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NOMENCLATURE

Al,A 2  objects under consideration

Bi,Bt points interior and exterior, respectively, to the
region

D solution domain

f(t) space constant

i,j,k unit (Cartesian) base vectors in x,y,z directions,
respectively

n unit outward normal

nl,n 2, n 0  unit outward normal to objects A1 ,A2, and to SO,
respectively

n x,ny x,y components of n

(nx)1 ,(ny) I  x,y components of n

(n2,(ny2  x,y components of n

(nx0, (ny)0  x,y components of n0 w

Oxy fixed Cartesian frame of reference

p pressure at any point in the fluid

Pa pressure related to acceleration

P constant (pressure)
0

Pv pressure related to velocity

q velocity vector •

-n-n
S,qs velocity of fluid adjacent to SI,S 2 in the directions

1, 2 n1 ,x 2 2 respectively2

q uniform velocity vector of the uniform flow exterior to S0

8 unit tangential vector

Sl," 2  unit vectors tangential to SIS 2

S,S0  curves enclosing the domain D

sits 2  boundaries of the objects AI,A 2, respectively
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t,At time, increment in the time t, respectively

u,v x,y components of q

UlU velocity vectors of objects AIA
21 2

U,V x,y components of q uniform

V Laplace operator

vorticity

p density of the fluid

* velocity potential

X(V) functional, in terms of the function v

stream function

ip,~p~pharmonic functions

p 'P evaluated at the point P
p
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ABSTRACT -

For unsteady, irrotational flow governed by Laplace's

equation, velocity potential and stream function solutions are

presented with particular consideration being given to the boundary

conditions. The analyses are applicable to multiple bodies each

moving in an arbitrary direction with varying velocity. In the final

section of the report, the problem of calculating the entrained mass

for a body of arbitrary shape is considered.-
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* 1. INTRODUCTION

In previous reports [1,2] the application of the finite

element technique to steady, irrotational, incompressible flow fields i
was considered. The special boundary conditions encountered in

potential flow problems, such as the Kutta condition on an aerofoil

were dealt with in some detail.

This present report extends this consideration to unsteady

flow fields, concentrating particularly on potential flow problems.

The scope is restricted to two dimensions. The extension to three

dimensions is under investigation.

2. UNSTEADY FLOW ANALYSIS

In an unsteady field, the boundary conditions vary with time.

*Since potential fields are uniquely specified by the boundary conditions,

*there is a corresponding variation with time in the field. The potential

at a point in the domain changes as signals reach that position, from the

* boundaries. The velocity of these signals is the acoustic velocity,

"* which in an ideal fluid, is infinite in magnitude. Thus for potential

*- flow, changes in the boundary conditions affect immediately all points

in the field. The stream function and velocity potential distributions

are thus always in accord with the boundary conditions at any given

instant. This does not mean, however, that steady state conditions

exist at every instant of time. The ideal fluid has inertia, and there

is thus a corresponding acceleration term which must be included in the

equations of motion. The solution of these equations will thus be

different from that obtained using the steady-state equations, even for
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identical boundary conditions. -

As in steady flow problems, it is desirable to formulate the

field equation in terms of a single scalar variable. This is simply

done by means of the velocity potential or the stream function. There

are some difficulties in the boundary conditions that arise if the

stream function is used, and these are discussed in Section 3.2. For

constant-density flows with vorticity, an acceleration potential can

be derived which satisfies the Poisson field equation. This approach

is particularly valuable since it can be applied to rotational flows.

This report, however, deals only with the case of the irrotational

field. I

2.1 The Velocity Potential

For unsteady,irrotational flow, a velocity potential can

be defined from the consideration of zero vorticity as follows.

The vorticity is defined by

x V q ,(2.1)

4 where q is the velocity vector, which in terms of its x,y, components,

u,v, respectively, is given by

q= ui + vj , (2.2)

and where V is the Laplace operator. In Eq. (2.2), 1 and j are the

unit base vectors in the x and y direction, respectively.

The condition of zero vorticity, i.e.,

n 0 (2.3)
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Fbecomes from Eq. (2.1)

x q 0 • (2.4)

Equation (2.4) may be satisfied by defining the velocity vector, q, in

terms of a scalar 4 as*

q= -. (2.5)

The scalar 4 in Eq. (2.5) is known as the velocity potential. From

Eq. (2.5), the velocity components u,v, respectively, become

U - , (2.6a)

v = - . (2.6b)
ay

If, in addition, the fluid is assumed to be incompressible,

then it can be shown [3,4] that

V.q = 0 . (2.7)

Substituting Eq. (2.5) into Eq. (2.7) results in

-V(4) =0 (2.8a)

which further reduces to

V20 = 0 (2.8b)

The combination of the irrotationality and continuity con-

ditions therefore yields Laplace's equation in 0. Although the

• The convention that q - - V4 is adopted in this report. However,
some authors prefer the convention q -+ V.

- -
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independent variable t may appear in the expressions for the velocity

vector q, and consequently in the velocity potential 4, the above

analysis shows that the field equation for the unsteady, incompressible,

irrotational flow is the same as that for the steady case. The

boundary conditions are, however, the appropriate unsteady ones, and

are dealt with in Section 3.1.

The pressure at any point in the fluid, p, may be obtained

from the generalized Bernouilli's equation [3,4]

+ )  + = f(t) (2.9) -

at 2 p

where p is the density of the fluid, and f(t) is a space constant. It

is noted that for the unsteady case both space and time derivatives of

the velocity potential 0 are required. The space constant f(t) in

Eq. (2.9) allows for a change in the absolute pressure by an arbitrary

variation of the external pressure on the system. If the external

pressure is considered fixed, then f(t) reduces to a simple constant,

both in space and time.

Although the velocity potential 4 is of importance in the

analysis of both steady and unsteady flows, it is rather restrictive

in that it can only be used if the flow is irrotational.

2.2 The Stream Function

Laplace's equation similarly applies to the stream function

in unsteady, irrotational flow, if the fluid is incompressible. This

may be shown as follows.
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The condition of incompressibility, i.e. Eq. (2.7),

.q = 0 , (2.7)

may be satisfied by choosing the velocity vector q as

q + . (2.10)
ay ax

From Eq. (2.10), the velocity components u,v, respectively, become

U (2aBy

V*= (2.11b)a x 
.

Using the condition of irrotationality, Eq. (2.4), there is

obtained V

+X2 + 0 , (2.12a)

which is Laplace's equation in i, i.e.,

V 2  = 0 . (2.12b)

The statement made regarding the field equation for the velocity

potential 4 in Section 2.1 similarly applies to the stream function ',

irregardless of whether the independent variable t appears explicitly or

not in the velocity vector q and (consequently) in the stream function
* wr p.

The finite element technique may be applied to solve for i in

the manner described in Section 4.2. The boundary conditions will

generally be more complex than those for the velocity potential. These

' " i " | -m - m • S
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conditions are considered in detail in Section 3.2.

2.3 The Cauchy-Riemann Conditions

It was shown in Sections 2.1 and 2.2 that for unsteady, in-

compressible, irrotational flow, both a velocity potential 4, and a

stream function p exist, and furthermore that both these scalar fields

* and i satisfy Laplace's equation.

It is instructive to note that although the unsteady flow is

being considered, i.e.,

. = ((x,y,t) , (2.13a)

it) = p(x,y,t) , (2.13b)

the Cauchy-Riemann conditions still apply. This may be shown as follows, V

where throughout, the explicit dependence of the dependent variables

q, u, v, *, and i on the independent variables x, y, and t, is included.

From Eq. (2.2) there is obtained

q(x,y,t) u(x,y,t)i + v(x,y,t)j . (2.14)

Equations (2.6a) and (2.6b) similarly reduce to

u(x,y,t) - W(x'y't) (2.15a)ax

and

v(x,y,t) -_ ,t) t) (2.15b)

Furthermore, from Eqs. (2.11a) and (2.11b), it follows that

I .3
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u~xyt ~ (x,y, t) (2 .16a)-

u4(x,y,t) fi- aJ(x,y,t) (2.16a)

8y

v(xI'y~t) ff Wx'y't) (2.16b)

ax ay ' .

a4(x,y,t) - i(x,y,t)(21b= - 't (2.17b)
By ay '

which shows that although 0 and i are dependent on the variable t, they

still satisfy the Cauchy-Riemann conditions. The above analysis can be

extended to show that, in addition to the set of Eqs. (2.17), the

following relations hold,

aQ(x,y,t) - * a(X,Y,t) .

an as '

a4(x,y,t) = - a*(x,y,t)
s n (2.18b)

where - and - are the velocities in the directions of increasing

*an as
n and s, respectively. The vectors n and s are mutually orthogonal and

may, for example, be chosen as the unit outward normal to the curve S,

and as the unit vector tangential to S, respectively, see Figure 2.1.
-I
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Velocity: - (x,y,t)as 8.

Velocity: - an (x,y,t)

n

yk

0 x

Fig. 2.1 Velocity components in the directions n and s.

2.4 The Acceleration Potential

A potential function P can be defined for acceleration, where

the flow is such that the vorticity is preserved [3]. Its special

importance is that it may be defined for both rotational and

irrotational flows, whereas the velocity potential can be defined for

the latter case only, as had already been mentioned in the preceding

Section 2.1. The relevant field equation in terms of P will not be

derived here, but it can be shown to satisfy Poisson's equation. The

analysis in terms of the acceleration potential P is especially useful

in the analysis of discontinuous flcws since, although the velocity is

discontinuous across a vortex sheet, and the velocity potential 4 may

also be discontinuous there, the pressure and hence the acceleration

potential P are continuous across such a sheet.

The authors are presently investigating the application of

the finite element technique to such discontinuous flows.
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3. BOUNDARY CONDITIONS

For a stationary impervious boundary, the boundary condition

is of the homogeneous Neumann type [ 5, 6], but for a moving boundary

(whether that of a rigid surface, a deforming surface, or a two-phase

surface) the kinematic boundary condition will be of the nonhomogeneous

Neumann type as is shown in the subsequent sections. In the following,

only irrotational flow is considered.

3.1 The Velocity Potential

In considering the boundary conditions for the velocity

potential, it is best to consider a particular example. The same

example will be used again when dealing with the boundary conditions

for the stream function p in Section 3.2.

The example of interest is that as shown in Figure 3.1, namely

two rigid objects in motion* in an otherwise uniform stream.

I
I *I

t In this and the following analysis, the velocities of the objects
may depend explicitly on the time t.

ioI
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"I

Wi

l(t)

A1

uniform S1  uniform

stream stream

u 2

Fig. 3.1 Two moving objects in an otherwise uniform stream.

Let the two objects be denoted by A and A as shown. Furthermore let
1 2

the boundjaries of A1 , A 2 be given by the (closed) curves SI , S2 '

respectively, and let their corresponding velocities be given by ul and

u2 " It is assumed in the analysis presented throughout this report

that the objects are impervious, consequently there can be no flow

across the boundaries S1 and S2 .

For purposes of illustration, the following analysis only

considers one object, which can then be generalized to two or more

objects moving in the same flow field. Consider therefore the case

illustrated in Figure 3.2, where the object, denoted by A1 and bounded

by Sl' is shown at its position at time t, i.e., with respect to the

U S
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fixed coordinate frame Oxy.

S0

stream s-rma

uniform uniform
stream stream40l(t )  41 IPA

0 x

Fig. 3.2 Object AI moving in an otherwise uniform stream.

Let the outer boundary of the control volume being considered be denoted

by So, which is assumed to be sufficiently far removed from A1 , and hence

from SI, such that any movement of the object A1 does not affect the

uniform stream exterior to S Acceleration of the object A1  0

is allowable in this analysis, and hence the velocity of AI is indicated

as uW(t), see Figure 3.2.

The finite element analysis presented in this report

considers the solution at fixed instants of time. Suppose the solution

is sought at time t, i.e., when the object is, with respect to the

chosen axes Oxy, at its location as shown in Figure 3.2. Let the unit

outward normal to S1 be denoted by i', then from the condition that no

flow occur across this boundary (since SI is impervious), it is clear
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S ,1
that the normal velocity of the boundary of the object must be the same

as the normal component of the velocity of the fluid which is adjacent

to this boundary. The velocity of the object in the direction n., ,1

which will be denoted by uI , is given by

-n --u ul.n I  . (3.1)

If the velocity of the fluid in this same direction and along the same

boundary S is denoted by qS then it follows from q U that1 1 1

qn = u1n 1  (3.2)

From Eqs. (2.18a) and (2.18b), it is known that qsn may also be written
S1

as V

qn= onS (3.3)
Sn 1

Substitution of Eq. (3.2) into Eq. (3.3) results in

a -u.n on S (3.4)an 1"

It is important to note that the boundary condition given by Eq. (3.4)

is of the nonhomogeneous Neumann type. This is in contrast to the

homogeneous boundary condition 3n 0 on SI, which occurs when A1 is

stationary [ 6].

Since the flow exterior to S is assumed to be uniform at all

times, it follows that on S the velocity potential * is known, at least

apart from an arbitrary constant of integration, consequently on SO a

Dirichlet condition exists for all times, as is shown below.
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Since the flow exterior to, as well as on So , is uniform, it

follows that

u(x,y,t) = U

on SO  (3.5)
v(x,y,t) = V

where U, V are the magnitudes of the uniform velocity in the x,y

directions, respectively. From Eqs. (2.15a) and (2.15b) it follows that

= UDx

21 } on S 0 (3.6a)
Dy

and furthermore, the condition that the flow is uniform gives

m- 0 (3.6b)

at

with solution

= -Ux -Vy + C onS O  , (3.7)

where C is an arbitrary constant of integration which may, without loss

of generalityt , be chosen to be zero. Consequently the Dirichlet con-

dition for on S reduces to
0

- -Ux - Vy on S0  . (3.8)

The boundary condition for 4 on S could have been derived
0

equally as well as a nonhomogeneous Neumann boundary condition as

t The choice C = 0 aZso corresponds to a change in position of the
coordinate frame Oxy, which is arbitrary. W

44
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follows. Noting from Eq. (3.6b) that 0 tflosta
at ,i olosta

-L + onS (3.9)
an ax an 3y an 0

Since from Figure 3.3,

ax
(n ) 0  an (3.10a)

on S0

(ny)0  = a (3.10b)

0 0

yyd

x

Fig. 3.3 The normal and tangential vectors n0 ands

on the boundaryS

where (nx0and (ny) 0 are the x and y components of the unit outward

normal to SOP n0 Eq. (3.9) reduces to

* -(n) + it (n onS (.1an ax xO0 ay y 0 (311
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By using the set of equations (3.6a), Eq. (3.11) may be

reduced further to

= -U(n) 0  - V(ny) on S (3.12)3n x 0y 0

It is always possible to choose the coordinate frame Oxy in

such a way that either U or V is zero, and furthermore the boundary - -

S0 may be chosen as a rectangle so that in addition to U or V being

zero, the components (nx)0 and (ny)0 become simply either +1 or -1,

which simplifies the calculations. In passing it is noted that for an il

arbitrary shaped curve So* the corresponding boundary condition to

Eq. (3.12) can be written as

q n on S (3.13)an - uniform 00

where q is the velocity vector of the uniform flow exterior touniform

SO$ i.e.,

q - Ui + Vj . (3.14)

It was shown previously that on S the non-homogeneous Neumann

condition, Eq. (3.4), must be satisfied. If the velocity of the object

A1 is prescribed, then its location, as well as its unit outward normal

nl, is prescribed at all times with respect to Oxy. Consequently at

every instant of time Eq. (3.4) is determined, and hence also the

boundary condition on S
1

In summary then, the flow field, in terms of the velocity

potential 4, may be obtained for any time t as the solution (see



16.

Section 2), to

V 2 0 - 0 in D , (2.8b)

subject to the Dirichlet condition

0 -Ux - Vy on S , (3.8)

or the nonhomogeneous Neumann condition - U

an q uniform "n 0  on S (3.13)

and the nonhomogeneous Neumann condition 'V

-i n onS . (3.4)an 1 1 1

It is noted that at any given time u is prescribed and the

location and orientation of A is fixed and hence nI is prescribed,
11

consequently the boundary condition on SI, see Eq. (3.4), is completely

prescribed. For additional bodies, Eq. (3.4) is applicable also.

3.2 The Stream Function

Consider again the example used in Section 3.1, namely the

unsteady, irrotational flow field due to a uniform stream of an

incompressible fluid obstructed by moving objects, as shown in Figure

3.2. Arguments similar to those used in that section indicate that W1

is completely prescribed on S at least up to an arbitrary constant of

integration, which, as was indicated in Section 3.1, may be chosen to

be zero. This procedure is illustrated as follows. The boundary

condition for * on S0 is obtained from the conditions, see Eq. (3.5),

0W
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u(x,y,t) - U

on S (3.5)
v(x,y,t) = V

which in view of Eqs. (2.16a) and (2.16b) result in

= Vx - Uy + C on S0  . (3.15)

In Eq. (3.15) the arbitrary constant of integration is denoted by C, -

which may be chosen to be equal to zero, thus reducing Eq. (3.15) to

= Vx - Uy onS 0  . (3.16)

In a similar fashion to that discussed for the velocity potential 0,

the boundary condition for i on S may be written as a nonhomogeneous

Neumann condition. This may be shown to be

n V(n) - U(ny)0 on S 0 (3.17a)

or

-n - (uniform x n0) k on S0  (3.17b)an unfr '

where k is the unit base vector in the z direction, perpendicular to

both i and j, see Figure 3.4.

IW

- - - - -- - - -
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0 x
k]

z

Fig. 3.4 The base vectors i, j, and k.

The other boundary condition to be investigated Is that 
on the

*boundary S of the object A .It is worth reiterating at this point

what happens on this boundary in the steady case. In the steady case,

thestramfunction 'P - '(x,y) may simply be written as

*p'(a) on S1  ,(3.18)

*where s is measured along S from some arbitrary datum, i.e., from some

1i

as I

and hence

i.e., when the object is stationary.
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' constant on S1  (3.20)

It needs pointing out, that although i is c.nstant on S in the steady .

case, this constant is not known in value. However, it may be obtained

by a further consideration of the boundary conditions on S as is outlined

in the following sections, as well as in the literature [2,7].

Extending the above argument to unsteady flow, it is clear

that at any given instant of time t the stream function ' must still be

a function of s, i.e.,

= '(s) on S1  , (3.21)

at that particular instant of time. In general, it would be

more appropriate to make the statement that -

p= (s,t) on S1  (3.22)

since as time varies, the location of S1 is changing accordingly. It gP

was pointed out in Section 3.1, however, that in the present approach

the finite element solution is to be obtained at a fixed instant of

time, hence the formulation (3.21) will suffice.

Since the object A1 moves with time, the fluid adjacent to

S1 must have a velocity associated with it and consequently the

expression (3.19) no longer holds. From Eq. (3.21), there obtains

dM(s) = d-ds on S (3.23)ds 1

gIntegrating Eq. (3.23) yields

-g U
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s

4() P()+ ~-ds on S .(3.24)f1 ds 1

Using the relation (2.18a), i.e.,

DIP (2.18a)

and noting that - for the case being considered, Eq. (3.24) may
ds as

be written as

s

s(0) + ds on S (3.25)
4() '( f an 1

0

Substituting Eq. (3.4) into Eq. (3.25) results in

S

(s) = (0) - 1  Ti1 ds on S1  . (3.26)

0

Equation (3.26) therefore corresponds to a Dirichlet condition

for i on S! . The only quantity on the right-hand side of Eq. (3.26)

which is still unknown at this time is the constant value 4(0), whose

determination is discussed below.

3.2.1 Determination of the Arbitrary Constant

To determine the constant ip(0), consider Figure 3.5.

' • i . . . ° I i li - I i " i i ,
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1 1

uA1

Q(s): (s)

*Fig. 3.5 Object A 1 bounded by the curve S

Let s = 0 at an arbitrarily chosen point P on Sl. and let Q be another

point on Sl, a distance s away from P and which is measured along S1 in

a counter-clockwise direction. Furthermore let the stream function be

denoted by (O) and (s) at P and Q, respectively.

In considering the Dirichlet condition (3.26), let it be

assumed that p(O) at P is given by the constant a It is clear that,

through Eq. (3.26), i(s) is completely described on S1 provided the

constant a1 is known. This constant may be evaluated as follows.

Consider Figure 3.6.
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SO

Dnif ormt

uniform

S streamy1 "'P (s=O): go)

0 0

Fig. 3.6 Object A moving in an otherwise uniform stream.

Let a new stream function 7p* be defined by

* + al? 2  ' (3.27)

where I and 2 are defined by the following subproblems.

1. Find such that

V2 l = 0 in D , (3.28)

1i
.4 subject to the Dirichiet condition

= Vx - Uy on S0  (3.29a)

4

U .]
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or the nonhomogeneous Neumann condition

1 -(q x n k on S (3.29b)
3n uniform 0 0 32b

and the Dirichlet condition

s

1 = - f n ds cn S 1  (3.30)

0

2. Find *2 such that

V2 2 = 0 in D , (3.31)

subject to the Dirichlet conditions

*2 = 0 on S0  (3.32)

*2 =1 on S1  .(3.33)

From Eq. (3.27), and the subproblems 1. and 2. as defined above, this

new stream function ** is seen to be the solution to

I
V2$* = 0 in D , (3.34)

subject to the Dirichlet condition

= Vx - Uy onS 0  , (3.35a)

or the nonhomogeneous Neumann condition

n (quniform xn 0) . k on S0  , (3.35b)

3 u 0 0
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and the Dirichlet condition

S

a1  f 1 .n dS on S1  (3.36) A
0

Comparing Eqs. (3.34), (3.35a), (3.35b), and (3.36) with Eqs. (2.12b),

(3.16), (3.17b), and (3.26), and noting that p(O) - a,, it is clear that -

p* as defined by Eq. (3.27),

- + al? 2  , (3.27) 2
is the solution i to the problem at hand.

Subproblems 1. and 2. are completely defined and hence can be

solved using the finite element method. The constant a1 in Eq. (3.27)

is determined as follows. Choose an arbitrary point in D, however
close to SO, say Bin. Then, since the flow is uniform at So, it is

expected that the flow is still uniform at this newly chosen point Bin, W

provided it is close to S0. Consequently the value for the stream

function at B in must be the same as that for the point B out in the outer

field near So, provided that Bin and Bout lie on the same streamline,

see Figure 3.7.

IU
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Fig. 3.7 Streamlines crossing the boundary SO .
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From Eq. (3.27), and dropping the superscript *

i='P + al?2  (3.37)

and applying this equation to the point Bin, there obtains

6(Bin) = l (Bin) + al?2 (Bin) . (3.38)

Substituting the finite element solutions for 'I and '2 at the point

B into Eq. (3.38), and using the known value of '(Bo) in
in out

S

'(Bn) = '(Bo) , (3.39)

yields after rearrangement of Eq. (3.38)

*6
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(Bout) 1 (Bin(
a8 - 2(Bin) (3.40)

Equation (3.40) yields a1 provided that ip2(Bn) i 0. It is noted from .

Subproblem 2. that 2 is different from zero in D, and hence 12 (Bi) # 0

for Bin not on S0.

In passing, it is pointed out that in the above analysis only

one constant may be chosen arbitrarily, i.e., in Eq. (3.16) C was chosen

to be zero. Consequently the need for the evaluation of the constant

a1 is apparent. However, if the nonhomogeneous Neumann boundary

condition (3.17b) on S were chosen rather than the Dirichlet condition

(3.16), then there would be no need to perform the above analysis to

obtain a1 . However, if more than one object is considered the choice '0

of Eq. (3.17) rather than (3.16) does not remove this necessity to

determine another constant, since an additional constant defined by

bI " (0) on S2 must be evaluated in the manner outlined above. W

It is interesting to consider how the value of a1 - (0) at

the fixed boundary point P changes from its value at time t to its value

at time t + At. Since for this fixed point P on the boundary S1 of the 0

object A1 , s was chosen to be zero, it retains this value (s 0) with

changes of time.

In general, from

- *(s,t) , (3.22)

the differential of *(s,t) is given by

0
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dW(s,t) =a ds + at dt . (3.41)

At the point P, since s = 0 for all times, it follows that

d P(t) = dP(O,t) = (,t) dtat

and consequently

t+At
=(t+At) (Ot+t( aO(0)t) dtip(pt At(t+O&t) a
P at

t
(3.42)

Equation (3.42) can be used if the term aq)(°,t) is known.

Alternatively, ip(t+At) can be determined by repeating the previous

analysis, as follows. After the increment of time At, the object A1

occupies its new location, which is completely determined, presuming

u (t) is known. For this new position and this new time t + At, the

11earlier analysis can be repeated with a new constant a1 being determined

as before. This procedure can then be repeated for subsequent time

intervals.

4. THE FINITE ELEMENT SOLUTION FOR UNSTEADY FLOW

As indicated in the previous sections, both a velocity potential

and a stream function ip exist for unsteady, irrotational flow, which

satisfy Laplace's equation if the fluid is incompressible.

The finite element method can thus be applied in the usual

manner [2], except that the boundary conditions will be of the Dirichlet

as well as the nonhomogeneous Neumann type when the flow field involves

moving boundaries, see Section 3. This means that the mathematical

S U
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statement of the problem for either the velocity potential * or the

stream function ' at any given instant of time reduces to the follow-

ing (see Figure 4.1).

SS

Y' '

0 x

Fig. 4.1 Domain D enclosed by the surfaces S0 and S Ic

Obtain that function u(x,y,t 0 ) , for to arbitrary, which

satisfies Laplace's equation in the domain D, .e.,

V2u(x,y,t O) = 0 in D , (4.1)
0

subject to the following boundary ccnditions:

i. u(x,y,t0 ) = g(x,y,t O) on S , (4.2a) W

or

au(x,Y,tO)

an 0 h(x,y,t O) on S . (4.2b)
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au(x'y't0)m
2. an = z(x,y,tO ) on S1  , (4.3)

where g(xy,tO) and h(x,y,t0 ) are prescribed functions of position

(and time t ) along the fixed (i.e., with respect to the fixed

reference frame Oxy) boundary S0, z(x,y,t0 ) is a prescribed function

of position and time t0 along S1. Although the boundary S1 moves

with time, its location may be considered fixed and completely pre-

scribed with respect to the fixed reference 
frame Oxy at any

instant of time and hence also at to.

The problem stated above may be reformulated in terms of the

calculus of variations as follows. Obtain that function v(x,y,t0 ), which

minimizes the functional

X(v) =x[ [(IV)2 + (y)2]dD - A h(xy,t-vdS f z(x,y,t 0 )vdS1 , V _

D S S

(4.4) .1
where A is a constant, either 0 or 1 in value, depending on which form-

ulation is chosen, i.e., A = 0 for the problem defined by Eqs. (4.1),

(4.2a), (4.3), and A = I if the governing equations (4.1), (4.2b), and

(4.3) are used. In the functional (4.4), the function v = v(x,y,t0 ) must

belong to the class of admissible functions, i.e., it must be continuous

and have piecewise continuous first derivatives in D, and furthermore

it must satisfy the principal or Dirichlet boundary conditions. This

latter requirement, of course, only applies if the governing equations

* t If the case of varying free-stream velocity is included.

S
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(4.1), (4.2a), and (4.3) are considered. "

It can be shown [2] that that function v(x,y,tO) which

minimizes the given functional (4.4), with the proper choice of the

constant A, is also a solution to the field problem defined by

Eqs. (4.1), (4.2a) or (4.2b), and (4.3). The finite element method

as applied to the functional (4.4) has been described in the literature

[2,8,9], and will not be considered any further in this report. -

4.1 The Velocity Potential

Comparison of Eqs. (2.8b), (3.8), (3.13), and (3.4), with A

Eqs. (4.1), (4.2a), (4.2b), and (4.3) indicate that the solution to the

velocity potential problem considered in Sections (2.1) and (3.1) can

be obtained using the above analysis and making the following choice

for the variables g, h, and z, respectively,

g(x,y,t0 ) = - Ux - Vy on SO , (4.5a)

h(xyt 0 ) = - o " n0  on (4.5b)

z(x,Y,tO) = - ul(tO) " ni on S1  (4.5c)

Substituting the expressions (4.5b), (4.5c) into the functional (4.4),

and applying the finite element technique to this functional yields the

solution for 4 - *(x,y,to).

I
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4.2 The Stream Function

Comparison of Eqs. (2.12b), (3.16), (3.17b), and (3.26), with

Eqs. (4.1), (4.2a), (4.2b), and (4.-) indicate that the solution to

the stream function problem considered in Sections (2.2) and (3.2) can

be obtained using the above analysis and making the following choice

for the variables g, h, and z, respectively,

g(x,y,t0) = Vx - Uy on S , (4.6a)

h(xyt 0) - nif x n0) . k on S0  , (4.6b)

S

z(x,y,t0) = a1  - J u 1 .n I ds on S . (4.6c)

0

Substituting the expressions (4.6b) and (4.6c) into the functional (4.4),

and applying the finite element technique to this functional yields the

solution for ip i(x,y,t0).

5. ENTRAINED MASS OR INERTIA

In moving body problems such as described in the previous

sections, the pressure can be calculated from Eq. (2.9),

+ 1 (V) 2  
- f(t) , (2.9)

p at 2

which can be rearranged as

p - -P (VO) 2 + p + Pf(t) (5.1)
2

or as

P Pv + Pa + PO (5.2)

Ug U
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where the first right-hand-side term is interpreted as the pressure

related to velocity, and the second term as the pressure related to

acceleration since it disappears in the absence of acceleration.

The integral of pv around the body surface gives the force

corresponding to steady-state conditions, whereas the integral of pa

gives the 'entrained mass' force. For a non-lifting body in an

irrotational stream, the latter acceleration force divided by the in-

stantaneous acceleration gives a constant dependent on the shape and

orientation of the body known as the entrained mass.

The finite element approaches outlined earlier in this report

can be used to solve entrained mass problems since Eq. (5.1) can be

evaluated at a given point on the body surface at a particular time tI

with VO and t being obtained as follows:
at

(1) VO can be obtained from the finite element solution at the given

time t1 by either

a) using 0 as the unknown and deriving V from the resultant

solution, or

b) using a higher-order shape function solution with 4 and the •

elements of VO as unknowns,

(2) ! at t1 can be derived by using the solutions fort t1 - At

and t - t and extrapolating from at (t-At) using a suitable

formula.

Integration of the pressure around the surface allows the acceleration

force and hence the entrained mass or inertia to be derived.

The stream function solutions given previously can be used
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for two-dimensional entrained mass problems whereas the velocity

potential methods can be used for both two- and three-dimensional problems.

I"

1
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