AD-R123 665 A_THEORY OF AUCTIONS AND COHPETIT!VE BIDDING(U>
STRNFORD UNIY CR INST FOR MATHEMATICAL STUDIES IN THE
0CIAL SCIE CES P R MILGROM ET AL. DEC 8 T 8
UNCLASSIFIED NBBBi4 79-C

END

fiLueo




Y

-{ - T ————
Ny .
g .
yo
-
- ’
- o
< .1
-} , :
. ]
p - o
" 5
L - .
- .
. : .
- : y
";Z l‘-5 III28 Mlé '
F o M= P
i N2 & o :
’ ‘l:'- P—% ‘
: ““l (| E.= 2 %
: = = )
lizs flis. e
;».“ = == == E :;.
F ' .-4
MICROCOPY RESOLUTION TEST CHART : A B
NATIONAL BUREAU OF STANDARDS-1963-A . - )
- g : .'
F |
u 1
1
1 e
r 1
b .
! 1
) e
,‘ 1
! f
: 1
i 1
@ 3
- 1
f /




A THEORY OF AUCTIONS AND COMPETITIVE BIDDING

N

o

o by
N PAUL R. MILGROM AND ROBERT J. WEBER
Py
=T
o=
e

TECHNICAL REPORT NO. 358
December 1981

A REPORT OF THE
CENTER FOR RESEARCH ON ORGANIZATIONAL EFFICIENCY
STANFORD UNIVERSITY

Contracts ONR-N00014-79-C-0685 and ONR-NG0O14-77-C-0518
United States Office of Naval Research
and NSF Grants SES80-01932 and SOC77-06000-Al

THE ECONOMICS SERIES

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES
FOURTH FLOOR, ENCINA HALL

STANFORD UNIVERSITY

STANFORD, CALIFORNIA

AN
D

?Mh—h‘w N

DTIC ELE COPY




-
I
b
L
)
S
k.
L!f

A THEORY OF AUCTIONS AND COMPETITIVE BIDDING

by

Paul R. Milgrom and Robert J. Weber

Technical Report No. 358
December, 1981

A REPORT OF THE

NTIS GRaz
Un&nnounc 4

: O
J'Stificauon__\‘

Accession ,5
- r ‘7

Avaif“e‘;;d for

Availapi;it.y Codes
b r

ist

sPocial

CENTER FOR RESEARCH ON ORGANIZATIONAL EFFICIENCY

STANFORD UNIVERSITY

Contracts ONR-NOOQ1k-T79-C-0685 and ONR-NOOOlk-T7T7-C-0518
United States Office of Naval Research
and NSF Grants SES80-01932 and SOCT7T7-06000-Al

THE ECONOMICS SERIES

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES

Fourth Floor, Encina Hall
Stanford University
Stanford, California

9k305

P

oTIC
FUELECTR

JAN 211363

— E a-‘“‘.‘

-




A THEORY OF AUCTIONS AND COMPETITIVE BIDDING*

by

Paul R. Milgrom and Robert J. Weber##

1. Introduction

The design and conduct of auctioning institutions has occupied the
attention of many people over thousands of years. One of the earliest
reports of an auction was given by the Greek historian Herodotus, who
described the sale of women to be wives in Babylonia around the fifth
century B.C. During the closing years of the Roman Empire, the auction
of plundered booty was common. In China, the personal belongings of
deceased Buddhist monks were sold at auction as early as the seventh
century A.D.l!

In the United States in the 1980's, auctions account for an
enormous volume of economic activity. Every week, the U.S. Treasury
sells billions of dollars of bills and notes using a sealed-bid
auction. The Department of the Interior sells mineral rights on
federally-owned properties at auction.g/ Throughout the public and

private sector, purchasing agents solicit delivery-price offers of

*This work was partially supported by the Center for Advanced Studies in
Managerial Economics at Northwestern University, National Science Found-
ation Grant SES-8001932, Office of Naval Research Grants
ONR-NO001L4-T9-C-0685 and ONR-NOOO1lLk-TT-C-0518 and by National Science
Foundation Grant SOCTT7-06000-Al at the Institute for Mathematical
Studies in the Social Sciences, Stanford University. We thank the
referees for their helpful comments.

#%J.L. Kellogg Graduate School of Management, Northwestern University,
Evanston, Illinois.
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products ranging from office supplies to specialized mining equipment;
sellers auction antiques and artwork, flowers and livestock, publishing
rights and timber rights, stamps and wine.

The large volume of transactions arranged using auctions leads one
to wonder what accounts for the popularity of such common auction forms
as the English auction,éj the Dutch auction,ﬁj the first-price
sealed-bid auctionfzf and the second-price sealed-bid auction.éj What
determines which form will (or should) be used in any particular
circumstance?

Equally important, but less thoroughly explored, are questions
about the relationship between auction theory and traditional
competitive theory. One may ask: Do the prices which arise from the
common auction forms resemble competitive prices? Do they approach
competitive prices when there are many buyers and sellers? 1In the case
of sales of such things as securities, mineral rights and timber rights,
where the bidders may differ in their knowledge about the intrinsic
qualities of the object being sold, do prices aggregate the diverse bits
of information available to the many bidders (as they do in some
rational expectations market equilibrium models)?

™ In Section 2, we review some important results of the received
auction theory, introduce a new general auction model, and summarize the
results of our analysis. Section 3 contains a formal statement of our
model, and develops the properties of "affiliated" random variables.
The various theorems are presented in Sections L4-8. In Section 9, we

offer our views on the current state of auction theory. Following
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Section 9 is a technical appendix dealing with affiliated random

variables.
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2. An Overview of the Received Theory and New Resultslj

2.1 The Independent Private Values Model

Much of the existing literature on auction theory analyzes the

independent private values model. In that model, a single indivisible

object is to be sold to one of several bidders. Each bidder is risk-
neutral and knows the value of the object to himself, but does not know

the value of the object to the other bidders (this is the private values

assumption). The values are modeled as being independently drawn from
some continuocus distribution. Bidders are assumed to behave
competitively;gj therefore, the auction is treated as a noncooperative
game among the bidders.gj

At least seven important conclusions emerge from the model. The
first of these is that the Dutch auction and the first-price auction are
strategically equivalent. Recall that in a Dutch auction, the
auctioneer begins by naﬁing a very high price and then lowers it
continuously until some bidder stops the auction and claims the object
for that price. Vickrey [1961] observed that a strategy for a bidder
simply indicates, for each of his potential valuations, the level at
which he will claim the object. The winning bidder will be the one who
chooses the highest level, and the price he pays will be equal to that

amount. This, of course, is also the way the winner and price are
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determined in the sealed-bid first-price auction. Thus, the sets of.
strategies and the mapping from strategies to outcomes are the same for
both auction forms. Consequently, the equilibria of the two auction
games must coincide,

Initially, this strategic equivalence of the two auction forms may
seem puzzling. It might appear that after a bidder watched the price
descend to his predetermined level for claiming the object, he would
want to reconsider his planned action, using whatever information he
could deduce from the failure of others to claim the object at any
higher price. However, if his initial strategy choice was optimal, then
it follows from the optimality principle of dynamic programming that
continuing to follow the prescribed strategy from any point in the
auction is conditionally optimal, given whatever is known at that point;
that is, it always pays to follow the plan.

The second conclusion is that--in the context of the private
values model-~the second-price sealed-bid auction and the Fnglish
auction are equivalent, although in a weaker sense than the '"strategic
equivalence" of the Dutch and first-price auctions. Recall that in an
English auction, the auctioneer begins by soliciting bids at a low price
level, and he then gradually raises the price until only one willing
bidder remains. In this setting, a bidder's strategy must specify, for
each of his possible valuations, whether he will be active at any given
price level, as a function of the previous activity he has observed
during the course of the auction. However, if a bidder knows the value

of the object to himself, he has a straightforward dominant strategy.

-9
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which is to bid actively until the price reaches the value of the object
to him. Regardless of the strategies adopted by the other bidders, this
simple strategy will be an optimal reply.

Similarly, in the second-price auction, if a bidder knows the
value of the object to himself, then his dominant strategy is to submit
a sealed bid equal to that value. Thus, in both the English and second-
price auctions, there is a unique dominant-strategy equilibrium. 1In
both auctions, at equilibrium, the winner will be the bidder who values
the object most highly, and the price he pays will be the value of the
object to the bidder who values it second-most highly. 1In that sense,
the two auctions are equivalent. Note that this argument requires that
each bidder know the value of the object to himself.lg/ If what is
being sold is the right to extract minerals from a property, where the
amount of recoverable minerals is unknown, or if it is a work of art,
which will be enjoyed by the buyer and then eventually resold for some
currently undetermined price, then this equivalence result generally
does not apply.

A third result is that the outcome (at the dominant-strategy
equilibrium) of the English and second-price auctions is Pareto optimal;
that is, the winner is the bidder who values the object most highly.
This conclusion follows immediately from the argument of the preceding
paragraph and, like the first two results, does not depend on the
symmetry of the model. In symmetric models the Dutch and first-price

auctions also lead to Pareto optimal allocations.
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A fourth result is that in the independent private values model,
all four auction forms lead to identical expected revenues for the
seller (Ortega-Reichert [1968], Vickrey [1962]). This result remained a
puzzle until recently, when an application of the self-selection
approach cast it in a new light (Harris and Raviv (1981}, Myerson
[1981], Riley and Samuelson [1981]). That approach views a bidder's
decision problem (when the strategies of the other bidders are fixed) as
one of choosing, through his action, a probability p of winning and a
corresponding expected payment e(p). It is important to notice that,
because of the independence assumption, the set of (p,e(p)) pairs that
are available to the bidder depends only on the rules of the auction and
the strategies of the others, and not on his private valuation of the
object.

Figure 1 displays a typical bidding decision for a bidder who
values the prize at v. Since the bidder's expected utility from a
point (p,e) is v ¢ p - e , his indifference curves are straight lines
with slope v. Let p*(v) denote the optimal choice of p for a
bidder with valuation v. It is clear from the figure that p* must be
nondecreasing.

In Figure 1, the tangency condition is e'(p*(v)) = v. Similarly,
when the indifference line has multiple points of tangency, a small
increase in v causes a jJump Ap* in p* and a corresponding jump
Ae = v « Ap* in e(p*{v)). Hence we can conclude quite generally that
e(p*(v)) = e(p*(0)) + fg v dp*(v). It then follows that the seller's

expected revenue from a bidder depends on the rules of the auction only
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to the extent that the rules affect either e(p*(0)) or the p*
function. Notice, in particular, that all auctions which always deliver
the prize to the highest evaluator have the same p* function for all

bidders. That observation leads to the fifth result.

Theorem 0: Assume that a particular auction mechanism is given,
that the independent private values model applies, and that the bidders
adopt strategies which constitute a noncooperative equilibrium. Suppose
that at equilibrium the bidder who values the object most highly is
certain to receive it, and that any bidder who values the object at its
lowest possible level has an expected profit of zero. Then the expected
revenue generated for the seller by the mechanism is precisely the

expected value of the object to the second-highest evaluator.

At the symmetric equilibria of the English, Dutch, first-price, and
second-price auctions, the conditions of the theorem are satisfied.
Consequently, the expected selling price is the same for all four
mechanisms; this is the so-called "revenue-equivalence" result. It
should be noted that Theorem O has an attractive economic interpre-
tation. No matter what competitive mechanism is used to establish the
selling price of the object, on average the sale will be at the lowest
price at which supply (a single unit) equals demand.

The self-selection approach has also been applied to the problem
of designing auctions to maximize the seller's expected revenue (Harris
and Raviv [1981]), Myerson {1981}, Riley and Samuelson {1981)). The

problem is formulated very generally as a constrained optimal control
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problem, where the control variables are the pairs (p?('), ei(p;(O))).
As might be expected, the form of the optimal auction depends on the
underlying distribution of bidder valuations. One remarkable conclusion
emerging from the analysis is this: For many common sample distributions
—-including the normal, exponential, and uniform distributions--the four
standard auction forms with suitably chosen reserve prices or entry fees
are optimal auctions.

The seventh and last result in this list arises in a va- tion of
the model where either the seller or the buyers are risk aver . 1In

that case, the seller will strictly prefer the Dutch or first ice

auction to the English or second-price auction (Harris and Re - _1981],

Holt [1980], Maskin and Riley [1980], Matthews [1979]). -4

2.2 0il, Gas, and Mineral Rights ]

The private values assumption is most nearly satisfied in auctions
for non-durable consumer goods. The satisfaction derived from consuming
such goods is reasonably regarded as a personal matter, so it is 1
plausible that a bidder may know {he value of the good to himself, and
may allow that others could value the good differently. .

In contrast, consider the situation in an auction for mineral
rights on a tract of land where the value of the rights depends on the
unknown amount of recoverablc ore, its quality, its ease of recovery,
and the prices that will prevail for the processed mineral. To a first .
approximation, the values of these mineral rights to the various bidders

can be regarded as equal, but bidders may have differing estimates of

the common value. 1
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Suppose the bidders make (conditionally) independent estimates of
this common value V., Other things being equal, the bidder with the
largest estimate will make the highest bid. Consequently, even if all
bidders make unbiased estimates, the winner will find that he had
overestimated (on average) the value of the rights he has won at
auction. Petroleum engineers (Capen, Clapp, and Campbell [1971]) have

claimed that this phenomenon, known as the winner's curse, is

responsible for the low profits earned by oil companies on offshore
tracts in the 1960’'s.

The model described above, in which risk-neutral bidders make
independent estimates of the common value and where the estimates are
drawn from a single underlying distribution parameterized by V, can be

called the mineral rights model or the common value model. The

equilibrium of the first-price auction for this model has been
extensively studied (Maskin and Riley [1980], Milgrow [1979a,b], Ortega-
Reichert [1968], Reece [1978], Rothkopf [1969], Wilson [1977]). “mong
the most interesting results for the mineral rignts model are those
dealing with the relations between information, prices, and bidder
profits.

For example, consider the information that is reflected in the
price resulting from a mineral rights auction. It is tempting to think
that this price cannot convey more information than was available to the
winning bidder, since the price is just the amount that he bid. This
reasoning, however, is incorrect. Since the winning bidder's estimate

is the maximum among all the estimates, the winning bid conveys a bound
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on all the loser's estimates. When there are many bidders, the price
conveys a bound on many estimates, and so can be very informative.
Indeed, let f(x|v) be the density of the distribution of a bidder's
estimate wvhen V = v. A property of many one-parameter sampling
distributions is that for v; < v,, f(x|v,)/f(x|v,) declines as x
increasesrll/ If this ratio approaches zero, then the equilibrium price
in a first-price auction with many bidders is a consistent estimator of
the value V, even if no bidder can estimate V closely from his
information alone (Milgrom {[1979a,bl, Wilson {1977]). Thus, the price
can be surprisingly effective in aggregating private information.
Several results and examples suggest that a bidder's expected
profits in a mineral rights auction depend more on the privacy of his
information than on its accuracy as information about V. For example,
in the first-price auction a bidder whose information is also available
to some other bidder must have zero expected profits at equilibrium
(Engelbrecht-Wiggans, Milgrom, and Weber [1981], Milgrom [1979al).
Thus, if two bidders have access to the same estimate of V and a third
bidder has access only to some less informative but independent
estimate, then the two relatively well-informed bidders must have zero
expected profits, but the more poorly-informed bidder may have positive
expected profits. Related results appear in Milgrom [1979a] and Milgrom

[1981a] and in Theorem 7 of this paper.
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2.3 A General Model

Consider the issues that arise .n attempting to select an auction
to use in selling a painting. If the independent private values model
is to be applied, one must make two assumptions: that each bidder knows
his value for the painting, and that the values are statistically
independent. The first assumption rules out the possibilities:

(i) that the painting may be resold later for an unknown price,

(ii) that there may be some "prestige" value in owning a painting

vwhich is much admired by other bidders, and

(iii) +that the authenticity of the painting may be in doubt. The
second assumption rules out the possibility that several
bidders may have relevant information concerning the
painting's authenticity, or that a buyer, thinking that the
painting is particularly fine, may conclude that other
bidders also are likely to value it highly. Only if these
assumptions are palatable can the theory be used to guide the
seller's choice of an auction procedure. Even in this case,
however, little guidance is forthcoming: the theory predicts
that the four most common auction forms lead to the same
expected price.

Unlike the private values theory. the common value theory allows
for statistical dependence among bidders' value estimates, but offers no
role for differences in individual tastes. Furthermore, the received
theory offers no basis for choosing among the first-price, second-price,

and English auction procedures.

bl
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In this paper, we develop a general auction model for risk-neutral

bidders which includes as special cases the independent private values

model and the common value model, as well as a range of intermediate models

which can better represent, for example, the auction of a painting.
Despite its generality, the model yields several testable predictions.

First, the Dutch and first-price auctions are strategically equivalent in

the general model, just as they were in the private values model. Second,

when bidders are uncertain about their value estimates, the English and
second-price auctions are not equivalent: <the English auction generally
leads to larger expected prices. One explanation of this inequality is
that when bidders are uncertain about their valuations, they can acquire
useful information by scrutinizing the bidding behavior of their
competitors during the course of an English auction. That extra
information weakens the winner's curse and leads to more aggressive
bidding in the English auction, which accounts for the higher expected
price.

A third prediction of the model is that when the bidders' value
estimates are statistically dependent, the second-price auction
generates a higher average price than does the first-price auction.
Thus, the common auction forms can be ranked by the expected prices they
generate: the English auction generates the highest prices followed by

the second-price auction and, finally, the Dutch and first-price

auctions. This may explain the observation that "an estimated 75 percent,

or even more, of all auctions in the world are conducted on an ascending-

bid basis" (Cassady [1967], page 66).
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Suppose that the seller has access to a private source of informa-
tion. Further, suppose that he can commit himself to any policy of
reporting information that he chooses. Among the possible policies are:

(i) concealment (never report any information),

(ii) honesty (always report all information completely),

(iii) censoring (report only the most favorable information),
(iv) summarizing (report only a rough summary statistic), and

(v) randomizing (add noise to the data before reporting).

The fourth conclusion of our analysis is that for the first-price,
second-price, and English auctions policy (ii) maximizes the expected
price: Honesty is the best policy.

The general model and its assumptions are presented in Section
3. The analysis of the model is driven by the assumption that the
bidders' valuations are affiliated. Roughly, this means that a high
value of one bidder's estimate makes high values of the others'
estimates more likely. This assumption, though restrictive, accords
well with the qualitative features of the situations we have described.

Sections 4 through 6 develop our principal results concerning the
second-price, English, and first-price auction procedures.

In Section 7, we modify the general model by introducing reserve
prices and entry fees. The introduction of reserve prices does not
significantly change the analysis of equilibrium strategies nor does it
alter the ranking of the three auction forms as revenue generators.
However, it does change the analysis of information reporting by the

seller, because the number of competitors who are willing to bid at
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least the reserve price will generally depend on the details of the
report: favorable information will attract additional bidders and
unfavorable information will discourage them. The seller can offset
that effect by adjusting the reserve price (in a manner depending on the
particular realization of his information variable) so as to always
attract the same set of bidders. When this is done, the information-
release results mentioned above continue to hold.

When both a reserve price and an entry fee are used, a bidder will
participate in the auction if and only if his expected profit from
bidding (given the reserve price) exceeds the entry fee. 1In particular,
he will participate only if his value estimate exceeds some minimum

level called the screening level, The most tractable case for analysis

arises when the "only if" can be replaced by "if and only if," that is,
when every bidder whose value estimate exceeds the screening level
participates: we call that case the regular case. The case of a zero
entry fee is always regular.

For each type of auction we study, any particular screening level
x* can be achieved by a continuum of different combinations (r,e) of
reserve prices and entry fees. We show that if (r,e) and (T,e) are
two such combinations with e > e, and if the auction corresponding to
(r,e) is regular, then the auction corresponding to (r,e) is also
regular but generates lower expected revenues than the (r,e)-auction.
Therefore, so long as regularity is preserved and the screening level is

held fixed, it pays to raise entry fees and reduce reserve prices.

-.'4
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In Section 8, we consider another variation of the general model,
in which bidders are risk-averse. Recall that in the independent
private values model with risk aversion, the first-price auction yields
a larger expected price than do the second-price and English auctions.
In our more general model, no clear qualitative comparison can be made
between the first-price and second-price auctions in the presence of risk-
aversion, and all that can be generally said about reserve prices and
entry fees in the first-price auction is that the revenue-maximizing fee
is positive (cf. Maskin and Riley [1980}). With constant absolute risk-
aversion, however, the results that the English auction generates higher
average prices than the second-price auction, and that the best
information-reporting policy for the seller in either of these two

auctions is to fully reveal his information, both retain their wvalidity.

3. The General Symmetric Model

Consider an auction in which n ©bidders compete for the
possession of a single object. Each bidder possesses some information

concerning the object up for sale; let X = (Xl,....X ) be a vector,

n

the components of which are the real-valued informational variables 12/

(or value estimates, or signals) observed by the individual bidders.

Let S = (Sl,...,s ) be a vector of additional real-valued variables

m
which influence the value of the object to the bidders. Some of the
components of S might be observed by the seller. For example, in the

sale of a work of art, some of the components may represent appraisals

obtained by the seller, while other components may correspond to the
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tastes of art connoisseurs not participating in the auction; these
tastes could affect the resale value of the object.

The actual value of the object to bidder i --which may, of
course, depend on variables not observed by him at the time of the
auction--will be denoted by vy, = ui(S,X). We make the following

assumptions:

Assumption 1: There is a function u on R™?  such that for

all i, ui(S,X) = u(S,Xi,{XJ} ). Consequently, all of the bidders'

J#i
valuations depend on S in the same manner, and each bidder's valuation

is a symmetric function of the other bidders' signals.

Assumption 2: The function u is nonnegative, and is continuous

and nondecreasing in its variables.

Assumption 3: For each i, E[Vi] < o,

Both the private values model and the common value model involve
valuations of this form. In the first case, m = 0 and each

Vi = %43

in the second case, m = 1 and each Vi = Sl‘

Throughout the next four sections, we assume that the bidders'
valuations are in monetary units, and that the bidders are neutral in
their attitudes towards risk. Hence, if bidder i receives the object
being sold and pays the amount b, his payoff is simply vy - b.

Let f(s,x) denote the joint probability densitylé/ of the random

elements of the model. We make two assumptions about the joint distri-

bution of S and X:

@
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Assumption 4: f 1is symmetric in its last n arguments.

Assumption 5: The variables Sl"”’sm’xl""’xn are affiliated.

A general definition of affiliation is given in the Appendix. For
variables with densities, the following simple definition will suffice.
Let z and z' be points in R™P, 1Let 2z v z' denote the

component-wise maximum of z and z', and let 2z A z' denote the

component-wise minimum. We say that the variables of the model are

affiliated if, for all z and z',

(2) flz v z') f(z A 2') > f(z) flz') .

Roughly, this condition means that large values for some of the
variables make the other variables more likely to be large than small.
We call inequality (2) the "affiliation inequality" (though it is
also known as the "FKG inequality" and the "MTP2 property"), and a
function f satisfying (2) is said to be "affiliated." Some
consequences of affiliation are discussed by Karlin and Rinott [1980]
and by Tong [1980], and additional references are given by those
authors. For our purposes, the major results are those given by

Theorems 1-5 below.

T
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Theorem 1: Let f :JRk + R.

(1) If f is strictly positive and twice continuously
differentiable, then f is affiliated if and only if for
i3, azxmf/aziazJ > 0.

(ii) 1f f(z) = g(z)h(z) where g and h are nonnegative and

affiliated, then f is affiliated.

A proof of part (i) can be found in Topkis [1978, page 310]. Part
(ii) is easily checked.

In the independent private values model, the only random variables
are Xy,...,X,, and they are statistically independent. For this case, (2)
always holds with equality: Independent variables are always affiliated.

IrY the mineral rights model, let g(xils) denote the conditional
density of any X; given the common value § and let h be the
marginal density of S. Then f(s,x) = h(s)g(xlls)...g(xnls). Assume
that the density g has the monotone likelihood ratio property: that
is, assume that g(x|s) satisfies (2) A% 1t then follows from
Theorem 1 (ii) that f satisfies (2). Consequently, for the case of
densities g with the monotone likelihood ratio property, the mineral
rights model fits our formulation.

The affiliation assumption also accommodates other forms of the
density f. For example, it accommodates a number of variations of the
mineral rights model in which the bidders' estimation errors are
positively correlated. And, if the inequality in (2) is strict, it
formalizes the assumption that in an auction for a painting, a bidder who

finds the painting very beautiful will expect others to admire it, too.

‘;."1
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In this symmetric bidding environment, we identify competitive
behavior with symmetric Nash equilibrium behavior. We will find that,
at equilibrium, bidders with higher estimates tend to make higher
bids. Consequently, we shall need to understand the properties of the
distribution of the highest estimates.

Let Yl,...,Y denote the largest, ..., smallest estimates from

n-1
among X,,.+.,X;. Then, using (1) and the symmetry assumption, we can

rewrite bidder 1's value as follows:

(3) \' =u(31,---,Sm,X Y ,o-.,Y ) .

1 1’71 n-1

The Jjoint density of Sl,...,Sm,Xl,Yl,...,Yn_1 is

(L) (n - 1) f(sl,...,sm,x )

WY, see sy 1
171 n-1 {ylgyzg...;yn_l}

where the last term is an indicator function. Applying Theorem 1 (ii)

to (4), we have the following result.

Theorem 2: If f is affiliated and symmetric in X,,...,X,, then

n9

Sl,...,Sm,Xl,Yl,...,Yn_1 are affiliated.

The following additional results, which are used repeatedly, are

derived in the Appendix.

Theorem 3: If Zl,...,Zk are affiliated and 81,8 Aare all
nondecreasing functions (or all nonincreasing functions), then

gl(Zl),...,gk(Zk) are affiliated.
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Theorem 4: If Zy,...,%, are affiliated, then Zyseeesly o are

affiliated.

Theorem 5: Let Zl""’Zk be affiliated and let H be any

nondecreasing function. Then the function h defined by

h(al,bl-, a.k,bk) = E[H(Zl,...,Zk)l 8 €2 €b,...,a <2 <D

1 k k k]

is nondecreasing in all of its arguments. 1In particular, the functions
hz(zl,...,zl) = E[H(Zl,...,Zk)|z1,...,z£]
for 2 =1,...,k are all nondecreasing.

In view of Theorems 2 and 5, we can conclude that the function
E[Vllxl =X, Y, =y ,eee,Y o= yn-1] is nondecreasing in x. To
simplify later proofs, we add the nondegeneracy assumption that this
function is strictly increasing in x. All of our results can be shown

to hold without this extra assumption.

L. Second-Price Aucticnslé/

In the second-price auction game, a strategy for bidder i 1is a

function mapping his value estimate x, into a bid b = b, (x,) 0.

1 il

Itv

Since the auction is symmetric, let us focus our attention on the
bidding decision faced by bidder 1.

Suppose that the bidders J # 1 adopt strategies b Then the

J.
highest bid among them will be W = max bj(xj) which, for fixed
J#1

strategies bJ, is a random variable. Bidder 1 will win the
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second-price auction if his bid b exceeds W, and W is the price he
will pay if he wins. Thus, his decision problem is to choose a bid b

to solve

max E[(Vl - W)

1 x. 1 .
b w<p}™1

I bl(xl) solves this problem for every value of then the

Xq 5
strategy bl is called a best reply to b2,...,bn. If each b; 1in an
n-tuple (bl,...,bn) is a best reply to the remaining n - 1

strategies, then the n-tuple is called an equilibrium point.

Let us define a function v 2, by vix,y) = E[V1|X

1 %
Y, = yl. 1In view of (3) and Theorems 2 and 5, v is nondecreasing. Our
nondegeneracy assumption ensures that v 1is strictly increasing in its

first argument.

Theorem 6: Let b*(x) = v(x,x). Then the n-tuple of strategies

(b*,...,b*) is an equilibrium point of the second-price auction.

Proof: Since b* is increasing, W = b*(Y;). So bidder 1's

conditional expected payoff when he bids b is

El(v, - b*(Yl))l{b*(Yl) < pyl%y =«

E[E[(V, - v(Yl,Yl))l{b,(Yl) < py XYyt Xy = xl

= El(v(x,,¥)) - v(Yl.Yl))l{b*(Yl) < b}|x1 = x|
v* 1 (b)
= [ [vix,a) - V(a,a)]f‘Y (a]x)da
- 1
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»

where fY (°|x) is the conditional density of Y, given Xy = x.

1
Since v 1is increasing in its first argument, the integrand is positive
for a < x and negative for a > x. Hence, the integral is maximized

by choosing b so that b*_l(b) = x, i.e., b = b*(x). This proves

that b* is a best reply for bidder 1. Q.E.D.

An important special case arises if we assume that

Vl = V2 = a0 =V, =V, We call this the generalized mineral rights
model. (It differs from the mineral rights model in not requiring the
bidders' estimates of V to be conditionally independent.) Suppose
that, in this context, we introduce an (n+1)-st bidder with an
estimate X, .4 of the common value V. We say that Xn+1 is a

garbling of (Xl,Yl) if the joint density of (V,X X, -Xp41) can

1reees
be written as g(V.Xy..0e X)) * h(xn+1|x1,yl). For example, if bidder
n + 1 bases his estimate Xn+1 only on information that was also

available to bidder 1, this condition would hold.

Theorem 7: For the generalized mineral rights model, if X4 is
a garbling of (X;,Y;), then bidder n + 1 has no strategy that earns a
positive expected payoff when bidders 1,...,n use (b*,...,b*).
Consequently, in this (n + 1)-bidder second-price auction, the

(n + 1)-tuple (b*,....b*,bn+1) where b ., 20 is an equilibrium

point.

Asid
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Proof: let 2 = max(Xl,Yl). If bidder n + 1 observes X

n+l

and then makes a winning bid b, then his conditional expected payoff is

E[{V - b*(2))|X b*(2) < b}

nep

E[ElV - b*(Z)[Xl,Yl,X ,{b*(2) < v}]

n+1](xn+l

E[v(Xl,Yl) - v(Z,Z)]Xn+1,{b*(Z) < b} .

The last equality uses the fact that E[lel,Yl.Xn+1] = E[VIXl,Yll, a

consequence of the garbling assumption. Since v 1is nondecreasing,

v(Xl,Yl) - v(2,2) < 0, so the last expectation is nonpositive. Q.E.D.

Now consider how the equilibrium is affected when the seller
publicly reveals some information XO (which is affiliated with all the

other random elements of the model). We shall assume the seller's

16

revelations are credible.

Define a function w: RS + R by wix,y; z) = E[Vllxl = x.Y; =V,

XO = z]. By Theorems 2 and 5, w is nondecreasing. After XO is publicly

announced, a new conditional joint density f(sl,...,sm,xl,...,xnlxo)
applies to the random elements of the model, and it is straightforward
to verify that the conditional density satisfies the affiliation
inequality. So, carrying out the same analysis as before, there is an
equilibrium (g,...,g) given by g(x; xo) = w(x,x; xo). Note that this
time a strategy maps two variables, representing private and public

information, into a bid. For any fixed value of X,, the equilibrium

O‘l
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strategy is a function of a single variable and is similar in form to
b*.
Let Ry be the expected selling price when no public information

is revealed and let R. be the expected price when X0 is made public.

I

Theorem 8: The expected selling prices are as follows:

E[v(Yl,Y1)|{X1 > Yl}]

Ry

oo}
1]

E[w(Yl,Yl; Xo)l{x1 > Yl}] .

Revealing information publicly raises revenues, that is, RI > RN'

Proof: Recall that v(Yl,Yl) is the price paid when bidder 1
wins. Thus, RN is the expected price paid by bidder 1 when he wins.
By symmetry, it is the expected price, regardless of the winner's
identity. The same argument applies to R;.

Next, note the following identities.

E[EIV [X .Y X X, = x, ¥, = 5]

1

E[w(Xl,Y

L xo)lx1 =x, Y = y)
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For x >y, we apply Theorems 2, 4 and 5 to get:

viy,y) = E[w(Xl,Yl; xo)lxl =y, ¥, = Ng|
= E[v(Yl,Yl; xo)lx1 =y. ¥ = yl
¢ Elw(Y Y 5 X)X, = x, ¥, =y .
So,
Ry = E[v(Yl,Yl)[{Xl > Yl})

A

E[Elw(y, .Y 5 X)X Y, T > ;)]

E[w(Yl,YI; xo)l{x1 > Yl}l

RI . Q.E.D.

Theorem 8 indicates that publicly revealing the information Xo is
better, on average, than revealing no information. One might wonder
whether it would be better still to censor information sometimes, i.e.,
to report X, only when it exceeds some critical level. Of course, if
this policy of the seller were known, rational bidders would correctly
interpret the absence of any report as a bad sign.

There are many possible information revelation policies. If one
assumes that the bidders know the information policy, then one can also
agsume without loss of generality that the seller always makes some
report, though that report may consist of a blank page. Let 7 be a
random variable, uniformly distributed on [0,1] and independent of the

other variables of the model. We formulate the seller's report very

i o M
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generally as Xb = r(XO,Z), i.e., the seller's report may depend both on

his information and the spin of a roulette wheel. We call r the

seller's reporting policy.

Theorem 9: In the second-price auction, no reporting policy leads

to a higher expected price than the policy of always reporting Xge

Proof: Let r be any reporting policy and let Xé

The conditional distribution of Xb given the original variables

(s,X) depends only on X,. We denote the conditional density (if one

r(XO,Z).

exists) by g(XéIXO) and the marginal density by s(Xé). For any

realization xé of Xé,

of (s,Xx) 1is f(s,x) g(xé]xo)/g(xé), which satisfies the affiliation

the corresponding conditional joint densityll/

inequality in (s,x) since f does, by Theorem 1. Therefore, by
Theorem 8, revealing xO further raises expected revenues. But
revealing both xo and XB leads to the same equilibrium bidding as
revealing Just Xg» SO the result follows. Q.E.D.

Se English Auctions

There are many variants of the English auction. In some, the bids
are called by the bidders themselves, and the auction ends when no one
is willing to raise the bid.lg/ In others, the auctioneer calls the
bids, and a willing bidder indicates his assent by some slight gesture,

usually in a way that preserves his anonymity. Cassady [1967] has

-..d
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described yet another variant, used in Japan, in which the price is
posted using an electronic display. In that variant, the price is
raised continuously, and a bidder who wishes to be active at the current
price depresses a button. When he releases the button, he has withdrawn
from the auction. These three forms of the English auction correspcnd
to three quite different games. The game model developed in this
section corresponds most closely to the Japanese variant: We assume
that both the price level and the number of active bidders are
continuously displayed. We use the term "English auction"” to designate
this variant.

In the English auction with only two bidders, each bidder's
strategy can be completely described by a single number which specifies
how high to compete before ceding the contest to the other bidder. The
bidder selecting the higher number wins, and he pays a price equal to
the other bidder's number. Thus, with only two bidders, the English and
second-price auctions are strategically equivalent. When there are
three or more bidders, however, the bidding behavior of those who drop
out early in an Fnglish auction can convey information tco those who keep
bidding, and our model of the auction as a game must account for that
possibility.

We idealize the auction as follows. Initially, all bidders are
active at a price of zero. As the auctioneer raises the price, bidders
drop out one by one. No hidder who has dropped out can become active
again. After any bidder quits, all remaining active bidders know the

price at which he quit.
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A strategy for bidder i specifies whether, at any price level
p, he will remain active or drop out, as a function of his value
estimate, the number of bidders who have quit the bidding, and the
levels at which they quit. lLet k denote the number of bidders who
have quit and let p1 < eee g pk denote the levels at which they
quit. Then bidder i's strategy can be described by functions
bik(xilp1’°"’Pk) which specify the price at which bidder i will quit
if, at that point, k¥ other bidders have quit at the prices PyseeesPge
It is natural to require that bik(xilpl”"’pk) be least Py e

Now consider the strategy bD* = (bg,...,b*_ ) defined iteratively

n-2
as follows.
(5) bg(x) = EiVl\Xl =X, ¥ = XpeeenY o o= x} .
(6) b;(xlpl,....pk) = E[Vllx1 =% Y = K.Y o= X,
b (Y P seeespy 1) = B oo, DY ) =]

The component strategies reflect a kind of myopic bidding
behavior. Suppose, for example, that k = 0, i.e., no bidder has quit
yet. Suppose, too, that the price has reached the level ba(y) and
that bidder 1 has observed X; = X If bidders 2,...,n were to quit

instantly, then bidder 1 could infer from this behavior that

Yl = eee = Yn-1 Y. In that case, he would estimate his payoff to be

E[vllx1 = X, Y, = Yyeee,Y

1 =yl - bs(y). By (5) and Theorem 5, that

difference is positive if x > y and negative if x < y. Thus, bs

n-1

A‘.]
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calls for bidder 1 to remain active until the price rises to the point
where he would be Jjust indifferent between winning and losing at that
price. The other strategies bﬁ have a similar interpretation, but
they assume that bidders infer whatever they can from the quitting

prices of those who are no longer active.

Theorem 10: The n-tuple (b*,...,b*) is an eauilibrium point of

the English auction game.

Proof: It is straightforward to verify from (5) and () that each
b; is increasing in its first argument. Hence, if bidders 2,...,n
adopt b* and bidder 1 wins the auction, the price he will pay is
E[vllx1 2T A SRR S yn_ll where yj,....y, ; are the
realizations of Yl""’Yn-l' His conditional estimate of Vl given

Xq 3 seee,Y }, so his con-

1Y is E[Vlle = X, Yo =Y ,eenY

1 1 n-1

ditional expected payoff is nonnegative if and only if x > Yy Using

n-1 = yn—l

b*, bidder 1 will win if and only if X; > ¥ (recall that the event

1
{X1 = Yl} is null). Hence b* is a best reply for bidder 1. Q.E.D.

Theorem 11: The expected price in the English auction is not less

than that in the second-price auction.

Proof: This is identical to the proof of Theorem 8, except that

YQ,...,Y play the role of Xg e Q.E.D.

n-1

In effect, the English auction proceeds in two phases. 1In phase
1, the n - 2 bidders with the lowest estimates reveal their signals

publicly through their bidding behavior. Then, the last two bidders

—.4
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engage in a second-price auction. We know from Theorem 8 that the
public information phase raises the expected selling price.

» By mimicking the proofs of Theorems 8 and 9, we obtain correspond-
F!! ing results for English auctions. Define v and w as follows.

{ v(x,yl,...,yn_l) = E[Vllx1 =x, ¥ = VARTTEN S A

I .

}‘ w(x,y1s°"9yn_l;z) = E[vlixl = X, Yl = y13'°',Yn_1 =Y b X = Z] .

n-1 0

Theorem 12: If no information is provided by the seller,the

expected price is

R§ = EV(Y, Y, Y, e, D > 0

If the seller announces xo, the expected price is

E . Elw .
Ry = Elw(Y) Y YoeeenY, 25X )00 > v, M

1 .
. .ui
J
Revealing information publicly raises revenues, that is, R? > Rﬁ. _f
Theorem 13: In the English auction, no reporting policy leads to L
Ll LN IS DA : 1
a higher expected price than the policy of always reporting Xg+ p
]
[ J
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6. First-Price Auctions

We begin our analysis of first-price auctions by deriving the
necessary conditions for an n-tuple (b*,...,b*) to be an equilibrium
point, when ©b* is increasing and differentiable,lg/ Suppose bidders
2,+..,n adopt the strategy b*. If bidder 1 then observes Xl = x and

bids b, his expected payoff TM(b;x) will be given by

n(b;x) x|

BL(v, - ®) 1{b*(Y1) <%y =

E[E[(V, - b) l{b*(Y1) < b}|xl’Yl]|X1 = x|

x|

E[(v(X,,¥,) - b) 1{b*(Y1) < b}lx1 =

(v(x,a) - ) £, (a|x)da
1

"
[ e N

vhere x 1is infimum of the support of Xy The first-order condition

for a maximum of MN(b;x) 1is

0 = ﬂb(b;x)
w1 -1 % -1 -1
= (v(x,p* 7(b)) - BIfy (b* 7 (b)|x)/b* (b*7 (b)) - Fy (b* "(b)|x)
1 1
where Hb denotes 23M/3b and FY is the cumulative distribution
1
corresponding to the density fY . If b* is a best reply for 1, we

1
must have Hb(b*(x);x) = 0. Substituting b*(x) for b in the first-

order condition and rearranging terms leads to a first-order linear

differential equation:ggf

_

e
-

bt and 4 4
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£y (x| x)
' - 1
(1) b*' (x) = (v(x,x) - b*(x)) W .

Condition (7) is just one of the conditions necessary for
equilibrium. Another necessary condition is that (v(x,x) - b*(x)) be
nonnegative. Otherwise, bidder 1's expected payoff would be negative
and he could do better by bidding zero. It is also necessary that
v(x,x) - b*(x) be nonpositive. Othervise, vhen X, = x, a small
increase in the bid from b*(x) to b*(x) + € would raise 1's expected

payoff from zero to some small positive number. These last two

restrictions determine the boundary condition: b*(x) = v(x,x).

Theorem 14: The n-tuple (b*,...,b*) is an equilibrium of the

first-price auction, where:

(8) b*(x) = ? v(a,a) dL{a]x) , and
X

« fy (s]s)

L{a|x) = exp(- fﬂlTEIEY as) .21/
a
1l

Let t(x) = v(x,x). Then b* can also be written as:

x
b*(x) = v(x,x) - [ L{a|x) dt(a) .
X

..‘au

3

1
«_ i A
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Lemma 1: Fy (x]|2)/fy (x|z) is decreasing in z.
1 1

Proof: By the affiliation inequality, for any a < x and any z' < z

, we have f_ (a]z)/f, (x|z) < £, (a]|z')/f, (x|2'). Integrating
Y Y Yl Y

1 1 1
with respect to a over the range x < a € x yields the desired

result. Q.E.D.

Proof of Theorem 14: Notice that L(s|x), regarded as a

probability distribution on (f,x) , increases stochastically in x
(that is, L{a|x) is decreasing in x). Since v(a,a) is
increasing, b* must be increasing.

Temporarily assume that b¥ is continuous in x. There is no
loss of generality in assuming that b* is differentiable, since
Theorem 3 permits us to rescale the bidders' estimates monotonically.
Consider bidder 1's best response problem. It is clear that he need
only consider bids in the range of b*. Therefore, to show that
b*(z) is an optimal bid when X; = z, it suffices to show that

Hb(b*(x); z) 1is nonnegative for x < z and nonpositive for x > z.

Now,
fY (xlz) FY (XIZ)
My (e*(x); 2) = <y [(v(z,%) - B*(x)) - b*'(x) - fy (xiz b
1

By (7), the bracketed expression is zero when x = z. Therefore,

by Lemma 1 and the monotonicity of b* and v, the bracketed expression

(and therefore, Hb(b*(x);z) ) has the same sign as (z - x).

Ao m o amm e
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It remains to consider the cases where b* (as defined by (8)) is
discontinuous at some point x. That can happen only if for all

positive €, the first of the following expressions is infinite:

£y (s|s) £y (s]x+e)

X+€ X+€e

1 1
J F, (s|s) as < J F, (s]x+e) ds
X Yl X Yl

=1n F, (x+e|x+e) - 1n Fy (x]x+€)
1 1
the inequality follows from the lemma. The final difference can be
infinite only if FYl(xlx + €) = 0, and that in turn implies that
Fy 1(xIx + €) = 0. (Otherwise, there would be some point z =
(z;:....zn) in the conditional support of (X,,...,X ) given
X1 = x + €, with some z; < x. By symmetry, all of the permutations
of =z are also in the support and therefore, by affiliation, the
component-wise minimum of these permutations is in the support. But
that would contradict the earlier conclusion that FYl(xlx + €) = 0.)
Thus, if any Xi exceeds x, all mst.

It now follows that the bidding game decomposes into two subgames,
in one of which it is common knowledge that all estimates exceed x and
in the other of which it is common knowledge that none exceed x. Taking
the refinement of all such decompositions, we obtain a collection of

subgames, in each of which b* is continuous. The first part of our

proof then applies to each subgame separately. Q.E.D.

»
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@
The remaining results in this section, as well as parts of the 1
analyses in Sections 7 and 8, make use of the following simple lemma. :
Lemma 2: Let g and h be differentiable functions for which "_.,;
(1) &(x) > h(x) and
(ii) g(x) < h(x) implies g'(x) » h'(x).
Then g(x) » h(x) for all x > x. .J
Proof: If g(x) < h(x) for some x > x then, by the mean value
theorem, there is some x in (x,x) such that g(x) < h(x) and
~ ~ [
g'(x) < h'(x). This contradicts (ii). Q.E.D. o
Our first application of this lemma is in the proof of the next
theorem. -
Theorem 15: The expected selling price in the second-price
auction is at least as large as in the first-price auction. )
.
1
Proof: Let R(x,z) denote the expected value received by ]
bidder 1 if his own estimate is 2z and he bids as if it were «x ;
that is, define .l
R(x,2) = E[v1 . 1{‘{1 < x}lxl =z] .
.
Let WM(x,z) denote the conditional expected payment made by bidder 1 i
in auction mechanism M (in the case at hand, either the first-price or
second-price mechanism) if {
L
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(i) the other bidders follow their equilibrium strategies,
(i1) pidder 1's estimate is 1z,
(iii) he bids as if it were x, and (iv) he wins.
For the first-price and second-price mechanisms, we have
Wwl(x,z) = b*(x) and W2(x,z) = E[V(Yl,Y1)| Y, <x, X = z].
In mechanism M, bidder 1's problem at equilibrium when X1 =z is

to choose a bid, or equivalently to choose x, to maximize R(x,z) -

WM(x,z)Fyl(xlz). The first-order condition must hold at x = z:
(9) 0 = R (2,2) - W(z,2)F, (2]2) - W(z,2)2, (2]2) ,
1 1

where Rl and wf denote the relevant partial derivatives. The
equilibrium boundary condition is: WM(L,lc_) = v(x,x).

Clearly, W;(x,z) = 0. From Theorem 5 it follows that
Wg(x,z) > 0. Hence, by (9), if Ww3(z,z) < Wl(z,z) for some z, then
aw? /dz = wf + wg > w} + w; = aW'/dz. Therefore, by Lemma 2,
w2(z,z) » wi(z,z) for all z > x. The theorem follows upon noting that
the expected prices in the first-price and second-price auctions are
EWwHx, x| {x;, > v, }] ana E[W(x x| {x, > v }],

respectively. Q.E.D.

A similar argument is used below to establish that in a first-
price auction the seller can raise the expected price by adopting a

policy of revealing his information.
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- Theorem léﬁ In the first-price auction, a policy of publicly T
I revealing the seller's information cannot lower, and may raise, the
expected price.
“ N
Proof: lLet b*(e; s) represent the equilibrium bidding strategy ;
in the first-price auction after the seller reveals an informational
1
:‘! variable X, = s. The analogue of equation (7) is: _.;

£, (x]x,s)
Yl

F, (x|x,s) °
Yl

b*'(x; s) = (w(x,x; s) - b*(x))

By a variant of Lemma 1, fyl(xlx,s)/FYl(xlx,s) is nondecreasing in s,
and by Theorem 5, w(x,x; s) is also nondecreasing in s. The
equilibrium boundary condition is b*(55 s) = V(Z;Ej s). Hence,
applying Lemma 2 to the functions b*(e; s) for any two different
values of s, we can conclude that b*(x; s) is nondecreasing in s.
Let W*(x,z) = E[b*(x; XO)| 1 < x, Xl = z|. By Theorem 5,
)y

Wa(x.z) > 0. Note that W*(x,x) = E[wix,x; X = x, X =x]. 1If

0 1

bidder 1, prior to learning Xo but after observing X1 = z, were to
commit himself to some bidding strategy ©b*(x; ), his optimal choice
would be x = z (since b*(z; xo) is optimal when XO = xo). Thus,
W* mst satisfy (9). Hence, by Lemma 2, W*(z.,z) > Wl(z,z) for all
z 2 X; the details follow Jjust as in the proof of Theorem 15. The
expected prices, with and withoug the release of information, are
E[w*(xl,xl)l {x1 > Yl}] and E[wl(xl,xl)l {x1 > Yl}]. Therefore,

releasing information raises the expected price. Q.E.D.

aa
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If the seller reveals only some of his information, then
conditional on that information XO’xl""’xn are still affiliated.

Thus, we have the following analogue of Theorems 9 and 13.

Theorem 17: In the first-price auction, no reporting policy leads

to a higher expected price than the policy of always reporting Xg+

There is a common thread running through Theorems 8, 11, 12, 15,
and 16 that lends some insight into why the three auctions we have
studied can be ranked by the expected revenues they generate, and why
policies of revealing information raise expected prices. This thread is
most easily identified by viewing the auctions as "revelation games" in
which each bidder chooses a report x instead of a bid b*(x).

No auction mechanism can determine prices directly in terms of the
bidders' preferences and information; prices (and the allocation of the
object being sold) can depend only on the reports that the bidders make
and on the seller's information. However, to the extent that the price
in an auction depends directly on variables other than the winning
bidder's report, and to the extent that these other variables are (at
equilibrium) affiliated with the winner's value estimate, the price is
statistically linked to that estimate. The result of this linkage is
that the expected price paid by the bidder, as a function of his
estimte, increases more steeply in his estimate than it otherwise
might. Since a winning bidder with estimate x expects to pay
v(x,x) 1in all of the auctions we have analyzed, a steeper payment

function yields higher prices (and lower bidder profits).
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In the first-price auction, for example, revealing the seller's
information links the price to that information, even when the winning
bidder's report x is held fixed. In the second-price auction, the
price is linked to the estimate of the second-highest bidder, and
revealing information links the price to that information as well. 1In
the English auction, the price is linked to the estimates of all the
non-winning bidders, and to the seller's estimate as well, should he
reveal it. The first-price auction, with no linkages to the other
bidders' estimates, yields the lowest expected price. The English
auction, with linkages to all of their estimates, yields the highest
expected price. In all three auctions, revealing information adds a

linkage and thus, in all three, it raises the expected price.

Te Reserve Prices and Entry Fees

The developments in sections L-6 omit any mention of the seller
setting a reserve price or charging an entry fee. Such devices are
commonly used in auctions and are believed to raise the seller’'s
revenue. Moreover, a great deal of attention has recently been devoted
to the problem of setting reserve prices and fees optimally (Harris and
Raviv [1981], Maskin and Riley [1980], Matthews [1979], Riley and
Samuelson [1981}).

It is straightforward to adapt the equilibrium characterization

theorems (Theorems 6, 10, and 1k) to accommodate reserve prices. In the

first-price auction, setting a reserve price r above v(x,x) simply

alters the boundary condition, and the symmetric equilibrium strategy
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becomes
X
b*(x) = reL(x*|x) + [ v(a,a)dL(a]|x) for x > x*
x*
*(x) < r for x < x*

where x* = x*(r) is called the screening level and is given by

(10) x*(r) = inf {x|E[V1|X1 =x, Y, <x] >r}) .

1

It is important to note that when the same reserve price r is
used in a first-price, second-price auction, or English auction, the
same set of bidders participates. Thus, in the second-price auction

with reserve price r;gg/ the equilibrium bidding strategy is

b*(x) = v(x,x) for x > x*

b*(x) < r for x < x* .

A formal description of equilibrium with a reserve price in an English
auction would be lengthy; the equilibrium strategies incorporate the
inference that if a bidder does not participate, his valuation mst be
less then x*.

With a fixed reserve price, one can again show that the Fnglish
auction generates higher average prices than the second-price auction,
which in turn generates higher average prices than the first-price
auction. The introduction of a reserve price dces uot alter these

important conclusions.
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More subtle and interesting issues arise when the seller has
private information. If he fixes a reserve price and then reveals his
information, he will generally affect x* and hence change the set of
bidders who are willing to compete. In our information revelation
theorems, we assumed that the reserve price was zero, so that revealing
information would not alter the set of competitors.

Given any reserve price r, and realization 2z of XO, let
x*(r|z) denote the resulting value of x*. It is clear from expression
(10) that x* 1is decreasing in T and maps onto the range of Xl.
Hence, there exists a reserve price r = r(z]?) such that

x*(r|z) = x*(T); we call r(z|r) the reserve price corresponding to z,

given r.

Theorem 1&; Given any reserve price r for the first-price,
second-price, or FEnglish auction, a policy of announcing XO and

setting the corresponding reserve price raises expected revenues.

Proof: Let Y; = max(Yl,x*(F)). Let v*(x,y) = E[vllxl = x,

* = = = * = =
by yl and let w*(x,y,z) = E[Vllxl X, Yl ¥s X, z]. By
Theorems 2-5, Xq» Xl, and Y{ are affiliated and v*¥ and w* are
nondecreasing, so the arguments used for Theorems 8 and 12 still

apply. The argument used in the proof of Theorem 16 generalizes without

difficulty. Q.E.D.

As with Theorems 8, 12, and 16, Theorem 18 has the corollary that
no policy of partially reporting the seller's information leads to
ahigher expected price than full revelation: Again, "honesty is the

best policy."
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When both a reserve price r and an entry fee e are given, we

more generally define the screening level x*(r.,e) to be

x*(r,e) = inf {x|E[(V1 -r) l{Y <x}|x1 =x] >e} .
1

It is not always true that the set of bidders who will choose to pay the
entry fee and participate in an auction consists of all those whose
value estimates exceed the screening level. In a first-price auction,
an entry fee might discourage participation by some bidder with a
valuation x well above x*(r,e) if he perceives his chance of
winning (FYl(xlx)) as being slight.23/

If the set of bidders who participate at equilibrium in an auction
with reserve price r and entry fee e does consist of those with
valuations exceeding x*(r,e), then we say that the pair (r,e) is
regular for that auction. The next result shows that among regular
pairs with a fixed screening level, it pays to set high entry fees and

low reserve prices, rather than the reverse.

Theorem 19: Fix an auction mechanism (first-price, second-price,
or English), and suppose that the pair (r,e) is regular. Let (r,e)
be another pair with the same screening level (i.e., x*(r,e) =
x*(r,e)) and with e < e. Then (r,e) is regular, but the expected
revenue from the (r,e)-auction is less than or equal to that from the

(r,e)-auction.

Proof: Let P(x,z) and P(x,z) denote the expected payments
made by bidder 1 in the (r,e)-auction and the (r,e)-auction,

respectively, when
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(i) the other bidders follow their equilibrium strategies,
(ii) bidder 1's estimate is =z, and
(iii) he bids as if his estimate were x.

(Notice that P and P are not conditioned on bidder 1 winning.)
Defining R as in the proof of Theorem 15. we have the following
equilibrium conditions: Pl(z,z) = Rl(z,z) = Pl(z,z) for all z > x*,
and P(x*,x*¥) = R(x*,x*) = P(x*,x*).

If the two auctions are first-price auctions with equilibrium
strategies b and b , then P(x,z) = b(x)FYl(XIZ) + e and
P(x,z) ='F(x)FY1(x|z) +e. Since b and b are solutions of the same
differential equation, with b(x*) = r < r = b(x*), the functions
cannot cross and so b < b everywhere. Also,

Py(x.x) = Bolx.x) = [b(x) - B(x)] 2| 7, (x]2) >0
Z=X 1

since the partial derivative term is negative (by affiliation). Hence,
an application of Lemma 2 yields P(z,z) » P(z,z) for all z > x*.

For the second-price or English auction, the payments made by a
bidder when his type is 2z and he bids as if it were x differ only
when he pays the reserve price, i.e., only when Y1 < x%, Therefore,

P = o) 9. » $
Pe(x,z) - Pe(x,z) =(r -r) a7 Fy (x*|z) » 0. Once again, Lemma 2

implies that P(z,z) > Pl(z,z). '

The expected payoff at equilibrium in the (r,e)-auction for a
bidder with estimate 2z » x* is R(z.z) - P(z,z) > R(z,z) - P(z,z) » O,
since (r.,e) 1is regular. Hence, such bidders will participate in the

(r,e)-auction and the seller's expected revenue from each of them is

less than it is in the (r,e)-auction.
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It remains to show that bidders with estimates 2z < x* will
choose not to participate in the (r,e)-auction. In the proofs of
Theorems 6, 10, and 1L, we argued (implicitly) that the decision problem
max R(x,z) - P(x,z) is quasiconcave for each of the three auction
fzrms, and that the maximum is attained at x = z. Those arguments
remain valid in the present context; we shall not repeat them here.
Instead, we observe this consequence of quasiconcavity: for 1z < x*,
the optimal choice of x subject to the constraint x > x®* is
x = x*. The resulting expected payoff to a bidder with estimate 2z is
R(x*,z) - P(x*,z).

Now, P(x*,z) - P(x*,z)

P(x* x*) - P(x* x*) + (r - r)[FY (x*|z)

_ 1

- F_ (x*|x*)]. But P(x*,x*)
Y1

affiliation, the bracketed term is nonnegative. Therefore

R(x*_x*) = P(x*,x*) , and, by
P(x*,z) > P(x*,z). Hence, the expected profit of the bidder with
estimate 2z is R(x*,z) - P(x*,z) < R(x*,z) - P(x*,z), and this last

expression is nonpositive because the (r,e)-auction is regular. Q.E.D.

8. Risk Aversion

In the model with risk-neutral bidders, we have shown that the
English, second-price, and first-price auctions can be ranked by the
expected prices they generate. We have also shown that in the English
and second-price auctions, the seller benefits by establishing a policy
of complete disclosure of his information. 1In this section, we

investigate the robustness of those results when the bidders may be risk
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averse. For simplicity, we limit attention to the case of zero reserve

prices and zero entry fees,

Consider first the independent private values model, in which

V: = X;

i ;3 and Xiseee X, are independent. For this model, the first-

and second-price auctions generate identical expected prices. Now let
bidder 1i's payoff be u(xi - b) when he wins at a price of b,
where u is some increasing, concave, differentiable function

satisfying u(0) = 0. Let b: denote the equilibrium strategy in the

first-price auction. Then the analogue of the differential equation (7)

is:
u(x - ox(x)) fy ()

u' (x - b;(XTT Fyl(X)

ba'(x) =

(11) .
f. (x)

Y
> (x - bA(x)) #m ,
1

where the inequality follows from the concavity of u. Let b* denote

N
the equilibrium with risk-neutral bidders. From (11) it follows that

whenever b:(x) < b§(x), b;'(x) > bﬁ'(x) ; the equilibrium boundary
condition is: bﬁ(x) = b:(i) = x. It then follows from Lemma 2 that,
for x > X, b:(x) > b§(x): risk aversion raises the expected
selling price. It is straightforward to verify that, with Vy = Xi’
the second-price auction equilibrium strategy is b*(x) = x,

independent of risk attitudes. Thus, with independent private values

Y B
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and risk aversion, the first-price auction leads to higher prices than
the second-price auction. In conjunction with our earlier result
(Theorem 15), this implies that, for models that include both
affiliation and risk aversion, the first- and second-price auctions
cannot generally be ranked by their expected prices.

To treat the second-price auction when bidders are risk averse and
do not know their own valuations, it is useful to generalize the

definition of the function v. Let v(x,y) be the unique solution of:

Elu(v, - v{x,y))|x, = x, Y, =yl =ulo) .

The proof of Theorem 6 can be directly generalized to show that
(b*,...,b*) is an equilibrium point of the second-price auction when
b*(x) = v(x,x).

Similarly, it is useful to generalize the definition of w. Let

w(x,y,z) be the unique solution of:

EIU(Vl - V(X,y,z))lx1 =x, Y =y, X =2z] =ulo) .

In proving that releasing public information raises the expected selling

price in Section 4, we used the fact that the relation
E[w(xl,ar1 ,xo)lxl ,Yll > v(x Y,)

holds with equality when the bidders are risk neutral. Applied to risk
averse bidders, this inequality asserts that resolving uncertainty by
releasing information reduces the risk premium demanded by the

bidders. If the information being conveyed is perfect information (so
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that it resolves uncertainty completely), then, clearly, the risk
premium is reduced to zero. But for risk-averse bidders, it is not

generally true that partially resolving uncertainty reduces the risk

premium. In fact, the class of utility functions for which any partial
resolution of uncertainty tends to reduce the risk premium is a very
NArrov one.

Let us now rephrase this issue more formally. For a given utility
function u and a random pair (V,X), define R(x) by
Elu(v - R(x))|Xx = x] = u(0) and define R by E[u(v - R)] = u(0). We

shall say that revealing X raises average willingness to pay if

E[R(X)] > R.

Theorem 20: Let u be an increasing utility function. Then it
is true for every random pair (V,X) that revealing X raises average
willingness to pay if and only if the coefficient of absolute risk

aversion -u"(¢)/u'(e¢) is a nonnegative constant.

Proof: We shall consider a family of random pairs (va,x). Let
X take values in {0,1} and let v, = X(Z + a), where Z is some
unspecified random variable. Suppose X and Z are independent and

P{X = 0} = P{X = 1} = 1/2. Finally, suppose E{u(z)] = u(0), and

normalize so that u(0) = 0.

Fix u and let ﬁ; be the willingness to pay for Vu- when there
is no information. Let Ra(x) be defined as in the text. Then
Ra(o) = 0, Ra(l) = a, and ElRa(X)] = a/2. If revealing X always

increases willingness to pay, then ﬁc < a/2. So,

e S S S
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0= E[u(va - ﬁa)]

= 28lu(z + a - R + Zu(-R )

itv

sz + D+ -9 .

Since this holds with equality at a = 0 and since it mist hold for
all a, positive and negative, the final expression must be maximized

when a = O:

o
|

= E[u'(2)] - u'(0) ,
(12)

o
v

> Elu"(2)] + u(0) .

Now, let g(w) = u'(u"l(w)) and 1et W = u(z). By varying Z, we can
obtain any desired random variable W on the range of u. The
conclusion reached above can be restated as: E[W] = 0 implies

Elg(W)] = u'(0). It then follows that g(w) = cw + u'(0) and hence
that u'(x) = cu(x) + u'(0). Hence u 1is linear (and we are done), or
u(x) = A + Be®*. The inequality condition in (12) rules out B > O-
since u' > 0, it follows that ¢ é O. This proves the first assertion

of the theoren.
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Next fix (v,X) and let u(x) = -exp(-ax). Then

u(0) = Elu({v - R)]
= E[Elexp(a(R - R(X)))u(v - R(X))|x]]
= Elexp(a(R - R(X)))E[u(v - R(X))|X]]
= Elexp(a(R - R(X)))u(0)]
> u(0) expla(R - E(R(X)])] .
It follows that R - E[R(X)] < O. Q.E.D.

A straightforward corollary of this result is that

E[w(Xl,Yl,Xo)lxl = x, Y, =y} > v(x,y). This inequality can be used to

1
generalize our various results concerning English and second-price

auctions.

Theorem 21: Suppose the bidders are risk averse and have constant
absolute risk aversion. Then,
(i) in the second-price and English auctions, revealing public
information raises the expected price,

(ii) among all possible information reporting policies for the
seller in second-price and English auctions, full reporting
leads to the highest expected price, and

(1ii) the expected price in the English auction is at least as

large as in the second-price auction.
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Proof: As in the risk-neutral developments, everything hinges on

the initial statements about information release raising the expected

price in a second-price auction. We shall prove only this proposition.
Note that w 1is a nondecreasing function. From this fact,

Theorem 5, and the corollary of Theorem 20 observed iﬁ the text, we have

for all x > y that

V(Y,Y) : E[w(xl ,Yl ,x0)1x1 =Y, Yl = y]
= E["(Yl,Yl,Xo)lxl =Yy, ¥, = yl
g E(V(Yl ,Yl axo) 'xl = X, Yl = y] .

Hence E[V(Yl,Yl)l{x1 > Yl}] < E[v(Yl,Yl,Xo)l(Xl > Yl}l, vhich is the

desired result. Q.E.D.

The proof of Theorem 21 suggests that reporting information to the
bidders has two effects. First, it reduces each bidder's average profit
by diluting his informational advantage. The extent of this dilution is
represented by the second inequality in the proof. Second, when bidders
have constant absolute risk aversion, reporting information raises the
bidders' average willingness to pay. This is represented by the first
inequality in the proof.

Generally, partial resolution of uncertainty can either increase
or reduce a risk-averse bidder's average willingness to pay. Since only
an increase 1s possible when bidders have constant absolute risk
aversion or when the resolution of uncertainty is complete, the cases of

reduced average willingness to pay can only arise when the range of
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possible wealth outcomes from the auction is large (so that the bidders'
coefficients of absolute risk aversion may vary substantially over this
range) and when the unresolved uncertainty is substantial. For auctions
conducted at auction houses, this combination of conditions is

unusual. Thus, Theorem 21 may account for the frequent use of English
auctions and the reporting of expert appraisals by reputable auction

houses.

9. Where Now For Auction Theory?

The use of auctions in the conduct of human affairs has ancient
roots, and the various forms of auctions in current use account for
hundreds of billions of dollars of trading every year. Yet despite the
age and importance of auctions, the theory of auctions is still poorly
developed.

One obstacle to achieving a satisfactory theory of bidding is the
tremendous complexity of some of the environments in which auctions are
conducted. For example, in bidding for the development of a weapons
system, the intelligent bidder realizes that the contract price will
later be subject to profitable renegotiation, when the inevitable
changes are made in the specifications of the weapons system. This fact
affects bidding behavior in subtle ways, and makes it very difficult to
give a meaningful interpretation to bidding data.

Most analyses of competitive bidding situations are based on the

assumption that each auction can be treated in isolation. This

'(‘. ~4
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assumption is sometimes unreasonable. For example, when the U.S.
Department of the Interior auctions drilling rights for oil, it may
offer about 200 tracts for sale simultaneously. A bidder submitting
bids on many tracts may be as concerned about winning too many tracts as
about winning too few. Examples suggest that an optimal bidding
strategy in this situation may involve placing high bids on a few tracts
and low bids on several others of comparable value (Engelbrecht-Wiggans
and Weber [1979]). Little is understood about these simultaneous
auctions, or about the effects of the resale market in drilling rights
on the equilibrium in that auction game.

Another basic issue is whether the noncooperative game formulation
of auctions is a reasonable one. The analysis that we have offered
seems reasonable when the bidders do not know each other and do not
expect to meet again, but it is less reasonable, for example, as a model
of auctions for timber rights on federal land, when the bidders (owners
of lumber mills) are members of a trade association and bid repeatedly
against each other.

The theory of repeated games suggests that collusive behavior in a
single auction can be the result of noncooperative behavior in a
repeated bidding situation. That raises the question: which auction
forms are most (least) subject to these collusive effects? Issues of
collusion also arise in the study of bidding by syndicates of bidders.
Why do large oil companies sometimes join with smaller companies in
making bids? What effect do these syndicates have on average prices?

What forces determine which companies join together into a bidding

-..'
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syndicate?

Another issue that has received relatively little attention in the
bidding literature concerns auctions for shares of a divisible object.

A recent study (Wilson [1979]) indicates that such auctions involve a
host of new problems that require careful analysis.

Much remains to be done in the theory of auctions. Some of the
important issues described above simply do not arise in the auctions of
a single object that have traditionally been studied and that we have
analyzed in this paper. Nevertheless, the treatment presented here of
the role of information in auctions is a first step along the path to

understanding auctions which take place in more general environments.

10. Appendix on Affiliation

A general treatment of affiliation requires several new defini-
tions. First, a subset A of RK 1is called increasing if its
indicator function 1A is nondecreasing. Second, a subset S of R
is a sublattice if its indicator function lg 1is affiliated, i.e., if
2z vz' and 2z A z' are in S whenever z and 2z' are.

let 2= (Z;,...,2;) be a random k-vector with probability
distribution P. Thus, P(A) = Prob(Z € A). Notationally, we denote the
intersection of the sets A and B by AB and the complement of A

by A.

Definition. Zl,...,Zk are assocliated if for all increasing

sets A and B, P(AB) > P(A)P(B).

L e
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Remark: It would be equivalent to require P(AB) > P(A)P(B) or

even P(AB) < P(A)P(B).

Definition. zl,...,zk are affiliated if for all increasing

sets A and B and every sublattice S, P(AB|S) > P(a|S)P(B|s), i.e.,

if the variables are associated conditional on any sublattice.

With this definition of affiliation, Theorems 3-5 become

relatively easy to prove. However, we shall also need to establish the

equivalence of this definition and the one in Section 3 for variables

with densities. We begin by establishing the important properties of

associated variables.

Theorem 22: The following statements are equivalent.

(1) Zy,e++,2y are associated.

(2) For every pair of nondecreasing functions g and h,

Elg(z)n(z)] > Elg(2)]-E[n(2)] .

(3) For every nondecreasing function g and increasing set A,

Elg(z)|a] > Elg(Z)] > Elg(z)|A] .

Proof: The inequality in (3) is equivalent to requiring only (3'):

Elg(z)|A] > Elg(2)], since Elg(z)] = P(A) Elg(2z)|A]l + P(R) Elg(Z)]|A].

One can show that (2) implies (3') by taking h = 1,. Similarly,

to show that (3') implies (1), take g = 1z. To see that (1) implies

(2), suppose initially that g and h are nonnegative.

approximate g to within 1/n by

Then we can

e e im s A ama A A e . a_ Ak

2 A A s .A .



g, (x) =0t ] 1 (x) ,
i=1 "'ni

vhere Ani = {x]|g(x) > i/n}, and h can be similarly approximated using

functions h, and increasing sets

then

E[gn(Z)hn(Z)]

v

By If Zl,...,Zk are associated,

n2y T pa
i=1 j=1

)

niBni

_2 pos
P(A_.)P(B
"L L P

ni)

Ele, (2)1Eh (2)] .

Letting n + o completes the proof for nonnegative g and h. The

extension to general g and h

is routine.

Q.E.D.

The next result is a direct corollary of Theorem 22.

Theorem 23: The following statements are equivalent.

(1) 2y,...,2), are affiliated.

(2) For every pair of nondecreasing functions g and h and

every sublattice S,

Elg(Z2)n(z)]|s] > Elg(2)|s]+E[n(2)|s] .

(3) For every nondecreasing function g, increasing set A, and

sublattice S,

L
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> -'.J
t(' Elg(z)|as] > Elg(z)|s] > Elg(z)|As] . i

Theorems 3 and 4 follow easily using part (2) of Theorem 23, and
Theorem 5 is a direct consequence of part (3). ".'J
Finally, we verify that the present definition of affiliation is

equivalent to the one given in Section 3.

L-.‘4
Theorem 24: ILet Z = (zl,...,zk) have joint probability :

density f. Then 2 1is affiliated if and only if f satisfies the

affiliation inequality f(zvy z')f(z A z') > £f(z)f(z') for u-almost

every (z,z') € ]Rzk, where yu denotes Lebesgue measure.

Proof: If k=1, both f and Z are trivially affiliated. We
proceed by induction to show that if f is affiliated a.e.[n], then gy
Z 1is affiliated. Suppose that the implication holds for k =m - 1,

and define 2_, = (Zz,...,Zm) and z_, = (22,...,zm). In the following

arguments, we omit the specification "almost everywhere [u]." e

-

Let k = m, and suppose that f is affiliated. Consider any two

points zi > zl. Let fl denote the marginal density of Zl’ and

consider the function [f(z!,e) + f(zl,-)]/[fl(zl) + fl(zi)], which ™

is the conditional density of Z_1 given 2 {zl,zi . It can be

1
routinely verified that this function is affiliated.&/ Therefore,
by the induction hypothesis, Z_1 is affiliated conditional on v

zle {zl,zi}. Notice that, since f 1is affiliated, the expression

IO PR PN Y —t e ‘J_J L}

f(zl,z_l)/[f(zl,z_l) + f(zi,z_l)] is decreasing in z_j. Let g be

any increasing function on ]Rk. Then -
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E(e(2)|2, = =z ]

£ (z, ) + £ (z!) f(z, ,Z2 )
171 % . E[g(Z) f(21,z-1)1+ ;%Ziaz_l)lzl (S {zl,zi}]

fl(z1

fl(zl) + fl(zi) f(z

zZ )
1°7-1
fl(zl) * E[

E[g(z)lz1 G{zl,zi}] ,

and it t-llows that E[g(z)lz1 = zl] < E[g(z)lz1 = zi], i.e.,
Efe(z)]z, = x] is increasing in «x.

Now, let h: ]Rk

+ R also be increasing. For any non-null
sublattice S, the conditional density of Z given S is
f(z)-ls(z)/P(s), which is affiliated whenever f is. Also, by the

induction hypothesis, 2Z_, is affiliated conditional on Zl’ Hence

E[g(z)n(2)|s]

E(E[e(z)n(z)|z, ,8]|S]

v

E[E[e(z)z,8] « E[n(z)|2,,8]|s]

v

E[g(2z)|s] - E[n(z)|s] .

The second inequality follows from the monotonicity of E[g(Z)IZ1 = x,S]
and E[h(Z)lZ1 = x,8] in x. Thus we have proved that Z 1is
affiliated if f is.

For the converse, the idea of the proof is to take
S ={z,2',z2v z',z Az2'}, A= {x]x >z}, and B= {x|x >2'}, and to
apply the definition of affiliation using Bayes' Theorem. This works,

but is not rigorous because S 1is a null event. Instead, we will

Fle 2.y + f(zi'Z_l)Izl € {z).2; }]-E[e(2)]2) € {2 .2]}]

\.4

o

. a

_as.a

o a
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approximate S, AS, and BS by small but non-null events, and will then
pass to the limit.

Let Q" be the partition of ]Rk into k-cubes of the form
[1,/2", (1, + 1)/2") x ..o x [1,/2°, (1, +1)/2"). Let Q"(z) denote
the unique element of this partition containing the point =z. Since

QO x QO has only countably many elements, there exists a function

q: Qo x Qo + R such that (i) for every T € QO x QO, a(T) > 0, and

(i1) ¢ 0.0 q(T) = 1. Define a probability measure v on r2K by

TR Q
v(B) = ¢ 0. .0 a(T)u(BT) (recall that p denotes Lebesgue

T’x Q

measure). Clearly, v is proportional to u on every TEQn x Qn,
for every n > 0. Let Ev[-] be the expectation operator corresponding
to wv.

Let Y and Y' be the projection functions from ]Rzk to ]Rk
defined by Y(z,z') =z and Y'(z,z') =z'. Y and Y' are random
variables when (]Rzk.v) is viewed as a probability space. We

approximate the vector of densities (f(z),f(z').f(zv z'),f(z A 2'))

by the function X° = (x:,x;,xg,XZ) defined on R2X vy:

xMz,2')

= EV[(£(Y).e0y"),e(Y v Y'), (Y o Y))|(Y,¥') € Q"(2) x Q"(z')] .

N

X? is a martingale in R, and thus for almost every (z,z'),

lim XMz,2') = (£(z),2(z"),f(z v 2'),f(z r 2'))

n+w

(cf. Chung [1974], Theorem 9.4.8). Also, for almost every (z,z')
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' ' ; ‘@7
pair, we have z1 # zl, oo, zk # Zp For any such pair, for ey
sufficiently large n, ‘

k
X™(z,2') = 2™(P(Q"(2)),P(@"(2)),P(Q™(z v 2)),P(@"(z A 2'))) . -0
Each cube Q"(z) has a minimal element, so we may define
4
A = {x] x » min Qn(z)}, B = {x! x > min Q"(z')}, and _
. L
8, = (z) uQMz) UuQ™Mz v 2') UQMz A 2'). The sets A, and B, .
are increasing, Sy is a sublattice, and for sufficiently large n the
following three identities hold:
94
-1 n n 4
Pa ls ) = c (X + X))
-1 n n 4
P(B,lS,) = c_"(X, + x,) 3
t"
~1l.n 1
P(AanISn) = % Xy 1
where c_ = X" + X0 + X7 + X' and each X" 1is evaluated at (z,z'). -
n "1 "2 73 7h J .
By the definition of affiliation, we have P(A B |s ) > ]
\ -l n -2,.n n,,n n
P(Anlsn) P(Bnlsn), or equivalently, c "X, >c_ (xl + xh)(x2 + xh).
Letting n * » yields (for almost every (z,z')):
.‘1
-1 ] -2 ] ' ' . 1
¢z z') > [f(z) + £z vz')] o [£(z') + £(zA2')]
vhere c¢ = f(z) + f(z') + f(z, 2') + f(z A 2z'). A rearrangment of
| J

|
. mt a A M .memm o a-m.a_ah PP U




Ly

o

-61-

Footnotes

These and other historical references can be found in Cassady [1967].

On September 30, 1980, U.S. 0il companies paid $2.8 billion for
drilling rights on 147 tracts in the Gulf of Mexico. The three most
expensive individual tracts brought prices of $165 million, $162
million, and $121 million respectively.

The English (ascending, progressive, open, oral) auction is an
auction with many variants, some of which are described in Section

5. In the variant we study, the auctioneer calls successively higher
prices until only one willing bidder remains, and the number of
active bidders is publicly known at all times.

The Dutch (descending) auction, which has been used to sell flowers
for export in Holland, is conducted by an auctioneer who initially
calls for a very high prize and then continuously lowers the price
until some bidder stops the auction and claims the flowers for that
price.

The first-price auction is a sealed-bid auction in which the buyer
making the highest bid claims the object and pays the amount he has
bid.

The second-price auction is a sealed-bid auction in which the buyer
making the highest bid claims the object, but pays only the amount of
the second highest bid. This arrangement does not necessarily entail
any loss of revenue for the seller, because the buyers in this
auction will generally place higher bids than they would in the
first-price auction.

A more thorough survey of the literature is given by Engelbrecht-
Wiggans [1980]. A comprehensive bibliography of bidding, including
almost 500 titles, has been compiled by Stark and Rothkopf [1979].

Situations in which bidders collude have received almost no attention
in theoretical studies, despite many allegations of collusion,
particularly in bidding for timber rights (Mead [1967]).

The case in which several identical objects are offered for sale with
a limit of one item per bidder has also been analyzed (Ortega-
Reichert [1968], vickrey [1962]). All of the results discussed below
have natural analogues in that more general setting. Another
variation, in which the bidders' private valuations are drawn from a
common but unknown distribution, has been treated by Wilson [1977].
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In contrast, the argument concerning the strategic equivalence of the
Dutch and first-price auctions does not require wuny assumptions about
the values to the bidders of various outcomes. In particular it
does not require that a bidder know the value of the object to
himself.

This property is known to statisticians as the monotone Tikelihood
ratio property (Tong [1980]). 1Its usefulness for economic modelling
has been elaborated by Milgrom [1981b].

To represent a bidder's information by a single real-valued signal is
to make two substantive assumptions. WNot only must his signal be a
sufficient statistic for all of the information he possesses
concerning the value of the object to him, it must also adequately
summarize his information concerning the signals received by the
other bidders. The derivation of such a statistic from several
separate pieces of information is in general a difficult task (see,
for example, the discussion in Engelbrecht-Wiggans and Weber
[1981]). It is in the light of these difficulties that we choose to
view each X, as a "value estimate," which may be correlated with
the "estimates" of others but is the only piece of information
available to bidder i.

This assumption--that the joint distribution of the various signals
has an associated density--substantially simplifies the development
of our results by meking the statement of later assumptions simpler,
and by ensuring the existence of equilibrium points in pure
strategies. All of the results in this paper, except for the
explicit characterizations of equilibrium strategies, continue to
hold when this assumption is eliminated. In the general case,
equilibrium strategies may involve randomization. These randomized
strategies can he obtained directly, or indirectly as the limits of
sequences of pure equilibrium strategies of the games studied here,
using techniques developed in Engelbrecht-Wiggans, Milgrom, and Weber
[1981), Milgrom [1981a], and Milgrom and Weber [1980].

The density g has the monotone likelihood ratio property if for

all s' >s and x' > x, g(x|s)/g(x|s') > g(x'|s)/g(x'|s'). This is
equivalent to the affiliation inequality: g(x|s)g(x'|s')

> glx [s)glx]s)

Our basic analysis of the second-price auction is very similar to
that given in Milgrom [1981a], although the present set-up is a bit
different. Theorems 6 and 7 were first proved in that reference.

This might be the case if, for example, there were some effective
recourse available to the buyer if the seller made a false
announcement, or if the seller were an institution, like an auction
house, which valued its reputation for truthfulness.
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If Gy (o IX ) denotes the conditional distribution of X, given

' §Qn the variables ....,S X o X ,...,Xn always will have a
dgnsity with respect to t%e product measure

x G(e|X') x M where M 1is Lebesgue measure, and the density
always will have the form £(s,x)glx |xt)/f(x_ ). A density with
Q

respect to any product measure suffices for our analysis, so the
theorem is proved by our argument.

A model in which the bidders call the bids has been analyzed by
wilson [1975].

This derivation of the necessary conditions follows Wilson

[1977]. The derivation is heuristic: in general, b* need not

be continuous. For example, let n = 2 and take X, and X to be
either independent and uniformly distributed on }) (wlth
probability 1/2), or independent and uniform on [1 2]. (Note

that X, and are affiliated.) Finally, let Vy = Xi. Then

b* Jjumps from I/2 to 1 at x = 1.

By convention, we take (x| x)/Fy (x]x) to be zero when x is not
in the support of the dis%%ibutlon &f Xp -

If the integral is infinite, L(a|x) is taken to be zero.

The outcome of this auction is determined as if the seller had bid
r. Thus, if only one bidder bids more than r, the price he pays is
equal to r.

One such case is the following. There are two variables, X, and
X2, so that Yl = x2. Assume Vl = Xl. With probability 1/2, the
X;'s are drawn independently from a uniform distribution on [0,2]
and, with probability 1/2, from a uniform distribution on [1,3].
Then F, (x|x) Jumps down from 1/2 to 1/4 as x passes up
through 11, and it jumps down again from 3/4 to 1/2 as x passes
up through 2.

The verification amounts to showing that if W. and W, are
{0,1}-valued random variables with a joint pro%abiiity distFibution

P satisfying the affiliation inequality, then the joint distribution
of W and W, also satisfies the inequality. The conclusion
follows from tge inequalities:

(Plli 000 10% 010)(P&11 000 0;1 100; >0,

111 001 101 01’ 110 000 100 010°

Y dand " " ~ - ot e,

'-\' o

Apd g 4.
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