
R1 D-i23 611 THE INDIVIDUAL FREEDOM ALLOWED 
BY THE VALUE RESTRICT-ION 

i/i
CONDITION(U) STANFORD UNIV CA INST FOR MATHEMATICAL
STUDIES IN THE SOCIAL SCIENCES H RAYNRUD JAN 92 TR-360

UNCLASSIFIED N88814-79-C-0685 F/G 5/1 N

ELE



L" .. an ?

'11

11111,____.o = , 2 , ,
11.64

MICROCOPY RESOLUTION TEST CHART _.

NAIONAL BURAU OF STANDARDS 1963-A

Lb J.

11111 .1 34.

HhIL!~ Hh161



THE INDIVIDUAL FREEDOM ALLOWED BY THE
VALUE RESTRICTION CONDITION

9 by
HERVE RAYNAUD

0" RTECHNICAL REPORT NO, 360
January 1982

-A BEOWT OF THE
I; .

CENTER FOR R=EEARCH O

THlE EOOMC SERIES

INSfTTUTE :FOR ,MTHEMATICAL ST, IES IN THE.SOCIAL SCIENCES
FOURTH FLOOR, ENCINA HALL

STANFORD UNIVERSITY

STANFORD, CALIFORNIA JS•AID



THE INDIVIDUAL FREEDOM ALLOWED BY THE VALUE RESTRICTION CONDITION

by

Herve Raynaud OO~ 0

*, X NIS Rj

DTIC
Uuaiwou,,,o,d2 /

• + +ustifleatlo

a,-
Distrlbutton

Avalablty Coes

Technical Report No. 360 DiSt Avaiando

January, 1982 SPOpal

A REPORT OF THE .
CENTER FOR RESEARCH ON ORGANIZATIONAL EFFICIENCY

STANFORD UNIVERSITY

Contract ONR-NOOO1l-79-C-o685, United States Office of Naval Research

i0

THE ECONOMICS SERIES

6 INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES
"ourth Floor, Encina Hall

Stanford University
Stanford, California

94305 E ~ T
SJAN 2 1983 ,

fm - two=* md Is



THE INDIVIDUAL FREEDOM ALLOWED BY THE VALUE RESTRICTION CONDITION*

by

Herv6 Raynaud

1. Introduction

It is known that fhe majority method (for an odd N, a is before

b in the collective order iff more individual orders rank a before

b than b before a) does not always yield a total order.

The frequency of the so-called "Condorcet effect" has been

extensively derived and computed.(Guilbaud [1968], and Fishburn, Gehrlein,

Maskin [1979] are the earliest a the latest papers I know on the

subject).

K. Arro-, following the proof of his impossibility

theorem (Ar..w [963]) hz- -4vej- an example of possible escape by some

natural, restrictions on the domain of the individual ordersA Since

that time various other conditions have been proposedo(see, for instance,

K6hler [1978], Romero [1978], Ward [1961], Sen [1979]).Then/began to

appear some sufficient and necessary in a certain sense' conditions.

The value restriction condition is among them. It seems to have a par-

ticular psychological interpretation which can justify a special treatment.

In the case of total orders, the value restriction condition is equi-

valent to Ward's condition [1961] and can be written in the three following

equivalent forms:

*This research was supported by the Office of Naval Research Grant
ONR N00olh-7-C-0685 at the Center for Research on Organizational Efficiency,
Stanford University. This research has been done with the help of Stanford
University, the Fulbright Exchange Program and the University of Grenoble.
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1. There is no Y C X, IYI > 3, and no subset (e,...,e.

such that ei (Y),...,e i  (Y) form the lines of a
I 1YI

circulant matrix.

2. There is no Condorcet triple, i.e. there are no three objects

(say, a,b,c) and no three individual orders such that their

restrictions to the three considered objects constitute a cyclic

triple (abc, bca, cab or bac, acb, cba).

3. For every triple of objects T, there is an object, say x,

and a rank j E {1,2,3} such that in any e.(T), x is never

ranked the J-th of the three objects in T.

This condition is necessary in the sense that it ensures the

transitivity of the majority method for any odd subset of individual

votes. Psychologically speaking one can understand that any profile with

a cyclic triple can generate endless discussions between three voters,

and endless hesitations when the voters are criteria in a decision making

problem.

The third form will be used to study the condition, because it has

appeared to be more tractable than the others.

It is well known that when the number of objects increases, the

frequency of cyclic tripies increases very quickly, which means that

satisfying the condition "per chance" becomes very unlikely.

The point of view retained here for enumeration is different. It

focuses on the maximal number of different votes an individual can express.

In other words, one will count the maximum number of different individual

orders that can be found in a profile satisfying the condition.
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Let M(n) be this number. We already know that M(n) > 2n-
I

from Raynaud [1981]. I have proved in this quoted paper that the

maximum number of different votes in profiles following Inada's conditions
2n-i

[1964] are 2  , and Inada's conditions are particular cases of the

value restriction condition.

Mathematicians have been, as far as I know, unsuccessful in the

search for M(n) which reveals to be a shrewd combinatorial problem.

Exploring M(4) as a first non-trivial problem, I met some generalizable

lemmas and the result which explains the shrewdness of the general problem.

M(4) = 9 and the critical sets of permutations are very rare (24 over

the 5 x 10 1 possible profiles made of nine different votes on four

objects!).

Throughout the paper, geometrical arguments observed on the

permutohedron (Guilbaud [1960]) are used to help the reader. Exhibi-

tion of symmetries and isomorphisms will allow many shortcuts in the

proofs (easily algebraicized if necessary) and, 
I hope, an easier reading V

of this note.

Figure 1 represents the permutohedron on the four objects a, b, c, d.

The vertices of the permutohedron on n objects are the permutations

on n objects. Two vertices are joined by an edge iff the two

corresponding permutations can be obtained, one from the other, by

transposition of two neighbor objects.

n-l
It has been proven that this graph is a convex polyhedron in R

The structure of its facets and their adjacency properties are well known.

• .. . . . . . . -
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Preliminary Remarks

-In what follows, X = ta,b,c,d}, and the considered permutohedron will be

the permutohedron with X = la,b,c,d}, All profiles will follow the value

restriction condition.

-There are four unordered triples on four objects, and the value restriction

conditions can be decomposed into four conditions, each one concerning one

of the four triples,

-To respect one of these conditions means to prohibit one third of the

vertices of the permutohedron - as it prohibits one third of the possible

permutations of the considered triple which are equally frequent among the

24 permutations on four objects.

-However, on the permutohedron, the "shapes" of the conditions "x is never

second" on one hand and "x is never first" or "x is never last" on the

other hand, are very different.

Without loss of generality, 
one can:

-take the triple {a,b,c} for example;

-take x a;

Then one can represent the three conditions by deletion of the edges of

the permutohedron adjacent to the forbidden permutations.

WI



Figure 2 represents "'a never second in {a,b,cl" (which will be denoted

a n 2/b c).

r

cadbdr

hdcbbac
A dbac

Cbda .0bd/c

* Figuree

Sabe



Figure 3 represents "a never the first and a never the last in la,b,cl"

(which will be denoted a n 1/b c and a n 3/b c).

cadb

cd a dab

A dbbc

Cbda .0bd1

cbV

Figure 3

bead deb

adbe
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-The three sets of permutations are disjoint. What is more, the set

corresponding t o a n 2/b c disonnects the permutohedron. If one

considers the sets of prohibited permutations for the conditions

a n 2/b d, a n 2/b c, a n 2/c d one can see that they cover a circuit

of the graph, as represented in Figure 4; each vertex of this circuit is

included in two of these conditions.

cadb

cabd' "

/p

A cdba
\dcab) .db

cbda de

\ /

dcdbc
bcda acd d'

bdca d bac

* bdac

Figure 4

Ip
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-The two other conditions will be called extremals. Intuitively, they

consist in the prohibition of one hexagon and one of its adjacent squares.

If one considers, conversely, one hexagon and one of its adjacent squares,

the hexagon will indicate "the object x is never 1st or 3rd" and the

square will make precise on which triple the condition holds,

-If a profile counts strictly more than 23 = 8 different individual orders V

and follows the value restriction condition, it will be called a c-ndidate.

Clearly, a candidate cannot respect two conditions on the same t )le

because it would leave only (from the previous remark) eight non- hibited

vertices on the permutohedron.

-A condition will be considered of type i if it says that some object

cannot take the i-th rank.
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I. Proposition 1: In any candidate profile,

1. the objects never in second are all different,

2. they are different from the objects following extremal conditions,

3. if x is ."never first" for one triple, it cannot be "never

last" for another one.

I
Lemma 1: If the four conditions followed by a profile are of the

same type, then this profile is riot a candidate.

* I

Proof: The profile then would follow one of Inada's conditions

and according to my previous result (Raynaud [1981]) would not be a

candidate.

Lemma 2: Let x and y follow conditions of type 2 for the

same profile E (following the value restriction condition). If E

is a candidate, then x # y.

Proof: Suppose, on the contrary, that (without loss of generality)

"a" follows two conditions of type two. It can be checked (cf. Figure 4),

that all 12 vertices on the circuit are cancelled. Then, it is

natural to look at the conditions which are possible for {b,c,d}.

In fact, the cancellation of the 12 vertices of the circuit

acts exactly as if "a" were following the three possible conditions of

type two. Hence we know that if E is a candidate, necessarily, the

condition on {b,c,d} will be extremal.
* p
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Because of the total symmetry of the problem in b, c and d,

we can choose the case bnl/cd. One can see on Figure 5, that it adds

the four underlined vertices to the previous set of prohibited vertices.

Their total number then reaches 16 which is contradicting with the fact

that E is supposed to be a candidate. For symmetry seasons, the same
p

would occur with the case b n 3/c d.

cadb

cab d dab'c

cdbdebad i J-
A, edbe \

\ dcab ,adcb

cbdaFigu 
e 50 

d c

_adbc
bcda bacdab

I adc abc
dbca

bdac

Figure 5



-12-

Lemma 3: One object cannot follc a condition of type 1 and a

condition of type 3 (in a candidate profile).

Proof: The two sets of corresponding prohibited permutations are

clearly distinct (one object cannot be the first and the last of a triple

in the same permutation) and each one counts eight vertices.

Lemma 4: In a candidate profile, there is no object satisfying

a condition of type 2 and an extremal condition.

Proof: Without loss of generality one can consider any one of

the conditions an 3 and any one of the conditions an 2.

*

*
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From Figure 4 and Figure 6, the two corresponding sets of prohibited S

permutations intersect in at most two vertices (which makes 14 prohibited

permutations in the two cases), and in fact always in two vertices because

the only condition of type 2 on a which has no prohibited vertex in

common with an 3/b c is precisely a n 2/b c.

U"

cadb

ea de cbd

hdcabad -. Icdbac

ba d

Figure

1 *1

bcad d d a

bcda bac

" dabc
dbca

hdca hbadc d a

Maca

Figure 6



As shown clearly on Figure 7 (which summarizes the prohibited vertices

by conditions an 3/b c and an 2/b d) only two more hexagons can be

used without deleting more than one vertex-- namely, the hexagon where b

is first and the hexagon where d is first. However, for each of these,

the only adjacent squares already entirely prohibited imply that the condi-

tions would have to be b or d n i/{ab,d) -- which is not possible.

cadb

cab.'

acbd
ehad

dadbc

hdca dc d

baac

Figure 7

6 I
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Hence the two other conditions on triples {a,c,d} and {b,c,d}

have to be of type 2. But any condition of type 2 on {b,c,d} will

include two vertices among the not yet prohibited vertices of the

hexagon where a is first, and the profile will not be a candidate.

The summary of these last three lemmas gives Proposition 1.

In effect:

1. If no object follows an extremal condition and a condition

of type 2, it means that the objects following a pair of such

conditions have to be different (Lemma 4).

2. If no object follows a condition of type 1 and a condition

of type 3, it means that the set of objects following

conditions of type 3 is disjoint from the set of objects

following conditions of type 1 (Lemma 3). 3

3. The assertion of Lemma 2 remains identical.

I

4 I

I
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II. The object of this section is to prove that there is no candidate

profile with conditions of type 2.

Corollary 1: There is no candidate profile with exactly one

"not in the middle" condition (or with exactly three extremal conditions).

Proof: The extremal conditions can demand, a priori, 3, 2 or 1

hexagons.

The case of three hexagons is easy. In order not to reach 18

prohibited vertices, at least two are adjacent. But if two are adjacent,

then the third one will be either adjacent or opposite to one of the two

first ones. Hence it is necessarily adjacent.

Without loss of generality we can consider the three adjacent

hexagons of Figure 8. They, necessarily, belong to conditions on different

cadb

c dab acdb

ehad

cddo.

bdac

Figure 8I1

*V
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objects. Hence the only "not-in-second" condition will be on the fourth

object (here b). The cyclic chain on which one can find the permutations

where b is in the middle of at least one triple is not included in the

three hexagons for four vertices (here dc ba, dbca, dba c, dabc).

But the three "not-in-second" conditions possible for b each imply the

prohibition of two of these four vertices. This proves that the three

extremal conditions have to prohibit no more than two hexagons.

1. If they are disjoint, i.e., if the three conditions are

of type 1 or type 3, they will necessarily hold on two different

objects x and y. Two of them will necessarily be xn /zt r

and ynl/zt (or xn 3/zt and yn 3/zt)--the third will

add one of the four possible squares adjacent to only one

hexagon only.

P

*P
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cadb

cab b

I I

cbdad

*~~~ ccdbir ~ ( '.

\dcab ar

bbdad

bead ab

bdea dbac

bdac

Figure 9

If one then looks to the representation shown in Figure 9 of

the two cyclic lines representing the two possible remaining

conditions of type 2, one clearly sees that, as they can only

be z n 2/x y or t n 2/x y, one of only two different squares

can be chosen. If z n 2/x y is chosen, the corresponding

squares imply x or y n i/{x,y,z} which is impossible, and

if t n 2/x y is chosen, the corresponding squares imply

x or y n i/{x,y,t} which is impossible. (In Figure 9, one

c uecan use the correspondence b = x, d = y, a =x, c = t.) -

S p
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2. If the two hexagons are Joined by one edge, one can consider

without loss of generality that two conditions will be of

type 3 and one of type 1. Each of them will hold for different

objects, just as it will be for the remaining condition of

type 2. As shown in Figure 10, the part of the cyclic lines on

which the vertices for the conditions of type 2 stand counts

six vertices belonging to no hexagon. The squares added are

necessarily at least two which raises the total of prohibited

vertices to a minimum of 16.

cadb

ehad .00 cb

c dba l

dcab adeb

~p

dheda dbc

6 ab

Sbdc& badc

idb . . . |
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Finally, if the three extremal conditions use only one

hexagon -- let it be for instance, as in Figure 11, d n 3/a b,

d n 3/a c, d n 3/b c, -- the remaining condition of type two r

holds necessarily on the remaining triple {a,b,c}. That is

to say, it representation on the permutohedron consists of two

symmetric minimal chains, joining together corresponding elements

of the hexagon "d is the first" and of the hexagon "d is

the last."

cadb

,db. . . dcab

ddca ada

Odaa

abdbc

Figure 11

U
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These conditions, necessarily add four new prohibited permutations

to the twelve already forbidden ones.

Corollary 2: There is no candidate profile with exactly two

conditions of type 2 (or two extremal conditions).

Proof:

1. The extremal conditions are obtained from only one hexagon.

Without loss of generality, these conditions can be

c n 3/a b and c n 3/d b, as in Figure 12, which prohibits

ten vertices.

cadb

cabd "~ do acd

bacbd

cbda .e .1 I

II cadbc

bcda

bcd ab,

dabc

dbac.

bdac

Figure 12
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The remaining conditions are met:

-With any choice of two symmetric lines of Figure 13, because,

for the triple {c,d,a}, only d and a can follow a condition

of type 2 -- and this will add five prohibited vertices.

-With any choice of condition of type 2 on la,b,d} -- (which

clearly adds at least one prohibited vertex on the hexagon

where c is first).

cadb

Cabd 
.,b cd

hdhedbad 
I

4 ddbb%% dcab>; .

bdac

Figure 13

I d 1 l

* pc
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2. The extremal conditions can be obtained from two 1

hexagons having one edge in common as in Figure 14.

cadb

ebda ~ ac\

'.bcd W

,dabc

Figure 14



-24-

Then the two sets of four prohibited vertices for each

condition of type 2 have to be taken along the bold lines.

It is clear that the union of these sets contains at

least six elements (which raises the total to 16),

3. The extremal conditions can be obtained from two disjoint

hexagons as in Figure 15.

cadb

cabd"

cdabdcd
A cdba

\dcab adr
cbda /

adbc
heda

dabc

bdca dbac

Figure 15
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Hence, as the extremal conditions are on b and d, the

conditions of type 2 have to be on a and c and their

contribution, lying on the bold lines, consists of at

least twice two vertices, and the profile cannot be a

candidate,

Proposition 2: There is no candidate with conditions of type 2.

Proof: From Lemma 1 and Corollaries 1 and 2, it remains only

4 to prove that there is no candidate profile with exactly three conditions

of type 2.

Without loss of generality, one can suppose cn3/ab. Then one

has necessarily three other objects in order to verify the three condi-

tions of type 2. In particular, one should have:

- an2/bd or an2/cd I

- bn2/ad or b n 2/cd.

This is enough to prove the impossibility by the study of the

three cases:

- an2/bd which implies bn2/cd

- bn2/ad which implies an2/cd

- an2/cd and bn 2/c d. p

4
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They are described in Figures 16, 17, and 18 respectively.

The conditions on a are above-lined, the conditions on b under-lined.

In the first case, nine prohibited vertices are added; in each of the

last two cases eight are added. Thus Proposition 2 holds.

cadbc _9. 4" _ a n 2/b d

cabd d_.bacdbbn2/c d

ebad 
acdd

A cdA

adbc

bdd,

%ba

.00 ,

O"bdca badbac

bdac

Figure 16

S
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rF

cbMa

, b \ , d ba d

A adbc

Figur 17b

d*b ab

* wa

adb

bcaada

dbcal dj]
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cadb

cbdabd

I~~ adbc

bdca badc cb

ddbac

bdadc

dobc
Fiua 1

U Id

bIc dba

I Ia

Fiur 18
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S
III. We can now derive our final result.

Lemma 5: The objects on which the extremal conditions hold, in

a candidate profile, cannot be more than two.

Proof: It is easy to see that the number of profiles containing

four different and non-opposite hexagons are in very limited number, up to
U

a rotation of the permutohedron. The two possible profiles, shown in

Figures 19 and 20, exhibit more than 16 prohibited vertices.

cadb '-

cb ,"

cbad _

ca b, d

T, . "0' o

+ hadcVSS

hdca hac dbac

bdac

Figure 19

-U
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cadb

cabd db

acdbb

cbda

.V." ,.."- d* d
bcad i p "'

We, 
bacd aagr

..- " ,*:: dabc

bdC ,, dbac

bdac

Figure 20

We have already seen, at the beginning of the proof of Corollary 1,

that three hexagons have to share edges as in Figure 21 (14 prohibited

vertices).

The three hexagons represented in this figure imply that:

1. The conditions on triples which would add no vertex would

be bnl/ac, dnl/ac, an 3/db;

2. Those adding only one vertex would be a n 3/b c, b nl/d a,

an3/dc, dnl/ab; none is on {b,c,d}.

tP
! •



cadb

II

cbd 
acbd

cbdbc

0\

bddc.a

dba I
' d b

bdac

Figure 21

As the three-hexagons-profile cannot be a candidate, the lemma

is proven.

* Hence the candidate profiles need exactly two prohibited hexagons

(as they imply four conditions and each hexagon at most three).

These two hexagons cannot be opposite (Lemma 3). They cannot

* correspond to conditions of the same type because the necessarily

added squares would add in turn at least four prohibited vertices.

dba' A.

* w0
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Hence they hold on hexagons like those of Figure 22 for example.

lab Scd b dbII

cbda (% -

. \ /,

bcdabcd

badb-dbadbc

bdca badbac

bdac

Figure 22

It is easy to see that if one hexagon, for example "d", was

used in the three conditions d n3, "a" would be used in the only

condition an 1 which holds on a triple without d and the total

of 16 vertices would be reached.

The prohibition of vertices c a d b a id bade implies,

for the first one d n 3/c a and a n 1/b d for the second d n 3/a b

d
and a ni 1/c d. Hence at most one of these vertices, and the two squares

- - - - -
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on the sides as in Figure 23 will be used, yielding a total number

of 15 prohibited vertices.

These profiles are the only candidates.

cadb

:; acbdq. U

badcd

bdA dbac

cda cbdc

abdct

" dab

bdc, dbac

bdac

Figure 23

U
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Theorem: The 16 profiles respecting the value restriction

condition on four objects and containing the critical 
number of nine

different votes have, up to an isomorphisma, the following 
outline '4

on the permutohedron (Figure 24):

cadb

cab dcab ' "cb Iw

bda

c"'dbbddab daa 
"

bdaco

Figure 24

• l i d
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Conclusion

We have thus obtained this very scarce structure which occurs

only 24 times over the /9) = 1, 307, 504.

This can explain why the way towards this figure was

necessarily somewhat painful.

The existence of the configuration with nine vertices on four

objects has been shown to me by E. Terrier, then one of my Ph.D.

students; J.C. Ayel (University of Savoie, Chambery) confirmed its

unicity by use of a computer.
p

J. Ayel and J.C. Ayel found by computer enumeration for five

alternatives that the maximal configuration was counting 20 vertices

interpretation of the critical structure in terms of voting theory is not

easy. It perhaps means that the maxima of M(n), in the general case,

are rare and very steep, and for these reasons, do not have a great

practical interest. In any case the scarceness of the maximal profiles

lets one think that the value restriction conditions are more and more

restricting in terms of individual and collective freedom as the number

of alternatives increases.

4 I

fI
• , -I
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