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OPTIMUM PRICING POLICY UNDER STOCHASTIC INFLATION*

by

Eytan Sheshinski and Yoram Weiss*"

1. Introduction

In this paper we consider pricing policies of individual firms

in an inflationary environment. Each firm expects the general price

level to increase and must determine the rate of increase of its own

price. It is assumed that the firm incurs an adjustment cost when it

changes its nominalprice. Consequently, firms choose to change prices

occasionally rather than continuously.

Our purpose is to analyze the dependence of the magnitude and

the frequency of nominal price changes on the inflationary process.

This problem has been analyzed by Sheshinski and Weiss [1977] and [19791

for the case of a fixed and certain rate of increase in the aggregate 9>

price level. This paper extends the analysis to the case of uncertainty.

The dependence of price policies of individual firms on the

aggregate price level implies a relation between relative price dispersion

and the inflation rate. This link is an important source of the real

costs of inflation as pointed out by Okun [1971). Extensive empirical

research has established the existence of a positive relation between
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the rate of inflation and its variability and relative price dispersion

(surveyed recently by Gordon [1981], Fischer [1981] and Taylor [1981]).

We consider an inflationary stochastic process in which the price

level changes at intervals of random durations and at a magnitude which

* - is also random. Each firm changes its nominal price whenever its real

price falls below some predetermined level, s. The new nominal price

is chosen to attain a predetermined real price, S. The duration of the

period with fixed nominal price is thus random.

The main result of the paper is that for the class of stochastic

processes with an exponential distribution of shock size, the optimal

policy is the same as the one obtained under certainty for some specific

rate of inflation. This certainty-equivalence rate of inflation always

exceeds the expected rate of inflation by a risk premium which depends on

the real interest rate and on the parameters of the stochastic process.

One can therefore utilize results obtained by Sheshinski-Weiss (1977]

for the certainty case to analyze the effects of changes in the parameters

of the inflationary process. It is shown that a mean-preserving increase

in spread leads to an increase in the amplitude of real price variations

and decreases the expected frequency of nominal price changes. A spread-

preserving increase in the expected rate of inflation increases the bounds

within which real prices vary only if the variability of expected future

prices is small. Thus, the main empirical implication of Sheshinski-Weiss

[1977] that a higher expected rate of inflation increases the amplitude

of real price changes need not hold under more general circumstances.

I

* 4l



This corresponds to the empirical findings mentioned in Taylor [1981],

suggesting a stronger link between relative price dispersion and the

variance of the aggregate inflation rate than with its mean.

2. The Inflationary Process

We describe the inflationary process as a sequence of randomly

spaced shocks which are independently and identically distributed. Let

Pt be the aggregate nominal price level. Then

Nt

(1) log Pt = . Yii=l

where N is a renewal counting process, i.e. the duration of the periods

between successive shocks is i.i.d. with density q(T) (Parzen [1962],

Ch. 5). The size of shocks, yi, is also i.i.d. with density h(y).

We further assume that the inflationary process is monotone increasing,

i.e. yi > 0. This assumption plays an important role in the characteriza-

tion of the firm's price policy.

For large t, the asymptotic mean, E(x), and variance, Var(x) of
tt

xt  log Pt are (Parzen [1962], p. 180)

(2) E(xt) =

and

2
(3) Var(xt ) 

= Var(y) + Var(T)E(y)2)tE(T ) t



where E(y) and Var(y) are the mean and variance of the shock size, y,

respectively, and E(T) and Var(T) are the mean and variance of the

interarrival time, T. Equations (2) and (3) hold for all t when q(T)

is exponential, i.e. when (1) is a Compound Poisson Process.

We may interpret E(y)/E(T), i.e. the product of the average size of

shocks and the intensity of shocks as the expected rate of inflation.

We denote by P. (t - S), t > s, n > i, i, n = 0,1,2,... the
in

probability of having n shocks by time t conditioned on the i-th shock

having occurred at time s. Due to the independence of interarrival times

this probability depends only on the difference t - s. We further denote

by gn(p), n = 1,2,..., the conditional density function of p given that

n shocks have occurred. This function is derived from the n-th convolu-

h 2/
tion of h(y), satisfying the recursion-

log p

S(p) f g ) h(Y)dy n = 2,3,...
n 0 e)_ ey  ,

and gl(p) = h(log p)
91 p

3. The Optimal Pricing Policy

We follow Sheshinski-Weiss [1977] and consider a price-setting firm

whose real profits depend on the real price of its product, i.e. the ratio

of its own nominal price to the price level. The underlying simplifying

assumptions are that at each time consumer's demand is a function of the
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current real price (thus excluding storage and substitution over time).

Other factors which may affect demand, such as real incomes, are

constant. Similarly, costs adjust instanteneously to the price level.

There are fixed costs associated with nominal price changes and

thus the firm will keep its price constant over finite intervals of

time. Consequently, real price and real profits are random variables.

The distribution of these variables depends on the pricing policy of the

firm.

The firm is assumed to be risk neutral. Its objective is to maximize

the present value of expected real profits over an infinite horizon. Due

to the assumed monotonicity and stationarity of the inflationary process,

the problem becomes analogous to the classical inventory problem (Scarf

[1959)). In particular, the policy is of the (S,s) form. That is,

the firm chooses a critical value s such that whenever its real price

falls below (or is equal to) s, it adjusts its nominal price so as to

attain a real price of S. It is assumed that the price level is observed

instanteneously. Under this policy, the firm changes price only when a

shock in the aggregate price level occurs. Thus, the critical price level

at which the change occurs is some intermediate level between the price

level just prior to the shock and the one just after. It is assumed

that in choosing thp new nominal price the firm precommits itself

to a fixed proportion, S, relative to the above critical price level. (See

Figure 1 and a more detailed description in Appendix),

Given this policy, the value of the objective function is determined

by the choice of (S,s). We shall first specify the relation between
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these parameters and the objective function and then characterize their

optimal choice.

Consider the firm at (or just prior to) a time of a price change.

Due to the assumptions of infinite horizon and the time independence of

the interarrival times of the inflationary shocks, the firm's future is

independent of the chronological time at which the price change occurs.

Thus, without loss of generality, we can reset the price level to be

unity and Nt = 1 upon any price change.

Let V denote maximal expected discounted real profits net of

price adjustment costs, evaluated at a price change. The following

recursive formula holds:

S0 -rt OD Ss
(5) V = -n+ ( P1nt)Y F( )gn (p)dpdt

0 n=l 1

00 o GoG

+ V f ... Pl(t) f g(p)dpdt + V f gl(p)dp
0 anl S/s S/s

where

= fixed real adjustment costs

r = fixed real interest rate

F(.) = real profits function

Since we observe the firm at a point of a price change, adjustment

costs are subtracted with certainty and without discounting. The first

integral on the R.H.S. is the present value of expected profits at time t

conditional on the real price being within the range (S,s). The last two
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terms on the R.H.S. are the expected present values of the optimal

3/
policy following a subsequent price change at time t > 0. The term

Co 00

Vat I. Pln(t) J gn(p)dP is the density function of TS s, the
-vJ n=l

occurrence time of a price change by the firm. This follows from the

identity

(6) Pr {TS/ < t} = Pr {P > S}•S - - S

00 00

= [ Pin(t) f gn(p)dp

which is a consequence of the monotonicity of the inflationary process.

00

The term f g1 (p)dp is the probability of an additional price change at

i4/ S
t=0.

Integrating the second integral in (5) by parts, and changing the

. order of integration, we can rewrite (5) as

S/s /

* " (7) V -8 + f F(S-) L (p)dp + rV f L(p)dp
1 p S/s

where L(p) is defined as

(8) L(p) f e-rt I Pln(t)gn(p)dt
0 n=1

which can be interpreted as the Laplace Transform of the density of p

at time t, viewed as a function of t.

0.
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14. Certainty Equivalence

Recall from Sheshinski-Weiss [1977] that the recursive formula

for V under certainty can be written as

gt -rt r

(9) V = -B + F(se-t) e dt + e-r v
0

r r
-+ S F(. 1-pg dp + rV g  dp

1 p g

where g is a certain rate of inflation and c the time-interval

between successive price changes.

Let the inflationary stochastic process be specified by a vector of

parameters w and denote the solution to the recursive equation (7) by

Vu(S,s, r,B,w). Similarly, denote the solution to equation (9) by

Vc (Ssr,8, g).

Definition 1: A certainty-equivalence rate of inflation g' is

a real-valued function g'(r,w) such that V (S,s,r,e,w) = V (S,s,r, 8,g'(r,w))
u c

for all values of S, s, r, 8 and w.

Note that we require g' to depend only on parameters of the

inflationary process, w, and on the rate of interest, r. Parameters which

vary across firms such as adjustment costs, 8, or parameters which

characterize the profit function are excluded. This allows us, in

analogy to the certainty case, to derive results which are not firm-

specific.
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Comparing expressions (7) and (9) the following theorem is

immediate:

Theorem 1: A certainty-equivalence rate of inflation g' exists

if and only if L(p) can be written in the form

-rr-1- -l

(10) L(p) =' p

where g' is a real valued function of the parameters r and w.

Our objective is to characterize the family of densities of inter-

arrival times, q(T), and size of shocks, h(y), which yield the form (10).

For this purpose it is useful to note the following property of renewal

processes:

Lemma 1

(1) e-rt P (t)dt = (r) (r))
0 ln r q q

where /q (r) = f ertq(t)dt is the Laplace Transform of q(t).
0

Proof: Let T be the occurrence time of n. Due to the monotonicity
n

of the counting process

(12) Pr {Tn < t) = Pr {N(t) > n}



Thus,

(13 Pin (t) =Pr {N~t) > n) Pr {N~t) > n + 11

=Pr {T < t} Pr {T < t

and

(i4) dPi Ct)
dt 4_ 1 (t) 4 (t) ,n =2,3,..

where 4(Ct) is the n-th convolution of q~t). Integrating by parts

and using (i4)

(1)f ertPin(t)dt f e (q*_ (t) - q*(t))dt
0 nr 0n-i n

1 LC , (r) )ni-l 0l Cr)) .Q.E.D.

r q q

We can now prove the foilowing:

Theorem 2: L(p) = C/g' )pCr/ if and only if h~y) is

exponential.

Proof: We first prove that for all renewal processes, L(p) AP

for some scalars A and B if and only if h~y) is an exponential density.

Let x = log p and f*Cx) = g (ex)ex, n 1,,.. rm(4,f i
n n,...Fo n1 ) i ~

the n-th convolution of h(y). By assumption,

(16) f e-rt I P (t)f*xdt e ABx

in n1
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Using Lemma 1,

(U7) AeBx - 1 q(r))n - l(l -o(r))f*(x)
n=l

Taking a Laplace transform on both sides

Y - B n h

(1 q- (r)oth(Y)

where (Yy = f eYh(y)dy. Solving for vh(Y)
h () feh ()

0

rA/l -4

(19) 4h(Y) =r "

y - (B -

q

Hence,

rAy

rA (B- y
20) h(y) = - q e q

0 q

Since h(y) is known to be a density, we must set

rAL
(21) rA _(B q

qq

Thus,

(22) A : - (1 , B a 1t, )

r q q
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Define

(23) , a ( (r Y

It is now easily verified that A = 1/g' and B = -r/g' as

required in the statement of the theoreml.

Definition (23) provides a constructive method to calculate the

certainty-equivalence rate of inflation. It is seen to depend on r, a

and on the parameters of the density q(T). A natural question is the

relation between this rate and the expected rate of inflation, E(y)/E(T).

The following definition and proposition address this issue.

Definition 2: R(r,w) = g'(r,w) - E(y)/E(T) is the risk-premium

associated with a rate of interest r and a stochastic inflationary process

parametrized by w.

Proposition 1: R= 0 when r = 0 and dR/dr > 0.

Proof: Expanding .1 (r) by a Taylor's series around r = 0,
q

(24) 1 - a(r) = E(T)r - E(T2 )r2 +q2

and using E(y) = l/a,

(25) R = E(y)( 7 ) - E--) L 0E T2 ) ( 3 ) Er2
E(T) - ----T -r + -- -r2

2 31

Thus, R= 0 when r= 0. Furthermore, for r > 0
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(26) - (r) + r q
dr dr ml-H)) 2  q dr

q

2 (e - 1 - rt)e-rtq(t)dt > 0 .

It should be noted that when a certainty equivalence exists, the

optimal (S,s) values chosen under uncertainty converge to their values

under certainty (and V - V tends to zero) as r approaches zero. The
c u

reason is that for given (S,s), different time-paths of the real price

have the same effect on real profits. In addition, the expected frequency

of price changes will be the same. When r > 0, the timing of the

realization of various real prices is relevant.

The precise form of g'(r,w) depends on the specification of the

stochastic process. The density of shock size, h(y), has been restricted

* by Theorem 1, to be h(y) = ae -  If we further specify the density of

interarrival times, q(T), to be also exponential, say q(t) = then

g' assumes the simple form

(27) g X + r

In this case, the characterization of the inflationary process

xt = log Pt, given in (2) and (3) becomes

Ip
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(28) E(xt) = t

and

(2;) Var(x t ) a

ta 2

for all t. The risk-premium thus becomes

(30) R r r

The certainty case can be obtained by letting a, X + while

holding the ratio X/a constant. In the limit, the variance and the

risk-premium approach zero.

5. Comparative Statics

In this section we wish to investigate the effect of changes in

the parameters of the inflationary process on the choice of S and s.

The implications for the expected time between successive price adjustments

by the firm will be discussed in the following section.

Since the compound Poisson is a renewal process which admits

simple interpretation of the parameters in terms of the observed mean and

variance of prices we shall restrict ourselves to this case. We shall

assume that a certainty-equivalence exists, i.e. that h(y) is exponential.

For this case, the results in Sheshinski-Weiss [19771 are directly applicable.

It has been shown there that under certainty an increase in the rate of

inflation increases S, decreases s and hence increases the amplitude



of real price variations. The effects of the parameters of the inflationary

process on the optimum (S,s) can therefore be inferred from their effect

on the certainty-equivalence rate g'(r,a,X).

An increase in the intensity of price shockz, X, is seen to increase

g' and hence will increase S and reduce s. An increase in the expected

shock size, 1/a, has a similar effect. Each of these cases involves

simultaneous changes in the mean and variance of the price level. It is,

however, possible to separate these effects. In view of (28) and (29), a

mean-preserving increase in the variance of the price level is attained by

reducing a and X at the same rate. A. seen from (27), such a change

leads to an increase in g'. We thus draw the important conclusion that

an increase in the variability of the price level unambiguously leads to

an increase in the amplitude of the firm's real price.

Spread preserving changes may lead to ambiguous results depending

on the measure of spread. Increasing the mean holding the variance constant

will increase g' only if X/(X + r) > 1/2 which holds for large A, i.e.

when uncertainty is small. However, holding the coefficient of variation

constant, which requires a constant X, and increasing the mean will lead

to larger S and smaller s, as in the certainty case.

6. Expected Frequency of Price Changes

Another variable of interest is the time between successive price

changes by the firm. In contrast to the certainty case, under uncertain

inflation, this is a random variable. We shall limit the analysis to the

effect of the parameters of the inflationary process on the expected time

between successive price changes.
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Let T S/s be the earliest time at which Pt = Sis, given p0 = 1.

Since all shocks are non-negative, we have the identity

(31) Pr {TS s  t} = Pr { S

= I" P (t) S gn(P)dpnwiln S/sn

and hence

(32) E(TS/) - '(I - P Pln(t) f gn(P)dp)dt
0 n-ll S/s

- S/s
-f I P *(t) f1 g (p)dp dt

0 n-I i

S/s 6
where Gn(S/s) -f g(p)dp.6/ Expected waiting-time is thus seen to be equal

1

to the product of the expected time between shocks and the expected number

of shocks with an associated price in the range (1,S/s), which is 'Wald's

Identity' (Feller [1971], p. 397).
-CLy

If we assume that a certainty-equivalence exists, i.e. h(y) me

Atand that q(T) is also exponential, i.e. q(t) = Xe"  , then (32)

simplifies to /

rl4



S

(33) E(lS/sog s

Recalling that, in this case, A/a is the expected rate of inflation,

the relation between the expected values in (33) is identical to the relation

obtained under certainty (Sheshinski-Weiss [1977]).

As in the certainty case, the relation between the expected rate of

inflation and E(T S/s) is ambiguous. However, we get the important result

that an increase in the variability of inflation, holding the mean constant,

unambiguously reduces the expected frequency of price changes. This follows

directly from our previous remarks that such a change increases S and

decreases s.

7. Interactions Across Firms

So far we have examined the behavior of a representative firm in

isolation. The inflationary process was treated as exogeneous rather than

an outcome of the actions of individual firms. Nor did we discuss the

source of the aggregate disturbances. A detailed analysis of these issues

is beyond the scope of this paper. Nevertheless, we would like to outline

a possible framework for such an analysis.

Suppose the economy consists of two sectors: a competitive sector

of price-takers and a monopolistic sector of price setters. Assume that

exogeneous shocks in costs or in demand affect the competitive sector.

Since competitive firms cannot adopt independent price policies, this sector

will adjust its price immediately. The resulting change in relative prices

will induce a change in the demand facing firms in the monopolistic sector.
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In this sector price changes in general do not occur immediately. On average,

however, monopolistic firms adjust their price at the same rate as competitive

firms. The aggregate outcome is therefore consistent with the expectations

of each firm. Whenever a firm changes its nominal price, it increases it

by the rate if log (S/s) and keeps it constant for an average duration

of E(T S/s). As seen from (33), optimal behavior implies that the rate of

price change per unit time of each firm is on average equal to the expected

rate of inflation.

A stronger test of consistency would require fulfillment of expectations

at any moment in time and not only on average. Under certainty, conditions

for such consistency can be easily described. If the dates of price changes

by firms are uniformly distributed, then the aggregate price level will

increase continuously at a constant rate, as expected by firms, even though

every firm in isolation follows a discontinuous price policy. Under

uncertainty we can no longer assume that the distribution of the dates

of price changes is invariant over time. If all firms are identical in

their (S,s), then price changes will be eventually fully synchronized,

yielding discontinuous aggregate price behavior as expected by each firm.

This is due to the positive probability for sufficiently large shocks

which will induce all firms to change their prices.
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Appendix

The purpose of this appendix is to prove the uniqueness and

optimality of the (S,s) policy when a certainty equivalence exists.

The (S,s) policy stipulated in the text is a mixture of

ex-ante and ex-post decisions. That is, price changes are undertaken A

depending upon the realization of a shock while the nominal price change

is predetermined, independently of the size of the last shock.

Alternatively, (S,s) policies can be formulated in a purely

ex-post or ex-ante fashion. In the ex-post policy the firm's nominal

price is adjusted so as to attain a fixed real price (S) in terms

of the price level immediately after the realization of a shock. Similarly,

the criterion for undertaking a price change is the real price following

a shock, i.e. the ratio of the firm's nominal price prior to a change to

the nominal price level after the realization of a shock. Analogously,

for the ex-ante (S,s) policy, the critical values are defined in terms

of the ratios of the firm's old and new nominal prices to the nominal

price level just prior to a shock.

Using the conditions proposed by Scarf [1959], it is easy to

establish the optimality of (S,s) policies in the ex-ante and ex-post

cases. The choice between the alternative (S,s) policies depends

upon whether the firm must precommit itself in announcing prices. Some

precommitment seems necessary if changes in the nominal price level are

to reflect the actions of individual firms.

4

4
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Neither the ex-post nor the ex-ante (S,s) policies yield a

certainty equivalence. The reason is that contrary to the certainty case

the firm spends finite amounts of time at S (and infinitesimal amounts

of time at s). The mixed policy described in the text yields a more

symmetric pattern. However, its optimality can be established only for

and exponential distribution of shocks.

Consider the firm at a point in time, to, when a shock occurs.

Let the nominal price level be P 0 and the firm's nominal price be z P0

just prior to t 0 Thus, z0 is the real price at tO . Let V(z0) be the

maximized discounted expected profits as a function of the real price.

Due to the infinite horizon and the stationarity of the stochastic

inflationary process, V is independent of tO.

We first wish to provide a sufficient condition for price changes

to occur only at shocks.

Theorem 1A: If the density of waiting-time to the next shock,

conditioned on no shock having occured up to time x, (t) + x)i1 - QMx
is a monotone non-increasing function of x then it is never optimal

81
to change prices between shocks.-

Proof: Suppose a shock of size y occured at time t and
let tl, tI > to, be a time such that N(tI ) = N(t ) + 1 (i.e. no shock

has occured in (t ,tl ). Set the nominal price level after the shock to

unity and let z be the firm's nominal (sndreal) price just after t
0*

The firm considers a price change at t to z > z . This change is

profitable if

4l
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(la) +(F( V(z)* r
- +f~1 e-e (t )dt >

1 -rt V(z -rt

> )(F(z - e ) + (t)dt1 r10

Now, take t2 E (tot ). Due to the monotonicity assumption

qt(t) > qtl(t), Vt > 0. Thus, replacing qtl(t) with qt in

(la) retains the inequality. Hence it would be profitable for the firm

to choose the same nominal (and real) price as in t and hold it

fixed until the next shock including tI. By a similar argument, if the firm

contemplates additional changes in its nominal price between t and the next

shock, one can show that it is profitable to choose the same price as tI

somewhat earlier and to follow the same pattern of price changes thereafter.

This includes not changing the price of t . An optimal price choice

at t2 can only increase this gain. It follows that a price change cannot

occur between shocks'.

Since price changes are costly, the firm will avoid price adjustments

in the absence of a change in the current or expected aggregate price level.

In the absence of shocks the current price level is unchanged and the

expectation for a price shock decreases due to the monotonicity assumption.

In these circumstances, additional information only decreases the incentive

for a price change, Note that the Poisson process, q(t) = Xe- , and more

generally the Gamma density, q(t) = ,) e , with 0 < a < 1 (see

Barlow and Proschan [1975, ch.3]), satisfy the condition of Theorem 1A.
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The next Theorem provides sufficient conditions for the optimality

of (S,s) policies for the mixed ex-post, ex-ante case analysed in the

text. It will be assumed that the sulficient condition for the optimality

of pure ex-ante (S,s) policies, i.e, B-concavity of the profit function

F(.), is satisfied.

Theorem 2A. If h(y) is exponential then the optimal policy is (S,s).

Proof. Due to Theorem 1A and given our assumption of precommitment

the value function defined at points of shock satisfies the following

recursive equation

CO W -Yrt y , r

(2a) V(z) Max [f Max If(F(e-Yr( - )+V(z e-Y)rt )q(t)dt,0 Z, 0 r 0

00

- + f (F(z eY) -L(1 ~e rt~+ V(z 1 eY)e-rt )q(t)dtlh(y)dy]1 or
0

Given a real price z0 when a shock occurs, the firm decides

on a strategy for every possible realization of the size of the immediate

shock, taking into account the effects of its policy until the arrival of the

next shock. The finn is assumed to precommit itself to a nominal price zlp0

but it can choose whether to change the price to zlp0  or to keep the current

nominal price, zpO , depending on the realization of the immediate shock.
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Denote by ip(z) the function

CO

(3a) i(z) = f(F(z)r(1 - e - r t) + V(z)e-rt )q(t)dt
0

Then the F.O.C. for maximization of the R.H.S. of ( 2 a) are

(4a) (z 0 e-Y*)- (zley )+ 5 = 0

and

(5a) I '(z e-Y)h(y)e-Ydy = 0

y*

where it is assumed that the solution y* to (ha) is unique for any z0

and zI. A sufficient condition for the uniqueness of y* is that F(z)

and thus V(z) and *(z), are O-concave (see Scarf [1959]), i.e.

(6a) -8 + F(z + a) - F(z) - aF'(z) < 0 Va,z > 0

and given 0 > 0. Let us denote

-y* Sy*(7a) S=z le~ and s=z z 0 e~

Assume further that the density h(y) is exponential. Then conditions

(ha) -(5a) can be rewritten:

(8a) (s) .(S) + = 0

(9a) f '(se-Y)h(y)e-Ydy = 0
0
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which yields values (S,s) independent of the initial conditions

The optimal policy can thus be described as follows. If the

firm finds itself with z0 < s it changes its price immediately

to S, without waiting for the realization of the shock. If after the

shock the firm's real price, z0e- falls below s the firm also

adjusts its price to the same value S. If during the shock the f'irm's

real price is above s, the firm will not change its price. Undei

tho exoonential shock distribution we can further assume that the maxima,

tion problem (2a) is solved for a value of the real price during a

shock. This, in particular, if z1e-y < s, a new nominal price is chosen

and the problem is solved again.

Substituting V(s) for V in (5), one can verify that the recursive

relation (5) holds. At any point in time in which the firm changes

its price (which must be a point of a shock) we define a critical price

level which induces the price change. If one sets this value to unity

then the next price change by the firm will occur when the price level

reaches S/s. Furthermore, due to the assumption that h(y) is exponential,

the conditional distribution of the normalized p satisfies (4). This

can be shown as follows. At any shock where the firm changes its price,

the critical price level is poe , where y* is determined by conditions

(4a)-(Sa). Thus, the normalized price level, following the price change,

p = poeY/P0
ey = ey -y * , is distributed according to

(10a) Pr {P < p} = Pr {y - y* < log ply - Y* > 0}
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Under the exponential distribution for y, this yields a density for p

(11a) gl(p) =
p

as in (I).

Having established that for the certainty-equivalence case the optimal

policy is (S,s), we shall now show its uniqueness.

The maximized value of V can be expressed in terms of S and s

and will satisfy the recursive equation (7), which implies

-a + SfSF(-) L (p)dp
1 p

(12a) V(Ss) = -

1 - r f L(p)dp
S/s

S/s
-8 + f F(-)L(p)dp

r S/s
f L(p)dp
1

having used fL(p)dp = /r.
0

The first-order conditions for an interior maximum are

(13a) F(s) - rV = 0

S/s
(14a) f F'(-) L(P) dp = 0

p p

The second-order conditions for a local maximum are equivalent to

F'(s) > 0 and
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-F'(s) 0

(15a) > 0

0 F'(S)L(l) + S/SF'( SL(p)dp
1 p

S/s2p 2 )dp) a b
where 32V/S = I/S(F'(s)L(S/s) + S F"(S/p)(L p) has been

1
integrated by parts to obtain the second-diagonal element in the

determinant and all derivatives are evaluated at a point which

satisfies (13a)-(lha). Unlike the certainty case, the sign of the last

term cannot be determined without some restrictions on the stochastic

process.

Quasi-concavity, implied by the concavity of F('), together with

conditions (13a) and (1ha) yields that F'(S) < 0. Then, in addition,

the following condition can be shown to be sufficient for 2V/as 2 < 0:

(16a) d 'PP

d-p L()-

The proof is immediate upon rewriting

S/s sS/sf/ F'( S)L'(p)dp W S F() L(p)) L 1'D)d
1 1

and integrating by parts, using the first-order condition (1ha).

This sufficient condition is satisfied when a certainty equivalence

exists (and in the case of certainty), since by Theorem 1, L(p) has in

this case a constant elasticity.

In the absence of a condition such as (16 a), S may not be unique and

discontinuity w.r.t. the parameters may arise. Note, however, that con-

cavity of F(-) and condition (13a) imply that s is unique.
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Footnotes

l/ Extensions of Sheshinski-Weiss [1977] model to the case of
uncertainty have been made in unpublished works by Padan [1981],
Danziger [1981] and Roberds [1979]. The present work has
benefited from our direct interaction with Padan and Danziger.

2/ Let

Gn(p) = Pr {P < p after n shocks}

I p Pr {P < P after n - 1 shockslh(y)dy

0 -ey

lo p
G (-P)h(y)dy

I n-l y

The density gn(p) is given by Gn(p), using G n(1) = 0.

3/ The conditional density of p in (5) depends in general on the
critical price level which one uses for normalization. Only for
h(y) exponential is g1 (p) (and thus g (p),n = 2,3,...)
independent of the normalization. Equation (5) holds, however,
for any distribution of shock size if the normalization is in
terms of the price level just prior to the shock.

14/ The assumption of precommitment is reflected in recursion (5)
by the variation in the real price following a nominal price
change. If the firm has no precommitment, it will choose a price
strategy, with random nominal price, so as to attain a predeter-
mined real price. In this case (5) becomes

00 S/SF( S/s gn
(5 V = - + je-  I Pn(t) J F(-)gn(p)dp

0 n=2 1 p

+ Vfe-rt ,X,(t) f g(p)dp + F(S)f ertP1 (t)dt
0 n=2 0

The difference between (5) and (5') is that in the absence of
further shocks the price distribution is degenerate. Specifically,

4-

4
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ro p l

5/ Definition 1 is equivalent to the requirement that S and s will
be the same functions of g under certainty and g' under
uncertainty. This is necessary for the equivalence of the comparative
statics. A weaker definition will equate the value of the optimal
solution (evaluated, possibly, at different (S,s) values).

6/ By (13), P n (t) n (t) n+1 (t), where Q (t) = P {t < t). Hence,6_/in(1) t) Qnt wee nr n-

.4o

fPl(t)dt = f(l - (t))dt - f(l - Q (t))dt
00 0 n"

= E(Tn ) - E(Tn ) = E(T)

(a log n-i a-i e

7/ For this case gn(p) = pe(n-ience

S/s S/s -,-l (a 1og p)n
f f g (p)dp = f YP -! dp

n=11 1 n=0

a log(-)

8/ This monotonicity assumption is equivalent to the condition oft

decreasing hazard-rate, fq(x)dx). For a discussion
0

of this issue see Barlow and Proschan [1975, Ch.3].
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