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ABSTRACT

The concept of a choice function, characterized by means of a set-
valued mapping on restricted families of subsets of a space of alternatives
is employed in an essential way in the theory of consumer choice in
mathematical economics to construct demand correspondences (Mukherji {19773,
Richter [1966], Sonnenschein [1971] and Uzawa [1956]). A concomitant
consideration of such a function, arising out of Arrow's seminal
considerations of social choice (Arrow, [1963]), is the extent to which
a choice function may be considered rational. This problem has been
treated extensively by Richter [1971]. However, a further consideration
of rationality has been developed by Kramer [1974] in the consideration
of whether or not a decisive choice function that is regular rational in
the sense of Richter [1971] when defined on subsets of a denumerably
infinite domain of alternatives, can be realized in principle by means
of a device of artificial intelligence.

N\ It is the purpose of the present study to indicate the means by
which Kramer's results may be generalized to considerations of stronger
computing devices than the finite state automata considered in Kramer's
approaéh, and to domains of alternatives having the cardinality of the
continuum. The means we employ in the approach makes use of the theory
of recursive functions in the context of Church's Thesis. The result,
which we consider as a preliminary result to a more general research
program, shows that a choice function that is rational in the sense
of Richter (not necessarily regular) when defined on a restricted family
of subsets of a continuum of alteimatives, when recursively represented

by a partial predicate on equivalence classes of approximations




I '““%\bw rational numbers, is recursively unsolvable. By way of Church's

Thesis, therefore, such a function cannot be realized by means of a

very general class of effectively computable procedures. An additional

! consequence that can be derived from the‘result of recursive unsolvability
;E of rational choice in this setting is the placement of a minimal bound

on the amount of computational complexity entailed by effective realizations
of rational choice,T_However, the principal interpretation of the result,

in our present framework, is that a distinction must be placed between

what is meant by a recursive representation of rational choice, and a
recursive realization of that representation by effectively computable

procedures.
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RECURSIVE RATIONAL CHOICE™*
by
Alain A. Lewis**
I. Introduction
The suggestion that certain axiomatic structures found in economic
theory can, and should be, perhaps, subjected to metamathematical
considerations not surprisingly enough is found in the treatise of

Von Neuman/Morgenstern, The Theory of Games and Economic Behavior,

(Princeton University Press [1944]), in their discussion of axiomatic
formulations of n-person extensive games, Chapter II, Sections 8.4.1

and 10.2. However, very little attention has been paid to the meta-
mathematical consideration of the mathematical systems that are employed
in mathematicael economics. Notable exceptions in this regard are the
works of Aumann and Wesley [1936]. In particular, it would seem worth-
while to consider that branch of metamathemetics termed the theory of
elementary formal systems which in turn would be useful in characterizing
those mathematical concepts employed in economic theory that are
constructive in a procedural sense. In the area of programming, economic
theory has dealt with the notion of algorithm somewhat extensively in
camputational procedures for arriving at equilibrium prices. Notable

in this regard is the work of Scarf [19T4] and an excellent survey of
the current state of combinatorial optimization, found in the article

by Klece [1980]. But very little research has been done on more general
items of whether, say, preference structures defined on arbitrary infinite

1/

domains are constructible= In other words, in addition to assuming that

*This work was supported by Office of Naval Research Contract ONR-NOOO1l4-
79-C-0685 at the Center for Research on Organizational Efficiency at
Stanford University

#¥#Department of Mathematics, College of Science, National University of
Singapore, Kent Ridge, Singapore, 0511.
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8 decision making entity acts as though it made rational choices on
compact metrizable budget spaces, if we were to assume within the theory
that these choice made were, in principle, realizable, which we will
take to mean that the choice are computable in principle, under what
conditions would the preference structure that represents this choice
be constructive?

Specifically, we observe that the concept of a rational choice

structure can be considered on at least three levels:

(a) the preference level
(v) the choice level 0

(c) the computational or constructive level.

In relegating the first two distinctions as being secondary, our | e
primary interest will be on the third consideratic... That is, we wish to
consider whether or not a rational choice function can be realized as a
computational procedure. In contrast to the leading result given by K
Kramer [1974], which is negative on the item of realizable rational
choice in terms of a computational procedure that is equivalent to a Mealy
automaton, we provide the means to extend his result by way of Richter's
framework of rational choice |[1971], to the stronger context of computability
and therefore realizebility, in the sense of a Turing machine. The means
of the extension employs a variant of Church's Thesis, in the context of
recursive set theory. This approach, to meke a further distinction, in
contrast to the paper by Campbell [1978]), which treats in specific fashion,

the item of realization of choice functions defined on finite sets of
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alternatives only, enables us to address the issue at the level where
the space of alternatives is of infinite cardinality, as found in the

traditional treatment of Paretian utility as set forth by Debreu [7] .

CIT. Rational Choice Functions

Typically, one means by a preference structure on a set of
alternatives, X , the set X together with a binary relation on X x X .

That is, a relation, 2 , such that
2 : X xX=+{0,1}

and such that for x,, x,€X, X, 2 X, assigns 1 or O depending
1 2 1 2

on whether X1 is or is not at least as good as x2 . One usually requires

that a preference relation satisfies the foilowing axioms :
(1) wx € xl(x 2 x)]
(2) yx,y,z € x[[(x 2y car(y2z2)]l+(x2 z)]
(3) vxsy Exlix2y) +" (y 2 2)]

We will restrict our attention initially to sets of alternatives,
X, of denumerably infinite cardinality having the usual economic inter-
pretation of contingent alternatives indexed by time into the future. The

following result is well known in such a setting:

I1.1 Theorem: If the set X 1is denumerable, then there exists a real-

valued function £ on X such that if 2 1s a preference relation for
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for X;» Xy €X, X, 2 X, if and only if f(xl) > f(xz). Pf: cf.

P. Fishburn, Utility for Decisionmaking, Chapter II, J. Wiley & Sons,

[19691].

The function f is said to represent the preference relation 3.
By convention, if it should occur that for xl, X5 €X, Xq > X5 and
Xp 2 X7» then for a representation f of z one has f(xl) = f(x2)
and we say that X1 and X5 are indifferent under > and write this
as xl v Xo We will in later usage require that the quotient space under
n, X/nv, also be of denumerably infinite cardinality.

By a choice function, we will mean a set valued mapping with the

following features:

(a) C:8+8 for s¢gP(X) : !

(b) VA € s[C(A) C A]

A choice function then is defined on a subcollection of subsets of the i
power set of X, taking values in the power set of X, such that the range
of C on an element of its domain is a subset of that element.

An extremely common means of defining a choice function for a i
given preference structure (x, 2 ), with representation f, is as follows: 1
]
]
h

C(A) ={x€A: vy € Alf(y) $ ()1}

The interpretation of which is, for a given subset A, an element of the
subfamily S, the choice function specifies the order msximal elements
of A with respect to the representation f of the preference. This
formulatior will be of particular interest to our inquiry in subsequent

sections.
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T. Bergstrom, in Journal of Economic Theory, Vol. 10, No. III,

[1975) pp. 4O3-LOkU, has shown that a choice function as we have defined

it, is nonempty on compact subsets A in X, under the appropriate topology,

when the preference order is acyclic, and the lower contour sets:

P;(1= {y€EX: x 2y}

are pointwise open in the relative topology of X, where the relation 2

~
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is derived as (2 ., §). sSimilar topological conditions in the context
of recursive sets will be required in later investigations.g/
The framework of Richter [1971) gives us the interpretation of

rational choice that follows. In this framework, the subfamily S is

taken to mean a collection of budget sets in the traditional economic
setting. However, in general, that specific interpretation is not required.
A preference 2 rationalizes choice on X in the sense given by Richter
((21971],p.31) if for A€ S, C(A) = {x €A : Vy €A [x 2y]}. The
emphasis of the attribute, rational, is then placed upon the manner in
which choices are selected from subsets of X. This usage is in contra-
distinction to that employed to characterize rational preferences, which
are usually typified as being not intransitive. This form of distinction
is an extremely useful one, for one can then inquire, in the manner that
Richter successfully accomplishes, into those varieties of preferences
that generate rational choices in the above sense. As it turns out this
will be a useful distinction for our purposes, as we will ultimately be

concerned with the means for representing choice functions that are

rational in the above sense within the framework of an elementary formal

o mm s e oL - . 4




system -- not the preferences that generate them. Noteworthy, is that
Richter's framework is quite weak, in the sense that no specific assumpt-
ions are made concerning the relation 2 per se in the definition of a
rational choice function. However, to inquire when a preference exists
that will rationalize a given choice function is not at all superfluous,
for simple examples show that irrational choices in the sense of Richter

exists, i.e., choices that cannot be rationalized by a preference relatic
II.2 Theorem (Richter [1971]): There exists an irrational choice.

Proof: Let X = {a,b,c} . Consider Al =X and A, = {a,b} ,

2
and suppose C(Al) = {b} and C(A2) = {a} .

If > were a preference relation that rationalizes C , then
since b € C(Al) then b > x for any x € X. In particular b > x

for x €A, C X. But then bGC(Az) which is false.

2
Q.E.D.

This example violates a postulate for rational choice given by

H. Uzawa in "A Note on Preference and Axioms of Choice," Annals of the

Institute of Statistical Mathematics, Vol. 8, [1956] pp. 36-40.

if A, BES, and A _C_ B, then if C is rational, then we should have
A- ¢A)C B - C(C(B), i.e., any element not chosen from a subset of
alternatives remains unchosen when the subset is enlarged by more alter-

natives.
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E! Richter provides us with those conditions that serve to sufficiently

|

L characterize rational choice in terms of two axioms (Richter [1971]pp.33-35):

E The V-Axiom: xV(C)y <=> 3JA € S[x € C(A) "+ y € Al

I The W-Axiom: yW(C)y <=> 3{z,}" C S[xV(C)z, ...,z V(C)y] i
: oA ! ® 5
<

t! The following two theorems proven by Richter {{1971], Theorems II T’

and V) provide an importent qualitative distinction between two possible «

meanings that can be given to rational choice in the above sense.

IT.3 Theorem {Richter [1971]): If a choice function C on a set

X 1is such that for any A € S,

C(A) = {x : x €EA "« Vy €A[xV(C)y]}
then € is reflexive-rational.

II.4 Theorem (Richter [1971]): If a choice function C on a set

X is such that for any A € S,

C(A) = {x : X €EA "« yy €A[xW(C)y]}

then C is transitive-rational.

A further qualitative distinction among the possible meanings of rational

choice (cf. Richter|[1966] can be obtained in terms of the following: ”*

II.5 Theorem (Richter {1966]): A choice function C on a set X is

regular-rational if and only if for any A €8S, __!

Xs Y €A [[[XEC(A) oo [yWx]| » yGC(A)] .




This latter theorem is given in terms of Richter's Congruence Axiom.

A regular-rational choice function is rationalized by a regular prefer-
ence relation, where a regular preference is reflexive, transitive, and
total.

An additional concept that will be of interest to our own inquiry
is the concept of representable choice. A choice function C: § + S
is representable in the sense of Richter if there exists a function
£: X » R, such that for all A € s, C(A) = {x €A : ¥y €alr(x) 2
f(y)]}. The proposition on page 48 of Richter [23], gives necessary and
sufficient conditions in terms of an augmentation of the W-Axiom for a
choice function to be representable. The W-Axiom is shown to be a
necessary condition (Richter [1971]p. 46) for a choice function to be
representable in that context.

One observes, importantly, that within the framework of Richter,
the consideration of a rational choice function is not necessarily restrict-
ed to considerations of the transitivity (or lack of) of an underlying
preference, seemingly the predominant considerations in earlier inquiries

into the theory of choice generated by Arrow's seminal work[1963]. What

we wish to turn our attention to, however, is yet another level of dis-
course of rational choice, that of mathematical constructibility. That ]
is, does the notion of a rational choice function as given in the frame-
work of Richter have a constructive realization? What we are asking is, ,!
in addition to assuming that a decision entity acted as though it were {

making rational choices among a set of alternatives, as a not unreason-

eble paradigm of human behavior, if one were to assume within the theory
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that these choices were made in a manner that were realizable in
principle, under what conditions would the procedure of choice be
realizable by effectively computable means? The result that we provide
would seem to 1limit the circumstances under which one can give a favor-

able response to such a question.

I11. Constructive Representations of Rational Choice Functions

Constructive mathematics is often referred to as algorithmic
mathematics, the history of which dates back to at least the time of
Buclid and the name for which derives from the 9th century mathematician
Al-Khurvarizmi of Islam (Kleene [1965]).

By a constructive mathematical concept, one means a concept that
is the result of a process of construction which is realizable along

the following lines:

(1) One assumes a clearly defined, fixed collection of primitive
objects.

(2) One assumes an unambiguous list of rules for forming new
objects from previously constructed ones. These are the admissible

steps in the process.

(3) One assumes that the process of construction is carried out

in discrete time units.

Perhaps the most widely employed mathematical structure in
constru *tive mathematics is what is known as an elementary formal system.
The use of the term, "formal", is to denote in the manner of Smullyam's

Theory of Formal Systems, Annals of Mathematics Studies, No.WT,

TP AR
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Princeton University Press, [1961], finitary objects and discretized
procedures, for the decidability of proofs and provability. We give
a btrief characterization as follows for the purpose of general background.

A fewv preliminary definitions will be required:

Definition I: By an alphabet one means an ordered finite set

of primitive symbols. Denoted as "K".

Definition II: By a string is meant a finit: line or sequence

of elements in K and we say that the string is in K.

iti : C ces
Definition III: For a set {xJ}Jg1 CK, 1let (xi, xn) be

the string formed from {XJ}ng . Then the length of the string is n.

Definition IV: Let xy and Y bYe strings in K then the string

xY is in K and is termed the concatenation of x and Y , which

goes by (xi,...xn, Y .,Ym) and is of length n =n .

o

By an elementary formal system over an alphabet K , (£), is meant

(1) The alphabet K.

(2) An alphabet of symbols, V, the variables.

(3) An alphabet of symbols, P, the predicates: each of finite degree.
(4) A pair of symbols, (+, ,) called implication and punctuation.

(5) A finite sequence, A_, ..., A of wffs. termed the axioms of

19
() . A wff. of & 1is an expression of the form P ti,...,tm for

tl,...,tm terms or F‘l i F2 ces?* Fn where each F,j has the form

Piseeest,

T -
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By a provable string of (§) one means & string x that is either

(a) an instance of the axioms by way of substitution, or
(b) derivably by a finite sequence of applications of substitutions

of the axioms and the deduction rule of modus ponens.

If x 1is provable in (&), sz is the symbol used to indicate this.

It can be shown that (Smullyan op cit):

ITI.1 Theorem: The theorems of (&) are precisely the provable strings

of (g) .

Let K denote the set of all finite strings in K . Let the term
attribute denote a set in K or a member of P . Then let a Ybe an
attribute of () and WC K. We say that « represents W in (&)

if and only if
vx €K {x € W <=> I-Eu (x)}

As an example of an elementary formal system consider the following:

n
Suppose we take K = {1} . Then a string of length n is simply 53 =n
J=1

Suppose we next wish to represent the set of even numbers. let E be

the predicate "is even" and let X be a variable in V. As axioms allow:

(1) E11

(2) Ex + Exl11

III.2 Theorem: Yx €V {FE Ex <=> X is even}, Then E represents the

set of even numbers in the sbove sense.




-] 2=

Proof: Enumerate the even numbers in order, el,...,e seee
—_— n

Then = 11 and by the 1st Axiom El1 is even. Suppose Een

®1
for some n. Then by the 2nd Axiom Een »> Eenll. By modus ponens
Een, Een -+ Eenll yields Eenll. Arbitrary even numbers are then
provable in (£). Any provable instence of E over (&) is

hereditarily true by properties of modus ponens. However, Ex is

true means that Ex is even. Q.E.D.

One of the more important formal systems historically was
devlioped by Alonzo Church in the 1930s at Princeton, the A-~calculus
[1941], which may be viewed as an elementary formal system of number
theoretic predicates.kj The reknown Church's Thesis asserts that those
mathematical concepts that one views as being constructive are provable
in the context of the A-calculus, i.e., the A-calculus represents
the constructive functions. Significantly, Kleene and subsequently
Turing showed respectively that the A-recursive functions of Gddel
and the computable functions of Turing in the sense of being the output
of an automaton, are also provable within Church's A-calculus
(Kleene [1936], Kleene [1965] and Turing [1936].) Since no categorical
definition of effectively computable can be derived, different notions
having been set forth by the mathematicians, Kalmar and Péter
({1965] and Journal of Symbolic Logic) differing slightly from that
found in Church's Thesis, one regards Church's assertion as a thesis
rather than a theorem. However, the ensuing equivalence of the
constructive mathematical systems of G¥del, Kleene, and Turing provide

ineluctable evidence that the recursive functions are, perhaps, the most

3
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general notion accessible by human endeavors. Rogers [1967], Ch.I
refers to this as the evidence for the Basic Result, by which is meant
the equivalences to the A-calculus mentioned above. On this latter point
the reader is also referred to Putnam [1973].

The following are useful facts (cf. Kleene [1950]) that we will
make reference to subsequently. The expression Ax[¢(x)] denotes the

partial function <x,y> which gives the value y when x takes an integer

value, by way of ¢(x). The domain of the partisl function so defined is
a subset of the natural numbers, D(¢) C N, as is its range, i.e.
R(¢) € N, and thus may be considered as a number theoretic predicate.

The class of primitive recursive functions is the smallest class

1 of functions such that:

(a) The constant functions Axl... xK[m] for 1<K, 0<m,

are in Q .

(b) The successor function Ax[x + 1] is in @ .

(c) The identity functions AX - e XK[xi] are in @ .

(d) If £ is a function of K variables in Q , and if
81’82""’8k are functions of m variables in f then the following

function is in @ :
Axl... Xy [f(gl(xl,..., xm),..., gK(xl,..., xm))] .
Functions derived from the composition of functions in Q are in Q .

(e) If h is a function of K+ 1 variables in @ , and g
is a function of K - 1 variables in Q , then the unique function f

of K wvariables satisfying
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f(o’ x2,cvo, XK) = g(xZ""’ xK)

fly + 1’x2’°"’XK) = h(y, X2""’XK)’ Xe""’XK) =—i

is in &, for 1 < K . Functions derived from primitive induction in

Q@ arein 9.

The class of recursive functions are generated by the schema:

SRRt~ et

£f( )= yP(,y) .

The expression uy{P(x, y)} is read: "the least y such that P(yx, y)
holds", where u is Godel's mu-operator;i/and P(x, y) is a primitive
recursive function obtained by the procedures given above. The general

recursive functions are obtained if P(x, y) is regular, i.e.

¥s3yP(x, ¥). If P(x, y) 1is not necessarily regular, then only the

partial recursive functions are obtained.

Further basic notions that relate to the above, that follow from
6/

Church's Thesis,~ and which we will subsequently make use of are: '5}

(i) Recursive Functions E Partial Recursive Functions.

-~

(ii) Partial Recursive Function = A Turing Machine That May Not Halt.

et Mintc

(1ii) Recursive Function = A Turing Machine That Always Halts.
(iv) Recursively Enumerable Set = A Set Whose Characteristic

Function is Partially Recursive.

(v) Recursive Set = A Set Whose Characteristic Function is Recursive. .
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(vi) A Recursive Set is such that both it and its complement

are Recursively Enumerable.

(vii) A Set is Recursively Enumerable if it is the range/domain

of a Partial Recursive Function.

E! With this background in place, we may now turn to the consideration
of whether of not a rational choice function, in the sense of Richter,

admits of a constructive representation within a formal system that we

shall interpret in the form of an sutomaton (cf. Starke, [1972]), that is
of the Mealy veriety. We provide this result as a preliminary item to
the more general setting of a Turing machine treated subsequently.
Imagine an idealized computing device that had k components,
each of which can obtain m states, where m and k are finite integers.
Let the description of the machine's computing process be given by the

following:

MA=<s, t, 6(s), ¥(t), m= {1, 0, -1} >

The machine can be viewed as a kind of scanning device that looks at
symbols on a tape and then signifies an output. The description, MA,
for Mealy automation (cf. Starke [1972],Ch.I), provides the following
kind of rule: If in state s, and if the input symbol t 1is scanned,
then go to the state ©(s), and signify the output ¥(t), and then move

the input tape either right one space, -1; left one space, 1l; or leave

the tape where it is, O.

P PR TE YR WP W APy
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Diagramatically, we can visualize MA as:

« <« < INPUT -+ = »

-
- t
P -
..
N
rf
;.
Pg + > > >
: MA +
@ ) ¥(t)
{ . .
OUTPUT

Let there be two finite languages (not necessarily distinct) LI

and L0 corresponding to an input language, and an output language,

respectively. LI contains distinguished elements {A,E} that are used
to indicate when distinguished segments of the input tape are begun, and

terminated. 1In the language L_ there is the symbol A to indicate

0
the null output. In the manner of section I, we may construct on each
language the elementary formal system E(LI) and E(LO). One can
then view the input tape as comprised of strings of wff.s in E(LI),
while the output tape can be viewed as strings of wff.s in E(Lo). It

is then permissible to view the automaton MA as a composite formal

system with components E(LI) and E(Lo).
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Consider now the quotient space X/v, of indiffgrence classes of
a set of infinite alternatives. Select then from 2X/M the class of
all finite sets, and call it F; Let us make the assumption that X/v
is denumerably infinite. If we assume that any finite set in F has a
well-formed representation as a string in E(LI), then from the denumer-
ability of F, we may form the input tape T(F) that encodes the members
of F as wff.s in €(LI).

Let us denote the totality of states for the machine MA as S.
Then ||S|| = k" and is finite, for k the number of components in

MA. TFor a given string X on T(F), the function:

T = sx{-1,1} » [sx{-1,11}] VYV {0}

specifies the transition rule of the machine MA with respect to X.

For the pair, (s,-1), the machine is in state s, at the right most symbol

of x. If the machine runs the string x to the right and goes to state

a(s) = s', then set the value of the function Tx(s, -1) = (68(s), -1).
One sees readily that the total number of such functions for

m
strings on T(F) if Q= (2™ + 1)2k = ||R(t)||||D(T)I| , for R(T) =

the range of T and D(t) = the domain of <t. Then, the sets {'I‘T } Q =
X, J=1 .
J
give a partition of T(F) such that if x, ¥ € TT , then TS Ty 1
Xy ﬁ
-~ 4
i.e., each 'I"r is an equivalence class of strings that generate the .

X

same transition function, 1 .

’ }




Before presenting the result that follows, we need to formalize

precisely what it means for a Mealy automaton to realize a function.

Definition V: Allow f : I + K to be a partial function defined
on arbitrary sets I and K. A Mealy automaton given as MA = <s,t,o(s),
¥(t), m = {1,0,-1}> is said to realize f if and only if:

(1) for every i € D(f) CI there is a unique wff. in E(LI)
that formelly represents 1i.

(2) for every k € R(f) C K for which there is an i € D(f) C I
such that f(i) = k, there is a unieque wff. in E(LO) that formally
represents k.

(3) 4if t 1is the wff. in g(LI) that formally represents an
i € D(f) C I, then ¥(t) is the unique wff. in F,(LO) that formally

represents that k € R(f) CK for which f(i) =k .
The following result is due to Kramer [19T4].

III.3 Theorem: Let X/v be denumerably infinite and let > be
a reflexive total preference on x that rationalizes the choice function
C(A) = {x €A : yy €Alx 2 y]} for A EF, then the formal system

MA = <S,0,W,m,£(LI),£(LO)> cannot realize C(A) in the sense of

Definition Von F .

Proof: Suppose MA realized the choice function ((A) when fT

AEF, then A would be encoded bty a string Xg »+++X o in E(LI)
1 m
and appear on T(F), the input tape. Then we require that

\l'(xa seee Xg ) be a wff. in (Lo). Clearly, the reflexivity of >
1 m
requires that if x, + X, in g(LI) then ?(xl) + W(xz) in E(LO).
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It can be demonstrated that for an input tape segment x1 ...xn

such that xd € TTX1’ if the machine accepts the segment scanning

%;tf to the right and printing Y(xl...xn), then
In(¥( )) = £ £ (x,)
n(¥(x;...x ) = S5 Xy

where 1n(°*) is the length of the output string ?(xl...xn) and

each of the functions are such that fJ : TTX- + IN (cf. Kramer [1974],
i

pp-48-49). Since the cardinality of inputs on T(F) is that of the
.:' natural numbers, and since {TTXU} Q partitions T(F), at least one
x 29 ii=1
S member of {TTX 1Q, T.,_-X , must contain infinitely many substrings,
i i=1 0
. X/
C N, =
representing distinct members of F C 2 The set P {XOI,XO2,XO3,...

xOn""} can then be formed in terms of distinguished singletons,
o one each from the members of TTX
One sees readily that all sets of the form {ai} v {ai} or {a} UV
{ai} must yield output strings of identical length, when represented

Clearly, for distinct « a, €X/v , either a, > a

: S J
oo8 and if A = {a,} U {a,}, then, ve have C(A) = a,.

that ln(W(XOixoj)) = 1n(W(x03x01)) =L, where L = 1n(W(XOi))

g or og 2 aJ,

Then it follows

or ln(?(xoj)) depending on whether a > aJ or aJ > ai respectively.

However, the output alphabet is finite for g(LO), say of cardin-

e

ality B. Then the number of distinect strings in g(LO) of length L is

bounded sharply by (B)L.

o Dol
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Then, for q sufficiently large, say q > (B)L, if 1%,

J* > q, then if xoi* and Xo * represent a,* and a,* respectively

J i J

(ai*, aJ* € X), since both i* and J* are in excess of g,
*)) = » ; *) = *
ln(‘l’(xoi )) 1n(‘l’(xOJ }) mst imply that W(xoi ) \l’(xoJ )), and

therefore if MA were to realize C(A) for A = {aJ*} or {ai*},

» = * * * ; ¥4 g H
C(aJ ) C(ai ). But, as Xo3 ¥ X, only if a a.*, by the

o

J

preference structure, no common choice is possible. Then, if we
take realization to mean constructive in the sense of the computing

process of a Mealy automaton,zj MA cannot realize C(A). Q.E.D.

The implications of the above result seem less than definitive
with respect to the general issue of computational choice, and this is
so for at least two reasons. First, as is well known, Mealy automata
are somewhat limited in their comparative ability to compute, when
compared with more general varieties of computing devices, i.e., Turing
machines. For details see the discussion given in Hopcroft and Ullman
[1979] Ch.III. Second,the theorem is in terms of reflexive-total forms

of rationalizations of a choice function, and it would seem desirable to
enlarge the scope of reference of the theorem in this regard in terms

of Richter's weaker framework of rational choice, requiring less restrict-
ion on the underlying preference relation. We provide, in the following
sections, what we feel is an approach that addresses these two items

in the context of recursive sets. An additional advantage to the

framework we will develop is its capability to consider the issue

of the constructive representation of rational choice functions

TR TR

aa a a o
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defined on families of subsets of the continuum, which is the traditional
setting for the problem of consumer choice in economic theory (Debreu,
[1959], Ch.IV). This capability is obtained by means of the concept

of a recursive metric space, which in its construction replaces the

input and output languages of the Mealy automaton with sets of a
notation formed on the natural numbers. The Turing framework of
computability, of which the Mealy automaton is a special instance,éf

is then obtained by means of Church's Thesis by consideration of

recursive functions on the notation.

Iv. Recursive Metric Spaces

Our goal will be to consider the item of consumer choice in the
traditional setting, where the space of alternatives, X, is taken to
mean a compact, convex subset of I?n.gj In order to apply Church's
Thesis to what we will define subsequently as a recursive rational
choice function, it will be necessary to endow the space of altern-
atives with sufficient recursive structure to render the relevant math-
ematical structures number theoretic in the sense described previously.
To obtain this structure, we shall employ the concepts of recursive real
numbers and notation systems as developed by Rice [1954] and Moschovakis
[1965]. We make use of Moschovakis' terminology and framework. Thebasic

terminology of recursive function theory that will be used can be found

in Kleene [1950] or Rogers [1967].




It can be shown in the manner of Post and Kleene [195k],
that there exists a set of primitive recursive functions (cf. Section

II):

sign: X - {0,1}
den: N -» N

num: N ~» N

such that the following mapping is a one-to-one correspondence of the
set of natural numbers, N, onto the set, Q, of fractions in lowest terms

expressed as:

where

r(x) = (—l)Sign(x)num(x)/den(x)

Then, for each real number o« € R, there is at least one number

theoretic function

such that

Y, ¥y € N (|r{£(x)) - r(£(x + y))| <27%)

T P T e a2 z

)
R
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and

¢ = lim r(f(x))

x-)ﬂ)

In this manner, the real numbers are expressed as limits of part-
icular Cauchy sequences of rational numbers. In a somewhat straight-
forward fashion, one may obtain an appropriate constructive analogue by
requiring the function f to be a general recursive function. Then we

may consider a resgl number o' to be a recursive real number if there

exists a general recursive function f : N =+ N for which the above
expressions in terms rx are satisfied. An alternative, but equivalent,
definition of recursive real numbers can be found in Rice [195L4] and
Robinson (Journal of Symbolic Logic, Vol.16).

By means of Kleene's Normal Form Theorem (Kleene [1950] p.288)
for each partial recursive function f(xl, ceny Xn) of n % 1 numerical

10/

values, there is a natural number n(f) called the Gbdel number—' of the

11/

funetion f(xl, sees xn) such that the following expression is true:—

f(x19 seey Xn) '!U(-uyTn(n(f)a Xl, oy Xna y)) 'l‘.{n(f)} (Xl, ey Xn)

for y) a specific primitive recursive function and ¥n € N,

Tn(n(f)), s eres Xpo y) 1is a specific primitive recursive predicate

X
1
as employed by Kleene ([1950], p.281).

-
4
5
4
!
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If the function f(x) is general recursive instead of partial
recursive, then one may replace the relation f , Which meeans "equal
when defined," with the usual relation of equality, =, in the normal
form expression., Then for each recursive function, in particular for
the general recursive functions, there is a G¥del number, by way of
Kieene's Normal Form Theorem, that can be associated with the function,
namely n(f).

If the general recursive function f(yx) with G8del number n(f)
determines the recursive real number a, in the sense that we stipulated,
we shall term n(f) an R-index of a in the manner of Moschovskis [16]

and denote a = &g The set N (R) of natural numbers that are

R-indices of recursive real numbers can be characterized as follows:

n(f) € W (R) <=> ¥Yx3 ZTl(n(f), Xy Z) "
Vx VyVzve [Tl(n(f), Xs Z) o%e
Tl,(n(f)a)("' Y, t) =

lr (U(2)) - r(U(t)) | < 27X ]

The function W) is the same as that used in the Normal Form Theorem,

and the predicate T. is a monadic version of the primitive predicate Tn

1
used in Kleene's Theorem as referenced above.

Then each element n(f) € N (R) is seen to determine a real number
°n(f)' However, the correspondence cannot be one-to-one for the reason

that different Gddel numbers may determine the same function and it may

occur that different functions may determine the same real number .

S 1‘ PRI
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b
:! We arrive then at a natural equivalence relation induced on N (R) given 3

N as a,.

N (R)® for which

2

f N (R)S <=> ap = “g

which simply says that members of N (R) are taken to be equivalent, if,
and only if, they determine the same real number,

Then the ordered pair, (N (R), n ) can be considered as a form

N (R)

of notation for the set of recursive real numbers. The abstraction to a

) for TC N and ~ an

notation system seen as an ordered pair (T T e

9 ’\’T

equivalence relation on T, is immediate and is due essentially to Moschovakis

in this form (cf. Moschovakis [1965], p.43).

An alternative definition and approach to notation systems is

found in Shapiro [1956] who regards a notation as & function

r : KT

where Rng(;) is elementary inductive, i.e., can be endowed with a

recursion theoretic structure, and DOM(z) € N so that £ may in fact be

partial. Shapiro's approach is consistent with Moschovakis' framework

"4"‘ ‘A,'. )

1
<

. .
BN S A RS |

as can be seen by allowing ¢ to take the form:

r = (Imot):B—»N

:A'- ‘

where I]N is the identity function on the natural numbers and t is the

function that associates the recursive real numbers with their Gddel

number representations.

v - ‘
‘Li.'.»';';;u_- B
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The extension of the concept of a notation system as we have
developed it thus far, from recursive elements of R to recursive
elements of R can now be easily constructed as follows. Let the notation

system (N (R%), & ) be constructed in the following manner from

N (B)

n-tuples of R-indices of recursive real numbers:

N (RD) ={<n(fl), cees n(fn)> : n(fll), cees n(fn) € XN (R)}

where

n
=
o

<n(fl), cavs n(fnb

for {PO, ooy Pn-l} the set of initial prime numbers commencing with

Po = 2. The equivalence relation «~ is defined by means of the

N (R™)

following expression:

<n(f)> “E (RY) <n(g)> <=> {[<n(f)> € W (R®), <n(g)> € N (R")]+*-

By making use of the above framework, we may now proceed to endow

]Rn

, 8 subset of which we will employ as the domain of feasible alter-
natives, with sufficient recursive structure for the problem of a

rational choice function.

i By a recursive metric space, in the manner os Moschovakis [17], we

will mean a notation system, (T,'\,T), together with a binary recursive f

g operator D:T + R such that: L
¢ 4
' .
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(1) Vo, BeT(Dlap) = 0) <= (a=h)] {
]
(i) Ya, B ET(D(,8) =D(g,a)l] i
(111)  Ya, 8, y € T[D(asy) £ Dlayg) + D(B,y)] | 4
If now we consider the notation systems developed earlier for R '
n n .
and R, namely (N (R), “N (R)) and (N (K), '\'l\I(Rn))’ respectively,
we can form the recursive metric spaces: -

and *

M(Rn) = <(N(Rn), '\']N(Rn))’ D]Rn>

by taking the operators defined in each case to be )
2.% ‘ ﬂ
D, = |ojand Do = [ £ (]o]|,)°] :

80 that the following obtains in M(R) and M(R"): ‘
- 4

:

:

¥n(f), n(g) € W (R) Dg (n(f), n(g)) = [n(f) - n(g)|

2112.
y<n(f)>, <n(g)> € N (K ) Dpn (<n(f)>, <n(g)>) = [ Z |n(f,) - n(gJ)l ]

J=n J)

It can be shown that both the operators DIR and DRn are in fact recur-
sive on N with restrictions partially recursive on N (R) and N (R") J
respectively.

For the case of the real line R, and therefore for finitely many

coples of it R", the recursive metric spaces M(R) and M(R") aan be
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given a concrete representation by topological means. The represent-
ation is obtained in terms of Rice's original definition of recursive

real mumbers which, we will recall is equivalent to the one we have employ-
ed earlier in our development of notation systems.

A sequence {nJ} « C N of integers is said to be dyadic if the
J=1

following conditions are met:

]
(1) 'J 2 0 [nJ =0 *ve n, =1] ;
(1) 3KY¥, > K [a, = 0] J

(iii) Je €Ny, 20 [nJ = U(uyTl(e,J,y))]

J

The number « is a recursive real number in the original sense

of Rice [195L4] if there exists an integer e which is a GSdel number

for a dyadic sequence such that:

a = Uyt (e,d,5))27 b
3=0 1 '

The following proposition, as we show, enables the straightforward

construction of M(IR) and M(R" ):

Iv.1 Proposition: If x € Q for Q the set of rational numbers,
and thus y = ¢/d for some c, d € IN, the function £(c,d,j) = {XJ}
is a partial recursive function, for {XJ} the Jth digit in the
dyadic expansion of x .

Proof: Case [4] Sec.3 pp.16-18 in the manner suggested by

Rice [1954].
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By way of the proposition, the rationals, Q, are in fact, recursive
real numbers, and we may denote be IN(Q) and N(Q") those sets of R-indices
and n-tuples of R-indices of Q and Qn respectively, from the G6del numbers
of the recursive predicates used to generate the dyadic sequences that
correspond to the rational numbers. Meking use of the equivalence rel-
and ~

ations one could effectively discretize R &and

“n(Q) n (")’
R by means of induced equivalence classes, i.e. members of R or r"
would be equivalent in N(Q) or N(Qn) respectively if they have the
same rational numbers in a sufficiently close fixed approximation; in
which case their G8del numbers would be the same. This can be performed
by defining two elements in R to be equivalent under rational approx-
imation if there exists a rational number sufficiently close to both
elements for finitely many places of the initial segments of their
decimal expansions, or alternatively, whose difference is less than

10-K for K € N, sufficiently large and fixed. This procedure does in

fact yield recursive metric spaces which we can denote as

Q(R) = <(H(Q), vygy )s D>

and

MR = <(WQ), vy opy. D>

for DQ and DQn the restrictions of DIR and D:Rn to QM(R) and QM( ) .
Unfortunately, the spaces QM(IR) and QM( R") do not yield interest-
ing enough topological structures for many of the operations of real

analysis that one would desire to have in a recursive setting. More
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12/
specifically, one observes that the natural topology—on QM(IR) that one
can generate by means of a basis of spheres, having rational radius

S(B, K), formed from the metric DQ as follows

S(8,k) = {a S QUE) : D (B,0) < 2%y

for @ € QM(IR) and K € IN yields a topology that is separable, and

thus, second countable. But, as [Qf = |v|, and thus MR )| = 1%l
from the effective isomorphism of QM(R ) to N, we can express QM(IR) as
U {a,}, the union of one element sets, each containing no non-degenerate

£

sphere of positive radius, i.e. a sphere of radius 2_K for some K € W.

13/

By the well known category theorem of Baire for metric spacesT=

M(R)
cannot be a complete metric space. More importantly for our purposes,
QM(IR ) is not recursively complete.'l—h'/ Since IR is a complete metric
space;l-z/ it seems not unreasonable to desire that that property be
retained in a suiteble recursive representation of R. To accomplish
this, by familiar techniques of analysis,é/ wve may take as the desired

recursive metric space, the recursive completionl'l/ of QM(IR), which from

the simple observation that Q is dense in ]R,!'-g/ will yield precisely
the space M(IR) of Moschovakis [1965] for the recursive real line.

By way of the above construction, it is an additional observation that
not only is M(IR) recursively complete, but recursively separable and
recursively connectedlg-{ Thus, we preserve in recursive analogue,

important topological features of IR +that can be made use of in the

recursive setting for rational choice.

C
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V. Recursive Rational Choice

In the present section, we will presently employ the concept of
a recursive metric space, as developed in the preceding section, to char-
acterize Richter's [1971] framework of rational choice in a recursive
setting. From this setting, based on the recursive real numbers that
correspond to rational approximations of a subset of I?E, we obtain the
notion of a recursive rational choice function. Following this develop-
ment, we demonstrate the principal result 6f the paper.

Begin by considering a set X which is compact and convex in IRE,
which we take in the usmual sense to mean the space of alternatives for
the problem of consumer's choice. Let us denote by R(X) that subset of

the recursive metric space M(R®) which we characterize as:
R(X) = ncl{ac € MK") : 3x €X "+ t(x) € a}

for t:R® -+ N(Qn) the function that associates n-tuples of real numbers
with Gdodel numbers of a notation derived from a fixed approximation by
memebers of Qn, and where ncl denotes the recursive closure in the natural
topology induced by the metric on M(R"). Consider next the following

two items:

Definition I: IﬁR = {A €EP(R(X)) and A is recursive}

Definition II: C: I, + P(R(X)) end VA € IF [C(A) C A]

We will term the pair <R(X), IFp > & recursive space of alter-

natives and the set function C a recursive choice on <R(X), ]2{>. The

elements of the collection of alternatives H%, being recursive are

[T G U S



thus effectively computable, and a recursive choice is defined on
effectively calculable subsets of the space of alternatives teking as
values, subsets of the elements of its domain. We will say that a

recursive choice on <R(X), ]%i> is recursive rational if the following

two items exist:

Definition III:

v

: R(X) x R(X) = {1,0}

Definition IV: £ : R(X) - IN such that:

(a) f is a potentially partial recursive function
(b) Ya, B € R(X)[(a 2 B) » f(a) 2 £(B)]
(c) YA € T [C(A) = {a : ¥ € A(f(a) 2 £(B8))}]

From the above two items, a recursive choice on <R(X),]ﬁt>

os recursive rational if there exists a binary relation on pairs in

R(X), and a function that is potentially partial recursive, i.e. a
function that can be extended to a partial recursive function, defined j
on R-indices in R(X) with range in IN, that preserves the order
induced by > , (which may in fact be partial), such that the values
of C on members of H% are the order maximal elements, in accordance 53
with f, on the domain of C . Thus, the notion of a recursive rational
choice includes both the notions that the choice is rational in the

sense of Richter [1971], that the choice is described in terms of the

order maximal elements of a binary relation, and that the relation is

o s i

representable, again in Richter's sense [1971], by means of a function

that can be extended to be partially recursive.
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The following lemma is providéd as a prerequisite to the main
result and has the straightforward interpretation that a recursive
rational choice function preserves recursiveness from its domain or
alternatively, that its co-domain, per fixed element in its domain, is
effectively computable as a recursive set. A consequence of the lemma
given in the discussion that follows is that a recursive rational choice

function enables an effectively computable representation of rational

choice by means of Turing machines.

V.l Lemma: Allow (C to be a recursive rational choice on

<R(X), Fp > then for any A in the collection Ty » C(A) € T, -

Proof: Let A be a recursive subset of R(X), and consider C(A). If
it should occur that ~3a € A[Y¥B € A(f(a) 2 £(B))] for £, a potentially
partial recursive function, then C(A) = ¢ and the result is entirely
trivial. Then assume C(A) # ¢ and allow m(A) = {f(a) € N: f(a) = max £}.
Then C(A) = f-l(m(A) N A, and we see that the lemma follows from the
fact that f is potentially partially recursive. For then there exists an
extension c¢f f, %,, such that f is in fact partially recursive. By
definition, being the maximal value of f over A, m(A) is trivially recur-

sive and therefore, since f is partially recursive by well known facts

(Rogers [1967] Sec.5.3, Th.VII) ?-l(m(A)) is recursive. Then by a

further elementary fact of recursive sets (Rogers [1967], Sec.5.5, Th.XIVﬁ@/,
since A 1is recursive and ¢ S;?, the result comes from the expression

of (C{(A) as the intersection of two recursive sets. Q.E.D. ,a

T
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The interpretation of the above lemms can be enlarged upon as
follows. Consider the co-domain of a recursive rational choice on

<R(X), T >, {C(ﬂ%‘ )} , Wwhen its domain is restricted to a sub-family

J JEW

of I¥,, {(IF, 1}
R RJJGN

natural numbers. Then, by the result of the lemma, since for each J € IV,

, which one can effectively enumerate by means of the

IF‘It € I%{, C(D% ) is a recursive set of n-tuples of R-indices in Hh s
J J J
and therefore {C(TF, )} comprises a sub-family of ITF_ vwhich one
RJ JEN R

can effectively enumerate by means of the natural numbers. Since W 1is

a recursively enumerable set (by item iii on page 14 it is the range of

the identity mapping which is primitive recursive) both {Eh } and '
J JEmW 3

{C(Hh )} may be regarded as recursively enumersble families of ;
J JEm ) ‘
elements in Iﬂz‘ What this means in turn is that given an effective 4

listing of sets of alternatives that are themselves effectively computable
sets comprised in turn of n-tuples of R-indices of effectively comput-
able numbers, i.e. recursive real nuibers, a8 recursive rational choice
will generate an effective listing of the choices made from the given

collection of alternatives. Moreover, the choices themselves will be

il

effectively computable sets of n-tuples of R-inda of effectively
computable numbers.

If we return briefly to the discussion of Church's Thesis given *
in section II, the above feature of a recursive rational choice function ]

yields a further interpretation in terms of equivalences (ii) (iii) and ]

(v) of Church's Thesis given on pages 13 and 1U of section II, which 1

we restate:
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(ii) A Partial Recursive Function is equivalent to a Turing

machine that sometimes halts, i.e. when it is defined.

(iii) A Recursive Function is equivalent to a Turing machine that

F always halts.

3
t{ (v) A Recursive Set is equivalent to a set whose characteristic
e

function is recursive.

Then in terms of the equivalences, if we substitute the attribute
recursive by the notion of effectively computable by a Turing machine,

the paradigm of choice behavior that recursive rational choice describes

3"

is one that in prineciple is comprised of mathematical concepts and

cperations that can be performed by an ideal device of artificial

intelligence:g;/

(a) Elements in R(X) are machine computeble in principle by
means of the recursive resl numbers.

(b) Elements in ﬂ% are machine computable in principle being
recursive sets of elements in R(X).

(e) Preferences on R(X) x R(X) are machine computeble in
principle by means of a representation that can be extended to be
partially recursive.gg/

(d) Choices made from members of T, are machine computablie in

R

principle since by Lemma IV.1l such choice are themselves elements of Ek .
(e) By Lemma V.1 if we can effectively list by machine
computable procedures sets of alternatives that are each individually

machine computable, then we can effectively listgéf by machine computable




T
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procedures, the choices made from the sets of alternatives, which by
item (d) will be themselves machine computable in principle.

We may in fact, take items (a) - (e) as a suitable definition

for the paradigm of rational choice to be recursively representable on

& recursive space of alternatives.

Definition V: A choice function C : T, - P(R(X)), on a
recursive space of alternatives <R(X), n% >, is recursively representable

if items (a) - (e) are met.

V.2 Proposition: A recursive rational choice on a recursive space of

alternatives is recursively representable.

Proof: By construction of <R(X), B%{> and Lemma IV.1l in

application when required. Q.E.D.

By an obvious comparison, we see that recursiveness and hence,
machine computable in principle, replaces, in the number theoretic
setting, the concept of representability derived in terms of the wff.s
of the elementary formal systems discussed in section II. However, an
analagous distinction must be made between the assertion that a math-
ematical construction can obtain a recursive representation and, as we
shall see, the somewhat stronger assertion that a given recursive repres-

entation of a mathematical construction has a recursive realization. To

say that a recursive realization can obtain is to say that there is a

computational procedure, in the present context, a Turing machine, that

Sandhbiad

ol e,

1l e




-37-

will actually perform the mathematical operation of the entire model, given
that the operations that mathematically describe the model can themselves
be represented by camputational procedures. To make this latter notion

precise, we require the definition that follows, of recursive solvability,

which we will in turn employ to define recursive realizability.

Definition VI: A set A, of natural numbers, is said to be

recursively solvable if and only if there is a general recursive function

¢ : IN > IN such that:

¢(n) =1 if n€A

0 if né¢ A

¢(n)

If A is not recursively solvable, then A is said to be recursively

unsolvable.

By a further application of Church's Thesis contained in equivalence
(v) if a set is recursively solvable, then it is obviously a recursive
set, thus having a characteristic function that is a recursive set.
Alternatively phrased, we may say that a set is recursively solvable
if it is possible to determine by machine computable procedures the
membership of the set unambiguously, recalling equivalence (iii) above.
We can now obtain a definition of the recursive realization of rational

choice in terms of the solvability of its graph.

Definition VII: The graph of a recursive rational choice function

C, denoted as graph (C), in the domain ({IF, } C IF, , and co-domain
RJ JEW R
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(Eh )} is the collection of pairs < , C(H} )> indexed by
J JEW J J
3 € IN, viewed as a subset of P(M(R")) x P(M(R")), the product space

2/

of subsets of M(E"). We will say that graph (C) has full domain

if for some K € IN, and all pairs i * 3 > K, Fp A T ¥ ¢§{

J J

Definition VIII: A recursive choice on <R(X), Fp > that is also

recursive rational is said to be recursively realizable if and only if

for any choice of full domain {TF_} C IF, , graph (C) is a recursive

set of the product space of subsets of M(ER"), P(M(IH") x P(M(E").

The meaning of Definition VIII is simply that frou. among the possible
members of graph (C), which we may view as being pairs of sequences in
IFR xJFR , and thus having components that are effectively-computable,
it is possible to unambiguously describe the membership of graph (C)
by effectively computable means. By way of Definition VI, Definition VIII

yields, by way of this last observation, an immediate proposition.

V.3 Proposition: A recursive choice on <R(X), Fp > that is
recursive rational is recursively reslizable if and only if for any

choice of full domain {FR } C IF_,, the graph of C 1is recursively

J JEW
solvable.-2—6-/
The principal result of the paper, to which we now ..rn, serves

to demonstrate the distinction, within our recursive setting, between

the notion of effectively computable representation of rational choice,

21/

and the somewhat stronger notion of an effectively computable realization—
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of rational choice as set forth in definitions VI, VII, and VIII. The
means we employ to demonstrate this distinction, is to prove that for
any "reasonable choice" of domain,-2—8-/ a non-trivial-2—9-/ recursive rational
choice has an unsolvable graph, and thus by Proposition IV.2 cannot be
recursively realized. The argument of the proof can be summarized as
follows. We first show that statements about n-~tuples of R-indices in
M(]R") can be reduced to statements about single R-indices in M(R) by

a suitable checice of notation system. In the new notation system, for
which subsets of M(R") may be regarded as subsets of M(IR), we then

show that there does not exist a predicate ¥ : IN - IN. The restriction

of which ¥/S, for S equal to the set of R-indices of {C(TF, )}
Fyjem

that comprise the co-domain of graph (C) for choice of full domain

{IF'R } < T, can have a graph that is itself recursive. The non-
J EW

recursiveness of graph (¥/S) is shown to follow from the fact that by
means of the Kleene-Mostowski classification of subsets of the natural
numbers, graph (¥/S) is not a Zo - setc3—Q/

It then follows that if graph (¥/S) is not Eo-ﬂo, then there can
be no recursive function realizing graph (¥/S) where the recursive

function ¢ : IN +» IN realizes graph (¥/S) if and only if:

¢(n) =1 if n € graph (¥/S)

o(n) =0 if n§ graph (¥/S)

By Definition V, therefore, graph (¥/S) is recursively unsolvable, which in

turn violates a necessary condition that graph (C) be recursively solvable.

. ) STEREEARE
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It is worth remarking that this procedure of proof thus presumes that the
decision for whether an element of graph (¥/S) is, in fact, an element
of N, has been solved by way of the notation system, and our concern is
then for a given element of IN; is there an effective procedure to
determine whether or not ¥/S is satisfied by that element.

The following is a statement of the theorem we next proceed to

demonstrate.

v.h Theorem: Allow <R(X),IFp> to be a recursive space of

alternatives derived from the recursive metric space of IRn, M(R™),

for R(X) the recursive representation of a compact, convex subset of

n

]R+. Let C: FR > FR be a non-trivial recursive rational choice on

<R(X), T, > and select from the class of sequences (TF )m, any element

R
(TF, } C F_, that comprises a full domain for graph (¢) CTF_ x E . ]
R - "R — "R
J Jen
Then, per fixed selection of {Fp } , (1) the co-domain of graph (C) ‘
J JEN :

>
is non-recursive, which implies (2) graph (C) is recursively unsolvable X
<
9

and therefore (3) the choice function C cannot be recursively realized.

Proof: We begin by making the observation that it is possible to
make a straight forward correspondence from the notation system
(]N(Rn),'\lm(Rn)) which we have employed to construct the recursive
metric space M(R™) to a notation system (ﬁQ(R),’\/ﬁ(Rn)) having

the same equivalence relation N]N(Rn)’ and where fN(R) is the set

of R-indices for the recursive real numbers under an appropriate choice

3
{
:
i
q

of GBdel numbering. Before stating this as a proposition however, let
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us remark that the technique of G¥del numberings employed to assign
natural numbers to the partial recursive functions is actually a method
to encode the defining equations for the function arithemtically by means
of the products of prime numbers raised to exponential powers of odd
integers (as explained in Kleene [1950] p.206, p.284 and pp.223-231,

in particular). Furthermore, GSdel numberings are not unique (as
explained in Rogers [1967] sections 7.8 and 1.10) and those properties
that are known to be recursively invariant, such as unsolvebility, hold

under all admissible codings (Rogers [1967], p.95).

V.4h.1 Proposition: For an appropriate choice of Gddel numbering,

there exists a notation ii(li) of R-indices for the recursive real

mumbers for which IN(R") c m™(R) .

Proof: In the prime factorization representation'(Kleene [1950], ».230)
rename the nf-'h prime as 2 for n the dimension of 1?2 and for
choice of GY8del numbering, take that enumeration of the initial primes
co-finite with the initial segment {Po,...Pn_l}, with the nth prime
renamed. GCenerate next, a coding for which the assignment of the R-indices
of the set of numbers {Po""Pn-l} is the value of the prime it
indices. By Proposition IV.1 this can be performed by virtue of the
fact that the prime numbers are elements in Q . Let N(R) denote the
entire set of R-indices generated in the choice of Gddel numbering. Then
from the fact that there exists partial recursive functions to determine
the algebraic operations of a field (Moschovakis [1965] Lemma 4) and

that constructive proofs exist for the equivalence:
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1im (@ x B ) = lim a x 1im B
n n n n
n-eo noe onad

by way of Rice [1954)] Theorem 4, a notation system for the recursive real
numbers is closed under multiplication. Define next, for n(f) an
n-tuple of elements of IN(R), the mapping vy(n(f)) derived from the

construction of N(R") given as

WR™) = {en(f,),..., n(£)> : n(f),...,n(f) € WR}

= > =
v(n(f)) <n(fl),..., n(fn) " PJ
J=0
From the choice of notation, we see immediately that v : (IN(R))" » INR)
is injective, i.e. one to one and therefore that N(R") Cc N(R) in

a8 well defined manner. Q.E.D.

The effect of the proposition is that we may consider n tuples of
R-indices in M(]Rn) as R-indices in the notation N(R) of the metric

space:

M(R) = <(I(R), ~p o)), D>

which is in fact a recursive metric space of ]Rél/.

By virtue of the mapping g, for each point in M( R"), there is a
A
unique point in M(R) that corresponds to its image under g. There-~
fore, sets in M(R") will correspond to sets in M(R) in a well defined

manner. In particular, the set R(X) and the members in’ the class ]F‘R

e PP S Ry oy
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will have well defined images in M(IR)Q?-{ i.e. for ¥ € F_, ?
J .

y(]l“J ) = {a EM(IR) : 3B E IF, CM(I") +*« y(B) = a} and etc.

We will require the following two definitions in terms of items .

given in Definitions I-III of Appendix I, before the statement of the

next lemma.

h Definition IX: A relation is potentially K-enumerable or
r
potentially anti-K-enumerable, if it has an extensiorr3—3/ which is

K-enumerable or anti-K-enmerable.é-)i/

Definition X: A relation is potentially-partially-K-enumerable

or potentially-partially-anti-K-enumerable if it can be extended to a

relation that is partially-K-enumerable or partially-anti-K-enumerable.32/

We will not introduce the necessary formalism to provide a
proof of the next lemma, which can be obtained by means of a reformulation

of Shapiro's Extension Theorem ([1956] Theorem I.6), which one can view

as a means to extend the Kleene-Mostowski Hierarchy in Appendix I to

the domain of the partial recursive predicates.

v.h.2 Lemma: Allow U P(IW ) to denote the set of all relations
JEW
on IN, and assume that T €y P(lll‘lJ } is the restriction of some
JEN
Y€ y P(NW)) where ¥ is potentislly partially I, or m. Then
JEIN
I is the restriction of same ¢ € y P(le) where ¢ is EK or ..
JEN
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To commence the proof of assertion (1) of the theorem, select from

(]FR)]N an element {IIFR } for which J K€ N s.t. Vij > K
J Em
T, A + ¢, and consider the image of graph (C) under the mapping
J i
g which consists of a pair of sequences <{Y(]FR )} R {Y(C(IFR N}

J FEm J  EW

in the product space : P(M(R)) x P(M(R)). By means of Theorem VIII
of Rogers [1967] (Sec. 5.3 p.65), the elements of the sequence

{Y(C(]F‘R )3} forming the co-domain of the image of graph (C) under
J JEW

the mapping g are recursive sets of R-indices in AM(]R )ié/ by virtue

that each TF, € F. . From the fact that C is non-trivial and thus

R R
J
on {TFp } , which was chosen full, {C(IFR )} is not the null
J JEW J JEm
sequence; neither is {y(C(F_ ))} , therefore. Again, from the
R
J JEW
fullness of the domain, for J > K, we obtain U Y(C(IFR )) ¥¢ , and

J>K J

we can choose from the indices in excess of K, a finite subcollection

{Jrs-+-5.} for which U y(C(F, )) # ¢ . Purthermore, per choice of
1 m {=1 R,Ji

subcollection, since the class of recursive sets is closed under finite

unions (Theorem XIV of Rogers [1967] Sec. 5.5 p.68), 6 y(C(TF Y) is

\31/ = T

itself a recursive set of R-indices in M(R

We require the use of the following lemma.

V.4.3 Lemma: The image, under the mapping g of the codomain of
a non-trivial recursive rational choice with full domain, is contained

in a bounded interval in M(R).
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Proof: From the fact that the original space of alternatives X 1is
compact and convex in ]R_r'_1 , and therefore bounded, elements in R(X)
are then component-wise bounded by an element in M(]Rn) , say the element

(n(cl),..., n(cn)) for c, = comstant, i =1,..., n, in the order

induced on M(Rn) by the strong vectorial order on piig , i.e. for ¥x ,
y € Bn, X £ Y if and only if X4 < ¥; for all i =1,...,n. Then

in the notation (IN(R), '\/"(R)) , the image of R(X) is bounded by the

N
n-1 n(c )
element ¥ P J+a1 in a recursively induced order on the notation

=0’ 38/
agreeing with the natural order on IR™. We may then regard v(R(X))

as a set of R-indices of recursive real numbers in the interval [O,RK]

where R.K is the recursive real number whose equivalence class is

n-1 R
named by PJn(cJ+1) in IN(R) . The lemma follows from the trivial e
J=0 e
‘]
observation that for any IF'J EF,_, C(IF‘J) C R(X) eand therefore, S
v(e(T))) € v(R(X)) . Q.E.D. "

Definition XI: Allow S to be a collection of recursive real

numbers, and define the relation IS : W + {1,0} as:

Is(a) =1 iff. a is an R-index of ﬁ(IR) for
some x €8,
Ig(a) = 0 otherwise, =

Ao

e L i
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for subsets {8

~U6-

SK} of S we can define

17 *eee
K K
I1Us, = VIS, , and similarly for
3= =1 Y
a A
INs, = IS .
=) =

Definition XII: A set of recursive real numbers, S, is said to

be effectively indicated in M(IR) if

(1)Va EWN Is(a) 0.

(2) The set T = {a EM(R) : Ig(a) = 0}  is such that

(1) Vo €NI (a)*oO,
snr

w1t crt for q any positive
sNT (§+{q}) NT

recursive real number.

What the definition says is that if we can effectively indicate
a set of recursive real numbers in ﬁ(l!), we can first effectively
identify a non-empty set of R-indices of the set in M(R) , for which
there is also the means to determine the indices of its complement
unambiguously, where the indication of the complement is, in a sense,
"well contained", in that the indication is not affected by positive
translations. The somewhat ad hoc flavor of definition XII can be dis-

spelled by the realization that among the sets of recursive real numbers
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that are effectively indicated are the intervals, [0, RK], for RK

5 a positive recursive real number and from which the following proposition

derives by straight forward verification of the definition.

V.h.4  Proposition: Let S be a set of recursive real numbers
of the fom: [0, RK) or [O’RK] for R, a recursive real number in "3
R, - {0} . Then S is effectively indicated in M(R) if and only if, '*

. . ™ A, . o
in the notation {IN(R), ]N(R)) the intervals [O,a(RK)) or [0, a(RK)] ‘

are effectively indicated in M(R) .

Proof: By Proposition IV.1, the rationals are recursive real
numbers, from which for a(yx) and R-index of a rational element of
s, Is(a(x)) =1 . The verification of items 2(i) and 2(ii) for 4
the set T is obtained by selecting a rational element y in the
complement of S in R _- {0} whose R-index, a(y), satisfies
I§m(a(y)) =1 on the subspace of M(R), ﬂ(l?+) . This establishes .+

the sufficiency of the proposition.

To obtain the necessity of the proposition it will suffice to 1
show that the recursive real numbers are order isomorphic to their N ?
indices. To this end, we may observe that, in the manner of Lemma 5 'i;.'

of Moschovakis [1967], p.57, the partial recursive function defined as

less (a(x), aly)) = x <y

for x and y recursive real numbers, and a(yx) and a(y) their

respective R-indices in (m(R)’Nﬁq(R)) generates a recursive order

isomorphism by means of the scheme:
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less (a(x), a(y)) ~ ut[Tl(a(x), (t)o, (t)l) e

T, (aly), (£) 5 (£),) .-,
r(ul(t),) - r(ule))) > 27t

where r(i{(t))) is the same function we have employed in section IV ,
P-23, to characterize the R-indices. The function less(a(x), a(y))
can be viewed as an algorithm when applied to R-indices of recursive
real numbers, and will terminate if and only if x < y in the natural

order on 1IR. Q.E.D.

It now follows that per choice of finite subcollection {jl,..., Jm}

m
of indices for which J; > K i=1,...,m and thus y y(C(TF
i=1l

PR

from the recursiveness of each Y(C(IF i)) as a set of R-indices in

J

M(R) , Sy(C(IF .)) C [0,a(R,.)] , by Lemma V.4.3, where a(RK) is
i=1 i T K

the R-index of the bound derived for vy(R(x)). Then by Proposition V.k.k, q

S v(C(F
i=1

in M(R). We show next, that this leads to a contradiction by way of

} 1is a recursive subset of an effectively indicated interval

T

the following concepts:

to be elements of U P(INJ) ]
JEW y
such that @l is n-any and ¢2 is m-any. Then 451 is strongly reducible 1

Definition XIII: Allow @1 and <b2

to 02, written 01 << ¢2 if there are partial recursive n-aty functions

39/
£1seees £ forwhich O, Axgseees X)) Op(f(xpseees X )oees £ (xp0nees x )13

e . s .7 . lal
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Definition XIV: In terms of the Kleene-Mostowski Hiera.rchyh—o/ .

a relation ¢ is strictly L% if ¢ itself is T and for any L

relation A is such that A << ¢ .,

To obtain item (1) of the theorem, assume that the co-domain of
graph () was in fact recursive, and then that by way of the coding

function v : ™™ >IN, U y(C(]FR )) were recursive. Consider next

JEIN J
graph ( y(C(]F‘R ))) which is identical to the function IS defined
1=1 3

in Definition XI with S = 8 Y(C(]FR )). Then since graph

i=1 3
( S y(C(IFR )) Cgraph ( y Y(C(IFR ))), one sees that graph ( Lnjy(C(]FR )B))
i=1 Ji EIN 3 i=1 ji
is a .restriction of graph ( y *y(C(IF‘R ))). Since U y(C(IIF‘R )) € [O,G(RK)]

I 3 i=1 34
and by choice of {jl,..., 3}, Sy(C(F ))+ ¢, 8 y(C(F )) is

m R,. . R,.

i=1 Ji i=1 3i

effectively indicated by the effective indication of [O,a(RK)] given
by Proposition V.4h.k by way of items 2(i) and 2(ii) of Definition XII
and the fact that IN - [0,a(R)I C I - (y(C(F, )). For

i=1 Ji

S = 6 y(C(F, )), if it were true that graph ( Oy(C(F, )) were
R,. R,.
i=1 Ji i=1 Ji

recursive, then the function IS would be recursive, as its characteristic
function from equivalence (v) on p.13 of section II; but as in this

instance, 1 is effectively indicated, by Theorem II.10 and Theorem II.2

S

of Shapiro, [1956] pp.291-294 since IS is a recursive set of natural

numbers, the relation that portrays Is on N x {1,0} must be strictly

z It follows, then, by Kleene's Hierarchy Theorem ([1950], pp.283-28L),

o

that the function IS cannot be 21 within the Kleene-Mostowski Hierarchy
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Al

of Appendix I, and thus IS cannot be Zo—ﬂo by Post's Theorem

([1954], pp.283), by means of which it would have to be L N T Ef
Further, if IS is strictly I,., then graph (BY(C(FR ))) is not

3
2 i=1 34 ,

|

potentially recursive, and hence if it cannot be extended to be
recursive, by Lemma V.2 it cannot be the restriction of any recursive

graph, and in particular, of a recursive graph ( U Y(C(IF, ))). But

W o

in that case, if graph (U Y(C(]FR ))) 1is not recursive, since
JEm J

graph (U Y(C(]F'R ))) = Is with S= U y(C(n«“R )) is the :

JEI 3 JEm J 1

characteristic function of U Y(C(IF‘R )), then U Y(C(IFR )) is
JEW J JEW J

not recursive. The latter item is in contradiction to the assumption

that the co-domain of C 1is recursive, establishing item (1) of the

i B

theoren.

We can now obtain item (2) of the theorem by observing that if the
co-domain of graph (C) is not recursive, and thus not Zo- LS in the ‘
hierarchy, it cannot be potentially z‘,o- T Then by another application

of Lemma V.2 , if we make the assumption that graph (C) is recursive, A

a contradiction arises from the simple fact that the co-domain of
graph (C) is a restriction of graph (C).
Item (3) of the Theorem follows from item (2) by way of Proposition

V.3.

This concludes the proof of Theorem V.h ., Q.E.D. 1
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VI. Further Discussion and a Specific Example.

Before turning our attention to a specific example, a few comments
on the interpretation of the result thet we have just demonstrated are
in order: (1) The first item to mention is that if rationality is
constrained by effective computability, within the frameowrk of recursive
functions, as a representation of effective computebility, the notion of
realization is stronger than the notion of representation in the sense
that the latter does not imply the former. Which is to say, that an
effective listing of effectively computable sets of alternatives, as can
be obtained from a recursive rational choice function does not imply
an effectively computable procedure, for the correspondence between
the two listings, viewed as the graph of the choice function. This
item can be given a further interpretation in an economic context by
means of considering the traditional concept of a demand correspondence
in a recursive setting. Alternatively, we can express this item in
terms of types of computing devices. A recursive rational choice function

41/

on a recursive space of alternatives, in a sense—', represents a

collection of types of computing devices: (i) There is a computing device to

generate elements of the space of alternatives, viewed as recursive real
numbers; (ii) There is a computing device to generate sets of alternatives
in the space, viewed as recursive subsets of the space; (iii) There is a
computing device to generate choices from the sets of alternatives,

viewed as a recursive order-preserving function of preferences defined

on the space of alternatives; (iv) There is a computing device to

generate sets of chosen alternatives, viewed as recursive subsets of

hdldnd i
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sets of alternatives; (v) There is a computing device to effectively
list sets of alternatives, viewed as the domain of the graph of a
recursive rational choice function; (vi) There is a computing device to
effectively list sets of chosen alternatives, viewed as the co-domain

of the graph of a recursive rational choice function. Types (i)-(vi)

of computing devices comprise, by way of Definition V of Section V , a
recursive representation of rational choice. However, the theorem we
have Just demonstrated says that there cannot be a computing device, that
when presented with the information of the devices (i)-(vi), will

unambiguously, and correctly perform the task of associating, for a

given listing by the devices (v) and (vi), recursive sets of alternatives

with the recursive sets chosen from them. This is the meaning of the theorem's
result that the graph of a recursive rational choice function is not g
recursively solvable. {2) The second item worth mentioning is that the
definition we have employed of recursive realization is by no means R
absolute, although it seems perhaps the most natural one to consider on *
intuitive grounds. Another version of recursive realization might

reasonably consider that the existence of a machine to perform a correct

association of sets of alternatives, in an effective listing, with the’
sets of choices from those alternatives, in an effective listing, as
basic to a recursive representation of natural choice and from this,
attempt to arrive at those recursive structures that give rise to the
representation in this sense. This version would then consider a Turing
machine realization in the sense of Proposition V.3, as a recursive

representation of rational choice, and the existence of the requisite
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class of relations, not necessarily recursive, and not necessarily
rational in Richter's sense, that are implied by a representation in

this sense as a recursive realization. A version of recursive realization
in this sense would then be relative to the complexity of the required
computation by the machine to represent rational choice, differing

h2/. (3) The

relations being required by differing levels of complexit
second item brings us to a third consideration of the interpretation of
the result. It would be an incorrect inference from the result of the
theorem to say that a recursive rational choice function as a paradigm
of economic behavior does not exist. The first reason being the
discussion provided in the second item above. The second reason is

that we may, and should, view the theorem as a statement of the amount
of information mathematically contained in recursively enumerable
families of recursive sets of alternatives as being insufficient to
effectively determine a proper correspondence to a recursive enumeration
of the choices from those alternatives by the class of computatioral
procedures representable by Turing machines. This is not to say that
within the notation of the space of alternatives provided by the

naturel numbers that there may be in fact other sets of natural numbers
that do in fact provide enough mathematicel information for that task

to be performed. However, this consideration leads us to topies found

within the theory of the relative solvability of recursive structures,

4
which we discuss in a forthcoming paper—éj.

| P
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! The example we now provide illustrates the significance of Theorem

V.h in the context of a rational choice function definition:

(1) x=NW
(2) 2 : X x X+ {1,0} such that

fornl, n2€X, n 2 n, <=> n, - n,> 0
(3) £: X+ IN for f = the identity function IN
(W) IF‘R = {A€ P(N) and A is finite }
(5) cC: Ty P(IW) such that

YAE T

B C(A) = {n€A :¥m€ A (f(n) 2 f(m)}

The above items have the following interpretation. The set X we
take as the space of alternatives, which is simply the set of natural
numbers. The binary relation > we take as a preference order and is
merely the natural strict order on the natural numbers. The function
f we take as an order preserving representation of the preference order
2 . The set ]FR is the collection of feasible subsets of alternatives,
and is merely the class of all finite subsets of W. The function

C: Fp » P(N) we term a choice on < X, Fp> and is defined to select
the order maximal element from a member of the family ]FR . Then, from
the fact that any finite set is recursive (Rogers [196T], 5.1, p.57), and
the fact that the identity function on the natural numbers is primitive
recursive (section III item (c) p.13 ), and thus partial recursive, the
interpretation of items (1) - (5) of our present example is seen to

satisfy Df.s I - IV of Section V. If we then regard N as its own

notation;win a sense, it becomes its own recursive metric space, and

P U WY "D W S
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Let us now examine the recursive realization of the example. We first

]
4
items (1) - (5) then comprise a recursive rational choice on <X,TF > . ‘1
<

check to see that the example is recursively representable. 1

Choose from ]FR in this case the following class of subsets:

{1}, {1,2}, {1,2,3}, {1,2,3,4}, ..., {1,..., n},...

L ’*
which is simply the listing, in order of occurence, of the co-final )
segments of N which we will denote as {FR } . Clearly, for any

J JEW
jJ € W, we know without question that ]FR = {1,...,3} and it can be -

J .
said that the class {]FR } . is determined effectively by its listing -]

) JEN

on N, or that it is effectively listed. Additionally, it can be seen

that for all distinct pairs of indices i,) members of {]F'R} are
3 JEW
such that IF, A IF_, % ¢, and thus {TF_} comprises a full domain
R R, R
J i JEW

in the sense of Df. VII of Section V , for which the corresponding

class of elements chosen becomes

C({l}), C({l,z}), c({la293})s C({1,2,3,h}), “"Ac({l,""n})

which is easily seen to be simply the listing, in order of occurence,
of the singleton sets of IN. Then, for any J € I, we know without

question that for IF, = {1,...3}, C Fp ) = {j} by definition of "
J !j .-.-1
the choice function. An inspection of the foregoing then reveals that o

items (a) - (e) of Df. V of Section V are satisfied and that therefore

‘—

the choice function 'C of the example is recursively representable.
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Consider next the graph of the choice function, which is comprised
of pairs <{1,...J1L{j}> in TFp x F, indexed by j € IN, the co-domain

of which, is an effective listing of singleton sets of IN. To

Uhyen

see that the co-domain of graph C in this instance is non-recursive

observe first that {J}JGJN is in fact a correspondence of the form

D: IN ~» IF‘R such that

VIEN D(3) = C(TFy)
J

Then, by definition of the choice of domain {]F’R } and the choice of
J JENW

f as the identity function on N to represent the preference order 2,

C(IFR ) has the explicit form of:
J

C(]FR ) = ary max f]F

J J RJ

and thus that
D(3) = any gla.x flIF

By

which reads the value of ]FR that maximizes the function f when restricted

J

to the set IF‘R . Obviously, by the equivalences, the co~domain of graph
J

C 1in our example would be recursive if and only if the correspondence

D : N » IF, were a recursive correspondence of jJ € N. It is known,

R -

. . . . hs/ s

however, that D(Jj) = Ay 1318.)( fl]F cannot be recursive as it minorize :
R »

J "

f

K
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every recursive correspondenceﬁé/. The non-recursiveness of graph (C)
in this instance, and thus its non-realizability, follows from the now
familiar techniques of reasoning of Section IV that revolve around the
use of Lemma V.2.

What the example indicates is that even when the notion of recursive
representation is restricted to an effective listing of the maximal
elements of effectively listed finite subsets of the natural numbers, the
computational difficulty in realizing the representation exceeds that
which can be obtained by means of the recursive functions. One can,
however employ the distinction between representability and realizability,
obtained by the unsolvability result of Theorem V.4 +to place a minimal
bouna on the degree of difficulty that a computational reaslizetion of
rational choice would entail by means of a classification of complexity
associated with relative degrees of unsolvability. We address this issue
in the specific context of recursive representations of uncompensated
demand correspondences in a sequel paperﬁljlt is in this last item that
we sincerely believe the larger significance of recursive function theory
to mathematical economics lies, and that is to provide a means of measure-
ment of the relative difficulty that the realization of its paradigms,

by effectively computable procedures, would entail.

P Y S N
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APPENDIX I

To obtain the principal result of the paper, we will require the
following classification of subsets of the natural numbers, known as
the Kleene-Mostowski Hierarchy (Cf. Putnam [1973], pp.T77-80 and Hermes
[1965] pp.192-202). The classification is made in terms of the structure
of the definitions that define the subsets. The definitions are in turn
given by bounded quantified expressions involving recursive predicates.
The following diagramme depicts the hierarchy, and the definitions that

follow provide an interpretation.

IxVyIzVwodyxyzw VXEy&ZBW¢XyZW
IxVyIzoxyz ¥YxIyVzdxyz
IxVy oxy Y xayoxy
X Vx®x
¢
Definition I:£§/ A string is a non-trivial sequence of symbols

""" and "3", that represent logical negation and existential quantification
in the first-order predicate calculus., The order of a string is the
number of existential quantifiers employed in its formation. The string

S 1is a universal quantifier if ~Sv 1is an existential gquantifier.
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Definition II: A string is a Kleene string if it has a

representation as an alternating sequence of existential and universal

quantifiers.

Definition I1I: A relation is K-enumerable if it has a

representation of the form S ¢ where ¢ 1is a recursive relation, and
S8 1is a Kleene string beginning with an existential quantifer of order

K*A relation anti-K-enumerable if it is the complement of a

K-enumerable relation.

Returning to the diagram we see that the Kleene-Mostowski
Hierarchy is comprised of subsets of the natural numbers that are
defined in terms of K-enumerable and anti-K-enumerable relations for
K=10,1,2,3,..., those subsets that are both O-enumerable and
anti-0-enumerable being in the lower most compartment. Alternatively,
a recursive predicate in the form of a K-enumerable relation is termed
a ZK predicate and a recursive predicate in the form of an anti-K-
enumerable relation is termed a L% predicate. Obviously, & LA

predicate is also I One can then re-label the Kleene-Mostowski

0"
Hierarchy in the following form:
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Zh Sets ™, Sets
23 Sets n3 Sets '
j
22 Sets m, Sets ?
Zl Sets "l Sets
Zo-ﬂo Sets \

It is a somewhat remarkable fact of the theory of recursive funct-
ions that the Kleene-Mostowski Hierarchy composed of the ZK and L%
sets, often called the Arithmetic Hierarchy is identical to the follow-

ing classification of recursively enumerable sets and their complements:

{ e
Sets R.E. in Complements of
Sets R.E. in Sets R.E. in sets
ar  .E. set R.E. in an R.E., set
Sets R.E. in an Complements of sets R.E.
R.E. set in an R.E. set
R.E. sets Complements of R.E. sets

Recursive sets]
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The result that establishes the equivalence between ZK sets and “K
sets and relatively recursively enumerable sets and their complements
(Putnam [1973] p.80), terms the Kleene-Post Representation Theorem.

A discussion of relative recursiveness, i.e., what it means for a set to

be recursively enumerable in a recursively enumerable set, can be found

in Putnam, p.75

It is the Kleene-Post Representation Theorem and the consequent

equivalence between the Arithmetic Hierarchy and relatively recursively

enumerable subsets of natural numbers, that provide the key device of
our principal result. In the text, we demonstrate that the recursive

unsolvability of recursive rational choice follows from the fact that

any predicate that describes the set of R-indices of the recursive real
numbers of the image of a recursive rational choice function, when
defined in a restricted sub-family of recursive sets in its domain,
cannot have a recursive graph by showing that its graph belongs to a

fixed place in the Arithmetic Hierarchy, away from the Eo—ﬂo sets.

R S B R I . T s U U PR . N
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APPENDIX II
In this appendix we provide a brief description of Turing machines,
and demons..ate that, within the framework of the description, finite

automata can be viewed as a special instance of Turing machines.

(A) Turing Machines
Definition I: By an alphabet A, we will mean a finite set of
elements called symbols which includes a distinguished symbol B, termed

the blank symbol.

Definition II: A Turing machine Z over the alphabet A is a

quadruple (S,m,so,f) when S is a finite set, so and f are elements
of S,and m: A x (S - {ff A xS x {1,-1,0}; The set S is
called the set of states of Z, s, the initial state, f the finial

state, and m the transition function.

Definition III: For a given Turing machine Z = (S,m,so,f) over

an alphabet A, an instantaneous description of Z 1is a triplet

(t,s,p) for t a finite sequence of elements of A; p positive
integer not greater than the length of t, and s as an element of 8.
t 1is called the tape in Z, p the number of the scanned square, and

s the state of Z.

Definition IV: For a given Turing machine A = (S,m,so,f) over

an alphabet A, the yield operation , on instantaneous descriptions

of Z 1is defined as follows: X(2) » Y(Z) if and only if at least
one of the following obtains where a; and 'bi are in A for all

positive integers 1i.

PR S U . . . R W ST S W
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= LI I 2 = . o0 ' ' i =
1. X = (a; an,s,p) and Y (bl b ,s',D ) with e bJ

for all j # p, m(ap,s) = (bp,s',p',-p) and either p < n or

Pp=p'=n.

(a....a bz,s',n+l) where

1 n-1

<
]

2. X = (al...a

Y
n_1an,s,n) and

m(an,s) = (bn,s',l) .

- _ Vo
3. X = (al...an_lan,s,n) and Y = (al...a.n_“l bn,s ,n~1) where
m(a ,8) = (b ,s,-1) and b # 8.
= = LR ' -
4, x = (al---&n_lan,s,n) and Y (a.1 8 _1°S'Hn 1) where

m(an,S) = (B8,s',-1) .

Definition V: A computation by a Turing machine Z over an alphabet

A 1is a finite sequence X Xq of instantaneous descriptions of

1300
A such that for all i=1, ..., ¢ -1, xi(z) > Xi+1(Z) and for a
finite sequence of elements t of A and some integer p, Xq = (t,f,p).

We then say that Xl begins the computation ard that Xq is the

resultant of Xl.

Definition VI: Given a subset D of TF = U AJ, for TF the set
EI
of all finite sequences of elements of the alphabet A, the function

=D+ TF if said to be computed by the Turing machine Z over the
alphabet A if the following conditions hold. For each t € D there
is a computation by Z beginning with (t,so,l) such that the resultant

of (t,so,l) is (#(t), £, p) for some integer p.




T

1

.

Definition VII: Let FB denote U {O,l}J, the collection
JEN

of all finite sequences of elements from the two element set {0,1}.

The Turing machine over the alphabet {0,1,8} is said to compute the
function f from n-tuples of non-negative integers to non-negative

integers if it computes the function T : Do > IF‘O when

1. D0 is the set of strings of the form:

n. an n S
n gag...en for (nl,...nn) Dom(f)

n

2. %(ﬁls...eﬁn) is defined as f(n,,...,n ) vhere n for

1

n € IN denotes the binary encoding of the natural number n.

(B) Finite Automata

Definition VIII: For a given Turing machine over an alphabet A, the

IF-yield operation E, between instantaneous descriptions of Z is
defined as follows: X(Z) E;Y(Z) if and only if at least one of the
following conditions obtains where a, and bi are in A for a postitive

integer 1i.

1. X = (anan_l... 8.8 , s,p) and Y = (bnbn-l"' bb,s', p+l)
for p < n, bJ =8y for all § * p, and also that m(ap,s) = (bp,f‘,-l).

2. X = (anan_l... 8,8 , S, p) end Y = (bnbn-l TN f, n+l)
with m(an,s) = (bn,f,-l) .

3. X = (anan_l... 8,8, s, n) and Y = (anan_l... e %2 8's n+l)

with m(an,s) = (bn,s', -1) and s'¥ fr.

ORISR

D!
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Definition IX: An F computation by a Turing machine Z over

the alphabet A 1is a finite sequence Xl...Xz of instantaneous descriptions

> ﬁ
of Z such that for all i =1,..., q - 1 X(2Z) - Y(Z) and X = (t,so,o) .
and Sq = (t',f,2(t')) where t and t' and finite sequences of elements

in A and 2(t') denotes the length of the sequence t'. We say that

Xl begins the computation and that Xq is the resultant of Xl. -
Definition X: For a fixed subset D of IF = U AJ, the function
JEN

¢ : D> TF is said to be computed by the Turing machine Z viewed as
a finite automaton over A if the following conditions hold. For each
t €D there is an IF-computation by 2Z beginning with (t,so,O) and

the resultant of (t,so,O) is (®(t), £, o(t))) .

A corvutation by a finite state machine always begins on the right-most
square of the input tape and proceeds by moving one square to the left L

at each stage of its computation. The tape of the finite state machine

can be extended indefinitely, however unlike the Turing machine, finite

state machines cannot add or take away blank squeres. .he ability to

‘ “a 0.‘.l‘-" .

"print" and "erase" is the major distinction between the two forms as

’
1
Ly

can be seen from a comparison of the conditions that define their

respective computation processes.

¢ N
ks

A further difference between the two forms of Turing machine is

-f;l}.;

that the class of functions computable by a finite state machine is

restricted by the length of input tapes. The result below taken from

the paper by Ritchie demonstrates this restriction, which was actually
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employed in the result of Kreamer discussed in section II of the present

paper.

Theorem (Ritchie op cit p.16k): If ¢ is a function computed
by a finite antomaton Z with - K non-final states then, for each
argument t is the domain of ¢, the length &(t) is at most

K + £t) where 2(t) is the length of the tape t.

Proof: Since A 1is finite, after Z has read all of t it
proceeds to move left reading blank squares. However, if it, (2),
enters the same state twice it cycles and will then fall into an infinite
loop. Since K is the number of distinct non-final states of A and
t 1is in the domein of ¢ , Z must enter the final state f within
K steps after reading the last symbol of t. Therefore, the length of

¢(t) is at most K plus the length of t. Q.E.D.

A discussion of further limitations of finite state machines
can be found in the article by C.C. Elgot, "Decision Problems of Finite

Automata Design and Related Arithmetics," Transactions AMS, 98, [1961]

Pp.21-51.

It should further be observed that the comparative strength in
computing capability obtained by Turing machines, relative to that of
finite automata, serves to distinguish our approach from the works of
Futiozg/ and Gottingerél/, which, like Kramer's approach, consider the

item of rationality in decision making for social decision rules as

representable by finite state machines. The issue of complexity in

s
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their approach is defined in terms of Krohn-Rhodes decomposition ]

theoryég/. Within our framework of Turing computability, obtained ﬂl

by means of Church's Thesis, complexity takes the form of degrees of

o
Y aN

unsolvabilityéé/.
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APPENDIX ITI

We present in this appendix a brief sumary of some of the

important structural features of the recursive metric space M(IR)

= (IN(R)v UR> defined in Section III. The terminology is that

m(R)

of Moschovakis [1965], wherein can be found proofs of the propositions.

Definition I: A sequence {a,} for each o, € M(IR) is said to
—— I e J
JEIN
be recursive if there is a general recursive function f : IN = IN such

that for all j € IN, f(j) € W(R) and oy = L£(3)], where [£(J)]

is an equivalence class under N]N(R) . The Godel number of f , n(f)
is said to index the sequence.
Definition II: A sequence {a,} for each o, € M(IR) is said

be recursively Cauchy if there is a general recursive function g : IN N

such that for all Jj, KeIN DR( ) <279 . The function g

%(3)° % (3)+K

is called a Cauchy criterion for the sequence {aj} and the G&del
JEIN
number of g , n(g) is termed a criterion index for the sequence.

A typical property of 1R that one would wish M(IR) to preserve in

recursive analogue is that it is complete. We state the fact that M(IR)

has such & property in terms of the following item.

Property A: A recursive metric space is said to have Property A

if there is a partial recursive function h : IN x N> IN called a

convergence function, such that if n(f) is an index of a recursive

sequence with a criterion index n(g), and if there is an @ such that

P, AT

. e L A e . e e e mA



.................

a = 1im a(J), then h(n(f), n(g)) is well defined as an element of
z J-Nn

the notation for the metric space and o = [h(n(£), n(g))].

Definition III: If a recursive metric space satisfies Property

A and if every recursively Cauchy sequence has a limit, it is said to

be recursively complete.

-
o
’-'..L.__|.d}‘-'c

Proposition I: The recursive metric space M(IR) is recursively

complete.

Another feature of IR that one would desire M(IR) to possess is -1
that R is separable. That M(IRR) is in fact separable can be verified
immediately by the constructions of QM(IR) from R-indices of the ;

) rational numbers which by Proposition IIT are recursive real numbers. ::‘
Further, since the rationals can be made isomorphic to N, they form

a recursively enumerable subset of M(R) .

Definition IV: A recursive metric space is recursively separable

if there is a recursively enumerable subset of the space that is dense.

Proposition II: M(IR) is recursively separable. -~

Definition V: A listable predicate of n-tuples of R-indices in M(R)

is a predicate P :(I(R))® + {1,0} for which ti.cre is a partial ‘

recursive function £ : N® + {1,0} for which it is true that

"
)

f(nl,...,nn) =1 if and only if P(n(fl),...,n(fn))




~70-

Proposition III: For a fixed @, €EM(IR) and for any K€ IN,

the open sphere, S(ao, K) with center ao and radius 2_K defined as:
-X
S(ao,K) = {B €E M) : DR(ao,s) <27}

is a listable subset of M(IR) .

We next obtain by way of Proposition III the fact that M(IR)
is connected in the natural topology on M{(IR) induced by the metric

D_ with the spheres S(ao, K) as a basis,

Proposition IV:: M(IR) is connected in the natural topology.

Proof: The open sets in the natural topology on M(IR) are
taken as the recursive union of spheres, i.e. an open set has the form:
0= U s(ie(3]1,a(3))
3, £(3)
for £f: IN>IN and g : IN + IN partial recursive. The functions
f and g are said to index O .

By Theorem 2 of Moschovakis [1965], one observes that if 0 is an
open set in a recursive metric space satisfying Propoerty A, then its
complement is recursively closed, i.e. contains the recursive limits
of its recursive sequences. In particular, this is true of M(IR)
since it has Propoerty A. To see that M(IR) 1is connected, we show
that no proper subset of M(IR) is both recursively open and recursively
closed.

Let IF Ybe a proper recursively closed subset of M(IR). We

show that IF is not recursively open. Choose o ¢ IF and a, ¢ IF

e a e ~ e ol Bt

- —— - t—mg e v =

o
|
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which can be done since ¢ # IF ¥+ M(IR). Assume that a > o in

the order on M(IR) induced by the order on IR and define

a =sup {a, €EIF : a, <o }. Then it is true that o 2 a 2 a

2 t t X b 4 z2 < Y .

Then a € IF, because IF 1is recursively closed and for any S(az,K),
(S(az,K) NI)+¢. But if o € IF, then a >a , but then, any
S((ax - az) / aQ,K) with K sufficiently large is such that it is true
that (S((ax - az) / az,K) N IF) = ¢ and since the choice of a is

arbitrary, a, cannot be interior to F and so IF cannot be

L recursively open. Q.E.D.

Finally, we state two results that refer to the fact that M(IR)
is a Baire space in the sense that it is not the recursive union of
. recursively closed, nowhere dense sets of which in the classical
setting yields that every denumerable subset of a perfect metric space
is of the first category; a metric space being perfect if it has no

isolated points which is true of M(IR).

Proposition V: Every recursively enumerable subset of a perfect T3

recursive metric space, and therefore of M(R), is of the first category.

Proposition VI : The complement of a recursively enumerable
subset of a recursively separable, recursively complete, perfect recursive

metric space, and therefore of M(IR), is recursively dense.

PR v‘l F)
et PR

From Proposition VI one sees that the recursive closure of the

subspace QM(R) 1is in fact M(IR) from Proposition II.
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Footnotes

Professor Kenneth Arrow of Stanford has brought our attention
to the recent work of Professor Douglas S. Bridges of the Uni-
versity College of Buckingham, "Preference and Utility-A
Constructive Development", Discussion Paper, [1980].

See Alain A. Lewis "Recursive Choice Functions" in preparation.

See The additional discussion of rationality provided in Kenneth J.
Arrow "Rational Choice Functions and Orderings" Economica N.S.
Vol. 26, May [1959], pp. 121-127.

That is, predicates that are defined on n-typles of natural numbers.
Since any natural number represents a finite sum of the unit integer, ..
number theoretic predicates are regarded as having effectively .
constructible domains. d

See Rogers [1967], p. 29.

See The discussion in Rogers [1967], Ch. 1, and Putnam [1973], i
Sec. 1. The latter provides an intuitive discussion of Turing
machines, which for present purposes may be regarded as ideal ’ !
computation of the value of a given function. . ]

See Appendix IT T

This is demonstrated in Appendix II wherein can be found a detailed
comparison of the two computing processes.

This is not restrictive., More abstract topological structures can
be obtained by taking X to be infinite, compact, and metrizable to
obtain an analogous recursive framework. Cf. Lewis, fn. p.5 op cit.

e e
RIGIIIENY A

GSdel numberings are discussed in Kleene ([1950], p.206 and p.289)

NORY A

That is, by way of a fixed y, by means of the mu-operator, we may regard
the function f in terms of the number n(f) that forms a component of the
domain of satisfiability of the predicate Tn.

BT RN

The discrete topology is an uninteresting alternative as well, as it
suffers from similar deficiencies.

A further observation is that QM(R ) is totally disconnected in this ﬁ
instance as well. A discussion of Baire's Category Theorem can be ]
found in L.M. Graves, The Theory of Functions of a Real Variable, Sec. 9, . ‘

Ch XVI, Theorem 33, McGraw Hill, Second Edition,|1956].
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A more detailed discussion of this point is found in our Appendix IIT.
We demonstrate there that the recursive imcompleteness of QM(IR) follows
from the "thin-ness" of its cardinality resulting from recursive iso-
morphisms to IN .

The completeness of IR 1is a frequently employed feature within
economic theory. For example, it is employed to characterize the familiar
upper and lower pre-order topologies by means of convergent sequences in
preference contour sets. Cf. Debreu [1959] Propositions 1-4, and W. Neufeind's
"On Continuous Utility", Journal of Economic Theory Vol.5, [1972] pp.17k4-
176. Recursive completeness of characterizations of IR would seem
desirable to obtain constructive analogues of similar results.

Cf. H.J. Kowalsky Topological Spaces, Ch.IV Df. 32.c, and Theorem
32.6, Academic Press, [1965]. The completion is of course dependent
on the choice of metric, and is not topologicelly invariant.

Or, what is the same thing the recursive closure of QM(IR) consisting
of itself together with the set of recursive limits of recursive
sequences in QM(IR).

Cf. Appendix III.

Cf. Appendix III.

The class orf recursive sets is closed under set theoretic operations.
The precise description of which is in the Appendix II.

That is, the representation is recursive when defined, which is in
keeping with the possibility that the preferences may be partial.

By which we mean that both the sets of alternatives and the respective
choices from those alternatives can be indexéd by W .

By Lemma V.1, the graph of C is in fact a subset Dﬁ{ X Eh .

It follows easily that a full domain in Ih is not a null sequence of

subsets, and contains infinitely many distinct members that are enumerated
effectively. This assumption is not restrictive to the means of proof

of the principal result and its usefulness is in terms of the economic
examples we provide in that families of competitive budgets when recursively
represented, typically will comprise full domains.

An elementary discussion of the relationship between recursively solvable
problems and effectively computable realizations is found in Putnam's
article [1973], pp.T0-T1. A more advanced and technical discussion
of recursive realizability is provided by Kleene [1950], Scc.82, p.501,
and Kleene [19T1].
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Within the equivalences of Church's Thesis, of course.
That is, domains that are full in the sense of Df, VI.

By non-trivial we mean that for a fixed domain {IF_,} C I_, the co-
Bysem R

domain of graph (C) is not the null sequence if {Bﬁi} is full.
] JENWN

The Xo -7 sets are precisely the sets that are recursive sets in the

Kleene-Mostowski classification, which we provide in Appendix I.

In fact we can show, as in the forthcoming "Recursive Choice Functions",
that M(IR) is in fact recursively isomorphic to M(R) .

Furthermore, the images preserve the recursive and topological features
of the sets in the domain. Cf . Appendix ITI.

Q extends T, denoted as T C Q if Q is defined and agrees with T
whenever T is defined. When T is defined, we say that T is a restriction
of Q.

Or, in terms of the equivalences of Appendix I, EK or ..

The latter two terms are obbained by replacing the recursive relations
in Df.IIJ of Appendix I with partial recursive relations.

The formula for ¥ is arithmetic rendering it a recursive function. Then
the fact is obtained by noting that the characteristic function of Eﬁ
J

g Y OY(IFRJ)

has the following form: X = X .
R

The necessity to select a finite subcollection as seen by the counter-
example provided by Exercise 5-28 A1 of Rogers [1967], p.T5.

Moschovakis [1956], pp. 225-227.

oof .

Thet is, ¢l is a restriction ¢ by way of the fl,..
n

Cf. Df. IX. 2
Relations are classified in the hierarchy by means of their graphs.

By the means of Church's Thesis.

Cf. Alain A. Lewis, "Relatively Recursive Rational Choice"; forthcoming
Stanford IMSSS Technical Report, November [1981] where this concept is
developed.

Cf. Alain A. Lewis, op cit .
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We could be more rigorous by showing that any notation for W is
recursively isomorphic to N at the expense of more formalism,

That is, if G : N +I§‘ were any recursive correspondence, then 3K € R

such that V¥j > K D(J) > 6(J).

This result is due to T. Rado "On Non-Computable Functions," Theorem 1,
Bell System Technical Journal May(1962]pp. 887-884, and is proved by an

inductive argument on the bound of states for a Turing machine that
generates the members of a finite set. Rado's result is a straight-

forward means of distinguishing the class of effectively definable
functions from the class of effectively computable functions.

Cf. the forthcoming "Recursive Choice Functions".

This terminology is due to Shapiro [1956].

Robert W. Ritchie, "classes of Predictably Computable Functions,"
Transactions AMS, Vol. 102, (1963] pp. 139-173.

Carl Futia, "The Complexity of Economic Decision Rules," Journal
of Mathematical Economics Vol. IV, No. 3, pp. 289-299, [1977} .

Hans W. Gottinger, "Complexity and Social Decision Rules" in Decision

Theory and Social Ethics, Issues in Social Choice, pp. 25-269,
D. Reidel Publishing Company, Dosdrecht Holland, [1978] .

Michael A. Arbib, ed., Algebraic Theory of Machines and Semigroups,
Academic Press, New York, New York,[19681.

Alain A. Lewis, "Relatively Recursive Rational Choice", forthcoming
Stanford IMSSS Technical Report, June{1981].
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