW

2 U2

vn n

23
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But

2 - -2

=rx x -x n
n

2 - -2
y Y n Yn

* Yn

and

_ sinA
x = a cos4p

2 A nn

2 2

X= a2 COS (V + n )

Xn n n n

an 1+ cos[2 [n c n

1 2 1 + s 2 n) cos (2

nn n

- an  [ I+co 2--- ) cos (26n) - i(4 )sn 2 )

y sinA
n =  n n

-2 (sinA )2 a2 si 2 4Yn - -A n sin 'pn

1 (sin A) 2 a2 11 cos( 2 n)]"

-7 2 2
Y2 a n sin n + 6n)n n n

1 2 sin2A
2a n --- " -- cs (2 'n)

24
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where we nave made use of the trigonometric identities

2 1
cos 2 = (1 + cos 26) (22)

2
2 1

sin 6 =1 (I - cos 20).

Hence

2 1 2 1 s(nin & - 2A a 2 cos (24')x n  -n A nn

2 2 + Isn 22 [(sin A \2 sin 2A 2

A a - 2 n cos (24i)

a(nd

(23)

The cov siance of the real and imaginary pa)ts of the field is defined by

Now, from Eqs. (17b) and (18b),

XY= a(cos4' cos6 -sin4 sin (sin m cos + cos (2 V/

4n n n mn n n m m m m"n/z nn

+ Za 2
n sin[2(Tn 6)(25)

n

where, as above, we have separated the double summation into the terms for which

n4m and hence 6 and 6 are independent, and the terms for which n= m. The
n m

double summation in Eq. (25) reduces to

25
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( s in. ). a m I C o s V / n 4ill ' Ill

n -

because of Eq. (19), and

1Z a 2 sin12n 
+ 5n)] =n a2 [sin(24n) cos(2n) + cos (24n) sin(2n)]

n n

1 sin 2A E a 2 sin(2
=2 n n ( n)"

n

Hence

si2i [a) a a cos Pn sin m - an cosn sint/.-J

1 sin 2A a 2
2 2 A asin (24n)

n

S[(sin 2 sin2A] , 2.
S/ ------- J an sin(2 4n)n

~.( )2Re [F(u)] I [F O(u

and

xY -/] - - a sin (24'n)

4 We have thus obtained expressions for all the quantities-means, variances,

and covariance -needed to define the joint probability distribution of the real and

imaginary parts of the field. Although it is possible to proceed to obtain the dis-

tribution of the amplitude of the error field for the general case of a complex
6- "

error-free field, for our purposes here it is sufficient to restrict attention to the

case of a real error-free field. If Im[Fo (u) 0, we see from Eq. (21) that T = 0.

Furthermore, if the imaginary part of the field is 7ero, then the amplitudes of the

array element weights must be even-symmetric and the phases of the weights odd-

26 S
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7
symmetric with respect to the center of the array. Hence the covariance of the

real and imaginary parts of the field vanishes. We then have

sin_ sn F (u) (26)

T= 0 (27)

2 1 F sin A)\2 1 a2 1 F/'sin A'2 sin 2Al a 2 cs(x n - i - no 2)
X 1 '' n n

(28)

2 I rs i n A) 2 ] -  2 1 [(sin.A)2 in 2 A 2

= - 1 - as l) - an - 2- - n n cos (2,n)

(29)

Ur~ = 0

and the joint probability distribution of the real and imaginary parts of the field is

given by

p(X,1 (X-) 2  2 (30)p(X Y - X Y exp - 'Z'-2 --.--- '-(0

We now transform to polar coordinates letting

x = I= I os 0

Y = IF1' sin 0 (31)

dXdY = IFI dlFl dO

so that IFl is the amplitude and 0 the phase of the field. Note that since

I 12 = X2 + Y2, the mean power is given by

-2 2 2 2=X + -ax + y2

7. Oppenheim, A. V. , and Schafer, R. W. (1975) Digital Signal Processing,
Prentice-Hall, New Jersev, pp. 24-26.
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7-4

and hence from Eqs. (20), (21), (23), and (24), we have in general (that is, with
no restriction to real error-free fields)

VHF7  2 n9u2  2 + I (sinA 92 1 2

in agreement with Eq. (4) which gives the average power obtained more directly
above. Substituting Eq. (31) into Eq. (30).

IUf ) l F (I FI os0X) 2  (FIsin 0)2
P(IFI, 0) TT co-s a_ exp-

XY2aX 2  
2aY F 2

F1 x F2l Fl~o2  
I, cos9 -2 +_ sin'2 a a ex - 2SaX2 + a)yJn]

Using the trigonometric identities of Eq. (22) we obtain

exp,1 -) 4F 1 ex i iFX 2  .xy

exp 1, 2os(290) + Cosi 05T+U 2 -_7) IIlco

_ F) -D -Pcos(20)+Qcoso

x Y

where

40 11,12 Ir 2
+ (32a)

2 .f( -- 1Ff 2  (32b)
Crx ory

Q= (32c)

28
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The probability distribution of the field amplitude is then found by integrating

pvF1, 0) with respect to .

2r,

p (I (11"1. 0)d(0

0

0

- .1' C 1(

t -' cs (20 ) + Q cos 0

*l r'r(iceedinif-y in lefe rence 6 we obti in nn expression for thi integrnl I in terms of '

s; seri(,s of miodified ti-sSCI fuanctions. Li ist, using the identities in lefe rence 8

/ n-i 0 k lk(/,) PUs (kOi, k: { 2,k:

or

- I) 'os 20) I k

- ', ( =~ (-I) k Ik (P) P0s (2 kO) S
S0

-( tii it

g.= (-f)lk I (P)JO e osO cs2Od

Then, using thn r(lntion in Ilefe rernee 8

i( ) 1 C 7 /os 0
=I- cos (n0) dO

8. Olver, V. W. J. (1972) Bessel functions oC integer order, Chap. 9 in Handbook
of Mathematical Functions, M. Abramowitz and I. Stegun, Eds.,* [)over. N. Y.,
pp. 376i-377.
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we have

eCos9 acos (2k ) d0 = 1 2k(Q)

0

so that

= 1 Ik k(P) 12k Q)
k= 0

and the desired probability distribution of the field amplitude is

00

P( ) 1k I(P) I2k(Q) (33)

with D, P, and Q given by Eqs. (32a-c). The distribution can be normalized by letting

2-
2~ 2(34a)

If! - _ __ _ (34b)
or2 +9

and

K (34c)ox

2
so that B is the ratio of the constant component of the power to the average power

in the fluctuating component of the power, and K is a measure of the asymmetry in

the average proportion of the fluctuating component of the power associated with

the real and imaginary parts of the field. Substituting Eq. (34) into Eq. (33) we

obtain

P( 2  
+ e 2  2 +lK 2  f2]

K I! [ 2 2K 2~~

X 1 ~ )klIK I 1f 2) 1 k [B(l + K2) IfI]1 (35)

30
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Curves of this distribution are given by Beckmann in References 9 and 10. The

probability density function of the power can be obtained if desired from the prob-

ability density function of the field amplitude by the relations in Reference 6

p 2(F 
2) 2 j PjlI (IFI) (36)

2F-

Ifr! (Iy2) ' II(I!

using the notation pW(X) to mean the probability density of the random variable y as

a function of x.

sinA sin 2A appearing in Eqs. (28) and (29) for the

variance of the real and imaginary parts of the field can be replaced by their

small angle forms for Nbit > 4 thus yielding "0-

U 2 A a 2 - a 2 cos 2(d u +) (37)
n n n n n

2r , aT[E n + 1:a ncos 2 (d n + 0 n (38)

n n

The second term within the square brackets is (for real fields) the function I (u)

encountered earlier {see Lq. (10)] in the course of obtaining an expression for the OF
variance of the power. We showed above (see p. 19) that H (u) can be neglected

0compared to a unless u is close to the points, midway between grating lobes,
pn mg

for which IHI ()i fakes on its maximum value. Then
0

9. Beckmann, P., rind Spizzichino, \. (1963) The Scattering of Electromagnetic
\Vaves 1t o)n HOtUgh Surfaces, Pergamon Press, lacmillan, New York,
\ppendix ]'.

10. Beckmann, I'. (1963) Statistical distribution of the amplitude and phase of a
multiply scattered field. J. Il~s. Natl. Bur. Std. , D. 66(No. 3):231-240.

U w!
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T-"OX 2 a O' 2  A 2 2

Y a n  a  (39)
n

and K= 1. Since I(0)= 1 and I k(0)= 0 for k# 0, Eq. (35), which gives the probability

density of the normalized field amplitude, reduces to

p(Ifl) 2If exp [ (B2 + 1f12) Io Ifi)

or

p(lw[) I "2-(exp -F 
2 ) 1

a distribution known as the Rice-Nakagami distribution and treated in slightly

different forms in detail by Rice and by Norton et al in Reference 12.

11. Rice, S.O. (1954) Mathematical analysis of random noise, reprinted in
Selected Papers on Noise and Stochastic Processes, N. Wax. (Eds.),
Dover, New York, pp. 239-241.

12. Norton, K.A., et al (1955) The probability distribution of the amplitude of a
constant vector plus a Rayleigh-distributed vector, Proc. IRE 43:1354- 1361.

Norton et al discuss the complement of the cumulative distribution function of the

probability density function

p(r) = r exp 1- + r2)/k2] 1 ( 2r

which is obtained from Eq. (40) via the correspondence
F= I 1- i + 1, k2= 2 c'

Figure 4 of Norton et al contains plots of the complement ot the cumulative distribu-

tion function of- for various values of the parameter K= 20 logl 0 (k). In ourk
notation this is eulvalent to plotting the complement of the cumulative distribution

function of - for arious values of K= 10 logl 0 (2r ). Rice discusses the

probability density function( 2 2
p(v) = v exp - I (av)

which can be obtained from Eq. (40) by letting

Ilc gives plots of both p(v) and its cunlulative distribution function.
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-v:

For our purposes it is somewhat more convenient to follow Rice's normalization -.

v a G -_[ l (41)

For small values of the parameter a the cumulative distribution function
v

C(v) = v exp (2-- I° (a v) dv (42)

can be obtained by numerical integration. For large values of a Rice obtains an

asymptotic expansion for C(v) in inverse powers of a by first replacing I0 (a v) by

its large argument asymptotic form, given in Reference 8,

a v1 (av) e (I + av)
o 42irv :

so that

p(v) 1 + exp [ v a)

/v 1 / 2 / 1

and then expanding 1+-) in a series of powers of -. and integrating
-a v) 3 a

term by term. The resulting expansion through terms a is

Clv) - .+. erf v-

2 aV2 77 4 a 8a 2

In Table 1 we compare values of the Rician cumulative distribution function obtained

by performing the integration in Eq. (42) numerically (using the IIISL routine

DCADRE) with values obtained using the asymptotic form of Eq. (43). It is seen

that the asymptotic form gives an excellent fit to the exact values for a > 3.

If we further specialize our results and consider the probability distribution of

the amplitude at a direction for which the error-free pattern has a null, then N

given by Eq. (26) equals zero and p(IF1) in Eq. (40) reduces to the Rayleigh

distribution

p(I-, exp (

6 33



t- - - t - CAD

U)U

00

-D w C II M
Ni -~~ - o)

00 0o 00 00 0

in C CD - mC U

on co - C)
E- CD~ O co0

m 0 0 o 0 0 m

7- Z IC- C)) cn c

CD Ci) 0

0 0 0 0o 0D

* 0 CC C; C; Lr)

cr- CC r) r r

C.J 34



According to Eq. (36), the probability density function of the power is then the --

exponential distribution

p ( exp _ (44)

vI-,12 2a

The mean power is given by .21 T0 2!  A 422
2 j7-, 4 e d(IF1 2) = 3 a 2n  (45)

in agreement with Eq. (6b). The variance of the power is obtained from

00 F 21 ! r - p
2a-

__0 C~ 27dIF

2 29 2
= 2 dy- e d2

= 2 (2C2)
2  - (272)

2

(2u 2)2 A 4 a2)
2  (46)

Comparing Eq. (46) with the expression in Eq. (14) for the variance of the power at

a null of the error-free pattern obtained earlier and neglecting H (U)in Eq. (14)

to be consistent with the assumption made in obtaining Eqs. (39) and (40). we see

that Eq. (14) contains the extra term 6 This apparent discrepancy is

explained by the fact that our derivation of the probability distribution of the ampli-

tude and power is based on the application of the Central Limit Theorem and so is

an approximation to the actual probability distribution. This approximate distribu-

tion approaches the actual distribution as the number of elements in the array, N.

becomes large, provided no one amplitude of the element weights can be singled out

as dominant. Our derivation of the expression for the variance of the power

(Eq. (14)1] involved no approximation and so cannot be expected to be identical to the

expression for the variance obtained by applying the Central Limit Theorem except

under the same conditions that the Central Limit Theorem applies. But we have

seen earlier (seep. 20 that i is of the order of I/N compared with

Wnl ) for any amplitude taper described by a polynomial (that is, any usual

amplitude taper) and indeed for such tapers no one aiplitude is dominant. Hence

.-. Ewn can be neglected compared to E wnl 2) under exactly the conditions
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for which the Central Limit Theorem applies, thus yielding agreement between

Eqs. (46) and (14). Note that the approximate equality of the variance of the power

and the square of the mean power demonstrated above in connection with Eq. (16)

approaches actual equality as the number ot elements in the array increases and the

probability distribution of the power approaches the exponential distribution for

which, as we have seen, the variance is exactly equal to the square of the mean.

When nulls are placed in array patterns adaptively, the presence of multiple

sources of interference can make it important to have nulls at each of several

different directions. Accordingly it is of interest to consider the effect of quantized

phase errors on the pattern at several directions simultaneously, for each of which

the error-free pattern has a theoretically perfect null. It is then natural to examine

the distribution of the least deep null among the several different directions, since

the least deep null may serve as a limiting factor in determining the performance'

of the arrav. Now, the probability that the least deep null is less than or equal to

a given level is equal to the probability that the pattertn at all the specified direc-

tions is less than or equal to that given level. If we nakce the simplifying assump-

tion that, for a given distribution of phase errors across the array, the null depths -

at any two locations for which the error-free pattern has a null a re independent of

each other, then we can obtain the desired probability simply by multiplying together

the probabilities that each null is less than or equal to the given level. Hut from

the discussion above [see Eq. (44)], the p robabilitv dist ribution of the power at ar.r"

location for which the error free pattern has a null is given bv -W

2) 1 2 a 2 2* -

2c1 J0- e di (1-) = I - e 4)

hence the cumulative probabilit~y distribution of the le. st deep null among Al loca -

tions for which the error-free pattern has perfetct nulls is given hy

2 - e / a (48)

The corresponding probability density function is

pmz~ 1.,[ 2) C At 1.-2)

dll 1\12
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or U

MM- 1 eC
pM(O) M (1 -e-g M 1 eg

where we have let

IF) 2
2 2

The mean and variance of this distribution can be calculated analytically using

the formula given in Reference 13 3
SM-

~L1e- (1l-C) dC (-l) M I ['Mu ,~ ( k(Mk ) 1
f• k (M - k) :

To obtain the mean we let v= 2 so that

1)n l - _1)k k

k=0 k)}

and

2FI 2u T.

To obtain the variance we let v :3. Hence

f00Var ( ) = MJ g 2 (1-e e - d

00

S(_)M -1 (2A A) F, (_1 )k (Al- I) 1 2

k= 0 A-k)

and

\au(! 1 2) = (202)
2  Var( )

13. Gradshtevn, I.S., and ljvzhik, I.M. (1980) Table of Integrals, Series, and
Vroducts, Academic Press, pp. 317, 333.
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For the first few values of M we have the results in Table 2.

Table 2. Mean and Variance of the Probability Density Function
of the Least Deep Null Among M Locations

M Var(C)

I 1 1 jFI2 - 2 2 -

2 3/2 5/4 Var()IF 2 )  (2 2 Var( )

2
3 11/6 49/36 2a2 =A . a 2

4 25/12 205/144

Note that for M= 1, the values for the mean and variance of the least deep null agree

with those found above (compare with Eqs. (45) and (46)] for a single null.

The final special case we shall consider here is that of the probability distribu-

tion of the amplitude and power at directions midway between grating lobes. For

a linear phase variation, qn= "dnus of the element weights across the arrav, these

directions are given by

uu S ± im77

Since the focus of this report is the influence of phase errors on sidelobe levels we

will restrict our attention to the case of m odd. (If m is even there is a grating

lobe at the location u. The assumption that m is odd is not immediately needed

here but is required in demonstrating agreement between the exact expression for

the variance of the power derived earlier and the expression derived below from

the probability distribution of the amplitude and power for this special case.) For

these directions it is easily verified that

a2 cos 2(0+du= a 2  (49)
n n

so that from the approximations (37) and (38), either

* c< 2012 0 , Cr2 Z A 2  a2(0

n

0 r

L9



according as the plus or minus sign respectively is taken in Eq. (49). Rather than

attempting to specialize the general expressions we have derived above for the

probability distribution of the amplitude and power to cover these cases, it is much

simpler to derive the desired distributions starting with the variances of the real

and imaginary parts of the field, Eqs. (50) or (51). (The means of the real and
sin AF( ) "

imaginary parts of the field are, from Eqs. (26) and (27), given by sin 4 F(u)

and 0 respectively.)

For the first case, Eq. (50), the amplitude of the field is given by

I = j17 = (2 y2)1/ 2 so that Y = ± (11 12 _X 2 )1 / 2 . Using the formula for the probability

distribution of a function of a random variable 7 and the fact that Y is Gaussian

distributed we have immediately

IF2_ - 2

7T 221 )17"2y2 .p(IF.')- : - ( - (~LL._l/2 e , IFj- g

The probability density of the power is, from Eq. (36), given by

_2_-K
2 1.W

__ _ 1____or Y 2 2i
2(112) /2 1 2 1 e Iy2PI .I (2,,)' U% (ir.1_2,2e l1_g

and a short calculation then gives the cumulative distribution function of the power,

r/V 2 2 1/2 1,1 
.4

C(0112 ) = err 2 (52)

where erf(z) is the error function,

erf(z) 2 - e- dt

The mean power is given by

00 (lF12 - y 2 )

B?- ____ C I2v 2
211[ 2  2 1 e d("1.

Ul 39

IV

.. . | " aI| -I -



Making the substitution v = IF 2 - ,2 dv = d(IF 12) and using the formulas given

in Reference 13

f 2 xx n-- 1/2 3 2n- 1 -
x = - J xe e dx=rl "2 2 --T2

(53)

we find

2 -2 2 ( 2 \ 2 A 2  2
+ F y2 -1 F2(u) + a (54)

in agreement with Eq. (5).

The variance of the power is given by

f~~ ~~~~ 2 or 2 )(T2+C
1 1 _____________ - dI) x22  )

(2)1/2 U -2 (11 1 /  y

Making tne same cnange of variables used in obtaining tie mean and again using

Eq. (53) we find that tie variance of tne power is W

Var( F1
2 1 =I"y

4

." .

2A 4 n 2)255) i

n

Comparing the approximation (55) with te exact (to witnin tie small phase error

aipproximation) expression for tkfe variance of te power given by Eq. (13) and noting2 2

tnat for tfie special case we are considering t (u) a 2n cos [2d (u-u s )] = .

se tattu xat onais 0 n n s an
we see that tne exact expression contains several terms in addition to those in tiue

approximation (55). Similarly to our discussion on p. 35 of tne apparent discrepancy

at a pattern null between toe exact expression for tne variance, and the expression

obtained from true Central Limit Theorem and the probability distribution of the

amplitude, it can be shown (see Appendix A) that the extra terms can be neglected

for large arrays and so the two results agree.

For the second case, we consider the approximation (51), and begin by noting

that the error-free pattern has a null at the directions we are considering. Since

' a 2 cosf2d (u-u s )]= - E a 2* cos2dn (u-U) = -1 and hence
n n s n n
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cos [2d n(u -u 5 )I cos 12[lj r ( 1)] Mal

CO co[(N -1)mr r]

so that

-_.w

(N -o [N 1) m ..7, 37, 5T

and

(N-1)m=*l, 3. , .5.

But then -.

cos Id n(u -u )I cos N - (n -l0] m 71

=(](n -lOm (N- I

- 0

since (N - l)m is odd and so

F o (u) = . a cos Idn(u-u )] = 0.
n

Since the error-free pattern has a null, the mean of the real part of the field,

X, equals zero. Thus I F - lxi and the probability density of the amplitude and

4 power are

2

• 
1 2 ) 1 / 2 2 c or

/2\Ip(IF]) =-d ( Je N

.*1

"U and
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FI
2

L. - respectively. These density functions are identical with those obtained for the first "":

2 2

2 2|

-n

respectively. Comparing the approximation (56) with the more exact expression '0
iven by Eq. (13) for the variance, noting that all the terms in the approximation

(13) containing Fo(U) are 7ero because of the null in the error free pattern and thatoH(U)I2=(E a2) 2 and recalling that E a4 is of the order of 1/N compared to

( E 2 )2 for large N. we see that the two expressions for the variance are in

agreement. ,.

3. NUN1ERIC;AI, RESULTS ANI) DISCUSSION

Example calculations in this section give results that are compared with re- V"W

suits obtained in the analysis of the precedingf section. We consider here the dis-

tribution of the power at (1) a single null, (2) multiple nulls, and (3) a non-nul

sidelohe location.

3. I ngle Null

* We begin with the distribution ot the power at a direction for which the error-

free, pattern has at perifec~t null, for (conrer(tenes s we (00nside r a broadside a rray of

42
a-n
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79 elements with half wavelength spacing and a 40 dB Chebyshev taper. The phases

of the array elements are assumed to be set with 8 bit digital phase shifters. The

error-free pattern of the array has a null at 20. 3989... * between the 13th and 14th

sidelobes. Calculating the mean power at this location using Eq. (4) we find

16
I F1= 0.8072X 0 -60.9 dB

and calculating the variance of the power from Eq. (12),

12)10- 12
VardFI 2 ) = 0.6351 10-

hence, the standard deviation of the power equals 0. 7969 X 10-6. Note that the

standard deviation of the power is approximately equal to the mean power, in agree-

ment with the discussion following Eq. (16). The contribution to the variance of

first three terms on the right hand side of Eq. (12) is effectively 7ero because of

the null of the error-free pattern; the contribution of the fourth term (in lI- (u)H2 )
17 -12 0 '46

equals 0.84 X 10 , the fifth term equals 0.65 X 10 , and the last term equals
-13 (u) 10. 17 X 10 - . Thus, as was shown on p. 20, IH 0 is negligible compared to

(2:1wn  (except at directions halfway between grating Lobes), and, as dis-

cussed on p. 20 and proved in Appendix A, the term in iw 14 is of the order of

1i/N compared with the term in ( Wn )2

We compute the probability distribution of the power at the same location from

Eqs. (28) and (29) with the result, a .2 = 0.405 X 10-6 and a- = 0.402 X 10-6 with
2 N 2

the term in E an equal to 0.403 X 10-6 and the term in 'a cos (24 n) equal to
-8 nn2 n

0. 145 X 10 and hence negligible compared to the term an as was shown in the

discussion of Eq. (38). The parameter B of the normalized probability distribution,

Eq. (34a), is effectively zero because of the pattern null, and the parameter K given

bv Eq. (34c) is equal to 0.996. Since K z1 and '7= 0, we expect the probability

distribution of the power to be well approximated by the exponential distribution

given in Eq. (44) with a mean of a = 0. 8072 X 10 and a variance equal to

the square of the mean, 0.6516X 10-12. Note that the variance of the power cal-

culated assuming the exponential distribution of the power is quite close to the value

of 0.6351 X 10- 1 2 obtained from the exact expression for the variance.

To verify the above theoretical results we wrote a computer program to ran-

domly perturb the phases of an equispaced array and calculate the resulting power

at a specified angle, given the number of elements, the spacing, the amplitude

taper, and the number of bits of the phase shifters. Each phase is independently

perturbed (rom its error-free value by a random number taken from a uniform

distribution in the interval N - b/2Nhit, f.N bit. :\ sample size of 1000 patterns was
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taken for a 79 element, half wavelength spacing, 40 dB Chebyshev tapered array.

* The mean power at the location 0 = 20. 3989... ° was found to be 0. 8043 X 10-6

and the variance to be 0. 6167 X 10-12 in close agreement with the theoretical re-

suits. In Figure 1 we show a computer generated plot (obtained using the IMSL

routine USPC) of the sample cumulative probability distribution and the theoretical

distribution of Eq. (47). (The letter l1l indicates that both curves share the same

print location. ) The close fit of the two curves is apparent. To further check the

agreement of the sample and theoretical cumulative distributions, a Kolmogorov-

Smirnov test (described in Reference 14) was performed using the IMSL routine

NKSI. The maximum absolute difference between the sample cumulative distribu-

tion and the theoretical exponential distribution, Dn (n= size of sample, here equal

to 1000) was found to be 0. 0228, the statistic z=in D. = 0.72, and the probability

of obtaining a value of z equal to or greater than 0. 72 was found to be 0. 68 so that

there is no reason to reject the hypothesis that the exponential distribution is the

underlying population distribution of the power.

A similar set of calculations was performed for a nL.' that was imposed on the

79 element, 40 d3 Chebvshev pattern by small phase perturbations, using an itera-

tive technique described in Reference 15. The results do not differ in any significant

way from those obtained for the "natural" null and need not be described here.

lor reference purposes it is useful to have a plot of the normalized exponential

cumulative probability distribution of the power at a direction for which the error-

free pattern has a null. In Figure 2 we have plotted the cumulative probability

distributions [Eq. (48)]

( 1 (P 2 ) = I - exp (- 
.p2

for M= I to 3 as a function of 10 log 1 0 (p 2 wherep 2 is the power normalized by
2a 2 

with

= (sin E 2 z a)2

L 'n n

n n 2 bit

The curve ll= I is the exponential cumulative probability distribution. (The curves

for other values of Al at-e relevant to the discussion below of multiple nulls.) As

an example of the use of this plot, in the case considered above N bit= 8 so that

(Because of the length of Reference 14, References 14 and 15 will not be listed here.
See References, page 57.
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2

A= 0.012. The sum a2 normalized by a n  is calculated to be

0. 01608 so that 29 = 0. 8072 X 10 = -60. 9 dB. The probability of a null depth

20 dB below 2a 2 (-80. 9 dB from the mainlobe peak) is then seen to be 0. 01, and

the probability of a null depth 10 dB below 2a 2 (-70.9 dB from the mainlobe) is

0. 095. The probability of a value of power more than -4 dB below 2a (that is,

more than -64. 9 from the mainlobe) is 0. 5.
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3.2 Multiple Nulls

We next describe computations to compare with the analytic results obtained

for the distribution of the least deep null among several directions for each of

which the error-free pattern has a perfe-t null. We showed in the previous section

that, if we make the simplifying assumption that the null depths at any two differont

locations are statistically independent of each other, the cumulative distribution of

the least deep null among Al locations is given by Eq. (48). In the first computa-

tion performed here, we took a sample of 1000 random perturbations of the phases

of the 79 element, half wavelength, 40 dB Chebyshev array with Nbit = 8, and

examined the distribution of the least deep null between the locations 9 = 20. 3,089...

and 21.9620... 0 These locations are the nulls between the 13th and 14th sidelobes,

and between the 14th and 15th sidelobes, respectively. The values predicted foi.

the mean and variance of the sample on the basis of Eq. (48) (se.. Table 2) ar c

7-T 3 '1 3 6-5

FI "(20.) (0. 8072 10 - 6 . 121 > 10-

and
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-- I

ir5.F2 5 2-12-
Var(IF (2)= 0.8145 10

The values calculated from the sample of 1000 were

'I-F 1' 7 Iwo = 0. 1123 X 10 - , Var (IF12)1000 = 0.7297 X 1012

reasonably close to the predicted values although differing somewhat more in rela-

tive terms than the corresponding results for a single null at 0 = 20. 3989...

described above. The computer generated plot of the sample and theoretical

cumulative distribution functions is shown in Figure 3. Comparing Figure 3 with

Figure 1 shows that the fit of the theoretical with the sample cumulative distribu-

tion function (CDF) is somewhat poorer for the two-null case especially in the

middle portion of the plot. Note that the sample CDF is fairly consistently higher

than the theoretical CDF indicating that a greater proportion of the sample values

of the least deep null are to be found in a lower part of the range of power than is

predicted by the theoretical distribution. A Kolmogorov-Smirnov test was per-

formed on the sample. The maximum absolute difference between the sample and

theoretical CDF's, D n , was 0. 07, the statistic z = 2. 21, and the probability of

obtaining a value of z equal to or greater than 2. 21 was found to be 0. 0001 indicating

that the hypothesis that the underlying population distribution of the sample is des-

cribed by the theoretical distribution given by Eq. (48), should be rejected.

A similar computation was performed for the case of two nulls imposed on the

79 element, 40 dB Chebyshev pattern by small phase perturbations at the locations

0 = 20.78' and 21. 2' (approximately the left -3 dB point and the sidelobe peak of

the 13th sidelobe). The sample mean and variance were

' F 1 = 0. 9044 X 10 - 6, Var(1F1 2 )1 = 0.7196 X 10-  .
1000 1000

A plot of the sample and theoretical CDF's is shown in Figure 4. Here the diver-

gence between the two distributions is clearly apparent, the sample distribution S
being significantly higher than the theoretical distribution over almost the entire

range. This of course is reflected in the considerably lower value of the sample

mean compared with the theoretical mean. The Kolmogorov-Smirnov test gave

D = 0. 2080, z= 6.58, and Prob z 2t 6.58= 0. 0000.
n
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79-element 40 dB Chebyshev tapered array with phase errors uniformly

distributed in [-A, A], A = = 0. 012 (M indicates that both curves share
the same print location) 256..

The fact that the sample CDF is consistently higher than the theoretical CDF

indicates, as mentioned above, that a significantly greater proportion of the sample

values for the least deep null are below those predicted by the theoretical distribu-

tion, and suggests that the null depths at closely spaced locations of the pattern are

not independent of each other as was assumed in deriving the theoretical CDF given

by Eq. (48). If the null depth is low at one location it tends to be low at the other
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the same print location)

location as well. As a check on the validity of this hypothesis, another calculation

was performed in which nulls were imposed on the basic i9 element, 40 dB

Chebyshev pattern at the widely spaced locations 0 = 12 ° and 72, and a sample

taken of 1000 values of the least deep null among these two locations. The sample

mean and variance were
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1I.l 1000= 0. 1177 10- (-59.3 d B), Var(IFK2)= 0.7747 X 10 12

and the plot of the sample and theoretical CDF's is shown in Figure 5. The much

closer- fit of the sample and theoretical CDF's than in Figure 4 is apparent and is -

reflected in the Kolmogorov-Smirnov test which gave r+--1

D =0.02 5, z= 0. 7 76, Prob z 0. 7 i6 0. 58,Dn =

indicating consistency of the sample and theoretical CDF's.
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Figure 5. Sample (1) and Theoretical (2) Cumulative Distribution Functions of
the Maximum Value of Power at the Two Error-free Pattern Imposed Null .
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40 d13 Chebyshev tapered array with phase errors uniformly distributed in
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location) 256

50 •

+ "5 i . .i .. _ ' ... . . ..: .. . .



The high statistical correlation between the null depths at neighboring loca- - "

tions has interesting implications for nulling with phased arrays employing digital

phase shifters when closely spaced nulls are desired. It means that the assumption

of independence of null depths gives an overly conservative estimate of the prob-

ability that the null depths at two or more closely spaced locations (for each of

which the error-free pattern has very deep nulls) will both be less than a given

level. Suppose, for example, that the probability of a single null being 20 dB below

2u 2 is 0. 1. Then under the assumption of independence we would conclude that the

probability that two adjacent nulls were both less than 20 dB below 2( 2 was 0. 01

(see Figure 2 in which the theoretical CDF, Eq. (48), is plotted for n= 1, 2, and 3).

In fact, however, things are not all that bad and the probability that both nulls are U

less than 20 dJ3 below 20 2 may well be closer to 0. 1 than 0. 01. To illustrate the

fact that the one null theoretical CD may give a better fit to the two null sample

data than the two null theoretical CDF, in Figure 6 we plot the sample CDF of Fig-

ure 4 (corresponding to nulls at 20. 78 ° and 21. 20) along with the single null

theoretical CDF. The single null theoretical CDF is clearly closer to the sample

CDF than is the two-null CDF (z = 2. 65 under the assumption of the one-null CDF

whereas z= 6.58 for the two-null CDF). We also performed a similar computa-

tion for the case of three nulls at 8 = 20. 780, 21. 20, and 21. 8', and found that the

one-null theoretical CDF gave a better fit to the three-null sample distribution than

either the three-null or two-null theoretical CDF's (z= 4. 59 under the assumption V

of the one-null theoretical CDF, whereas z= 9.43 for the three-null CDF and 4. 89

for the two-null CDF). It would be interesting to study in detail the quantitative

dependence of the correlation of null depths on the angular separation of the null

locations and on other factors such as the magnitude of the quantization error, the

number and spacing of the elements, and the amplitude taper. Such an investiga- 0
tion, however, lies beyond the scope of the present study and we limit ourselves

here to drawing attention to the fact that such a correlation is important in deter-

mining the null depths in the error pattern at closely spaced null locations.

3.3 Non-null Sidelolw lwcation

To verify the results obtained in the previous section for the theoretical dis-

tribution of power at a non-null sidelobe location not halfway between grating lobes

see the discussion of Eq. (:38)1, a sidelobe location of (I = 20. 10 was chosen in the
13th sidelobe of the i9 element, 40 dB Chebyshev pattern. In Figure 7 we show the

- computer generated plot of the sample CDF based on 1000 samples of phase errors _

with Nbit = , ind the theoretical lician ()l.' calculated using the asymptotic form
bit 2-(1t3). For thii-; ,lueof 0 , the paran fer a = 27 N= 8. 99 so that the asymptotic form

is an excellent ipproxiinmtion to the exact integral of the Rician probabilit.
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distribution functiorV The close fit of the sample and theoretical distribution func-

L4A

tions is apparent aon d is corroborated by the results of the Kolr ogorov-Smirncv -

test: = 0.02, z=0. 63, and Prob z> 0.63=0.82.
n
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errors uniformly distributed in (-A, A], A =-07 = 0. 012 (Al indicates that both
Scurves share tihe same print location) 25

For the case in which a non-null sidelobe location is halfway between grating

lobes, the theoretical mean, variance, and CDF, are given respectively by the
approximations (54) and (55), and by Eq. (52). To compare with these theoretical
results, a sample distribution was generated starting with a 79 element, one wave-

salength spacing, 40 dB Chebhshev taper broadside arrae, and introducing random

phases uniformly distributed in the interval A-7P2 b 0t.02 with Nbit t8. The
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sample mean and variance of the power at the locations 0 30', halfway between

grating lobes, based on a sample size of 1000, were 0. 1019 X 10- 3and 0. 1345 ( 10 - 11

respectively as compared with the theoretical values of 0. 1018 X 10 - (-39. 96 dB)

and 0. 1303 X 10-1 In Figure 8 we show computer generated plots of the sample

and theoretical CDF's. The two plots appear to agree well but this apparent agree-

nent is not corroborated by the Kolmogc:ov-Smirnov test which gives D = 0.075,

z = 2.37, and Prob z=-> 2. 37 = 0. 0000. The explanation of this discrepancy between

the result of the Kolmogorov-Smirnov test and the close agreement of the theoretical

and sample mean, variance, and distribution function plots, lies in the fact that the

theoretical results are based on the approximations (50) which preclude any varia-

tion of the real part of the field. As a result, the theoretical power distribution

has no values of power less than V

77 - ) o 2 (u)

In fact, however, the real part of the field has a very small but non-zero variance

(if the variance of the real and imaginary parts of the field are calculated using
2 -11 2 = -6

Lqs. (28) Lnd (29) wefindthata =0.8104 X 10 ando y 0. 8072 X 10 ) so that

J number of the sample values of power are slightly smaller than the theoretical

lower limit. This results in a significant nifference between the sample and

theoretical distribution functions at the very beginning of the range of power which,

although not apparent in the plots, makes itself felt as a sufficiently large value

,A D N to rI.sult in ai Kolmogorov-Smirnov rejection of the hypothesis that the sample

oZ dilstribution of power is well described by the theoretical distribution. Apart

fr,,nt trni- ditert.ncc in behavior at the lower limit of the range in power, the

ti.,,,.tial ind snmlple distributions agree well as is evidenced by the plots and by

t w. r, - ' '.Ais for the mean an'i variance.

4. (JI%(:I(E 11 N .<

In ttu- r,, ,cf kv have inalvzed the statistical distribution of sidelobe power of V.

Sli:alr .Irri t o, isotropic, equispaced elements whose excitation coefficients are

sub 1 -t to randomn phas, errors. Since our stady was motivated by the desire to

describ, the ,errcrs introduced in the array pattern by the use of digital phase

shifters to svt th,. e-xcitation phases, the random phase errors were assumed

throughuut to be uniformly distributed in the interval [-/ 2 bit 12 bit where

N bit is the number of bits in the phase shifters.
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We began by deriving general expressions for the mean and variance of the

power at an arbitrary pattern location, and obtained small phase error approxi-

mations valid for Nbit > 4. We showed that for large arrays, the variance of the

power at a sidelobe location for which the error-free pattern has a null is approxi-

. - mately equal to the square of the mean of the power.

We then derived a general expression for the probability distribution of the

amplitude and power of the error field under the assumptions that the error-free

field was real and that the number of elements in the array was sufficiently large

for the Central Limit Theorem to be applied. This general expression was then

specialized to the case of small phase errors and ordinary sidelobe locations (loca-

tions not halfway between grating lobes). For this case the distribution of sidelobe

amplitude is described by the Rice-Nakagami distribution. At a pattern location

,... for which the error-free pattern has a null, the Rice-Nakagami distribution reduces

.-. to the Rayleigh distribution, and the probability distribution of the power is then

described by the exponential distribution. The expressions for the mean and

variance of the power obtained using the exponential distribution were compared

with the general expression for the mean and variance of the power obtained earlier,

and the two sets of expressions shown to be consistent under the assumption of

large arrays used in deriving the probability distribution of the power. Assuming

statistical independence of the depth of null at two or more sidelobe locations for

which the error-free pattern has a null, an expression for the statistical distribu-

tions of the least deep null among several locations was obtained by multiplying

-.together the distributions for the individual nulls. Finally, the distribution of power

at locations halfway between grating lobes was obtained starting with expressions

for the variance of the real and imaginary parts of the field, and showing that at

such points the variance of either the real or imaginary part of the field is approxi-

mately equal to zero. ,6

Following the theoretical analysis, Monte Carlo-type computer simulations

were performed to compare with the theoretical results. Extensive use was made

of the Kolmogorov-Smirnov test to test the hypothesis that the sample distribution

of power generated by the simulation could be regarded with high probability as

being drawn from the corresponding underlying distribution obtained theoretically.

In general, close agreement between the simulation and theoretical results was

obtained. However, the assumption of statistical independence of null depths at

several locations for which the error-free pattern has a null was shown to be

invalid for closely spaced nulls. The correlation between the null depths at closely

spaced locations increases the probability of the shallowest null having a given

minimum depth from the independent-multiple null probability to a value close to

the probability of a single null of that depth.
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Appedix A

Proof of Theorems Used in the Analysis

In this appendix we prove two results used in the analysis section of the report.

The first result, made use of on pp. 20 and 35, is that for any taper of the

amplitude I Wn of the element excitation coefficients describable by a polynomial 0

N

iIwnI
n= 1 (A)

N N

n= I ) n

To prove (Al) we start with the assumption that the amplitudes of the excitation

coefficients can be expressed as a polynomial of degree M,

Mk11 M n-l k OS

* IWn[ = ak ( 2 , n= 1,2,..., N (A2)k=0 k 9

with M and the ak independent of N. Eq. (A2) in effect defines a family of element

amplitudes, each member of the family corresponding to a particular value of N.

The form of the argument of the polynomial is chosen to equal +1 ard -1 for n= 1 and

N respectively. Expanding Eq. (A2) and collecting terms in (-j) we can write

k=0 N-in bk 1 '-1 ( 3

k 0
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Then WnI raised to some integral power P is in turn a polynomial, of degree MP

MP k

IWflIP= E2 c~k=0 0 N

and

N N MPSwnl  E -- c k N-I
n=1 n k3 C

MP N. n-1  k  "
= Ck (:

k=0 n=1

MP N- I
= ~2C ,,.~

k0 =

N-I

Now E n k is a polynomial of degree k+ 1 in N- I.
n= 1
N-i

k k+ 1L nk= do + dI (N- 1)+ " + dk+ I(N- I)
n=l

Hence for large N
N-i

1 nk  d (N- 1) d N(N )k-  =k+ I dk+ I

(N-I1) n=I l --

and

N MP
SCkdk+ 1 NN Ckdk+l ;

n= I k= 0 k=0"

* rN

that is, I WnI is proportional to N regardless of the value of P. (The
n= I N

proportionality constant does, of course, depend on P. ) It follows that F, I wn 4

N 2 2n= 1

is proportional to N and w n is proportional to N2 so that
(n= I
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n=l N I

12 2W) N

as claimed.

The second result, used in the discussion of the approximation (55), is that at

a pattern direction midway between grating lobes,

u = us + mir, m odd (A4)

for which

N N

Ho (u) = E a 2 cos [2 d (u- u)= + L a2 (A5)
n= I n n= 1  n

the general expression (13) for the variance of the power is equal to

2 4 ( N 1 w n 2

9 (n I wn (A6)

n=

plus terms of the order of I/N and higher compared to (A6). For convenience

we give (13) again here:

Var2 (u)12),I2)<

2A, 2  a32 12
n= I

A 4  Re Golu) Fo0(U) ] - I a 2Re O U)Fo:(u)]

N N'Re- I G(u) Iu 1  2 2.AR

-4 1H (u)I2 + A ( 12 - 2 w 14 (13)

where, under the assumption of real error-free fields used in deriving the approxi-

mation (55) V

N

Fo(u) = E IWn cos [d (u-u)] (A 7)
n= I n "
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and

N

(11) 3 cos Id (u - u (A8

with

d N-(i-1
dn -

Of the six terms on the RHS of (13). the fourth and fifth are equal for the

special case [Eq. (A5)) we are considering, while the last is of the order of 1/N

compared to the sum of the fourth and fifth terms because of (AI). Hence we focus

our attention on the first three terms of the approximation (13). The first and third

terms combine to give( N )

n= 1 .

Now from Eq. (A4)

and hence

cos 12 d )] ; cos (N- 1) mr

so that, for Eq. (A5) to hold, (N - 1)m must be an even integer. (Since m is odd

this implies that for the case we are considering there are an odd number of array

elements.) But then
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N
Fo(u)= E i WI cos [d (u- u)]

n=I n s

N

n= 1
N 1w n: I ~ (n -lOrn CosN- 2- 7

n=I

or

FoU 1wll -wI 21 I + w I +. + IwN .I

As above in proving the proportionality (Al) we assume that the amplitudes of the

element excitation coefficients can be expressed as the polynomial in Eq. (A2) and
hence, using Eq. (A3)

N

F(u) =)
n -

N M

n= I k
M N

b k 1 {-1)n- 1 (n - 1)k *

k=0 (N - )

Al N- I

bO b 1 ( 1 )n nk

k- 0 (N- 1) n= 1

N
But (- 1 )n nk is a polynomial of degree k in N-i, 

0' <l)n k d+ d (N- 1)+ " + d (N-i)

0 o k

so that for large N
M

F (u) ± bk d k  (A10)
0 k= k
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that is, F 0 (u) for large N behaves as a constant independent of N. Hence, using

the proportionality (Al) --

T5- (1E Iw ni) F 0 (u)45 n= 1 o

2A 4(12)2
9 , nl

n= 1

so that the sum of the first and third terms of approximation (13) is of the order

1 IN compared to the sum of the fourth and fifth terms.

As far as the second term of !13) is concerned, just as Eq. (A9) follows from

Eq. (A7), so

N

Go(u) = ± ()n-I 1w 13
n=l

and in the same way that we established the approximation (A 10), a similar

relation holds for G (u) with the summation on k having the upper limit 3M instead
O2

of M. It follows that the second term is of the order 1/N compared with the sum

of the fourth and fifth terms of approximation (13). Hence, as claimed, for the

special case we are considering, the expression (13) for the variance of the power

is given by expression (A6) plus terms of the order I/N and higher compared to (A6).
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