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Detachable Summary

Literature Survey of Blast and Fire Effects of

Nuclear Weapons on Urban Areas r

The American literature of the past 30 years on fire and blast effects of

nuclear weapons on urban areas has been surveyed. The relevant work in the

categories of thermal radiation and blast-wave propagation, ignition,

structural response, and firespread is sketched and areas where information is

apparently lacking are noted.

One purpose of this report is to provide entry into the literature for

researchers. Over 850 references are given, arranged alphabetically by first r

author. Accession numbers are given wherever possible to facilitate ordering

from DTIC or NTIS.

The main prupose of this report is to provide the basis for suggesting

research priorities in fire and blast effects for civil defense. Sixty-two r

component problems are identified and assigned to one of three rankings

according to their perceived relative state of knowledge. Without implying

any relative importance by their order, we list below those areas where

knowledge appears to be the most deficient.

* Ignition criteria for newer materials and for all materials under

typical use conditions.

0 Effects of complex geometry or mixed fuel on ignition criteria.

0 Enclosure effects on flashover.

* Conditions under which blast promotes incipient fires.

• Effects of blast damage on the burn characteristics of structures.

* Debris production and distribution from individual building elements

and buildings, especially residential.

• Fire spread rates between relatively intact structures for many

simultaneous ignitions and through debris fields for various wind and

weather conditions.

0 Conditions for the existence of mass fires and conditions within and

near them.

0 Methodology for thermal radiation propagation through incompletely

specified atmospheres.
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0 Methodology for efficient representation of an urban area in a

realistic fashion.

* Methodology for calculating shadowing and shielding effects of a

specified urban area.

* Methodology for calculating dynamic response and collapse of entire

buildings.

* Multiple-burst effects on thermal radiation and blast-wave loading of

targets; effects of blast on established fires; and structural

response of structures previously damaged by blast or fire.

Since the assignment of priorities depends on long-term goals and budget

information, priorities are not suggested in this report.
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LITERATURE SURVEY OF BLAST AND FIRE EFFECTS

OF NUCLEAR WEAPONS ON URBAN AREAS

ABSTRACT J
The American literature of the past 30 years on fire and blast effects of

noclear weapons on urban areas has been surveyed. The relevant work is

briefly sketched and areas where information is apparently lacking are noted.

This report is intended to provide the basis for suggesting research

priorities in the fire and blast effects area for the Federal Emergency

Management Agency. It is also intended to provide entry into the literature

for researchers. Over 850 references are given.

CAN INTRODUCTION

-The purpose of this literature survey was to determine the state of

knowledge of blast and fire effects of nuclear weapons on urban areas. This

information should aid the planning of research in improving predictive

capabilities and the development of.mitigation and hardening measures.-- -- ( U

The awesome effects of nuclear weapons have been of paramount concern

during the nearly 40 years since the destruction of Hiroshima and Nagasaki.

Nuclear radiation effects have been uppermost in the public consciousness.

Blast effects have figured prominently in the military thinking about nuclear

weapons, probably because blast effects are the only direct effect of

conventional explosives. The thermal radiation and consequent fire threat are

unique features of nuclear weapons and have perhaps not received the

appropriate amount of attention. This relative neglect is somewhat

paradoxical in light of the enormous impact of fire during World War iI.

One reason is that the difficulty of predicting fire effects, compared to

blast effects, has caused them to be virtually discounted in strategic

targeting. Targeting has emphasized military resources rather than population

(which is more threatened by large--scale fires); consequently, fires caused by

nuclear weapons have largely been the concern of civil defense planners.



Research into blast and fire effects of interest to civil defense has

been conducted for over 30 years. The directly and peripherally relevant

literature is large. Because of the limited amount of time and resources

available, we cannot claim to have done an exhaustive survey. Work directly

relevant to our study has tended to be published only in contract reports,

rather than in the technical literature; such reports seldom provide an

overview of the problem or references to work by those outside of the civil

defense community.

The main data base used to identify relevant documents has been that of

the Defense Technical Information Center (DTIC). Searches were done using

keywords and authors. Since there is a significant amount of fire research in

the technical journals, the Engineering Index was used also. Additional

documents were identified from the references of other reports.

Previous literature surveys of the fire field have been conducted. In

1960, researchers at the Armour Research Foundation in Chicago (now the

Illinois Institute of Technology Research Institute) surveyed the existing

literature [S1l]. In 1966 Renner, Martin, and Jones at the Naval Radiological

Defense Laboratory in San Francisco did a survey of the literature in the

course of identifying the important parameters in urban fire vulnerability

[R091. Martin's 1974 review [M31] on fire in nuclear warfare is a more recent

overview of the fire aspect. In 1975 Hahl [H03] provided a bibliography of

research funded by the Defense Civil Preparedness Agency from 1962-1975. A

much broader fire bibliography has recently been prepared by Groce and McKay

of SAI [G26].

- This report consists of summaries of our findings in four main areas:

(1) attack scenario, thermal radiation and blast wave propagation; (2)

ignition; (3) structural response and debris formation; and (4) fire spread

and mass fire. Conclusions are given for each section, and our overall

conclusions are presented at the end. The first appendix summarizes the

relative state of knowledge, while the second appendix is a bibliography of

relevant documents.

We emphasize that this report presents what we perceive to be the state

of knowledge in the blast and fire areas, based on the literature we were able

to obtain. The more difficult question of research priorities is not

addressed in this report. We hope that this document can stand alone and

provide entry points to the literature for researchers.

2
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ATTACK SCENARIO, THERMAL RADIATION AND BLAST-WAVE PROPAGATION

Studies of blast loading, fire spread and casualties resulting from the

use of nuclear weapons are predicated upon a presumed attack scenario, i.e.,

number, yields, burst points, and timing of the weapons. There can never be

certainty concerning attack scenarios. Nevertheless, useful information has

been obtained from past research.

From Soviet literature available in this country, it is possible to

identify the likely U.S. targets. It is also possible to make plausible

guesses as to weapon yield and height of burst for any particular targe or

target complex. There is also sufficient information on weapon output -3
characteristics for use in calculating fire and blast effects.

Standard works on general weapon characteristics still currently 1 are

those of Classtone [G121 and Brode [B73], and the DNA Weapons Effects L

[D151.

Some general statements can be made about Soviet attack scenarios, based

on the available information concerning their arsenal and its possible use.

In their 1979 publication, Douglass and Hoeber [D19] state that the most

likely Soviet attack scenario is a global nuclear war employing all the

resources at their command, beginning with a first strike against immediate

war-fighting assets of the U.S. Both the physical and literary evidence

indicates that an attack on the U.S. would use fairly large yields (0.5-1 MT),

usually more than one per target; targets would be weapons, ships, U
command/control/communication/intelligence, political authority, etc., but not

cities or population as such.

We conjecture that the most probable attack scenario would involve

multiple warheads from missile-delivered re-entry vehicles. The implications

of such a scenario on blast loading and fires are considerable. 
Most studies

have been based on single-burst scenarios as a first step in the analysis of

the very common post-attack phenomena. We would expect, for example, that the

debris formation and fire characteristics under a multiple-burst attack would
be radically different from a single-burst situation in terms of the thermal

fluence, the ignition probabilities of the debris and structures, and the

effect of firebrands.

Despite these uncertainties, much can be learned from consideration of a

single-burst attack. We shall consider here only the blast phenomena for a

3
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single-burst attack scenario. Much of the blast-wave phenomena resulting from

a nuclear attack is discussed in Refs. C09, B73, and D15. A useful text on

blast characteristics is by Zel'dovich and Raizer [Z05].

Blast-Wave Propagation

The presence of uneven terrain, barriers or structures in the path of a

blast wave causes changes in its characteristics--notably in terms of

overpressure--from those corresponding to propagation over flat terrain.

Rather extensive theoretical and experimental analyses have been performed on

terrain effects including valley channeling, but no comprehensive theory seems 4

to be available on barrier or structure shielding effects. While blast-wave

propagation through an ideal atmosphere is well understood, there is not much

information regarding the effects of humidity or dust.

In general, shock-wave interaction with inclined terrain is such that the

overpressure increases upon propagation along rising slopes and decreases over

falling slopes. This has been observed experimentally for small charges (see

Refs. T34, W61, and K16. Correlations of these and other results have been

developed as a predictive tool [A32, K25], and are cal'ed the "small-charge"

method. In addition, a purely theoretical treatment of the shock-interaction i

processes has been made by Whitham [W35]. These two prediction methods appear

to be commonly used in a priori estimates of overpressures for the case of

*blast propagation along inclined terrain and in valleys [W67].

In Figure 1, three schematic diagrams of the changes in shock-wave P

patterns caused by terrain are presented. The increase in overpressure caused

by a rising slope predicted by the Whitham theory is given in Figure 2.

Typical increases of a factor of two or three are indicated; a corresponding

reduction in overpressure for falling slopes is Iso predicted. Sample S
results from recent experiments to ascertain the validity of the analytical

methods are shown in Figure 3. The terrain chosen consists of both rising and

falling slopes in the propagation direction. Theoretical predictions for the

same terrain are also shown in Figure 3. Comparison of the theory with!

experiment indicates reasonable agreement along rising slopes but less

satisfactory agreement along falling slopes. The comparison also demonstrates

somewhat better agreement for the small-charge method than for the Whitham
theory. 

U
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reflection (from Whitham theory). Numbers in parentheses identify extreme
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numbers on the figure identify the slope angles to which each curve applies

(from K16).
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Although the above examples deal mainly with large overpressures (greater

than 10 psi) they indicate the effects of slopes on blast-wave overpressures.

It appears that blast propagation along inclined slopes may result in changes

in overpressure by a factor of less than 3 (certainly less than 10 or 100).

We may thus bracket the effect of shielding by terrain with reasonable

confidence.

While numerous test results are available on the presure-time history for

blast waves in the presence of barriers or structures, there does not appear

to be any meaningful correlation of test results. Nor is it clear that any

theoretical modeling or prediction has produced directly useful information.

At this juncture, then, only some qualitative statements can be made, based

mainly on data reported by Coulter [C321. For example, the front-wall loading

was less when the model was shielded than when unshielded; the rear-wall

loading was increased by reflections from the back row of shields; the roof of

the model did not experience very different loading from one configuration to

the next; and the existence of openings (such as windows) on the model caused

only minor changes in the exterior load.

No efficient methodology apparently exists for describing blast-wave

propagation through specified urban areas.

Thermal Radiation Propagation Through the Atmosphere

Propagation of thermal radiation through the atmosphere was studied

extensively in the 1960s. Of main interest was the calculation of the

transmissivity of the atmosphere for fireball thermal radiation by Gibbons

[G08J. Gibbons also calculated that through heavy clouds the transmissivity

of thermal intensity may decrease to as little as one-tenth of that for a

clear atmosphere. We believe that calculation of transmissivity is reasonably

well understood given the atmospheric conditions at the time of attack at a

given locale. Of course, this is precisely the information that cannot be

predicted beforehand. This uncertainty is further compounded for a

multiple-burst situation, and a parametric or a probabilistic approach may be W

appropriate for estimating the thermal-radiation loading on structures.

Shadowing of thermal radiation by terrain, vegetation, or structures is

another problem that can be solved given sufficient information regarding

burst point, target, and intervening objects. The difficulty is in

8



calculating a reasonable incident flux history for a large number of targets

without being overwhelmed by a huge volume of data.

Conclusions

Information is lacking in the following areas:

0 Multiple-burst effects on thermal radiation transmission and

blast-wave propagation.

0 Effects of humidity or dust on blast-wave propagation.

* Shadowing and shielding --ffects of structures on thermal radiation

and blast loading in urban areas. w
* Methodology for thermal radiation propagation through incompletely

specified atmospheres.
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IGNITION

Ignition caused by thermal radiation is one of the more heavily

researched parts of the blast and f-_e problem. Ignition criteria for

materials exposed to thermal radiation were studied mainly from the mid-1950s

to the mid-1960s. The ignition data obtained from the atmospheric nuclear

tests were generally qualitative rather than quantitative. Quantitative

laboratory data have been obtained using carbon arc and other sources to

produce either a square-wave pulse or one intended to represent the essential

features of the thermal radiation pulse from a nuclear weapon. The sample

orientation has nearly always been vertical and normal to the flux. The most

frequently studied materials have been cellulosic, especially samples from a

specially prepared batch of alpha cellulose papers. The surfaces have

generally been at least nominally clean and black.

In a review of urban fire vulnerability [R09], the parameters affecting

free-field ignition of materials were given in approximate order of importance

as: fuel thickness or weight per unit area, optical absorptance, weapon

yield, burst altitude, relative humidity or recent precipitation, local air

currents, chemical composition, extraneous contents (e.g., water and

minerals), fuel geometry (e.g., plane or complex) for long pulses only,

natural vs manufactured fuels, spectral distribution of thermal radiation,

and, for some multiple-burst situations, the time between bursts.

The most extensive compilation of radiant ignition criteria is apparently

that given by Glasstone [G12]. The critical radiant fluence is given for

three different low-altitude yields. Data are given for clothing and drapery

fabrics, tent and other fabrics, household and outdoor tinder materials, and a

few construction and other materials. Most of the data were estimated to have

a precision of +50% for field conditions, and +25% under laboratory conditions.

The earlier laboratory data were for square-wave pulses [B1051. The

thermal pulse shape of low-altitude bursts was simulated and compared with the

earlier laboratory results [M07, M10]. The weapon pulse shape required less

energy to ignite alpha cellulose for short exposures and more energy than a

square-wave pulse for long exposures. Therefore, two parameters (typically

the peak irradiance and time to last maximum) are required to characterize the

thermal pulse.

10



High-altitude, large-yield weapons produce very intense but very

short-length pulses which are difficult to simulate in the laboratory. The

available data, however, support the scaling relationships found for longer --

exposures [MIOI.

Other difficulties with laboratory measurements have been the small area

of uniform exposure (e.g., 3 /8-3 /4" diam), and the almost universal use of

vertical samples. It has been suggested that sample size is important in the

regime where convection losses are the decisive factor for ignition [S59].

Buoyancy effects resulted in higher flux and exposure requirements for

vertical versus horizontal samples of PMMA Lucite and red oak [KI].

Another factor in determining the amount of energy absorbed is the

optical absorptance. The dramatic effect resulting from different target

colors has been observed in nuclear explosions and laboratory tests. Since

the surface properties change during exposure, however, very little

quantitative data are available. The usual assumption is that, at least -

during a long exposure, a cellulosic material will soon char and therefore

have an absorptance near unity. Although no data exist, the spectral

distribution of thermal radiation is believed to show up only in the spectral

dependence of the target absorptance, if any. As a result of atmospheric

absorption and scattering, the incident thermal flux is similar in spectral

composition to sunlight.

The ignition process in cellulosic materials has been reviewed in several

places by Martin [R09, M15] and more recently by Kanury [K03) and by Steward

[S83]. The observed macroscopic parameters can generally be explained using

relatively simple heat conduction models, but our understanding of the

detailed chemistry and fluid mechanics still leaves many questions.

Martin summarized the behavior of cellulosic materials as indicated in

Figure 4. No such detailed correlation has been found for non-cellulosic

fuels. The increased use of plastics suggests a need for correlation of data

on non-cellulosic fuels in a form useful for predicting primary ignitions.

Data from atmospheric nuclear tests are limited, but they do represent

* field conditions, although not a wide range of conditions and yields of

interest. A small amount of laboratory work has been done to investigate the

effects of humidity and mineral content on the ignition of alpha cellulose

[M08, B791. The effects of wind have barely been considered in the ignition

problem. The general belief is that wind is not important for short, intense

II
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pulses, and that it becomes a factor only for marginal cases where losses are

the decisive factor 1R09]. [The marginal region determines, however, the

reach of primary ignitions and represents a large area because of the large

distance from ground zero (GZ).] Very recent precipitation will reduce the

fire hazard of exterior fuels.

Ignition of isolated fuels does not represent the actual situation,

however. The location and condition of fuels in an urban environment can have

a great impact on the fire threat. The ignition of a mixture of thick and

thin fuels is more realistic but has not received sufficient attention.

Alvares and Wiltshire [A201 found 50% reduction in critical irradiance for

cotton cloth when backed by cotton batting, and appreciable reduction in the

time to ignition for cotton cloth in combination with newspaper for high

irradiances but not for low irradiances. Waterman and Vodvarka found similar

results [W03]. It can be inferred that composite specimens may well be more

susceptible to ignition by radiation than the isolated components. The

reasons seem to include insulating effects and the piloting of thicker fuels

by thinner ones.

As the problem of large-scale urban fires was studied during the 1950s

and 1960s, the view soon became generally accepted that the primary ignition

hazard was due to interior fuels. Exterior fuels tend to be hard to ignite

persistently with a short pulse of radiation, and even if ignited the

probability of fire spread to a structure was estimated to be low, based on

normal fire experience. Brown showed [B851 that there was virtually no chance

of persistent ignition of thick, sound wood beyond the region of severe blast

damage produced by a weapon of less than 100 MT. Also, the ignitability of

interior fuels is much less affected by adverse weather. Consequently,

interior ignition by thermal radiation has received the most attention. The

scenario is the ignition of thin fuels, fire spread to thicker fuels, and

total room involvement, leading eventually to total building involvement in

some cases.

This scenario is basically derived from normal, peacetime fire
experience. It is known, however, that geometrical complexity can be a_

factor. Corners behave differently than flat walls, because of multiple

reflections. A more important question has been raised recently by Waterman

and Martin regarding occurrence of a phenomenon caused by the very high

* heating rates of enclosures by the thermal radiation pulse. This phenomenon

13
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is an abrupt flashover, independent of the contents of the enclosure. This

was observed in one atmospheric test. (See also [T301.) If it represents the

rule rather than the exception, it would completely change the fire spread

scenario.

Calculation of shadowing effects is simply a geometrical problem, given

the height of burst, yield, and the location and orientations of buildings,

hills, and trees, window sizes, and the location of fuels within the rooms

[B371. The problem, of course, is how to represent an urban area in a

probabilistic yet meaningful way. Towards this end, a few cities were

surveyed in the 1950s and 1960s [B92, S13]. Some work has also been done to

measure the effect of windows and screens on transmission of radiant energy.

Consideration of shadowing and attenuation led Bracciaventi [B401 to conclude

that previous estimates of initial fire starts caused by radiation had been

overestimated by a factor of 2.

Secondary fires are those caused by blast effects rather than by thermal

radiation, i.e., the blast brings a fuel and an ignition source into contact.

Secondary fire danger has been estimated by analysis of sketchy data from

Hiroshima and Nagasaki, as well as other war and natural disasters [M43, W70].

It is believed that in some circumstances (e.g., in the low-overpressure

region), secondary ignitions can exceed primary ones. A notable gap has been I

the lack of any secondary fire analysis for residential structures.

There was a very small amount of testing in atmospheric shots of

secondary fire ignition, but the results were inconclusive. The general

belief is that automatic shut-off of gas and electrical power would greatly

reduce the secondary fire hazard, but at the same time complicate rescue and

survival operations in the immediate post-attack period.

There does not appear to be any practical way to increase the amount of

data for estimating the secondary fire hazard. It has been suggested that

fires caused by earthquakes are quite similar, but Wilton et al. [W70] contend

otherwise. The expense of large-scale HE tests precludes the accumulation of

directly relevant data. Probabilistic analysis combining expected structural

response with survey data on location, storage, and use of fuels appears to be

needed.

Ignition by convection is generally a mode of fire spread rather than

start. It is sufficient to note here that little work has been done to

establish convective ignition criteria similar to those for radiative W

14



ignition. Weatherford and co-workers [Wi8] have studied the phenomenology of

convective ignition. As for the more realistic situation in fire spread of

mixed radiative and convective ignition, recourse probably should be made to

the flammability data for various materials.

Several computer codes were developed during the late 1960s to predict

primary fire ignitions in urban areas. Calculated ignition probabilities were

generally based on incident fluence into rooms and the nature of the contents

or building use. The urban areas were described with various amounts of

detail. The main features of four codes were discussed, and their good and

bad points were compared by R. K. Miller et al. [M63].

Conclusions:

Information is lacking in the following areas:

* Ignition criteria for newer materials, such as plastics.

* Effects of field conditions (e.g., dirt, weathering, condensed water)

on radiative ignition criteria.

* Convective ignition criteria for various materials.

* Effects of sample orientation and wind on radiative ignition.

* Effects of geometrically complex arrangements (e.g., corners), mixed

thick and thin fuels, and composite materials on ignition criteria.

* Enclosure effects (abrupt flashover).

* Methodology for representing specific urban areas in an efficient yet

realistic way.

* Probability of secondary fire ignition for residential structures.

W
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STRUCTURAL RESPONSE AND DEBRIS FORMATION

In addressing the overall blast and fire effects of nuclear weapons on

urban areas it is necessary to understand and predict:

* The dynamic response or collapse of structures.

0 The debris production, composition, and distribution from damaged

structures.

Here we briefly review the existing methodologies for estimating the dynamic

response and debris production.

* Background

As a result of a nuclear explosion, a structure may be damaged primarily

by three means: fire, blast-induced ground motion, and air blast.

In the first case, the structure may catch fire as a result of the

thermal radiation pulse. However, this fire does not act long enough prior to

the blast wave arrival to alter the structural response. The surviving fires,

i.e., after passage of the blast wave, may well cause severe damage to the

ignited and neighboring structures; thus the blast response of fire-damaged

buildings may be of interest for multiple-burst attack scenarios. The

literature search did not turn up any information on the dynamic response of

buildings previously damaged by fire or blast.

The detonation of a nuclear weapon, particularly a surface-burst weapon,

can cause large ground motions. The destructiveness of these ground motions,

however, are very localized in nature (as compared to the range of the air

blast) and therefore only need to be accounted for in structures relatively

close to GZ.

Figure 5 shows vertical acceleration as a function of ground range for a

surface explosion. This graph demonstrates the rapid attenuation of ground

motion with distance. For a I kt explosion, the vertical acceleration at a

distance of 150 m (500 ft) is approximately 10 g with a rapid decline to I g

at about 350 m (1150 ft). The ground motions may need to be accounted fo-r in

structures located close to GZ. Keyworker shelters, for example, are often

proposed for underground placement to escape the devastating effects of air

blast, and the ground motion may be a controlling factor for design or

analysis. Although the ground movements have been measured in various test
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situations, ground motions have not been accounted for in any of the

structural analysis methods we found in our literature review; Ref. S26 gives

a summary of many tests and some potential problems have been identified by

Mason and Walter [M41J, especially for saturated soils.

For the majority of structures, air blast loading would be the primary

cause of damage and debris production. The blast loading on a structure

consists of a "diffraction loading," which is determined mainly by the peak

overpressure in the blast wave, and a "drag loading" in which the dynamic

pressure is the significant property.* All structures are subjected

simultaneously to both types of loading, although certain structures may be

more sensitive to one type. (A truss bridge, for example, would be subjected

* primarily to a drag loading.) The actual pressure-time history at each point

on the outside surface of a structure is very difficult to predict because of

the complexities of the interaction of the blast wave and the structure.

Simplified methods of predicting an average external loading on a structure

give a reasonably accurate estimation of external pressure for use in dynamic

analysis [G12, B50, A341.

Civil defense planners are interested in the modeling of the dynamic

response of structures from initial loading through the ranges of elastic and

inelastic response and up to failure or collapse for a number of reasons:

* To determine occupant survivability in existing, unhardened

structures;

* To determine what, if any, utility the structures would have after an

attack;

* To evaluate the feasibility of various hardening schemes;

* To determine the extent, composition, and distribution of debris from

the failed or collapsed structure. (The evaluation of debris is

important for planning rescue and post-attack recovery operations and S

to determine the fuel bed for fires.)

The ideal tool for a civil defense planner would be a computer code

which, given an attack scenario, could accurately determine the loading on a

given structure, the dynamic response with accounting for failure of certain

*Glasstone [G121 gives a good account of the basic phenomena of blast-wave

propagation and loading of structures.
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elements, the debris content and distribution resulting from the failure of

structural components, and the survivability of personnel in the structure.

Such a code would prove valuable in determining the best possible shelters and

also in making overall damage estimates.

Unfortunately a model does not exist, on any practical level, for

performing all these analyses. There have been significant advances, however,

in understanding the basic behavior of structures up to the point of collapse

and estimating the dynamic response of structures and debris production. Some

important developments are discussed below.

Predicting Dynamic Response of Structures

The numerous computer programs developed for the elastic analysis of

structural systems (both matrix analysis and finite element analysis) are of

little use in the dynamic analysis of structural systems up to failure or

collapse. The large deflections and markedly nonlinear behavior of structural AP

systems near failure or collapse precludes any simple linear characterization

of the structural system. With the exception of a method employed by Lin and

Associates [A031 in the early 1960s, the problem of predicting the dynamic

response of structural systems has focused on studying, through O

experimentation and analytical modeling, the dynamic response of individual

elements. The information gained from the individual element studies has then

been used to model the dynamic response of entire structures. Attempts to

model the dynamic response of entire structural systems accurately has

probably followed this path because of:

. The feasibility of testing and the availability of test data for

blast response of individual structural elements; and

* The overwhelming complexities of the dynamic response of entire 0

structural systems, complicated by the lack of quantitative data

(pressure measurements, deflections, etc.) of entire structures

subjected to blast.

Individual Elements

The most widely accepted method for the dynamic analysis of structural

elements appears to be the single-degree-of-freedom (SDOF) method whereby an
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existing structural element, a wall or floor for example, is idealized as a

SDOF system. The transformation of the actual element to a SDOF system is

dependent on translation factors based on conservation of energy. It is also

necessary to obtain a resistance function which is characteristic of the

material of the element (reinforced concrete, masonry, etc.) and the type of

element (beam, simply-supported plate, fixed plate, etc.). Once the

transformation to a SDOF system is made, the equation of motion for the SDOF

system can be integrated numerically to determine the deflection of the wall

as a function of time.

This process is shown schematically in Figure 6. The accuracy of the

SDOF method is obviously dependent on how accurately the resistance function

represents the actual resistance supplied by the member. The resistance

functions can be quite complicated, representing many different resistance

mechanisms. When resistance functions are developed by analytical methods,

confirmation by testing is essential. Figure 7 shows a resistance function

developed for a reinforced concrete slab. A number of shock tube tests have

provided essential test data on the dynamic response and collapse of

individual elements [GO1, W69, L51].

The numerical integration of the SDOF equation of motion yields the

Aisplacement of the structural element as a function of time and thus predicts

the dynamic response of the element. In order to estimate incipient collapse

overpressure it is also necessary to establish a failure criteria for the

individual elements. This is often based on a maximum center deflection.

Wiehle et al. [W39, W441 have successfully developed and applied the SDOF

methodology to a number of structural wall types. Comparison of the analytical

results with existing test data shows good correlation. Beck et al., [B12]

have applied the SDOF method to structural elements other than walls, i.e.,

beams of various support configurations, thin and thick slabs, and buried

structures. The accuracy of the analytical predictions for the response of

the beam and slab models was quite good. Beck estimates that the SDOF model

is capable of estimating the incipient collapse overpressure to within +15%.
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Structural Systems

While the dynamic response and collapse of many individual structural 7f

elements is understood and accurately modeled, a computer program does not

exist that is capable of predicting the dynamic response of an entire

multi-story building from initial yielding to catastrophic collapse. Indeed,

this problem is much more difficult because of the complexities of

interactions between the blast wave and the structure and interactions between

the individual structural elements. An accurate dynamic analysis also

requires the prediction of airflow and pressure inside the structure, a very

complicated process that has only been attacked by approximate methods even

for the simplest geometry [C26, C29, M83]. Some of the attempts to analyze

entire structural systems are reviewed below.

The studies performed at SRI between 1968 and 1980, utilizing the SDOF

method [W39, W441, laid the groundwork for development of a computer code for

the blast response of buildings. The BRACOB (blast response and collapse of

buildings) code developed by Rempel [R04, R05] is capable of simultaneously

analyzing the response of all exterior walls on one story level of a

building. The program treats each individual wall element as a SDOF system.

Given a description of the air blast, the floor plan and structural

properties, it performs an incremental analysis in time, calculating at each

time step the net loading on each wall and the resulting response.

The program alters the floor plan of the structure according to the

predicted wall collapse and continues the analysis until either the blast has

passed or all walls have collapsed. The BRACOB program utilizes a room

filling method given by Rempel [R04] and an exterior air blast loading given

by Glasstone [G121. This code is capable of analyzing only one floor level of

a structure and, in its present form, is for the analysis of the walls only,

not the frame of the structure.

Results predicted by the BRACOB code have been compared to experimental

data gathered in both the Dice Throw and Mill Race* events. In the Dice Throw

event [W461 the code successfully predicted damage levels for single story

*Rempel, SRI report in preparation.
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structures at various distances from GZ. The code also successfully predicted

the outward collapse of some of the structural walls.

In the mid 1960s, T. Y. Lin and Associates developed a computer program

to analyze the dynamic response of high-rise buildings to nuclear blast

[A03]. This frame analysis program takes into account the plastic resistance

of the structural members. The analysis of a structure using this program

requires many assumptions: e.g., it assumes that all walls have failed and

that the loading on the exposed frame is caused solely by drag. The program

does not tell if the structure has collapsed. It calculates how much

ductility the structural members have used (i.e., p = p/e e; where p = ductility,

p = plastic rotation, 0e = elastic rotation at yield). The structural
pe

collapse is assumed to occur when a given ductility level is reached. The

assumptions employed in the program appear to be somewhat crude for the blast

analysis of a structure. However, this level of simplicity was probably

necessary in the early 1960s when data on collapse of structural elements was

sparse. As far as we know, the results from this code have never been compared

to experimental data, nor are we aware of any existing data appropriate for such

a comparison.

Another computer program was developed by Longinow et al. [L46, L50]. The

objective of this code is not to perform a structural analysis per se but to

develop a deterministic, computerized model for predicting the survivability of

people located in conventional buildings subjected to the direct effects of

nuclear weapons. This code is apparently unique in trying to calculate what is

of ultimate importance: the number of survivors of nuclear attack. As part of

calculating the people survivability, the components of a structure (walls and

floors), are analyzed using the SDOF method to estimate incipient collapse

overpressure of structural elements. As with the BRACOB code the program

calculates in incremental time steps the net loading on a structural element.

It compares the net loading on the element to the incipient collapse

overpressure in order to determine whether the element will fail. Although the

individual analysis (e.g., structural analysis of walls and debris translation)

methods have been compared with existing data there does not appear to have been W

any comparison between the code and experimental results for an entire

structural system. (Results from the Mill Race Event could perhaps be used.)

This code also predicts debris distribution.
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Multiple-building Studies

Most of the research in the structural area has concentrated on isolated

structural elements or single buildings subjected to a single weapon. At some

point the single building information must be related to an actual city

complex. It appears that shielding is the most important phenomenon which

must be accounted for in estimating the dynamic response or collaps. of a

structure in a city complex.

Recent tests by Coulter [C32] investigated the extent to which adjacent

structures altered the blast loading on a particular structure. The HE tests

were for various complex configurations with pressure-time histories measured

on the "model" structure. Figure 8 shows one of the test configurations.

Coulter's conclusions include:

* The front wall model loading was less when shielded in the complexes

than when unshielded;

0 The rear wall of the model was loaded additionally with reflections "U

from the back row of shields;

* Whether the model had openings caused only minor changes in the

exterior loading.

As a result of the first 2 items, there is a decrease in the net translational

load on the shielded structure. The presence of the adjacent structure

complex reduced the maximum front face overpressure from 60 kPa (8.7 psi) in

the unshielded case, to 40 kPa (5.8 psi) in the shielded case. The rear wall,

on the other hand, exhibited an increase from about 25 kPa (3.6 psi) to

approximately 35 kPa (5.1 psi). Notice that the structures in the complex are

of uniform height. If the surrounding structures had been taller than the

"model" building, the effects of the shielding would undoubtedly have been

larger. This possibility could be important when considering key worker

shelters.

Debris Estimation

Both empirical and analytical methods have been applied to estimate the

debris caused by a nuclear weapon. Generally the empirical methods have been

applied to the problem of estimating the debris produced in a large area, such

as an entire city, subjected to a nuclear blast. The analytical methods, oci
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the other hand, have been applied to debris production from individual

elements and, to a limited extent, to the debris production and distribution

from a given building. -w"
Empirical debris estimation procedures have relied on the existing data

base from the atomic bomb attacks on Hiroshima and Nagasaki [D02] and from

nuclear tests in Nevada and the Pacific. The results of the data reduction

have been used to produce debris estimation methods. United Research Services

(URS) [E03, E04, R201 has produced debris estimation charts which give the

debris production (percentage of building materials) vs incident overpressure

for a given yield weapon. Figure 9 shows the results for various types of

buildings for a 20 kt weapon. For a larger yield weapon, the increased flow -S

duration would shift the curves to the left. These curves can be used to

estimate the debris production in a given area. An assumption about the

distribution of the debris is then made. (In the studies reviewed, a uniform

distribution was assumed.) The result of the application of this method is a

debris depth estimation for various constitutive areas of the city (see Figure

10). The curves produced in this data reduction are useful for gross debris

estimation. It appears that as much information as possible has been gleaned

from the existing data base with regard to overall debris production.

A number of studies performed by URS and Scientific Services, Inc. (SSI)

[L51, W39] were aimed, in part, at gaining test data and analytically modeling

debris production and distribution for walls. These studies included a number

of shock tunnel tests of various types of walls (e.g. concrete block, brick,

reinforced concrete, etc.). 6

The tests provided information on the behavior of walls near failure and

included phenomena such as arching. The test data also provided information

on debris production which allowed comparison with simple analytic debris

estimation procedures [L51, W39]. Comparison of wall displacements from

motion pictures of the tests and predictions of wall displacements made from

simple analytical analyses show a surprisingly good correlation for certain

wall types. References L51 and W39 contain photographic data on debris

quantity and distribution for various wall types. W

Work by Longinow et al. [L46, L50] appears to be the only analytical

effort to estimate debris production and final distribution for an entire

building. Longinow has included in a computer program a method for predicting

the distribution of blast debris which consists of a loading and response
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analysis for individual structural components and a debris and trajectory

analysis.

The program first determines the pressure-time histories acting on the

external portions of the building. Then it calculates the average fill

pressures and flow velocities in the rooms to determine the time-dependent net

loading on the individual components. The transient analysis of each

component is then carried out. This analysis determines the incipient

collapse overpressure, time of collapse, and average velocities at collapse

for exterior walls, interior walls and slabs over basements. The failure

pattern of the wall, number of pieces, and sizes are estimated based on

full-scale experimental results. The debris transport is then performed using

a deterministic, free-flight model. The transport analysis, given the debris

size, weight, geometry, and the initial flight characteristics of the debris

from the response analysis, predicts the final distribution of debris

particles. (See Figure 11.) A detailed account of the trajectory analysis

and a sample application are given in [L501.

Observations

The existing tools for structural analysis are based on the SDOF V

methodology. These methods essentially predict the response of the individual

structural elements (walls) which are assumed to be rigidly supported, i.e.,

attached to a rigid frame. While this method may be acceptable for relatively

simple frame structures, it is not clear that the SDOF method could accurately

predict or even be applied to more complicated structures such as tall

buildings, for which overturning may be important, or to shear wall buildings

which have become more prevalent in recent years. (According to Rempel a

possible addition to BRACOB would allow it to handle multi-level buildings by

connecting SDOF components at nodes.)

Despite the poor results of some of the finite element method analyses

(See Beck [B121), this method is very powerful and should not be dismissed.

Although the existing linear-finite elenent codes have limited application to V

the blast problems, some of the newly developed structural analysis codes

which account for large deformations and nonlinear stress-strain relationships

may be applicable.
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An effort should be made to generate appropriate documentation on

existing computer programs. There is currently no manual for the BRACOB code

nor for the IITRI codes. Preparation of a manual, a user-oriented sourc-2

code, and a listing of assumptions and limitations of the programs is -

necessary for wider use of these codes.

Conclusions

Information is lacking in the following areas:

* Methods for analysis of dynamic response of entire buildings.

* Experimental data on dynamic response or collapse of entire

buildings. (The practicality of testing scale models of large -I

buildings in large HE shots might be investigated.)

* Empirical data on debris formation and distribution, especially from

individual structural elements and single buildings, including

typical residential structures.

* Documentation on existing structural response codes.
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FIRE SPREAD

Any development of fire beyond a sustained ignition may be broadly termed

"fire spread." The scale can range from an incipient fire on a single fuel

elemient to a firestorm consuming thousands of buildings.

Fire spread on a small scale has long been a subject of interest to the

fire community. Fire spread on a larger scale has been of interest almost

solely to civil defense and military planners. Forest fires are a significant

exception. Forest fires occur frequently on a large scale. Years of study by

the Forest Service has resulted in much empirical data and even some

predictive capability [CIO, R16, A07, All, S79]. The nuclear weapon effects

on forests were discussed in a handbook by Kerr et al. [K331. The predictors

of forest and wildland fires have two advantages over their urban counterparts.

One is the much larger data base of large-scale fires. The other is a better

defined and characterized fuel bed.

Another exception to this demarcation based on size has been the problem

of blast effects on fires. Blast effects on incipient fires caused by the

thermal radiation pulse first became of interest during atmospheric nuclear

tests in the early 1950s. This led to laboratory investigations on forest

fuels [DOl]. Interest revived in the late 1960s, but for blast effects on

fires in an urban environment [M291.

During the 1970s several efforts were made to get more data, both in the

laboratory [BO, M36, G15] and in an HE shot [W50]. Important work relevant

to civil defense was that of Goodale [G15. Various types of rooms were

modeled in a shock tunnel. Extinguishment of fire was found for all but

smoldering fuels for overpressures above 2 psi. Subsequent experiments by

others under different conditions have produced conflicting results, however

[W491. Laboratory experiments and theoretical efforts to explain them are

still underway.

Blast extinguishment is a complex problem. It depends not only on the

type of fuel, but on perturbations to the shock wave. There are questions

whether laboratory experiments in shock tubes adequately model the field

environment. Test beds, for example, have usually been anchored for

observational convenience. Questions remain regarding the importance of the

pressure rise after the shock, the duration of the positive pulse, and the

effects of the artificial ignition methods. Unfortunately, the field tests
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iave been few and generally not particularly illuminating. It has been

suggested by Napadensky of IITRI and Alvares of LLNL that it might be useful

Co study the methods that have been developed empirically for extinguishment

of oil field fires. The techniques involve use of a shock wave to blow off

the flames and cooling of the fuel to prevent re-establishment.

The possibility of fire enhancement by blast has been mentioned, but does

iiot appear to have been studied. The effects of blast on established fires in'

structures or debris fields is obviously important in some multiple-burst

scenarios, but no relevant work has been found.

The next phase in fire spread, assuming the fire has survived the blast

wave, is the spread from thin to thick fuels and possible total room

involvement (flashover). This problem is of major importance and thus has

received considerable attention by academic and fire protection researchers

[T28]. The current knowledge has not, however, been translated into a form

useful for the modeling of large-scale urban fire response.

* Fire spread from a flashed-over room to other rooms in the structure has

also received a fair amount of attention from the larger community of fire

researchers [E221. Here again the information has not been put into suitable

form for predictive modeling purposes for civil defense. A common assumption,

for example, has been that if even one room flashes over, then the entire 4P

building will be destroyed. The SSI model [C40] used a more sophisticated

algorithm based on the Gage-Babcock block fire hazard rating system [C181 to

estimate the fire susceptibility of structures. Some consideration has been

given to the effect on the burn characteristics caused by ignition at

different elevations of high-rise structures [T081.

The effects of light-to-moderate blast damage on the burn characteristics

of buildings have been investigated in a few experimental burns [VII, W17].

* The amount of data is insufficient for modeling purposes. 6

Fire spread between buildings can be by radiation, convection,

conduction, or by firebrands. Disagreement persists about the relative

importance of the mechanisms, although radiation is generally considered

* dominant between adjacent buildings. Radiative heat transfer is effective for

distances of about one building height [R09]. Wind can promote or inhibit

this by bending the flames and transporting firebrands. On a larger scale,

convective heat transfer and firebrands become increasingly important.

* 3
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Renner et al. [R09) listed the fire vulnerability parameters in declining

order of importance as: fuel parameters (composition, density, size,

continuity, thickness, moisture content, age, ignitability, burning time, heat

release, translatability); target parameters [fuel load (on a volume or area

basis)], density of buildings (number and size of openings, number and size of

enclosures), weather parameters (wind velocity, humidity, air temperature,

precipitation, insolation), topographic parameters (slope, aspect, elevation),

and other parameters (number and relative location of fires, shape, etc.).

Waterman [W171 provided evidence of enhanced burning and spread between

structures as a result of nearby structures. The causes included convective

heating, radiant reinforcement, and increased air flow. Some enhancement of

fire burn rates was observed also by Wiersma and Martin [W47]. The

enhancement is clearly dependent on the separation distance, window areas,

relative heights, etc.

The rate of spread in urban areas has been generally observed to increase

linearly with wind speed, except for spreading against the wind. Moisture

content of the fuel is not a factor for contiguous spread, but it does affect

spread by firebrands [R09], because brands are primarily a hazard to roofs and

other exterior fuels. Chandler et al. [CIO] analyzed available data on urban

fire spread rates and compiled those for which there was sufficient

information. They gave conditions under which fire would not spread or would

die out in the absence of fire fighting.

The lack of data from fire experience has made assessment of the role of

firebrands in urban fire spread difficult. In peacetime, firebrands are

usually suppressed, while inadequate data is available for war fires.

Alger et al. [A14] observed numerous instances of firespread caused by

ignition and formation of firebrands from shake roofs. Their interest was in

studying the types and effectiveness of self-help firefighting rather than in

studying firebrands per se. During the late 1960s, Waterman and others did

several studies to fill in the large gaps in knowledge [W07, V12, W081. They

concluded that glowing firebrands over I in. in size, such as produced by

1 in. sheathing, were a serious threat, especially to interior fuels exposed

by blast damage to windows and roofs, and to weathered shingic,.. Shingled

roofs produce copious amounts of small firebrands, but these do not pose a

large threat. Roofs that remain intact longer produce smaller brands and are

* therefore less of a spread hazard. Previously blast-damaged structures
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produce larger brands, if some roof remains, because of higher rates of

burning, and blast damage greatiy incre;1.es susceptibility to ignition by

brands. The transport and ultimate distribution of firebrands, especially in

mass fires, is not known.

Firespread across debris Fields i difficult to quantify because of the

many variables. Fuel type, density, size and distribution, and weather

conditions are important aud largeiy unknown parameters. Some experimental

work [W50, W511 has been done, but more is certainly needed before this can be

considered sufficiently understood.

The modeling of fire spread [CI0, P15, T01, TIO, M51, A30, A31] in urban

areas has ranged from deterministic to stochastic. Some degree of

stochasticism is always a factor in modeling the target areas as well. Phung

and Willoughby [P151 used fire data to develop stochastic and deterministic

models and to identify missing information, They called for more data on

long-range rural spotting (spread by firebrands), effects of wind and humidity

on spread rates in urban fuel, burn times for rural and urban fuels, and

spread probabilities in urban fuels for various weather conditions.

The IITRI model [T01, TI] represented urban areas by somewhat idealized

tracts bounded by firebreaks. Spread within tracts was by radiation or

brands; spread between tracts was possible only by brands. Miercort [M51] '3

simplified the IITRI code by replacing detailed calculations with fitted

curves.

Weisbecker and Lee [W20] compared three fire spread models developed for

civil defense purposes by Takata and Salzberg (IITRI), Martin et al. (URS), g

and Crowley et al. (Systems Sciences, Inc.). They found the representation of

urban areas to be a critical part of the problem since it determines the

accuracy of the results and the amount of data and effort required to run the

* code. They also felt that the modeling of the various physical processes

needed to be evaluated more carefully before inclusion in the codes.

A strictly stochastic model of fire spread which incorporates a very

large amount of fire data is that of Aoki [A30, A311. By analyzing Japanese

fire data he has fit parabolic isoprobability curves for nine pairs of three U

common building types. This allows calculation of the probability ot spread

from one type of structure to another when the separation and building heights

are known. Aoki's work was built upon a hypothesis of Hamada. So did the

work of Horiuchi [H25J, who developed algorithms for firespread as a function
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of wind speed and direction. The applicability,, of these results to American

cities is not clear. Whether or not suffici nt data exists on American citiez;

to develop similar algorithms is not known.

The next phase towards a mass fire is the merging of fires from

individual structures. This changes the ground level winds and increases the

burning rate of adjacent structures. A small amount of work on interactive

effects of multiple fires has been done in laboratory as well as in full-scale

fires [H31, W47, W17]. The small amois of work on coalescence up to 1966 was

reviewed by Martin et al. [M201.

How large fires can merge to for. mass fires (conflagrations or

firestorms) has not been studied in uch detail. Considerable work has been

done on firestorms, but the emphasi.. bas been on estimating conditions under

which they occur [R12, T35, L351 or how established firestorms might affect

atmospheric conditions, not on the details of their evolution from a multitude

of smaller fires. One exception was the work of Loirmasson et al. [L35] in

which it was considered how mass fires might be studied by use of scale

models. Parker [P06] also considered this problem. It is well-established

" that complete modeling is impossible; only selected aspects can be

incorporated in a scale model. Mass fires were studied experimentally in the

Flambeau series [C36, P03, S851. It is believed by some that firestorm

conditions were achieved during part of the largest Flambeau fire. Not all of

the data from the Flambeau series has been fully analyzed, and future tests of

such magnitude are unlikely.

Morton et al. [M70, S72] have generally been credited with having

successfully modeled the convective plume of a firestorm. Their results do

not apply, however, near the ground--the region of most interest to civil

defense.

More recent theoretical work has attempted to determine the effects on

the atmosphere as well as conditions within an established firestorm [S67].

Carrier et al. [C08] have continued to emphasize the need to explain the

vorticity of firestorms that meteorologists have genterally considered a key

feature.

In contrast with firestorms, mas3 coift.grations (moving front,

large-scale fires) have received very littl r e altent lou OuLtSd(L of the forest

fire community. The general assumpt 1.0 s,(-m ; to bo t, given the conditions

typical of firestorms (e.g., high-fuiel I dnity, l lue rtm o, s1m I -tdlools
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ignitions, etc.), a mass conflagration can develop if the ambient windspeed is

high enough. The distinguishing feature of a mass conflagration is its

ability, similar to firestorms, of modifying atmospheric conditions, which in

turn affects the fire behavior. In the case of a conflagration this can -

result in spread rates exceeding those possible for ordinary fires. Despite

the potential for enormous destruction of life and property, mass

conflagrations have generally been dismissed as little more than big fires

[R09].

Conclusions

Information is lacking in the following areas:

* Conditions under which blast extinguishes or promotes incipient fires.

* Conditions under which established structural or debris fires or

wildland fires are extinguished or promoted by blast.

0 Effects of light-to-moderate or severe blast damage on burn

characteristics of structures.

* Synergistic effects of adjacent burning structures on their burn

characteristics.

* Convective ignition criteria for a variety of materials.

* Firebrand production, transport, and ignition threat.

* Fire spread rates across various types of debris fields.

* Effects of wind, humidity, and precipitation on fire spread rates

across various types of debris fields. -.

* Conditions for existence of mass fires.

0 Conditions within or near a mass fire, especially a conflagration.
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CONCLUSIONS

On the basis of the literature survey on blast and fire effects on urban

areas following nuclear attack, we conclude that there has been uneven

development of our understanding of the various physical phenomena involved.

Without implying any relative importance by their order, we list below

those areas where knowledge appears to be the most deficient.

0 Ignition criteria for newer materials, and for all materials under

typical use conditions.

0 Effects of complex geometry or mixed fuel on ignition criteria.

* Enclosure effects on flashover.

9 Conditions under which blast promotes incipient fires.

* Effects of blast damage on the burn characteristics of structures.

0 Debris production and distribution from individual building elements

and buildings, especially residential.

0 Fire spread rates between relatively intact structures for many

simultaneous ignitions and through debris fields for various wind and

weather conditions.

* Conditions for the existence of mass fires, and conditions within and

near them.

* Methodology for thermal radiation propagation through incompletely

specified atmospheres.

* Methodology for efficient representation of an urban area in a

realistic fashion.

* Methodology for calculating shadowing and shielding effects of a

specified urban area.

* Methodology for calculating dynamic response and collapse of entire

* buildings.

0 Multiple-burst effects on thermal radiation and blast-wave loading of

targets; effects of blast on established fires; and structural

response of structures previously damaged by blast or fire.
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APPENDIX A

Relative state of knowledge

The results of the literature survey are summarized in the outline on the

following pages. Bear in mind that the rankings are subjective and relative.

Almost none of the subjects are understood in the breadth or depth sought in

more academic areas.

L

LU

w
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Relative State of Knowledge
2 1 0

I. Attack scenario

1. Target Identification for Various X

Strategic choices

2. Yields, HOB, CEP for Individual Targets X

3. Timing of Bursts for Individial Targets X

4. Weapon Output Characteristics X

II. Transmission and Shadowing of Thermal Radiation

1. Transmission of Thermal Pulse Through X

a Clear Atmosphere

2. Effects of Clouds, Precipitation X

(Deterministic)

3. Methodology to Account for Realistic X
Atmospheric Conditions

4. Shadowing Effects of Terrain, X

Structures (Deterministic)

5. Methodology to Account for Shadowing X

Effects in a Realistic Fashion

III. Blast Propagation

1. Blast-Wave Propagation in Free Field, X

Clear, Still Atmosphere

2. Effects of Other Atmospheric Conditions X

3. Shielding Effects of Specified Terrain X 01
4. Shielding Effects of Specified Structures X

5. Methodology for Shielding Effects in an X
Urban Environment

4
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Relative State of Knowledge
2 1 0

IV. Radiative Ignition Criteria

1. Identification of Relevant Parameters X
for Sustained and Transient Ignition by
Thermal Radiation

2. Understanding of the Effects of Wind, X

Sample Orientation

3. Geometrically-Complex, Mixed Fuel, and X

Enclosure Effects

4. Criteria for a Variety of Common X
Materials with Clean Surfaces

5. Same for Materials Which Have Come Into X

Common Use in the Past 20 Years

6. Criteria for a Variety of Common X

Materials with Surfaces Representative
of Use Conditions (Dirty, Weathered,

Condensation)

V. Blast Effects on Fires

i. Understanding of Conditions for Which X
Blast Extinguishes Incipient Fires

2. Understanding of Conditions for Which X
Blast Promotes Incipient Fires

3. Effects of Blast on an Established X

Structural or Debris Fire

4. Effects of Blast on an Established X
Wildland Fire

VI. Secondary Fire Ignition

1. Probabilities of Secondary Fire X

Ignition as a Function of Blast
Loading, Building Type and Use, for
Non-Residential Buildings

2. Same, But for Residential Buildings 
X

3. Effects on Burn Characteristics of X
Structures for Secondary vs

Primary Ignition

4
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Relative State of Knowledge

2 1 0

VII. Fire Spread Within Relatively-Intact Structures -.

1. Time from Ignition to Total Room X

Involvement for Various Types of
Buildings (Classical Flashover)

2. Time from Single-Room Involvement to X -.
Total-Building Involvement for Various

Types of Buildings

3. Burn Characteristics for Single- X

Building Fires, for Various Types
of Buildings

4. Effects of Light-to-Moderate Blast X

Damage (Missing Windows, Roofs) on
Burn Characteristics

VIII. Fire Spread Between Relatively Intact Structures

1. Understanding of How Fire Spreads From X
One Structure to Others, Including
Effects of Wind, Humidity, and
Precipitation, for Various Combinations
of Adjacent Structural Types

2. Synergistic Effects of Adjacent Burning X
Structures on Their Burn Characteristics

3. Firebrand Production, Transport, and X
Ignition Threat

IX. Convective Ignition Criteria

1. Identification of Relevant Parameters for X
Sustained and Transient Ignition by
Convective Heating, Including Effects
of Wind

2. Data for a Variety of Common Materials X

3. Flammability Data for Materials Exposed X

to Mixed Convective and Radiative Sources

4
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Relative State of Knowledge

2 1 0

X. Single-Building Response co Blast

i. External Loading History of Isolated X
Structure

2. Internal Room Filling X

Single Room, Multiple Rooms,
Complex Geometry X

3. Methodology for Modeling Dynamic X

Response and Collapse of Individual
Structural Elements (e.g., Walls,

Floors)

4. Experimental Data for Collapse of X g

Structural Elements

5. Dynamic Response and Collapse Models X

of Various Types of StLucLures

6. Experimental Data for Collapse of Various X

Types of Structures

XI. Multiple-Building and Multiple-Burst Response

i. Effects of Shielding on Blast Loading of a X

Specified Structure in an Urban Area

2. Experimental Data on Blast-Wave Shielding X

3. Effects of Multiple Bursts on Dynamic X

Response of Structures

4. Effects of Fire on Structural Response X

XII. Debris Formation and Transport

i. Understanding of Debris Formation X

Mechanisms

2. Modeling of Debris Production for X

Various Types of Buildings as a
Function of Blast Loading

3. Ultimate Debris Distribution from X
Various Types of Buildings as a

Function of Blast Loading

4. Experimental Data on Debris Trans- X

lation and Distribution for Various
3uilding Types
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Relative State of Knowledge
2 i 0

XIII. Fire Spread Through Debris and Collapsed
Structures -"

1. Effects of Severe Blast Loading on X

Subsequent Burn Characteristics of

Various Types of Structures

2. Fire Spread Rates Across Various X
Types of Debris Fields

3. Effects of Wind, Humidity, and X

Precipitation on Fire Spread
Rates Across Debris Fields

XIV. Mass Fires

1. Understanding of Conditions Under which X

Individual Fires Merge, and the Effects

of Merging on Burn Characteristics of -

Structures

2. Conditions for Existence of Firestorms X

3. Conditions for Existence of Mass X
Conflagrations

4. Physical Conditions Within a Firestorm X

5. Physical Conditions Within and Near X

a Conflagration

XV. Fire Spread Through Wildland Areas

1. Understanding of Fire Spread in Wildland X

Areas

* 2. Rates of Fire Spread Through Various X

Fuels

3. Effects of Wind, Humidity, and X
Precipitation on Rates of Fire Spread

4 w
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APPENDIX B

This biblioq,aphy is arranged alphabetically by first author. The order

for multiple entries by an author is chronological. Wherever possible an AD

or PB number is given to facilitate ordering from the Defense Technical

Information Center (DTIC) in Alexandria, Virginia or the National Technical

Information Service (NTIS) in Springfield, Virginia, respectively.

If an "L" follows the document's AD number, its distribution has been

limited by the research sponsor even though the document may be unclassified.

(Any classification is noted.)

We do not claim that this is a complete bibliography, even for the past

25 years. In many cases, particularly for fire, it is difficult to draw the -,

line between relevant and interesting. It is hoped that the titles are

sufficient to indicate whether obtaining the document is worthwhile. We have

lot made heroic efforts to obtain obscure documents or journals since we felt

it would be more useful to list documents that are readily available. We

probably missed some gems, but we hope that we have avoided raising

unrealizable hopes as well.

There are a few reports that have not been entered into the DTIC or NTIS

systems. In these cases a corporate number has been given. For reference

these organizations are identified below:

ARBL--Army Ballistic Research Laboratory; Aberdeen, MD

BRI--Building Research Institute, Japan .

DNA--Defense Nuclear Agency; Washington, DC

NRDL--Naval Radiological Defense Laboratory; formerly of San Francisco, CA

ORNL--Oak Ridge National Laboratory; Oak Ridge, TN

PSR--Pacific-Sierre Research; Santa Monica, CA

SAl--Scientific Applications, Inc.; La Jolla, CA

SRI--SRI International; Menlo Park, CA

URS--United Research Services; formerly of Burlingame and San Mateo, CA

WT--Atomic Energy Commission report series

l
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