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TEAM THEORY AND DECENTRALIZED RESOURCE ALLOCATION: AN EXAMPLE*

by

Kenneth J. Arrow

1. Introduction.

The traditional discussion of the price system and alternative

forms of decentralized resource allocation in organizations and entire

economies has an ambivalent attitude to the ease of transferring infor- 9

mation from one locus in the economic system to another. On the one

hand, the very need for decentralization is based on the assumption that

the transmission of information is costly. If this were not so, there

would be no reason not to transfer all information on the availability

of resources and the technology of production to one place and compute

at one stroke the optimum allocation of resources4/' On the other hand,

the literature has tended to seek algorithms which, in some sense,

minimize the amount of information transferred but which at the same

time yield in the end the fully optimal allocation of resourcesY-/  In •

short, there is no true trade-off between information costs and other

resource costs. If there were, one would expect that an optimal allo-

cation of resources, taking account of information costs, would differ

from the optimal allocation in the absence of information costs. The

standard tradition can be rationalized only by assuming that information

4 costs are infinitesimal but not zero; hence, they should be minimized to U

the extent possible without affecting the overall allocation..3 /

*This research was supported by the Office of Naval Research Grant
oNR-Noool4-79-C-0685 at the Center for Research on Organizational
Efficiency, Stanford University.
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The theory of teams was introduced by Jacob Marschak precisely to

bring information costs into the allocation process explicitly; see J.

Marschak 119551, J. Marschak and Radner [1972]. It does so in a way

which is polar to the standard tradition. It assumes a fixed amount of

communication in fixed channels. The "costs" of communication are

modelled by scarcity.

Team theory differs in other ways from the standard approach. It

makes more use of prior information about the economr. In the usual

form of the price-adjustment or quantity-adjustment iterative processes

for achieving an optimal allocation of resources, the rule design uses

only the broadest qualitative information about the economy. There are

no assumptions about the likely shapes of the production functions or

the range of possible levels of resource supplies 2L/  In team theory,

some or all of the basic parameters of technology or resources are

unknown; otherwise, there would be no informational problem at all. But

there is prior information in the sense that probabilities are attached

to different possible values of the parameters. The decisions made

under decentralization can then take advantage of this knowledge and '

reduce the probability of a bad decision as far as possible.

There is still another difference between the standard approach

and team theory, which follows from the fact that there are irreducible

differences in information among the members of the team. In the stan-

dard approach, the decisions are ultimately all made by the central

authority, the individual parts being only sources of information. In a

sense, since relevant information is eventually equalized, it does not

01
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really matter who makes the decisions. In team theory, as in real life,

the allocations are ultimately the results of many individual deci-

sions. The decentralization is real.

One implication among others is that the rules must be designed to

insure feasibility without a full exchange of information on resource

supplies.

The general form of the team problem, then, is this: The system

has a number of agents, each charged with making certain decisions. The

system's operations are governed by a number of parameters, initially

unknown to the agents. There is a probability distribution over these

parameters, reflecting prior knowledge. Each agent is given some infor-

mation on some of the parameters. That is, the probability distribution

of the parameters is conditioned on the agents' items of information.

Each agent then makes a decision within its competence as a function of

the information available to it. The team problem is to choose, in

advance, the rules or decision functions for all agents. These decision

functions are determined jointly to optimize the expected outcome, which

is a function of the true values of the parameters and of the decisions

made.

I will not try here to repeat in more detail the general formula-

tion of the team problem, which can be found in J. Marschak and RadnerUu

[19721. The structure will be sufficiently clear from the specific

example to be analyzed. This example is very simple but requires suffi-

cient analysis to indicate the nature of the team theory approach to

resource allocation and the problems that need to be solved in applying

it.

U V]



We assume a known production structure, indeed, the simple one of

fixed coefficients. What are unknown a priori are the resource sup-

plies. Each resource manager knows the supply of his or her own

resource, and is required to divide it between the general production

using all supplies and a specialized alternative use. The paper is

devoted primarily to establishing the decision rules for the resource

managers which yield the optimal resource allocation for the given

information structure.

A modification of the model would permit the resource managers to

transmit incomplete information about resource holdings. In that case,

the center, having received the information, would then issue decision

rules to the resource managers. The extension is in fact very straight-

forward. The calculation of the benefits from the additional informa-

tion is straightforward in principle but does not lend itself to simple

expression in formulas. These benefits should be compared with the

costs of the additional information.

2. Formal Statement of the Model.

We are assumed to have n resources. These resources can be used

jointly to produce a product. The production structure is defined by

fixed coefficients, i.e., each unit of output requires a fixed amount of

each resource. By choosing units properly, we can assume that the fixed

coefficients are all 1, i.e., that it requires I unit of each

resource to produce 1 unit of the output. Let,

U -1
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y = output,

xi = amount of ith resource available,

x, = amount of ith resource used in production of output.

Then,

(2-1) y mi ( *,x) mi n x
(21 y = mn (Xl,...~x)=m

i

Clearly, if the only use of the resources is in the production of

this product, there is no interesting resource allocation problem. The

entire amount xi  are delivered to the production unit; no resource

manager should be affected by the fact that he or she does not know the

amounts of the other resources. Notice that resources other than the

ones in least supply are useless in production; but if there are no

alternative uses, that does not matter.

To make the allocation interesting, therefore, assume that each

resource has another use, with a unit vriue which is constant relative

to the Joint product. Let,

wi = unit value of resource in alternate use,

with Joint product as numeraire

The aim of the team is to achieve as large a value of,

n
y + w i(x i X11)

i=l

as possible.
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If the resource availabilities xi  were known, this problem would

have an easy solution. It must, of course, satisfy the feasibility

constraints,

(2.2) 0< x < x! all i

The problem would have a totally trivial solution if, "

n

>1

for in that case, it would always be at least as good to engage only in

specialized use of the resources. To see this, consider any feasible

allocation. Now consider a new one which simply shuts down the joint

production. The value of the specialized uses of the resources

increases by, w ix!, while the amount of the joint produce decreases

by, min x'. Hence, the net gain is,
i

n n n
Swx! - min x! wi mn x - min x = ( wi )min xi! >

i=l i i=l ii 1~

I.e, there is never any loss in shutting down Joint production. In this

case, then, the decision rules for the individual resource managers are

simple: use all the resources for the specialized use. This rule can

be carried out by the resource managers without any knowledge of each

other's resources availabililties.

Hence, we assume,

n
(2.3) " < 1

i-ii

!w

. . .. •" -• " "m . .



If there is complete information, then clearly the optimal policy

would be to set, x! = min x for each i. That is, we would want to

invest as much as possible of each resource in the general production

process, subject to the non-wastefulness condition that an equal amount

of each resource be used. This is because increasing the allocation of

each resource to the general process by 1 unit, if feasible, increases

output of the community by 1 and decreases the total value in the spe-

cialized processes by Xwi.

This allocation, however, requires that each resource manager know V

the amounts of all other resources (or at least the minimum of all other

resource availabilities). Let us state explicitly our decision and

information assumptions. Beforehand, when the rules are to be deter-

mined, each of the variables x is assumed to be a random variable,

with a distribution known to all. For simplicity, I willl assume that

these variables are independent of each other. The resources become

available, but for each resource only the manager knows the availabil-

ity. Because of the independence assumption, no manager has any more

information about the availability of other resources than he or she did

before the realization of the random variables. The manager has then to

determine the amount allocated to the general production process, in

accordance with the rules laid down.

The allocation that finally results depends on the resources

actually available; it must in fact satisfy the resource feasibility

conditions (2.2). But it must also satisfy what may be termed the

conditions of informational feasibility: a decision cannot depend on

more information than is available to the decision-maker.

• . ,, •
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The last condition, stated formally, is that xi, the amount of

resource i devoted to general production, can depend only on xi, the

amount of resource i available, for this is all the information avail- U

able to the manager for resource i. The allocation x' cannot depend

on the availabilities of any resources x for J * i. The team

allocation problem then requires the choice of function, x!(x i) w

satisfying (2.2).

(2.4) 0 < x xi, for all values of xi

Finally, what is the maximand of the team problem? Since we

regard the availabilities, xi , as random variables, we must seek to

maximize the expected payoff for each individual realization, •

n n
y + [ wi(xi - x1) min x'(x i ) + . wily i - XI(Xi)]i=l i i=l

iS

Therefore, we can finally state the team version of the allocation

problem as follows:

Choose n functions, xi(xi), the ith function depending on the
0

quantity xi alone, so as to maximize,

n
(2.5) W = E{min x!(xi) + wi[x i - x!(xi)]1

i i=l

subject to the constraints (2.4).

It may be useful to remark that the standard price-adjustment and

quantity-adjustment procedures amount to full information revelation in

the present context. Since resource supplies are inelastic, at the very

first announcement of prices, the full set of supplies is announced in



the price-adjustment procedure. As for the quantity-adjustment

procedure, this depends on the center's knowing how much of each

resource is available and hence presupposes full information. Thus, in

the present simple example, the standard methods of decentralized

resource allocation require full information by the end of the first

round of approximations. V

3. The Form of the Optimal Team Policy.

Optimizing on functions is intrinsically more difficult ti

optimizing on variables; and the problem is complicated here by the fa

that the functions are defined over specified variables, differing fy

one to another. In general, therefore, team theory problems are diff.

cult to solve. But in this case, the functions can be shown to have

some relatively simple forms, and the problem can be reduced to an

optimization over ordinary real-valued variables.

If we have chosen our policy optimally, then it must also be that

the decision rule for any one manager must be optimal, given the rules

for all other managers. Consider manager 1. The policies, x!(xi) of

all managers with i > 1 are taken as given. Since xi is independent

of xl, for i > 1, it is also true that x'(x) is independent of

xI  for i > 1. Hence, manager 1 may regard the allocations, x!, of

other managers as given random variables, independently of the observed

variable, xI .

Observe also that, to choose an optimal function or rule, x'(x I )

is really the same as choosing an optimal value for x1' for each given

value of x1 , since x, is a known magnitude to manager 1.
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We will rewrite (2.5) so as to separate the terms involving xI

from the others, over which manager 1 has no influence. We use the fact

that the expectation of a sum is the sum of the expectations. First,

write

n n(3.1) W = - w x1 + El 7, 
1 i 1=

The last term is independent of any manager's actions; it is just a

constant which does not affect the choice of the optimal team decision

6 rules. Therefore, write the first terms separately:

n
(3.2) WI = Elmin x - Y. wixj .

i

It is W1  that is to be maximized by choice of the dec!sion functions,

xj(xi).

Now, to consider the optimization problem for manager 1 alone,

write,

x"I  =min x'

i>l I

Then,

min x' = min (x' I')i Xi(I'-

Write (3.2) as follows:

n
(3.3) W = Etmin (xj,x'1 )J - wlxj - E( w= xl .

i=2
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From the viewpoint of manager 1, the values of x' for i > 1

are given random variables. Hence, the third term is a constant; in the

first term, x'l is taken as a given random variable. Finally, x, is-

known to manager 1. It does not enter explicitly in (3.3) at all, but

it does set an upper bound to the choice of x{, through the feasibility

constraint (2.2) for i = 1:

(3.4) 0 < ' < x1

The manager's aim is to choose xI  to maximize (33) subject to

(3.4). In technical terms, (3.3) is a concave function of the decision

variable xj, that is, the marginal contribution of x' decreases. We

use a well-known general result, recapitulated in the Appendix to this

article: If x is any random variable and x* a number to be chosen,

then,

(3-5) dElmin (x*,x)] = Prob (x > x*)
dx*

Apply this to the differentiation of (3.3), with x* replaced by xl,

x by x'lI

dW1
= Prob (x'1 > x{1 - w

As xi  increases, the probability of exceeding it necessarily V

decreases. As x becomes very small, Prob (x1 > x!) tends to 1, so

that dW1 /dxl tends to 1 - wl; in view of assumption (2.3), this must

be positive. As x' becomes large, Prob (x' > x') approaches 0, so

that dW1/dxi  approaches -w I < 0. Hence, there is an intermediate

Ip
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point, say x, at which the function W achieves a maximum. It is

increasing up to x* and decreasing after that.

This gives the unconstrained maximum for W . However, we have to

take account of the upper bound constraint, (3.4). Clearly, if

X > x*, Then the manager should choose x*, the unconditional maximum;

while if x < x*, the manager wants to choose xl, since W1  is

increasing up to that point. In summary, the optimal decision rule for

manager 1 has the form,

x!(xl) = min (x*,x1 ) .

11
That is, there is a fixed number x* independent of x, which defines

the optimal rule.

Since the same argument holds for any manager, not merely the

first, we have established that the optimal decision rules have form,

(3.6) xj(x1 ) = mn (x ,xi)

These results show that the problem of choosing n functions,

xj(xi), has been reduced to that of choosing n numbers, x.1 1

We will substitute (3.6) into (3-5) and then optimize with respect

to the parameters x*. Because of (3.6), the feasibility constraints
i

(2.4) are automatically satisfied. To simplify the resulting expres-

sion, introduce the new notation,

x*= min x
i 

i

x =min xii i
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o.

Note that x is a random variable of known distribution, since it is

the minimum of n independent random variables whose distributions are

known. Then, from (3.6),

ri xj(xi) = min min (x*,xi) = min (ain x*,min x) = min (x*,x)
i i i i

n
W1 = E[min (x*,x) - wi min (x*,xi) .

i=l

Suppose the x*'s are not all equal, say, x* > x*. By definition ofi

x*, a small decrease in x* will leave x* unchanged, but it will
1

decrease min (x*,xl) for at least some values of xI . The change

therefore increases the expression in brackets for some values of the

random variables and decreases it for none, so that W1  is increased.

Hence at the optimum, x* = x*, and, in general, x* = x* for all i.

The optimization problem has now been reduced to the choice of a

single number. Choose x* to maximize,

n
(3-7) Wl(x*) = Elmin (x*,x) - wi min (x*,xi=l

n
= E[min (x*,x)J - w E[min (x*,x

i=l

Then the optimal decision rule for the ith manager is,

(3.8) xj(x i ) = min (x*,xi)

4. The Determination of the Optimal Decision Rule. S

It remains then only to determine x* so as to maximize (3.7).

The procedure is straightforward; the derivative of WI with respect



to x* is equated to zero. From (3.5), we see how to differentiate

each of the terms in (3.7).

dW n
; = Prob (x > x*) - V iProb (xi > x)

For simplicity, introduce the following notation:

P(y) =Prob (x > y)

Pi(y) = Prob (xi > yi )

These functions are like the well-known cumulative distribution func-

tions, except that they are cumulated from above rather than below.

Also, let

dW1
wl(x*) = 1

Then,

n
W'(y) = P(y) - wiPi(y)1 i=l

We now use the assumption that the random variables xi are independent

to express P(y) in terms of the probabilities Pi(y). Indeed, the

assertion, x > y, is by definition, equivalent to the assertion,

* min xi > y, and this in turn, by the definition of a minimum, holds if

and only if xi > y for all i. But the events, xi > y, for any fixed

y, are independent events, so the probability of their joint occurrence

is the product of the probabilities of their individual occurrences. In

symbols,

q° S
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P(y) = Prob (x > y) = Prob (minx i > y) = Prob (xi > y for all i)
i

n n
= I Prob (xi > y) = R Pi(y) ,

i=l i=l

n
where the symbol, H , means, "product as i runs from 1 to n."

i=l
The hypothesis of independence is used only in the fourth equality. We

have then,

n n
(4.1) WI(y) = R P (y) - X wiPi(y)i=l wii=l

*W
We know that x* satisfies the condition, WI(x*) = 0, but we need to

show that such a root exists and in fact gives the maximum. In particu-

lar, it should be unique, at least in some relevant range; otherwise the

equation may have several solutions, only one of which is the true

optimum.

Let be the smallest value of y such that Pi(Y) = 0 for .P

some i. It is obvious that one would never want to set x* higher

than that, for the contribution of the resource for which Pi) = 0

will never be more than R, and any allocation of any other resource

beyond R will be certainly wasted. In the Appendix, the following is

demonstrated: within the range from 0 to R, there is in ordinary

circumstances precisely one value of x* for which,

W{(x*) = 0

where W' is defined in (4.1), and this value of x*, used in (3.8),

defines the optimal team rules for the managers.
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5. Remarks on Operating Characteristics and Partial Information

Transfer.

Given the optimum policy, it is always possible to determine its

performance by substituting back into the expected payoff function, W,

as given by (2.5). This can easily be done numerically in any given

case, but no simply interpretable general formula seems available.

Within the framework of the problem as formulated, there is no

especial need to determine the performance or operating characteristics

of the team decision rule. However, it would be very useful if one were

to contemplate alternative team descriptions, in particular the intro-

duction of partial or total information transfer. In the latter case,

one could calculate the operating characteristics for complete informa-

tion, where the optimal policy is to set,

xi min x ,

as noted before. Of course, this rule will give a higher expected

payoff. However, there is presumably a cost to the provision of

complete information, and this should be compared with the gain in

payoff. It is for this reason that one would want to compute operating

characteristics.

We consider briefly the case of partial information transfer.

Suppose each resource manager provides the center with a random variable

which is a signal for the availability of that resource. By a signal

* will be meant a random variable whose distribution is conditional on the

actual value of the resource but independent of anything else, in

I,
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particular of the availabilities of other resources. By Bayes' Theorem,

then, the center can compute a conditional distribution of the resource

availability, xi, for each i, which differs in general from the prior S

distribution. The Center can compute x* as before but using the

conditional distributions, and transmit that value as an instruction to

each of the resource managers. The new ceiling on allocations to gen- V

eral production, x*, is now a function of the signals transmitted. In

the extreme case where the transmitted signal is xi itself, we have

complete information, and the value of x* transmitted will be the

optimal value under complete information.

An important but difficult optimization problem is the choice of

signals, in other words, of the amount of information transfer to the li

center. Clearly some signals are more informative than others; that is,

they convey knowledge of the resource availabilities more or less accu-

rately -5/ Hence, use of a more informative signal will yield a higher

expected payoff. Presumably, however, more informative signals will

tend to be more expensive. Hence, there is a need for comparing the

expected gains with the expected additional costs. While the expected •

gains can be computed in any given case, as already seen, little appar-

ently can be asserted of a general nature.

W

of
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Appendix

The proofs of two assertions were left to this Appendix.

The first is (3-5). Let x be any random variable and x* any

fixed number. We seek the derivative of Elmin (x*,x)] with respect

to x*.

An expectation is essentially an integral. We can differentiate

it by differentiating under the integral sign. Now min (x*,x) =x*

if x > x* and = x if x < x*. Hence

d min (x*,x) = 1 if x > x*
dx*

=0 if x < x*

The derivative is undefined when x = x*. However, if, as we have been

implicitly assuming, x is a continuous random variable, the probability

that it takes on any particular value, x*, is zero, so the lack of

definition of the derivative at one point does not affect the expecta-

tion.

We also note that if a function of a random variable is I on

some range of x-values say the set E, and 0 elsewhere, then the

expectation of that function is the probability of E. Hence,

dE [min (x,x)J = E 1d min (x*,x)1 = Prob (x > x*)

dx* dx*

as asserted.

The second assertion left for proof in this Appendix is that the

function, Wi(y), as defined in (4.1), has precisely one zero as y
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1

varies from 0 to 5, where is the smallest value of y for

which Pi(y) = 0 for some i. (It is not excluded that Pi(y) > 0 for

all i and all y, in which case we may take R to be infinite.)

For y < R, Pi(y) > 0 for all i, and therefore,

n
(A.1) U Pi(y) > 0

i=l

Let,

W'(y) n Pi(y) n Vi
(A.2) V(y)= n = - Ywin n *

R P (y) i I P (y) i 1 p(y)
J=l J=l 3Ji

From the definition of Pi(y), as the probability that a random

variable is greater than y, it must be true that Pi is monotone

decreasing as y increases. It is also true that Pi is non-negative

and in fact positive so long as y < i. Clearly, then, the product of

any number of Pi's is positive and monotone decreasing. In particu-

lar, for each i, the function,

n
HP y)

J*i J

is positive and monotone decreasing. Hence, V(y) is monotone decreas-

ing. We also observe that Pj(O) = 1, from the definition (resource

availability is certainly positive), so that

v(o)= 1-X V > 0.

1
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As y approaches , P (y) approaches 0 for one or more values of

J, so that, from (A.2), V(y) approaches negative infinity. Therefore,

V(y) must equal zero at least once in the interval from 0 to x.

Since V(y) is monotone decreasing, it would ordinarily be true

that it has exactly one zero. Strictly speaking, however, it is conceiv-

able that a monotone decreasing function is zero on a whole interval.

Thus V(y) is positive for y small, 0 at a point or on an

interval, and then negative. By construction, WI(y) has the same sign

(positive, zero, or negative) as V(y). Hence, W I  increases for V

small y, reaches a maximum, which may be at a point or over an

interval, and then decreases.

Therefore any solution of the equations, V(y) = 0, or WI(y) = 0,

may be taken as the value of the operating parameter, x*, which deter-

mines the optimal team decision policy.

Ad. 6
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Footnotes

1/ For the purposes of this paper, I assimilate computation and its
costs to information transfer. The economics of computation has
so far not been well integrated with that of information. For an
early and interesting essay, see T. Marschak 119591.

2/ Actually, there is rarely any explicit measurement of the informa-
tion costs of alternative algorithms for achieving optimal
resource allocation. Most of the work is satisfied with exhibit-
ing a process which manifestly requires a good deal less than
complete information transfer. For an explicit comparison of
alternative algorithms according to the amount of information
transfer needed, see Oniki 11974].

3/ What I have called the standard tradition of decentralized
achievement of optimal resource allocation goes back to Adam
Smith's "invisible hand," and continues through Walras [1954, pp.
84-86, 90-91, 105-106, 169-172, 243-254, and 184-1951, Pareto
11927, pp. 233-2341, Barone, pp. 245-290 in von Hayek [1935], J.
Marschak [19241, Lange, pp. 57-142 in Lippincott [19381, and the
more modern literature surveyed in Hurwicz, pp. 3-37 in Arrow and
Hurwicz 119771. Most of this literature has emphasized the para-
metric role of prices and the successive adjustment of prices in
accordance with excess demands and supplies. A variant strain has
emphasized quantity allocations and their revision so as to bring
the shadow prices of each resource in different uses into equal-
ity; see especially Kornai and Liptkk 11965], Marglin [19691, and
Arrow [1976]. A very good survey of the entire literature is
found in Heal [1973].

It should be added that Hurwicz, pp. 393-412 in Arrow and Hurwicz
119771, and other papers has given a more abstract version of the
process of successive adjustments which includes the price-adjust-
ment and quantity-adjustment types of algorithms as special cases.
However, it has in common with the rest of the literature that
information costs do not appear explicitly and that the process
seeks a fully optimal allocation disregarding such costs.

4/ Indirectly, however, knowledge of the econony may be used to
determine the starting point of the iterative process. In prac-
tice, of course, the length of the iterative process may be very
much reduced by a suitable initial condition.

5/ The relation between signals, "more informative than," is defin-
able in different ways. In general, it cannot be an ordering,
that is, given any two signals, it is not necessarily true that
one is more informative than the other. The most general useful
definition is that of Blackwell [1953]. With this definition, it
is always true that a more informative signal will yield a higher
expected payoff.
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