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TEAM THEORY AND DECENTRALIZED RESOURCE ALLOCATION: AN EXAMPLE®

by

Kenneth J. Arrow

1.  Introduction.
~y
The traditional discussion of the price system and alternative

forms of decentralized resource allocation in organizations and entire
economies has an ambivalent attitude to the ease of transferring infor-
mation from one locus in the economic system to another. On the one
hand, the very need for decentralization is based on the assumption that
the transmission of information is costly. If this were not so, there
would be no reason not to transfer all information on the availability
of resources and the technology of production to one place and compute
at one stroke the optimum allocation of resources.ﬁl’ On the other hand,
the literature has tended to seek algorithms which, 3in some sense,
minimize the amount of information transferred but which at the same
time yield in the end the fully optimal allocation of resources.g! In
short, there is no true trade-off between information costs and other
resource costs. If there were, one would expect that an optimal allo-
cation of resoﬁ;:;s, taking account of informaticn costs, would differ
from the optimal allocation in the absence of information costs. The

standard tradition can be rationalized only by assuming that information

costs are infinitesimal but not zero; hence, they should be minimized to

the extent possible without affecting the overall allocation.§/

¥This research was supported by the Office of Naval Research Grant
ONR-N00014-T9-C~0685 at the Center for Research on Organizational L
Efficiency, Stanford University. »




The theory of teams was introduced by Jacob Marschak precisely to
bring information costs into the allocation process explicitly; see J.
Marschak [1955], J. Marschak and Radner [1972]. It does so in a way
which is polar to the standard tradition. It assumes a fixed amount of
comminication in fixed chennels. The "costs" of commnication are
modelled by scarcity.

Team theory differs in other ways from the standard approach. It
makes more use of prior information about the economy. In the usual
form of the price-adjustment or quantity-adjustment iterative processes
for achieving an optimal allocation of resources, the rule design uses
only the broadest qualitative information about the economy. There are
no assumptions about the likely shapes of the production functions or
the range of possible levels of resource supplies.&/ In team theory,
some or all of the basic parameters of technology or resources are
unknown; otherwise, there would be no informational problem at all. But
there is prior information in the sense that probabilities are attached
to different possible values of the parameters. The decisions made
under decentralization can then take advantage of this knowledge and
reduce the probability of a bad decision as far as possible.

There is still another difference between the standard approach
and team theory, which follows from the-fact that there are irreducible
differences in information among the members of the team. In the stan-
dard approach, the decisions are ultimately all made by the central
authority, the individual parts being only sources of information. 1In a

sense, since relevant information is eventually equalized, it does notu
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really matter who makes the decisions. In team theory, as in real life,
the allocations are ultimately the results of many individual deci-
sions. The decentralization is real.
- One implication among others is that the rules must be designed to
| insure feasibility without a full exchange of information on resource
#‘ supplies.
% The general form of the team problem, then, is this: The system
f' has a number of agents, each charged with meking certain decisions. The

system's operations are governed by a number of parameters, initially

unknown to the agents. There is a probability distribution over these
parameters, reflecting prior knowledge. Each agent 1s given some infor-
mation on some of the parameters. That is, the probability distribution
of the parameters is conditioned on the agents' items of information.
Each agent then makes a decision within its competence as a function of

the information available to it. The team problem is to choose, in

advance, the rules or decision functions for all agents. These decision

functions are determined jointly to optimize the expected outcome, which
is a function of the true values of the parameters and of the decisions .A
made.

I will not try here to repeat in more detail the general formula-

tion of the team problem, which can be found in J. Marschak and Radner

fi972] . The structure will be sufficiently clear from the specific -
example to be analyzed. This example is very simple but requires suffi- ;
cient analysis to indicate the nature of the team theory approach to :-j
resource allocation and the problems that need to be solved in applying "]
it.

-
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VWe assume a known production structure, indeed, the simple one of
fixed coefficients. What are unknown a priorl are the resource sup-
plies. Each resource manager knows the supply of his or her own
resource, and is required to divide it between the general production
using all supplies and a specialized alternative use. The paper is
devoted primarily to establishing the decision rules for the resource
menagers which yield the optimal resource eallocation for the given
information structure.

A modification of the model would permit the resource managers to
transmit incomplete information about resource holdings. In that case,
the center, having received the information, would then issue decision
rules to the resource managers. The extension is in fact very straight-
forward. The calculation of the benefits from the additional informa-
tion is straightforward in principle but does not lend itself to simple
expression in formulas. These benefits should be compared with the

costs of the additional information.

2. Formal Statement of the Model.

We are assumed to have n resources. These resources can be used
Jointly to produce a product. The production structure is defined by
fixed coefficients, i.e., each unit of output requires a fixed amount of
each resource. By choosing units properly, we can assume that the fixed
coefficients are all 1, i.e., that it requires 1 unit of each

resource to produce 1 unit of the output. Let,
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Y = output,

amount of 1% resource availeble,

X3

x{ amount of i®! resource used in production of output.
Then,

(2.1) y = min (xi,...,xé) = min xi .

Clearly, if the only use of the resources is in the production of
this product, there is no interesting resource allocation problem. The
entire amount xy are delivered to the production unit; no resource
manager should be affected by the fact that he or she does not know the
amounts of the other resources. Notice that resources other than the
ones in least supply are useless in production; but if there are no
alternative uses, that does not matter.

To make the allocation interesting, therefore, assume that each
resource has another use, with a unit v- lue which is constant relative

to the joint product. Let,

w3 = unit value of resource in alternate use,

with joint product as numeraire .

The aim of the team is to achieve as large a value of,

as possible.
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If the resource availabilities Xy were known, this problem would
have an easy sclutione. It must, of course, satisfy the feasibility

constraints,

{2.2) 0<x, < xi all 1 .

i
The problem would have a totally trivial solution if,

j
L W, 21,
i=1 i=

for in that case, it would always be at least as good to engage only in
specialized use of the resources. To see this, consider any feasible
allocation. Now consider a new one which simply shuts down the joint
production. The value of the specialized uses of the resources
increases by, Z wixé, while the amount of the Joint produce decreases
by, min x'. Hence, the net gain is,

- 1) min x! >0

W > .
i=1 1 i 1=

[ U} =]

n n
Y w,x! —min x! > J w, min x! - min x! = (
1=1 11 1 1S4ty 4 i

- i
I.e, there is never any loss in shutting down joint production. In this
case, then, the decision rules for the individual resource managers are
simple: use all the resources for the specialized use. This rule can
be carried out by the resource managers without any knowledge of each

other's resources availabililties.

Hence, we assume,

n
(2-3) Z W
i-1

1.<1 .
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If there is complete information, then clearly the optimal policy
would be to set, xi = min xJ for each i. That is, we would want to
invest as much as possible of each resource in the general production

process, subject to the non-wastefulness condition that an equal amount

of each resource be used. This is because increasing the allocation of

each resource to the general process by 1 unit, if feasible, increases

output of the community by 1 and decreases the total value in the spe-~

cialized processes by Xwi.

This allocation, however, requires that each resource manager know

tal BRGNS
- -

the amounts of all other resources (or at least the minimum of all other

resource availabilities). Let us state explicitly our decision and

information assumptions. Beforehand, when the rules are to be deter-
mined, each of the variables Xy is assumed to be a random variable,

with & distribution known to all. For simplicity, I willl assume that

these variables are independent of each other. The resources become

available, but for each resource only the manager knows the availabil-

i (G
e

ity. Because of the independence assumption, no manager has any more
information about the availability of other resources than he or she did
1 before the realization of the random variables. The manager has then to

3 determine the amount allocated to the general production process, in

accordance with the rules laid down. i R
- The allocation that finally results depends on the resources
actually available; it must in fact satisfy the resource feasibility

q
conditions (2.2). But it must also satisfy what may be termed the i

conditions of informational feasibility: a decision cannot depend on

more information than is available to the decision-maker.
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The last condition, stated formally, is that xi, the amount of

resource i devoted to general production, can depend only on x,, the

i’
amount of resource i available, for this is all the information avail-
able to the manager for resource i. The allocation xi cannot depend
on the availabilities of any resources xJ for J#1i. The teanm

allocation problem then requires the choice of function, xi(xi),

satisfying (2.2).

(2.4) 0< xi(xi) < x;, for all values of x

i’ i °
Finally, what is the maximand of the team problem? Since we

regard the availabilities, Xy 88 random variables, we must seek to

maximize the expected payoff for each individual realization,

. n n
y+ Lw(x, - x!)=min x"(x,) + ) w,Ix, - x!(x,)] .
i=1 b s § i 5 it 1=1 i1 it

Therefore, we can finally state the team version of the allocation

problem as follows:

Choose n functions, xi(xi), the 1% function depending on the

quantity Xy alone, so as to maximize,

n
(2.5) W= Efmin xj(x,) + ] wlx, - xj(x)]y ,
1 1=1

subject to the constraints (2.h4).

It may be useful to remark that the standard price-adjustment and
quantity-adjJustment procedures amount to full information revelation in
the present context. Since resource supplies are inelastic, at the very

first announcement of prices, the full set of supplies is announced in
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the price-adjustment procedure. As for the quantity-adjustment
procedure, this depends on <the center's knowing how much of each
resource is available and hence presupposes full information. Thus, in
the present simple example, the standard methods of decentralized
resource allocation require full information by the end of the first

round of approximations.

3. The Form of the Optimal Team ‘Policy.

Optimizing on functions is intrinsically more difficult tt
optimizing on variables; and the problem is complicated here by the fa
that the functions are defined over specified variables, differing fr
one to another. 1In general, therefore, team theory problems are diff.
cult to solve. But in this case, the functions can be shown to have
some relatively simple forms, and the problem can be reduced to an
optimization over ordinary real-valued variables.

If we have chosen our policy optimally, then it must also be that
the decision rule for any one manager must be optimal, given the rules
for all other managers. Consider manager 1. The policies, xi(xi), of
all managers with 1 > 1 are taken as given. Since x; 1s independent
of X1 for 1 > 1, it is also true that xi(xi) is independent of
x; for i > 1. Hence, manager 1 may regard the allocations, xi, of
other managers as given random variables, independently of the observed
variable, xj.

Observe also that, to choose an optimal function or rule, xi(xl)
is really the same as choosing an optimal value for x! for each given

1

value of X1 since X1 is a known magnitude to manager 1.

PR U GO UG U |
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We will rewrite (2.5) so as to separate the terms involving x]

from the others, over which manager 1 has no influence. We use the fact

that the expectation of a sum is the sum of the expectations. First,
write

x.] .

n n
(3.1) W= E[m:!.n x! - izlwixi] +E[Y LA

i i i=1
The last term is independent of any manager's actions; it is just a

constant which does not affect the choice of the optimal team decision

rules. Therefore, write the first terms separately:

n
(3.2) W, = Elmin x! - ) w.x!] .
1 PR S

It is Wl that is to be maximized by choice of the decision functions,
]
Xi(xi).

Now, to consider the optimization problem for manager 1 alone,

write,
x'1 = min xi .
B i>1
Then,
" = 1 L
min x{ = min (xl,x_l) . g
[ J
-1
Write (3.2) as follows:
n
= ot - v ' R -
(3.3) W, = Elmin (xl,x_l)] v X3 E(izzwixi] _.q
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From the viewpoint of manager 1, the values of xi for 1> 1

are given random variables. Hence, the third term is a constant; in the

first term, xll

known to manager 1. It does not enter explicitly in (3.3) at all, but

is taken as a given random variable. Finally, x; 1is

it does set an upper bound to the choice of xi, through the feasibility

constraint (2.2) for i = 1:

(3.4) 0<x)<x

1

([N

1 L]

The manager's aim is to choose xi to maximize (3.3) subject to
(3.4). In technical terms, (3.3) is a concave functvion of the decision
variable xi, that is, the marginal contribution of xi decreases. We
use a well-known general result, recapitulated in the Appendix to this

article: If x 1is any random variable and x* a number to be chosen,

then,

(3-5) dE[mind’((:*’x)] = Prob (x > xl') R

Apply this to the differentiation of (3.3), with x* replaced by x!,

X by xllz

aw

E;I = Prob (xl1 > xi) -y .
As xi increases, the probability of exceedihg it necessarily
decreases. As xi becomes very small, Prob (xll > xi) tends to 1, so
that dwlldxi vends to 1 - w,; in view of assumption (2.3), this must
be positive. As xi becomes large, Prob (x_’_1 > xi) approaches 0, so
that dwlldxi approaches - w < 0. Hence, there is an intermediate
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point, say xI, at which the function wl achieves a maximum. It is

increasing up to xI and decreasing after that.

This gives the unconstrained maximum for W.. However, we have to

1
take account of the upper bound constraint, (3.4). Clearly, if

> x%*
X7 X

while if x1 < xI, the manager wants to choose Xy since Wl is

Then the manager should choose x*, the unconditional maximum;

increasing up to that point. In summary, the optimal decision rule for

manager 1 has the form,
] = 'y R
xl(xl) min (xl,xl)

That is, there is a fixed number xI independent of Xy which defines
the optimal rule.
Since the same argument holds for any manager, not merely the

first, we have established that the optimal decision rules have form,
[ = »
(3.6) xi(xi) min (xi,xi) .

These results show that the problem of choosing n functions,
xi(xi), has been reduced to that of choosing n numbers, x;-

We will substitute (3.6) into (3.5) and then optimize with respect
to the parameters x;. Because of (3.6), the feasibility constraints
(2.4) are automatically satisfied. To simplify the resulting expres-
sion, introduce the new notation,

x® = min x; ’

x = min x

1 i
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Note that x 1s a random variable of known distribution, since it is
the minimum of n independent random variables whose distributions are

known. Then, from (3.6),

min xi(xi) = min min (x;,xi) = min (min x*,min xi) = min (x%*,x) .

i 1 1 1
n
= * v) o %® .
LA Elmin (x*,x) ) v, min (x¥,x,)]
i=1
Suppose the x;'s are not all equal, say, xI > x%, By definition of
x*, a small decrease in xI will leave x* unchanged, but it will

decrease min (x{,xl) for at least some values of x;. The change
therefore increases the expression in brackets for some values of the
random variables and decreases it for none, so that Wy is increased.
Hence at the optimum, xz = x%*, and, in general, x; = x* for all 1i.

The optimization problem has now been reduced to the choice of a

single number. Choose x* <o maximize,

E[lmin (x*,x) - § w; min (X',xi)]

(3.7) wl(x*)
i=1

Elmin (x*,x)} - E wiE[min (x*,xi)] .
i=1

Then the optimal decision rule for the ith manager is,

(3.8) xi(xi) = min (x*,xi) .

' The Determination of the Optimal Decision Rule.

It remains then only to determine x® so as to maximize (3.7).

The procedure is straightforward; the derivative of W, with respect
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to x* is equated to zero. From (3.5), we see how to differentiate

each of the terms in (3.7).

aw n
1_ » *
3oF = Prob (x > x*) - izlwi Prob (x; > x*) .

For simplicity, introduce the fcllowing notation:

P(y) = Prob (x > y) ,

Pi(y) = Prob (x; > yi) .

These functions are like the well-known cumulative distribution func-
tions, except that they are cumulated from above rather than below.

Also, let

Then,

n
wi(y) =Py) - Ywp(y) .
1 RS

We now use the assumption that the random variables x; are independent
to express P(y) 1in terms of the probabilities Pi(y). Indeed, the
assertion, x > y, is by definition, equivalent to the assertion,
min X > and this in turn, by the definition of a minimum, holds if v
and only if Xy >y for all 1. But the events, Xy > ¥, for any fixed
Y, are independent events, so the probability of their joint occurrence

is the product of the probabilities of their individual occurrences. In .J

symbols,
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P(y) = Prob (x > y) = Prob (min x; > y) = Prob (x; > y for all 1)
i
n n
= N Prob (xi >y) =T Pi(Y) s
i=] i=1
n
vhere the symbol, N , means, "product as i runs from 1 to n."
i=1
The hypothesis of independence is used only in the fourth equality. We
have then,
t n l?
(4.1) Wl(y) = TPy -) w,P.(y) .

i=] i=1

We know that x* satisfies the condition, Wj"(x*) = 0, but we need to

show that such a root exists and in fact gives the maximum. In particu-

lar, it should be unique, at least in some relevant range; otherwise the
equation may have several solutions, only one of which is the true
optimum.

Let X be the smallest value of y such that P;(y) = 0 for
some i. It is obvious that one would never want to set x* higher
than that, for the contribution of the resource for which Pi(i) =0
will never be more than X, and any allocation of any other resource
beyond x will be certainly wasted. In the Appendix, the following is

demonstrated: within the range from 0O to X, there is in ordinary

circumstances precisely one value of x* for which,

Wi(x') =0 ,

where Wi is defined in (4.1), and this value of x*, used in (3.8),

defines the optimal team rules for the managers.
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Se Remarks on Operating Characteristics and Partial Information

Transfer.

Given the optimum policy, it is always possible to determine its
performance by substituting back into the expected payoff function, W,
as given by (2.5). This can easily be done numerically in any given
case, but no simply interpretable general formula seems available.

Within the framework of the problem as formulated, there is no
especial need to determine the performance or operating characteristics
of the team decision rule. However, it would be very useful if one were
to contemplate alternative team descriptions, in particular the intro-

duction of partial or total information transfer. In the latter case,

one could calculate the operating characteristics for complete informa-

tion, where the optimal policy is to set,
? - .
Xy = mjn xJ . -3

as noted before. Of course, this rule will give a higher expected

payoff. However, there is presumably a cost to the provision of

complete information, and this should be compared with the gain in '
peyoff. It is for this reason that one would want to compute operating T
characteristics. :
We consider bdbriefly the case of partial information transfer. j?:
Suppose each resource manager provides the center with a random variable -E
which is a signal for the availability of that resource. By a signal ;
will be meant a random variable whose distribution is conditional on the f';
actual value of the resource but independent of anything else, in
o
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particular of the availabilities of other resources. By Bayes' Theorem,
then, the center can compute a conditional distribution of the resource
availability, X4 for each i, which differs in general from the prior
distribution. The Center can compute x* as before but using the
conditional distributions, and transmit that value as an instruction to
each of the resource managers. The new ceiling on allocations to gen-
eral production, x*, is now a function of the signals transmitted. In
the extreme case where the transmitted signal is x; 1itself, we have
complete information, and the value of x* <transmitted will be the
optimal value under complete information.

An important but difficult optimization problem is the choice of

signals, in other words, of the amount of information transfer to the

center. Clearly some signals are more informative than others; that is,
they convey knowledge of the resource availabilities more or less accu-
rately.Z/ Hence, use of a more informative signal will yield a higher

expected payoff. Presumably, however, more informative signals will

tend to be more expensive. Hence, there is a need for comparing the
expected gains with the expected additional costs. While the expected TR
gains can be computed in any given case, as already seen, little appar-

ently can be asserted of a general nature.
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Appendix

The proofs of two assertions were left vo this Appendix.

The first is (3.5). Let x be any random variable and x* any
fixed number. We seek the derivative of E[min (x*,x)] with respect
to x*.

An expectation is essentially an integral. We can differentiate
it by differentiating under the integral sign. Now min (x®*,x) = x*

if x> x* and = x if x < x*. Hence

d min (x*,x) _

Ti¥ 1 if x> x® |

=0 1if x < x* .

The derivative is undefined when x = x*. However, if, as we have been
implicitly assuming, x is a continuous random variable, the probability
that it takes on any particular value, x%*, is zero, so the lack of
definition of the derivative at one point does not affect the expecta-
tion.

We also note that if a function of & random variable is 1 on
some range of x-values say the set E, and O elsewhere, then the

expectation of that function is the probability of E. Hence,

d min (x*
dx

dE [min (x*,x)] _

ax* )} < prob (x > x%)

E [

as asserted.
The second assertion left for proof in this Appendix is that the

function, Wi(y), as defined in (4.1), has precisely one zero as y

. o L . I PR - ORI W W PO
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varies from O to X, where X 1is the smallest value of y for
which Py(y) = 0 for some i. (It is not excluded that P;(y) > 0 for

all i and all y, in vhich case we may take X to be infinite.)

W "

For y <X, Py(y) >0 for all i, and therefore,

4 n
. (A.1) n Pi(y) >0 .
i=1
A
Let,
wiy) n P, (y) n v
(A.2) V(y)‘—‘—‘nl_—=1- ‘Vi—ﬁ'i——:l- X —n—-}—-—— .
n P, (y) =17 g Py(y) F1one ()
J=1 J=1 J#i

From the definition of Pi(y), as the probability that a random :
'4
variable is greater than y, it must be true that Py is monotone - A
decreasing as y increases. It is also true that P; is non-negative 1
and in fact positive so long as y < X. Clearly, then, the product of
.1
any number of Py's 1is positive and monotone decreasing. In particu- 1
]
lar, for each i, the function, ]
1
n 3
L
n PJ(y) s g
R
is positive and monotone decreasing. Hence, V(y) is monotone decreas- fnq
R
ing. We also observe that Pu(O) = 1, from the definition (resource LA
availability is certainly positive), so that -]
1
V(0)=1-):wi>0.

-7
1
o
-
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As y approaches X, Ph(y) approaches O for one or more values of
J, so that, from (A.2), V(y) approaches negative infinity. Therefore,
V(y) must equal zero at least once in the interval from 0 to X.

Since V(y) is monotone decreasing, it would ordinarily be true
that it has exactly one zero. Strictly speaking, however, it is conceiv-
able that a monotone decreasing function is zero on a whole interval.

Thus V(y) 1is positive for y small, O at a point or on an
interval, and then negative. By construction, Wi(y) has the same sign
(positive, zero, or negative) as viy). Hence, Wl increases for
small Y, reaches a maximum, which may be at & point or over an
interval, and then decreases.

Therefore any solution of the equations, V(y) = 0, or Wi(y) = 0,
may be taken as the value of the operating parameter, x%*, which deter-

mines the optimal team decision policy.
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Footnotes

For the purposes of this paper, I assimilate computation and its
costs to information transfer. The economics of computation has
so far not been well integrated with that of information. For an
early and interesting essay, see T. Marschak [1959].

Actually, there is rarely any explicit measurement of the informa-
tion costs of alternative algorithms for achieving optimal
resource allocation. Most of the work is satisfied with exhibit-
ing a process which manifestly requires a good deal less than
complete information transfer. For an explicit comparison of
alternative algorithms according to the amount of information
transfer needed, see Oniki [19Tk].

What I have called the standard tradition of decentralized
achievement of optimal resource allocation goes back to Adam
Smith's "invisible hand," and continues through Walras [1954, pp.
84-86, 90-91, 105-106, 169-1T2, 2U3-254, and 184-195], Pareto
[1927, pp. 233-234), Barone, pp. 245-290 in von Hayek [1935], J.
Marschak [1924], Lange, pp. 5T-142 in Lippincott [1938], and the
more modern literature surveyed in Hurwicz, pp. 3-37 in Arrow and
Hurwicz [1977). Most of this literature has emphasized the para-
metric role of prices and the successive adjustment of prices in
accordance with excess demands and supplies. A variant strain has
emphasized quantity allocations and their revision so as to bring
the shadow prices of each resource in different uses into equal-
ity; see especially Kornai and Liptak [1965], Marglin [1969], and
Arrow [1976]. A very good survey of the entire literature is
found in Heal [1973].

It should be added that Hurwicz, pp. 393-412 in Arrow and Hurwicz
[1977], and other papers has given a more abstract version of the
process of successive adjustments which includes the price-adjust-
ment and quantity-adjustment types of algorithms as special cases.
However, it has in common with the rest of the literature that
information costs do not appear explicitly and that the process
seeks a fully optimal allocation disregarding such costs.

Indirectly, however, knowledge of the economy may be used to
determine the starting point of the iterative process. In prac-
tice, of course, the length of the iterative process may be very
much reduced by a suitable initial condition.

The relation between signals, "more informative than," is defin-
able in different ways. In general, it cannot be an ordering,
that is, given any two signals, it is not necessarily true that
one is more informative than the other. The most general useful
definition is that of Blackwell [1953]. With this definition, it
is always true that a more informative signal will yield a higher
expected payoff.
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