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A THEORY OF AUCTIONS AND COMPETITIVE BIDDING*

by

Paul R. Milgrom and Robert J. Weber**

1. Introduction

The design and conduct of auctioning institutions has occupied the

attention of many people over thousands of years. One of the earliest -.

reports of an auction was given by the Greek historian Herodotus, who

described the sale of women to be wives in Babylonia around the fifth

century B.C. During the closing years of the Roman Empire, the auction

of plundered booty was common. In China, the personal belongings of

deceased Buddhist monks were sold at auction as early as the seventh

century A.D.2/

In the United States in the 1980's, auctions account for an

enormous volume of economic activity. Every week, the U.S. Treasury

sells billions of dollars of bills and notes using a sealed-bid

auction. The Department of the Interior sells mineral rights on

federally-owned properties at auction.21 Throughout the public and

private sector, purchasing agents solicit delivery-price offers of j

*This work was partially supported by the Center for Advanced Studies in

Managerial Economics at Northwestern University, National Science Found-
ation Grant SES-8001932, Office of Naval Research Grants
ONR-NO0014-79-C-0685 and ONR-NOool4-77-C-0518 and by National Science
Foundation Grant SOC77-06000-Al at the Institute for Mathematical
Studies in the Social Sciences, Stanford University. We thank the
referees for their helpful comments.

**J.L. Kellogg Graduate School of Management, Northwestern University,

Evanston, Illinois.
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products ranging from office supplies to specialized mining equipment;

sellers auction antiques and artwork, flowers and livestock, publishing

rights and timber rights, stamps and wine.

The large volume of transactions arranged using auctions leads one

to wonder what accounts for the popularity of such common auction forms

as the English auction,31 the Dutch auction,4 1 thb first-price

sealed-bid auction,5 / and the second-price sealed-bid auction..-- What

determines which form will (or should) be used in any particular

circumstance?

Equally important, but less thoroughly explored, are questions

about the relationship between auction theory and traditional

competitive theory. One may ask: Do the prices which arise from the

common auction forms resemble competitive prices? Do they approach

competitive prices when there are many buyers and sellers? In the case

of sales of such things as securities, mineral rights and timber rights,

where the bidders may differ in their knowledge about the intrinsic

qualities of the object being sold, do prices aggregate the diverse bits

of information available to the many bidders (as they do in some

rational expectations market equilibrium models)?

In Section 2, we review some important results of the received

auction theory, introduce a new general auction model, and summarize the

results of our analysis. Section 3 contains a formal statement of our

model, and develops the properties of "affiliated" random variables.

The various theorems are presented in Sections 4-8. In Section 9, we

* offer our views on the current state of auction theory. Following

* U



Section 9 is a technical appendix dealing with affiliated random

variables.

2. An Overview of the Received Theory and New Results
7

2.1 The Independent Private Values Model

Much of the existing literature on auction theory analyzes the

independent private values model. In that model, a single indivisible

object is to be sold to one of several bidders. Each bidder is risk-

neutral and knows the value of the object to himself, but does not kmow

the value of the object to the other bidders (this is the private values

assumption). The values are modeled as being independently drawn from

some continuous distribution. Bidders are assumed to behave

competitively;- therefore, the auction is treated as a noncooperative

game among the bidders 9__

At least seven important conclusions emerge from the mdel. The

first of these is that the Dutch auction and the first-price auction are

strategically equivalent. Recall that in a Dutch auction, the

auctioneer begins by naming a very high price and then lowers it

continuously until some bidder stops the auction and claims the object

for that price. Vickrey [19611 observed that a strategy for a bidder

simply indicates, for each of his potential valuations, the level at

which he will claim the object. The winning bidder will be the one who

chooses the highest level, and the price he pays will be equal to that

amount. This, of course, is also the way the winner and price are

42



determined in the sealed-bid first-price auction. Thus, the sets of

strategies and the mapping from strategies to outcomes are the same for

both auction forms. Consequently, the equilibria of the two auction
-S

games must coincide.

Initially, this strategic equivalence of the two auction forms may

seem puzzling. It might appear that after a bidder watched the price

descend to his predetermined level for claiming the object, he would

want to reconsider his planned action, using whatever information he

could deduce from the failure of others to claim the object at any

higher price. However, if his initial strategy choice was optimal, then

it follows from the optimality principle of dynamic programming that

continuing to follow the prescribed strategy from any point in the
l0i

auction is conditionally optimal, given whatever is known at that point;

that is, it always pays to follow the plan.

The second conclusion is that--in the context of the private

values model--the second-price sealed-bid auction and the English

auction are equivalent, although in a weaker sense than the "strategic

equivalence" of the Dutch and first-price auctions. Recall that in an

English auction, the auctioneer begins by soliciting bids at a low price

level, and he then gradually raises the price until only one willing

bidder remains. In this setting, a bidder's strategy must specify, for

each of his possible valuations, whether he will be active at any given

price level, as a function of the previous activity he has observed

during the course of the auction. However, if a bidder knows the value

* of the object to himself, he has a straightforward dominant strategy.
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-.

which is to bid actively until the price reaches the value of the object

to him. Regardless of the strategies adopted by the other bidders, this

simple strategy will be an optimal reply.

Similarly, in the second-price auction, if a bidder knows the

value of the object to himself, then his dominant strategy is to submit

a sealed bid equal to that value. Thus, in both the English and second-

price auctions, there is a unique dominant-strategy equilibrium. In

both auctions, at equilibrium, the winner will be the bidder who values

the object most highly, and the price he pays will be the value of the

object to the bidder who values it second-most highly. In that sense,

the two auctions are equivalent. Note that this argument requires that

each bidder know the value of the object to himself--O / If what is

being sold is the right to extract minerals from a property, where the

amount of recoverable minerals is unknown, or if it is a work of art,

which will be enjoyed by the buyer and then eventually resold for some

currently undetermined price, then this equivalence result generally

does not apply.

A third result is that the outcome (at the dominant-strategy

equilibrium) of the English and second-price auctions is Pareto optimal;

that is, the winner is the bidder who values the object most highly.

This conclusion follows immediately from the argument of the preceding
V

paragraph and, like the first two results, does not depend on the

symmetry of the model. In symmetric models the Dutch and first-price

auctions also lead to Pareto optimal allocations.

VA
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A fourth result is that in the independent private values model,

all four auction forms lead to identical expected revenues for the

seller (Ortega-Reichert 119681, Vickrey 119621). This result remained a

puzzle until recently, when an application of the self-selection "

approach cast it in a new light (Harris and Raviv (19811, Myerson

119811, Riley and Samuelson 119R11). That approach views a bidder's

decision problem (when the strategies of the other bidders are fixed) as "

one of choosing, through his action, a probability p of winning and a

corresponding expected payment e(p). It is important to notice that,

because of the independence assumption, the set of (p,e(p)) pairs that

are available to the bidder depends only on the rules of the auction and

the strategies of the others, and not on his private valuation of the

* object. 'S

Figure 1 displays a typical bidding decision for a bidder who

values the prize at v. Since the bidder's expected utility from a

point (p,e) is v • p - e , his indifference curves are straight lines 0

with slope v. Let p*(v) denote the optimal choice of p for a

bidder with valuation v. It is clear from the figure that p* must be

nondecreasing.

In Figure 1, the tangency condition is e'(p*(v)) = v. Similarly,

when the indifference line has multiple points of tangency, a small

increase in v causes a jump Ap* in p* and a corresponding lump S

Ae = v • Ap* in e(p*(v)). Hence we can conclude quite generally that

e(p*(v)) = e(p*(O)) + f0 v dp*(v). It then follows that the seller's

* expected revenue from a bidder depends on the rules of the auction only S

-
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to the extent that the rules affect either e(p*(O)) or the p* S

function. Notice, in particular, that all auctions which always deliver

the prize to the highest evaluator have the same p* function for all

bidders. That observation leads to the fifth result. -.

Theorem 0: Assume that a particular auction mechanism is given,

that the independent private values model applies, and that the bidders

. Aadopt strategies which constitute a noncooperative equilibrium. Suppose

that at equilibrium the bidder who values the object most highly is

certain to receive it, and that any bidder who values the object at its

lowest possible level has an expected profit of zero. Then the expected

revenue generated for the seller by the mechanism is precisely the

expected value of the object to the second-highest evaluator.

At the symmetric equilibria of the English, Dutch, first-price, and

second-price auctions, the conditions of the theorem are satisfied.

Consequently, the expected selling price is the same for all four U

mechanisms; this is the so-called "revenue-equivalence" result. It

should be noted that Theorem 0 has an attractive economic interpre-

tation. No matter what competitive mechanism is used to establish the S

selling price of the object, on average the sale will be at the lowest

price at which supply (a single unit) equals demand.

The self-selection approach has also been applied to the problem

of designing auctions to maximize the seller's expected revenue (Harris

and Raviv 119811, Myerson 119811, Riley and Samuelson 119811). The

problem is formulated very generally as a constrained optimal control
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problem, where the control variables are the pairs (pl(.), ei(PI(O))). 0

As might be expected, the form of the optimal auction depends on the

underlying distribution of bidder valuations. One remarkable conclusion

emerging from the analysis is this: For many common sample distributions -

--including the normal, exponential, and uniform distributions--the four

standard auction forms with suitably chosen reserve prices or entry fees

are optimal auctions.

The seventh and last result in this list arises in a va" ition of

the model where either the seller or the buyers are risk avei In

that case, the seller will strictly prefer the Dutch or first [ce

auction to the English or second-price auction (Harris and Ra .19811,

Holt [1980], Maskin and Riley [1980], Matthews [1979]).

2.2 Oil, Gas, and Mineral Rights

The private values assumption is most nearly satisfied in auctions

for non-durable consumer goods. The satisfaction derived from consuming

such goods is reasonably regarded as a personal matter, so it is

plausible that a bidder may know tne value of the good to himself, and

may allow that others could value the good differently.

In contrast, consider the situation in an auction for mineral

rights on a tract of land where the value of the rights depends on the

unknown amount of recoverabl, ore, its quality, its ease of recovery,

and the prices that will prevail for the processed mineral. To a first

approximation, the values of these mineral rights to the various bidders

can be regarded as equal, but bidders may have differing estimates of

the common value.
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Suppose the bidders make (conditionally) independent estimates of

this common value V. Other things being equal, the bidder with the

largest estimate will make the highest bid. Consequently, even if all

bidders make unbiased estimates, the winner will find that he had S

overestimated (on average) the value of the rights he has won at

auction. Petroleum engineers (Capen, Clapp, and Campbell [19711) have

claimed that this phenomenon, known as the winner's curse, is i

responsible for the low profits earned by oil companies on offshore

tracts in the 1960's.

The model described above, in which risk-neutral bidders make A

independent estimates of the common value and where the estimates are

drawn from a single underlying distribution parameterized by V, can be

called the mineral rights model or the common value model. The 0

equilibrium of the first-price auction for this model has been

extensively studied (Maskin and Riley [1980], Milgrot. [1979a,b], Ortega-

Reichert [1968], Reece [1978], Rothkopf [19691, Wilson [19771). among

the most interesting results for the mineral rignts model are those

dealing with the relations between information, prices, and bidder

• profits. 0

For example, consider the information that is reflected in the

price resulting from a mineral rights auction. It is tempting to think

* that this price cannot convey more information than was available to the

winning bidder, since the price is just the amount that he bid. This

reasoning, however, is incorrect. Since the winning bidder's estimate

* is the maximum among all the estimates, the winning bid conveys a bound U
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on all the loser's estimates. When there are many bidders, the price 0

conveys a bound on many estimates, and so can be very informative.

Indeed, let f(xlv) be the density of the distribution of a bidder's

estimate when V = v. A property of many one-parameter sampling -•

distributions is that for v1 < v2 , f(xjv 1 )/f(xlv 2 ) declines as x

increases- If this ratio approaches zero, then the equilibrium price

in a first-price auction with many bidders is a consistent estimator of

the value V, even if no bidder can estimate V closely from his

information alone (Milgrom 11979a,bl, Wilson 119771). Thus, the price

can be surprisingly effective in aggregating private information. U

Several results and examples suggest that a bidder's expected

profits in a mineral rights auction depend more on the privacy of his

information than on its accuracy as information about V. For example,

in the first-price auction a bidder whose information is also available

to some other bidder must have zero expected profits at equilibrium

(Engelbrecht-Wiggans, Milgrom, and Weber 119P11, Milgrom 11979al).

Thus, if two bidders have access to the same estimate of V and a third

bidder has access only to some less informative but independent

estimate, then the two relatively well-informed bidders must have zero

expected profits, but the more poorly-informed bidder may have positive

expected profits. Related results appear in Milgrom [1979a] and Milgrom

[1981a] and in Theorem 7 of this paper.
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2.3 A General Model

Consider the issues that arise .n attempting to select an auction

to use in selling a painting. If the independent private values model

is to be applied, one must make two assumptions: that each bidder knows

his value for the painting, and that the values are statistically

independent. The first assumption rules out the possibilities:

(i) that the painting may be resold later for an unknown price,

(ii) that there may be some "prestige" value in owning a painting

which is much admired by other bidders, and

(iii) that the authenticity of the painting may be in doubt. The

second assumption rules out the possibility that several

bidders may have relevant information concerning the

painting's authenticity, or that a buyer, thinking that the

painting is particularly fine, may conclude that other

bidders also are likely to value it highly. Only if these

assumptions are palatable can the theory be used to guide the

seller's choice of an auction procedure. Even in this case,

however, little guidance is forthcoming: the theory predicts

that the four most common auction forms lead to the same

expected price.

Unlike the private values theory. the common value theory allows

for statistical dependence among bidders' value estimates, but offers no

role for differences in individual tastes. Furthermore, the received

theory offers no basis for choosing among the first-price, second-price,

and English auction procedures.
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S
In this paper, we develop a general auction model for risk-neutral

bidders which includes as special cases the independent private values

model and the common value model, as well as a range of intermediate models

which can better represent, for example, the auction of a painting.

Despite its generality, the model yields several testable predictions.

First, the Dutch and first-price auctions are strategically equivalent in

the general model, just as they were in the private values model. Second,

when bidders are uncertain about their value estimates, the English and

second-price auctions are not equivalent: the English auction generally

leads to larger expected prices. One explanation of this inequality is

that when bidders are uncertain about their valuations, they can acquire

useful information by scrutinizing the bidding behavior of their

competitors during the course of an English auction. That extra

information weakens the winner's curse and leads to more aggressive

bidding in the English auction, which accounts for the higher expected

price.

A third prediction of the model is that when the bidders' value

estimates are statistically dependent, the second-price auction

generates a higher average price than does the first-price auction.

Thus, the common auction forms can be ranked by the expected prices they

generate: the English auction generates the highest prices followed by

the second-price auction and, finally, the Dutch and first-price

auctions. This may explain the observation that "an estimated 75 percent,

or even more, of all auctions in the world are conducted on an ascending-

bid basis" (Cassady [19671, page 66).
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Suppose that the seller has access to a private source of informa- '

tion. Further, suppose that he can commit himself to any policy of

reporting information that he chooses. Among the possible policies are:

(i) concealment (never report any information),

(ii) honesty (always report all information c-'mpletely),

(iii) censoring (report only the most favorable information),

(iv) summarizing (report only a rough summary statistic), and V

(v) randomizing (add noise to the data before reporting).

The fourth conclusion of our analysis is that for the first-price,

second-price, and English auctions policy (ii) maximizes the expected UP

price: Honesty is the best policy.

The general model and its assumptions are presented in Section

3. The analysis of the model is driven by the assumption that the p

bidders' valuations are affiliated. Roughly, this means that a high

value of one bidder's estimate makes high values of the others'

estimates more likely. This assumption, though restrictive, accords S

well with the qualitative features of the situations we have described.

Sections 4 through 6 develop our principal results concerning the

second-price, English, and first-price auction procedures. S

In Section 7, we modify the general model by introducing reserve

prices and entry fees. The introduction of reserve prices does not

significantly change the analysis of equilibrium strategies nor does it

alter the ranking of the three auction forms as revenue generators.

However, it does change the analysis of information reporting by the

seller, because the number of competitors who are willing to bid at

* P
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least the reserve price will generally depend on the details of the

report: favorable information will attract additional bidders and

unfavorable information will discourage them. The seller can offset

that effect by adjusting the reserve price (in a manner depending on the -.

particular realization of his information variable) so as to always

attract the same set of bidders. When this is done, the information-

release results mentioned above continue to hold.

When both a reserve price and an entry fee are used, a bidder will

participate in the auction if and only if his expected profit from

bidding (given the reserve price) exceeds the entry fee. In particular, Q

he will participate only if his value estimate exceeds some minimum

level called the screening level. The most tractable case for analysis

arises when the "only if" can be replaced by "if and only if," that is, V

when every bidder whose value estimate exceeds the screening level

participates: we call that case the regular case. The case of a zero

entry fee is always regular.

For each type of auction we study, any particular screening level

x* can be achieved by a continuum of different combinations (r,e) of

reserve prices and entry fees. We show that if (r,e) and (F,e) are

two such combinations with e > e, and if the auction corresponding to

(r,e) is regular, then the auction corresponding to (r,e) is also

regular but generates lower expected revenues than the (r,e)-auction.

Therefore, so long as regularity is preserved and the screening level is

held fixed, it pays to raise entry fees and reduce reserve prices.
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In Section 8, we consider another variation of the general model,

in which bidders are risk-averse. Recall that in the independent

private values model with risk aversion, the first-price auction yields

a larger expected price than do the second-price and English auctions. "

In our more general model, no clear qualitative comparison can be made

between the first-price and second-price auctions in the presence of risk-

aversion, and all that can be generally said about reserve prices and

entry fees in the first-price auction is that the revenue-maximizing fee

is positive (cf. Maskin and Riley [19801). With constant absolute risk-

aversion, however, the results that the English auction generates higher 0

average prices than the second-price auction, and that the best

information-reporting policy for the seller in either of these two

auctions is to fully reveal his information, both retain their validity.

3. The General Symmetric Model

Consider an auction in which n bidders compete for the

possession of a single object. Each bidder possesses some information

concerning the object up for sale; let X = (X1,...,X n ) be a vector,

the components of which are the real-valued informational variables _2/

(or value estimates, or signals) observed by the individual bidders.

Let S = (SI,...,Sm ) be a vector of additional real-valued variables

which influence the value of the object to the bidders. Some of the S

components of S might be observed by the seller. For example, in the

sale of a work of art, some of the components may represent appraisals

obtained by the seller, while other components may correspond to the S
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tastes of art connoisseurs not participating in the auction; these

tastes could affect the resale value of the object.

The actual value of the object to bidder i --which may, of
-S

course, depend on variables not observed by him at the time of the

auction--will be denoted by V i = ui(S,X). We make the following

assumptions:

Assumption 1: There is a function u on 1m+n such that for

all i, ui(S,X) = u(S,Xi,{X i Ji). Consequently, all of the bidders'

valuations depend on S in the same mnner, and each bidder's valuation

is a symmetric function of the other bidders' signals.

Assumption 2: The function u is nonnegative, and is continuous

and nondecreasing in its variables.

Assumption 3: For each i, EIV iI < .

Both the private values model and the common value model involve

valuations of this form. In the first case, m = 0 and each

V i = Xi; in the second case, m = 1 and each V i = S1 .

Throughout the next four sections, we assume that the bidders'

valuations are in monetary units, and that the bidders are neutral in

their attitudes towards risk. Hence, if bidder i receives the object

being sold and pays the amount b, his payoff is simply V i - b.

Let f(s,x) denote the joint probability density1 3/ of the random

elements of the model. We make two assumptions about the joint distri-

bution of S and X:
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Assumption 4: f is symmetric in its last n arguments.

Assumption 5: The variables SI,...SmXI,...,Xn are affiliated.

A general definition of affiliation is given in the Appendix. For

variables with densities, the following simple definition will suffice.

Let z and z' be points in Rm+n . Let z / z' denote the

component-wise maximum of z and z', and let z A z' denote the

component-wise minimum. We say that the variables of the model are

affiliated if, for all z and z',

(2) f(z V z') f(z A z') > f(z) f(z')

Roughly, this condition means that large values for some of the

variables make the other variables more likely to be large than small.

We call inequality (2) the "affiliation inequality" (though it is

also known as the "FKG inequality" and the "MTP 2 property"), and a

function f satisfying (2) is said to be "affiliated." Some

consequences of affiliation are discussed by Karlin and Rinott [19801

and by Tong [19801, and additional references are given by those

authors. For our purposes, the major results are those given by

Theorems 1-5 below.

O

. .. . .... ..... . .. . . . . . 1
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Theorem 1: Let f :R k +1. 0

(i) If f is strictly positive and twice continuously

differentiable, then f is affiliated if and only if for

i J, a 2 nf/azi9zj > 0. -O

(ii) If f(z) = g(z)h(z) where g and h are nonnegative and

affiliated, then f is affiliated.

A proof of part (i) can be found in Topkis 1978, page 3101. Part

(ii) is easily checked.

In the independent private values model, the only random variables

are Xl,...,Xn, and they are statistically independent. For this case, (2)

always holds with equality: Independent variables are always affiliated.

I the mineral rights model, let g(xils) denote the conditional

density of any Xi given the common value S and let h be the

marginal density of S. Then f(s,x) = h(s)g(x Is)...g(x Is). Assume

that the density g has the monotone likelihood ratio property- that

is, assume that g(xls) satisfies (2)-L-/ It then follows from

Theorem 1 (ii) that f satisfies (2). Consequently, for the case of

densities g with the monotone likelihood ratio property, the mineral

rights model fits our formulation.

The affiliation assumption also accommodates other forms of the

density f. For example, it accommodates a number of variations of the

mineral rights model in which the bidders' estimation errors are

positively correlated. And, if the inequality in (2) is strict, it

formalizes the assumption that in an auction for a painting, a bidder who

finds the painting very beautiful will expect others to admire it, too.
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In this symmetric bidding environment, we identify competitive 6

behavior with symmetric Nash equilibrium behavior. We will find that,

at equilibrium, bidders with higher estimates tend to make higher

bids. Consequently, we shall need to understand the properties of the

distribution of the highest estimates.

Let YI'*'''Yn-I denote the largest, ..., smallest estimates from

among X2 ,..,Xn . Then, using (1) and the symmetry assumption, we can

rewrite bidder l's value as follows:

(3) V1 = u(Sl,...,Sm,XlYl 1,...,Ynl)

The joint density of SI,''",Sm-XI'YI''" 'YnI is

(1) (n - 1)! f(sI .... Sm Xl y'.....Yn-l )l{yl>Y2_>... ?i

where the last term is an indicator function. Applying Theorem 1 (ii)

to (4), we have the following result.

Theorem 2: If f is affiliated and symmetric in X2,...,Xn, then

Sl"'''SmiXlYlI*"'Yn-l are affiliated.

The following additional results, which are used repeatedly, are

derived in the Appendix.

Theorem 3: If Zl,...,Zk are affiliated and gl,'.' gk are all

nondecreasing functions (or all nonincreasing functions), then

gl(Z 1) ,. . . g k
(Z

k ) are affiliated.
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Theorem 4: If ZI,...,Zk are affiliated, then Zl,...,Zki are

affiliated.

Theorem 5: Let Zl,...,Zk be affiliated and let H be any

nondecreasing function. Then the function h defined by

h.albl ; akbk) E[H(ZI,...,Zk)I al ( ZI ( bi,..', ak 4 Z -

is nondecreasing in all of its arguments. In particular, the functions

h (Zl 9 ...'z£ = EIH(ZI 9''''ZkllZI 9''''z£ 10

for Z = 1,...,k are all nondecreasing.

In view of Theorems 2 and 5, we can conclude that the function

E[VI XI = x, YI 
= Y...'Y n-I = Yn-I is nondecreasing in x. To

simplify later proofs, we add the nondegeneracy assumption that this

function is strictly increasing in x. All of our results can be shown

to hold without this extra assumption.

4. Second-Price Auctionl 5 /

In the second-price auction game, a strategy for bidder i is a

function mapping his value estimate x. into a bid b = b (x.) > 0.

Since the auction is symmetric, let us focus our attention on the

bidding decision faced by bidder i.

Suppose that the bidders j * 1 adopt strategies b Then the

highest bid among them will be W = max b (X ) which, for fixed
J~i j

strategies bj, is a random variable. Bidder 1 will win the
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second-price auction if his bid b exceeds W, and W is the price he

will pay if he wins. Thus, his decision problem is to choose a bid b

to solve

mx EJ(V 1 - w)l w < blIXlI
b

Ir bl(X I) solves this problem for every value of xl, then the

strategy bI  is called a best reply to b2 ' . . . , bn . If each bi  in an

n-tuple (bl,...,b n ) is a best reply to the remaining n - 1

Iv strategies, then the n-tuple is called an equilibrium point.
2

Let us define a function v: + by v(x,y) = EIV 1 i X1 = x,

Y, = y1. In view of (3) and Theorems 2 and 5, v is nondecreasing. Our

nondegeneracy assumption ensures that v is strictly increasing in its

first argument.

Theorem 6: Let b*(x) = v(x,x). Then the n-tuple of strategies

(b*,...,b*) is an equilibrium point of the second-price auction.

Proof: Since b* is increasing, W = b*(Yl). So bidder l's

conditional expected payoff when he bids b is

-[(V b*(Yl)ll{b,(Yl) b}1Xl x]

= - EEI(V1 - v(YiYl))b}= xl

1' 1 {b*(Y < b) 1~ll~

- Er(v(xI,Y I ) - v(Yi Yl))liYl } l=xl
E1(vXVY1 V~1w'1 M(b*(Y < blIXl x

b*-l (b)
f [v(,) - v(ca)lf y (ajx)d
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4O

where f y(.Ix) is the conditional density of Y1  given X1 = x.

Since v is increasing in its first argument, the integrand is positive

for a < x and negative for a > x. Hence, the integral is maximized -S
by choosing b so that b*-l(b) = x, i.e., b = b*(x). This proves

that b* is a best reply for bidaer 1. Q.E.D.

An important special case arises if we assume that

V1 = V2 .... = Vn = V. We call this the generalized mineral rights

model. (It differs from the mineral rights model in not requiring the

bidders' estimates of V to be conditionally independent.) Suppose "

that, in this context, we introduce an (n+l)-st bidder with an

estimate Xn+1 of the common value V. We say that Xn+1 is a

garbling of (XI,Y I) if the Joint density of (V,XI,...,XnXn+I) can 0

be written as g(VXI,...,X n) * h(Xn+IlXIYI). For example, if bidder

n + 1 bases his estimate Xn+l only on information that was also

available to bidder 1, this condition would hold. S

Theorem 7: For the generalized mineral rights nndel, if X is

a garbling of (XIYI), then bidder n + 1 has no strategy that earns a

positive expected payoff when bidders 1,...,n use (b*,....b*).

Consequently, in this (n + l)-bidder second-price auction, the

(n + 1)-tuple (b*,...,b*,bn+I) where bn+1  0 is an equilibrium

point.

RP

W,
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Proof: Let Z = max(X1 ,Y1). If bidder n + 1 observes X

and then makes a winning bid b, then his conditional expected payoff is

E[(V - b*(Z))IXn+l, {b*(Z) < b}.

= E[E!V- b*(Z)jXI,YI,)Xn+I 'Xn+l' {b*(Z) < b}j

= Eiv(XIY I) - v(Z,Z)X n+l,{b*(Z) < b}] .

The last equality uses the fact that E YVIXYI, X n+ I = E[VIXY I], a

consequence of the garbling assumption. Since v is nondecreasing,

v(XI,Y I) - v(Z,Z) < 0, so the last expectation is nonpositive. Q.E.D.

Now consider how the equilibrium is affected when the seller

publicly reveals some information X0  (which is affiliated with all the

other random elements of the model). We shall assume the seller's

revelations are credible.
1 6

Define a function w: 3 +1R by w(x,y; z) = E[VI1 X1 
= x,YI = y')

X0 = z]. By Theorems 2 and 5, w is nondecreasing. After X0  is publicly

announced, a new conditional Joint density f(sl,...,sm,xl,...,xnIx 0 )

applies to the random elements of the model, and it is straightforward

to verify that the conditional density satisfies the affiliation

inequality. So, carrying out the same analysis as before, there is an

equilibrium (b...,b) given by b(x; x0 ) = w(x,x; x0). Note that this

time a strategy maps two variables, representing private and public

information, into a bid. For any fixed value of X0, the equilibrium



-25-

strategy is a function of a single variable and is similar in form to

b*.

Let RN be the expected selling price when no public information
-- @

is revealed and let RI be the expected price when X0  is made public.

Theorem 8: The expected selling prices are as follows:

RN= Ev(YI,YI)I{XI > Y11

RI = Ejw(Y1,Y1; X 0 )I{X 1 > Y1}]

Revealing information publicly raises revenues, that is, RI  RN.

Proof: Recall that v(YI,YI) is the price paid when bidder 1

wins. Thus, RN is the expected price paid by bidder 1 when he wins.

By symmetry, it is the expected price, regardless of the winner's

identity. The same argument applies to RI.

Next, note the following identities.

v(x,y) = E[Vl1lX = x, Y= y

= E[E[V 1IxYIX 0x 1 = x, Y1 =

= E[w(X1,Y1; X0)Ix1 : x, = y]
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For x > y, we apply Theorems 2, h and 5 to get:

v(y,y) = Elw(XI,Y1 ; X0 )1x = y, Y1 = y ]

= Ejw(YI'Y1 ; X0 )jXl = Y, YI = Y1

E[w(YI,Y ; XO )1X1 = x, = A

So,

R= E[v(YI ,Y I )l{X1 > YI}]

<E[Ejw(Y1,Y I ; Xo) IXI, YI {X1  > YI}

= Elw(YIY; XO)I{X1 > Y

= R . Q.E.D.

Theorem 8 indicates that publicly revealing the information X is

better, on average, than revealing no information. One might wonder

whether it would be better still to censor information sometimes, i.e.,

to report X0 only when it exceeds some critical level. Of course, if

this policy of the seller were known, rational bidders would correctly

interpret the absence of any report as a bad sign.

There are many possible information revelation policies. If one

assumes that the bidders know the information policy, then one can also

* I
assume without loss of generality that the seller always makes some

report, though that report may consist of a blank page. Let Z be a

random variable, uniformly distributed on 10,1] and independent of the

other variables of the model. We formulate the seller's report very
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generally as X= r(X0 ,Z), i.e., the seller's report may depend both on

his information and the spin of a roulette wheel. We call r the

seller's reporting policy. -V

Theorem 9: In the second-price auction, no reporting policy leads

to a higher expected price than the policy of always reporting X0 .

Proof: Let r be any reporting policy and let X; = r(Xz).

The conditional distribution of X given the original variables

(S,X) depends only on X0 . We denote the conditional density (if one

exists) by g(X;IXo) and the marginal density by g(X'). For any

realization x; of X', the corresponding conditional Joint density17/

of (s,x) is f(s,x) g(x~lx 0 )/g(x ), which satisfies the affiliation

inequality in (s,x) since f does, by Theorem 1. Therefore, by

Theorem 8, revealing X0  further raises expected revenues. But

revealing both Y0  and X; leads to the same equilibrium bidding as

revealing Just X0 , so the result follows. Q.E.D.

5. English Auctions

There are many variants of the English auction. In some, the bids

are called by the bidders themselves, and the auction ends when no one

is willing to raise the bidAI8 / In others, the auctioneer calls the
W

bids, and a willing bidder indicates his assent by some slight gesture,

usually in a way that preserves his anonymity. Cassady (19671 has

• _ • -
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described yet another variant, used in Japan, in which the price is

posted using an electronic display. In that variant, the price is

raised continuously, and a bidder who wishes to be active at the current

price depresses a button. When he releases the button, he has withdrawn

from the auction. These three forms of the English auction correspond

to three quite different games. The game model developed in this

section corresponds most closely to the Japanese variant: We assume

that both the price level and the number of active bidders are

continuously displayed. We use the term "English auction" to designate

this variant.

In the English auction with only two bidders, each bidder's

strategy can be completely described by a single number which specifies

how high to compete before ceding the contest to the other bidder. The

bidder selecting the higher number wins, and he pays a price equal to

the other bidder's number. Thus, with only two bidders, the English and

second-price auctions are strategically equivalent. When there are

three or more bidders, however, the bidding behavior of those who drop

out early in an English auction can convey information to those who keep

bidding, and our model of the auction as a game must account for that

possibility.

We idealize the auction as follows. Initially, all bidders are

active at a price of zero. As the auctioneer raises the price, bidders

drop out one by one. No bidder who has dropped out can become active

again. After any bidder quits, all remaining active bidders know the

price at which he quit.
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A strategy for bidder i specifies whether, at any price level

p, he will remain active or drop out, as a function of his value

estimate, the number of bidders who have quit the bidding, and the

levels at which they quit. Let k denote the number of bidders who

have quit and let p1 < " k denote the levels at which they

quit. Then bidder i's strategy can be described by functions

bik(xi1Pl,...,pk) which specify the price at which bidder i will quit

if, at that point, k other bidders have quit at the prices pl,...,p k .

It is natural to require that bik(xilPl,...,pk) be least

Now consider the strategy b* = (b*,...,b*) defined iteratively
0 n-2

as follows.

(5) b*(x) = EVIX 1  ,= X, X,...,Yn1 =x)

(6) b*(xlpl .... pk) = E[V I X = x, Y = x,...,Y =x,

k 1 k1 1 1 n-k-].
S

b* (Y Jp,...,p_) = b*(Y )p]b*
k-l n-k 0k-l =k..' 0Yn-l) P11

The component strategies reflect a kind of nopic bidding

behavior. Suppose, for example, that k = 0, i.e., no bidder has quit

yet. Suppose, too, that the price has reached the level b*(y) and

that bidder 1 has observed X= x. If bidders 2,...,n were to quit

instantly, then bidder 1 could infer from this behavior that

Y= .... = Yn-l = y " In that case, he would estimate his payoff to be

EIV 1j = x, Y= y .... Y = yj - b*(y). By (5) and Theorem 5, that
1 n- ypiviY 1  0

difference is positive if x > y and negative if x < y. Thus, b*
0
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calls for bidder 1 to remain active until the price rises to the point

where he would be just indifferent between winning and losing at that

price. The other strategies b* have a similar interpretation, but
k

they assume that bidders infer whatever they can from the quitting

prices of those who are no longer active.

Theorem 10: The n-tuple (b*,...,b*) is an eouilibrium point of
I U

the English auction game.

Proof: It is straightforward to verify from (5) and (6) that each

b* is increasing in its first argument. Hence, if bidders 2,...,n
k

adopt b* and bidder 1 wins the auction, the price he will pay is

EIV1IXI = Yi' Y1 = Y''9'' wn- n- ere Y1....Yn- are the

realizations of Yl,...,Yn_ His conditional estimate of V1  given

XYis ElVIix = x, Y1 = YI'''Yn = Y..IY y so his con-

1  n-l 1 1 n-l n-l

ditional expected payoff is nonnegative if and only if x ) y1 . Using

b*, bidder 1 will win if and only if X1 > Y1  (recall that the event

{X1 = YI} is null). Hence b* is a best reply for bidder 1. Q.E.D.

Theorem 11: The expected price in the English auction is not less

than that in the second-price auction.

Proof: This is identical to the proof of Theorem 8, except that

Y2, ...'Yn-l play the role of X0 . Q.E.D.

In effect, the English auction proceeds in two phases. In phase

1, the n - 2 bidders with the lowest estimates reveal their signals

publicly through their bidding behavior. Then, the last two bidders
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engage in a second-price auction. We know from Theorem 8 that the

public information phase raises the expected selling price.

By mimicking the proofs of Theorems 8 and 9, we obtain correspond-

ing results for English auctions. Define v and w as follows.

v(x,y1,.. .'n-1I  = E[V 1JX1 = x, Y1 = Yl'"''Yn-l = Yn-l "

w(xy 1,.. ,Yn_l;z) = E[V 1jxI = x, YI = YI''''Y n-l Yn-l XO zI

Theorem 12: If no information is provided by the seller,the

expected price is :

= E[V(Y 1 ,YIY 2 ,...,Y n) 1 (Xl > YI1]

If the seller announces XO, the expected price is

RE = Ejw(YIYIY ... ,Y ;Xo{X > Y
I1'1 2" n-lX 0)X 1  1

E E
Revealing information publicly raises revenues, that is, RI > RN.

Theorem 13: In the English auction, no reporting policy leads to

a higher expected price than the policy of always reporting XO -

S

m - • -
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6. First-Price Auctions

We begin our analysis of first-price auctions by deriving the

necessary conditions for an n-tuple (b*,...,b*) to be an equilibrium

-4 point, when b* is increasing and differentiable 1 9 / Suppose bidders 0

2,...,n adopt the strategy b*. If bidder 1 then observes X= x and

bids b, his expected payoff H(b;x) will be given by

(b;x) E[(V 1 - b) l{b*(Y) < b}IXl = x'

= EIE[(V]- b) 1 {b)(Y < b) IXIY 1  = x]

=E[(v(XIY1) - b) ix, =x

b*-i (b) lo
f (v(x,) - b) f Yl(ajx)da

where x is infimum of the support of X1 . The first-order condition

for a maximum of U(b;x) is

0 = 11 b(b;x)

= (v(x,b*- (b)) - b)f Y(b*- (b)Ix)/b * '(b* - l (b)) - FY(b*-l (b)jx)

where 11 denotes afl/ab and F is the cumulative distribution

corresponding to the density f If b* is a best reply for 1, we

must have Hb (b*(x);x) = 0. Substituting b*(x) for b in the first-

order condition and rearranging terms leads to a first-order linear

differential equation :.20/
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(7) b'(x) - (v(x,x) - b*(x)) F (xx)

Condition (7) is Just one of the conditions necessary for

equilibrium. Another necessary condition is that (v(x,x) - b*(x)) be

nonnegative. Otherwise, bidder l's expected payoff would be negative

and he could do better by bidding zero. It is also necessary that ...

v(x,x) - b*(x) be nonpositive. Otherwise, when XI = x, a small

increase in the bid from b*(x) to b*(x) + e would raise l's expected

payoff from zero to some small positive number. These last two

restrictions determine the boundary condition: b*(x) = v(x,x).

Theorem 14: The n-tuple (b*,...,b*) is an equilibrium of the

first-price auction, where:

x
(8) b*(x) = f v(a,a) dL(alx) , and

XJx f]

fy (sls)

LMajx) =exp(- f -i7(s ds)

Let t(x) = v(x,x). Then b* can also be written as:

x
b*(x) = v(xx) - f L(ajx) dt(a)

4x
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Lemma 1: FYl (XIz)/fYl(xlz) is decreasing in z.

Proof: By the affiliation inequality, for any a ( x and any z' z

we have fy (Qjz)/fY (xjz) r fy (&Iz')/fY (xjz'). Integrating

with respect to a over the range x 4 a ( x yields the desired

result. Q.E.D.

Proof of Theorem 14: Notice that L(.Ix), regarded as a -

probability distribution on (x,x) , increases stochastically in x

(that is, L(alx) is decreasing in x). Since v(a,a) is

increasing, b* must be increasing. 'U

Temporarily assume that b* is continuous in x. There is no

loss of generality in assuming that b* is differentiable, since

Theorem 3 permits us to rescale the bidders' estimates monotonically. 'U

Consider bidder l's best response problem. It is clear that he need

only consider bids in the range of b*. Therefore, to show that

b*(z) is an optimal bid when X= z, it suffices to show that

ib (b*(x); z) is nonnegative for x < z and nonpositive for x > z.

Now,

f (xjz) F (xjz)

S(b(x); z) = b*'(x) [(v(z,x) - b*(x)) - b*'(x) • f

By (7), the bracketed expression is zero when x = z. Therefore,

by Lemma 1 and the monotonicity of b* and v, the bracketed expression

(and therefore, nb (b*(x);z) ) has the same sign as (z - x).

b . . . . . . . . . .
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It remains to consider the cases where b* (as defined by (8)) is

discontinuous at some point x. That can happen only if for all

positive c, the first of the following expressions is infinite:

f (sIs) ds f 1 (sx+E) ds
x F -YI

= in FY (x+elx+E) - in FY (xlx+e)

the inequality follows from the lemma. The final difference can be

infinite only if FY (xlx + ) = 0, and that in turn implies that

F (xlx + c) = 0. (Otherwise, there would be some point z =
n-l "U

(2,...z n ) in the conditional support of (X2 *.. Xn) given

XI = x + c, with some zi < x. By symmetry, all of the permutations

1!

of z are also in the support and therefore, by affiliation, the
U]

component-wise minimum of these permutations is in the support. But

that would contradict the earlier conclusion that F (xix + C) = 0.)

Thus, if any Xi  exceeds x, all must. g -

It now follows that the bidding game decomposes into two subgames,

in one of which it is common knowledge that all estimates exceed x and

in the other of which it is comion knowledge that none exceed x. Taking

4 the refinement of all such decompositions, we obtain a collection of

subgames, in each of which b* is continuous. The first part of our

proof then applies to each subgame separately. Q.E.D.
S

S
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The remaining results in this section, as well as parts of the B

analyses in Sections 7 and 8, make use of the following simple lemma.

Lemma 2: Let g and h be differentiable functions for which

(i) g(x) > h(x) and

(ii) g(x) < h(x) implies g'(x) ) h'(x).

Then g(x) h(x) for all x ) x.

Proof: If g(x) < h(x) for some x > x then, by the mean value

theorem, there is some x in (x,x) such that g(x) < h(x) and

g'(x) < h'(x). This contradicts (ii). Q.E.D.

Our first application of this lemma is in the proof of the next

theorem.

Theorem 15: The expected selling price in the second-price

auction is at least as large as in the first-price auction.

Proof: Let R(x,z) denote the expected value received by

bidder 1 if his own estimate is z and he bids as if it were x

that is, define

R(x,z) - E[V• ly I < x} 1 X1 = z]

w

Let wM(x,z) denote the conditional expected payment made by bidder 1

in auction mechanism M (in the case at hand, either the first-price or

second-price mechanism) if

IB
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(i) the other bidders follow their equilibrium strategies,

(ii) bidder l's estimate is z,

(iii) he bids as if it were x, and (iv) he wins.

For the first-price and second-price mechanisms, we have

WI(x,z) = b*(x) and W2(x,z) = E[v(YI,YI)t Y1 < x, X1 = z].

In mechanism M, bidder l's problem at equilibrium when X = z is

to choose a bid, or equivalently to choose x, to maximize R(x,z) -

WM(x,)FYl(xlz). The first-order condition must hold at x = z:

(9) 0 = R1(z,z) - WM(z,z)Fl (zlz) - WM(z,z)fy (zlz)
1 1

where R1  and WM denote the relevant partial derivatives. The1 1

equilibrium boundary condition is: WM(x,x) = v(x,x).

Clearly, W1 (xz) = 0. From Theorem 5 it follows that
2C

W2 (xz) > 0. Hence, by (9), if W 2 (z,z) < Wl(z,z) for some z, then
2'

dW2/dz = + W2 > + = dW1 /dz. Therefore, by Lemma 2,
1 2 1 2

W2(z,z) > WI(z,z) for all z ) x. The theorem follows upon noting that

the expected prices in the first-price and second-price auctions are

E[W'(X 1,X1 )I {X1 > Y1 1] and E[W 2 (X XI)I {XI > YI11,

respectively. Q.E.D.

A similar argument is used below to establish that in a first-

price auction the seller can raise the expected price by adopting a

policy of revealing his information.

W
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Theorem 16: In the first-price auction, a policy of publicly S

revealing the seller's information cannot lower, and may raise, the

expected price.

Proof: Let b*(-; s) represent the equilibrium bidding strategy

in the first-price auction after the seller reveals an informational

variable X. = s. The analogue of equation (7) is:

fy (xlx,s)

b*'(x; s) = (w(x,x; s) - b*(x)) ,1F~l(xlx,s)•

By a variant of Lemma 1, fY (xlx,s)/FY (xlx,s) is nondecreasing in s,
1 1

and by Theorem 5, w(x,x; s) is also nondecreasing in s. The

equilibrium boundary condition is b*(x; s) = w(x,x; s). Hence, lip

applying Lemma 2 to the functions b*(.; s) for any two different

values of s, we can conclude that b*(x; s) is nondecreasing in s.

Let W*(x,z) = E[b*(x; X0 )I Y, < x, X, = z]. By Theorem 5,

W*(x,z) ) 0. Note that W*(x,x) = E[w(x,x; X )I Y1 = , X1 ] If
20

bidder 1, prior to learning X0  but after observing X1 = z, were to

commit himself to some bidding strategy b*(x; .), his optimal choice

would be x = z (since b*(z; x ) is optimal when X = x0). Thus,
0 0  x0)

W* must satisfy (9). Hence, by Lemma 2, W*(z,z) > W l(z,z) for all

z > x; the details follow just as in the proof of Theorem 15. The

expected prices, with and without the release of information, are

E[W*(XIX 1) {X1  > Y11 ] and E[WI(X 1 ,X 1 )l {X1 > Y1 }]. Therefore,

releasing information raises the expected price. Q.E.D.
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If the seller reveals only some of his information, then

conditional on that information Xo,X 1 ,...,X n are still affiliated.

Thus, we have the following analogue of Theorems 9 and 13.

Theorem 17: In the first-price auction, no reporting policy leads

to a higher expected price than the policy of always reporting X0.

There is a common thread running through Theorems 8, 11, 12, 15,

and 16 that lends some insight into why the three auctions we have

studied can be ranked by the expected revenues they generate, and why

policies of revealing information raise expected prices. This thread is

most easily identified by viewing the auctions as "revelation games" in

which each bidder chooses a report x instead of a bid b*(x).

No auction mechanism can determine prices directly in terms of the

bidders' preferences and information; prices (and the allocation of the

object being sold) can depend only on the reports that the bidders make

and on the seller's information. However, to the extent that the price

in an auction depends directly on variables other than the winning

bidder's report, and to the extent that these other variables are (at

equilibrium) affiliated with the winner's value estimate, the price is

statistically linked to that estimate. The result of this linkage is

that the expected price paid by the bidder, as a function of his

estimate, increases more steeply in his estimate than it otherwise

might. Since a winning bidder with estimate x expects to pay

v(x,x) in all of the auctions we have analyzed, a steeper payment

function yields higher prices (and lower bidder profits).



-b4o-

In the first-price auction, for example, revealing the seller's

information links the price to that information, even when the winning

bidder's report x is held fixed. In the second-price auction, the

price is linked to the estimate of the 3econd-highest bidder, and

revealing information links the price to that information as well. In

the English auction, the price is linked to the estimates of all the

non-winning bidders, and to the seller's estimate as well, should he

reveal it. The first-price auction, with no linkages to the other

bidders' estimates, yields the lowest expected price. The English

auction, with linkages to all of their estimates, yields the highest

expected price. In all three auctions, revealing information adds a

linkage and thus, in all three, it raises the expected price.

"S

7. Reserve Prices and Entry Fees

The developments in sections 4-6 omit any mention of the seller

setting a reserve price or charging an entry fee. Such devices are 6

commonly used in auctions and are believed to raise the seller's

revenue. Moreover, a great deal of attention has recently been devoted

to the problem of setting reserve prices and fees optimally (Harris and 6

Raviv 119811, Maskin and Riley 119801, Matthews 11979], Riley and

Samuelson 119811).

It is straightforward to adapt the equilibrium characterization

theorems (Theorems 6, 10, and 14) to accommodate reserve prices. In the

first-price auction, setting a reserve price r above v(x,x) simply

alters the boundary condition, and the symmetric equilibrium strategy

I



becomes

x
b*(x) =r.L(x*lx) + f v(a,cs)dL(alx) for x > x*

-e

b*(x) < r for x < x*

where x = x*(r) is called the screening level and is given by

(10) x*(r) = inf {xIEjV 1IXI = x, Y < x] > r)

It is important to note that when the same reserve price r is

used in a first-price, second-price auction, or English auction, the -

same set of bidders participates. Thus, in the second-price auction

with reserve price r,2 2 / the equilibrium bidding strategy is

U
b*(x) = v(x,x) for x > x*

b*(x) < r for x < x*

A formal description of equilibrium with a reserve price in an English

auction would be lengthy; the equilibrium strategies incorporate the

inference that if a bidder does not participate, his valuation must be

less then x*.

With a fixed reserve price, one can again show that the English

auction generates higher average prices than the second-price auction,

which in turn generates higher average prices thLn the first-price

auction. The introduction of a reserve price does ,ot alter these

important conclusions.

U

I
U
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61 More subtle and interesting issues arise when the seller has

private information. If he fixes a reserve price and then reveals his

information, he will generally affect x* and hence change the set of

bidders who are willing to compete. In our information revelation

theorems, we assumed that the reserve price was zero, so that revealing

information would not alter the set of competitors.

Given any reserve price r, and realization z of X0, let

x*(irIz) denote the resulting value of x*. It is clear from expression

(I0) that x* is decreasing in r and maps onto the range of XI.

Hence, there exists a reserve price r = r(zl) such that

x*(rlz) = x*( ); we call r(zlF) the reserve price corresponding to z,

given r.

,W

Theorem 18: Given any reserve price r for the first-price,

second-price, or English auction, a policy of announcing X0  and

setting the corresponding reserve price raises expected revenues.

Proof: Let Y* = max(Yl,X*(r)). Let v*(x,y) = EVIX 1 =x,

1 lX

Y* = y] and let w*(x,y,z) = E[V 1 X1 = x, y , = zj. By

Theorems 2-5, X0 , X1 , and Y* are affiliated and v* and w* are S
1

nondecreasing, so the arguments used for Theorems 8 and 12 still

apply. The argument used in the proof of Theorem 16 generalizes without

difficulty. Q.E.D. W

As with Theorems 8, 12, and 16, Theorem 18 has the corollary that

no policy of partially reporting the seller's information leads to

ahigher expected price than full revelation: Again, "honesty is the

best policy."
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When both a reserve price r and an entry fee e are given, we

more generally define the screening level x*(r,e) to be

x*(r,e) = inf (xiEr(V1 - r) 1 {Yl<xIX1 = x1 > el . ".

It is not always true that the set of bidders who will choose to pay the

entry fee and participate in an auction consists of all those whose g.

value estimates exceed the screening level. In a first-price auction,

an entry fee might discourage participation by some bidder with a

valuation x well above x*(r,e) if he perceives his chance of

winning (FYl (xlx)) as being slight23__

If the set of bidders who participate at equilibrium in an auction

with reserve price r and entry fee e does consist of those with

valuations exceeding x*(r,e), then we say that the pair (r,e) is

regular for that auction. The next result shows that among regular

pairs with a fixed screening level, it pays to set high entry fees and

low reserve prices, rather than the reverse.

Theorem 19: Fix an auction mechanism (first-price, second-price,

or English), and suppose that the pair (r,e) is regular. Let (r,e) 4

be another pair with the same screening level (i.e., x*(r,e) =

x*(r,e)) and with e < e. Then (r,-e) is regular, but the expected
w

revenue from the (r,e)-auction is less than or equal to that from the

(r,e)-auction.

Proof: Let P(x,z) and T(x,z) denote the expected payments

made by bidder 1 in the (r,e)-auction and the (i<e--auction,

respectively, when
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(i) the other bidders follow their equilibrium strategies, •

(ii) bidder l's estimate is z, and

(iii) he bids as if his estimate were x.

(Notice that P and P are not conditioned on bidder 1 winning.) 0

Defining R as in the proof of Theorem 15. we have the following

equilibrium conditions: P (z,z) = R (zz) = P (zz) for all z > x*,

and P(x*,x*) = R(x*,x*) = P(x*,x*).

If the two auctions are first-price auctions with equilibrium

strategies b and b , then P(x,z) = b(x)Fy (xlz) + e and

6 (x,z) = b(x)FYl(x z) + e. Since b and b are solutions of the same

differential equation, with b(x*) = r < r = _(x*), the functions

cannot cross and so b < b everywhere. Also,

P2 (x,x) - 2(xx) = [b(x) - (x)l Fz(xlz) >x

since the partial derivative term is negative (by affiliation). Hence,

an application of Lemma 2 yields P(z,z) > P(z,z) for all z > x*.

For the second-price or English auction, the payments made by a

bidder when his type is z and he bids as if it were x differ only

when he pays the reserve price, i.e., only when Y < x*. Therefore,

P 2 (x,z) - P2 (x,z) = (r - r) - - Fl (x*fz) ) 0. Once again, Lemma 2

implies that P(z,z) > P(z,z).

The expected payoff at equilibrium in the (,e)-auction for a

bidder with estimate z > x* is R(z.z) - P(z,z) > R(z,z) - P(z,z) > 0,

since (r,e) is regular. Hence, such bidders will participate in the

( ,e)-auction and the seller's expected revenue from each of them is

less than it is in the (r,e)-auction.
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It remains to show that bidders with estimates z < x* will

choose not to participate in the (r,e)-auction. In the proofs of

Theorems 6, 10, and 14, we argued (implicitly) that the decision problem

max R(x,z) - T(x,z) is quasiconcave for each of the three auction
x
forms, and that tle maximum is attained at x = z. Those arguments

remain valid in the present context; we shall not repeat them here.

Instead, we observe this consequence of quasiconcavity: for z < x*,

the optimal choice of x subject to the constraint x > x* is

x = x*. The resulting expected payoff to a bidder with estimate z is

4 R(x',z) -

Now, P(x*,z) - P(x*,z) = P(x*,x*) - P(x*,x*) + (-r- r)[FY (x*Iz)

- FY (x*x*)]. But P(x*,x*) = R(x*.x*) = P(x*,x*) , and, by
p

affiliation, the bracketed term is nonnegative. Therefore

T(x*,z) ) P(x*,z). Hence, the expected profit of the bidder with

estimate z is R(x*,z) -P(x*,z) 4 R(x*,z) - P(x*,z), and this last

expression is nonpositive because the (r,e)-auction is regular. Q.E.D.

8. Risk Aversion

In the model with risk-neutral bidders, we have shown that the

English, second-price, and first-price auctions can be ranked by the

expected prices they generate. We have also shown that in the English

and second-price auctions, the seller benefits by establishing a policy

of complete disclosure of his information. In this section, we

investigate the robustness of those results when the bidders may be risk
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averse. For simplicity, we limit attention to the case of zero reserve S

prices and zero entry fees.

Consider first the independent private values model, in which

V Xi and XI,...,Xn are independent. For this model, the first- S

and second-price auctions generate identical expected prices. Now let

bidder i's payoff be u(Xi - b) when he wins at a price of b,

where u is some increasing, concave, differentiable function

satisfying u(O) = 0. Let b* denote the equilibrium strategy in the
u

first-price auction. Then the analogue of the differential equation (7)

is:

f (x)
u(x - b*(x)) Y

b*'(x) -T u ux -
u u'( b'x)Y T

u

(11)

f (x)

(x - b*(x)) F (

where the inequality follows from the concavity of u. Let b* denote
N

the equilibrium with risk-neutral bidders. From (ii) it follows that

whenever b*(x) < b*(x), b*'(x) > b*'(x) ; the equilibrium boundary
u - N U N

condition is: b*(x) = b*(x) = x. It then follows from Lemma 2 that,

P for x > x, b*(x) > b*(x): risk aversion raises the expected
u N

selling price. It is straightforward to verify that, with Vi = Xi ,

the second-price auction equilibrium strategy is b*(x) = x,

independent of risk attitudes. Thus, with independent private values
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and risk aversion, the first-price auction leads to higher prices than

the second-price auction. In conjunction with our earlier result

(Theorem 15), this implies that, for models that include both
-S

affiliation and risk aversion, the first- and second-price auctions

cannot generally be ranked by their expected prices.

To treat the second-price auction when bidders are risk averse and

do not know their own valuations, it is useful to generalize the

definition of the function v. Let v(x,y) be the unique solution of:

Efu(V1 - v(x,y))Ix 1 = x, = y = u(O) . S

The proof of Theorem 6 can be directly generalized to show that

(b*,...,b*) is an equilibrium point of the second-price auction when

b*(x) = v(x,x).

Similarly, it is useful to generalize the definition of w. Let

w(x,y,z) be the unique solution of: .0

Eru(v - w(x,y,z))Ix1 = x, Y, = y, X = z] = u(O)

In proving that releasing public information raises the expected selling 0

price in Section 4, we used the fact that the relation

E[w(XIYI,Xo )XIY 1 > V(XlY )

holds with equality when the bidders are risk neutral. Applied to risk

averse bidders, this inequality asserts that resolving uncertainty by

releasing information reduces the risk premium demanded by the

bidders. If the information being conveyed is perfect information (so



that it resolves uncertainty completely), then, clearly, the risk

premium is reduced to zero. But for risk-averse bidders, it is not

generally true that partially resolving uncertainty reduces the risk

premium. In fact, the class of utility functions for which any partial

resolution of uncertainty tends to reduce the risk premium is a very

narrow one.

Let us now rephrase this issue more formally. For a given utility

function u and a random pair (V,X), define R(x) by

E[u(V - R(x))IX = xl = u(O) and define A by Eju(V - R)1 = u(O). We

shall say that revealing X raises average willingness to pay if

ErR(X)l > 1.

Theorem 20: Let u be an increasing utility function. Then it

is true for every random pair (V,X) that revealing X raises average

willingness to pay if and only if the coefficient of absolute risk

aversion -u"(e)/u'(s) is a nonnegative constant. W

Proof: We shall consider a family of random pairs (V ,X). Let

X take values in {0,1 and let V = X(Z + a), where Z is some

unspecified random variable. Suppose X and Z are independent and

P{X = 01 = P(X = 11 = 1/2. Finally, suppose EIu(Z)l = u(O), and

normalize so that u(O) = 0.

Fix u and let R be the willingness to pay for V when there
a a

is no information. Let R x) be defined as in the text. Then

Ra(0) = 0, Ra(1) = a, and E[R(X)J = a/2. If revealing X always

increases willingness to pay, then R< a/2. So,

* U=
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0 = E[u(V - a)H

aE a
1 Eu(z + - ) +2 (-

> 1 u(Z + )I +

Since this holds with equality at a = 0 and since it must hold for
-•

all a, positive and negative, the final expression must be maximized

when a = 0:

0 = ElU'(Z)I - u'(O)
(12)

0 > Eiu"(Z)I + u"(0)

Now, let g(w) = u'(u-l(w)) and let W = u(Z). By varying Z, we can

obtain any desired random variable W on the range of u. The

conclusion reached above can be restated as: EWI = 0 implies

Ejg(W)j = u'(O). It then follows that g(w) = cw + u'(0) and hence

that u'(x) = cu(x) + u'(0). Hence u is linear (and we are done), or

u(x) = A + Becx. The inequality condition in (12) rules out B > 0"

since u' > 0, it follows that c < 0. This proves the first assertion

of the theorem.

U

SOP
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Next fix (V,X) and let u(x) = -exp(-ax). Then

u(0) = E~u(V - R)]

= E[E[exp(a( - R(X)))u(V - R(X))IXfl

= Ejexp(a( - R(X)))Elu(V - R(x))Ixll

= Etexp(a(R - R(X)))u(O)2

>u(0) exp[a(K - E[R(X) I)l

It follows that R - E1R(X)J < 0. Q.E.D.

A straightforward corollary of this result is that

Erw(XI,YI,X0)1x = x, Y1 = y > > v(x,y). This inequality can be used to

generalize our various results concerning English and second-price

auctions.

Theorem 21: Suppose the bidders are risk averse and have constant

absolute risk aversion. Then, 9

(i) in the second-price and English auctions, revealing public

information raises the expected price,

(ii) among all possible information reporting policies for the

seller in second-price and English auctions, full reporting

leads to the highest expected price, and

(iii) the expected price in the English auction is at least as 0

large as in the second-price auction.

V I

I
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Proof: As in the risk-neutral developments, everything hinges on

the initial statements about information release raising the expected

price in a second-price auction. We shall prove only this proposition. .

Note that w is a nondecreasing function. From this fact,

Theorem 5, and the corollary of Theorem 20 observed in the text, we have

for all x > y that

v(y,y) < EIw(XIYIX )jXI = y, YI = y

= Erw(Y1IY1 X0 )IXl = Y, Y, = Yl

Ejw(YIYI,Xo) IX = x, YI = yA

Hence Ev(Y ,Y 1I{x I > YI} 1 Etw(YI,YI ,x0 )I(X > Y I}, which is the

desired result. Q.E.D.

The proof of Theorem 21 suggests that reporting information to the

bidders has two effects. First, it reduces each bidder's average profit

by diluting his informational advantage. The extent of this dilution is

represented by the second inequality in the proof. Second, when bidders

have constant absolute risk aversion, reporting information raises the

bidders' average willingness to pay. This is represented by the first

inequality in the proof.

Generally, partial resolution of uncertainty can either increase

or reduce a risk-averse bidder's average willingness to pay. Since only

an increase is possible when bidders have constant absolute risk

aversion or when the resolution of uncertainty is complete, the cases of

reduced average willingness to pay can only arise when the range of

1



-52-

possible wealth outcomes from the auction is large (so thab the bidders'

coefficients of absolute risk aversion may vary substantially over this

range) and when the unresolved uncertainty is substantial. For auctions

conducted at auction houses, this combination of conditions is

unusual. Thus, Theorem 21 may account for the frequent use of English

auctions and the reporting of expert appraisals by reputable auction

houses.

9. Where Now For Auction Theory?

The use of auctions in the conduct of human affairs has ancient

roots, and the various forms of auctions in current use account for

hundreds of billions of dollars of trading every year. Yet despite the

age and importance of auctions, the theory of auctions is still poorly

developed.

One obstacle to achieving a satisfactory theory of bidding is the

U
tremendous complexity of some of the environments in which auctions are

conducted. For example, in bidding for the development of a weapons

system, the intelligent bidder realizes that the contract price will

later be subject to profitable renegotiation, when the inevitable

changes are made in the specifications of the weapons system. This fact

affects bidding behavior in subtle ways, and makes it very difficult to

give a meaningful interpretation to bidding data.

Most analyses of competitive bidding situations are based on the

assumption that each auction can be treated in isolation. This
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assumption is sometimes unreasonable. For example, when the U.S.

Department of the Interior auctions drilling rights for oil, it may

offer about 200 tracts for sale simultaneously. A bidder submitting

bids on many tracts may be as concerned about winning too many tracts as

about winning too few. Examples suggest that an optimal bidding

strategy in this situation may involve placing high bids on a few tracts

and low bids on several others of comparable value (Engelbrecht-Wiggans

and Weber 119791). Little is understood about these simultaneous

auctions, or about the effects of the resale market in drilling rights

on the equilibrium in that auction game.

Another basic issue is whether the noncooperative game formulation

of auctions is a reasonable one. The analysis that we have offered

seems reasonable when the bidders do not know each other and do not

expect to meet again, but it is less reasonable, for example, as a model

of auctions for timber rights on federal land, when the bidders (owners "V

of lumber mills) are members of a trade association and bid repeatedly

against each other.

The theory of repeated games suggests that collusive behavior in a

single auction can be the result of noncooperative behavior in a

repeated bidding situation. That raises the question: which auction

forms are most (least) subject to these collusive effects? Issues of

collusion also arise in the study of bidding by syndicates of bidders.

Why do large oil companies sometimes join with smaller companies in

making bids? What effect do these syndicates have on average prices?

What forces determine which companies join together into a bidding
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syndicate?

Another issue that has received relatively little attention in the

bidding literature concerns auctions for shares of a divisible object.
-6

A recent study (Wilson 11979]) indicates that such auctions involve a

host of new problems that require careful analysis.

Much remains to be done in the theory of auctions. Some of the

important issues described above simply do not arise in the auctions of

a single object that have traditionally been studied and that we have

analyzed in this paper. Nevertheless, the treatment presented here of

the role of information in auctions is a first step along the path to

understanding auctions which take place in more general environments.

10. Appendix on Affiliation

A general treatment of affiliation requires several new defini-

tions. First, a subset A of 1 k is called increasing if its

indicator function 1A is nondecreasing. Second, a subset S of Ik

is a sublattice if its indicator function IS  is affiliated, i.e., if

z V z' and z A z' are in S whenever z and z' are.

6 Let Z = (Zl,...,Zk) be a random k-vector with probability

distribution P. Thus, P(A) = Prob(Z EA). Notationally, we denote the

intersection of the sets A and B by AB and the complement of A

* by A.

Definition. Z1,.*.,Zk are associated if for all increasing

sets A and B, P(AB) > P(A)P(B).
U
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-S"
Remark: It would be equivalent to require P(U) > P(A)P(B) or

even P(AB) < PAP(B).

Definition. ZI,...,Zk are affiliated if for all increasing -.

sets A and B and every sublattice S, P(ABIS) > P(AIS)P(BIS), i.e.,

if the variables are associated conditional on any sublattice.

With this definition of affiliation, Theorems 3-5 become

relatively easy to prove. However, we shall also need to establish the

equivalence of this definition and the one in Section 3 for variables

with densities. We begin by establishing the important properties of

associated variables.

Theorem 22: The following statements are equivalent. V

(1) Zl,...,Zk are associated.

(2) For every pair of nondecreasing functions g and h,

Erg(Z)h(Z)1 > EIg(Z)I-E[h(Z)l

(3) For every nondecreasing function g and increasing set A,

Ejg(Z)IA > Ejg(Z)1 > Erg(Z)IAI

Proof: The inequality in (3) is equivalent to requiring only (3'):

Erg(Z)jA > Eg(Z)I, since Erg(Z)] = P(A) EIg(Z)IAI + P() Ejg(Z)jA1.

One can show that (2) implies (3') by taking h = 1A. Similarly,

to show that (3') implies (1), take g = 1B. To see that (1) implies

(2), suppose initially that g and h are nonnegative. Then we can

approximate g to within 1/n by

RP
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gn(x) = n- I i 1A (x)

where Ani =fxg(x) > i/n}, and h can be similarly approximated using -

functions hn and increasing sets Bni. If ZI,...,Zk are associated,

then

Ergn(Z)hn(Z)] = n-2 I P(AniBni)
i=l J=l
i-2  P(Ai)P(Bi)

i=l J=l a

= E[g (Z)] E[hn(Z) ]

Letting n + m completes the proof for nonnegative g and h. The

extension to general g and h is routine. Q.E.D.

The next result is a direct corollary of Theorem 22.

Theorem 23: The following statements are equivalent.

(1) ZI,...,Zk are affiliated.

(2) For every pair of nondecreasing functions g and h and

every sublattice S,

Elg(Z)h(Z)IS > E[g(Z)ISj.Ejh(Z)IS

(3) For every nondecreasing function g, increasing set A, and

sublattice S,



-57-

Ejg(Z)jASj > Eg(z)jSl > Ezg(z)IAS•

Theorems 3 and 4 follow easily using part (2) of Theorem 23, and

Theorem 5 is a direct consequence of part (3).

Finally, we verify that the present definition of affiliation is

equivalent to the one given in Section 3.

Theorem 24: Let Z = (ZI,...,Zk) have joint probability

density f. Then Z is affiliated if and only if f satisfies the

affiliation inequality f(z v z')f(z A z') ; f(z)f(z') for p-almost

'2k every (z,z') E IR2k , where U denotes Lebesgue measure.

Proof: If k = 1, both f and Z are trivially affiliated. We

proceed by induction to show that if f is affiliated a.e.[U], then

Z is affiliated. Suppose that the implication holds for k = m - 1,

and define Z-1 = (Z2, ...,Zm) and Z_l = (z2 9,...Zm). In the following

arguments, we omit the specification "almost everywhere [i]." .2
Let k = m, and suppose that f is affiliated. Consider any two

points z' > z Let fl denote the marginal density of ZI, and

consider the function [f(z{,.) + f(zl,-)]/[fl(zI) + fl(z{)], which

is the conditional density of ZI given Z1  {zl,z1}. It can be

routinely verified that this function is affiliated2,3 -4 Therefore,

by the induction hypothesis, Z_l is affiliated conditional on

Z1 E {zl,Zj}. Notice that, since f is affiliated, the expression

f(zlZl )/[f(zlZl ) + f(z!,z_l)I is decreasing in Z-1 . Let g be

any increasing function on 1Rk. Then

ELl
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E[g(Z)IZ 1 = z1]

f (z) + fl (z) f(zlz- l )
-fl(Zl) • E[g(Z) f(ZlZ ) + f(zl,Zl)IZ1 e {ZlZ}]

fl1(zl1) + fl(z,) f(Zl,)Z I)
f (z1 E[f(zlZ_) + f(zZl)IZ 1 e {zl,zj}]E[g(Z)jZ l E Izl,zj}]

- E[g(Z)jZ1 elzl,Zl}] ,

and it ftllows that E[g(z)Iz I = zl] 4 E[g(Z)IZ 1 =z], i.e.,

E[g(Z)lZ1 = x] is increasing in x.

Now, let h: Rk +1R also be increasing. For any non-null

sublattice S, the conditional density of Z given S is

f(z).Is (z)/P(S), which is affiliated whenever f is. Also, by the

induction hypothesis, ZI is affiliated conditional on ZI . Hence

E[g(Z)h(Z)IS] = E[E[g(Z)h(Z)Zl1,Sls]

; E[E[g(Z)IZI,S] - E[h(Z)IZ1,S]IS]

> E[g(Z)IS] • E[h(Z)lS]

The second inequality follows from the monotonicity of E[g(Z)Z 1 = x,S]

and E[h(Z)IZ 1 = X,S] in x. Thus we have proved that Z is

* affiliated if f is.

For the converse, the idea of the proof is to take

S = {z,z',z V z',z A z'}, A = {xlx ) z}, and B = {xlx > z'), and to

* apply the definition of affiliation using Bayes' Theorem. This works,

but is not rigorous because S is a null event. Instead, we will

* U
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approximate S, AS, and BS by small but non-null events, and will then

pass to the limit.

Let Qn be the partition of JI' into k-cubes of the form

[11/2n, (i1 + 1 )/2n) x ... x [ik12n, (ik + 1)/2n). Let Qn(z) denote

the unique element of this partition containing the point z. Since

Q x Q has only countably many elements, there exists a function

0 00 0q: Q x Q + IR such that (i) for every T E Q x Q0 q(T) > 0, and

(ii) 0 q(T) = 1. Define a probability measure v on ]R2k by

v(B) = T Ox 0 q(T)U(BT) (recall that u denotes Lebesgue

n n
measure). Clearly, v is proportional to p on every T EQ x Q

for every n > 0. Let EV[.] be the expectation operator corresponding

to V.

Let Y and Y' be the projection functions from JR2 k to 3Rk

defined by Y(z,z') = z and Y'(z,z') = z'. Y and Y' are random
2k

variables when (R .v) is viewed as a probability space. We

approximate the vector of densities 
(f(z),f(z'),f(z V z'),f(z A z'))

by the function Xn = (Xn, n X n X ) defined on JR2k by:
1' 2' 31 4

x n(z,z , )

- EV[(f(Y),f(Y'),f(Y V Y'),f(Y A Y'))I(Yy') E Qn(z) x Qn(z')]

Xn is a martingale in R14 , and thus for almst every (z,z'),

lim n(z,z ' ) = (f(z),f(z'),f(z V z'),f(z A z'))
n +

(cf. Chung 119741, Theorem 9.4.8). Also, for almst every (z,z') S
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pair, we have z ... , z'. For any such pair, for
z k

sufficiently large n,

xn~z,z ' ) = 2 nk(P(Qn(z)),P(Qn(z')),P(Qn(z V z')),PQn( z A z)))•
4

Each cube Qn(z) has a minimal element, so we my define

An = {x I x ' min Qn (z)}, Bn = {xt x ) min Qn(z')}, and

Sn = Qn(z) U Qn(z') U Qn(z V z') U Qn(z A z'). The sets An and Bn u6

are increasing, Sn is a sublattice, and for sufficiently large n the

following three identities hold:

P(A IS) = c-(x
n X n

nn n 1 4

P(B -S) = - +n n
nSn) = - 2 x

P(A B Is) c1 xn
n 4

where c = + 4 n and each Xn is evaluated at (z,z').

By the definition of affiliation, we have P(AB IS) •

P(AIS) P(Bnisn) , or equivalently, cn ; C X + XP)(X2 + X ).
nn nnn 14 ni 1 42 14

Letting n + a yields (for almost every (z,z')):

c-f(z z') c c-[f(z) + f(z v z')] • [f(z') + f(z A z')]

where c = f(z) + f(z') + f(z v z') + f(z A z'). A rearrangment of

terms yields the affiliation inequality. Q.E.D.

* gj
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Footnotes

. These and other historical references can be found in Cassady 119671.

2/ On September 30, 1980, U.S. oil companies paid $2.8 billion for

4rilling rights on 147 tracts in the Gulf of Mexico. The three mst
expensive individual tracts brought prices of $165 million, $162
million, and $121 million respectively.

3/ The English (ascending, progressive, open, oral) auction is an

auction with many variants, some of which are described in Section
5- In the variant we study, the auctioneer calls successively higher
prices until only one willing bidder remains, and the number of
active bidders is publicly known at all times.

The Dutch (descending) auction, which has been used to sell flowers
for export in Holland, is conducted by an auctioneer who initially
calls for a very high price and then continuously lowers the price
until some bidder stops the auction and claims the flowers for that
price.

5/ The first-price auction is a sealed-bid auction in which the buyer V
making the highest bid claims the object and pays the amount he has
bid.

6/ The second-price auction is a sealed-bid auction in which the buyer

making the highest bid claims the object, but pays only the amount of
the second highest bid. This arrangement does not necessarily entail
any loss of revenue for the seller, because the buyers in this
auction will generally place higher bids than they would in the
first-price auction.

7/ A mre thorough survey of the literature is given by Engelbrecht-
Wiggans 119801. A comprehensive bibliography of bidding, including
almost 500 titles, has been compiled by Stark and Rothkopf 119791.

8/ Situations in which bidders collude have received almost no attention

in theoretical studies, despite many allegations of collusion,
particularly in bidding for timber rights (Mead 119671).

9/ The case in which several identical objects are offered for sale with
a limit of one item per bidder has also been analyzed (Ortega-

Reichert 119681 , Vickrey 119621). All of the results discussed below
have natural analogues in that more general setting. Another

variation, in which the bidders' private valuations are drawn from a
common but unknown distribution, has been treated by Wilson 119771.
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10/ In contrast, the argument concerning the strategic oquva]pnce of the

Dutch and first-price auctions does not require any asslimpt~ons about
the values to the bidders of various outcomes. In particu,tr, it
does not require that a bidder know the value of thp object to
himself.

This property is known to statisticians as the monotone likelihood
ratio property (Tong [19801 ). Its usefulness for eco-nomic modelling
has been elaborated by Milgrom [1981b].

12/ To represent a bidder's information by a single real-valued signal is

to make two substantive assumptions. Not only must his signal be a
sufficient statistic for all of the information he possesses
concerning the value of the object to him, it must also adequately
summarize his information concerning the signals received by the
other bidders. The derivation of such a statistic from several
separate pieces of information is in general a difficult task (see,
for example, the discussion in Engelbrecht-Wiggans and Weber
[19811). It is in the light of these difficulties that we choose to
view each Xi as a "value estimate," which may be correlated with
the "estimates" of others but is the only piece of information
available to bidder i.

13/ This assumption--that the joint distribution of the various signals

has an associated density--substantially simplifies the development
of our results by making the statement of later assumptions simpler,
and by ensuring the existence of equilibrium points in pure
strategies. All of the results in this paper, except for the
explicit characterizations of equilibrium strategies, continue to
hold when this assumption is eliminated. In the general case,
equilibrium strategies may involve randomization. These randomized
strategies can be obtained directly, or indirectly as the limits of 0
sequences of pure equilibrium strategies of the games studied here,
using techniques developed in Engelbrecht-Wiggans, Milgrom, and Weber
[19811, Milgrom [1981a], and Milgrom and Weber [1980].

11_/ The density g has the monotone likelihood ratio property if for
all s' > s and x' > x, g(xls)/g(xls') > g(x'ls)/g(x'js'). This is

equivalent to the affiliation inequality: g(xjs)g(x'|s')
> g(xs)g(xs').

15 Our basic analysis of the second-price auction is very similar to

that given in Milgrom [1981al, although the present set-up is a bit
different. Theorems 6 and 7 were first proved in that reference.

16/ This might be the case if, for example, there were some effective

recourse available to the buyer if the seller made a false
announcement, or if the seller were an institution, like an auction
house, which valued its reputation for truthfulness.

It
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1T/ If Gv (-IX') denotes the conditional distribution of X given 0
X', tKin the variables SI ... ,Sm,X0,XI,....Xn  always wi~l have a
d~nsity with resRect to the product measure
Mm x G(-IX') x M , where M is Lebesgue measure, and the density
always wily have the form f(s,x)g(xlx,)/f(x ). A density with
respect to any product measure suffices for our analysis, so the -*
theorem is proved by our argument.

18/ A model in which the bidders call the bids has been analyzed by
Wilson 119751.

19/ This derivation of the necessary conditions follows Wilson

11977]. The derivation is heuristic: in general, b* need not
be continuous. For example, let n = 2 and take X and X2 to be
either independent and uniformly distributed on 0,i1 (with
probability 1/2), or independent and uniform on 11,21. (Note
that X and are affiliated.) Finally, let Vi = X . Then
b* jumps from 1/2 to 1 at x = 1.

20/ By convention, we take fv (xix)/Fy (xlx) to be zero when x is not

in the support of the distribution ;f Xi .

21/ If the integral is infinite, L(ajx) is taken to be zero.

22/ The outcome of this auction is determined as if the seller had bid

r. Thus, if only one bidder bids more than r, the price he pays is
equal to r.

23/ One such case is the following. There are two variables, X and

X2, so that YI = X2. Assume V. = X1 . With probability 132, the
Xi's are drawn independently from a uniform distribution on 10,21
and, with probability 1/2, from a uniform distribution on 11,31.
Then Fy (xlx) jumps down from 1/2 to 1/4 as x passes up
through ii, and it jumps down again from 3/4 to 1/2 as x passes
up through 2.

24/ The verification amounts to showing that if W W and W are A

{0,1}-valued random variables with a joint pro~abiiity distribution
P satisfying the affiliation inequality, then the joint distribution
of W. and W also satisfies the inequality. The conclusion
follows from te inequalities:
(P P P 0 )(P P -P P ) ,

P l anlPoo O l O "
Sllk OOl 0 1 Oil, 110 000 100 010
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