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I. Introduction

In a variety of applications such as found in radar doppler processing,

adaptive filtering, speech processing, underwater acoustics, seismology,

econometrics, spectral estimation and array processing, it is desired to

estimate the statistical characteristics of a wide-sense stationary time

series. More often than not, this required characterization is embodied in

the time series' autocorrelation lag sequence as specified by

rx(n) = E (x(n+m)!(m)) (1.1)

in which E and - denote the operations of expectation and complex

conjugation, respectively. From this definition, the well-known property

that the autocorrelation lags are complex conjugate symmetric (i.e., r1 (-n) =

Yx(n)) is readily established. We will automatically assume this property

whenever negative lag autocorrelation elements (or their estimates) are

required.

The second order statistical characterization as represented by the

autocorrelation sequence may be given an 'equivalent' frequency domain

interpretation. Namely, upon taking the Fourier transform of the

autocorrelation sequence, that is

Sx(ejW) = r,(n) e-Jnf) (1.2)

we obtain the associated power spectral density function Sx(eJw) in which the

normalized frequency variable w takes on values in -,n]. This function

possesses a number of salient properties among which are that it is a

positive semidefinite, symmetric (if the time series is real valued), and,

periodic function of w. This function is seen to have a Fourier series

interpretation in which the autocorrelation lags play the role of the Fourier

coefficients. It therefore follows that these coefficients may be determined

from the power spectral density function through the Fourier series

coefficient integral expression

it

rx(n) = I J Sx(eiJ) *jwn dw (1.3)

I3T
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Relationships (1.2) and (1.3) form a Fourier transform pair so that knowledge

of the autocorrelation sequence is equivalent to knowledge of the power

spectral density function and vice versa. We belabor this point in order to

establish the viewpoint that spectral estimation and autooorrelatiom lag

estimation are conceptually equivalent.

In the classical spectral estimation problem, it is desired to effect an

estimate of the underlying power spectral density function with this estimate

being based on only a finite set of time series observations. Typically,

these observations will be composed of a set of contiguous data measurements

taken at equispaced time intervals T as represented by

x(l). x(2). . . . x(N) (1.4)

where N will be referred to as the data length and we have chosen to suppress

the sampling period T. It is apparent that unless some constraints are

imposed on the basic nature of the power spectral density function, there

exists a fundamental incompatibility in seeking an estimate of the infinite

parameter function (1.2) (i.e., the infinite set of autocorrelation lags

rx(n)) based on the finite set of observations (1.4). Investigators have

often resolved this dilemma by postulating a finite parameter model for the

power spectral density function. The time series observations (1.4) are then

used to fix the parameters of this parametric model using an appropriate

estimation procedure.

Without doubt, the most widely used and studied of finite parametric

models are the so-called rational models. When employing a rational model,

we are seeking to approximate the generally infinite series expansion (1.2)

by a magnitude squared ratio of polynomials in the variable e-JW, that is

lb0 + ble-jw + . + beqs-jw 2

S(eJW) = (1.5)

11 + aI e- + + ape-JPW

The finite number of parameters in this model then provides the mechanism for

circumventing the aforementioned parameter mismatch dilemma. Namely, if the

data length parameter N adequately exceeds this rational function's number of

parameters (i.e., p+q+l), then it is feasible to utilize the given time

series observations (1.4) to estimate values for these parameters. A few

words are now appropriate concerning the adequacy of

3
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rational models in representing power spectral density functions. It is well

known that if a power spectral density function is continuous in the variable

w, then it may be approximated arbitrarily closely by a rational function of

form (1.5) if the order parameters p and q are selected suitably large [41).

Comforted by this knowledge, rational functions have become a standard tool

of spectral estimation theoreticians. As an interesting side note, it is

ironical that the origin of spectral estimation was in the use of rational

models for characterizing time series composed of sinusoids in white noise.

Members of this class of time series possess discontinuous power spectral

density functions and are therefore presumably not representable by a

rational model. As we will see in Section III, however, it is possible to

suitably adapt a specific rational model so as to satisfactorily characterize

this class of time series.

This paper is primarily concerned with developing a modeling method

which utilizes an overdetermined set of statistical equations for estimating

a rational model's parameters. Using this approach, it is found that the

resultant modeling performance is generally better than that achieved by

other popularly used parametric methods. Although the approach here taken

reflects heavily upon the author's previous works [15]-[22], much of this

paper will be concerned with formulating many contemporary spectral

estimation methods in a common autocorrelation representation setting. It

must be emphasized that our main objective is not that of giving an

encylopedic coverage of the many available rationaJ spectral estimation

techniques. This paper in conjunction with the excellent recent publications

(23],[31],[37], however, provides a reasonable complete coverage of

parametric methods.

In the remainder of this section, we shall consider two special classes

of rational functions and give a brief historical perspective on their usage

in spectral estimation theory. These two classes are commonly referred to as

the moving average (MA) and the autoregressive (AR) spectral models. A

moving average model is defined to be a rational function (1.5) in which all

the ak parameters are zero (i.e., it has only numerator dynamics) while an

autoregressive model is one for which all the bk parameters are zero except

for bo (i.e., it has only denominator dynamics). By-in-large, these two

classes of rational functions have formed the basic modeling tools in

contemporary spectral estimation theory.

4



MA Model

Fourier analysis has played a primary role in much of the earlier as

well as more recent efforts at spectrally characterizing experimentally

collected data. As an example, Schuster applied the periodogram method for

detecting hidden periodicities in sun spot activity data at the turn of the

ceutury [58]. In a more recent classical work, Blackman and Tukey presented

a generalized procedure for effecting spectral estimates [8]. This involved

the two step procedure of (i) determining autocorrelation lag estimates ?'x(n)

using the provided data, and, (ii) taking the Fourier transform of these

estimates.1  The power spectral density estimate which arose when taking

this approach then took the form

q
A

Sx(eJw) = w(n) rx(n) e-JW n  (1.6)

n--q

where w(n) is a symmetric data window that is chosen to achieve various

desirable effects such as side lobe reduction. This window is often selected

to be rectangular in which case w(n) = 1 although other choices may be more

desirable for a given application. A description of some of the more popular

choices for the data window may be found in numerous texts (e.g., see refs.

[33],[50],[57]).

In the Blackman-Tukey estimate (1.6), it is seen that only a finite

number of summand terms (i.e., 2q+l) are involved in the spectral estimate.

This is a direct consequence of the fact that only a finite set of

autocorrelation lag estimates are obtainable from the observation set (1.4)

if standard lag estimation methods are employed. Due to this finite sm

structure, we will now show that the Blackman-Tukey estimation method is a

spocial case of the more general rational MA spectral model. In particular,

a spectral model is said to be a moving average model of order q (i.e.,

MA(q)) if it may be put into the form

1 We shall hereafter use the caret symbol (A) to denote a statistical

estimate.
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SMA(eiw) = I bo + bj q-J W + ... + bq e-Jqo 2

(1.7)

= I Bq(eJw) 12

The q+l parameters b., bl, ... , bq which identify this MA(q) model are seen

to form a qth order polynomial Bq(eJw) in the variable e-jw. A moving

average model is then seen to be a special case of the more general rational

model (1.5) in which the denominator polynomial has been set equal to the

constant one.

If the polynomial Bq(eJw) constituting the moving average model (1.7) is

factored, it is possible to provide additional insight into a MA model's

properties. This factorization is seen to give rise to the equivalent

representation

q
SMA(ej() = bo12 TT (1 - zke-J))(1 - -ikejw) (1.8)

k=l

in which the z k are the roots of the polynomial Bq(eJW). The zeroes of a MA

spectral model are seen to occur in reciprocal pairs. Due to the basic

nature of this factorization, moving average models are therefore also

commonly referred to as all-zero models. If any of the roots zk are close to

the unit circle (i.e., zk ewk), it is clear that SA(eJw) will contain

sharply defined notches at frequencies in a neighborhood associated with

these roots (i.e., w = wk). It is therefore apparent that MA models will be

particularly effective when approximating spectra that contain sharply

defined notches (zero like behavior), but, do not contain sharply defined

peaks. Whenever a spectrum contains sharply defined peaks, it is possible to

simulate their effect at the cost of many additional zeroes (i.e., a high MA

order) for an adequate representation. With this in mind, MA models should

be normally avoided whenever a peaky type behavior in the underlying spectrm

is suspected (as may be made evident from a preliminary Blackman-Tukey

estimate).

To establish the fact that the Blackman-Tukey approach to spectral

estimation is of a moving average structure, it is possible to give yet

another equivalent representation to the MA(q) expression (1.7). This will

6



entail explicitly carrying out the indicated polynomial product

Bq(eJW) Bq(eJW) thereby giving

q
SMA(eJW) = I n *-Jwn (1.9)

n=-q

in which the complex conjugate symmetric cn parameters are related to the

original bn parameters according to

q
Cu = I b k b-k- n  - qL<n~q (1.10)

k=O

Upon setting the cn equal to w(n)rx(n), it is appareni .At the

Blackman-Tukey estimate (1.6) is a special form MA(q) model. This fact is

usually overlooked by investigators who have considered the Blackman-Tukey

method as well as the periodogram as nonparametric spectral estimators. When

viewed from the approach here taken, however, each of these procedures is

recognized as being a realization of a MA parametric model.

AR Model

When we compare the MA(q) spectral model expression (1.9) with the

theoretical power spectral density function (1.2) which is being estimated,

it is apparent that a serious modeling mismatch can arise whenever the

underlying autocorrelation lags are such that the rx(n) are not approximately

equal to zero for n > q. For example, this undesirable condition arises when

the time series under study is composed of sinusoids in white noise.

CoLversely, this condition does not arise for broad band signals. The

sinusoid example is mentioned since it forms one of the more interesting

special case time series to which spectral estimation techniques are applied.

A special treatment of the sinusoids in white noise case will be given in

Section III.

In recognition of this potential shortcoming of MA models, investigators

have examined alternate rational spectral models which do not invoke the

unnecessarily harsh requirement of a truncated autocorrelation lag behavior.
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Undoubtedly, the most widely used of such models is the AR model. Namely, a

spectral model is said to be an autoregressive model of order p (i.e., AZ(p))

if it may be put into the form
2SAR(eJ'o) = I be

1 + ale-J + 2 0-j2w + ... + ape-JPwI (1.11)

- 1bo1 2

Ap(ei() 
12

This AR(p) model has a functional behavior which is completely characterized

by its p+l parameters bo, al, a2 , ... , ap. The characteristic pth order

polynomial AP(eJ"O) is seen to influence the frequency behavior of the

estimate while the parameter bo controls the level.

As in the MA model case, valuable insight into the capabilities of AR

modeling is provided upon factoring the polynomial Ap(eJ&i). This is found to

result in the equivalent representation

SAR(eJw) = P (1.12)
ff(1-Pke-J () ( l-PkeJ&))

k=l

where the pk are the roots of Ap(eJw ). The roles of this AR spectral model

are seen to occur in reciprocal pairs. For reasons which are self evident,

the AR(p) spectral model is also commonly referred to as an all-pole model.

As such, it is particularly appropriate for modeling spectra which contain

sharply defined peaks (pole like behavior), but, do not contain sharply

defined notches. If a spectrum does possess notches, however, it is possible

to simulate their effect at the cost of many additional poles (i.e., a high

AR order). In terms of parameter parsimony, 't is therefore prudent to avoid

AR models whenever notches in the underlying spectrum are suspected (this may

be made evident from a preliminary Blackman-Tukey estimate).

Autoregressive models were used by Yule [661 and Walker [63] in

forecasting trends of economically based time series. These models were then

employed by Burg [13] in 1967 and Parzen (53] in 1968 to achieve spectral

estimates which did not possess the aforementioned deficiencies of the MA

model. The Burg method is of particular interest since it offered a new

8



insight into spectral modeling and introduced a number of concepts that are

now standard tools of spectral estimation. This includes an efficie t

lattice structured implementation of the Burg method which has sino* boon

examined and advanced by many investigators (e.g., see ref. [441). It is not

an exaggeration to say that Burg's method gave rise to a literal explosion in

research activity directed towards evolving improved rational modeling

methods.

ARM Models

In many applications, the underlying power spectral density function

will contain both notch and peak like behavior. As such, neither the MA nor

the AR model is the most appropriate model representation from a parameter

parsimony view point. The more general rational model (1.5), however, is

capable of efficiently representing such behavior. This most general

rational model is commonly referred to as an autoregressive-moving average

model of order (p,q) (i.e., ARMA (p,q)) with its frequency characterization

being given by

bo + ble-J + ... + bqei- Jq
2

SARJ A(eJw) = 1l + aejw +-. + apeJPw

= Bq(ej€ 
)1

2

-A(ejw) (1.13)

An ARA model is seen to have a frequency characterization which is the

composite of a MA and an AR model. To further reinforce this interpretation,

we have the following equivalent representation upon factoring the f
polynomials Ap(eJW) and Bq(eJW) which characterize its frequency behavior

q

T (1 - zk e-J)(-:ikeJ
tO)

SARMA(ejW) = lbo 12 k=l

p
TT (1 - Pk e-JM)(1 - Pk eJt) (1.14)
k=1

9



An ARIA model is seen to possess q zeroes and p poles, and, as such it is

generally a much more effective model than are its more specialized MA (all

zero) and AR (all pole) model counterparts. These poles and zeroes are seen

to occur in reciprocal pairs.

Although ARIA models are the most preferable choice for most

applications, many practitioners have opted to utilize either MA or AR

models. There is an increasing awareness, however, of the general

superiority of ABJ(A modeling. This has given rise to a renewed effort to

generate computationally efficient ARKA modeling algorithms. A particularly

effective approach to ARIA modeling will be presented in this paper.

10



II. Rational Modeling - Exact Autocorrelation Knowledge

In this section, the theoretical autocorrelation characteristics of MA,

AR and ARMA random processes are examined separately. This characterization

will in turn enable us to intelligently select the most appropriate rational

model which best represents a given set of exact autocorrelation lags

rx(0), rx(l)p .. ... rx(s) (2.1)

Moreover, a systematic procedure for identifying the selected model's

parameters from these given autocorrelation lag values is also developed.

Although the assumption here made of exact autocorrelation information is

highly idealistic and almost never met in applications, the insight thereby

provided is helpful when considering the more practical problem of generating

rational model estimates from raw time series observations.

To begin this analysis, it will be hereafter assumed that the time

series under examination is generated (or can be adequately modeled) as the

response associated with the linear operator

P q

x(n) + ak x(n-k) = bk e(n-k) (2.2)

k=l k=O

in which the excitation time series (s(n)) is taken to be a sequence of zero

mean, unit variance, uncorrelated random variables (i.e., normalized white

noise) that is taken to be unobservable. This excitation-response behavior

is depicted in Figure 2.1. Using standard techniques, it is readily shown

that the power spectral density function associated with the response time

series is given by the ARMA(pq) rational form

b° + bi e-J' + " + bq e-Jqw
Sx(ej,) = 1 "+al eJ + .-+ + ap -JP-I

Thus, there is an equivalency between an assumed ARMA (p,q) spectral model,

and, the response of the recursive linear operator (2.2) to white noise. In

this section, the required rational modeling will be developed through use of

the time series description (2.2) and its associated autocorrelation

characterization. It is interesting to note that most available rational

spectral estimation techniques are based upon a time domain characterization.

21



s~n) [Bq(eJW) xin)

Ap (ei ()

White Noi se Response

Excitation Transfer Function

Figure 2.1. Model of rational time series.

The mechanism for effecting the required rational modeling are the

so-called Yule-Walker equations which govern linear relationship (2.2).

Namely, upon multiplying both sides of this relationship by i(n-m) and then

taking expected values, it is found that the Yule-Walker equations

p q

akrx(n-k) = b i h(i-n) (2.3)

k=O i=O

arise where ao = 1. The entity h(n) herein used corresponds to the

unit-impulse (i.e., Kronecker delta) response of linear operator (2.2). This

unit-impulse response may also be interpreted as being the inverse Fourier

transform of the linear operator's transfer function Bq(eJw)/Ap(eJ*). In

what is to follow, it will be assumed that this linear operator is causal

thereby implying that h(n) = 0 for n negative. Although this assumption is

not essential in the analysis which follows, it is here imposed in

recognition of the fact that most applications are inherently involved with

causal operations. Adaption to the case where noncausal operations are more

appropriate is straightforward and will not be given.

The Yule-Walker equations (2.3) take on a particularly simple form when

the linear operator (2.2) which they describe is constrained to be a HA or an

AR linear operator. To delineate this fact, we shall now examine separately

the basic characteristics of the Yule-Walker equations when the underlying

linear model is taken to be MA, AR, and ARMA.

12



MA Time Series

The time series fx(n)) is said to be a moving average random process if

it is generated according to the linear nonrecursive relationship

q

x(n) = b s(n-k) (2.4)

k=O

where (s(n)) is the aforementioned normalized white noise excitation process.

According to the general Yule-Walker equations (2.3), the response's

autocorrelation sequence is therefore specified by

bk b4-- n I q (2.5)

rx(n) { k0

0 otherwise

where use of the facts that ak = 0, and, h(n) = bn for 0 < n 5 q have been

incorporated. Thus, the autocorrelation sequence associated with a moving

average process is seen to be of finite length (i.e., 2q+l) with the length

identifying the order of the MA(q) process.

We shall now consider the problem of identifying the MA parameters bk

which correspond to a given 2q+1 length autocorrelation sequence rx(n) for

-q.nq. This identification will be made by examining the spectral density

function associated with the autocorrelation sequence. In particular, upon

taking the z-transform (in lieu of the Fourier transform) of the given 2q+1

length autocorrelation sequence, we have upon using relationship (2.5)i q
Sx(z) = rx(n)z-n

n=-q

q q

n=-q k=0

q q

bk z
-k  bz m  (2.6)

k-0 W-0

13



Since the finite power series Sx(z) has complex conjugate coefficients (i.e.,

rx(-n) = r1 (n)). it follows that the zeroes of this power series must occur

in reciprocal pairs. With this in mind, it is therefore always possible to

factor the power spectral density function as

q
Sx(z) = a2 TT (1-Zkz-')(1-ikz) (2.7)

k=1

where a is a real scalar. Upon comparing expressions (2.6) and (2.7), it is

apparent that

q q

bk z = a I (l-zkzl) (2.8)

k=O k=l

Thus, the required bk parameter identification is achieved by carrying out

the right side multiplications in expression (2.8) and then equating

coefficients of equal powers of z-k. The most critical step of this

identification procedure is the factorization of the known power series Sx(z)

as given in equation (2.7).

One point of caution should be raised in following this approach. It

arises due to the fact that although the factorization of Sx(z) into its 2q

first order product terms is unique, the decomposition (2.7) is certainly

not. This is a direct consequence of the appearance of the roots of Sx(z) in

reciprocal pairs. Thus, the term (l-zlz- 1) may be replaced by (1-zl-lz-l) in

expression (2.8) without destroying the required structure (2.6). This

replacement, however, will in general lead to a different set of bk

parameters. Since there are typically q different first order reciprocal

pairs in the factorization (2.7), it then follows that there are 2 q different

bn parameter sets which are compatible with tk.e autocorrelation identity

(2.5). The one normally chosen corresponds to the so-called minimum delay

selection in which the zk roots used in expression (2.8) are selected so that

they all have magnitudes less than or equal to one.

14
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AR Time Series

The time series (z(n)) is said to be an autoregressive (AR) process of

order p if it is generated according to the recursive relationship

p
x(n) + ak x(n-k) = boe(n) (2.9)

k=1

where ((n)) is the aforementioned normalized white noise process. The

Yule-Walker equations (2.3) indicate that the AR(p) autocorrelation elements

are related by p
rx(n) + ak rx(n-k) - Ib 12  n-0 (2.10)

k=1

where use of the facts that h(O) bo and h(n) = 0 for n < 0 have been made.

In order to effect a direct procedure for identifying the AR(p) model's

p+1 parameters a,, a 2 , ... , ap, b o which best represent the set of

autocorrelation lag values (2.1), one may evaluate the first p+1 of the

governing Yule-Walker equations. This evaluation when put into a matrix

format takes the form

rx (O) rx(-1) . . . rx(-p) 1 lbol 2

rx(1) rx(0) . . . rx(-p+l) al 0

a2 0 (2.11a)

I

r1(p) r1(P-l) ... rx(0) a ap l  0

15



or more compactly as

R a - lb 12 1, (2.11b)

In this expression, R is the (p+l)x(p+l) AR autocorrelation matrix whose

elements are given by

R(i,j) = rx(i-j) 1 i J p+1 (2.12)

1 . i S p+l

a is the (p+l)xl autoregressive parameter vector with first component equal

to one, that is

a = [la1 , a2, .... ap] (2.13)

and e1 is the (p+l)xl standard basis vector whose elements are all zero

except for its first which is one. The required parameter identification is

then obtained upon solving this system of p+1 linear equations in the p+1

unknowns. Conceptually, this solution may be effected by performing the

following computation

a = lb0 12 R71 e I  (2.14)

in which the normalizing coefficient bo is selected so that the first

component of a is one as required in expression (2.13). In this solution

procedure, we are tacitly assuming the invertibility of the autocorrelation

matrix R. If matrix R is singular, however, this almost always implies that

the underlying time series is an autoregressive process of order less than p.

In this case, it will be necessary to decrease the order until R becomes

invertible.

Upon examination of expression (2.11), it is seen that the resultant

AR(p) model parameters are totally dependent on the first p+l given

autocorrelation lags rx(O), rx(1), ..., rx(p). Although the associated model

will have an autocorrelation behavior which perfectly matches these first p+l

lags, it may provide a very poor representation for the remaining given

autocorrelation lags rx(p+l), rx(p+2 ), ..., rx(s) (which were not used in the

parameter identification). In order to provide a represention for these

higher lags by the procedure here taken, it may be necessary to increase the

AR model order to s (i.e., p=s). In many applications, however, the

underlying goal will be that of providing an AR model of relatively low order

(i.e., p(s) which will adequately represent the entire set of

autocorrelation lags. A procedure for achieving this objective will be

shortly given. Before considering this most relevant objective, let us first

outline an elegant method for solving the system of linear equations (2.11).
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LEVINSON-DURBIN ALGORITHM: Although the solution procedure as embodied

in expression (2.14) will result in the desired parameter identification, the

evaluation of R71 will entail on the order of p3 multiplication and addition

calculations (i.e., o(p3)) if standard procedures such as Gaussian

elimination are used. Fortunately, it is possible to take advantage of the

fact that the autocorrelation matrix R is both complex conjugate symmetric

(i.e., R(ij) = R(j,i)) and Toeplitz (i.e., R(i,j) = R(i+lj+l)) so as to

effect a computationally efficient solution procedure. This method was

developed by Levinson and is commonly referred to as the Levinson-Durbin

algorithm [24],[43]. In this approach, one solves the linear system of

equations (2.11) as the AR order parameter p is sequenced through the values

l, 2, 3, ... , Pm where pm designates some as yet unknown maximum AR order.

In this sequencing scheme, Levinson showed that the parameters for the kth

order AR model solution which are designated by

(k) Wk Wk,(.591 k ) , a2  , ...' ak k , bo(k) (2.15)

are related to the (k-l)th order AR model solution as outlined in Table

2.1. A brief description of this systematic algorithm will now be

given.

Stop 1 al(1) = -rx(1)/rx(O) (2.16a)

No ( 1 ) 12 = [1 - ial (
1

)1 21 rx(O) (2.16b)

Step 2 For k 2, 3, 4,

k-1

ak(k) rx(k ) + am U-1) rx(k-m) /b (kl)1 (2.17a)

aik) ai(k-1) + ak(k) (k-1) i=i a +a ak- i  1 J i J k-I (2.17b)

No(k) 12 = [1 - [ak(k) 12] bo(k - l )
1

2  (2.17c)

Table 2.1. Levinson-Durbin Algorithm for
Recursively Solving Expression (2.11)
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If one were to solve the linear system of equations (2.11) for the order

choice p = 1, it would be found that the required first order AR parameters

(with superscript (1) appended) are given in stop 1 of Table 2.1. Upon

setting p = 2 in expression (2.11). a moderate amount of algebraic

manipulation will reveal the validity of the solution as liven in Step 2 of

Table 2.1 with k = 2 (with superscript (2) appended). Levinson proved that

in following the systematic procedure of Table 2.1. the solutions to the

Yule-Walker equation (2.11) for order selections

p = 1, 2, 3, ... are sequentially obtained. Moreover, the number of

multiplication (and addition) computations required in generating the kth AR

order parameters from the k-lst AR order parameters (i.e., Step 2) is seen to

be k. Thus, the computational complexity of the Levinson-Durbin algorithm

for generating a pth order AR model (and all lower order models as a

byproduct) is found to be o(p2 ). This is a considerable savings over the

computational complexity of o(p3) required in solving expression (2.11) using

standard techniques.

The Levinson-Durbin algorithm provides not only a computationally

efficient method for generating the AR parameters, but, it also yields an

effective AR model order determination procedure. Specifically, let it be

assumed that the autocorrelation lags used in expression (2.11) correspond to

an AR(p) process. If the Levinson-Durbin algorithm were applied to this

autocorrelation lag information, by the very nature of this procedure, the AR

process parameters would be perfectly identified at the pth iteration (i.e.,

ak  = ak k = 1, 2, ... , p and lbe (P)1 2 = lb 2 1). Moreover, if this

recursion were continued beyond p, it would be found that ai  = ai for 1 j

i . p, ai (k = 0 for p+l j i _ k, and, bo(k)12 = lbo 2 . This is a direct

consequence of the fact that ap+J(P + l) must be zero as is evident from I
expression (2.17a). From these observations, it is therefore apparent that2
the nonchanging of the parameters boW(k)1 provides a means for order

determination.

When the autocorrelation lags used do not correspond to an AR process,

there will be no value of k for which lbo Wk) 2 assumes a constant value

thereafter. Since the specific high order coefficients ak(k ) will always

have a magnitude which never exceeds one (5] and [14], however, it is

apparent from expression (2.17c) that lbo(k)1 2 < lb0 (k)2 for all k 1 1.
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Thus, the parameters bo1(k)12 form a monotonically nonincreasing sequence and

this factor can be used in model order determination. In particular, the

parameter 1bo(k)12 may be identified with a 'prediction error' associated

with a kth order linear predictor. Once this prediction error becomes

satisfactorily small, the associated AR(p) model will form an acceptably good

approximation to the given autocorrelation sequence (e.g., see ref. [311).

The meaning of 'satisfactorily small' is subjective and will depend on the

particular application being considered and empirically obtained experience.

The parameters ak(k) for k = 1, 2, 3, ... are also referred to as

'reflection coefficients' and are often denoted by ck = ak(k). These

reflection coefficients have the property that for the truncated sequence

rx(O), rx(1), ... , rx(p) to be a valid segment of an autocorrelation

sequence, it is necessary and sufficient that Icki . 1 for k = 1, 2, .... p.

Moreover, the transfer function

p

Ap(z) I an z- n (2.18)

n'0

associated with the solution to expression (2.11) will have all of its roots

on or inside the unit circle if and only if the Ick' .S 1 for k = 1,2, ... # p.

It is noteworthy that the system of equations (2.11) also arise when

solving the optimum one-step predictor problem, or, when using the maximum

entropy principle [31]. In the one-step predictor problem, it is desired to

select the p predictor parameters ak so that the prediction

p

x(n) = - Ia x(n-k) (2.19)

k=l

best approximates x(n) in the sense of minimizing the mean squared prediction

error E(Ix(n)-x(n)I2). One may readily show that the optimum prediction

parameters are found by solving expression (2.11) in which lbo 12 plays the

role of the minimum mean squared prediction error. On the other hand, when

applying the maximum entropy principle, it is tacitly assumed that the time

series (x(n)) is a zero mean, Gaussian process. The objective is to then

find a power spectral density function Sx(eJ) which will maximize the

entropy measure
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f in (Sx(eJw) ] dw (2.20)

-it

subject to the constraint that this function will be consistent with the

given set of p+l autocorrelation lags rx(O), rx(l), ... , rx(p) through the

Fourier transform pair relationship (1.3). It is readily shown that the

maximizing power spectral density function is an AR process of order p whose

parameters are given by expression (2.11).

ARA Time Series

The time series (x(n)) is said to be an autoregressive-moving average

(ARA) process of order (p,q) if it is generated (or can be modeled)

according to the recursive relationship

p q

x(n) + I 9k x(n-k) = b e(n-k) (2.21)

k=l k=0

in which the excitation sequence [s(n)) is the aforementioned normalized

white noise process. Our task is to then determine values for the ak and bk

parameters of this model which are most compatible with the given

autocorrelation lags (2.1). The mechanism for measuring this compatibility

will be the Yule-Walker equations (2.3) which characterize the above AREA

model. Upon examination of these equations, it is seen that the AREA

Iparameters appear in a nonlinear fashion through the unit-impulse response

h(n). If the best least squares modeling is desired, it is then found that

the generation of the optimal ak, bk parameters involves the least mean

square solution of the highly nonlinear Yule-Walker equations. This will

almost always necessitate the use of computationally burdensome nonlinear

programming algorithms with the attendant difficulty of initial parameter

value selection, and, the possibilities of convergence to a local extrema or

even nonconvergence.

A considerable easing in computational requirements may be achieved if

we allow ourselves the luxury of evaluating the ak and bk parameters

separately. By using this approach, it will be possible to provide for a

linear solution procedure for the ak parameters. Although this approach will
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be suboptimal in nature, it often provides for a near optimal modeling. The

mechanism for this separate parameter evaluation is obtained upon examining

the Yule-Walker equations (2.3) which characterizes the ARMA model (2.21).

If this model is take to be causal, it follows that the Yule-Walker equations

assume a particularly simple form for indices n > q, that is

p

I ak rx(n-k) = 0 for n q+l (2.22)

k=O

We shall refer to this particular subset of the Yule-Walker equations as the

extended Yule-Walker equations. The obvious attractiveness of these

equations lies in the fact that they are linear in the ak parameters.

To determine the ak autoregressive parameters which are most compatible

with the given set of autocorrelation lags (2.21), we could adopt the

approach that characterized extended Yule-Walker equation AR and ARMA

modeling methods up to as recently as three years ago (e.g., see refs

[26],[28],[35],[38]). This would entail evaluating the first p extended

Yule-Walker equations (i.e., q+l < n _ q+p) and then solving the resultant

system of p linear equations in the p auto-regressive parameters. Although

this approach is computationally attractive, it suffers from the obvious

drawback that only a subset of the given autocorrelation lags (2.1) are being

used in fixing the ak parameters (i.e., rx(n) for q-p < n <. q+p). To achieve

a ARMA model which better represents the entire set of autocorrelation lags

(2.1), it is clearly beneficial to use more than the minimal number (i.e., p)

of extended Yule-Walker equation evaluations. The ak parameters which yield

a least squares fit to this overdetermined set of linear equations is then

found using a straightforward procedure to be shortly given. (
This overdetermined extended Yule-Walker equation approach to ARMA

spectral estimation was proposed by the author in 1979 115]. From a

historical perspective, it is to be noted that the idea of using an extended

set of model evaluations forms a fundamental concept in system parameter

estimation theory (e.g., see refs. [451,[591). Moreover, the approach here

taken can be interpreted as being a generalized application of the Prony

procedure in which the autocorrelation lags play the role of the data. With

these thoughts in mind, there exists a rich source of evidence justifying the

use of an overdeterained set of
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extended Yule-Walker equations for estimating the ARMA model's autoregressive

parameters.

In this overdetermined modeling approach, the extended Yule-Walker

equations (2.22) are evaluated for t distinct values of n satisfying n > q+l.

To effect the desired overdeterminacy, the integer t has to be selected to at

least equal p+1 although larger values will typically yield better model

representations. To illustrate this overdetermined approach, let us consider

the first t extended Yule-Walker equations (2.22) indexed by q+1 j n & q+t.

This particular Yule-Walker equation evaluation gives rise to the following

overdetermined system of t linear equations in the p autoregressive parameter

unknowns 1

r,(q+l) r x (q) ... r,(q-p+l) 1 0

al

rx(q+2) rx(q+1) ... r,(q-p+2) a2  0

*.= .. (2.23a)

a p

r,(q+t) r,(q+t-1) ... rx (q-p+t) 0

or more compactly as

R1 a = a (2.23b)

In this latter expression, e denotes the txl zero vector, R1 is the tx(p+l)

ARMA autocorrelation matrix with Toeplitz type structure having elements

Rl(i,j) = rx(q+l+i-J) 1 < i . t (2.24)

1 1 j p+-i

1 1n certain applications, it may be desirable to use an other than

contiguous set of extended Yule-Walker equation evaluations.
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and # is the (p+l) autoregressive parameter vector whose first component is

required to be one

a= [1 & el •2- .... # &pI' (2.25)

Examination of relationships (2.23) reveals that the ARMA model's

autoregressive parameters are obtained upon solving this system of t

overdetermined (assuming t ) p) linear equations. Due to the overdetermined

nature of these equation, the fundamental question as to whether a solution

exists naturally arises. The following theorem provides an answer to this

question and is a direct result of the Yule-Walker equations which governs

ARIA processes.

Theorem 2.1: If the autocorrelation lag entires used in matrix R, of

expression (2.23) correspond to those of an ARMA (pl,ql) process, then

the rank of R, is Pl provided that p I Pl, q L qi.

With this theorem in mind, the existence of a solution to relationship (2.23)

will be dependent on the rank of the autocorrelation matrix Rl. We shall now

consider separately the cases in which RI has full rank and less than full

rank.

Rank [RI] p: When the rank of matrix R1 has less than full rank, a

nontrival autoregressive parameteric vector solution a will be assured. An

interesting algebraic characterization of this solution may be obtained upon

premultiplying both sides of relationship (2.23) by the complex conjuage

transpose of R, as denoted by R, to yield

RIRI a = e (2.26)

Upon examination of this expression, it is clear that the required

autoregressive parameter vector may be also identified with a properly

normalized eigenvector (i.e., its first component is one) associated with a

zero eigenvalue of the (p+l)x(p+l) matrix RfRI. As such, we may then use

standard eigenvector-eigenvalue routines when finding the required ARMA model

autoregressive parameters.

Rank (Ri] -p +l: In many cases of interest, however, it will be found

that the autocorrelation matrix R, will have full rank. This will occur

whenever the autocorrelation lag entries used are associated with either a
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nonrational random time series, an MA process, or, with a higher order ARNA

rational process. Since RI has full rank, there then will not exist a

nontrivial solution to relationship (2.23). Nonetheless, we still wish to

determine an ARMA model which 'best fits' these overdetermined extended

Yule-Walker equations. Namely, we seek a nonzero autoregressive parameter

vector a so that Rla most closely equals the required ideal zero vector as

specified in (2.23). Although a variety of procedures may be used for

accomplishing this selection, the following two approaches typify many

spectral estimation algorithms.

(i) In the first selection procedure, it is desired to find an

autoregressive parameter vector lying on the unit hypersphere which will

minimize the Euclidean norm of Rla. This entails solving the following

contrained optimization problem

min a*RRl a

aa = 1

Using standard Lagrange multiplier concepts, it is readily shown that the

solution to this optimization problem is obtained by selecting that

orthonormal eigenvector of the positive definite Hermetian matrix R*R
1 1

associated with its minimum eigenvalue. If xl corresponds to that

orthonormal eigenvector (i.e., R Rlx k = 'kk with Xk S -k+l and * xk = 1),

the required autoregressive parameter vector with first component of one if

obtained by the normalization.

a = Al (2.27)
11(1)

where xl(l) denotes the first component of Al. This autoregressive parameter

vector selection procedure characterizes many spectral algorithms which are

varients of the Pisarenko method [55] and is generally not suitable for an

efficient computational solution.

(ii) In the second selection procedure, we wish to minimize the

Euclidean norm of Rla over all (p+l)xl vectors a with first components equal

to one, that is
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min

a (1) =1

Appealing to the Lagrange multiplier approach again, it is found that the

solution to this constrained optimization problem is given by solving the

following linear system of equations

R Rl~aO = ae, (2.28)

where the normalizing constant a is selected so that the first component of

a0 i s one.

In using either of the above two procedures, we are seeking to best

satisfy theoretical relationship (2.23) in the least squares sense subject to

appropriate constraintsl. The particular application at hand

dictates which autoregressive parameter vector selection procedure provides

the best performance. It has been the author's experience that the selection

(2.27) has often provided reasonable modeling (also see ref. [12]). In terms

of computational efficiency, however, the linear selection (2.28) enjoys a

clear superiority due to the availability of efficient adaptive algorithmas as

outlined in Section X. With this in mind, we shall mainly focus our

attention on the linear selection (2.28).

In summary, the ARMA(p,q) model associated with a given set of

autoregressive lags entails an examination of the matrix R1. If this matrix

is not of full rank, the required exact autoregressive parameter vector will

be given by solving expression (2.26). On the other hand, when the matrix

has full rank, an appropriate autoregressive parameter vector may be achieved

by solving either expression (2.27) or (2.28). It is important to appreciate

the fact that these ARMA results are applicable to the special AR process in I
which case we simply enter q-0 when forming the ARMA autocorrelation matrix

R1 .

lit is possible to generalize the constraints to be a quadratic surface
(giving rise to a generalized eigenvector solution) or a hyperplane,
respectively (10].
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Moving Average Parameters

In order to complete the ARMA modeling, it is necessary to determine the

model's associated moving average parameters. There are a variety of

procedures for achieving this objective. We shall present two such

procedures of which the first is the one most often found in the literature

while the second possesses a desirable efficient computational

implementation.

(i) In the first procedure, one conceptually applies the time series

(x(n)} to the pth order nonrecursive filter with transfer function Ap(z)

whose coefficients correspond to the autoregressive parameters obtained upon

solving either expression (2.26), (2.27) or (2.28). This filtering produces

the so-called residual time series as specified by

p

s(n) = amx(n-m) (2.29)

w0

This filtering causes the residual time series to be a moving average process

of order q with power spectral density function JBq(ejo))1 2 as is made evident

from Figure 2.2. This of course presumes that (x(n)) corresponds to an ARMA

processor of order (pq) or less. A simple analysis indicates that the

length 2q+l autocorrelation sequence of this residual time series may be

computed according to

p p

I Iakftm r,(n+nm-k) -qjn_ q

rs(n) = 0 2.30)

0 otherwise

Using these MA(q) autocorrelation lags, it follows from expression (2.5) that

the unknown bk parameters must be such that

q

rs(n) = b k bk-n -qnjq (2.31)

k=O

A spectral factorization along the lines mentioned in this section's MA time

series subsection will then yield the desired bk parameters.
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Figure 2.2. Generation of residual time series.

(ii) If computational requirements are of vital concern, the technique

to be now outlined is particularly efficient [15],[16]. It utilizes the

Fourier transform of the causal part of the autocorrelation sequence

D(eiw) rx(n)e-Jmn (2.32)

n1l

The underlying power spectral density function may be directly determined

from this Fourier transform according to

Sx(eJ)) = rx(O) + 2Re{D(eJw)) (2.33)

A comparison of this expression with relationship (1.13), reveals that the

transform D(eJW) must be of the form

cle-Jw+c 2e-J
2w + ... + cpe-JPwD(eJ(O) =

l+ale-Jw + ... + ape-JPW

C(ejW)
= - (() (2.34)

where we are tacitly assuming that the moving average order is not larger

than the autoreSressive order (i.e., q j p).

To determine the required Cn coefficients in expression (2.34), we will

first compute the first s impulse response elements of the filter H(eJw)

1/A,(eJ&)). This will entail using the following relationship

p
h(n) =- akh(n-k) 1 j n j a (2.35)

k=l
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in which h(O) = 1 and h(n) - 0 for n ( 0 are used to initiate the recursion.

We next use the time domain equivalency of relationship (2.34) to conelude

that

h(O) 0 0 . . . 0 c r(l)

h(l) h(O) 0 . . 0 C2  rx(2)

S.(2.36a)

h(p-1) h(p-2) . . h(O) cp

b(s) h(s-l) h(s-p+l) rx(S)

or

H c= (2.36b)

In general, the overdetermined system of equations (2.36) will not have

a solution unless the autocorrelation elements rx(n) are associated with an

ARMA process of order (p,p) or lower. Assuming this not to be the case, we

could select the vector c so as to provide a least squares solution to

expression (2.36). This would take the form of solving the consistent system

of linear equations [
c = [H*H]-He% (2.37)

In order to achieve the aforementioned efficient computational

algorithm, the parameter s may be taken to be p which renders the following

straightforward method for evaluating the cn

n-1

cn = akrx(n-k) 1 jnjp (2.38)

k=O

This is basically the approach taken in references [15] and [16]. In using

expression (2.38) for evaluating the Cn, we are trading off performance for
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computational efficiency. It has been the author's experience that the

spectral estimates achieved upon using the least squares fit (2.37) do not

typically provide a superior performance to those given by the simpler

relationship (2.38). In any case, once the €n parameters have been

determined, the Fourier transform (2.34) is used in expression (2.33) to

effect the required power spectral density model. Moreover, if it is desired

to evaluate the bk parameters, we can use the identity

lBq(eJW) 12 = Ap(ejW) C(ejW)+ Ap(e W)C(eJw)+rx(O) IAp(eiJ) 12 (2.39)

and a spectral factorization to achieve this objective.

In this section, we have outlined convenient procedures for generating

MA, AR and ARMA spectral models when perfect autocorrelation lag information

is available. The principal steps of these procedures are summarized in

Table 2.2. Although these results are of primarily theoretical interest, we

will subsequently adapt them to evolve effective rational spectral estimation

methods for the more practical case where only raw time series observations

are used in the modeling.

I
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MA Model

q

Sx (e to) I w(n) rx(n) e-Jan (1.6)

n----q

AR Model

(i) Form the (p+l)x(p+l) AR autocorrelation matrix R using expression
(2.12)

(ii) Solve Ra = lbo 2 eI  (2.11)

where parameter bo is selected so that the first component of a is
one.

ARMA Model

(i) Form the tx(p+l) ARMA autocorrelation matrix Rl using expression
(2.24)

(ii) (a) If Rank (RjR) < p+1 then solve

Ri*Re a = e (2.23)

(b) If Rank (RI*Rl) = p+j then either solve
Rl RI 1 A = Q e (2.28)

where a is selected so that first component of a is one.
or

use the minimum eigenvalue-eigenve. .or yielding selection
(2.27).

p p(ii) r(n) f Rn (R rn+'-k) pOq (2.32)

k=0 w=0

q
rs(nle Jun

(iv) Sx(eJW) k n=-q ( p+1 t

I+ ale-JW + ... + apejp

Table 2.2. Rational spectral model techniques employing
exact autocorrelation lag information.
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III. Sinusoids in White Noise Example

The procedure as developed in the preceding section is applicable to the

task of generating rational models for the general class of wide-sense

stationary time series. In order to demonstrate the relative effectiveness

of MA, AR, and ARMA modeling, the classical problem of the detection and

frequency identification of the sinusoids in white noise case will now be

considered. Although this does represent a very narrow application of

rational spectral estimation techniques, it provides a meaningful basis for

understanding the relative performance capabilities of MA, AR, ARlMA models.

In particular, the time series being now examined is taken to be composed of

the sum of m real sinusoids in additive noise as specified by

m

x(n) Ak sin [2nfkn + ek ] + w(n) (3.1)

k=l

in which the ok are independent, uniformly distributed random variables on

the interval (-ni] and w(n) is a zero mean, variance 02 white noise process.

It is recalled that the problem of detecting sinusoids in noise originally

gave rise to spectral estimation theory. The periodogram method was

developed for this very purpose by Schuster in 1898 (581.

The task at hand is to generate MA, AR, and, ARMA models from the

autocorrelation values associated with this time series using the procedures

outlined in the previous section. It is a simple matter to show that the

autocorrelation sequence characterizing time series (3.1) is given by

m
2

rx(n) = 0.5 Ak cos (2nfkn] + cr2 6(n) (3.2)

k=1

in which 6(n) denotes the unit-impule (Ironecker delta) sequence. The power

spectral density function associated with this process is composed of 2m
2

dirac delta impulses of amplitude 0.5 Ak located at frequencies +fk riding on

top of a constant value o2. As such, this discontinuous power spectral

density function may not be associated with a finite order MA, AR, or ARMA

process.
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Although the autocorrelation sequence (3.2) is not compatable with a

finite order ARMA model, it is readily shown that this sequence will satisfy

the following homogeneous relationships

2m

ak rx(n-k) = 0 for n > 2m (3.3)

k=0

where ao = 1. The ak parameters required in this expression are obtained by

equating coefficients of the following polynomial equivalency

2m

A2m(z) = an z- n

n=O

m
T r [1-2 z- 1 cos( 2nfk) + z-2 ] (3.4)
k=l

where the zeroes of this polynomial (i.e., e±j2Tfk) are identified with the

frequencies of the time series' sinusoids (e.g., see refs. [10],[32],[55]).

Upon comparison of relationships (3.3) and (2.22), it might be

incorrectly inferred that the autocorrelation sequence (3.2) would be

associated with an ARMA process of order (2m,2m). Upon examination of the

Yule-Walker equations for indices 0 j n j 2m, however, it will be found that

'an exact correspondence does not result. This simply reflects the fact that

the time series (3.1) does not arise from exciting a linear ARMA operator

with white noise. Nonetheless, due to the identical forms of equations

(2.22) and (3.3), we may still use the ARlA modeling autoregressive parameter

procedure as outlined in Section II to identify the 2m parameters ak. These

parameters would be then in turn inserted into relationship (3.4) to identify

the frequency parameters fk upon factorization of the polynomial A2m(z).

This spectral behavior can be conveniently displayed in a plot of

Il/A 2 m(eJ')I versus w.

Once the fk frequency parameters have been determined, the associated Ak

amplitude parameters may be obtained upon evaluating expression (3.2) over

any set of m or more indices satisfying n 2 1. With this in mind, let us

evaluate this expression for the contiguous indices 1 . n v where the
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integer v a. m. This is found to yield the following overdetermined (if v~m)

system of consistent linear equations in the Ak unknowns

2
rx(l) cos(2nfl) cos(2wf 2 ) ••. cos(2nf.) Al 2

2
rx(2) cos(4nfI ) cos(4nf2 ) ... cos(4nfm ) A2/2

(3.5)

2

rx(v) cos(2vxfl) cos(2vwf 2 ) ... cos( 2nvfm)
or equivalently as

= Cp (3.6)

where p is the so-called txi power vector with elements Ak/2 . If the integer

parameter v is selected to be larger than or equal to m, the least square

approximate solution to the overdetermining equations (3.6) is given by

p = [CIC]-1 C' r (3.7)

where C' designates the transpose of matrix C. In the case of perfect

autocorrelation knowledge, we normally set v = m thereby giving the solution

= = C-r. In the more practical case in which only raw time series

observations are given for the estimate, however, a desirable degree of

parameter smoothing is achieved by selecting v > m.

Although the sinusoids in white noise time series (3.1) is not

compatible with an AR model, AR models have also been successfully employed

in analyzing such time series. Depending on the underlying signal to noise I
ratios

22

the desired detection and frequency estimation will require that the AR order

parameter p be made significatlv larger than 2m. Variants of the Pisarenko

method (55], and, the SVD approach of Tufts and Kumaresan [42],[61] typically

produce satisfactory performance on the sinusoids in white noise case. As we

will illustrate in Section VIII, the approach taken in this paper will also
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produce exceptional performance when an SVD adaption of the ARMA modeling

method herein presented is made.

Alternate Method

It is possible to apply the concept of using an overdetermined system of

model evaluations for achieving high quality alternative estimates for the

frequency parameters appearing in expression (3.1). This will make use of

the observation that homogeneous relationship (3.3) holds for all values of n

provided that there is no white noise present (i.e., o2 = 0). Under this

restriction, an evaluation of expression (3.2) with a2 = 0 over the indices

-t + 2p j n _ t (in which p = 2m) is found to result in the following

symmetrical relationship

rx(-t+p) rx(-t+p-1) • • . rx(-t) 1 0

rx(-t+p+l) rx(-t+p) . . . rx(-t+l) ai 0

- (3.8a)

* , .ap

rx(t) rx(t-l) . . . rx(t-p) 0

or

Rs a =' (3.8b)

in which t is selected so that t > 3m/2 thereby ensuring an overdetermined

system of homogeneous relationships.

If the autocorrelation lag entries of expression (3.8) correspond to

(3.2) with 0 2 = 0, it then follows that the overdetermined system of

equations (3.8) will have a unique solution for the ak coefficients. This

solution can then be incorporated into equation (3.4) to obtain estimates for

the frequency fk parameters. In the additive noise case v2 # 0, however,

this system of equations will generally not have a solution. Since the c2
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term appears in only p+l out of the (2t-p+l)x(p+l) entries of matrix i

(i.e., the rx(O) entries), it can be argued that so long as t>>p, the effect

of the additive noise will be minimal. Based on this premise, it is natural

to then seek a vector a such that this inconsistent system of linear

equations is best satisfied in a least squares sense. The required least

squares solution is then given by solving the system of equations

Rs W Rs A = a 11 (3.9)

in which a is a normalizing scalar selected to ensure that the first

component of a is one. The nonnegative diagonal matrix W is typically

selected to be equal to the identity matrix. As we will see in Section VIII,

the solutions obtained by using expression (3.9) often provide exceptional

estimates so long as tWp. A paper in preparation will further refine this

new approach.

Numerical Example

In order to illustrate the effectiveness of the three rational models in

resolving sinusoids embedded in white noise, we shall now consider the

specific time series

x(n) = sin(0.4nn) + sin(0.43fn) + w(n) (3.10)

The white noise series (w(n)) will be taken to have a variance of 0.5 thereby

creating a zero dB signal-to-noise ratio (SNR) environment. According to

relationship (3.2), the autocorrelation sequence associated with this time

series is specified by

rx(n' = 0.5 cos(O.4nrn) + 0.5 cos(O.43un) + 0.56(n) (3.11)

We shall now use these autocorrelation lags along with the concepts develeped

in Section II to generate appropr. .. MA, AR and ARIA models. A brief

discussion of the resultant modelih. performances in this idealistic f
situation will now be given.

MA Models: When using the classical spectral modeling expression

q

Sx(eJw) I rx(n) e-J&n (3.12)
n--q
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we are in effect invoking a MA(q) model. Plots of this expression with

entries (3.11) for model order selections of q = 32 and q = 64 are shown in

Figure 3.1 over the range of normalized frequencies 0 _. f S 0.5. From these

results, it is apparent that a resolution of the two equal amplitude

sinusoids was not achieved for a thirty second order MA model, but, was

achieved for a sixty fourth order MA model. Thus, an artificially high order

MA model was required in order to resolve the two sinusoids when exact

autocorrelation lags were used. This example nicely demonstrates the

distortions which can result when invoking a MA model V the underlying

assumption that rx(n) = 0 for n > q thereby implied is not satisfied (or

approximately satisfied). Clearly, the nondamped nature of the

autocorrelation sequence (3.2) behavior indicates that the MA modeling of a

time series composed of sinusoids in white noise can be inappropriate unless

a sufficiently large selection of the MA model order q is made.

AR Models: We next used the same autocorrelation lag information (3.11)

to generate AR models of order p = 20 and p = 24 using expression (2.11).

The resultant spectral estimates I/IAp(eJw) 12 are shown in Figure 3.2a and b

for these two model order choicus. It is apparent that the twentieth order

model was unable to resolve the two sinusoids while the twenty-fourth was

just able to achieve the resolution. Since the specific autocorrelation lags

rx(n) for 0 j n _ p were required for generating an AR(p) model, it is

apparent that fewer autocorrelation lags were needed to resolve the two

sinusoids when using an AR(24) model in comparison to the MA model. This

simply gives credance to the previously made suggestion that AR models

provide a more effective instrument for representing peak like spectra than

are MA models.

In order to illustrate the effect of using more than the minimal number

of extended Yule-Walker equations (i.e.,t > p) when generating an AR model,

we next used the ARMA modeling equations (2.23) with parameters p=10, q=0,

and t=100. The AR(10) model which results upon solving equations (2.23) for

this choice of order parameters has a spectral behavior as depicted in Figure

3.2c. This AR(10) spectral estimate is seen to be significantly better than

that achieved by the higher order AR(24) estimate. Clearly, the process of

using 100 (i.e., t=100) extended Yule-Walker equation evaluations instead of

the minimal number 10 has produced this significant improvement. This

improvement is due to the fact that only the first four of the one hundred
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extended Yule-Walker equation evaluations are in error due to the imposition

of an improper AR model (see equation (3.3)). By increasing t beyond p, the

effect has been to dilute the negative impact of the erroneous first four

Yule-Walker equations on the model parameters (i.e., four improper equations

and 96 appropriate equations). The reader is urged to fully understand the

implications of this result in a more broadly based context.

ARMA Model: We next used the given autocorrelation lag information

(3.11) to generate an ARMA model of order p = 4 by appealing to expression

(2.23). We here select the variable t to be equal to its minimal value of

four, and, in accordance with this section's discussion take q = 4. The

resultant ARMA based spectral model I/1A 4 (ejfa)1 2 without the MA component is

plotted in Figure 3.3. The two sinusoids are nicely resolved and when the

fourth order polynomial A4 (eJ0 () was factored, it was found to have its four

roots on the unit circle at eJ21fk for k = 1,2 in which f, = 0.2 and f 2 =

0.215. This should not be surprising since it was previously shown in this

section that an ARMA type model is perfectly compatible with a sinusoids in

white noise time series (MA and AR models are not compatible). It is

noteworthy that only the autocorrelation lags rx(n) for 1 < n K 8 were

required in generating the spectral model depicted in Figure 3.3.

Alternative Method: As a final procedure, we used the alternative

method as represented by relationship (3.9) in which the parameters were

taken to be p=10 and t=50. Using these parameters along with the theoretical

autocorrelation lag entries (3.11) a plot of the resultant estimate

i/IAlj0(ejEO)j2 is shown in Figure 3.4. The two sinusoids are resolved with

well defined peaks, and, the spectral estimates are superior to those

achieved by the MA and AR model results but inferior to the ARMA model.
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IV. MA Modeling - Time Series Observations

From a practical viewpoint, the situation in which exact autocorrelation

lag values are given for effecting a spectral estimate almost never arises.

More typically, the required spectral estimate is to be generated from a

finite set of contiguous time series observations as represented by

x(l), x(2),.... x(N) (4.1)

In this section, we will be concerned with achieving MA spectral estimates

from this observation set. The methods to be presented for this purpose are

largely influenced by the theoretical developments found in Section II.

There exist two primary MA spectral estimation procedures that have

found favor among users. They are indi ect methods based on autocorrelation

estimates such as proposed by Blackman and Tukey [8], and, direct methods

based on the Fourier transform of the time series observations and widely

known as the periodogram (or the method of averaged periodograms due to Welch

[64]). As we will shortly see, the periodogram is a special case of the

Blackman-Tukey approach.

Blackman-Tukey Approach

In the Blackman-Tukey method, one first obtains autocorrelation

estimates rx(n) from the given observation set (4.1). These autocorrelation

estimates are then inserted into expression (1.2) to effect the required

spectral estimate. For a variety of reasons, it is often beneficial to

introduce a windowing sequence w(n) to achieve the windowed MA spectral

estimate of order q

q

S(ejw) = I w(n) rx(n)e-Jon (4.2)

n=-q

Considerations to be made in selecting the window sequence are well

documented and the reader is referred to references [33],[501,[571. Two of

the more popular selections are the rectangular window (i.e., w(n) = 1) and

the Bartlett triangle window (i.e., w(n) = (l-InI)/(q+l)).

The standard unbiased and biased autocorrelation estimates are among the

most popular candidates to be used in the spectral estimate (4.2) (e.g., see

ref. [33] for a detailed development). The unbiased estimate achieves the

required autocorrelation lag estimate according to

38



N

rx(n) = - x(k+n)!(k) -qJ n J q (4.3)
N-Inl k=l

where the convention of setting to zero any term x(n) in the summand for

which n a [1,N] is adopted. It is a simple matter to show that E( x(n)) =

rx(n) thereby establishing the unbiased nature of estimate (4.3). Moreover,

this unbiased estimate is also consistent so long as the order parameter q is

finite.

Notwithstanding the obviously attractive statistical properties

possessed by the unbiased estimate (4.3), a number of prominant statisticians

have proposed using the standard biased estimate (e.g., see refs.

[33] ,[52],[53].

N

rx(n) = x(k+n)!(k) -q J n . q (4.4)

k=l

We again adhere to the convention of setting to zero any term x(n) in the

summand for which n e [l,N]. The justification for using the biased estimate

is that it is more stable statistically. It must be noted, however, that the

relative advantages of unbiased vs. biased estimators remains an unsettled

issue. With this in mind, the user is cautioned to base his ultimate

selection on the particular application being considered. This will

undoubtably entail a great deal of empirically based experimentation on the

users part.

Periodoaran

In the periodogram method, the required spectral estimate is given by

the expression

1 12
Sx(eJ) = I IXN(eJw)2 (4.5)

where XN(eJW) is the Fourier transform of the time series observations, that

is
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N-1

XN(eJw) = x(n+l)e-jWn (4.6)

n--0

We here use the subscript N on XN(ejw) to explicitly denote its dependency on

the observation length parameter. It is readily shown that the periodogram

is identical to the Blackman-Tukey approach when the biased estimates (4.4)

are used in expression (4.2) with q = N-i and w(n) = 1.

The primary advantage in using the Periodogram approach is computational

in nature. Specifically, the values of the periodogram at the N discrete set

of uniformly spaced radian frequencies wk = 2ak/N for

0 . k < N-1 is seen to entail evaluation of the entities

N-1
2nk .2nkn

XN(eJ -) L x(n+l)e - j  , 0 k N-i (4.7)
n7=0

These evaluations are readily carried out by use of the N point fast Fourier

transform (FFT) algorithm (e.g., see refs. [50],[57]). With the FFT

algorithm, the N quantities (4.7) may be computed in which the required

number of complex additions and multiplications is on the order of N log2N.

The computational savings accrued in using the FFT algorithm for spectral

estimates is considerable when it is realized that a direct evaluation of

expression (4.7) is seen to entail N2 complex additions and multiplications.

Due to the computational savings accrued in using the FFT implementation of

the periodogram, spectral estimates of long data sequences became feasible

with the FFT's development.

Although the FFT algorithm offers a computationally efficient means for

numerically evaluating the periodogram (4.5), it possesses a potentially f
serious drawback. Specifically, as just suggested, this FFr implementation

provides a sampled version of the periodogram in which the frequency samples

are separated by 2n/N radians. For many applications of interest, this

sampling may be too coarse in that the detailed continuous frequency behavior

of the periodogram (4.5) may be somewhat obscured through the sampling

process. An example of this will be given in Section VIII. In order to

alleviate this potential difficulty, we may apply the concept of zero

naddina. This simply entails the appending of L zeroes to the given set of

time series observations, that is

40



x(1), z(2) .... x(N), O, 0 ... 0 0 (4.8)

L zeroes

where L is a yet unspecified positive integer. If we were to take the

Fourier transform of this padded time series, we would obtain the same

transform (4.6) and the same periodogram function (4.5). On the other hand,

if we were to take a N+L point FFT of this padded time series, the following

more finely spaced samples of the Fourier transform would be generated

N-1

2tk x (n+l) e-J 2kn

N+L N+L OjkcN+L (4.9)n=0

If these sampled values were then substituted into expression (4.5), we would

obtain sampled values of the periodogram at the more finely spaced

frequencies wk = 2n/(N+L) for Ojk<N+L. The effect of the L zero padding is

then seen to result in a reduction of the frequency sampling interval from

2n/N to 2n/(N+L). By selecting L suitably large, we can reduce this sampling

interval to any degree desirable.

One should not gain the mistaken impression that padding will enable us

to achieve any degree of frequency resolution desired. The fundamental

unsampled periodogram (4.5) has an inhere~nt freauenov resolution oaoabilitv

of Aw = 2n/N (or equivalently Af - l/N). When using a N point FFr

implementation of the periodogram. however, it is entirely possible that

spectral peaks may lie between the sampled frequencies wk - I2k/N. In such

cases, the peaks effect on the sampled periodogram may be seriously diluted

even though it would be clearly evident in the unsampled periodogram. Upon

padding with L zeroes, we can remove the ambiguity caused by this sampling

process and still retain the computational efficiency of an FFr f
implementation.
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V. AR Modeling -Time Series Observations

The task of generating AR spectral models from a set of time series

observations has been of primary concern to many investigators over the last

f ew years. Undoubtedly, the most widely used AR modeling procedure is the

Burg algorithm as first proposed in 1967 [131. This algorithm not only

provided a spectral estimation capability that was theretofore lacking, it

also inspired an intense search for improved rational spectral estimation

procedures. Much of contemporary spectral estimation theory has been

directly influenced by the philosophy contained within the Burg approach. As

a matter of fact, many of the more recent rational estimation procedures were

developed so as to overcome some of the deficiencies observed in the Burg

algorithm as typified by line splitting and biased frequency estimates.

Nonetheless, the Burg algorithm still occupies the pre-eminent position among

contemporary Al modeling methods. Since its operational behavior is so well

documented, we refer the interested reader to the relevant literature for its

detailed development (e.g., see refs. [23],[31]).

In this section and section IX, we will demonstrate that many of the

popularly used Al methods (which includes the Burg algorithm) may be

interpreted as providing statistical estimates of the fundamental Yule-Walker

equations (2.11) that govern Al processes. These estimates are to be

obtained from the set of contiguous time series observations

x(l), x(2), ... , x(N)(51

which are made available through some measurement mechanism. More

specifically, it is well known that various contemporary methods either

explicitly or implicitly use these observations to generate estimates of the

(p+l)x(p+l) autocorrelation matrix R which appears in the fundamental

relationship (2.11). Clearly, the elements of the matrix estimate R must beI

such that

A

R(i,j) is an estimate of rx(i-j) for 1 j i,j j p4.1 (5.2)

Once these estimates have been computed from the given time series

observations, the resultant autoregressive parameter vector estimate is, in

accordance with expression (2.11), obtained by solving the linear system of

equations.

o1 lb 1 (5.3)
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in which the normalizing parameter bo is selected so that the first component

of a is one. The steps of this general AR modeling approach are summarized

in Table 5.1.

Step 1: Compute Estimates of R(i,j) = rx(i-j) for 1 i,j,fp+l to form

the (p+l)x(p+l) autocorrelation matrix estimate R.

Step 2: Solve the linear system of equations Ra = lboJ2 11 in which the

normalizing coefficient bo is selected so that the first

component of a is one.

Step 3: The required AR(p) spectral estimate is then specified by
SAR (eJ 0)  -- b e 12

1 1 + aj e-JW + ... + ap e-JP4

Table 5.1 Basic steps in obtaining an AR(p) spectral estimate.

The quality of the AR modeling approach as embodied in expression (5.3)

is critically dependent on the choice of the autocorrelation lag estimation

procedure used. For many applications, the standard unbiased autocorrelation

estimates as given by

A 1 i j i j p+1
R(i,j) = L x(k+i-j)Y(k) (5.4)

N-i-jJ k=l 1 ! j I p+l

typically provides the best selection in terms of spectral estimation

performance. It is seen that the autocorrelation matrix formed from this set

of estimates will be Toeplitz and symmetric; properties shared by the actual

autocorrelation matrix being approximated. Moreover, this estimate is
A

consistent in the sense that as N approaches infinity, we have R -+ R under

the second order ergodic assumption on the time series. In view of all of

these favorable qualities, it is not surprising that the standard unbiased

estimator (5.4) generally provides excellent AR modeling performance. In

Section IX, some of the more popularly used adaptive methods of AR spectral

estimation will also be studied.
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VI. AREA Modeling: Time Series Observations

The methods for generating AREA models based upon times series

observations fall into basically two categories: the ak and bk parameters

are either evaluated (i) simultaneously or (0i) separately. In the first

category, maximum likelihood based techniques form one of the most widely

used of such methods. These include exact maximum likelihood approaches

(e.g., refs (6] and [48]). and, least square methods which approximate the

exact likelihood function (e.g., refs (3], [91, [29]). Although offering the

promise of optimum modeling, these maximum likelihood methods entail the

application of nonlinear programming solution procedures. As such, these

solution procedures are computationally inefficient, and, they suffer the

obvious drawbacks characteristic of nonlinear programming methods. Other

nonmaximum likelihood methods which fall into category (i) have been proposed

(e.g., see refs. [30],[40],[60]). These methods also entail the utilization

of nonlinear programming solution procedures.

In recognition of the obvious shortcomings of nonlinear programming

based techniques, a number of methods have been proposed which employ a

separate evaluation of the AR and MA parameters. By using this approach, it

is generally possible to obtain satisfactory modeling while not incurring the

drawbacks of a nonlinear programming solution procedure. These techniques

typically entailed using the first p extended Yule-Walker equations to obtain

estimates, in a linear fashion, for the AR parameters (e.g., see refs

[261,[281,[35],[38]). Unfortunately, the utilization of the minimal number

of extended Yule-Walker equations (i.e., p) Save rise to an undesirable

parameter hypersensitivity. In recognition of this fact, a procedure for

using an overdetermined set of Yule-Walker equation evaluations to decrease

this hypersensitivity was proposed (15]. This approach has since been

adopted by other researchers in spectral estimation applications with success

(e.g.. see refs. [7],[12],[36],[51]). With this in mind, we shall now give a

detailed development of the overdetermined approach to estimating the AR

parameters of an AREA model.

AR Parameter Estimation

Although the procedure presented in Section II for generating AREA

models is attractive, one is rarely provided with exact autocorrelation
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information. The more common situation is one in which the only available

information takes the form of a finite set of time series observations

x(l), x(2), .. . x(N) (6.1)

The task at hand is to then use these time series observations to estimate

the parameters of a postulated ARMA model. In this parameter estimation, we

shall seek to incorporate the philosophy as embodied in the extended

Yule-Walker ARKA model equations (2.23) for estimating the model's ak

parameters.

This will effectively entail using the given time series observations to

generate an estimate of the tx(p+l) autocorrelation matrix RI which appears

in expression (2.24). Namely, using any of a number of available procedures,

we first compute the following autocorrelation lag estimates

Rl(i,j) = an estimate of rx(q+l+i-j) 1 < i j t (6.2)

1 . j S p+l

Two particularly attractive procedures for effecting these autocorrelation

estimates will be detailed at the end of this section and in Section X.

Independent of what procedure is eventually used, the net result of this

first step will be the generation of a tx(p+l) autocorrelation matrix
A

estimate R1 . Due to errors inherent in the autocorrelation estimation

process, however, this matrix estimate will generally have full rank (i.e..

min (p+1,t)) instead of the theoretical rank p which is possessed by the

matrix Rl being estimated. This being the case, it is therefore not

generally possible to find an autoregressive parameter vector with first

component equal to one which will satisfy the theoretical relationship RIj =

2 as given in equation (2.23). As such, the txl extended Yule-Walker

equation error vector as specified by
A

I Rla (6.3)
will be generated.

A little thought will convince oneself that the elements of this error

vector will be composed of a sum of many random variable products (i.e.,

x(k+m)I(m)) used in formulating the autocorrelation lag estimates.

Consequently, an assumption that the error vector elements tend to be

Gaussianly distributed is a reasonable one. The joint density function of

the extended Yule-Walker equation error vector may be therefore approximated

by
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p = e/2-0.5(We) (6.4)
270)

t / 2

in which W-1 = E(ee*) designates the error covariance matrix which is

generally unknown and where the expected value of e is taken to be zero.

With the availability of the error joint density function (6.4), it is

now possible to apply the maximum-likelihood concept for estimating the

autoregressive parameters. Namely, making use of relationship (6.3) and the

joint density function (6.4), it is possible to generate a joint density

function for the autorgressive parameter vector a which will be of form
A ^P

p(a) = ye-0.5(aR*WRa)

We now seek that vector a which maximizes this joint density function subject

to the constraint that the first component of a be one. Ignoring the effect

of the multiplicative term y, the psuedo maximum-likelihood selection for a

then corresponds to solving the following constrained minimization problem

A
min a*RqRa (6.5)

a(1)=l

Using standard Lagrange multiplier techniques, the solution to this

constrained minimization problem is obtained by solving the following system

of (p+l)x(p+l) linear equations
A A

Re1 W RI A (6.6)
where a is a normalizing constant selected so that the first component of

a is one.1  Expression (6.6) constitutes the so-called high verfornance

method of autoregressive parameter selection [15]-[20]. f
It is to be noted that in minimizing functional (6.5) with respect to

the normalization constraint imposed on a's first component, the error vector

is being minimized in the least squares sense. In effect, we are then

selecting a so as to best satisfy the theoretical relationship (2.23) given

by R1a = e. Using this interpretation, the positive definite matrix T can be

I1n those rare cases where the (p+l)x(p+l) matrix RlSWR I is singular, the
autoregressive parameter vector will correspond to a suitable normalized
eigenvector associated with a zero eigenvalue of this matrix.
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alternatively thought of as providing a weighting (instead of being an

unknown covariance matrix inverse) in the error functional (6.5). It is

therefore logical to take W to be a diagonal matrix whose nonnegative

diagonal entries wk for k = 1,2, ... , t provide a mechanism for weighting in

any desirable fashion the various extended Yule-Walker equation

approximations appearing in (6.3). The uniform weighting selection

W = I (6.7)

where I is the txt identity matrix has been found to provide excellent

modeling performance when the matrix estimate R1 is unbiased.

A few words are now appropriate concerning the selection of the integer

t which specifies the number of extended Yule-Walker equations that are being

approximated. When t is set equal to its minimal value p. the approach here

taken bears a close resemblance to various other ARMA modeling schemes (e.g.,

see refs. [26],[28],[35],[38]). In this case, the minimal number of p error

contaminated extended Yule-Walker equation evaluations are being used in

fixing the model's p autoregressive coefficients. A little thought should

convince oneself of the potential parameter hypersensitivity which can arise

in this situation. To illustrate this point, let us briefly consider the

task of finding a line which 'best' fits a set of error contaminated

two-tuples (xk,Yk). Although only two two-tuples are needed to fix the

line's two parameters (i.e., its slope and y intercept), it will be generally

more desirable to fix these parameters by using more than this minimal number

of two-tuples thereby obtaining a more 'representative linear fit'. This

will entail finding the 'best least squares linear fit'. The benefits

generally accrued in using this overdetermined approach are demonstrated in

Figure 6.1.

With the above in mind, the real advantage of this paper's approach is I
achieved when the integer t is selected to be larger than p. In this case,

more than the minimal number of extended Yule-Walker equation evaluations

(i.e., t instead of p) are being used in fixing the model's p autoregressive

coefficients. It is then not surprising that a desirable decrease in

parameter hypersensitivity is generally realized upon selecting t > p. An

indication of the benefit accrued by selecting t > p was illustrated in

Section III for the case of AR modeling with perfect autocorrelation lag

values. A similar advantage will be demonstrated in Section VIII when ARMA

models are generated from raw time series observations. In the situation

47



being considered here, the integer parameter t is typically selected to lie

within the range

p j t j N-q-1 (6.8)

with generally larger values than the minimum p being preferred for modeling

fidelity.

From an overall modeling viewpoint, the standard unbiased estimator has

been found to generally provide the best choice for the lag estimates

required in expression (6.2). Specifically, the required autocorrelation lag

estimate entries are generated according to

N-n

I 1 x(k+n)r(k) On_q+t (6.9)
rx(n) - L

N-n k=l

where q+t corresponds to the largest autocorrelation lag argument appearing
A

in matrix R1 . We would of course use the property that

rx(-n) = 7x(n) to obtain any negative lag autocorrelation entries which may
A

be needed in formulating R1 . In using this unbiased estimate approach, the

resultant autocorrelation matrix estimate will have a desirable Toeplit?

structure. Ae A
The (p+l)x(p+l) matrix RIWR1 , which completely characterizes the

autoregressive parameter vector solution through expression (6.6), will have

components which are readily computable from the estimates (6.9). Using

simple matrix manipulations, it is readily shown that the general (i,j)th

element of this matrix is specified by

t
A A X ) A

R1 WRI(i,j) = w(m)(q+m+l r(q+m+i-j) for I < i,j j p+1 (6.10)

where the w(m) correspond to the diagonal elements of the diagonal weighting
A A

matrix W. Upon generation of the matrix RlWR1 according to this expression,

the required autocorrelation parameter vector is straightforwardly obtained

by solving the system of linear equations (6.6). A Fortran program listing

of an implementation of this procedure is given in the appendix where the

flexib-iity of using the standard unbiased or the standard biased (i.e.,

divisor N-n in equation (6.9) is replaced by N) autocorrelation estimate is

available.
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MA Parameter Estimation

To complete the ARMA modeling, it is necessary to compute an estimate

for the moving average component tBq(eJw) 12 . It has been the author's

experience that independent of which procedure is used, this MA component

estimate is almost always of significantly lower quality than the associated

AR component

p
1^p(eJw)1 2 = I I ak eJwk 2  

(6.11)

k=O

in which ak denote the autoregressive parameter estimates as generated from

expression (6.6). A high quality low order MA spectral estimator has yet to

be developed. Despite this shortcoming, some reasonably well performing MA

estimators will now be briefly discussed.

Many contemporary MA component estimators are based on utilizing the

forward and backward residual time series associated with an ARMA time

series. In particular, the forward residual time series elements are

computed from the given observations (6.1) and the autoregressive parameter

estimates (6.6) according to

p

sf(n) = ak x(n-k) p+l n _ N (6.12)

Similarly, the backward residuals component are generated using

sb(n) = a k x(n+k) 1 n j N-p (6.13)
k=O

As indicated in Section II, each of these residual time series will be

governed by the same MA(q) process if the time series (x(n)) is an ARMA(p,q)

process with autoregressive parameters ak. With this in mind, a procedure

for extracting this MA characterization from the computed forward and

backward residuals will now be given.

The most direct procedure for achieving the required MA(q) estimate is

to first generate the following estimates of the residual time series' first
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q+l autocorrelation lags

N-p-n

rs(n) = N-p-n [sf(n+p+k)if(p+k) + sb(n+k) ib(k)] . Ojnjq
N-p-n k= (6.14)

If the residual time series do in fact correspond to a MA(q) process, it will

be found that the rs(n) will be approximately zero for n2_q+l. This can be

used as a convenient test for the appropriateness of the ARMA model, the

order selection, and, the estimates ak. In any case, upon taking the Fourier

transform of these autocorrelation lags, we obtain the MA(q) spectral

estimate component

qA 12 = ^ S n~~~
IBq(ejw) I w(n) rs(n)e-J(m (6.15)

n=-q

in which w(n) is a window sequence and use of the fact that rs(-n) = Ts(n)

will be made when evaluating (6.14). The overall ARMA(p,q) spectral estimate

is then given by

IBqjw)12  (.6S(ejW) = (6.16)

where AP(ejw) is specified by expression (6.11).

A few words are now appropriate concerning the selection of the window

to be used in estimate (6.14). If the rectangular window choice w(n) = 1 is

made, this estimate will not have the desired property of being guaranteed

positive-semidefinite. To achieve this positive-semidefiniteness, we could

instead choose the window to be

\N-pJ q+1 /

Unfortunately, this selection can give rise to a seriously distorted MA

estimate in view of the triangular like weighting thereby employed. The

selection of w(n) is quite important and this choice should be based on the

particular application at hand and user experience.
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It is also possible to employ the smoothed periodogram to obtain another

form of MA(q) estimate. This entails segmenting the computed residuals in

blocks of length q+l (overlapping or not overlapping) and then averaging the

resultant q+l length periodograms for each of these blocks. This procedure

has been employed with a moderate degree of success [17]. Similarly, we

could make obvious adaptions of the procedures treated in Section II under

the ARMA modeling subsection to achieve alternate MA estimates. For example,

if we were to use the procedure as characterized by expression (2.38),

estimates for the c n parameters would be computed from

n-1

n ak x(n-k) 1 j n j p (6.18)
k=0

The required ARMA spectral estimates would then be given by incorporating

these estimates into expression (2.33) to result in
A

Sx(eJW) = rx(O) + 2Re [D(eJW)] (6.19)

where D(eJW) is obtained by substituting the ak and €k estimates into form

(2.34).
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VII. ARNA Modeling: A Singular Value Decomposition Approach

We have yet to address the important issue of ARNA model order

determination. In particular, whether one is provided with exact

autocorrelation lags or time series observations for effecting the modeling,

how one chooses appropriate values for the order parameters p and q remains

an open question. It is recognized that this model order information is

implicitly contained in the autocorrelation matrices which characterize ARMA

models. In this section, we shall present a procedure for extracting the

rerequisite model order values which will make use of a singular value

decomposition of an extended autocorrelation matrix. An important byproduct

of this procedure will be an adaption of the ARMA modeling procedure of the

previous section which provides for a significant improvement in spectral

estimation performance.

When the ARMA model order parameters are not known apriori, it will be

judicious to select the initial model order to be much larger than the

'anticipated' order. In particular, let us consider the extended order ARNA

(Peqe) model for which Pe is selected to be larger (usually much larger)

than the eventual model order parameter p to be used. Although we typically

do not know p apriori, it is generally possible to make an educated guess of

p so as to ensure that

Pe > P (7.1)

In accordance with expression (2.23), it then follows that the tx(p,+l)

extended order autocorrelation matrix associated with this ARMA(pe,qe) model

may be expressed as

rx(qe+l) rx(qe) . . . rx(qe-pe+l)

rx(qe+2) rx(qe+l) . . . rx(qe-Pe+2)

Re= . . (7.2)

I

rx(qe+t) rx(qe+t-1) . . . rx(qe-Pe+t)

If the autocorrelation lag entries used in this matrix correspond to an

ARMA (p,q) process for which qe-pe 2 q-p, it then follows from the results of

section II that the rank of the tx(pe+l) matrix Re will be p. In arriving at

this result, we of course assume that t is selected to at least equal p. To

determine the required order parameter p, we then simply set p equal to the
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rank of Re for the idealistic case in which exact autocorrelation lag

information is available.

To obtain the ARMA model's (p+l)xl autoregressive parameter vector a

from this extended order autocorrelation matrix, it is possible to appeal to

the theoretical developments of Section II. In particular, let us consider

the set of submatrices of Re formed from any p+l contiguous columns. This

set of tx(p+l) matrices is specified by

Rk = [submatrix of Re composed of its kth through

p+kth column vectors inclusively] for lkj pe-p+l (7.3)

In accordance with the ARMA model extended Yule-Walker equation

relationships, it is readily established that the required unique

autoregressive parameter vector a will satisfy the set of homogeneous

relationships

Rka.= e for l<_kpe-p+l (7.4)

where the first component of a is constrained to be one. In point of fact,

expression (7.4) provides a matrix representation for the t extended

Yule-Walker equations (2.22) defined on the specific indices qe+2-k j n I

qe+t+l-k. It is important to note that this conclusion will be valid only if

the autocorrelation lag entries used in forming Re correspond to an ARMA

(p,q) process, and, the order parameters are such that Pe Z p and qe-Pe >

q-p.

IWe shall now apply this rank characterization of Re to the practical

problem in which the ARMA modeling is to be based only on the time series

observations

x(l), x(2), .... x(N) (7.5)

and not on actual autocorrelation lag information. In this case, it will be

necessary to first compute autocorrelation lag estimates from these

observations. These estimates are next substituted into the matrix format

(7.2) to in turn generate the extended order autocorrelation matrix estimate

Re. Since the autocorrelation lag estimate entries will be invariably in

error, it follows that the matrix Re will normally have full rank (i.e., min

(pe+l,t)) even when the time series under study corresponds to an ARMA (p,q)

process. Nonetheless, even though Re will have full rank, its 'effective'

rank will still tend to be p. To better quantify the vague term 'effective'
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rank, it will be beneficial to introduce the principle of singular value

decomposition.

Singular Value Decomposition

In a variety of applications, the ultimate objective will be that of

solving a linear system of equations. The matrix associated with this system

of equations not only characterizes the desired solution, but, it will also

very often convey dynamical property information. With this in mind, it

often behooves us to examine the salient properties of this characterizing

matrix. The singular value decomposition of a matrix as outlined in the

following theorem serves this role particularly well (e.g., see ref. (27] and

[39]).

Theorem 7.1: Let A be a mxn matrix of generally

complex valued elements. Then there exists mxm

and nxn unitary matrices U and V. respectively,

such that1

A = U V* (7.6)

where Z is a mxn matrix whose elements are zero

except possibly along its main diagonal. These

nonnegative diagonal elements are ordered such

that

11 . o22 * • • • . )- 0

where

h = min (m,n).

The diagonal elements ukk are commonly referred to as the singular values of

matrix A. It is well known that the nonzero singular values will correspond

to the positive square roots of the eigenvalues of the nonnegative Hermitian [
matrices AA* and A*A. Moreover, the columns of U (or V) will correspond to

the appropriately ordered orthonormal eigenvectors of the nonnegative

Hermitian matrices
C

AA (or ASA).

The singular values akk convey valuable information concerning the rank

characterization of matrix A. This is readily demonstrated upon considering

1 The matrices U and V are said to be unitary if U- = U* andV-1 = V*.
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the problem of finding that mxn matrix of rank k which will best approximate

A in the Frobenious norm sense (this assumes that rkk > 0 with k j h). The

Frobenious norm of the mxn matrix difference A-B is defined to be

1/2

11A - BII = I laij-bij 12] (7.7)

j=l

We now seek to find that m-n rank k matrix B which will render this criterion

a minimum. The solution to this approximation problem is contained in the

following theorem [27]

Theorem 7.2: The unique mxn matrix of rank k

Rank [A] which best approximates the mxn matrix A

in the Frobenious norm sense is given by

A(k) = U 7k V* (7.8)

where U and V are as in expression (7.6) while Xk

is obtained from : by setting to zero all but

its k largest singular values. The quality of

this optimum approximation is given by

1IA - Alk)I = [1 jJ2 O<k.h (7.9)

[J=k+l

The degree to which A M)approximates A is seen to be dependent on the

sum of the (h-k) smallest singular values squared. As k approaches h, this

sun will become progressively smaller and will eventually go to zero at k -

h. In order to provide a convenient measure for this behavior which does not

depend on the size of matrix A, let us consider the normalized ratio

-1(k) = J A(k) I

al 2 a1+ o22 2+ . .* + kk2 1/2 1 jk jh (7.10)L@112 + c222 + . * + k2 J
Clearly, this normalized ratio approaches its maximum value of one as k

approaches h. For matrices of low effective rank, the quantity (k) is close

to one for values of k significantly smaller than h. On the other hand,
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matrices for which k must take on high values (i.e., k h) to achieve a (k)

near one are said to be of high effective rank.

Avplication of SVD to AREA Modeling

To determine the required order for an ARMA model, we shall now make a

SVD of the tx(pe+I) extended order autocorrelation matrix estimate Re p that

is

Re = UY-V* (7.11)

where U and V are txt and (Pe+l)x(pe+1) unitary matrices, respectively and

2" is a tx(pe+l) matrix of the form called out in Theorem 7.1. The required

autoregressive order p is obtained by examining the normalized ratio 1(k).

Namely, p is set equal to the smallest value of k for which i(k) is deemed

'adequately' close to one. The terminology 'adequately close to one' is

subjective and will depend on the particular application under consideration

as well as user experience gained through empirical experimentation, In any

case, the net result of this step will be a rank p optimum approximation of

the tx(pe+l) extended order autocorrelation matrix, that is

Re ( p ) = U Ip V (7.12)

A simple matrix manipulation reveals that this rank p approximation may be

equivalently represented as

p

Re(P)= On in Mn (7.13)
n1-

where nk and _k are the kth column vectors of the txt and (pe+l)x(pe+1)

unitary matrices U and V, respectively. We shall now provide two separate

procedures for using this rank p approximation for effecting autoregressive

parameter estimates.

Method 1: ARMA (pe,qe) model

In this approach, the rank p approximation (7.12) is interpreted as

providing an improved estimate of the underlying extended autocorrelation

matrix. It will be convenient to decompose this rank p approximation as

follows

Re(P) [rl(P) : Ra(P)] (7.14)
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where rl(P) is the left most txl column vector of RG(P) and R(P) is a txpe

matrix composed of the p0 right most txl column vectors of Re(P). we now

seek a (pe+l)xl autoregressive parameter vector a with first component equal

to one that will satisfy the theoretical relationship

Re(P) a = 0

Since the rank of R(P) is less than full, there will exist an infinity of

solutions to this problem. We shall select the minimum norm solution as

specified by

al 7

a20

= _ [Ra(P)]# LI(p)

a pe j

in which the superscript notation # denotes the operation of generalized

(psuedo) matrix inversion. This autoregressive parameter selection procedure

has proved to be particularly effective in low SNR environments. It is

readily shown that this minimum norm solution can be simplified to
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p

vk (0) fl

ae k=l

pe
1 - I k (o ) 12

k=1

Pe

k=p+l (7.15)

pe
I rIk(o) 12

k=p+l

where the Xk correspond to the column vectors of the unitary matrix V

appearing in the SVD representation (7.12).

Method I: ARMA (pq) Model

The best rank p approximation matrix (7.12) contains within its column

structure the characteristics required to estimate autoregressive parameters

of a lower order ARMA(p,q) model. In particular, the submatrices of Re(P)

composed of its columns k through p+k inclusively yield rank p approximations

of the tx(p+l) autocorrelation matrices Rk for 1 < k <

Pe - p+l as specified by expression (7.3). We shall denote these rank p

approximations by Rk Due to the SVD operation and errors inherent in

generating Re, there will generally not exist a unique autoregressive

parameter vector with first component equal to one which will satisfy all of

the pe-p+1 estimates of relationships (7.4). Nonetheless, it is still
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desirable to find an autoregressive parameter vector for which each of these

relationships are almost satisfied. A functional that measures the degree to

which this is accomplished is given by

f(a) = A* S(P)a (7.16a)

where

Pe-P+l
S(P) = Rk(P* Rk (P) (7.16b)

k=l

The (p+l)x(p+l) matrix S(P) is nonnegative Hermitian and may be conveniently

computed using the relationship

p pe-p+l

S(P)= v k Yn k*(7.17)

n=l k=l

in which v k denotes the (p+l)xl vector as specified by-n1

ynk = [vn(k),vn(k+l), ... , vn(k+p)]' (7.18)

1 < k . Pe-P I

1 <n p

This vector is seen to be a windowed segment of the nth column vector (i.e.,

in) of the unitary matrix V that in part identifies the SVD representation

(7.11). Moreover, due to the simple shift relationship between the vectors

k ke

(p+l)x(p+l) matrices k v* as k evolves. This will entail (p+l) computations

for each value of k.

Upon generating the (p+l)x(p+l) matrix S(P), we next wish to select that

autoregressive parameter vector a with first component of one so as to

minimize quadratic functional (7.16). This constrained minimization will

result in the best least square approximation of the theorttical

relationships (7.4). Using standard procedures, the required optimum
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autoregressive parameter vector is found by solving the following linear

system of equationsl

s(P)a = a tI  (7.19)

in which the normalizing constant a is selected so that the first component of

a is one. It will be shown in the next section that this SVD version of the

ARMA modeling procedure can lead to a significant improvement in modeling

performance.

The concept of a SVD representation has been previously incorporated

with success in effecting AR models [42] and [61]. Incorporation of an SVD

AR model was there shown to produce an increase in spectral resolution

capabilities. More recently, the SVD representation was used in ARMA

modeling where impressive results were reported [22]. Undoubtedly, the impact

which SVD will ultimately have on spectral estimation (and in other

applications) is only beginning to be appreciated.

If

lln those rare cases where S ( p ) is singular, the required autoregressive
parameter vector is set equal to an(ppropriately normalized eigenvector
associated with a zero eigenvalue of S
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VIII. Numerical Examples

In this section, we shall investigate the comparative spectral

estimation performance of the rational modeling procedures as developed in

Sections VI and VII with those of popularly used alternatives. The first

example will treat the problem of effecting a rational spectral estimate from

a set of observations of an ARMA(4,4) process. In the second example, we

shall examine the modeling performance for the special case of sinusoids in

white noise.

Example 1: In this example, we shall examine the time series as

characterized by (see ref. [11])

x(n) = xl(n) + 12(n) + 0.5 e(n) (8.1a)

which is composed of the two AR(2) time series generated according to

xl(n) = 0.4 xl(n--l) - 0.93 xl(n-2) + 8l(n) (8.1b)

12(n) = -0.5 x2(n-1) - 0.93 x2(n-2) + 82(n) (8.1c)

where e(n), 81(n) and 82(n) are mutually uncorrelated Gaussian zero mean

white noise processes with variance one. A simple analysis iudicates that

the power spectral density function associated with time series (8.1) is

given by

Sx() = 1 - 0.4e-JW + 0.93e-j2w 2 +

I1 + 0.5e-jW + 0.93e-J20 1-2 + 0.25 (8.2)

and is plotted in Figure 7.1a.

Using the time serizs description (8.1), twenty statistically

independent realizations each of length 125 were next generated. These 20

realizations were then used to compare the modeling effectiveness of this

paper's method with the Box-Jenkin's maximum-likelihood method. The twenty

(one for each realization) superimposed ARMA (4,4) spectral estimates

obtained using the Box-Jenkins iterative method are shown in Figure 8.1b.

The number of iterations required to achieve these estimates ranged from 10

to 700 with 50 being a typical requirement. Next, this paper's method as

represented by expression (6.6) with unbi-,:ed autocorrelation lag estimates

and W = I was used to obtain the ARMA (4,4) model's autoregressive

coefficients. Relationship (6.15) with the window selection (6.17) was used

in forming the MA component of the spectral estimates. The twenty

superimposed ARMA (4.4) spectral estimates thereby obtained are shown in

Figures 8.1c, 8.1d, and 8.le for various choices of t. From these plots, it
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is apparent that progressively improved estimates are achieved upon

increasing t from its minimal value of 4, to 8, and then to 20. Moreover,

these spectral estimates were of higher quality than those obtained with the

maximum-likelihood method which exhibited a larger variance in estimate.

Example 2: In this example, we shall investigate the comparative

spectral estimation performances of various widely used methods on the

classical sinusoids in additive white noise problem. The particular time

series to be considered is given by

x(n) = sin(2nfln) + sin(2nf2n) + w(n), 1 < n < N (8.3)

fl = 0.2, f2 = 0.215, 4j = 0.5

This time series was previously examined in Section III where different

rational models were generated from the 'exact' autocorrelation lags

associated with it. This is a particularly appropriate time series for

testing the resolution capabilities of spectral estimators because of the

closeness of the sinusoidal frequencies (i.e., f2 -f1 = 0.015) and the

prevailing low signal-to-noise ratio of zero dB (individual sinusoid power to

total noise power).

In order to gain a reasonable good statistical basis for comparison, ten

statistically independent realizations of the time series (8.3) were

generated with each realization being of lea4th 128 (i.e., N = 128). Using

these ten different sets of time series observations, ten spectral estimates

were made for various widely used rational spectral estimators. The

resultant ten spectral estimates for each estimator were then plotted in

Figures 8.2 to 8.7 in a superimposed fashion (except for the periodogram) so

as to depict consistency of estimate. The ideal estimate would of course be f
two sharply defined peaks at frequencies 0.2 and 0.215. A brief description

of the different estimators and their performance on these test samples is

now given.

MA Estimates: The periodogram as implemented by the fast Fourier

transform was first used in generating spectral estimates for each of the ten

different 128 data length realizations. Specifically, expression (4.7) with

N = 128 was incorporated into the MA spectral estimator (4.5) to generate the

sampled periodogram estimate
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jN1 12

e (2nk) 1 n0 x(n+l) e-J--- 0 j k N-1 (8.4)

It was found that each of the ten periodograms produced remarkably similar

results. A typical 128 point FFT periodogram for one of these trials is

shown in Figure 8.2a. From this plot (and the nine others not shown), it was

not possible to unambiguously detect the presence of two spectral peaks at

frequencies 0.2 and 0.215.

In order to ease the potential ambiguity created by the finite frequency

sampling of the periodogram (i.e., Aw = 2n/N), the concept of Padding as

described in Section IV was next incorporated. Using this approach, the

original time series observation of length 128 was next appended with 128

zeroes. The resultant 256 point padded FFT periodogram is shown in Figure

8.2b. In this padded case, we are able to unambiguously detect the presence

of the two spectral peaks at 0.2 and 0.215. A further padding of 256 zeroes

is found to result in the 512 point padded FFT periodogram shown in Figure

8.2c. The prerequisite spectral resolution is again achieved.

AR Estimates: In AR modeling, the most widely used procedure is the

Burg algorithm. With this in mind, the Burg algorithm was next used to

generate spectral estimates for each of the aforementioned ten observation

sets of length 128. The ten superimposed Burg AR(20) estimates which

resulted are depicted in Figure 8.3a. Although a detection of spectral

energy in the region about f = 0.2 is evident, the appearance of two spectral

peaks is not. The ordering selection p=20 was evidently not sufficient for

the required resolution. Upon increasing the AR order to p = 24, however,

the Burg AR(24) estimates produced two reasonably well defined peaks about f

- 0.2 and f = 0.215 in nine out of the ten estimates. These estimates are

plotted in superimposed fashion in Figure 8.3b. It was further determined

that more sharply defined peaks are achieved in all ten estimates when the

order was increased to forty. The Burg algorithm is then seen to provide a

satisfactory resolution performance for the time series under study provided

that the AR order is selected to be on the order of 24 or more.

In order to demonstrate the effect of using more than the minimal number

of extended Yule-Walker equations in arriving at an AR model (the Burg

algorithm uses the minimal number), the ARMA modeling technique as embodied
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in expression (6.6) with W = I and unbiased autocorrelation lag estimates was

next used with p = 20, q = 0, and, t = 50. The resultant ten AI(20) spectral

estimates which arose when using this approach are shown in Figure 8.3c. A

resolution of the two sinusoids was achieved in all ten estimates. It is

significant that the lower order AR(20) spectral estimates as generated using

this paper's method provided more sharply defined peaks than the higher order

Burg AR(24) spectral estimates. This is primarily due to the fact that fifty

extended Yule-Walker equations were used in specifying the 20 autoregressive

parameters. Tho degree of smoothing achieved in applying this approach is

evident from this numerical example.

ARMA Estimates: The ARMA modeling procedure as represented by

expression (6.6) with W = I and unbiased autocorrelation lag estimate entries

was next used to generate estimates of the autoregressive coefficients of an

ARMA(p,p) model for p = 8 and 12. In accordance with the results of Section

III, plots of IAp(eJW))-2 were then made so as to reveal the required

spectral information for the sinusoids in white noise case (i.e., the zeroes

are not used). In Figure 8.4a, the ten AR(8,8) spectral estimates which

arose for a choice of t = 70 are shown superimposed. Although spectral

energy in the neighborhood of f = 0.2 is detected, the presence of the

required two spectral peaks is not. Clearly, the order selection p=8 was not

sufficient to achieve the desired resolution. Upon increasing the order to

ARMA (12,12) and retaining t = 70. however, the resultant ten spectral

estimates shown in Figure 8.4b each achieved the desired spectral resolution

with two sharply defined peaks about f = 0.2 and f = 0.215. These spectral

estimates have been obtained with but twelve autoregressive parameters, and,

are seen to be significantly superior to the Burg AR(24) estimates which

required twenty-four autoregressive parameters. In terms of spectral

estimation fidelity and parameter parsimony (i.e., effective use of

parameters), it is clear that the ARMA modeling method herein developed has

provided a superior performance for the problem at hand.

A truly significant increase in spectral estimation performance is

achieved upon adopting the SVD approaches to ARMA modeling as outlined in

Section VII. Namely, after setting Pe = qe = 14 and t = 50, it was found

that the effective rank of the extended order autocorrelation matrix estimate

e was four. Setting p-4 and using relationship (7.15), the ten ARMA(14,14)

spectral estimates which arose are shown in Figure 8.4c. Next, letting p4
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in expression (7.17), the ten SVD derived ARMA(4,4) spectral estimates which

arose are shown superimposed in Figure 8.4c. These spectral estimates are

not only of uniformly high quality, but, they represent the lowest order

rational model which is compatible with the two sinusoids in white noise

case. Moreover, the quality of the peak frequency estimates and associated

pole magnitude (theoretically equal to one) estimates is exceptional as shown

in Table 8.1. The quantities fk(Pk) and o0k 2 (opk2) for k = 1.2 represent

the sampled means and variances, respectively, of the peak frequencies (pole

magnitudes) as determined from the ten spectral estimates.

k fk Tk afk [Pk[ O[PkI

1 0.20 0.1998 0.0012 0.9944 0.0062

2 0.215 0.2159 0.0011 0.9974 0.0080

Table 8.1: Statistics of SVD AREA (4,4) estimates.

To demonstrate the worth of singular values in model order determination

when using the SVD approach, the fifteen singular values which characterized

the extended order autocorrelation matrix estimate Re for one of the ten

observation sets are now given

a 11 m 18.3 , 022 = 18.2 ,033: 5.30 044 = 4.69

a55 = 0.85 , a = 0.78 ... 15,15 = 0.21

It is apparent that the first four singular values are dominant (i.e., (4) -

0.995) thereby indicating that the effective rank of Re is four. Thus, the

correct selection of ARNA order p = q = 4 is made upon examination of the

singular values behavior.

Alternative Method: In Section III, an alternate method for detecting and

estimating the frequencies of sinusoids in white noise was proposed. This
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method is represented by the least squares solution (3.9) to an overdetermined

system of linear equations. Using this expression with a selection of p - 14,

t - 50, V = I, and, unbiased autocorrelation lag estimate entries for R.,

spectral estimates for each of the ten time series of length 128 were

generated. The results of these estimates are depicted in superimposed style

in Figure 8.5 in plots of I/1A14 (eJW)1
2 . Two sharply resolved peaks are

achieved in each of the ten estimates. It is noteworthy that this procedure

provided good estimates for a low order choice. A papeT now in preparation

will demonstrate the exceptional performance of this new procedure for a more

general class of deterministic signals in white noise. Improvement is thereby

achieved by making an estimate of the white noise variance V2 using expression

(3.2) at n=0, then subtracting this estimate from the rx(0) term and then using

an SVD. Initial empirical evidence suggests that this new approach provides

significantly better performance than the Pisarenko method [55] and its

varients, and, the Kumaresan-Tufts approach [42],[61].

Comparison with the Kumaresan-Tufts Method

We shall now consider a time series of form (8.3) in which the relevant

parameters are given by

fl = 0.2, f2 = 0.21, aw2 = 1.778

This particular parameter choice provides a more challenging test of resolution

capability in that the frequency spacing f2-f 1 = 0.01 is smaller and the SNR of

-dB is lower than that of time series (8.3). Again ten statistically sample

runs each of length 128 were used for testing four AR type models. In the

first AR model, expression (7.2) with choices of qe = -1, pe = 35, t - 90

(giving 90 YW eqnation approximations) were made. Unbiased autocorrelation I
estimates were then used to form the 90 x 36 matrix estimate Re. Finally, the

optimum autoregressive parameter estimates were generated upon using expression

(7.15). The resultant ten AR(35) spectral estimates are shown in superimposed

plots in Fig. 8.6a where resolution was achieved in each of the ton runs.

Next, the extended autocorrelation matrix model (7.2) with qe = -1, Pe = 96, t

= 96, and unbiased autocorrelation lags was tested. Expression (7.15) with p -

4 was then used to generate the ak estimates of the AR(%6) model. A plot of

the resultant spectra is shown in Fig. 8.6b where resolution was achieved for

each of the ten runs.
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The Kumaresan-Tufts method, which provides a near maximum-likelihood

performance, was next tested on these same ten sample runs [61]. The resultant

AR type 3 5 th and 9 6 th (the optimum KT order choice, order spectra are shown

plotted in Figs. 8.6c and 8.6d, respectively. The 35th order model was unable

to resolve the sinusoids in any of the ten runs while the 96th order model

achieved a resolution in each case. For this example, it is apparent that the

overextended modeling approach advocated in this paper has outperformed the

pseudo maximum-likelihood Kumaresan-Tufts method. Moreover, the computational

efficiency of this paper's overextended modeling method (7.15) is far superior

as will be documented in a forthcoming paper.

Adaptive ARKA Modelina

As a final example, the adaptive ARMA modeling procedure to be developed

in Section X was applied to the time series (8.3) in which the covariance mode

(kI = 40, k2 = 1) was selected with ARMA order p=12. The spectral estimates of

five independent runs at data lengths N = 128, N = 256 and N = 1024 are shown

superimposed in Figure 8.7. From these plots, it is apparent that the twelfth

order ARMA model detects the presence of spectral energy in the neighborhood of

f = 0.2 at data length N = 128, but, the resolution of two spectral peaks is

somewhat unsatisfactory. As the ARMA model adapts to the data, however, two

well defined spectral peaks appear at N = 256. The model has therefore adapted

to the signal using less than 256 time series observations.

To illustrate the performance of this adaptive ARMA approach relative to

popularly used methods, the classical adaptive AR covariance method to be

developed in section IX was next used on the same set of time series

observations. The five spectral plots which arose for an AR(22) model are f
shown superimposed in Figure 8.8 at N = 128, N = 256, and, N = 1024. Clearly,

the higher order covariance AR model was unable to satisfactorily resolve the

two sinusoids even at data length N=1024. Thus, the lower order ARMA (12,12)

covariance adaptive model significantly outperformed the higher order AR(22)

covariance adaptive model. This is indeed noteworthy when it is realized that

some of the more widely used adaptive filters utilize the AR covariance model.

This includes the fast LIS algorithm of Morf [25],[46],[47] and the

approximating gradient approach of Widrow [65].
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Fig. 8. 1 ARMA spectral estimates of order (4,4). (a)Exact. (b) Box-
Jenkins maximum-likelihood method. (c) Paper's method for t=4.
(d) Paper's method for t=8. (e) Paper's riethod for t=20.
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Fig. 8.2 Moving average (MA) spectral
estimates using the FFT
implementation of the periodogram
with 128 time series observations(a) no zero padding, (b) 128 zero
padding, (c) 384 zero padding.
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Fig. 8.3 Autoregressive (AR) spectral estimates
from 128 time series observations
(a) p = 20 Burg estimate, (b) p = 24
Burg estimate (c) This paper's method
(6.6) with q = 0, p = 20, t = 56
estimate using expression (6.6).
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Fig. 8.5 Spectral estimates using
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(a) Paper's Method (c) KT Method
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Fig. 8.6 AR Type Models
(a) Paper's method (7.15) of order 35,

(b) Paper's method (7.15) of order 96,

(c) Kumaresan-Tufts model of order 35,

(d) Kumaresan-Tufts model of optimum order 96.
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IX. AR Modeling: Adaptive Implementation

In section V, a general procedure for effecting an AR model which

represents a set of given time series observations

x(l). x(2), . . . , x(N) (9.1)

was presented. It was there shown that the required modeling entailed using

these time series observations to generate estimates for the entries of the

(p+l)x(p+l) AR autocorrelation matrix as specified by

R(i,j) = rx(i-j) 1 i j i p+1 (9.2)

From a performance viewpoint, the unbiased autocorrelation estimate (5.4) was

suggested as a logical choice for estimating these entries. In any case,

once estimates for the R(i,j) elements have been made, the required AR(p)

model parameters are obtained by solving the linear system of equations
AR a - 1boJ 2  el (9.3)

where it will be recalled that the parametbr bo is chosen so that the first

component of a is one.

In applirations requiring a continuous updating of the AR model

parameters as new time series observations become available (i.e., x(N+l),

x(N+2). ... ), however, the standard unbiased estimator approach poses a

serious computational burden. To overcome this difficulty, it behooves us to

seek alternate autocorrelation estimators which are more amenably to an

adaptive solution. With this objective in mind, we shall now consider the

adaptive class of autocorrelation estimators as defined by

N+k2-1
A
R(i.j) = 1 1i(k+l-i)x(k+l-j) li.p+l (9.4)

N+k2-kl k=kl l.jjp+l

in which the convention of setting to zero any summand terms x(n) whose

argument lies outside the observation set l<nN has again been adopted.

Although this expression might initially appear to be unduly contrived, it

does provide us with an autocorrelation estimate of rx(i-j) as called out for

in expression (9.2). More importantly, however, this estimator will be

shortly shown to have a most convenient matrix product representation.

The integer constants k, and k2 which characterize the autocorrelation

lag estimator rule (9.4) are to be selected so that the number of lag

products there used (i.e., N+k2-kl) at least equals p+l. This requirement
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will generally ensure the invertibility of the autocorrelation matrix
A

estimate R associated with the estimates (9.4). In most cases of interest,

these constants are further confined to the range liklk2p+1 although other

choices are permissable. It then follows that each member of the adaptive

autocorrelation estimator class will be identified by a specific two-tuple

(kl,k2)1. Moreover, each such estimator will provide a generally different

set of autocorrelation estimates from the given set of time series

observations (9.1).

Members of the adaptive class of autocorrelation estimators have a

particularly convenient algebraic representation which we shall employ when

effecting the promised adaptive implementation. Specifically, the

(p+l)x(p+l) autocorrelation matrix estimate that arises upon using the

estimates (9.4) as entries can be always expressed in the following data

matrix product format

A 1 0
R - XN XN (9.5)

N+k2-k1

in which XN is the (N+k2-kl)x(p+l) data matrix whose individual elements are

specified by

XN(i,j) = x(kl+i-j) li.+k2-kl (9.6)

1jp+l

We have here appended the subscript N to the data matrix so as to explicitly

recognize its dependency on the data length. The incorporation of this

subscript will be also useful when obtaining the promised adaptive

implementation. A straightforward analysis will demonstrate the equivalency

of expressions (9.4) and (9.5). The data matrix is seen to have elements

whose entries are the given time series observations (9.1) as well as zeroes

which appear whenever the time index argument (kl+i-j) falls outside the

observation set ljnN.

It is possible to provide a revealing visual interpretation to the

concept of data windowing for this class of estimators. In particular, let

us consider the following (N+p)x(p+l) kernel Toeplitz type matrix which

lAs we will shortly see, the four most widely used members of this class are
the covariance method (kl=p+l, k2=l) , the autocorrelation method (kl=l,
k2=P+l), the prewindow method (kl=l, k2=l), and, the postwindow method
(kl=p+l,k2-P+l).
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contains, as submatrices, all of the data matrices associated with the

adaptive class of autocorrelation estimators.

x(1) ] k, =1

* . Prewindowing

r(p+l) ....... x(1) kI = p+l

N = (9.7)

x (N) ...... .x (N-p) k2 = 1

. Postwindowing

Sx (N) k2 = p+l

Upon examination of the data matrix definition (9.6), it is apparent that XN

may be identified with that submatrix of N composed of its k 1 st through
St

(N+k2-1)
s  rows, inclusively. Thus, corresponding to each adaptive

autocorrelation estimator (i.e., pair (k1 ,k2 )), we may obtain the associated

data matrix using this row identification scheme.

The zeroes which appear in the upper right corner of the kernel matrix

IN are there due to the implicit assumption that x(n) = 0 for -p+1 nK0. This

rather unrealistic assumption concerning an unobserved segment of the time

series is commonly referred to as a prewindowing of the data. It is seen

that a degree of prewindowing is incorporated whenever the constant kj is

selected such that l(_kl(p. Normally, such choices are to be avoided since

they will generally lead to relatively poor AR modeling due to the

unrealistic prewindow assumption thereby being made on the time series. As

k1 ranges over the integers 1 to p+l, the degree of prewindowing incorporated

varies from full at kl=1 to none at kl=p+l. This prewindowing behavior is

conveniently depicted in expression (9.7).

In a similar fashion, the zeroes which appear in the lower left corner

of matriximare there due to the implicit nostwindow assumption that x(n) - 0

for N+lnjN+p. This equally unrealistic assumption concerning an unobserved

segment of the time series is to be generally avoided. A degree of

postwindowing is incorporated whenever the index k 2 is chosen to lie in the

range 2jk2_ p+l. The smallest value of k2 for which the postwindow assumption
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is avoided is seen to be k 2 =1. Thus, as the index k 2 ranges from I to p+l,

the degree of postwindowing incorporated varies from none at k2 =1 to full at

k2=P+1.

The four most widely used of the adaptive autocorrelation estimator

methods are listed in Table 9.1 (e.g.. see refs. [25],[46],[471). Each of

the methods there shown are seen to entail combinations of maximum windowing

and no windowing. In the covariance method, the characteristic constants are

chosen to be k, = p+l and k 2 =l. This particular choice is seen to provide

the lariest number of lag products in the autocorrelation estimates (9.4)

over which no data windowing is involved. As might be expected, the

covariance method generally provides the best AR modeling and spectral

resolution performance when compared with the remaining members of the

adaptive autocorrelation estimator class. With this in mind, unless special

considerations dictate otherwise, the covariance method is the most

preferable choice for an adaptive implementation.

In the three remaining methods listed in Table 9.1, it is seen that a

maximum amount of prewindowing, postwindowin, or, both are being employed.

It is then not surprising that each of these methods will generally provide

relatively poor modeling performance. This will be particularly true for

data lengths N which are not significantly larger than the AR order parameter

p. As the data length N increases so that N)>p, however, each of the four

methods will provide comparable modeling performance. This is due to the

fact that the windowed portions of the data matrix will play a
A

proportionately smaller role in the estimate R as N increases. An

appreciation for this behavior is readily obtained upon examination of the

kernel matrix (9.7).

As suggested earlier, the primary reason for preferring the adaptive

autocorrelation estimator (9.4) over the standard unbiased estimator (5.4) is

that the former may be used to effect a computationally efficient adaptive AR

modeling method. To gain an insight as to why this is so, let us first

substitute the autocorrelation matrix estimate (9.5) into the fundamental AR

modeling expression (9.3). The required parameters of the AR(p) model are

then found by solving the resultant system of normal equations

XN'N.I = (N+k2 -kl ) bo 12 .e (9.8)

in which the normalizing parameter bo is to be selected so that the first

component of A is one. The data matrix product 1N XN in this expression is
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METHOD CONSTANT CONSTANT STATISTICAL
kl k 2  PROPERTIES

OF R

1. Covariance p+l (i) unbiased
(No windowing) (ii) consistent

2. Full Prewindowing 1 1 (i) biased
No Postwindowing (ii) consistent

3. Full Postwindowing p+l p+1 (i) biased
No Prewindowing (ii) consistent

4. Autocorrelation 1 p+l (i) biased
(Full pre and (ii) consistent
postwindowing) (iii) Toeplitz

Table 9.1 Adaptive AR Autocorrelation Estimation Methods

seen to completely characterize the desired autoregressive parameter vector

aN associated with the N time series observations (9.1).

As the time index N is incremented by one (i.e., the (N+l)st time series

observation x(N+1) becomes available), it is seen that a new system of normal

equations of form (9.8) will arise in which the index N is replaced by N+l.

The resultant data matrix product XN+leXN+1 which characterizes this new

system of equations will in turn give rise to the updated autoregressive

parameter vector AN+l . We can continue this systematic procedure to generate

the updated autoregressive parameter vectors aN+2, AN+3- etc. as the new time f
series observations x(N+2), x(N+3), etc. become available. The ability to

evolve an adaptive solution procedure when using this approach will be then

dependent on our obtaining an effective method for updating the data matrix

products XN XN as N evolves.

Adaptive Alorithm: k2 =I

The adaptive expression relating the successive data matrix products

will be considerably eased if the constant k 2 is selected so as to provide

either no or full postwindowing. To illustrate this point let us first
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examine the case of nonpostwindowina for which k 2=1 while allowing kl to take

on any value in [1op+1J. From examination of the defining expression (9.6),

it is seen that the data matrix XN+i may be obtained by appending a row

vector to the bottom of data matrix XN. This results in the following

recursion on the data matrix products

XN+*XN+i = XI XN + j;+I-N+l N 2 p4 l (9.9)

in which XN+i is the above mentioned appended Ix(p+1) row vector

"N+1 = (x(N+1), x(N), ..., x(N+l-p)] (9.10)

It is important to note that this data matrix product recursive expression

commences at N=p+l which corresponds to the first time index at which XN

has its full form. Thus, the matrix X+lXp+l serves the role of initializing

the above recursive relationship. The elements of this initializing matrix

are obtained from expression (9.4) upon setting k2=1 and N=p+1, that is

p+l

1+I Xp+l(ij) = x(k+l-i) x(k+l-j) 1 j i j p+l (9.11)

k=k 1  1 1 j i p+l

It is interesting to note that although each member of the nonpostwindow

class (as identified by k 2 =1 and kls[l,p+l]) will be governed by the same

recursion (9.9). they will each give rise to a generally different set of

autocorrelation estimates. This is due to the fact that the initializing

matrix (9.11) will be generally different for various choices of kl.

From recursive expression (9.9), it is seen that successive data matrix

products differ by the rank one matrix x + This simple

interrelationship will in turn enable us to obtain a recursive expression for

the data matrix product inverses [XA XN]-I. We are interested in these

inverses since they will be ultimately used when solving expression (9.8) for

the AR model parameters. This required matrix inverse recursion will make

use of expression (9.9) and the following well known lemma

Lemma 9.1: Let A and A+ u* y each be nonsingular sis matrices where u

and y are lxs vectors, then

[A + S y)-1 -A [ -ue](vA-1] (9.1)
(1 + y A71 u*)
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Upon setting A = X XN and A = y - xN+1 in this lemma, the required reoursive

matrix inverse expression is found to be
0

i+i X+1 -  * X- 1 - - - for N I p+kl
1 + Y N+I .+1

where (9.13)

YN+1 = [XN3-1

In using this matrix inverse recursion, it is important to note that it is

only applicable for time indices N 2 p+k1 . This is a direct consequence of

the fact that the data matrix products xT XN are singular for all time

indices N ( p+kl in the nonpostwindowing case k 2 =l. To use this recursive

approach, it is therefore necessary to first compute the initializing matrix

inverse [X* XN]-I for N = p+kl using a standard matrix inversion routine such

as Gaussian elimination. Subsequent matrix inverses for N > p+kl may be then

efficiently obtained upon using recursion formula (9.13).

To complete the adaptive AR modeling procedure, we next incorporate the

data matrix product inverse routine (9.13) into the AR modeling equations

(9.8). A little thought will convince oneself that the simple three step

procedure outlined in Table 9.2 will provide the required adaptive

autoregressive parameter vector procedure. The second step is seen to yield

the unnormalized solution to expression (9.8) with N replaced by N+1 while

the third step ensures that the first component of AN is one. In terms of

computational complexity, an examination of equation (9.13) indicates that

2(p+l) 2 operations will be required for updating [XXN]-l.J The resultant

autoregressive parameter vector solution as represented by steps 2 and 3 of

Table 9.2 will require an additional (p+l) operationo. Thus, the

computational complexity of the nonpostwindowing adaptive algorithm (i.e.,

k 2 -1) is then o(p 2 ). This algorithmic approach is applicable for any

selection of the constant k, with the most likely choices being from the

range [1,p+l]. The most useful implementation of this adaptive algorithm

corresponds to the selection k1=p+l. In this case, the covariance method as

specified by kl=p+1, k2=1 is obtained. As pointed out previously, this

choice normally provides the best adaptive AR modeling performance behavior.
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Step 0: Input Data: x(N+l), [XfX] 
-1

Step 1: Compute *I+ XN+]-l using recursion (5.14)

Step 2: Let c-- [X+lXN+]I St

Step 3: N+, = c()-1 c where c(1) is the first component of A.

Table 9.2: Adaptive AR Modeling Algoritha-Covariance Methods

(No=2p+l) and Prewindow (No=p+l) methods.

Adaptive Algorithm k2 = p+l

Using similar reasoning, it is also possible to evolve an efficient

adaptive algorithm for the full prewindowing case k2 = p+l-. In this

situation, it is readily found that the data matrix products are recursively

related according to

XA+lXN+l = XVXN + DN+l N~p+l (9.14)

in which D is a (p+l)x(p+l) Toeplitz conjugate symmetric matrix with f
elements { I(N+1) x(N+l+i-J) i .. j

DN(i,j) = (9.15)

x(N+l) i(N+l+i-j) i . i

Due to the Toeplitz conjugate symmetric property of the perturbation matrix

N, it will be possible to evolve an efficient adaptive method for inverting

the data matrix products [XRXN]. The computational complexity of this matrix
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inversion routine will be also o(p2 ). The details of this routine are rather

involved and will be therefore not given here due to space limitations.

Since the covariance method is the most preferable choice for the adaptive

class of autocorrelation estimators, however, this omission is not serious in

any case. It is to be noted that efficient adaptive lattice structured

algorithms may also be employed for updating the AR parameters [46],[47].

Forward-Backward Approach

In some applications, it is possible to achieve a degree of improvement

in the AR spectral models by using the concept of data time reversal.

Namely, it makes use of the observation that if (x(n)) represents a

wide-sense stationary process, then its time transposed conjugated image as

specified by

y(n) = i(s-n) (9.16)

will also be wide-sense stationary for any choice of the shift variable a.

Moreover, the autocorrelation sequence of this time transposed conjugated

image is readily found to be identical to that of the original time series,

that is

ry(n) = rx(n) (9.17)

It is now possible to use this time transpose property to effect a new

autocorrelation estimation scheme. In particular, upon selecting s-N-l, the

original observation set (9.1) is seen to give rise to the following set of

time transposed conjugated elements

y(n) = X(N+1-n) 1 . n J N (9.18)

If these time reversed observations are incorporated into expression (9.4),

it will be generally found that a new set of autocorrelation estimates will

result. In particular, the overall backward autocorrelation matrix estimate

will take the form.

R = Y (9.19)
N+k2-kl

in which the elements of the (N+k2-kl)x(p+l) matrix YN are given by

YN(i,j) = Z(N+1-kl-i+j) 1 J i J N+k2-kl (9.20)

1 j j p+1
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Although the forward and backward autocorrelation matrix estimates (9.5)

and (9.19) will be generally different (except for the autocorrelation choice

kl - 1, k 2 - p+l), they are each seeking to estimate the same underlying

autocorrelation matrix R. It then follows the so-called forward-backward

estimate as specified by

R = [X4XN+YAYN] (9.21)

2(N+k 2 -k 1 )

will provide an additional improvement in autocorrelation estimation

fidelity. This is due to the fact that each of the entities X4XN and Y!SYN

will contain lag products not found in the other.

The additional autocorrelation estimation fidelity achieved in using

this time transposition approach typically results in a marginal improvement

in spectral estimation performance. Fortunately, this improvement is not

accrued at the cost of an excessive increase in computational complexity.

This is due to the fact that the matrices Xk and Yk which form R are Toeplitz

type. It is therefore possible to devise efficient algorithms that will

solve the system of equations

[XAXN + yyNIaN = a el (9.22)

in which the computational complexity is o(p2 ).

AR Model Order Determination

One of the principal considerations in obtaining AR models from raw time

series observations is that of model order selection. It has been observed

that when p is selected too low, there will be generally too few model poles

to adequately represent the underlying spectrum. On the other hand, too high

of a choice for p will typically result in spurious effects (e.g., false

peaks) in the spectral estimate. With these thoughts in mind, investigators

have proposed various order selection procedures. Three of the more widely

used techniques are Akiake's final prediction error method as well as his

information criterion [1],[2],[4], and, Parzen's 'criterion autoregressive

transfer' function [54]. Although these procedures typically work well, they

can yield unsatisfactory performance in some cases (e.g., see ref. [34] and

[62]). The user is therefore cautioned to use discretion in applying the

above and other model order determination procedures. The method to be
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ultimately used should be determined through empirical experimentation based

on time series related to the specific application under consideration.

It is possible to apply a conceptionally straightforward procedure for

model order selection which does not possess many of the drawbacks alluded to

above. It is based on the observation that in the case where perfect AR

autocorrelation lag values are given, the (p+l)x(p+l) autocorrelation matrix

R with elements

R(i,j) = rx(i-j) 1 < i,j j p+1 (9.23)

will have rank p+l so long as p is less than or equal to the order of the

underlying AR process (hereafter taken to be Pl). For all values of p

greater than Pl, however, the rank of the (p+l)x(p+1) autocorrelation matrix

will be pl. Thus, to determine the proper rank selection in the idealistic

case of perfect autocorrelation lag information, we simply increase the

parameter p until the rank of R is less than full (i.e., less than p+1).

This will occur at p = pl+l, thereby giving us the appropriate order

selection. It should be noted that when the autocorrelation lags being used

don't correspond to an AR process, then the matrix R will be generally of

full rank for all p > 1.

In the more realistic case in which raw time series are used to form the
A

autocorrelation matrix estimate R, the rank of this matrix will be typically

full for all values of p. This will be true even when the time series is an

AR process. This seeming contradiction arises due to statistical errors

inhe-ent in any autocorrelation lag estimation procedure that might be used

in forming R. Nonetheless, even though R will have full rank, it will be

generally found that when p ) Pl, this matrix will have (p-pl) of its

eigenvalues 'close' to zero. Thus, an order selection procedure which has

provided satisfactory performance is one entailing examination of the
A I

eigenvalue behaviour of the autocorrelation matrix estimate R as a function

of p. The appropriate order choice will be that value of p, denoted by Pl,
A

for which R has (P-Pl) of its eigenvalues sufficiently close to zero for all

P > P1. A particularly attractive method (i.e., the SVD method) for

implementing this procedure was given in Section X.
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I. ARMA Modeling: Adaptive Implementation

When an adaptive implementation of the ARMA modeling methods as

described in Sections VI and VII is desired, it will be necessary to

incorporate autocorrelation lag estimate procedures which are compatible with

an adaptive implementation (the unbiased estimator is not compatible). In

particular, we shall now examine a class of estimators which provides an

adaptive mechanism for estimating the elements of the autocorrelation matrix

Rl as required in expression (6.6). This class of adaptive estimators will

be governed by the relationship

N-q-2+k 2

Rl(i,j) = l(k+l-i)x(k+q+2-j) l iS t (10.1)
N+k 2 -kl-q-1 k=kI  ljfp+l

It is apparent that this expression provides an estimate for the lag element

rx(q+l+i-J) which is the (i,j)th element of the autocorrelation matrix RI as

defined in equation (6.2). The fixed constants kI and k2 which characterize

this estimator are normally selected so that the number of lag products there

used (i.e., N+k 2 -kl-q--) equals or exceeds p+l. This choice will generally
A A

ensure the ir'r tibility of matrix R WRI and thereby a unique solution for

the autoregresaive parameter when using expression (6.6). For reasons which

will be shortly made apparent, these constants are usually further

constrained to satisfy 1 j k1 < t and 1 < k2 i p+l although other choices are

'possible.

Each autocorrelation estimator in the adaptive class (10.1) will be

identified by a particular choice of the two-tuple (kl,k2). Moreover, each

estimator in this class will provide a generally different set of (
autocorrelation lag estimates from the set of time series observations x(n)

for 1 j n j N. Clearly, our ultimate desire is to select that estimator

which generally provides the best ARMA modeling. The covariance estimator as

identified by kl=t and k2=1 furnishes an obvious choice. Before treating

specific estimators, however, let us first examine the general adaptive

estimator (10.1).

The primary reason as to why the adaptive estimator (10.1) lends itself

to an adaptive implementation is due to the algebraic structure implicitly

contained within its definition. Namely, the autocorrelation matrix estimate
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as formed from the entries (10.1) may be always representable in the

convenient matrix product format

R1= ( XN (10.2)N+k2-kl-q-1

in which the (N+k2-kl-q-1)x(p+l) data matrix XN h&s its elements specified by
XN(i,j) = x(kl+q+l+i-j) 1 <_ i N+k2-kl-q-1 (10.3)

1 1 i £ P+1
while the (N+k2-kl-q-l)xt data matrix YN has elements

YN(i,j) = x(kI + i-j) 1 j i . N+k2-kl-q-i (10.4)

1 1 . t
A simple matrix manipulation will prove the equivalencies of expressions

(10.1) and (10.2). We again adopt the convention of setting to zero any
element entries of XN or YN for which x(n) lies outside the observation

interval 1 < n j N, and, we also attach the subscript N to these data
matrices so as to explicitly recognize there dependency on data length.

As in the AR modeling case, the parameters k1 and k2 that identify the
autocorrelation estimator (10.1) can give rise to data windowing. To see why

this is so, let us consider two kernel Toeplitz type matrices which contain,

as submatrices, all of the data matrices associated with the adaptive class

of ARMA autocorrelation estimators. These kernel matrices are specified by

x(q+) ••.x(c-p+2) x(1) klil

prewindowing

x(t+q+l) . . . x(t+q--p+l x(t) . . . x(1) kl=t

J N = . (10.5)

k2=1 x(N) . . . x(N-p) x(N-q-l) . . x(N-q--t)

k2 =P+l 0 x(N) x(N+p-q-1). . x(N+p-q-t)
- J
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Upon examination of expressions (10.3) and (10.4), it is readily established

that the data matrix XN (or YN) may be identified with that submatrix of the

kernel matrix ZN (or VN) composed of its k1st through (N-q-2+k 2 )•t rows

inclusively. Thus, corresponding to each adaptive autocorrelation estimator

(i.e., choice of pair (kl,k 2 )), there will be an associated pair of data

matrices obtained by using this row identification scheme.

The zeroes which appear in the upper right corner of kernal matrix N

are there due to the implicit prewindow assumption that x(n) - 0 for 2-t n 0.

This unrealistic restriction on an unobserved segment of the time series is

to be normally avoided. It is to be noted from the representation for TN

that a selection of kgt will avoid any data prewindowing. On the other

hand, a degree of prewindowing is incorporated whenever k, is such that 1

<_kilt-1. Thus, as k1 ranges over the integers 1 to t, the mount of

prewindowing varies from full at k1 =1 to none at kl - t.

In a similar fashion, the zeroes which arise in the lower left corner of

kernel matrix XN are there due to the implicit postwindow assumption that

x(n) = 0 for N+1jnffN+p. This contrived assumption on an unobserved segment

of the time series is also to be avoided. Upon examination of the kernel

matrix N. it is apparent that postwindowing may be avoided by selecting k2 j

1. It is also clear that the degree of postwindowing varies from none at

k 2 =1 to full at k2=P+1.

The four most appealing choices for adaptive estimators are identified

in Table 10.1 in which it is noted that each involves combinations of maximum

windowing and no windowing. The covariance method entails that particular

combination of no prewindowing (i.e., kl = t) and no postwindowing (i.e., f
k2 -1). This method is seen to provide the largest number of lag products

(i.e., N-q-t) in estimator (10.1) for which no data windowing is involved.

As might be expected, the covariance method typically provides the best

modeling performance from the ARMA adaptive class of stutocorrelation

estimators.

The three other methods listed in Table 10.1 are seen to employ either

full prewindowing, full postwindowin, or, both. It is clear that the

modeling performance capabilities of each of these three methods will tend to

be relatively poor when the data length N is only marginally larger than the

ARNA order parmeter p or the parmeter t. On the other hand, for the case
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in which N is much larger than either p or t, each of the methods listed in

Table 10.1 will provide comparable modeling performance. This is a

consequence of the fact that the windowed portions of the data matricesXN

and YN play a proprtionately smaller role in the estimate of RI as N

increases. In any case, unless special considerations dictate otherwise, the

covariance method is the most preferable choice for an adaptive

implementation.

METHOD CONSTANT CONSTANT STATISTICAL
ki k2 PROIERTIES

OF RN

1. Covariance t 1 (i) unbiased
(No windowing) (ii) consistent

2. Full Prewindowing 1 1 (i) biased
No Postwindowing (ii) consistent

3. Full Postwindowing t p+l (i) biased
No Prewindowing (Ii) consistent

4. Autocorrelation 1 p+l (i) biased
(Full pre and (ii) consistent

postwindowing) (iii) Toeplitz

Table 10.1: Four ARA Adaptive Autocorrelation
Estimator Methods

In order to provide the reason as to why members of the adaptive class

of autocorrelation estimators are amenable to an adaptive implementation, let

us substitute the matrix product representation for R, as given by expression

(10.2) into the basic ARMA modeling equation (6.6). The resultant

autoregressive parameter vector is then obtained by solving the normal

equations

*NY9XN AN - a (10.6)

where the weighting matrix W has been set equal to the identity matrix while

the normalizing constant a is selected so that the first component of JI is
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one. From this expression it is apparent that the data matrix product

;YNY;XN completely identifies the ARMA model's autoregressive parameter

vector. In order to compute AN$ it will be then necessary to compute the

data matrix product's inverse at each value of N where the autoregressive

parameter vector is required. This can be a particularly imposing

computational task if real time signal processing is to be

archieved.

Adaptive Algorithms k2 - 1

When the autoregressive parameter vector is required at each time index

N, it will be beneficial to effect an adaptive method for updating the data

matrix product in expression (10.6). This adaptive implementation is readily

achieved for the nonpostwindowing case k2 i in which kj may take on any

appropriate value (e.g., ljklit). Namely, upon examination of expression

(10.5) with k2=1, it is seen that the data matrices XN+1 and YN+1 are

obtained by appending appropriate row vectors to the bottom of data matrices

IN and YN, respectively. Using this property, the following recursion on the

data matrix product is obtained

YN 1 X N+1 = YANN + Y_ XN N I t (10.7a)

where IN and YN are the above mentioned lx(p+l) and lxt row vectors, that are

appended to XN and YN, respectively. These vectors are specified by

xN -[x(N+l), x(N), ... , x(N+l-p)] (10.7b)

YN - ix(N-q), x(N-q-l), ... , x(N+l-q-t)] (10.7c)

It is to be noted that recursive expression (10.7a) holds only for time

indices Njt since t is the first time index where YAXN takes on its full

algebraic form. With this in mind, YtXt then serves the role of an

initializing matrix for this recursion. Although the perturbation matrix

YN&N in this recursion does not depend on the parameter kl, the initializing
matrix YtXt does. As such, the sequence of matrix products as generated by

expression (10.7a) will be different for various choices of kl.

The full data matrix product as required in ezpression (10.6) may be

readily obtained from relationship (10.7) and takes on the following

recursive form

1A+lyN+1yg+lIN+l - XAYNYAXN + -INLN + AN&N + (Ya RAN

N t (10.8a)

where LN is the lx(p+l) vector given by

N m N (10.8b)
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An examination of this recursive expression indicates that t(p+l) operations

are required to compute zN while another 2(p+l) 2 operations are expended in

updating the full matrix product (10.8a). In arriving at this computational

requirement measure, it has been tacitly assumed that the matrix products

YNXN and A-*- are available.

When updates of the autoregressive parameter vectors JN are not required

at each time index N, we could then use recursions (10.7) and (10.8) to

compute the data matrix products YON and YNN in a computationally

efficient manner. At those time instants at which the evaluation of AN is

required, we would then simply solve the ARA modeling equations (10.6). If

standard procedures are used, this solution will entail on the order of

(p+l)3 computations.

In various applications, however, it may be necessary to compute the

autoregressive parameter vector at each (or nearly each) value of time N.

For such cases, it would be much more advantageous to replace the recursion

(10.8) by a recursion for the inverse matrix product [XRYNYXNl]-. To effect

this recursion, we note from relationship (10.8) that the matrix products

XAYNYAXN at two contiguous time indices (i.e., N and N+1) differ by the sum

of three rank one matrices. Using this fact, it is then possible to apply

Lemma 9.1 successively three times to effect the desired matrix product

inverse recursion. The main steps of this recursive inversion are listed in

Table 10.2. It is important to note that this recursion commences at N =

q+p+kl+l which corresponds to the first time instant at which the matrix

product XNYNY'N is generally invertible. Steps 3 through 6 provide the

mechanism for this matrix product inversion while step 7 gives the required

solution to the ARKA modeling equations (10.6). In term of computational

complexity, it is readily shown that the number of multiplication and

addition operations required to implement this algorithm is of order p(t+3p)

for each data point update.

The adaptive algorithm described in Table 10.2 is for the particular

nonpostwindowing selection k 2 -1 wherein the parameter k 1 will be typically

selected to satisfy I j k, j t. As suggested earlier, the covariance method

identified by klt and k2-1 generally provides the best overall modeling

performance for the class of adaptive estimators. We may therefore use the

adaptive AREA modeling method to previde an efficient procedure for

recursively implementing the desirable covariance method. As a final note,
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although it is possible to effect adaptive implementations for other choices

of k, (i.e., k#11), the resultant algorithm is of a much more complex nature.

Since the covariance method is almost invariably used, however, we shall be

content with the nonpostwindowing algorithm.

It is also possible to provide a lattice implementation of the adaptive

algorithm here developed [191 and [49). This will entail restricting t - p

thereby imparting a decrease in spectral estimation performance. The

advantage accrued by using the lattice implementation is computational in

nature. In particular, the number of operations to update the lattice

network is o(p np) for each new time series observation.
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------

STEP 0 The input to commence the algorithm at N = q+p+k1 +1 is
YN*XN and [ANYN ]-

STEP 1 N - q+p+kl+l

STEP 2 Compute YN+1 XN+l using expression (10.7)

STEP 3 1N -_ YNXN

STEP 4 -1 - I.- = --. AN. =-1 " N N J-1

Compute [A1 + y:1] - 1 using Lemma 9.1

STEPS 12 . A2- 1 = [A1 + i -x 1
1

Compute [A2 + m; ] - 1 using Lemma 9.1

STEP6 M = ( I =-- .A3 - 1 = [ A2 + -1

Compute [A3 + ! y31-1 [XN+IYN+IYN+IXN+1] - 1 using
Lemma 9.1

STEP 7 ._ = [XN+YN+1YN 4IN+1 1 1

N+I. = c(1)- 1 c where c(1) is the first component of c

STEP 8 Let N =N+I, GO T STEP 2

TABLE 10.2: Adaptive Algorithm for Computing aN+l

I
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XII. Conclusions

A philosophy directed towards the rational modeling of wide-sense

stationary time series has been presented. It is explicitly based upon the

Yule-Walker equations which characterize the autocorrelation sequence

associated with the rational time series being modeled. In particular, the

key concept is that of using an overdetermined set of Yule-Walker equation

evaluations for estimating the parameters of a postulated rational model.

This approach has been found to reduce the data induced hypersensitivity of

the parameter estimates in comparison to many of the more popular parametric

approaches which invoke a minimal set of evaluations for obtaining the

parameter estimates. These latter methods include the Burg algorithm, many

LIS methods, and the one-step predictor. Comparative examples illustrating

this reduced hypersensitivity have been given in which the modeling is based

on both exact autocorrelation lag information, and, raw time series

observations.

The method of singular value decomposition was next introduced and was

used to obtain an effective rational model order determination procedure as

well as providing a novel rational modeling procedure whose performance has

been empirically found to often exceed that of existing techniques. Studies

are currently under way to more effectively use this SVD adaption for

achieving yet further performance improvements.
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