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ABSTRACT .7

The concept of a choice function, characterized by means of a set-

valued mapping on restricted families of subsets of a space of alternatives

is employed in an essential way in the theory of consumer choice in

mathematical economics to construct demand correspondences (Mukherji '1977],

Richter [1966], Sonnenschein [1971] and Uzawa [1956]). A concomital,t

consideration of such a function, arising out of Arrow's seminal

considerations of social choice (Arrow, L1963]), is the extent to which

a choice function may be considered rational. This problem has been

treated extensively by Richter [1971]. However, a further consideration

of rationality has been developed by Kramer [1974] in the consideration

of whether or not a decisive choice function that is regular rational in

the sense of Richter [19711 when defined on subsets of a denumerably

infinite domain of alternatives, can be realized in principle by means

of a device of artificial intelligence.

It is the purpose of the present study to indicate the means by

which Kramer's results may be generalized to considerations of stronger

computing devices than the finite state automata considered in Kramer's

approach, and to domains of alternatives having the cardinality of the

continuum. The means we employ in the approach makes use of the theory

of recursive functions in the context of Church's Thesis. The result,

which we consider as a preliminary result to a more general research

program, shows that a choice function that is rational in the sense

of Richter (not necessarily regular) when defined on a restricted family

of subsets of a continuum of altel-natives, when recursively represented

by a partial predicate on equivalence classes of approximations

4\



-\by rational numbers, is recursively unsolvable. By way of Church's

Thesis, therefore, such a function cannot be realized by means of a

very general class of effectively computable procedures. An additional

consequence that can be derived from the result of recursive unsolvability

of rational choice in this setting is the placement of a minimal bound

on the amount of computational complexity entailed by effective realizations

of rational choice However, the principal interpretation of the result,

in our present framework, is that a distinction must be placed between

what is meant by a recursive representation of rational choice, and a

recursive realization of that representation by effectively computable

procedures.

I,



RECURSIVE RATIONAL CHOICE*

by

Alain A. Lewis**

I. Introduction

The suggestion that certain axiomatic structures found in economic

theory can, and should be, perhaps, subjected to metamathematical

considerations not surprisingly enough is found in the treatise of

Von Neuman/Morgenstern, The Theory of Games and Economic Behavior,

(Princeton University Press [19414]), in their discussion of axiomatic

formulations of n-person extensive games, Chapter II, Sections 8.4.1

and 10.2. However, very little attention has been paid to the meta-

mathematical consideration of the mathematical systems that are employed

in mathematical economics. Notable exceptions in this regard are the

works of Aumann and Wesley [1936]. In particular, it would seem worth-

while to consider that branch of metamathematics termed the theory of

elementary formal systems which in turn would be useful in characterizing

those mathematical concepts employed in economic theory that are

constructive in a procedural sense. In the area of programming, economic

theory has dealt with the notion of algorithm somewhat extensively in

computational procedures for arriving at equilibrium prices. Notable

in this regard is the work of Scarf [1974] and an excellent survey of

the current state of combinatorial optimization, found in the article

by Klee [1980]. But very little research has been done on more general

items of whether, say, preference structures defined on arbitrary infinite

l/domains are constructible-. In other words, in addition to assuming that

*This work was supported by Office of Naval Research Contract ONR-N00014-

79-C-0685 at the Center for Research on Organizational Efficiency at
Stanford University

"Department of Mathematics, College of Science, National University of
Singapore, Kent Ridge, Singapore, 0511.
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a decision making entity acts as though it made rational choices on

compact metrizable budget spaces, if we were to assume within the theory

that these choice made were, in principle, realizable, which we will

take to mean that the choice are computable in principle, under what

conditions would the preference structure that represents this choice

be constructive?

Specifically, we observe that the concept of a rational choice

structure can be considered on at least three levels:

(a) the preference level

(b) the choice level

(c) the computational or constructive level.

In relegating the first two distinctions as being secondary, our

primary interest will be on the third considerati.i. That is, we wish to

consider whether or not a rational choice function can be realized as a

computational procedure. In contrast to the leading result given by

Kramer 119741, which is negative on the item of realizable rational

choice in terms of a computational procedure that is equivalent to a Mealy

automaton, we provide the means to extend his result by way of Richter's

,* framework of rational choice L1971], to the stronger context of computability

and therefore realizability, in the sense of a Turing machine. The means

of the extension employs a variant of Church's Thesis, in the context of

recursive set theory. This approach, to make a further distinction, in

contrast to the paper by Campbell L19781, which treats in specific fashion,

the item of realization of choice functions defined on finite sets of
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alternatives only, enables us to address the issue at the level where

the space of alternatives is of infinite cardinality, as found in the

traditional treatment of Paretian utility as set forth by Debreu [7]

II. Rational Choice Functions

Typically, one means by a preference structure on a set of

alternatives, X , the set X together with a binary relation on X x X

That is, a relation, Z , such that

X x X {0,11

and such that for X1 , X2 EX, X 1 z X2  assigns 1 or 0 depending

on whether X1  is or is not at least as good as X One usually requires

that a preference relation satisfies the following axioms

(1) VX E x ( XH x)]

(2) Vx,y,z E x[[(x z y .. (y z z)I * (x z z)]

(3) VXy E x[(x z y) (y z z)]

We will restrict our attention initially to sets of alternatives,

X, of denumerably infinite cardinality having the usual economic inter-

pretation of contingent alternatives indexed by time into the future. The

following result is well known in such a setting:

II.1 Theorem: If the set X is denumerable, then there exists a real-

valued function f on X such that if Z is a preference relation for
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for XI , X2 E , X, x2  if and only if f(XI ) : f(X2). Pf: cf.

P. Fishburn, Utility for Decisionmaking, Chapter II, J. Wiley & Sons,

[1969).

The function f is said to represent the preference relation .

By convention, if it should occur that for X1 , X2 E x, X1  2 and

X2 ; X19 then for a representation f of Z one has f(×x) = f(x2)

and we say that X, and X2 are indifferent under and write this

as Xl r2 We will in later usage require that the quotient space under

, %/, also be of denumerably infinite cardinality.

By a choice function, we will mean a set valued mapping with the

following features:

(a) C: S - S for S p(X)

(b) VA G S[ C (A) C A]

A choice function then is defined on a subcollection of subsets of the

power set of X, taking values in the power set of X, such that the range

of C on an element of its domain is a subset of that element.

An extremely common means of defining a choice function for a

given preference structure (X, z ), with representation f, is as follows:

C(A) = {X E A : y E A [f(y) f (X)

The interpretation of which is, for a given subset A, an element of the

subfamily S, the choice function specifies the order maximal elements

of A with respect to the representation f of the preference. This

formulation will be of particular interest to our inquiry in subsequent

sections.
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T. Bergstrom, in Journal of*Economic Theory, Vol. 10, No. III,

[1975] pp. 403-404, has shown that a choice function as we have defined

it, is nonempty on compact subsets A in X, under the appropriate topology,

when the preference order is acyclic, and the lower contour sets:

P-1 = {yEX : X Z y)
x

are pointwise open in the relative topology of X, where the relation

is derived as () Similar topological conditions in the context

2/
of recursive sets will be required in later investigations.-

The framework of Richter [1971] gives us the interpretation of

rational choice that follows. In this framework, the subfamily S is

taken to mean a collection of budget sets in the traditional economic

setting. However, in general, that specific interpretation is not required.

A preference Z rationalizes choice on X in the sense given by Richter

([19711,p.31) if for A C S, C(A) = {X E A : Vy E A [x y]). The

emphasis of the attribute, rational, is then placed upon the manner in

which choices are selected from subsets of X. This usage is in contra-

distinction to that employed to characterize rational preferences, which

are usually typified as being not intransitive. This form of distinction

is an extremely useful one, for one can then inquire, in the manner that

Richter successfully accomplishes, into those varieties of preferences

that generate rational choices in the above sense. As it turns out this

will be a useful distinction for our purposes, as we will ultimately be

concerned with the means for representing choice functions that are

rational in the above sense within the framework of an elementary formal
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system -- not the preferences that generate them. Noteworthy, is that

Richter's framework is quite weak, in the sense that no specific assumpt-

ions are maie concerning the relation 2 per se in the definition of a

rational choice function. However, to inquire when a preference exists

that will rationalize a given choice function is not at all superfluous,

for simple examples show that irrational choices in the sense of Richter

exists, i.e., choices that cannot be rationalized by a preference relatic

11.2 Theorem (Richter [19711): There exists an irrational choice.

Proof: Let X = {a,b,c} . Consider A = X and A = {a,b) ,
1 2

and suppose C(Al) = {b} and C(A2 ) = {al

If > were a preference relation that rationalizes C , then

since b E C(A then b > X for any X E X. In particular b > X

for X E A C X But, then bEC(A2) which is false.
2 - 2)

Q.E.D.

This example violates a postulate for rational choice given by

H. Uzawa in "A Note on Preference and Axioms of Choice," Annals of the

0 Institute of Statistical Mathematics, Vol. 8, [1956] pp. 36-40. -

if A, B E S, and A C B, then if C is rational, then we should have

A - 'C(A)C B - C(B), i.e., any element not chosen from a subset of

0 alternatives remains unchosen when the subset is enlarged by more alter-

natives.

0,•-i . . . . . . ..
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Richter provides us with those conditions that serve to sufficiently

characterize rational choice in terms of two axioms (Richter[19T1pp.33-35):

The V-Axiom: xV(C)y <=> 3A E S[x E C(A) .^"y E A]

The W-Axiom: xW(C)y <=> 3{zj} n C S[xV(C)zl,...,zb(C)y]
J=l bV

The following two theorems proven by Richter ([1971], Theorems II

and V) provide an important qualitative distinction between two possible

meanings that can be given to rational choice in the above sense.

11.3 Theorem (Richter [1971]): If a choice function C on a set

X is such that for any A E S,

C(A) = {X: X E A .. Vy EA[xV(C)y]J

then C is reflexive-rational. "-

11.4 Theorem (Richter [1971]): If a choice function C on a set

X is such that for any AE S,

C(A) = {X : X E A .Vy A[W(C)y]}

then C is transitive-rational.

A further qualitative distinction among the possible meanings of rational

choice (cf. Richterl[19661 can be obtained in terms of the following:

11.5 Theorem (Richter [1966]): A choice function C on a set X is

regular-rational if and only if for any A E S,

X, y E A [X EC(A) * [yWX] y E C(A)
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This latter theorem is given in terms of Richter's Congruence Axiom.

A regular-rational choice function is rationalized by a regular prefer-

ence relation, where a regular preference is reflexive, transitive, and

total.

An additional concept that will be of interest to our own inquiry

is the concept of representable choice. A choice function C : S + S

is representable in the sense of Richter if there exists a function

f: X - R+ such that for all A E S, C(A) = [X E A : Vy E A[f(X) >

f(y)]}. The proposition on page 48 of Richter [23], gives necessary and

sufficient conditions in terms of an augmentation of the W-Axiom for a

choice function to be representable. The W-Axiom is shown to be a

necessary condition (Richter [1971p. 46) for a choice function to be

representable in that context.

One observes, importantly, that within the framework of Richter,

the consideration of a rational choice function is not necessarily restrict-

ed to considerations of the transitivity (or lack of) of an underlying

preference, seemingly the predominant considerations in earlier inquiries

into the theory of choice generated by Arrow's seminal work[1963i. What

g we wish to turn our attention to, however, is yet another level of dis-

course of rational choice, that of mathematical constructibility. That

is, does the notion of a rational choice function as given in the frame-

work of Richter have a constructive realization? What we are asking is,

in addition to assuming that a decision entity acted as though it were

making rational choices among a set of alternatives, as a not unreason-

able paradigm of human behavior, if one were to assume within the theory
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that these choices were made in a manner that were realizable in

principle, under what conditions would the procedure of choice be

realizable by effectively computable means? The result that we provide

would seem to limit the circumstances under which one can give a favor-

able response to such a question.

III. Constructive Representations of Rational Choice Functions

Constructive mathematics is often referred to as algorithmic

mathematics, the history of which dates back to at least the time of

Euclid and the name for which derives from the 9th century mathematician

Al-Khurvarizmi of Islam (Kleene L19651).

By a constructive mathematical concept, one means a concept that

is the result of a process of construction which is realizable along

the following lines:

(1) One assumes a clearly defined, fixed collection of primitive

objects.

(2) One assumes an unambiguous list of rules for forming new

objects from previously constructed ones. These are the admissible

steps in the process.

(3) One assumes that the process of construction is carried out

in discrete time units.

Perhaps the most widely employed mathematical structure in

constr- tive mathematics is what is known as an elementary formal system.

The use of the term, "formal", is to denote in the manner of Smullyam's -

Theory of Formal Systems, Annals of Mathematics Studies, No.47,
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Princeton University Press, [1961], finitary objects and discretized

procedures, for the decidability of proofs and provability. We give

a brief characterization as follows for the purpose of general background.

A few preliminary definitions will be required:

Definition I: By an alphabet one means an ordered finite set

of primitive symbols. Denoted as "K".

Definition II: By a string is meant a finit2 line or sequence

of elements in K and we say that the string is in K.

Definition III: For a set {X I nC K, let (Xi,...n) be

the string formed from (Xj jn . Then the length of the string is n.

Definition IV: Let X and Y be strings in K then the string

XY  is in K and is termed the concatenation of X and Y , which

goes by (i''.Xn Y,...,Y ) and is of length n= m

By an elementary formal system over an alphabet K , (c), is meant

(1) The alphabet K.

(2) An alphabet of symbols, V, the variables.

(3) An alphabet of symbols, P, the predicates: each of finite degree.

(4) A pair of symbols, ( , ,) called implication and punctuation.

(5) A finite sequence, AI, ..., An of wffs. termed the axioms of

(6) • A wff. of & is an expression of the form P t,...,tm for

tl,...,t terms or F F .. F where each F has the form
m 1 2t n

1t.. tm
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By a provab2e string of ( ) one means a string X that is either

(a) an instance of the axioms by way of substitution, or

(b) derivably by a finite sequence of applications of substitutions

of the axioms and the deduction rule of modus ponens.

If X is provable in (C), I X is the symbol used to indicate this.

It can be shown that (Smullyan op cit):

III.1 Theorem: The theorems of ( ) are precisely the provable strings

of ( )

Let K denote the set of all finite strings in K . Let the term

attribute denote a set in K or a member of P . Then let a be an

attribute of (t) and W C K. We say that a represents W in ( )

if and only if

Vx E {X e w <=> (x)}

As an example of an elementary formal system consider the following:

n
Suppose we take K = {11 Then a string of length n is simply =J=l '"
Suppose we next wish to represent the set of even numbers. Let E be

the predicate "is even" and let X be a variable in V. As axioms allow:

(1) Ell

(2) EX . EXll

111.2 Theorem: Vx E V {I EX <=> X is even}. Then E represents the

set of even numbers in the above sense.
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Proof: Enumerate the even numbers in order, el,...,e n

nThen cI  11i and by the ist Axiom Ell is even. Suppose Ee n

for some n. Then by the 2nd Axiom Ee + Ee 11. By modus ponens
n n

Een, Ee + Ee 11 yields Ee 11. Arbitrary even numbers are then
n n n

provable in (&). Any provable instance of E over (&) is

hereditarily true by properties of modus ponens. However, EX is

true means that EX is even. Q.E.D.

One of the more important formal systems historically was

devloped by Alonzo Church in the 1930s at Princeton, the A-calculus

[1941], which may be viewed as an elementary formal system of number

theoretic predicates.- / The reknown Church's Thesis asserts that those

mathematical concepts that one views as being constructive are provable

in the context of the A-calculus, i.e., the A-calculus represents

the constructive functions. Significantly, Kleene and subsequently

Turing showed respectively that the A-recursive functions of Gbdel

and the computable functions of Turing in the sense of being the output

of an automaton, are also provable within Church's A-calculus

(Kleene (19361, Kleene (19651 and Turing [19361.) Since no categorical

definition of effectively computable can be derived, different notions

having been set forth by the mathematicians, Kalmar and Pbter

(1965] and Journal of Symbolic Logic) differing slightly from that

found in Church's Thesis, one regards Church's assertion as a thesis

rather than a theorem. However, the ensuing equivalence of the

constructive mathematical systems of GWdel, Kleene, and Turing provide

ineluctable evidence that the recursive functions are, perhaps, the most
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general notion accessible by human endeavors. Rogers [1967], Ch.I

refers to this as the evidence for the Basic Result, by which is meant

the equivalences to the X-calculus mentioned above. On this latter point

the reader is also referred to Putnam [19731.

The following are useful facts (cf. Kleene [1950]) that we will

make reference to subsequently. The expression XX[f(X)] denotes the

partial function <X,y> which gives the value y when X takes an integer

value, by way of f(X). The domain of the partial function so defined is

a subset of the natural numbers, D(f) S I , as is its range, i.e.

R() C , and thus may be considered as a number theoretic predicate.

The class of primitive recursive functions is the smallest class

0 of functions such that:

(a) The constant functions XX,.'' XK(m] for 1 < K, 0 <m,

are in Q

(b) The successor function XX[X + 1] is in .

(c) The identity functions XX.'.. xK[xi are in Q

(d) If f is a function of K variables in Q , and if

91' g2"'' gk are functions of m variables in S then the following

function is in :

A X ' [f(gl(Xl ,..., Xm),.. gK(Xl, .))I~

Functions derived from the composition of functions in n are in nl

(e) If h is a function of K + 1 variables in n , and g

is a function of K - 1 variables in 9 , then the unique function f

of K variables satisfying



•~ f(o, x,.,X . g( X ...., x )

f(y + 1, X2,...,XK) =h(y, X2,...,XK), X2,..., XK)

is in , for 1 < K . Functions derived from primitive induction in

9 are in Q

The class of recursive functions are generated by the schema:

f( )= yP(,y)

The expression uy{P(x, y)) is read: "the least y such that P(X, y)

*: holds", where u is Godel's mu-operator- and P(X, y) is a primitive

recursive function obtained by the procedures given above. The general

recursive functions are obtained if P(X, y) is regular, i.e.

VXSyP(X, y). If P(X, y) is not necessarily regular, then only the

partial recursive functions are obtained.

Further basic notions that relate to the above, that follow from

Church's Thesis,-/ and which we will subsequently make use of are:

(i) Recursive Functions C Partial Recursive Functions.
i) Partial Recursive Function A Turing Machine That May Not Halt.

(iii) Recursive Function A Turing Machine That Always Halts.

(iv) Recursively Enumerable Set A Set Whose Characteristic

Function is Partially Recursive.

(v) Recursive Set A Set Whose Characteristic Function is Recursive.
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(vi) A Recursive Set is such that both it and its complement

are Recursively Enumerable.

(vii) A Set is Recursively Enumerable if it is the range/domain

of a Partial Recursive Function.

With this background in place, we may now turn to the consideration

of whether of not a rational choice function, in the sense of Richter,

admits of a constructive representation within a formal system that we

shall interpret in the form of an automaton (cf. Starke, [1972)), that is

of the Mealy variety. We provide this result as a preliminary item to

the more general setting of a Turing machine treated subsequently.

Imagine an idealized computing device that had k components,

each of which can obtain m states, where m and k are finite integers.

Let the description of the machine's computing process be given by the

following:

MA = < s, t, O(s), T(t), m = { 0, -i} >

The machine can be viewed as a kind of scanning device that looks at

symbols on a tape and then signifies an output. The description, MA,

for Mealy automation (cf. Starke [1972],Ch.I), provides the following

kind of rule: If in state s, and if the input symbol t is scanned,

then go to the state e(s), and signify the output '(t), and then move

the input tape either right one space, -1; left one space, 1; or leave

the tape where it is, 0.



Diagramatically, we can visualize MA as:

1 0 -1

4- 4- INPUT -*4

rr
MA 4

9I 7-t)

OUTPUT

Let there be two finite languages (not necessarily distinct) L

and L corresponding to an input language, and an output language,

respectively. LI  contains distinguished elements {A,g} that are used

to indicate when distinguished segments of the input tape are begun, and

terminated. In the language L there is the symbol A to indicate
0

the null output. In the manner of section I, we may construct on each

language the elementary formal system &(LI ) and &(L ). One can
1 0*

then view the input tape as comprised of strings of wff.s in &(L

while the output tape can be viewed as strings of wff.s in C(Lo). It

is then permissible to view the automaton MA as a composite formal

system with components t(L) and &(Lo).
I 0
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Consider now the quotient space X/, of indifference classes of

a set of infinite alternatives. Select then from 2 the class of

all finite sets, and call it F. Let us make the assumption that X/%

is denumerably infinite. If we assume that any finite set in F has a

well-formed representation as a string in t(L I ), then from the denumer-

ability of F, we may form the input tape T(F) that encodes the members
of F as wff.s in (L ).

Let us denote the totality of states for the machine MA as S.

Then ISil km  and is finite, for k the number of components in

MA. For a given string X on T(F), the function:

T= S x (-1, 1) 4. [S x (-i, 1 1] U (01x

specifies the transition rule of the machine MA with respect to X.

For the pair, (s,-l), the machine is in state s, at the right most symbol

of X. If the machine runs the string X to the right and goes to state

e(s) = s', then set the value of the function Tx(s, -1) = (e(s), -1).

One sees readily that the total number of such functions for

strings on T(F) if Q = (2km + 1 )2k
m 

=IIR()IIIID( )II for R(T)

the range of T and D(T) = the domain of T. Then, the sets {TT x 
Q

Xj Jil

give a partition of T(F) such that if X, y E T , then T = T ,

xx

same transition function, T
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Before presenting the result that follows, we need to formalize

precisely what it means for a Mealy automaton to realize a function.

Definition V: Allow f : I K to be a partial function defined

on arbitrary sets I and K. A Mealy automaton given as MA = <s,t,O(s),

m = (1,0,-li> is said to realize f if and only if:

(1) for every i E D(f) C I there is a unique wff. in E(LI )

that formally represents i.

(2) for every k E R(f) C K for which there is an i E D(f) C I

such that f(i) = k, there is a unieque wff. in C(L ) that formally

represents k.

(3) if t is the wff. in (LI ) that formally represents an

i E D(f) C I, then T(t) is the unique wff. in (L0 ) that formally
0

represents that k E R(f) C K for which f(i) = k

The following result is due to Kramer [1974].

111.3 Theorem: Let X/' be denumerably infinite and let > be

a reflexive total preference on X that rationalizes the choice function

C(A) = {X E A : Vy E Aix y]} for A E F, then the formal system

MA = <S,e,¥,m, C(LI), E(L0)> cannot realize C(A) in the sense of

Definition V on F

Proof: Suppose MA realized the choice function C(A) when

A E F, then A would be encoded by a string X,...X a in (L
a a m

and appear on T(F), the input tape. Then we require that

(X al,... Xa ) be a wff. in (L0). Clearly, the reflexivity of >
m

requires that if XI X2 in (LI) then "(xl) 1 T(X2) in &(Lo)
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It can be demonstrated that for an input tape segment X"'

such that X E T~ i , if the machine accepts the segment scanning

to the right and printing Y(xI...Xn). then
1 X

ln(,(xl...Xn)) = E f(x)n J=lJJ

where ln(') is the length of the output string '( 1 -.Xn) and

each of the functions are such that f TTXi + 3N (cf. Kramer (197h],
j "X-i

pp.48-49). Since the cardinality of inputs on T(F) is that of the

natural numbers, and since {Ttx.I Q partitions T(F), at least one

member of {T I Q ,TT, must contain infinitely many substrings,
Xi=l X0

representing distinct members of F C 2X/. The set P =

XOn,...1 can then be formed in terms of distinguished singletons,

one each from the members of TT
X

One sees readily that all sets of the form {ci U {ai } or {a I U
i U i~

a {i) must yield output strings of identical length, when represented

as XOiXOj or X0jX0 i in P, i.e., ln('(X 0iX 0 ))= ln(Y(x0jX 0 i)).

Clearly, for distinct ai , a . E X/" , either a > ai or a, > a

and if A = {ai} U (a i, then, we have C(A) = ai" Then it follows

that ln(T(XoiXoj)) = ln(T(XojXoi)) = L, where L = ln('(Xoi))

or ln(f(Xo )) depending on whether ai> a or aJ> ai respectively.

However, the output alphabet is finite for (L0 ), say of cardin-

ality B. Then the number of distinct strings in &(L ) of length L is

Lbounded sharply by (B)
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L
* Then, for q sufficiently large, say q > (B)L , if i*,

J* > q, then if X oi and Xoj* represent a i and aj* respectively

(ai, aj E X), since both i* and J* are in excess of q,

ln(Y(Xi*)) ln(T(Xj*)) must imply that V(Xoi*) = (xand

therefore if MA were to realize C(A) for A = {a *} or {a.*1

C(aj*) = C(ai*). But, as X Xo.* only if aj* a.*, by the
a*) 01

preference structure, no common choice is possible. Then, if we

take realization to mean constructive in the sense of the computing

process of a Mealy automaton,- MA cannot realize C(A). Q.E.D.

The implications of the above result seem less than definitive

with respect to the general issue of computational choice, and this is

so for at least two reasons. First, as is well known, Mealy automata

are somewhat limited in their comparative ability to compute, when

compared with more general varieties of computing devices, i.e., Turing

machines. For details see the discussion given in Hopcroft and Ullman

(19791 Ch.III. Second,the theorem is in terms of reflexive-total forms

of rationalizations of a choice function, and it would seem desirable to

enlarge the scope of reference of the theorem in this regard in terms

of Richter's weaker framework of rational choice, requiring less restrict-

ion on the underlying preference relation. We provide, in the following

sections, what we feel is an approach that addresses these two items

in the context of recursive sets. An additional advantage to the

framework we will develop is its capability to consider the issue

of the constructive representation of rational choice functions

. . . . . . .." . . . . . 1
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*defined on families of subsets of the continuum, which is the traditional

setting for the problem of consumer choice in economic theory (Debreu,

[1959], Ch.IV). This capability is obtained by means of the concept

of a recursive metric space, which in its construction replaces the

input and output languages of the Mealy automaton with sets of a

notation formed on the natural numbers. The Turing framework of

8/
computability, of which the Mealy automaton is a special instance,-

is then obtained by means of Church's Thesis by consideration of

recursive functions on the notation.

IV. Recursive Metric Spaces

Our goal will be to consider the item of consumer choice in the

traditional setting, where the space of alternatives, X, is taken to
• n 9/

mean a compact, convex subset of _ .9/ In order to apply Church's

Thesis to what we will define subsequently as a recursive rational

choice function, it will be necessary to endow the space of altern-

*" atives with sufficient recursive structure to render the relevant math-

* ematical structures number theoretic in the sense described previously.

To obtain this structure, we shall employ the concepts of recursive real

numbers and notation systems as developed by Rice [19541 and Moschovakis

." [1965]. We make use of Moschovakis' terminology and framework. Thebasic

terminology of recursive function theory that will be used can be found

in Kleene [1950] or Rogers [196T].
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It can be shown in the manner of Post and Kleene [19541,

that there exists a set of primitive recursive functions (cf. Section

II):

sign: I - {0,11

den: ]N IN

num: 11

such that the following mapping is a one-to-one correspondence of the

set of natural numbers, IN , onto the set, Q, of fractions in lowest terms

expressed as:

r :
x

where

r(X) = (-1 )sign(X)num()/d()

Then, for each real number c E , there is at least one number

theoretic function

f: IN IN

such that

Vx, y e IN (Ir(f x)) - r(f( X + y))I <2-X)
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and

a= lim r(f(x))

X_*

In this manner, the real numbers are expressed as limits of part-

icular Cauchy sequences of rational numbers. In a somewhat straight-

forward fashion, one may obtain an appropriate constructive analogue by

requiring the function f to be a general recursive function. Then we

may consider a real number a to be a recursive real number if there

exists a general recursive function f R - IV for which the above

expressions in terms r are satisfied. An alternative, but equivalent,x

definition of recursive real numbers can be found in Rice [1954] and

Robinson (Journal of Symbolic Logic, Vol.16).

By means of Kleene's Normal Form Theorem (Kleene [19501 p.288 )

for each partial recursive function f(Xl, ... , X ) of n _ 1 numerical

values, there is a natural number n(f) called the GMdel number--- of the

11/
function f(Xl, ... , Xn) such that the following expression is true:-

f(Xl ... Xn) _ (n(n( f) , X19 ... , Xn j)) _n(f)} (XI , .. n

for L y) a specific primitive recursive function and Vn E IN,

T(n(f)),X ,  Xn y) is a specific primitive recursive predicate

as employed by Kleene ([1950], p.281).
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If the function f(x) is general recursive instead of partial

recursive, then one may replace the relation '_ , which meeans "equal

when defined," with the usual relation of equality, =, in the normal

form expression. Then for each recursive function, in particular for

the general recursive functions, there is a Gbdel number, by way of

Kleene's Normal Form Theorem, that can be associated with the function,

aamely n(f).

If the general recursive fmction f(x) with Gbdel number n(f)

determines the recursive real number a, in the sense that we stipulated,

we shall term n(f) an R-index of a in the manner of Moschovakis [16]

and denote a = a The set IN (R) of natural numbers that are
n~f)*

R-indices of recursive real numbers can be characterized as follows:

n(f) E W (Rj <=> Yx3ZTI(n(f), X, Z) .

XVyyVZVt [T (n(f), X, Z) .

T1 (n~f),X + y, t) "

Ir (U(Z)) - r(U(t)) 1< 2 - X ]

The function U(X) is the same as that used in the Normal Form Theorem,

and the predicate T is a monadic version of the primitive predicate T1 n

used in Kleene's Theorem as referenced above.

Then each element n(f) E R (R) is seen to determine a real number

an(f). However, the correspondence cannot be one-to-one for the reason

that different Gddel numbers may determine the same function and it may

occur that different functions may determine the same real number.
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We arrive then at a natural equivalence relation induced on (R) given

as EN (R)' for which

19(R g <> fR g cg

which simply says that members of If (R) are taken to be equivalent, if,

and only if, they determine the same real number.

Then the ordered pair, (IN (R), ' I (R)) can be considered as a form

of notation for the set of recursive real numbers. The abstraction to a

notation system seen as an ordered pair (T,,T) for T C I and 'T an

equivalence relation on T, is immediate and is due essentially to Moschovakis

in this form (cf. Moschovakis [1965], p.43).

An alternative definition and approach to notation systems is

found in Shapiro [1956] who regards a notation as a function

~: T

where Rng(C) is elementary inductive, i.e., can be endowed with a

recursion theoretic structure, and DOM( ) I N so that C may in fact be

partial. Shapiro's approach is consistent with Moschovakis' framework

as can be seen by allowing i to take the form:

C (IlIN o t) : IR IN .

where I is the identity function on the natural numbers and t is theIN

function that associates the recursive real numbers with their Gbdel

number representations.
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The extension of the concept of a notation system as we have

developed it thus far, from recursive elements of F to recursive
n

elements of FR can now be easily constructed as follows. Let the notation

system (I (Rn), ! (Rn)) be constructed in the following manner from

n-tuples of R-indices of recursive real numbers:

IN(R n ) = <n(fl) ... n(f n)> :n(f),., nf n ) E ] (r.))

where

n-l n(f

n(fl ..1 , n(fA)> = n P j+l
J=o

for {P "''' P } the set of initial prime numbers commencing with
(o n-l

P = 2. The equivalence relation %F (Rn) is defined by means of the

following expression:

<n(f)> 1 ( n ) <n(g)> <--> {(<n(f)> E N (Rn) <n(g)> E IN (Rn] .

V J<=n n(f j B (R)n(gj)]}

By making use of the above framework, we may now proceed to endow

4n
*R, a subset of which we will employ as the domain of feasible alter-

natives, with sufficient recursive structure for the problem of a

rational choice function.

By a recursive metric space, in the manner os Moschovakis [17], we

will mean a notation system, (T,-T), together with a binary recursive
T'

operator D:T * F such that:

a -
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(i) Ya, 8ET[(D(a,B) = 0) <> (a )]

(ii) VYc, 8CT[D(a,8) = D(8 ,)]

(iii) Yc, 8, y ET[D(a,) _ D(aLO) + D(8,y)]

If now we consider the notation systems developed earlier for F

and F n , namely (I (R)) and (,, (,n), (n)), respectively,

we can form the recursive metric spaces:

M(IR) = <(I (R), D >IN 1(R) F

and

M( ]Rn) _-<(IN(R n), IN (R n)), DOmRn>

by taking the operators defined in each case to be

DR= lol andDn = [ V ( 2

j~n

so that the following obtains in M(R) and M(Rn

Vn(fj, n(g) E I1(R) D (n(f), n(g)) = In(f) -n(g)

v<n(f)>, <n(g)> E IN(1# ) D] n (<n(f)>, <n(g)>) = [ I jn(fj) -n(g )12 42

It can be shown that both the operators DIR and D n are in fact recur-

sive on IN with restrictions partially recursive on IN (R) and I (Rn)

respectively.

For the case of the real line F , and therefore for finitely many

copies of it FR n the recursive metric spaces M(I ) and M(FIn) dan be
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given a concrete representation by topological means. The represent-

ation is obtained in terms of Rice's original definition of recursive

* real numbers which, we will recall is equivalent to the one we have employ-

ed earlier in our development of notation systems.

A sequence {n I C IN of integers is said to be dyadic if the
j=l-

* following conditions are met:

(i) V _ 0 [n -=0 v nj = 1]

(ii) 3KVj > K [ni = 0]
J

(iii) 3e EIMV => 0 [nj = U(PyTi e.J~y))]

The number a is a recursive real number in the original sense

of Rice [1954] if there exists an integer e which is a CGdel number

for a dyadic sequence such that:

ai - ! XyTl(e,j,y))2-j

J=0

The following proposition, as we show, enables the straightforward

* L" construction of M(R ) and M(Fn ):
0

IV.1 Proposition: If X E Q for Q the set of rational numbers,

and thus x = C/d for some c, d E IN, the function &(cdj) = {X }

th
is a partial recursive function, for {Xj} the j digit in the

dyadic expansion of X

Proof: Case [4] Sec.3 pp.16-18 in the manner suggested by

Rice (1954].

0
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By way of the proposition, the rationals, Q, are in fact, recursive

real numbers, and we may denote be 39(Q) and 1(Qe) those sets of R-indices

and n-tuples of R-indices of Q and Q respectively, from the G~del numbers

of the recursive predicates used to generate the dyadic sequences that

correspond to the rational numbers. Making use of the equivalence rel-

ations , and ' (Qn), one could effectively discretize F ana

Fn by means of induced equivalence classes, i.e. members of F or ,n

would be equivalent in IN(Q) or ,(Qn) respectively if they have the

same rational numbers in a sufficiently close fixed approximation; in

which case their GCdel numbers would be the same. This can be performed

by defining two elements in IF to be equivalent under rational approx-

imation if there exists a rational number sufficiently close to both

elements for finitely many places of the initial segments of their

decimal expansions, or alternatively, whose difference is less than

10-K for K I N, sufficiently large and fixed. This procedure does in

fact yield recursive metric spaces :Which we can denote as

(F) = <((Q),:(Q) ), DQ>

and

QM(Fn) = <((n), DQn>

for DQ and D Qn the restrictions of D]R and Dn to QM(F) and QM(JRn)

Unfortunately, the spaces QM(JR) and QM(Fn) do not yield interest-

ing enough topological structures for many of the operations of real

analysis that one would desire to have in a recursive setting. More
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12/
specifically, one observes that the natural topology-/n QM(R) that one

can generate by means cf a basis of spheres, having rational radius

S(O, K), formed from the metric D as follows

QS(6,K) = {a QM(]R) : D Q(Oa) < 2 - K}I

for c E QM(IR) and K E IN yields a topology that is separable, and

thus, second countable. But, as OQn t and thus NQM(R)i1 = I jo,

from the effective isomorphism of Q4(F) to IN, we can express QM(IR) as

U {a }, the union of one element sets, each containing no non-degenerate

JE-K
sphere of positive radius, i.e. a sphere of radius 2 for some K E ]N.

13/
By the well known category theorem of Baire for metric spaces-- ( ]R)

cannot be a complete metric space. More importantly for our purposes,

QM(JR) is not recursively complete.- Since IR is a complete metric

space, it seems not unreasonable to desire that that property be

retained in a suitable recursive representation of ]R. To accomplish

16/
this, by familiar techniques of analysis,- we my take as the desired

recursive metric space, the recursive completion1 7 / of QM(IR), which from

the simple observation that Q is dense in ]R,18/ will yield precisely

the space M(]R) of Moschovakis [19651 for the recursive real line.

By way of the above construction, it is an additional observation that

not only is M(OR) recursively complete, but recursively separable and

recursively connectei2. Thus, we preserve in recursive analogue,

important topological features of IR that can be made use of in the

recursive setting for rational choice.
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V. Recursive Rational Choice

In the present section, we will presently employ the concept of

a recursive metric space, as developed in the preceding section, to char-

acterize Richter's [19711 framework of rational choice in a recursive

setting. From this setting, based on the recursive real numbers that

n
correspond to rational approximations of a subset of 1R+, we obtain the

notion of a recursive rational choice function. Following this develop-

ment, we demonstrate the principal result of the paper.
n

Begin by considering a set X which is compact and convex in IR+,

which we take in the usual sense to mean the space of alternatives for

the problem of consumer's choice. Let us denote by R(X) that subset of

the recursive metric space M(]Rn) which we characterize as:

R(X) = E QM(#) 3x E X.. t(x) E a)

for t:]Rn I (Qn) the function that associates n-tuples of real numbers

with Gbdel numbers of a notation derived from a fixed approximation by

memebers of Qn , and where Act denotes the recursive closure in the natural

n.
topology induced by the metric on QM(Rn). Consider next the following

two items:

Definition I: IFR = {A E P(R(X)) and A is recursive)

Definition II: C: IF - P(R(X)) and V A E IF [C(A) C A]R R

We will term the pair <R(X), IFR > a recursive space of alter-

natives and the set function C a recursive choice on <R(X), JFR>. The

elements of the collection of alternatives IFR, being recursive are

RI
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thus effectively computable, and a recursive choice is defined on

effectively calculable subsets of the space of alternatives taking as

values, subsets of the elements of its domain. We will say that a

recursive choice on <R(X), F R> is recursive rational if the following

two items exist:

Definition III: > R(X) x R(X) * {1,0}

Definition IV: f : R(X) 4 IN such that:

(a) f is a potentially partial recursive function

(b) Yct, B e R(X)[(a z 8) - f(a) a f(a)]

(c) VA E IFR [C(A) = : E A(f() f(8))}]

From the above two items, a recursive choice on <R(X),IFR>

os recursive rational if there exists a binary relation on pairs in

-* R(X), and a function that is potentially partial recursive, i.e. a

function that can be extended to a partial recursive function, defined

on R-indices in R(X) with range in IN, that preserves the order

*i induced by > , (which may in fact be partial), such that the values

of C on members of IF are the order maximal elements, in accordance
R

with f, on the domain of C . Thus, the notion of a recursive rational

choice includes both the notions that the choice is rational in the

sense of Richter [19711, that the choice is described in terms of the

order maximal elements of a binary relation, and that the relation is

representable, again in Richter's sense [19711, by means of a function

that can be extended to be partially recursive.
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The following lemma is providdd as a prerequisite to the main

result and has the straightforward interpretation that a recursive

rational choice function preserves recursiveness from its domain or

alternatively, that its co-domain, per fixed element in its domain, is

effectively computable as a recursive set. A consequence of the lemma

given in the discussion that follows is that a recursive rational choice

function enables an effectively computable representation of rational

choice by means of Turing machines.

V.I Lemma: Allow C to be a recursive rational choice on

<R(X), F > then for any A in the collection IF C(A) E IF.R R' R

Proof: Let A be a recursive subset of R(X), and consider C(A). If

it should occur that -3a EA[V8 E A(f(a) 'k f(0))] for f , a potentiall3j

partial recursive function, then C(A) = 4 and the result is entirely

trivial. Then assume C(A) * 4 and allow m(A) = {f(a) E IN: f(a) = max f).
A

Then C(A) = f-(m(A) n A, and we see that the lemma follows from the

fact that f is potentially partially recursive. For then there exists an

extension of f, f., such that f is in fact partially recursive. By

definition, being the maximal value of f over A, m(A) is trivially recur-

sive and therefore, since f is partially recursive by well known facts

(Rogers [19671 Sec.5.3, Th.VII) ?_1 (m(A)) is recursive. Then by a

further elementary fact of recursive sets kRogers [1967], Sec.5.5, Th.XIV 2 /,0

since A is recursive and f C ?, the result comes from the expression

of C(A) as the intersection of two recursive sets. Q.E.D.
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The interpretation of the above lemma can be enlarged upon as

follows. Consider the co-domain of a recursive rational choice on

<R(X), IFR>, {C(IF )} , when its domain is restricted to a sub-familyRjEN
of F , FR} , which one can effectively enumerate by mans of the

R j jE)N

natural numbers. Then, by the result of the lemma, since for each j E I,

IF E IF C(IF ) is a recursive set of n-tuples of R-indices in FR ,
R R' R R

and therefore {C(IF )} comprises a sub-family of IF which one
R JN R

can effectively enumerate by means of the natural numbers. Since IN is

a recursively enumerable set (by item iii on page lh it is the range of

the identity mapping which is primitive recursive) both {F I and

)}C(F may be regarded as recursively enumerable families of

elements in F R. What this means in turn is that given an effective

listing of sets of alternatives that are themselves effectively computable

sets comprised in turn of n-tuples of R-indices of effectively comput-

able numbers, i.e. recursive real numbers, a recursive rational choice

will generate an effective listing of the choices made from the given

collection of alternatives. Moreover, the choices themselves will be

effectively computable sets of n-tuples of R-ind. of effectively

computable numbers.

If we return briefly to the discussion of Church's Thesis given

in section II, the above feature of a recursive rational choice function

yields a further interpretation in terms of equivalences (ii) (iii) and

(v) of Church's Thesis given on pages 13 and 14 of section II, which

we restate:
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(ii) A Partial Recursive Function is equivalent to a Turing

machine that sometimes halts, i.e. when it is defined.

(iii) A Recursive Function is equivalent to a Turing machine that

always halts.

(v) A Recursive Set is equivalent to a set whose characteristic

function is recursive.

Then in terms of the equivalences, if we substitute the attribute

recursive by the notion of effectively computable by a Turing machine,

the paradigm of choice behavior that recursive rational choice describes

is one that in principle is comprised of mathematical concepts and

cperations that can be performed by an ideal device of artificial

intelligence 21

(a) Elements in R(X) are machine computable in principle by

means of the recursive real numbers.

(b) Elements in IF are machine computable in principle being
R

recursive sets of elements in R(X).

(c) Preferences on R(X) x RCX) are machine computable in

principle by means of a representation that can be extended to be

22/
partially recursive.-

(d) Choices made from members of FR are machine computable in
R4

principle since by Lemma IV.l such choice are themselves elements of F,
R

(e) By Lemma V.1 if we can effectively list by machine

computable procedures sets of alternatives that are each individually

23/machine computable, then we can effectively list-_ by machine computable
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procedures, the choices made from the sets of alternatives, which by

item (d) will be themselves machine computable in principle.

We may in fact, take items (a) - (e) as a suitable definition

for the paradigm of rational choice to be recursively representable on

a recursive space of alternatives.

Definition V: A choice function C IF P(R(X)), on a
R

recursive space of alternatives <R(X), IFR >, is recursively representable

if items (a) - (e) are met.

V.2 Proposition: A recursive rational choice on a recursive space of

alternatives is recursively representable.

Proof: By construction of <R(X), IFR > and Lemma IV.l in

application when required. Q.E.D.

By an obvious comparison, we see that recursiveness and hence,

machine computable in principle, replaces, in the number theoretic

setting, the concept of representability derived in terms of the wff.s

of the elementary formal systems discussed in section II. However, an

analagous distinction must be made between the assertion that a math-

ematical construction can obtain a recursive representation and, as we

shall see, the somewhat stronger assertion that a given recursive repres-

entation of a mathematical construction has a recursive realization. To

say that a recursive realization can obtain is to say that there is a

computational procedure, in the present context, a Turing machine, that
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will actually perform the mathematical operation of the entire model, given

that the operations that mathematically describe the model can themselves

be represented by computational procedures. To make this latter notion

precise, we require the definition that follows, of recursive solvability,

which we will in turn employ to define recursive realizability.

Definition VI: A set A, of natural numbers, is said to be

recursively solvable if and only if there is a general recursive function

: 3 I such that:

O(n) = 1 if n EA

O(n) = 0 if nd A

If A is not recursively solvable, then A is said to be recursively

unsolvable.

By a further application of Church's Thesis contained in equivalence

(v) if a set is recursively solvable, then it is obviously a recursive

set, thus having a characteristic function that is a recursive set.

Alternatively phrased, we may say that a set is recursively solvable

if it is possible to determine by machine computable procedures the

membership of the set unambiguously, recalling equivalence (iii) above.

We can now obtain a definition of the recursive realization of rational

choice in terms of the solvability of its graph.

Definition VII: The graph of a recursive rational choice function

C, denoted as graph (C), in the domain -F C IF and co-domain

j-
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(F)1JI is the collection of pairs <FR, C(IF j )> indexed by

j e IN, viewed as a subset of P(M(Jn)) x P(M(Fn)), the product space

of subsets of M( We will say that graph (C) has full domain

if for some K E IN, and all pairs i* j > K, A FR * 25
Rj

Definition VIII: A recursive choice on <R(X), FR > that is also

recursive rational is said to be recursively realizable if and only if

for any choice of full domain {F I C IF , graph (C) is a recursive

set of the product space of subsets of M(]Rn), P(M(n m ) x P(M(tn).

The meaning of Definition VIII is simply that froi among the possible

members of graph (C), which we may view as being pairs of sequences in

FR x FR , and thus having components that are effectively( computable,

it is possible to unambiguously describe the membership of graph (C)

by effectively computable means. By way of Definition VI, Definition VIII

yields, by way of this last observation, an immediate proposition.

V.3 Proposition: A recursive choice on <R(X), IFR > that is

recursive rational is recursively realizable if and only if for any

choice of full domain {F Rj I C IFR , the graph of C is recursively

solvable. 26/ JN

The principal result of the paper, to which we now turn, serves

to demonstrate the distinction, within our recursive setting, between

the notion of effectively computable representation of rational choice,

and the somewhat stronger notion of an effectively computable realization 2T/

reliaton

4
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of rational choice as set forth in definitions VI, VII, and VIII. The

means we employ to demonstrate this distinction, is to prove that for

28/29
any "reasonable choice" of domain,- a non-trivial2 9 recursive rational

choice has an unsolvable graph, and thus by Proposition IV.2 cannot be

recursively realized. The argument of the proof can be summarized as

follows. We first show that statements about n-tuples of R-indices in

M( Rn) can be reduced to statements about single R-indices in M(IR) by

a suitable choice of notation system. In the new notation system, for

which subsets of M( Fn) may be regarded as subsets of M(IR) , we then -

show that there does not exist a predicate T : IN IN. The restriction

of which Y/S, for S equal to the set of R-indices of {C(IF R

that comprise the co-domain of graph (C) for choice of full domain

IF IFR , can have a graph that is itself recursive. The non-

recursiveness of graph (Y/S) is shown to follow from the fact that by

means of the Kleene4ostowski classification of subsets of the natural

numbers, graph ('/S) is not a E - n set30
0 0

It then follows that if graph (Y/S) is not E0-w., then there can

be no recursive function realizing graph (Y/S) where the recursive

function t : IN IN realizes graph (T/S) if and only if:

{ *(n) = 1 if n E graph (T/S)

t(n) = 0 if n t graph (f/S)

By Definition V, therefore, graph (Y/S) is recursively unsolvable, which in

turn violates a necessary condition that graph (C) be recursively solvable.
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It is worth remarking that this procedure of proof thus presumes that the

decision for whether an element of graph ('/S) is, in fact, an element

of IN, has been solved by way of the notation system, and our concern is

then for a given element of IN; is there an effective procedure to

determine whether or not '/S is satisfied by that element.

The following is a statement of the theorem we next proceed to

demonstrate.

v.h Theorem: Allow <R(X),J FR > to be a recursive space of

alternatives derived from the recursive metric space of R n, M(]Rn),

for R(X) the recursive representation of a compact, convex subset of

n
n Let C : FR - FR be a non-trivial recursive rational choice on

<R(X), IF > and select from the class of sequences (IF) , any element
R R

{IFR ) C IF that comprises a full domain for graph (C) C IFR x IF

Then, per fixed selection of {IF } , (1) the co-domain of graph (C)

is non-recursive, which implies (2) graph (C) is recursively unsolvable

and therefore (3) the choice function C cannot be recursively realized.

Proof: We begin by making the observation that it is possible to

make a straight forward correspondence from the notation system

(IN(Rn (n)) which we have employed to construct the recursive

nmetric space M(]R ) to a notation system (IN(R), -(Rn)) havingIN(R
the same equivalence relation "]N(Rn), and where IN(R) is the set

of R-indices for the recursive real numbers under an appropriate choice

of G?3del numbering. Before stating this as a proposition however, let

4



us remark that the technique of GWdel numberings employed to assign

natural numbers to the partial recursive functions is actually a method

to encode the defining equations for the function arithemtically by means

of the products of prime numbers raised to exponential powers of odd

integers (as explained in Kleene [1950] p.206, p.284 and pp.223-231,

in particular). Furthermore, Gddel numberings are not unique (as

explained in Rogers [1967] sections 7.8 and 1.10) and those properties

that are known to be recursively invariant, such as unsolvability, hold

under all admissible codings (Rogers [19671, p.95).

V.4.1 Proposition; For an appropriate choice of Gbdel numbering,

there exists a notation I(ii) of R-indices for the recursive real

numbers for which IN(Rn) C i^(R).

Proof: In the prime factorization representation (Kleene [1950], D.230)

th n
rename the n. prime as 2 for n the dimension of ]R+ and for

choice of Gddel numbering, take that enumeration of the initial primes

th
co-finite with the initial segment {Po'"" P 1 ' with the n prime

0 n-i

renamed. Generate next, a coding for which the assignment of the R-indices

of the set of numbers {Po'... Pn1 is the value of the prime it
0 n-l

indices. By Proposition IV.1 this can be performed by virtue of the

fact that the prime numbers are elements in Q . Let I (R) denote the

entire set of R-indices generated in the choice of Gbdel numbering. Then

from the fact that there exists partial recursive functions to determine

the algebraic operations of a field (Moschovakis [1965] Lemma 4) and

that constructive proofs exist for the equivalence:

2 
1
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lir ( x )= lim a x lim 8

by way of Rice [1954] Theorem 4, a notation system for the recursive real

numbers is closed under multiplication. Define next, for n(f) an

n-tuple of elements of I(R) , the mapping Y(n(f)) derived from the

construction of N(Rn) given as

fI(Rn) = {<n(f I ),..., n(f )> n(f) ,...,n(f) E i(R)}

by

y(n(f)) = <n(fi),..., n(f) = n " P J+l
J=o

From the choice of notation, we see immediately that Y (j(R))n i :(R)

is injective, i.e. one to one and therefore that ]N(R n ) C i(R) in

a well defined manner. Q.E.D.

The effect of the proposition is that we may consider n tuples of

R-indices in M(F ) as R-indices in the notation i4(R) of the metric

space:

M(JR) <(]N(R), D D>
11(R) 'R

which is in fact a recursive metric space of R--31.

By virtue of the mapping g, for each point in M(Fn), there is a

unique point in M(IF) that corresponds to its image under g. There-

fore, sets in M(Rn) will correspond to sets in M(R) in a well defined

manner. In particular, the set A(X) and the members in the class FY

R
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will have well defined images in M(IR)2, i.e. for IF E IFR

y(JF ) = {aEM(IR) :3 E IFj CM(Rn) M. Y(O) = cl and etc.

We will require the following two definitions in terms of items

given in Definitions I-III of Appendix I, before the statement of the

next lemma.

Definition IX: A relation is potentially K-enumerable or

33/potentially anti-K-enumerable, if it has an extension- which is

K-enumerable or anti-K-enumerable. 34/

Definition X: A relation is potentially-partially-K-enumerable

or potentially-partially-anti-K-enumerable if it can be extended to a
35/

relation that is partially-K-enumerable or partially-anti-K-enumerable.-

We will not introduce the necessary formalism to provide a

proof of the next lemma, which can be obtained by means of a reformulation

of Shapiro's Extension Theorem ([1956] Theorem 1.6), which one can view

as a means to extend the Kleene-Mostowski Hierarchy in Appendix I to

the domain of the partial recursive predicates.

V.4.2 Lemma: Allow U P(IN' ) to denote the set of all relations
JEIN

on IN, and assume that r E U P(zJ ) is the restriction of some
JEJN

V E U P(NJ ) where T is potentially partially EK or 'TK* Then

r is the restriction of some 0 E K P(1 ) where K is K or iK
JKK



To commence the proof of assertion (1) of the theorem, select from

(JFR) an element {)F I for which 3K E IN s.t. Vii > KR IFR 1

F IF , and consider the image of graph (C) under the mapping
R R
j i

g which consists of a pair of sequences <{y(F )} , {y(C(IF ))I >

in the product space : P(M(R)) x P(M(R)). By means of Theorem VIII

of Rogers (1967] (Sec. 5.3 p.6 5), the elements of the sequence

{y(C(F ))I forming the co-domain of the image of graph (C) under

H36
the mapping g are recursive sets of R-indices in M(JR )- by virtue

that each IFR E IFR . From the fact that C is non-trivial and thus

on {FR I ' which was chosen full, {C( F )I is not the null

sequence; neither is {y(C( R ))' , therefore. Again, from the

fullness of the domain, for j > K, we obtain U Y(C(IFR )) * , and
J>K R

we can choose from the indices in excess of K, a finite subcollection

J,..m } for which m y(C(FR )) * . Furthermore, per choice of
i=l ji

subcollection, since the class of recursive sets is closed under finite

unions (Theorem XIV of Rogers [1967] Sec. 5.5 p.6 8 ), U y(C(IFR  )) is

)2 7 / . i --i J i

itself a recursive set of R-indices in _ i .

We require the use of the following lemma.

V.4.3 Lemma: The image, under the mapping g of the codomain of

a non-trivial recursive rational choice with full domain, is contained

in a bounded interval in M(2R).
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Proof: From the fact that the original space of alternatives X is

compact and convex in JR+ , and therefore bounded, elements in R(X)

are then component-wise bounded by an element in M(Rn) , say the element

(n(cl),..., n(cn)) for ci = constant, i = 1,..., n, in the order

nn
induced on M(Rn) by the strong vectorial order on IRn , i.e. for X ,

y E R n , X = y if and only if Xi =S Y forall i = 1,...,n. Then

in the notation (fN(R), N(R)) , the image of R(X) is bounded by the

n-n
element W P Cj+l in a recursively induced order on the notation

j=0 38/
agreeing with the natural order on . We may then regard y(R(X))

as a set of R-indices of recursive real numbers in the interval [0, R K

'K

where R, is the recursive real number whose equivalence class is

n-l n(c )
named by w P J+1 in JN(R). The lemma follows from the trivial

J=0

observation that for any IF E F , C(F) C R(X) and therefore,
jR

y(C(IFj)) C y(R(X)) Q.E.D.

Definition XI: Allow S to be a collection of recursive real

numbers, and define the relation I : IN -{i,0) as:

IS ( a )  1 iff. a is an R-index of M(IR) for

some XES ,

IS(C) 0 otherwise,
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for subsets {S 1 , ... , SKI of S we can define

K K

I U S. V Is , and similarly for
j=lJ j=l

K K

I n s A Is
j=l j=l

Definition XII: A set of recursive real numbers, S , is said to

be effectively indicated in M(IR ) if

() Vae E IN 1(c) 0

(2) The set T = {ceM(R) : IS(a) = 01 is such that

(i) Va e m I (a) * 0

1 -
(ii) T (1) C §- I  for q any positiveSAT ( +{q})ftlT

recursive real number.

What the definition says is that if we can effectively indicate

a set of recursive real numbers in M(F) , we can first effectively

identify a non-empty set of R-indices of the set in M(R) , for which

there is also the means to determine the indices of its complement

unambiguously, where the indication of the complement is, in a sense,

"well contained", in that the indication is not affected by positive

translations. The somewhat ad hoc flavor of definition XII can be dis-

spelled by the realization that among the sets of recursive real nunbers

I4
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that are effectively indicated are the intervals, [0, R K], for RK

a positive recursive real number and from which the following proposition

derives by straight forward verification of the definition.

7.4.4 Proposition: Let S be a set of recursive real numbers

of the form: [0, RK) or [0, RK] for RK a recursive real number in

3R+ - {0} . Then S is effectively indicated in M(JR) if and only if,

in the notation ( I(R),'N ) the intervals 0, a(RK)) or [0, a(R)]
IN(R)K K

are effectively indicated in A(IR)

Proof: By Proposition IV.l, the rationals are recursive real

numbers, from which for a(X) and R-index of a rational element of

S , Is(a(X)) = 1 . The verification of items 2(i) and 2(ii) for

the set T is obtained by selecting a rational element y in the

complement of S in R +- {0) whose R-index, a(y), satisfies

ICT(y)) = 1 on the subspace of A(IR), M(M+) . This establishes

the sufficiency of the proposition.

To obtain the necessity of the proposition it will suffice to

show that the recursive real numbers are order isomorphic to their

indices. To this end, we may observe that, in the manner of Lemma 5

of Moschovakis [1967], p.57, the partial recursive function defined as

less (a(X), a(y)) X < y

for X and y recursive real numbers, and a(X) and a(y) their

respective R-indices in (fR(R),\-)) generates a recursive order

]N(R)

isomorphism by means of the scheme:
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less (c(X), a(y)) - it[TC(x), (t), (t)l) 1

TI(a(y), (t) o  (t))
r(u ((t)o2  1 > 2-)o

where r(L((t))) is the same function we have employed in section IV

p.23, to characterize the R-indices. The function less(c(X), c(y))

can be viewed as an algorithm when applied to R-indices of recursive

real numbers, and will terminate if and only if X < y in the natural

order on IR. Q.E.D.

It now follows that per choice of finite subcollection
m

of indices for which ji > K i = l,...,m and thus U y(C(IF)) * *
1 i=l ji

from the recursiveness of each y(C(IF .)) as a set of R-indices in

im(U) U y(C(IFji)) C [0, a(RK)] , by Lemma V.4.3, where a(RK) is
i=l j

the R-index of the bound derived for y(R(X)). Then by Proposition V.4.4,

M
.U (C(Fji)) is a recursive subset of an effectively indicated interval

in M(JR) . We show next, that this leads to a contradiction by way of

the following concepts:

Definition XIII: Allow *i and *2 to be elements of u P(? )

, such that 01 is n-akq and *2 is m-Ay. Then i is strongly reducible

* to t2' written «I " 02 if there are partial recursive n-a.tq functions

fll'.. fn for which ti X(XI,..., Xn) 4(f l ( Xl ,*.., Xn) , fm(X I , . . . ,Ix
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Definition XIV: In terms of .he Kleene-Mostowski Hierarchy-o

a relation 9 is strictly wK if 9 itself is wK and for any lK

*-- relation A is such that A << .

To obtain item (1) of the theorem, assume that the co-domain of

graph (C) was in fact recursive, and then that by way of the coding

function y : - IN, u y(C(IFR )) were recursive. Consider next
,EIN R

- graph ( t y(C (F ))) which is identical to the function I defined
i=l

in Definition XI with S = y y(C(FR )). Then since graph
i=l ji

( My(C(JFR  )) C graph (U y(C(CFR ))), one sees that graph ( y(C(F )
i=l Ji JEIN i=l ji

m
is a restriction of graph ( y y(C(IF ))). Since U y(C(IF )) C [0,a(RK)]

JEIN i=l ji
and by choice of m .. M - (C (I is

i=l ji i=l ji

effectively indicated by the effective indication of [O,a(R K )] given

by Proposition V.4.4 by way of items 2(i) and 2(ii) of Definition XII
and the fact that IN - [,(RK)] C IN - m y(C(IF )). For

i=l Ji
m

S = U y(C(ER )), if it were true that graph ( y y(C(]FR  )) were
i=l ji i-1 ji

recursive, then the function IS would be recursive, as its characteristic

function from equivalence (v) on p.l3 of section II; but as in this

instance, IS  is effectively indicated, by Theorem II.10 and Theorem 11.2

of Shapiro, [19561 pp.291-294 since IS  is a recursive set of natural

numbers, the relation that portrays IS  on IN x {1,01 must be strictly

E2  It follows, then, by Kleene's Hierarchy Theorem ([19501, pp.283-28 4 ),

that the function IS cannot be E within the Kleene-Mostowski Hierarchy
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of Appendix I, and thus I cannot be Z -r by Post's Theorem
S 00

([1954], pp.283), by means of which it would have to be El n l.

Further, if I is strictly E2, then graph ( m y(C(F ))) is notS 25U R
i=l Ji

potentially recursive, and hence if it cannot be extended to be

recursive, by Lemma V.2 it cannot be the restriction of any recursive

graph, and in particular, of a recursive graph ( U y(C(2F ))). But
jN Rji

in that case, if graph ( u y(C(IFR ))) is not recursive, since
jEIN J

graph U U y(C(1F ))) = I with S = U y(C(IF )) is the
JEN S JEIN R

characteristic function of U y(C(F R )), then U y(C(IF )) is
RRjEI j jEIN

not recursive. The latter item is in contradiction to the assumption

that the co-domain of C is recursive, establishing item (1) of the

theorem.

We can now obtain item (2) of the theorem by observing that if the

co-domain of graph (C) is not recursive, and thus not E -7 in the
0 0

hierarchy, it cannot be potentially E -i 7. Then by another application
0 0

of Lemma V.2 , if we make the assumption that graph (C) is recursive,

a contradiction arises from the simple fact that the co-domain of

graph (C) is a restriction of graph (C).

Item (3) of the Theorem follows from item (2) by way of Proposition

V.3.

This concludes the proof of Theorem V.h . Q.E.D.

*
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VI. Further Discussion and a Specific Example.

Before turning our attention to a specific example, a few comments

on the interpretation of the result thet we have just demonstrated are

in order: (1) The first item to mention is that if rationality is

constrained by effective computability, within the frameowrk of recursive

functions, as a representation of effective computability, the notion of

realization is stronger than the notion of representation in the sense

that the latter does not imply the former. Which is to say, that an

effective listing of effectively computable sets of alternatives, as can

be obtained from a recursive rational choice function does not imply

an effectively computable procedure, for the correspondence between

the two listings, viewed as the graph of the choice function. This

item can be given a further interpretation in an economic context by

means of considering the traditional concept of a demand correspondence

in a recursive setting. Alternatively, we can express this item in

terms of types of computing devices. A recursive rational choice function

il/
on a recursive space of alternatives, in a sense-- , represents a

collection of types of computing devices: (i) There is a computing device to

generate elements of the space of alternatives, viewed as recursive real

numbers; (ii) There is a computing device to generate sets of alternatives

in the space, viewed as recursive subsets of the space; (iii) There is a

computing device to generate choices from the sets of alternatives,

viewed as a recursive order-preserving function of preferences defined

on the space of alternatives; (iv) There is a computing device to

generate sets of chosen alternatives, viewed as recursive subsets of

- - - ----- -
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sets of alternatives; (v) There is a computing device to effectively

list sets of alternatives, viewed as the domain of the graph of a

recursive rational choice function; (vi) There is a computing device to

effectively list sets of chosen alternatives, viewed as the co-domain

of the graph of a recursive rational choice function. Types (i)-(vi)

of computing devices comprise, by way of Definition V of Section V , a

recursive representation of rational choice. However, the theorem we

have just demonstrated says that there cannot be a computing device, that

when presented with the information of the devices (i)-(vi), will

unambiguously, and correctly perform the task of associating, for a

given listing by the devices (v) and (vi), recursive sets of alternatives

with the recursive sets chosen from them. This is the meaning of the theorem's

resUt that the graph of a recursive rational choice function is not

recursively solvable. (2) The second item worth mentioning is that the

definition we have employed of recursive realization is by no means

absolute, although it seems perhaps the most natural one to consider on

intuitive grounds. Another version of recursive realization might

reasonably consider that the existence of a machine to perform a correct

association of sets of alternatives, in an effective listing, with the

sets of choices from those alternatives, in an effective listing, as

basic to a recursive representation of natural choice and from this,

attempt to arrive at those recursive structures that give rise to the

representation in this sense. This version would then consider a Turing

machine realization in the sense of Proposition V.3 , as a recursive

representation of rational choice, and the existence of the requisite

I4
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class of relations, not necessarily recursive, and not necessarily

rational in Richter's sense, that are implied by a representation in

this sense as a recursive realization. A version of recursive realization

in this sense would then be relative to the complexity of the required

computation by the machine to represent rational choice, differing

42/relations being required by differing levels of complexity- . (3) The

second item brings us to a third consideration of the interpretation of

the result. It would be an incorrect inference from the result of the

theorem to say that a recursive rational choice function as a paradigm

of economic behavior does not exist. The first reason being the

discussion provided in the second item above. The second reason is

that we may, and should, view the theorem as a statement of the amount

of information mathematically contained in recursively entuerable

families of recursive sets of alternatives as being insufficient to

effectively determine a proper correspondence to a recursive enumeration

of the choices from those alternatives by the class of computational

procedures representable by Turing machines. This is not to say that

within the notation of the space of alternatives provided by the

natural numbers that there may be in fact other sets of natural numbers

that do in fact provide enough mathematical information for that task

to be performed. However, this consideration leads us to topics found

within the theory of the relative solvability of recursive structures,

43/
which we discuss in a forthcoming paper-



-54-

The example we now provide illustrates the significance of Theorem

V.4 in the context of a rational choice function definition:

(1) X--N

(2) X x X- {1,0} such that

for nI , n2 E X, n 1  n 2 <=> n >0

(3) f : X - IN for f = the identity function IN

(4) IFR = {A E P(N) and A is finite }

(5) C: IFR PN) such that

VA E FR  C(A) = {n E A : Vm E A (f(n) - f(m)))

The above items have the following interpretation. The set X we

take as the space of alternatives, which is simply the set of natural

numbers. The binary relation > we take as a preference order and is

merely the natural strict order on the natural numbers. The function

f we take as an order preserving representation of the preference order

. The set IFR is the collection of feasible subsets of alternatives,

and is merely the class of all finite subsets of IN. The function

C: IFR 4. P(IN) we term a choice on < X, IFR> and is defined to select

the order maximal element from a member of the family FR . Then, from

the fact that any finite set is recursive (Rogers [1967], 5.1, P.57), and

the fact that the identity function on the natural numbers is primitive

recursive (section III item (c) p.13 ), and thus partial recursive, the

interpretation of items (1) - (5) of our present example is seen to

satisfy Df.s I - IV of Section V. If we then regard IN as its own

notationgin a sense, it becomes its own recursive metric space, and
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items (1) - (5) then comprise a recursive rational choice on < X,IFR>

Let us now examine the recursive realization of the example. We first

check to see that the example is recursively representable.

Choose from IF in this case the following class of subsets:

R{1,2), 11,2,31, {12,,4 , 1.,n,..

L J

which i3 simply the listing, in order of occurence, of the co-final

segments of IT which we will denote as {F R Clearly, for any

RJ IN , we know without question that ij={1,.. ,J) and it can be "

said that the class IF I is determined effectively by its listingR3

on B, or that it is effectively listed. Additionally, it can be seen

that for all distinct pairs of indices ij membbrs of {F 1 are

such that IF A IF * 0, and thus (IF I comprises a full domain

in the sense of Df. VII of Section V , for which the corresponding

class of elements chosen becomes

{C({l}), C({1,2)), C({1,2,3)), C({1,2,3,41), .. (l.-n)

which is easily seen to be simply the listing, in order of occurence,

of the singleton sets of IN. Then, for any j E IN, we know without

question that for IF = {l,...J, C(FR) = (J by definition of

the choice function. An inspection of the foregoing then reveals that

items (a) - (e) of Df. V of Section V are satisfied and that therefore

the choice function C of the example is recursively representable.
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Consider next the graph of the choice function, which is comprised

of pairs <(1,.. .J 1,{j > in IFR x IFR  indexed by j E IN, the co-domain

of which, {j) I is an effective listing of singleton sets of IN. To

see that the co-domain of graph C in this instance is non-recursive

observe first that is in fact a correspondence of the form

DV : IN IFR such that

VJ E I V(J) = C(FR

Then, by definition of the choice of domain (F R j E IN and the choice of

f as the identity function on IN to represent the preference order Z,

C (F R) has the explicit form of:

C(IF) ax f
( FR

and thus that

D (J) =a~ty max fI

which reads the value of IF that maximizes the function f when restrictedRI
to the set IF Obviously, by the equivalences, the co-domain of graph

R

C in our example would be recursive if and only if the correspondence

D : IN IFR were a recursive correspondence of J E N. It is known,
weo

however, that D(J) = cVLfmax fi cannot be recursive as it minorizes
F
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46/:

every recursive correspondence- . The non-recursiveness of graph (C)

in this instance, and thus its non-realizability, follows from the now

familiar techniques of reasoning of Section IV that revolve around the

use of Lemna V.2.

What the example indicates is that even when the notion of recursive

representation is restricted to an effective listing of the maximal

elements of effectively listed finite subsets of the natural numbers, the

computational difficulty in realizing the representation exceeds that

which can be obtained by means of the recursive functions. One can,

however employ the distinction between representability and realizability,

obtained by the unsolvability result of Theorem V.A to place a minimal

bound on the degree of difficulty that a computational realization of

rational choice would entail by means of a classification of complexity

associated with relative degrees of unsolvability. We address this issue

in the specific context of recursive representations of uncompensated

demand correspondences in a sequel paper. It is in this last item that

we sincerely believe the larger significance of recursive function theory

to mathematical economics lies, and that is to provide a means of measure-

ment of the relative difficulty that the realization of its paradigms,

by effectively computable procedures, would entail.

-i

I

' -I
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APPENDIX I

To obtain the principal result of the paper, we will require the

following classification of subsets of the natural numbers, known as

the Kleene-Mostowski Hierarchy (Cf. Putnam [19731, pp.77-80 and Hermes

[1965] pp.192-202). The classification is made in terms of the structure

of the definitions that define the subsets. The definitions are in turn

given by bounded quantified expressions involving recursive predicates.

The following diagramme depicts the hierarchy, and the definitions that

follow provide an interpretation.

3XVy3zVwoxyzw VX3yVz3vOxyzw

3 xVy3 z$Cyz Vx3yVztxyz

3XVyfXy VX3YOXY

3X X VxOx

.00

Defniton : 18/

Definition I: L A string is a non-trivial sequence of symbols

" " and "3", that represent logical negation and existential quantification

in the first-order predicate calculus. The order of a string is the

number of existential quantifiers employed in its formation. The string

S is a universal quantifier if '-S. is an existential quantifier.
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71

Definition II: A string is a Kleene string if it has a

representation as an alternating sequence of existential and universal

quantifiers.

Definition III: A relation is K-enumerable if it has a

representation of the form S 0 where 0 is a recursive relation, and

S is a Kleene string beginning with an existential quantifer of order

KA relation anti-K-enumerable if it is the complement of a

K-enumerable relation.

Returning to the diagram we see that the Kleene-Mostowski

Hierarchy is comprised of subsets of the natural numbers that are

defined in terms of K-enumerable and anti-K-enumerable relations for

K = 0,1,2,3,..., those subsets that are both 0-enumerable and

anti-O-enumerable being in the lower most compartment. Alternatively,

a recursive predicate in the form of a K-enumerable relation is termed

a EK predicate and a recursive predicate in the form of an anti-K-

enumerable relation is termed a wK predicate. Obviously, a w0

predicate is also Z " One can then re-label the Kleene-Mostowski0

Hierarchy in the following form:

A
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E Sets w4 Sets

E3 Sets i 3 Sets

E Sets 72 Sets
2 2

E.I Sets 7rl Sets

E O-i Sets
0 0

It is a somewhat remarkable fact of the theory of recursive funct-
ions that the Kleene-Mostowski Hierarchy composed of the E and iK

K K

sets, often called the Arithmetic Hierarchy is identical to the follow-

ing classification of recursively enumerable sets and their complements:

Sets R.E. in Complements of

Sets R.E. in Sets R.E. in sets

at .E. set R.E. in an R.E. set

Sets R.E. in an Complements of bets R.E.

R.E. set in an R.E. set

R.E. sets Complements of R.E. sets

Recursive sets
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The result that establishes the equivalence between E sets and w

sets and relatively recursively enumerable sets and their complements

(Putnam [19731 p. 8 0), terms the Kleene-Post Representation Theorem.

A discussion of relative recursiveness, i.e., what it means for a set to

be recursively enumerable in a recursively enumerable set, can be found

in Putnam, P.75

It is the Kleene-Post Representation Theorem and the consequent

equivalence between the Arithmetic Hierarchy and relatively recursively

enumerable subsets of natural numbers, that provide the key device of

our principal result. In the text, we demonstrate that the recursive

unsolvability of recursive rational choice follows from the fact that

any predicate that describes the set of R-indices of the recursive real

numbers of the image of a recursive rational choice function, when

defined in a restricted sub-family of recursive sets in its domain,

cannot have a recursive graph by showing that its graph belongs to a

fixed place in the Arithmetic Hierarchy, away from the E O-W 0 sets.
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APPENDIX II

In this appendix we provide a brief description of Turing machines,

and demons 'ate that, within the framework of the description, finite

automata can be viewed as a special instance of Turing machines.

(A) Turing Machines

Definition I: By an alphabet A, we will mean a finite set of

elements called symbols which includes a distinguished symbol B, termed

the blank symbol.

Definition II: A Turing machine Z over the alphabet A is a

quadruple (S,m,sof) when S is a finite set, s and f are elements

of S, and m: A x (S -{f}) A x S x {l,-i,0Q} The set S is

called the set of states of Z, s0 the initial state, f the finial

state, and m the transition function.

Definition III: For a given Turing machine Z (S,m,sf) over

an alphabet A, an instantaneous description of Z is a triplet

(t,s,p) for t a finite sequence of elements of A; p positive

integer not greater than the length of t, and s as an element of S.

t is called the tape in Z, p the number of the scanned square, and

s the state of Z.

Definition IV: For a given Turing machine A = (S,m,sof) over

an alphabet A, the yield operation , on instantaneous descriptions

of Z is defined as follows: X(Z) + Y(Z) if and only if at least

one of the following obtains where a. and b. are in A for all
1 1

positive integers i.
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1. x (a ..a .asp) and Y = (b .- .b ,s',) with a b

n1

for all j * p, m(a ,s) =(b ,s'Sp',-p) and either p < n or
p p

Ppt = n.

2. X (a ... a aps,n) and Y (a ...n' b ,' n+l) where

m(a ,s) = (b ,s',l)
Mn ng

3. X = (...anl a ns,n) and Y = (a 1 ... anI bns',n-1) where

m(a ,s) = (bn ,s,-i) and b n .n n

4. X = (a1 ...anl a nS,n) and Y = (a1 ... a nls',n-1) where

m(anS) = (8,s',-)

Definition V: A computation by a Turing machine Z over an alphabet

A is a finite sequence X1,... ,Xq of instantaneous descriptions of

' A such that for all i = i, ..., q - 1, Xi(Z)- X i+1 (Z) and for a

finite sequence of elements t of A and some integer p, Xq = (tf,p).

We then say that X1 begins the computation ard that X is the

resultant of X1 .

I* Definition VI: Given a subset D of IF = U Aj, for IF the set

of all finite sequences of elements of the alphabet A, the function

0 = D - IF if said to be computed by the Turing machine Z over the

alphabet A if the following conditions hold. For each t E D there

is a computation by Z beginning with (t,s0 , i) such that the resultant

of (ts o, l) is (0(t), f, p) for some integer p.
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Definition VII: Let F denote U {0,1}j, the collection
0 jE3N

of all finite sequences of elements from the two element set {0,1}.

The Turing machine over the alphabet 10,1,0} is said to compute the

. function f from n-tuples of non-negative integers to non-negative

integers if it computes the function D : D I F when
0 O

1. D is the set of strings of the form:
0

Sn 8 n for (nl,... n) eDom(f)

2. f(nl... n ) is defined as n where n for

n E IN denotes the binary encoding of the natural number n.

(B) Finite Automata

Definition VIII: For a given Turing machine over an alphabet A, the

IF-yield operation + between instantaneous descriptions of Z is
F

defined as follows: X(Z) IF Y(Z) if and only if at least one of the
F

following conditions obtains where a. and b. are in A for a postitive

integer i.

1. X (a a ... a asp) and Y (bb ... b ,sp+l)

for p < n, b = a for all j t p, and also that m(a ,S) = (b ,f,-l).
.1 . p p

2. X = (aa 1 ... ala,s,p) and Y=(bbn I . ba, f, n+l)

with m(as) = (b ,f,-l)
n n

4. X = (ai a n_1 ... a1a 0 s,n) and Y=(ba 1  .. o ', n+l)

with m(anS) = (bn S' -l) and s' * f

4
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Definition IX: An F computation by a Turing machine Z over

the alphabet A is a finite sequence XI .. X of instantaneous descriptions
z

of Z such that for all i - ,, q - 1 X(Z) _ Y(Z) and X = (t,s,0)

and S = (t',f,Z(t')) where t and t' and finite sequences of elementsq

in A and Z(t') denotes the length of the sequence t'. We say that

X begins the computation and that Xq is the resultant of X

Definition X: For a fixed subset D of IF = U A the function
JEIN

0 D -* IF is said to be computed by the Turing machine Z viewed as

a finite automaton over A if the following conditions hold. For each

t E D there is an IF-computation by Z beginning with (ts ,0) and

the resultant of (t,soO) is (O(t), f, (t)))

A corputation by a finite state machine always begins on the right-most

square of the input tape and proceeds by moving one square to the left

at each stage of its computation. The tape of the finite state machine

can be extended indefinitely, however unlike the Turing machine, finite

state machines cannot add or take away blank squares. -,he ability to

"print" and "erase" is the major distinction between the two forms as

can be seen from a comparison of the conditions that define their

respective computation processes.

A further difference between the two forms of Turing machine is

that the class of functions computable by a finite state machine is

restricted by the length of input tapes. The result below taken from

the paper by Ritchie demonstrates this restriction, which was actually



-66-

employed in the result of Kramer discussed in section II of the present

paper.

Theorem (Ritchie op cit p.164): If 0 is a function computed

by a finite automaton Z with K non-final states then, for each

argument t is the domain of 0, the length cP(t) is at most

K + X't) where t(t) is the length of the tape t.

Proof: Since A is finite, after Z has read all of t it

proceeds to move left reading blank squares. However, if it, (Z),

enters the same state twice it cycles and will then fall into an infinite

loop. Since K is the number of distinct non-final states of A and

t is in the domain of D , Z must enter the final state f within

K steps after reading the last symbol of t. Therefore, the length of

4,(t) is at most K plus the length of t. Q.E.D.

A discussion of further limitations of finite state machines

can be found in the article by C.C. Elgot, "Decision Problems of Finite

Automata Design and Related Arithmetics," Transactions AMS, 98, [1961]

pp.21-51.

It should further be observed that the comparative strength in

computing capability obtained by Turing machines, relative to that of

finite automata, serves to distinguish our approach from the works of

Futio-0/ and Gottinger l / , which, like Kramer's approach, consider the

item of rationality in decision making for social decision rules as

representable by finite state machines. The issue of complexity in
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their approach is defined in terms of Krohn-Rhodes decomposition

52/
theory-. Within our framework of Turing computability, obtained

by means of Church's Thesis, complexity takes the form of degrees of-

unsolvability 53/

!4

*1
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APPENDIX III

We present in this appendix a brief summary of some of the

important structural features of the recursive metric space M(IR) -*

- (N(R)N(R)) , DR> defined in Section III. The terminology is that

of Moschovakis [1965S, wherein can be found proofs of the propositions.

Definition I: A sequence {aj} for each a E M(IR) is said to

JEIN

be recursive if there is a general recursive function f IN - IN such

that for all j E IN, f(j) E IN(IR) and aj = f(j)], where Lf(j)S

is an equivalence class under 1\4 The Godel number of f , n(f)IN(R)

is said to index the sequence.

Definition II: A sequence {aj} for each a E M(IR) is said
jiEIN j

be recursively Cauchy if there is a general recursive function g :N 4IN+

such that for all J , KEIN DR(a (j)" (J)+K) < 2-
. The function g

is called a Cauchy criterion for the sequence {a and the Gddel
JJEIN

number of g , n(g) is termed a criterion index for the sequence.

A typical property of JR that one would wish M(IR) to preserve in

recursive analogue is that it is complete. We state the fact that M(IR)

has such a property in terms of the following item.

Property A: A recursive metric space is said to have Property A

if there is a partial recursive function h : IN x IN- IN called a

convergence function, such that if n(f) is an index of a recursive

sequence with a criterion index n(g), and if there is an a such that

4



. . . . .

-69-

= lim a(J), then h(n(f), n(g)) is well defined as an element of

the notation for the metric space and a = [h(n(f), n(g))].

Definition III: If a recursive metric space satisfies Property

A and if every recursively Cauchy sequence has a limit, it is said to

be recursively complete.

Proposition I: The recursive metric space M(IR) is recursively

complete.

Another feature of JR that one would desire M(IR) to possess is

that F is separable. That M(JR) is in fact separable can be verified

immediately by the constructions of QM(3R) from R-indices of the

rational numbers which by Proposition III are recursive real numbers.

Further, since the rationals can be made isomorphic to IN, they form

a recursively enumerable subset of M(JR).

Definition IV: A recursive metric space is recursively separable

if there is a recursively enumerable subset of the space that is dense.

Proposition II: M(IR) is recursively separable.

Definition V: A listable predicate of n-tuples of R-indices in M(IR)

is a predicate P :(! (R)) n n {i,0) for which thore is a partial

recursive function f : In 4 {i,O for which it is true that

f (nl,...,n n ) = 1 if and only if P(n(f ),...,n(fn)) = 1

l n 1 n
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Proposition III: For a fixed a E M(R) and for any KG IN,
0

the open sphere, S(a, K) with center a and radius 2 K defined as:

S(a, K) { E M(IR) V (a o , ) < 2- }
0 R o0

is a listable subset of M(]R)

We next obtain by way of Proposition III the fact that M(IR)

is connected in the natural topology on M(:IR) induced by the metric

D with the spheres S(a, K) as a basis.
R 0

Proposition IV:: M(IR) is connected in the natural topology.

Proof: The open sets in the natural topology on M(IR) are

taken as the recursive union of spheres, i.e. an open set has the form:

0 = U s(If(j)],g(j))
J, f(J)

for f : IN IN and g : IN IN partial recursive. The functions

. f and 9 are saidto index 0

By Theorem 2 of Moschovakis [19651, one observes that if 0 is an

open set in a recursive metric space satisfying Propoerty A, then its

complement is recursively closed, i.e. contains the recursive limits

of its recursive sequences. In particular, this is true of M(IR)

since it has Propoerty A. To see that M(IR) is connected, we show

that no proper subset of M(]R) is both recursively open and recursively

closed.

Let IF be a proper recursively closed subset of MOR). We

show that IF is not recursively open. Choose a IF and a IF

xy

%A
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which can be done since * * IF * M(IR). Assume that a > a in
x y

the order on M(IR) induced by the order on JR and define

a= sup {at E IF : at .a . Then it is true that a >a a
tx x z y

Then a E IF, because IF is recursively closed and for any S(aK) ,

(S(az, K) n IF) * *. But if a E IF, then a > a but then, any
z x Z

S((a x - az ) / a 2K) with K sufficiently large is such that it is true

that (S((a - a ) a a K) f IF) = and since the choice of a is
x z 2' x

arbitrary, a cannot be interior to F and so IF cannot be
z

recursively open. Q.E.D.

Finally, we state two results that refer to the fact that M(JR)

is a Baire space in the sense that it is not the recursive union of

recursively closed, nowhere dense sets of which in the classical

setting yields that every denumerable subset of a perfect metric space

is of the first category; a metric space being perfect if it has no

isolated points which is true of M(IR). r

Proposition V: Every recursively enumerable subset of a perfect

recursive metric space, and therefore of M(FR), is of the first category.

Proposition VI The complement of a recursively enumerable

subset of a recursively separable, recursively complete, perfect recursive

metric space, and therefore of M(R), is recursively dense.

From Proposition VI one sees that the recursive closure of the

subspace QM(JR) is in fact M(IR) from Proposition II.
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Footnotes

l/ Professor Kenneth Arrow of Stanford has brought our attention
to the recent work of Professor Douglas S. Bridges of the Uni-
versity College of Buckingham, "Preference and Utility-A

Constructive Development", Discussion Paper, [1980].

* 2/ See Alain A. Lewis "Recursive Choice Functions" in preparation.

3/ See Tile additional discussion of rationality provided in Kenneth J.

Arrow "Rational Choice Functions and Orderings" Economica N.S.
Vol. 26, May [1959], pp. 121-127.

4/ That is, predicates that are defined on n-typles of natural numbers.
Since any natural number represents a finite sum of the unit integer,
number theoretic predicates are regarded as having effectively
constructible domains.

See Rogers [1967], p. 29.

6/ See The discussion in Rogers [1967], Ch. 1, and Putnam [1973],
Sec. 1. The latter provides an intuitive discussion of Turing
machines, which for present purposes may be regarded as ideal
computation of the value of a given function.

See Appendix II

8/ This is demonstrated in Appendix II wherein can be found a detailed

comparison of the two computing processes.

2/ This is not restrictive. More abstract topological structures can
be obtained by taking X to be infinite, compact, and metrizable to

obtain an analogous recursive framework. Cf. Lewis, fn. P.5 op cit.

,- l_ G~del numberings are discussed in Kleene ([1950], p.206 and p.289)

* That is, by way of a fixed y, by means of the mu-operator, we may regard

the function f in terms of the number n(f) that forms a component of the

domain of satisfiability of the predicate Tn

12/ The discrete topology is an uninteresting alternative as well, as it

suffers from similar deficiencies.

V _ A further observation is that QM() is totally disconnected in this

instance as well. A discussion of Baire's Category Theorem can be

found in L.M. Graves, The Theory of Functions of a Real Variable, Sec. 9,

Ch XVI, Theorem 33, McGraw Hill, Second Edition, 119561.
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1L4/ A more detailed discussion of this point is found in our Appendix III.
We demonstrate there that the recursive imcompleteness of QM(I ) follows
from the "thin-ness" of its cardinality resulting from recursive iso-
morphisms to IN.

The completeness of IR is a frequently employed feature within
economic theory. For example, it is employed to characterize the familiar
upper and lower pre-order topologies by means of convergent sequences in
preference contour sets. Cf. Debreu [19591 Propositions 1-4, and W. Neufeind's
"On ContinUous Utility", Journal of Economic Theory Vol.5, [1972] pp.174-
176. Recursive completeness of characterizations of JR would seem
desirable to obtain constructive analogues of similar results.

16/ Cf. H.J. Kowalsky Topological Spaces, Ch.IV Df. 32.c, and Theorem
32.6, Academic Press, [19651. The completion is of course dependent
on the choice of metric, and is not topologically invariant.

/ Or, what is the same thing the recursive closure of QM(JR) consisting
of itself together with the set of recursive limits of recursive
sequences in QM(FR).

18/ Cf. Appendix III.

19/ Cf. Appendix III.

20/ The class of recursive sets is closed under set theoretic operations.

* The precise description of which is in the Appendix II.

22/ That is, the representation is recursive when defined, which is in
keeping with the possibility that the preferences may be partial.

By which we mean that both the sets of alternatives and the respective

choices from those alternatives can be indexed by Iq.

2_4/ By Lemma V.1, the graph of C is in fact a subset IF x IF.
R

It follows easily that a full domain in IF is not a null sequence of

subsets, and contains infinitely many distinct members that are enumerated
effectively. This assumption is not restrictive to the means of proof
of the principal result and its usefulness is in terms of the economic
examples we provide in that families of competitive budgets when recursively
represented, typically will comprise full domains.

L/ An elementary discussion of the relationship between recursively solvable
problems and effectively computable realizations is found in Putnam's
article (1973], Pp.70-71. A more advanced and technical discussion
of recursive realizability is provided by Kleene 11950], Sec.82, p.501,
and Kleene (1971].
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2/ Within the equivalences of Church's Thesis, of course.

28/ That is, domains that are full in the sense of Df. VI.

29/ By non-trivial we mean that for a fixed domain (IF } C IFR the co-
J JExi

domain of graph (C) is not the null sequence if {IF I is full.
J JEIN

30/ The E - w sets are precisely the sets that are recursive sets in the
0 0

Kleene-Mostowski classification, which we provide in Appendix I.

31/ In fact we can show, as in the forthcoming "Recursive Choice Functions",
that M(JR) is in fact recursively isomorphic to M(JR)

32/ Furthermore, the images preserve the recursive and topological features
of the sets in the domain. Cf. Appendix III.

33/ Q extends T, denoted as T C Q if Q is defined and agrees with T
whenever T is defined. When T is defined, we say that T is a restriction
of Q.

34/ Or, in terms of the equivalences of Appendix I, Z or Tr
K K'

35/ The latter two terms are obtained by replacing the recursive relations

in Df.III of Appendix I with partial recursive relations.

36/ The formula for Y is arithmetic rendering it a recursive function. Then

the fact is obtained by noting that the characteristic function of IFR

has the following form: X. r= X

R

1/ The necessity to select a finite subcollection as seen by the counter-

example provided by Exercise 5-28A b of Rogers [1967], P.75.
38/ Moschovakis [1956], pp. 225-227.

*_/ That is, 0P 1 is a restriction 02 by way of the f,...,f
Cf. Df. IX. f

*O__/ Relations are classified in the hierarchy by means of their graphs.

i/ By the means of Church's Thesis.

!L/ Cf. Alain A. Lewis, "Relatively Recursive Rational Choice"; forthcoming
Stanford IMSSS Technical Report, November [1981] where this concept is
developed.

Cf. Alain A. Lewis, op cit
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44hh/ We could be more rigorous by showing that any notation for N is .
recursively isomorphic to N at the expense of more formalism.

That is, if G : IN were any recursive correspondence, then 3K N

such that VJ > K D(J) > G(J).

6/ This result is due to T. Rado "On Non-Computable Functions," Theorem 1,
Bell System Technical Journal May[19621pp. 887-884, and is proved by an
inductive argument on the bound of states for a Turing machine that
generates the members of a finite set. Rado's result is a straight-
forward means of distinguishing the class of effectively definable
functions from the class of effectively computable functions.

47/ Cf. the forthcoming "Recursive Choice Functions".

This terminology is due to Shapiro 119563.

49/ Robert W. Ritchie, "classes of Predictably Computable Functions,"

Transactions AMS, Vol. 102,[19631 pp. 39-173.

59] Carl Futia, "The Complexity of Economic Decision Rules," Journal
of Mathematical Economics Vol. IV, No. 3, pp. 289-299, [19771

51/ Hans W. Gottinger, "Complexity and Social Decision Rules" in DecisionTheory and Social Ethics, Issues in Social Choice, pp. 25-269,

D. Reidel Publishing Company, Dosdrecht Holland, L19786

/ Michael A. Arbib, ed., Algebraic Theorr of Machines and Semigroups,

Academic Press, New York, Bew York, 119681.

/ Alain A. Lewis, "Relatively Recursive Rational Choice", 
forthcoming

Stanford IMSSS Technical Report, June[19811.

-4
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