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SEMI-VALUES OF POLITICAL ECONOMIC GAMES

by

Abraham Neyman

1. Introduction

Semi-values are defined in Dubey and Weber [1981] where charac-

terization of the semi-values is given for two basic spaces; the space

of all finite games, and the space of "differentiable" non-atomic games,

i.e., pNA. In the purely economic situation, we usually encounter games

in pNA (or in pNAD); but in many political economic situations, as in

the Aumann-Kurz models of power and taxation [1977a], [1977b], we face

games which are the products of weighted majority games by games in pNA.

These games are members of other spaces which contain pNA and which we

will refer to as spaces of political economic games. In this paper we

will characterize all semi-values on spaces of political economic games.

Section 3 presents a characterization of all continuous semi-values on

a typical class of political economic games, followed by a detailed proof.

In Section 4,we introduce further results without proofs. The proofs of

the results in Section 4 are more involved than that of Section 3, but

actually are based on the same ideas and thus we decided to omit them

from our paper.

2. Preliminaries

Most of the definition and notations are according to Aumann and

Shapley [1974]. Let (I,C) be a measurable space isomorphic to ([O,I],B),

*This work was supported by the Office of Naval Research Contract
ONR-NOool4-79-C-0685 at the Institute for Mathematical Studies in the
Social Sciences, Stanford University.
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where B is the a-field of Borel subsets of [0,i]. A set function

(or game) is a function v:C 2R with v(0) = 0. A set function v

is monotonic if for all T and S in C, T C S ="v(T) < v(S). The

space of all set functions on (I,C) that are the difference of two

monotonic set functions is denoted BV. The space of all bounded finitely

additive set functions is denoted FA, and its subspace of all non-atomic

measures is denoted NA. If Q C BV then Q denotes the subset of Q

of all monotonic set functions. A mapping ':Q BV is positive if

(Q+) C BV+
. Let G denote the group of antomorphism of (I,C). Each

e in G induces a linear mapping 6 of BV onto itself that is

given by (8 v)(S) - v(eS) for all S in C. A subset Q of BV is

*

symmetric if for each 8 in G, e Q C Q.

Let Q be a symmetric subspace of BV. A semi-value on Q is a

positive linear mapping * from Q into FA that satisfies:

*

(2.1) * is symmetric, i.e., *e = 0 y for all 6 in G.

(2.2) if v EQ FA then *v =v.

The bounded variation norm of a set function v in BV is defined

by lv1 = inf(u(I) + w(I)) where the infiflum ranges over all pairs of mono-

tonic set function u,w with v = u - w. A nondecreasing sequence of sets

in C of the form -fL: 90 C S C...C Sn is called a chain. The variation

n

of v over a chain -01- is defined by lvi_ . = r Iv(S i ) - v(Sil)I. It
i1l'

is known [3,Proposition 4.1] that lv = suplv_"I_ where the supremum is

taken over all chains -r.. If Q is a subspace of BV and #:Q - BV

is linear then 1*1 is defined as sup{l*vi:v E Q,ivn = 1).



The space pNA is the closed subspace of BV that is generated by

powers of nonatomic measures,

Let 7 denote the family of all measurable functions from I to

[0,I] (measurable with respect to the o-fields C and B). There is a

partial order on 1:f _ g if f(s) ?: g(s) for all s in I. A real

valued function w on I with w(O) = 0 is called an ideal set function;

it is called monotonic if f k g implies w(f) _ w(g). For every idea!
n

set function w we denote by lwh the supremum of j Iw(f i) - w(fi)I
i=l

taken over all increasing sequences f f- "S f of ideal set functions.
n

The indicator function of a set S in C is denoted )S i.e., X:(S(s)

if s E S and equals 0 if s S. We will sometimes write S for X

t for tXI and tS for txS 9

It is known [3,Theorem G] that there is a unique linear mapping that
*

associates with each set function v in pNA an ideal set function v such
.vl ** *

that (vw) v w for all v,w in pNA, v is monotonic wherever v is

in pNA T, lvI = lv-, and such that V (f) = fdV for all u in NA and

all f in I,

Denote 3v (t,S) = (d/dr)v (t + TS)T= 0 . By theorem H of [3] we

know that for each v in pNA and each S in C, the derivative

3v (t,S) exists for almost all t in [0,1] and is integrable over [0,1]

4 as a function of t.

We denote by W the set of non-negative functions g in L,([0,1])
with 0 g(t)dt = 1

44
0
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The characterization of the class of semi-values on pNA is given

in Dubey, Neyman and Weber ([1981], Theorem 2).

Theorem 2.3. ([1981], Theorem 2). For each g in W the mapping

*g: pNA+ FA that is given by
g

(gv)(S) = 3av (tS)g(t)dt

0

is a semi-value, Moreover, every semi-value on pNA is of this form.

The map g + 4. of W onto the class of semi-values on pNA is a linear
g

isometry.

Define DIAG to be the set of all v in BV satisfying: there

exists a positive integer k, a k-dimensional vector E of probability

measures in NA, and a neighborhood U in Rk of the diagonal (0,E(I)]

such that if E(S) E v then v(S) = 0. A semi-value 4 on a symmetric

subspace Q of BV is diagonal if *v = 0 for all v E Q n DIAG.

Proposition 2.4. Continuous semi-values are diagonal.

Proof. The proof in Nayman [1977] that continuous values are

diagonal does not make use of the efficiency axiom and therefore the same

proof works here.

Another result which will be used in the proofs of the present paper is:

Proposition 2.5. Let Q be a symmetric subspace of BV, and let

4 +
be a semi-value on Q. If V E NA. and f is defined on the range of V

with fop E Q, then 4(fop) = ap for some constant a in R.

Proof. Follows from the proof of proposition 6.1 in Aumann and

Shapley [1974]. 7

• -
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3. Characterization of the Semi-Values on a Class of Political Economic Games

In the-purely economic situation, we are usually encountered with games

in pNA (or in pNAD-the closed linear space generated by pNA and DIAG)

but in many political economic situations we face games of the form v = uq

where q is in pNA and u is a jump function with respect to a given NA

probability measure p, i.e.,

Jiif V(S) > au(s) = l i _

if V(S) < a

Such games arose for instance in models for taxation (See Aumann-Kurz

[1977a], [197Tb]. We denote by u*pNA the minimal linear symmetric space

containing pNA and all games of the form uq where q E pNA and a

is a fixed number in (0,1).

. Theorem A. For any pair (ag), a EE +  g E W, there is a semi-

value *(ag) on u*pNA such that for any q E pNA

(3.1) (*(a,g q)(S) g(t)aq*lt'S)dt

0

and

19*(3.2) (1a~g)(uq))(S) = aq~ (ahd(S) + J(t)aq*(t,S)dt

a

Moreover, any cont4 nous semi-value on u*pNA is of that form. The mapping

(a,g) *(ag) is 1-1 and I0(ag)l = max (a,lql.).

4



The proof of the theorem is accomplished in several stages. First

we shall state and prove a result on the range of vector of members of pNA,

This is a generalization of a result of Dvoretzky, Wald and Wolfowitz

([1951], p. 66, Theorem 4).

Lemma 3.3. Let v be a finite dimensional vector of measures in NA,

and let m be a positive integer. Then for each m-tuple f1 "...,f of

ideal sets such that fl + ... + fm = 1 = xI, and each k-tuple ql"'''qk

of members of pNA, and each e > 0 there is a partition (T1,..,T ) of

I, T. in C such that for all A C (1,...,m} and all 1 < j < k

v( U T) ( fi)dv
i-A iEA

and

Iq( u T) q%*A f1  < CI lqJJ iEA Ti JiE

Remark: The same result holds if pNA is replaced by pNA' (replace in

the proof I by IV),

Proof. From the definition of pNA it follows that for each 1 < k

there exists a polynomial v of NA-measures; v P (j$ ) with

oIq -v <. By
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VT -ifidv

and

"J(T f J

From the finite additivity of members of NA, we deduce that for each

AC {l,.1.,}, 1 < j < k and 1 < < v(T(A)) = If(A)dv and

J(T(A)) =f(A)dvj  where T(A)= U T and f(A)= E f.. From the
f diEA i ie EA 1

last equalities and the properties of the mapping v v*, it follows that

also v(T(A)) = v(f(A)).

Thus

Iqj(T(A)) - q3(f(A))j < 1qj(T(A)) - vj(T(A))i + 1vj(T(A)) - v(f(A))I +

+ 1v(f(A))- q(f(A))i < |q j - + 0 + 1v - q*I

and as Ivi = IvI for each v E pNA, lq3(T(A))- qj(f(A))l < 2e. This

completes the proof of Lemma 3.3. Q.E.D.

We will use in our proof the following immediate corollary of Lemma 3.3.

Corollary 3.4. Let V be a finite dimensional vector of measures

in NA, and let m be a positive integer. Then for each m-tuple fl $"''f

m

4of ideal sets such that f, < f2 .. f , and each k-tuple ql .. kO



set functions in pNA, and each E > 0 there is an m-tuple vIT ,T

of sets in C such that TIC ,,, C T and for all 1 <J <k and

all 1 < i < I' < m

v(Ti) = fidv

and

Iqj(T) - q (f)I <

and

[qj(T," T.) - q*(fi, - fi)I < C

Proof. Follows by applying lemma 3.3 to the m+l-tuple f - fl" "

f-f ,l-f.

We will proceed in order to show that (3.1) and (3.2) define a unique

linear symmetric operator from u*pNA into FA. For this we shall need

the following lemma.
n *

Lemma 3.5: If w = v + (ei U)qi is monotonic, where v E pNA,

qi E pNA and ei E G,i = 1,...,n, then for any S C and g E L.,g> 0

(3.6) g(t)Dv (t,S)dt > 0

0
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1 1I nf
(3.7) Jg(t)8v*(t,S)dt + f g(t)aq (tS)dt >0

and

n

ii~l

(3.8) P(ei ski > 0

Proof. Assume that w is monotonic. For proving (3.6) it .ough
1 *

to show that for any t with 0 < t < a for which 3v (t,S) is defined,

Dv*(t,S) > 0. Let 0 < t < a and let 0 < h be such that t + h < a.

For such t and h, t + hS < t + h and therefore

(eiu)*(t + hS) < (O.p) (t + h) = t + h < a for each i = 1,...,n.

For any c > 0 we could apply corollary 3.4 to the vector

v = (elp,...,env) of nonatomic measures, the 2 -tuple t, t + hS and the1 n

set function v in pNA to show the existnce of two sets T1 ,T2  in C

with T1 C T2 and such that (e i)(TI ) = (eip)(t) r t < a, (e P)(T 2 ) =

(O1p)(t + hS) < a for all i = l,..,,n and such that jv*(t) - v(T1)j < C

and Jv (t + hS) - v(T2 )1 < e. Therefore, on the one hand, (eiu)(T.) =

(O'u)(T) = 0 which implies that w(T2) - w(T = v(T2 ) - v(Tl), and on
i 2 2 1' 21

the other hand, v(T2 ) - v(TI ) < v (t + hS) - v (t) + 2c. Altogether
2 1

v t + hS) - v (t) > w(T2 ) - w(TI ) - 2c. As w is monotonic we deduce

.~~~~~ .1 .



that v (t + hS) v (t) > -2, and as this holds for any e > 0 we

conclude that v (t + hS) - v(t) > 0 and therefore av (t,S) > 0 for

any 0 < t < a for which 3v (t,S) is defined. This completes the

proof of (3.6).

For proving (3.7) it is enough to prove that for an, - with

a < t < 1 for which all the derivatives 8v (t,S) and Dqi(t,S) exist,

n *

av*(t,S) + aqi(ts) > 0

Applying corollary 3.4 to the vector (e n,...,O P) of nonatomic

measures, the 2-tuple t, t + hS (where 0 < h is such that t + h < 1)

and the members v,ql,...,q n  in pNA we have for every c > 0 two sets

TI CT 2  in C such that for every 1 < i < n, a < t = (ei) (t) =

(e i)(T (e )(T 2 and Iq.(Tl)- qi(t)I < e, Iqi(T2 ) - qi(t + hS)I < c,

and Iv*(t) - v(Tl)I < c, Iv*(t + hS) - v*(T2 )I < C.

Therefore,

n
w(T) - w(T ) v(T) - v(TI) + qi(T2 qi(Tl)

n.<v*(t + hS) v*(t) + q *i(t + hS) (t) + 2(n + l)c

Again as this holds for all E > 0 and as w is monotonic, it follows

that

n .
3v (t,S) + (qt,S) > 0

which completes the proof of (3-7).

.1



The proof of (3.8) will make use of

Lemma 3.9. Let Pl '" be nonatomic probability measures and

set functions in pNA. Then for every 0 Ca <1 and every

£> 0 and every 1 <k < n there are two sets TI T2  in C, T C T
1 21 2

such that for all 1 i < n and for all 1 < j m

Iqj(T 2) - q ()l < £ 1q3(T2) - qct)I c £

Pi (T2 Tl) < c

PI (T2-I > (T) iff k

Proof. Let K { i < n:p i = U k . By Lyapunov's theorem there

is T in C such that Pi(T) =,k(T) iff Ui = Uk" Let b = Pk(T).

Observe that for sufficiently small y > 0, a + y(T-b) is an ideal set

and that

pi(a + y(T - b)) = a iff iEk (i.e.,iff i =

If (fr)r=l is a sequence in I that converges uniformly to f in I then

for every q in pNA, q(fr) converges to q (f). (All that is needed
r

for that conclusion is that p (f r) converges to p(f) for every nonatomic

measure v). Therefore there is y > 0 sufficiently small so that
aI
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a + y(T - b) is an ideal set and such that for all 1 < m,

lqj(a + y(T- b)) - q3 (a)l < c/3. Fix such a y > o and observe that

O( + y(T - b)) -* a + y(T - b) as 8 < 1 converges to 1, Therfore

for sufficiently large 8 < 1, for all 1 < J < m

lq j ((l-0)(a + y(T -b)))l < e/3 ,

q (O(a + y(T - b))) - q (a + y(T - b))I < c/3

and thus

q (O(a + y(T - b))) - qj(a)l < 2E/3

As ji(a + Y(T - b)) = iff i C K, it follows that for sufficiently large

8 < I we also have

* *

vi(a + y(T - b)) > a > p((a + y(T - b))) iff i E K

Fix such a 8 < 1 and apply corollary 3.4 to the 2-tuple 0(a + y(T - b) <

(a + y(T - b)) with c/3, the vector (n),...,'n) of nonatomic measures

and the members q1 9" ... qm of pNA to show the existence of TI,T 2 E C

with T C T

1 2'

Pi (TI) = pi(O(a + y(T - b))) I < i < n

iT = pi(a + y(T - b)) 1 < i < n

4
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Iqj(a + y(T - b)) - q (T2 )1 < C/3 <_ j

iq'(Oa + y(T - b))) - qj(Tl) </3 1 < _

Iqj((l - 0)(a+ Y(T - b))) - qj(T 2 .T1 )) < C/3

Altogether, we conclude that for all 1 < i < n, <J <2n

(q (T2 ) - q(a)l < C13 + c'/3 < C

lqj(T 1 ) qj(a)l < /3 + £13 + e/3 < e

Iq(T 2"T,)I < c/3 + e/3 < ,

and 1i(T) > a > (T) iff Ui =
i 2 ii 1 "

which completes the proof of Lemma 3.9,

We return now to the proof of (3.8) of Lemma 3.5. Observe that

it is sufficient to prove that for every I < k < n if K(k) denotes the

set of all 1 < i < n with 0.p = 0 then q, K (a) > 0, Apply lemma
1 j.Ek(k)

3.9 to the nonatomic probability measures 0lP,... gonV and the set functions

v'qI '''9qn in pNA to show the existence of TI,T2  in C with TIC T2

and such that for all I < i < n,

Iv(T1) -v(a)l <£ , Iv(T2 )-v(c)I .

42



-1I-

Iqi(Tl) _ q()I < q , ai(T 2 ) - qi(c)I < £

*2

(T2 ) >c > oi1(T I ) iff i E K(k)
i 21

Therefore

w(T) - w(TI ) < v(T2 ) -v(T I ) + )q i (T2 ) + I fa(T 2 ) -qi(Tl)
iEK(k) igK(k)

< 2e + ) qi(a) + 2en
i- EK(k)

< X q.(a + 2(n + )
iEK(k)

As this holds for every e > 0 the assumption that w is monotonic implies
*

that - )qi ( ) > 0 which completes the proof of lemma 3.5.
+

Lemma 3.10: Let g be in W and a in R Then (3.1) and (3.2)

defines (uniquely) a semi value *(a,g, on u*pNA. n

Proof. Any element w in u*pNA is of the form w = v + X (iu)q i ,* i=l

e E G, v, q E pNA. By linearity and symmetry, it follows from (3.1) and
i

(3.2) that
1 1
r n ,(3.9) *(a,g)w(S) =jg(t)v(t,S)dt + j(t) 3 q i (tS)dt

0 i

n * *
+ aqi(a)ko i)(S)

i =1

aI
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We have to show that *(ag) is well defined, i.e., that it is independent

of the representation of w. Because of the linearity it is enough to show

that if w = 0 then *(a,g)w = 0. If w = 0 then by lemma (3.4) we conclude

that 0 w(S) >0, and that a)(-w)(S) = -,gW(S) > 0 which means
*(a,g)wS *(a,g) (ag)w

that *(ag)w = 0. Linearity and symmetry of *(a,g) follows from the

definition. The finite additivity of aq*(t,S)(q C pNA) as well as that

of eiv implies that *(ag)w is finitely additive. Positivity of *(a,g)

follows now from lemma (3.4) and the finite additivity of (,gW.
(a,g)

Obviously u*pNA is reproducing; hence that positivity of *(a,g) and the

finite additivity of , w implies that 4(a,g)w is in FA whenever w

is in u*pNA. Now let w E (u*pNA) n FA. We have to show that *(a,g)w = V.
n (

Without loss of generality we may assume that w = v + 1 (0i )qi where

* * i=l
v E pNA and, qi E pNA and = 1 P e p iff i =J. First we shall show

that qk(a) = 0 for each k, 1 <_k < n. Let 1 <_k <_n be given. Applying

lemma 3.9 to the nonatomic probability measures eip,... 'np the set functions

v'ql,..'qn in pNA we have for every 0 < two sets T,T 2  -. Ti C T2

and such that for all I < i < n and

ei (T2 ) > (T iff i = k

jv(T 2 - v(T 1 )j <

Iv(T2 T 1)I CI

°.



jqi(T 2) - qi(T ) < £

and

*
eiV(T 2-TI) < £

Assuming c < a we find that

Iw(T2.T1)= Iv(T2.Tl1. <

On the other hand,

Iw(T2) - W(Tl)I (T2 - Iv(T2 ) - v(T 1 )

n
111=1

> qk~~ - e- e tic qk*(c) -(n +2)

The assumption that w is finitely additive will imply that

e > Iw(T2"TI)= Iw(T) -W(T >lq*( )- (n + 2)c, i.e., that lq*(a)l < (n +3)c.
'21' 2 w l k( k nie, n+~c

As this is true for every 0 < c < a we conclude that q (c) = 0.

Let S be in C, with P(O.S) < a. In that case w(S) = v(S), and by using
Wi

the finite additivity of w and lemma 3.3, we see that v (hS) = h(v(S))

for any rational 0 < h < 1 and then by continuity of v we deduce that

v (hS) = hv(S) for any real h, 0 < h < 1. Therefore av (0,S) = v(S).

Now, let 0 < t < a, and let S E C be given. Again using lemma 3.3 to

i4
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the vector measure e.P 1 < i < n, and the game v E pNA and the 3-tupleI

hSt,1 - t - hS h < t we have for any c > 0 a partition (T1 TT

of I with Iv(T1 ) - v (hS)l < c, Iv(T2) - v*(t)l < c and jv(TlUT 2 ) -
1

(t + hS)I < c and ey(T1 U T) < a. Hence w(T, U T2 ) =v(TlU 2 ),(T 1 )= v(Tl)

and (T 2) v(T ) Therefore, using the finite additivity of w we have

v(T UT 2) -v(T v(T ) - v() v(T1), and as jv(T U T2 ) - v(t + hS)j < c,
lv(T2) ~~~ **tl<cl(l * hl

Iv(T2 ) - v*(t)I < £ and vv(T1) -v(hS)I < c f[v*(t + hS) - v (t)] -v (hS)I

< 3c and as this holds for any c > 0, v (t + hS) - v*(t) = v (hS) = hv(S)

and therefore av (t,S) exists and equals v(S). In a similar way, by using

lemma 3.3 to the vector measure .iv, 1 < i < n, and the games v E pNA,

qi, 1 < i < n and the 3-tuple hS, t, I - t - hS, h < 1 - t we can prove
n 1

that for a < t < i a(_ qi)*(t,S) = v(S). Therefore as fg(t)dt = 1
0

we conclude that b(ag)W(S) = v(S) = w(S) whenever S is in C with

*(e iS) < a. For S in C there exists always a partition S = S U ... U Sk

with Si i = 1,...,k in C and p(ei )S < a I <_i <_n, 1 <_J <_k.

Therefore by the finite additivity of w as well as that of *w we have
k k

(a,g)W(S) -- _l1 (a,g)w(Si) = w(Si) = w(S) which completes the proof

of lemma 3.10.

Lemma 3.11. Let g be in W and a in R4+ . Then the semi-value

) on u*pNA defined by (3.1) and (3.2) is continuous and (a g)I =

max(a,Dgl 1.

Proof. Let w be in u*pNA. Without loss of generality we may
n *

assume that w = v + I (eiu)q where v is in pNA, qi E pNA for
1 <i=l
< i ' n and Oiy = Op iff i =j, (i 5_ i < J <n).



=..W sul(OP(agF~(S"l + 1-(~~w( ~

Therefore we have to prove that the right hand side is at most

*maxfa,lgI Li}wli, As

+ J(J~ag)W(S) =la X q.(a)(O.p)(S) + 9av (tS)(t)at

0

+ 3a(v + q)(,~t

i=1 O
0

f ~~ q) Ct,S)idt)

i nax{a, ughl L 1  jIv*(t,S)Idt

0

+ Jia(v + X q)*(t,S)ildt + jI
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it is sufficient to prove that

a

wu > Jqi(a) + (jIav*(t,S)I + Iv*(t,1- S)j)dt +
i=l 0

(3.12)

1 n

f ((v + I qi)*(t,s)l + l3(v + I qi)*(t,l - S)I)dt

i=l i=C

First assume that v and qi, 1 < i < n are polynom als in nonatomic

probability measures. For every integer k > 2 we will construct a chain

-f- so that iwi-_Ak will converge as k - to the right hand side of

(3.12).

Observe that there is f in I with (j) *(f) = (eO*)*(f) iff

i = 3, We may assume that 1/2 < f < 1. (Otherwise replace f by (1 + f)/2).

For every k > 1 let t be the iargest integer with t < ak, Without loss

of generality we may assume that for 1 < ij < n (e (f) > (e f)

iff i < J. Therefore for each I < i < n there is a (unique) 0i = 8i(k) with

0<0 < 2/k and (ei) (t/k + 0if) = u. Obviously all the 8.'s are

different and 0 < B. < <2/k whenever 1 < i < J < n. Define (gi)n= by

gi= /k + B f

2k+n-3
and define (T)if by
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iif i 2 is an even integer,

i-1 if i < 2t is an odd integer,

2k k

f- - = + gi-2t if 2 < <i 2t + n •
* 1 k

i+3-n if 2f + n <i and i- n is an odd integer.
2k

i + 2 n if 2t + n < i and i -n is an even integer.
2kk-r

Apply corollary 3.4 to the vector (e U,...,e P) of nonatomic measures, the
1 u

members vq"'..,qn of pNA and e = l/k(2k + n) to construct a chain

-k: (T ) 2k+n-3 (T C T C ... ) such that for all 1 < J < n

k i iO 0 -2k+n-3

and for all 0 < i < 2k + n -3,

(eji)(T.) e )()

• 1

CqjTi) - qj (ri)I < k(2k +n)

Iv(T i ) - v*(f)I < k(2k + n)

Denote by -'.- the subchain (T )0, -fl- 2  the subchain (T. - a+n dk i =0 k " Then

the subchain ( 2k+n- Thenk ~ (i i 2 ~n
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- k k k,

As (e p)(T) Oj(%)(fg) =t/k < a for all 1 < .1

k = 2lvT) k(2k+ n)

As v is a polynomial in nonatomic measures, IV (f) V v(.-)

*converges as k -to I~v*(t,S)I + lav*Ct,l -S)l)dt (see for instance

p.415, 4~6 of [3] or observe-that for 1 < i < 2t Iv (fi - v(fi)

lav*(i/2k,s9)I/k + o(1/k) where S=S if i is odd and S=1 -S if i

is even). Thus 1im inf NO L 1 > f(Iv*(tS)I + 13y (t,). S)j)dt.

n ni
Similarly lim if 1w1 13(v + X q )(t,S)I + 13(v + I q )(t 1 -S)I)dt.

We turn now to the estimation of IvIr1,-2. For each fixed 1 < 3

(O p)(T~~ > a > (eGii)(T iff i J . Thus
i ~ ~ j+t J+2t-i

* I(TJ+2L) -w(Tj 3 2t_)l >~ Iq1(TJ.+ 2 9l - lv(T 3+,t) v(TJ+2z1 )

n
X lq,(Tj+2 t) -qi(TJtlI

n n
Thus Iw1_f- 2  q iq(T j +2 - lviJ-L2- XIq 1 -r2

k J=ii k J=i
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For each fixed 1< j < n, qj(Tj+2t) qj(a) as k and

" qjl 2 0 as k , and also Iv| -2 0 as k and thus
k

n
lir inf Iwl|_N -- >  Iq (a)j, Altogether we conclude that

k-)-k j =1

Owl > lir inf wl rk "m lr inf IwI4-3_ + lir inf |wlL2 + lir inf wBr.
n a
I bv(a)I + 1(Iav (t's)j + I*vt,l- S)I)dt +

1=1

n n
1(1a(v + I q ) (ts)1 + I3(v + X q )(t,l - S)I)dt which proves (3.12)a i=l i=1

in the case that v and qi are polynomials in nonatomic measures. For

the general case let c > 0 and approximate v and qi. by polynomials

of NA-measures v and qi respectively with Iv - -vI < c £ q - qi j < C,

and let w=v+ .(eiu)q i . As 0iu = 1 and Iv1uivi <OVlv| for

i~ i V1 2-1 III2I
n *

all VlV 2  in BV, Ow - vI < IV- vI + I (e iu)(q i - q)I < (n + l)c.
i1l

Using lemma 23.1 of [3] we have for all S E C,

a*

lav (t,S) - 3v (t,S)Idt < liv - -vI < c and

0

n n

(-V + I q i (t ' S) - a(v + I q.) (tS)Idt < (n + 1)c
c3.

Also (
- < ic -I <il < c. Altogether,

1W6

AIoli 1* -1
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n
(n + 1)e + lwi 1 w > Ii(a)I - ne + Jv*(t,S)Idt -e

i=l
0

+ J3vt~v+ q.)(tl c +~d I-i ,~d (n 1)e)

fla* (v+ [i ) (t'l-S)Idt- (n +1)e

i=l

As this is true for all c > 0 (3.12)is proved which completes the proof

of lemma 3.11.

Proof of Theorem A: We have already seen that for a in and

g in W, (3.1) and (3.2) define (uniquely) a (continuous) semi-value

(ag) on u*pNA. Now we have to show that any continuous semi-value on

uipNA is of that form. Let * be a continuous semi-value on u*pNA. In

particular, 4 induces a semi-value on pNA and therefore by theorem 2.3

there is g in W with

1

(3.13) v(S) = Jg(t)3v*(tS)dt for each v in pNA

0

Let v be a probability measure in NA, end k a positive integer. For

any 6 > 0, 6 <'(1/2)minfa,l - a) define F6: [0,1] R by
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0 if Ix al > 26

F6(x) 1 if Ix - aI 6

1 - 1/6 (Ix - aI- 6) if 6 < Ix - <1 <26.

and define v6 by:

~k _k)
(3.1) v6 = (F6ov)(F6op)(v p

First we shall show that

(3.15) I{uv 6I < 32k6

Define U = {SEC:0 < P(S) - ci < 26, Iv(S) - <i < 26) . Then for S in U,

P(S) > a and therefore u(S) = 1 and also for S in U, Iv(S) - p(S)< 46
and thus for S in U, IVk(S) p k(s) I 46k, and Iv 2(S){ 46k. For every

S in C-U either V(S) < a and thus u(S) = 0 or jv(S) - al > 26 and

thus v (S) = 0. In any case for S z U, (uv )(S) = 0. Let
6

.-L:SO C SI C ... C SL be a chain. Let i0 be the first index for which

S. E U and let j be the last index for which S E U. Then from the
1 0 0 1 0

definition of U it follows that S. E U iff i < i < J Therefore, as
1 0'

(uv )(S) = 0 whenever S U, and I(uv 6 )(S)I < 46k whenever S G U we

deduce that
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4L +1 I)( - ' (S)(s)I

uv6  SI + .N Iu 6  ).I +- u 6s
00

<86 (s lu j ( s )( I + I 1U6(

i i 1 6 Po~ +1-
00

<o 86 I i (k )s -
i~i+i 0 +16i

0O 0

k k
- (S vv)( 6 ~(s~ 1  - p )( o) F 6 < )SiX (i

(F ~ ~ ~ ~ ~ ( )I( 11( v (

< max ;I(F ov)(F ov)(s)I 1 0 1( -k(S ( k)(
se-u 6ii +11i-

0

+Max Iv k U)S I(F ov)(F OP)(S )(F ov)(F op)(s. 1 ) *

0

But rnaxl(F ov)(F olI)(s)I ~1 and

6
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JoX. I(vk - u )(si)- ( k )(S)_a < (k 1_
i=io+l --40

(Vk + k)(S ) <86k

and

maxl(vk - k)(s)l 4k
seu )sI<k

and

D(F6ov)(F 6oP)p < OF6o vII hF6o pH < h

Jo

Therefore I 6(Si) - 6(Si1 )) < 86k + (46k)l = 2hk6,
i=i +1 3.

0
6 u < 32k6. As this holds for any chain -L- (3.15) ispI.'ved. Define

G: [0,1] +  by

0 if x > a + 26

G6 (x)= 1 if x < a + 6

1-(x - a - 6) if a + 6 < x < a + 26
6

and define v6 by

(3.16) v6  (G6ov)(G(3o)(vk - k

4:
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First observe that v E pNA (although (Gov)(Goo) i pNA), Define P to

be the diagonal neighborhood defined by

- {s: IP(S) - V(s)I < a)

Let S E V and denote v vk then u(v - v6

because if P(S) <a and S E V then v(S) < a + 6 and therefore

v 6 (S) v(S) and of course then (u(v - v))(S) = 0 = (v - v6 )(S), and if

(S)> a then u(v -v 6)(S) = (v - v6 )(S), and V(S) > a - 6. But for
x > a - 6, G6 (X) = F6 (x) which yield that (v - V6 )(S) = ( v -

whenever S E D with v(S) > a. Thus we have seen that

u(v v coincides with v - v6 on a diagonal neighborhood,

(3.17)

vy-6 E pNA, u(v - v6) eu*pNA

As i is continuous proposition (2.4) and (3.17) implies that

(3.18) *(u(v - vs)) = *(v -v

Now we claim that

0 if t > a + 26

(3.19) Bv6 (t,S) =
av (t,S) if t < a + 6

To prove (3.19) observe that if t > a + 26 and h > 0 then
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[(G6ov)(G 6op)(v - ()]*(t) = 0 = [(.G6 ov)(G6o) V - pk)](t + hS) and

if 0<t <a+6 and h<0 with t+h> 0 then

k I*[(G6ov)(G 6oM)(v - p )*(t + hS) 0, As v - 6 is in pNA, (3,13) and

(3.18) implies that

1 a+26

(3.20) 1*(v - V6)(S) - (t,S)g(t)d I J g(t)fa(v - 6 )*(t,S)dtl 0

a+26 a+6 6+0

If we let 6 0 0, (3.20), (3.18) and (3.15) imply that

1

(3.21) *(u(v - M))(S) = Jg(t)a(v - p )*(t,S)dt

Observe that u E u*pNA. By proposition 2.5 ;Pu = ap, and by the positivity
+

of *, a C R Now let B be the subset of pNA of all games q for which

(6.23) $(uq) = '(a,g)(uq)

By (3.21) vk E B. Observe that upk aku is in pNA and hence
k k1 k*k k

*(uP - a ku)(S) = fg(t)3(p ) (t,S)dt and i(aku) = a ap. Therefore it

is easily verified that v E B. But B is obviously a linear subspace of
k k k . k

pNA and therefore as it contains V and v - I it contains v for
+

any probability measure in NA and hence any polynomial in NA measures.

As both * and a) are continuous and luqi < luilqi it follows
(a,g)

that B is closed, thus B = pNA. Now as both * and *() are linear

and continuous we deduce that they coincide on u*pNA, which completes the

proof of theorem A. Q.E.D.

* "
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1. Further Results and Remarks.

We are able to characterize the set of all continuous semi-values on

many other important spaces, like bv'NA and bv'NA*pNA. As the proof

uses similar methods to those presented in the former sections wewill just

give a sample of results.

Notations: Let X be a linear subspace (not necessarily closed) of

the Banach space by' (the space of all functions T: [0,1] ). with f(O) = 0

such that f is of bounded variation continuous at zero and 1, endowed with

the total variation norm). We denote by W(X) the subset of the dual X

(of the closure X of X) of all elements x satisfying: (1) For each
.

monotonic nondecreasing f in X, x (f) > 0; (2) If X contains the

function h defined by h(x) = x, then x (h) = 1. The subspace of all

absolutely continuous elements in by' is denoted ac'. For each 0 < x <1

define f : [0,1] +] by fx(y) =0 iff y < x and f (y) = 1 iff y > x

and f : [0,i] -.F by T (y) = 0 iff y <x and f(y) = 1 iff y > x.

The subspace of by' generated by the functions fx(?x) is denoted by rj'(Lj'),
x x

and that generated by all jump functions (i.e., by rJ' and Lj') is denoted

by J'. If X C bv' we denote by XNA the linear symmetric space generated

by game of the form f o V, f E X and i is a probability measure in NA.

Theorem 4.1: Let X be a subspace of by'. There is a 1-1 linear

isometry from W(X) onto the continuous semi-values on XNA; for each

x* E W(X) the semi-value O* on XNA is given by

*x *(f o V) = ()
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Remarks:

(a) W(ac') = W and therefore Theorem 7.1 can be considered a

generalization of Theorem 2.3 (ac'NA is dense in pNA).

(b) W(rj') is identified with all bounded functions a: (0,1) R +;

for 0 <x -<1 x (a)(f x ) = a(x) and Ix*(a)l = sup a(x), Each of the
O<x<l

continuous semi-values on rj 'NA can be extended to a semi-value on its closure:

However, there are discontinuous semi-values on rj'NA; they can be obtained by

omitting the boundness condition on a.

(c) W(J') is identified with all pairs of bounded functions

R+ * x
a, b : (0,1) R where for 0 < x < 1, x (a,b)(f ) a(x) and

x (a,b)(?) = b(x). We have llx*(a,b)iI = sup {a(x),b(x)}.
O<x<l

Notations: If I and Q2 are linear symmetric subspaces of BV

we denote by Q1 @ Q2 the linear symmetric space generated by games of the

form v1v2 where vi  Qi (i = 1,2), and the space Q1 * Q2 is defined

as the linear symmetric space generated by I Q 2 ' QI and Q2 "

R+

Theorem 4.2. For each pair (a,g), a: (0,l) - R and g E W = W(ac')

there is a semi-value *(ag) on rj'NA*pNA given by:

(4.3) *(ag)(v) *v whenever v C pNA

1

(4.4) (ag)((fx o P)v)(S) = a(x)v (x)P(s) + jg(t)Sv(t,S)dt

x

whenever v E pNA, 0 < x < 1 and p is a probability measure in NA. The

semi-value *(ag) is continuous iff a is bounded. Moreover, any continuous

semi-value on rj'NAepNA is of that form. *(ag) can be extended to a
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semi-value on rj'NA*pNA iff a is bounded and then

Ip l = max ( sup a(x),Ilgl
a,g) L<<JO<x<l

Remark: Similar results hold for the spaces tj'NA*pNA and J'NA*pNA

(in the second case the semi-values are associated with triples (a,b,g)).

Theorem h.5: For each pair (a,g), a: (0,1) - _M' and g E LB(0,1 )

there is a semi-value '(a,g) on rJ'NA SpNA given by (4.h). This semi-

value is continuous if and only if a is bounded. Moreover, any continuous

semi-value is of that form.

Remarks:

(a) The semi-values on rj'NA*pNA differ from those on rj'NA * pNA

since NA _ rj'NA @ pNA while NA C rj'NA*pNA.

(b) The proof of Theorems 4.2 and 4.5 are similar to that of

Theorem A.

(c) The fact that (a,0) is a semi-value on rj'NAI pNA is easy

to prove (see lemma 3.5(3.8)) and actually makes use only on the property

of pNA of having a continuous extension to ideal sets satisfying lemma 3.3.

Thus it follows that the existence of such semi-values is valid for any space

of the form rj'NAOQ where Q has such an extension. If Q is such a

space satisfying: there exist a: (0,1) + R+ {0) s.t. for each v E Q and

0 < x < I v (x) = a(x)v (1) then by setting a(x) = 1/a(x), '(a,) is a

value on rj'NA G Q. However, these values are discontinuous, whenever a

is not bounded away from 0.

4
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(d) For every g in W which is continuous there is a semi-value

on DIFF (for definition see Mertens) which is defined in the same way as the

value is defined on DIFF. The proof is essentially the same as in Merten's

proof of the existence of a value on DIFF.

I

L4

i.4
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Footnotes

1/-. Along the proof a and i stand for the fixed scalar and the
probability measure, respectively, that are used in the definition
of the set function u.

I-

d!

4I

a-
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