

. . .

• • • • •

1

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

ć

RELATIVELY RECURSIVE RATIONAL CHOICE

by

Alain A. Lewis

Technical Report No.357 November 1981

Prepared Under

Contract ONR-N00014-79-C-0685, United States Office of Naval Research Center for Research on Organizational Efficiency Stanford University

ABSTRACT

1

We have demonstrated previously (Lewis [1981]) that within the framework of recursive functions, a distinction must be made between representations of the paradigm of consumer choice, and realizations of a given representation. The present paper extends our previous framework to show, in brief fashion, that the concept of a recursive rational choice function defined as an effectively computable representatgion of Richter's [1971] concept of rational choice, attains by means of an application of Church's Thesis to the degrees of unsolvability associated with a classification of types of subsets of the natural numbers, a minimal bound in a measure of computable manner.

RELATIVELY RECURSIVE RATIONAL CHOICE*

by

Alain A. Lewis**

I. Introduction

The purpose of the introduction is to acquaint the reader with the key concepts and terminology employed in the derivation of the principal result of our previous paper, to which the present work is to be considered as a sequel. The reader is encouraged to refer to the earlier paper (Lewis [1981]) for a more extensive exposition of the items that are summarized in the following discussion. The idea that is basic to the construction and definitions is that recursive structures of number theoretic character, by means of what is known as Church's Thesis[†], represent a very general class of effectively computable procedures, that in another sense, typify ideal devices of artificial intelligence.

By a <u>recursive space of alternatives</u> is meant a pair $\langle R(\chi), \mathbb{F}_R \rangle$ where $R(\chi)$ is the image of a subset, $\chi \subseteq \mathbb{R}^n_+$, that is compact and convex, in a <u>recursive metric space</u>, $M(\mathbb{R}^n)$, which is in turn comprised of n-tuples of <u>R-indices of recursive real numbers</u>; and where \mathbb{F}_R is the class of all <u>recursive subsets of $R(\chi)$ </u>. A <u>recursive choice</u> on $\langle R(\chi), \mathbb{F}_R \rangle$ is a set valued function defined on the class \mathbb{F}_R , $C : \mathbb{F}_R + P(R(\chi))$,

*This work was sponsored by Office of Naval Research Contract ONR-N00014-79-C-0685 at the Center for Research on Organizational Efficiency at Stanford University.

****Department** of Mathematics, College of Science, National University of Singapore, Kent Ridge, Singapore, 0511.

†The discussion of Church's Thesis in Chapter 1 of Rogers [1967] is an excellent introduction to this concept.

such that for any $A \in \mathbb{F}_{R}^{c}$, $C(A) \subseteq A$. We call the choice on $\langle R(\chi), \mathbb{F}_{R}^{c} \rangle$ a recursive rational choice if (1) there exists a binary relation $_{2}$: $R(\chi) \propto R(\chi) \rightarrow \{1,0\}$ termed the preference ordering; (2) there exists a function $f : R(\chi) \rightarrow IN$ such that if it should be true of α , $\beta \in \mathbb{R}(\chi)$ that $\alpha \leq \beta$ then $f(\alpha) \geq f(\beta)$; and (3) for any $A \in \mathbb{F}_p$, $C(A) = \{ \alpha \in A : \forall \beta \in A \ f(\alpha) \ge f(\beta) \}$. A recursive rational choice on $\langle R(\chi), \mathbb{F}_R^{\geq}$ is thus rational in the sense of Richter [1971] and is representable also in Richter's sense. The graph of a choice on $\langle R(\chi), F_p \rangle$ is an enumerated collection of pairs of sets $\langle \mathbf{F}_{R_i}, C(\mathbf{F}_{R_i}) \rangle$ indexed by $j \in \mathbb{N}$ whose domain[#] is {F}, and whose co-domain is $R_{j,j \in \mathbb{N}}$ $\{C(\mathbb{F}_{R_{j}})\}$. The elements of the domain of graph (C) are members of $j \in \mathbb{N}$ the class $\mathbb{F}_{R}^{}$, and it can be demonstrated[†] that if the choice on $< R(\chi), \mathbb{F}_{R} >$ is recursive rational, then the elements of the codomain $C({\rm I\!F}_{R_a})$ are also members of the class ${\rm I\!F}_R$. A further result is that a recursive rational choice on $\langle R(\chi), \mathbb{F}_R \rangle$ is also recursively representable in the sense that the components of graph (C) are all effectively computable by machine devices, in which case graph (C) $\subseteq \mathbb{F}_{R} \times \mathbb{F}_{R}$. A <u>recursive</u> <u>rational choice</u> on $\langle R(\chi), \mathbf{F}_R \rangle$ is said to be <u>recursively realizable</u>, for suitable choice of domain, if and only if graph (C) is recursively solvable or equivalently if graph (C) is a recursive subset of $\mathbf{F}_{R} \times \mathbf{F}_{R}$. The

*The domain is full if $\exists K \in \mathbb{N} \quad \forall i \neq j > K \quad \mathbb{F}_{R_j} \quad A \quad \mathbb{F}_{R_i} \neq \phi$ †Cf. Lewis, [1981], Proposition V.2.

-2-

ment of the main theorem of Lewis ([1981] Theorem IV.4) which places a distinction between the notion of recursive representability and recursive realizability.

<u>Theorem I.1</u>: Allow $\langle R(\chi), \mathbb{F}_R \rangle$ to be a <u>recursive space of</u> <u>alternatives</u> derived from the recursive metric space of \mathbb{R}^n , $M(\mathbb{R}^n)$, for $R(\chi)$ the recursive representation of a compact, convex subset of \mathbb{R}^n_+ . Let $C : \mathbb{F}_R \neq \mathbb{F}_R$ be the <u>nontrivial recursive rational</u> <u>choice</u> on $\langle R(\chi), \mathbb{F}_R \rangle$ and select from the class of sequences $(\mathbb{F}_R)^{\mathbb{N}}$, element $\{\mathbb{F}_R\} \subseteq \mathbb{F}_R$ that comprises a full domain for graph $(C) \subseteq \mathbb{F}_R \times \mathbb{F}_R$. Then, per fixed selection of $\{\mathbb{F}_R\}$, graph (C) is recursively unsolvable and therefore is not recursively realizable.

The method of proof of the above theorem employs the fact that the restriction of graph (C) to its codomain was unsolvable by showing that any predicate that was adequate for describing the codomain belonged to a specific place in the Kleene-Mostowski Hierarchy that classifies subsets of the natural numbers by the complexity of their descriptions[#]. We presently exploit this feature of the proof to obtain a lower bound on the degree of difficulty of computing the graph of a recursive rational choice function by identifying the complexity of descriptive predicates in the hierarchy with a measure of computational

*A brief discussion of the Kleene-Mostowski Hierarchy is given in Appendix I of Lewis [1981]. A fuller discussion is in Rogers [1967] Ch.14, pp.301-334.

-3-

difficulty. The assertion of Church's Thesis which equates those functions that are effectively computable by ideal computing devices[#], then becomes relative to the descriptive complexity of the predicates that are used to describe the function. Functions that are effectively computable in this sense of complexity are termed the relatively recursive functions.

II. Relatively Recursive Rational Choice

Č,

The concept of relative recursiveness originates with the work of the logician, Emil Post[†], and is concerned with the reduction of a decision procedure for a given set of natural numbers, A, to that of another set of natural numbers, B. Intuitively speaking, a set A of natural numbers is <u>reducible</u> to a set B of natural numbers, if for a total predicate Ψ : $\mathbb{N} \rightarrow \{1, 0\}$, if the restriction to B, $\Psi_{|B}$, can be recursively realized, i.e., there exists a recursive Φ : $\mathbb{N} \rightarrow \mathbb{N}$ such that

$$\phi(n) = 1 \text{ when } \Psi_{|B}(n) \text{ is true}$$

$$\phi(n) = 0 \text{ when } \Psi_{|B}(n) \text{ is false.}$$

Then there exists a recursive realization for the restriction of Ψ to A, $\Psi_{|A}$, i.e., a recursive $\Gamma(\Phi)$: $\mathbb{N} \to \mathbb{N}$ such that

*Cf. Lewi3 [1981], Ch.II, and Rogers [1967] p.130.

"Degrees of Recursive Unsolvability", (Preliminary Report), Abstract <u>Bulletin of A.M.S.</u>, Vol.54, [1948], pp.641-642.

-4-

 $\Gamma(\Phi)(n) = 1$ when $\Psi|_A$ is true $\Gamma(\Phi)(n) = 0$ when $\Psi|_A$ is false

(6

Alternatively, the set A is said to be <u>recursive relative to B</u>, or <u>recursive in B</u>.

In a subsequent article, jointly authored with Kleene [1], Post develops more fully the concept of relative recursiveness in terms of degrees of unsolvability, which in turn is based on relations of reducibility between decision procedures for subsets of the natural numbers.[†] The subject of degrees of unsolvability has been developed into an extremely sophisticated branch of mathematical logic following the article by Post and Kleene. To attempt a discussion of the substance of the theory of degrees of unsolvability would exceed the bounds of the present paper, and we will confine ourselves to using only those items that bear on the relative recursiveness of rational choice, referring the interested reader to more comprehensive works.^{***}

A possible means of interpreting the assertion of Theorem I.1 is, that when recursively represented on subsets of the natural numbers, a non-trivial rational choice function does not contain enough mathematical information in its graph to render the recursive solvability of its graph. This is not to say that there may be in fact other subsets of the natural numbers that do in fact contain enough mathematical

*The discussion in Rogers [1967], Ch.IX, pp.127-134. +Cf.Ch. 13 of Rogers [1967].

**Gerald E. Sacks, <u>Degrees of Unsolvability</u>, Annals of Mathematics No. 55, Princeton University Press, [1955], and Joseph R. Shoenfield [1971].

-5-

information. We are then led to the natural inquiry of just how much mathematical information is required to recursively solve the graph of a recursive rational choice function. What we wish to show in the discussion that will follow is that by way of the notion of relative recursiveness, it is possible to characterize which subsets of the natural numbers contain enough information for the decision procedure of recursively representable rational choice. Alternatively phrased, we wish to inquire into its degrees of unsolvability.

We may first make the observation that there are three classic notions of reducibility of decision procedures for subsets of the natural numbers:

<u>Definition I</u>: A set A is <u>generally recursive reducible</u> to a set B if A is recursive in B^* .

<u>Definition II</u>: A set A is <u>Turing reducible</u> to a set B if there exists a Turing machine that reduces the decision procedure for A to that of B. The reduction is performed by means of an oracle that provides requisite information about the set B in the computation of the set A as is required.[†]

Definition III: A set A is <u>canonically reducible</u> to a set B if both A in N-A are B-canonical sets in the sense of Post**.

*This is due to Kleene, "Recursive Predicates and Quantifiers," Transactions A.M.S., Vol.53, [1945], pp.41-73.

[†]Cf. Rogers [1967], p.129.

******Post, [1944].

-6-

It is another significant feature of recursive function theory that the above three notions of reducility of decision procedures are all equivalent (cf. Post and Kleene [1954], p.379) and hence, no generality is lost in considering sets of natural numbers that are relatively recursive versus sets of natural numbers that are Turing reducible in discussing results on degrees of unsolvability.

Let us next denote the fact that a set A is recursive in a set B by the relation $A \leq B$. Then it can be shown* that for sets of natural numbers the following items are true:

- (i) $VA[A \leq R^A]$
- (ii) $VAVBVC[A \leq R^B \cdot A \cdot B \leq R^C] \Rightarrow A \leq R^C]$

If we mean by $A \equiv {}_{R}B$ that both $A \leq {}_{R}B$ and $B \leq {}_{B}A$, from items (i) and (ii) we see that $\equiv {}_{R}$ is an equivalence relation among sets of natural numbers from which the following definition can be obtained.

<u>Definition IV</u>: The degree of unsolvability, with respect to $\leq R$, of a set A is defined to be:

$$[A] = \{B \subseteq \mathbb{N} : A \equiv B\} = dgA$$

In terms of the definition, the following facts concerning degrees of unsolvability can be derived.

*Cf. Rogers [1967] p.78 or Schoenfield [1971] p.44.

<u>Proposition II.1</u>: Allow A and B to be sets of natural numbers. Then

(i) $A \equiv B \ll dgA = dgB$.

(ii) If $a \le b$ means that for some A and B a = dgA and b = dgB, then $dgA \le dgB <=> A \le B$ and dgA < dgB <=>($A \le B^B \cdot A \cdot B \ddagger B^A$).

We may view the concept of degrees of unsolvability in terms of a sort of relativized Church's Thesis, in that if $A \leq_R B$ maintains then we should think of A as at least as easy to, or alternatively not more difficult to compute by effective means as B is to compute by effective means. From this, $A \equiv_R B$ would mean that A and B are equally as difficult or equally as easy to compute by effective means. It can also be observed that the relation \leq on the equivalence classes under \equiv_R partially orders the set of degrees, and thus if the degree of a set is a measure of the difficulty involved in effectively computing that set, then the higher the degree under the order \leq , the more difficulty involved in effective computation.

If it should happen that set A is recursive, i.e., $\Sigma_0 - \pi_0$,^{*} then under the relation of relative recursiveness, for any set B, it happens to be true that $A \leq {}_RB$, and thus that $dgA \leq dgB$ for any dgB.

*The $\Sigma_0 - \pi_0$ classification is the first classification in the Arithmetic Hierarchy. Cf. Lewis [1981] Appendix I or Rogers [1967] Ch.14. Therefore, there is a smallest degree denoted as 0, and 0 is the degree of every recursive set A, i.e., every $\Sigma_0 - \pi_0$ set. On the other hand, if for some set A, it were true that dgA = 0, then the set is recursive, i.e., $\Sigma_0 - \pi_0$. The latter assertion follows from the fact that for any recursive set B, $A \leq \frac{B}{B}$. Therefore we have the following :

<u>Proposition II.2</u>: A set of natural numbers A, is $\Sigma - \pi$ o o if, and only if dgA = 0.

From the proposition, and the relationship it provides between a recursive set of natural numbers and its degree of unsolvability we are led, by way of the structure of the partial order on the set of degrees, to certain deeper qualities of the Arithmetic Hierarchy by associating degrees of unsolvability with levels and compartments in the hierarchy of sets of natural numbers.

Let us now remark that Theorem I.1 can be given an interpretation at this point in terms of the theory of degrees that we have just developed. The gist of what Theorem I.1 says is that if we view a nontrivial recursive rational choice function as a correspondence between classes of recursive sets the graph of the correspondence cannot be recursive. By means of Theorem 4 Sec.5 p.24 of Scheenfield [1971], if G is the graph of a relation Γ , then dgG = dg Γ , and thus a further interpretation of Theorem I.1 is that, in viewing C as a correspondence, since graph (C) is not recursive and the degree of a recursive set is 0, dgC \ddagger 0 by way of Proposition II.2. In terms of a relativized Church's Thesis, if we say that dgC \ddagger 0 then we merely say that the level of difficulty incurred in an effectively computable realization of C is not as easy as that of the recursive sets. It is desirable however, to say more than this, to which purpose we now turn to the main result.

III. The Minimal Degree of Recursive Rational Choice

The purpose of this section is to provide a statement on the lower bound of the degree of unsolvability of recursive rational choice by means of associating degrees with the classification of sets provided by the Arithmetic Hierarchy. Observe first, that an alternative means of defining the components of the Arithmetic Hierarchy to that of using Kleene strings*, as was done in Lewis [1981], can be obtained by defining the Σ_n and π_n sets inductively as follows:

(i) The $\Sigma_{-\pi}$ sets are the recursive sets.

(ii) A set is Σ_{n+1} if it can be defined as:

 $\chi \in A \iff \exists y[(\chi, y) \in B]$

for B, a π_n set.

(111) A set is π_{n+1}

 $\chi \in A \iff \forall y[(\chi, y) \in B]$

for B, a Σ_n set.

*A Kleene string is a quantified expression in the first order predicate calculus of a recursive predicate on IN.

From this defining framework it is possible to prove the following propositions by means of induction on the arity of the set*, and give rules for when sets are \sum_{n} or π_{n}^{\dagger} .

<u>Proposition III.1</u>: If A is $\sum_{n} (\pi_{n})$ and B is defined by $\chi \in B \iff \Psi(\chi) \in A$ where Ψ is a recursive function, then B is $\sum_{n} (\pi_{n})$.

<u>Proposition III.2</u>: If A is $\sum_{m} \frac{\text{or } \pi}{m}$ for some m < n, then A is $\sum_{n} \frac{\text{and } \pi}{n}$.

<u>Proposition III.3</u>: If A is $\Sigma_n(\pi_n)$, then **N**-A is $\pi_n(\Sigma_n)$.

<u>Proposition III.4</u>: If A and B are $\Sigma_n(\pi_n)$, then A U B and A \cap B are $\Sigma_n(\pi_n)$.

The first three propositions are in fact properties of the Arithmetic Hierarchy, and the last says that per fixed arity, the Σ_n and π_n sets are closed under set operations. These properties are in turn useful in enabling one to evaluate the degrees of the Σ_n and π_n sets.

<u>Lemma III.5</u>: A set of natural numbers A is Σ_{n+1} if and only if for some set B, $A \leq Re^{B^{**}}$ and B is π_n .

*The arity of a \sum_{n} or π_{n} set is n. +The proofs are found in Schoenfield [1971] pp.31-32. **The relation $A \leq_{Re}^{B}$ reads A is recursively enumerable in B and weakens $A \leq_{R}^{B}$. Cf. Schoenfield [1971] p.24.

· .-

<u>Proof</u>: By definition, $A \leq_{Re} B$ is true when $\chi \in A \iff y[(\chi,y)] \in B]$. If A is Σ_{n+1} then by (ii) of the inductive definitions, $A \leq_{Re} B$ for $B\pi_n$.

Conversely, suppose that $A \leq_{Re} B$, and B is π_n and suppose I indexes A in B, then $\chi \in A \iff \chi \in T_I^B \iff \alpha[\alpha \subseteq B_{\cdot}, \chi \in T_I^\alpha]$, where T_I^B yields elements in accordance with I with an oracle for B, and α is a finite sequence of elements in B. One can visualize T_I^B as a Turing machine that lists the elements of A using information about the set B. To see that A is Σ_{n+1} , it will suffice to show that $\alpha \subset B$ and $\chi \in T_I^\alpha$ are Σ_{n+1} . By way of Proposition III.4, $\chi \in T_I^\alpha$ has a recursively enumerable graph and thus is Σ_1 . By Proposition III.2 it is therefore Σ_{n+1} . We observe next that $\alpha \subset B \iff \forall n < \ln(\alpha)^*$ $[\Psi_{\alpha}(n) = \Psi_B(n)]$ where Ψ_{α} and Ψ_B are the defining predicates of α and B respectively. Since α is finite, by Proposition III.4, it will do to show that $\chi = \Psi_B(n)$ is Σ_{n+1} . However, the following expression verifies this by way of Proposition III.4 directly:

$$\chi = \Psi_{B}(n) \iff [(\Psi_{B}(n) = 1 , \Lambda, n \in B), \vee, (\Psi_{B}(n) = 0, \Lambda, n \in B)] \quad Q.E.D.$$

The next definition, when applied to the set of degrees, will provide us with the means to make an assertion about the relative difficult in effectively computing recursive rational choice.

 $*\ln(\alpha)$ is the length of α .

<u>Definition V</u>: For a set of natural numbers A, define the jump or <u>completion</u> of A as:

$$A^{*} = \{\chi : \phi_{\chi}^{A}(\chi) = 1\} = \{\chi : \chi \in T_{\chi}^{A}\}$$

where T_{χ}^{A} is the domain of ϕ_{χ}^{A} , for ϕ_{χ}^{A} a defining partial predicate for the set A with Gödel index χ^{*} .

<u>Lemma III.6</u>: Let A be a Σ_n or a π_n set. Then dgA $\leq 0^n$, for 0^n the nth completion of the recursive degree 0.

<u>Proof</u>: By induction, if we consider n = 0, if A is $\Sigma_0 - \pi_0$, the result is trivial as dgA = 0 necessarily. Assume then that the Lemma is true for π_n sets, then from taking Lemma III.5 forward, and by the properties of the completion operator if A were Σ_{n+1} and B were π_n , $A \leq R^B$ implies that $dgA \leq dgB \leq 0^n$. The case for Σ_n sets can be obtained from Proposition III.3 by means of the same argument. Q.E.D.

*Cf. Rogers [1967], p.132, p.135, and p.255.

tCf. Rogers op cit Theorem I(a), p.255.

<u>Definition VI</u>: A set is said to be a <u>complete</u> Σ_n set (or <u>complete</u> π_n set) if A is Σ_n (or π_n), and if B is an arbitrary Σ_n set (or π_n set) $B \leq B^A$. We now demonstrate the main result of the present paper.

<u>Theorem III.7</u>: Allow $C: \mathbb{F}_{R} \neq \mathbb{F}_{R}$ to be a nontrivial recursive rational choice on a recursive space of alternatives $\langle R(\chi), \mathbb{F}_{R} \rangle$ derived from the recursive metric space of \mathbb{R}^{n} , $M(\mathbb{R}^{n})$ for $R(\chi)$, the recursive representation of a compact, convex subset of \mathbb{R}^{n} . <u>Then for</u> <u>any fixed choice from $(\mathbb{F})^{\mathbb{N}}$ of full domain, the degree of unsolvability</u> <u>of graph (C) and therefore that of C, viewed as a correspondence on</u> <u>sequences in $(\mathbb{F}_{R})^{\mathbb{N}}$ cannot be less than 0^{2} .</u>

<u>Proof</u>: We begin with the observation that the following concept of strong reducibility implies general recursive reducibility of Df. I.

We next observe that the following concept of strictness implies completeness as described in Df. VI.

<u>Definition VIII</u>: An element of $\bigcup P(\mathbb{N}^{J})$, Φ , is said to be $j \in \mathbb{N}$ strictly π_{K} (or Σ_{K}) if Φ is π_{K} (or Σ_{K}), and if any other $\Lambda \in \bigcup P(\mathbb{IN}^{J})$ is such that $\Lambda << \Phi$. $j \in \mathbb{IN}$

Then, from the fact that strong reducility implies general recursive reducibility if a relation is strictly π_{K} (or Σ_{K}), then its graph, in accordance with Df. VI is a complete π_{K} (or Σ_{K}) set. We have shown in Lewis [1981], Theorem IV.⁴, however, that the non-recursiveness of the graph of a recursive rational choice function per fixed choice of full domain, occurs in fact because its codomain is strictly Σ_{2} , and thus in light of the above equivalence, the codomain of graph (C) is a restriction of graph (C), i.e. codomain graph (C) \subseteq graph (C) in the sense of Df.X of Lewis [1981], it follows that the degree of unsolvability for graph (C) cannot be less than the degree of unsolvability of the codomin. For, allow graph (Γ) to be the codomain of graph (C). Then from Theorem 4 of section 5, p.24 of Schoenfield [1971], dg(Γ) = dg(graph (Γ)) and since dg(graph (Γ)) = 0² by Lemma III.6 if graph (Γ) is a complete Σ_{2} set, then, from the fact that $\Gamma \subseteq C$, graph (C) = graph (Γ) \cup graph (C $-\Gamma$) and by Proposition III.2 and Proposition III.4 applied in succession,

* $\cup p(\mathbb{IN}^{J})$ is the class of all relation on \mathbb{IN} . $j \in \mathbb{N}$

†This is Church's λ -notation, and $\lambda \chi \Phi(\chi)$ is read "the partial function $\langle \chi, y \rangle$ that gives y as a value when χ takes an integer value.

-15-

 $dg(graph(C)) \ge 0^2$. The assertion for C viewed as a correspondence from \mathbb{F}_R to \mathbb{F}_R follows from another application of Theorem 4 of Schoenfield, by which dg(graph(C)) = dgC and thus $dgC \ge 0^2$. Q.E.D.

We have not, as of yet, verified a somewhat natural conjecture that the degree of unsolvability of a recursive representation for rational choice can be no more than 0^2 . If true, by precisely bounding the degree of recursive rational choice in this fashion, further connections would be possible within the realm of contemporary theoretical computer science, as 0^2 happens to be the degree of unsolvability of the inherent ambiguity problem of computer science, and also coincides with the decision degree of finite classes^{*}.

*Cf. A. Ready and W. Savitch, "The Turing Degree of the Inherent Ambiguity Problem for Context-Free Languages", <u>Theoretical Computer</u> <u>Science</u>, Vol.1, [1976], pp.77-91, and Rogers [1967], pp.264-265.

-16-

References

- Kleene, Stephen Cole, and Emil L. Post [1954], "The Upper Semi-Lattice of Degrees of Recursive Unsolvability", <u>Annals of Mathematics</u>, Vol. 59, pp.379-402.
- Lewis, Alain A., June [1981], "Recursive Rational Choice," Institute for Mathematical Studies in the Social Sciences Technical Report No. 355, Stanford University.
- Post, Emil L. [1944], "Recursively Enumerable Sets of Positive Integers and Their Decision Problems", <u>Bulletin A.M.S.</u>, Vol.50, pp.284-316.
- Richter, Marcel K. [1971], "Rational Choice", in <u>Preferences, Utility</u> <u>and Demand</u>, edited by John Chipman, et al., Harcourt Brace, New York, pp.29-58.
- Rogers, Hartley Jr. [1967], <u>The Theory of Recursive Functions and</u> <u>Effective Computability</u>, McGraw-Hill, New York.
- Schoenfield, Joseph R. [1971], <u>Degrees of Unsolvability</u>, North Holland Mathematics Studies, No.2, American Elseviar, New York.

REPORTS IN THIS SERIES

- The Structure and Stability of Competitive Dynamical Systems," by David Cass and Karl Shell.
 - Monopolistic Competition and the Capital Market," by J. E. Stiglitz.
 - "The Corporation Tax," by J. E. Stuglitz.
- Measuring Returns to Scale in the Aggregate and the Scale Effect of Public Goods," by David A. Starreit.
- "A Note on the Budget Constraint in a Model of Borrowing," by Duncan K. Foley and Martin F. Hellwig. "Munupoly, Quality, and Regulation," by Michael Spence.
- Incentitives, Risk, and Information: Notes Towards a Theory of Hierarchy," by Joseph E. Stiglitz.
- 8 5 8 8 8 8 8 6
- Asymptotic Expansions of the Distributions of Estimates in Simultaneous Equations for Alternative Parameter lequences," by T. W. Anderson.
 - "Estimation of Linear Functional Relationships: Approximate Distributions and Connections with Simultaneous Equations in Econometrics," by T.W. Anderson. 3
 - 'Monopoly and the Rate of Extraction of Exhaustible Resources," by Joseph E. Stiglitiz. . 100 100
- "Equilibrium in Competitive Insurance Markets: An Essay on the Economics of Imperfect Information," by Wichael Rothschild and Joseph Stightz.
- "Strong Consistency of Least Squares Estimates in Normal Linear Regression," by T. W. Anderson and John B. Taylor. "Incentive Schemes under Differential Information Structures: An Application to Trade Policy," by Partha Dasgupta 171. Ë
 - "The Incidence and Efficiency Effects of Taxes on Income from Capital," by John B. Shoven. 12
 - 174.
- "Distribution of a Maximum Litelihood Estimate of a Slope Coefficient: "The LIML Estimate for Known Covariance Matrix," by T.W. Anderson and Takamitsu Sawa.
 - "A Comment on the Test of Overidentifying Restrictions." by Joseph B. Kadane and T. W. Anderson. 13.
- An Asymptotic Expansion of the Distribution of the Maximum Likelihood Estimate of the Slope Coefficient in a Linear Functional Relationship," by T. W. Anderson. 176.
 - Some Experimental Results on the Statistical Properties of Least Squares Estimates in Control Problems." by I. W. Anderson and John B. Taylor. 17.
 - "A Note on "Fulfilled Expectations" Equilibria," by David M. Kreps. 178.
- "Uncertainty and the Rate of Extraction under Alternative Institutional Arrangements," by Partha Dasgupta and loseph E. Stightz. 6
- Budget Displacement Effects of Inflationary Finance," by Jerry Green and E. Sheshinski. 80
 - "Towards a Marxist Theory of Money." by Duncan K. Foley. 18
- The Existence of Futures Markets, Noisy Rational Expectations and Informational Externalities." by Sanford Grossman 82.
- On the Efficiency of Competitive Stock Markets where Traders have Diverse Information," by Sanford Grossman. 83.
 - A Bidding Model of Perfect Competition," by Robert Wilson. 8
 - 185.
- A Bayestan Approach to the Production of Information and Learning by Doing," by Sanford J. Grossman, Richard E. Kihlstromend Leonard J. Mirman.
 - "Disequilibrium Allocations and Recontracting." by Jean-Michel Grandmont, Guy Laroque and Yves Younes. 80
 - "Agreeing to Disagree," by Robert J. Aumann. 187.
- "The Maximum Lukelihood and the Nonlinear Three Stage Least Squares Estimator in the General Nonlinear Simultaneous Equation Model." by Takethi Amemiya. 88.
 - The Modified Second Round Estimator in the General Qualitative Response Model," by Takeshi Amemiya. 8
 - Some Theorems in the Linear Probability Model," by Takeshi Amemiya. 8
- The Bilinear Complementarity Problem and Competitive Equilibria of Linear Economic Models." by Robert Wilson. 161
 - 192
 - "Noncooperative Equilibrium Concepts for Oligopoly Theory," by L. A. Gerard. Varet. "Inflation and Costs of Price Adjustment," by Eyran Sheshinski and Yoram Weiss. 5
 - Power and Taxes in a Multi-Commodity Economy," by R. J. Aumann and M. Kurz.
- "Distortion of Preferences, Income Distribution and the Case for a Linear Income Tax," by Mordecai Kurz.
- 195. 195.
- "Demand for Fixed Factors, Inflation and Adjustment Costs." by Eytan Sheshinski and Yoram Weiss. Search Strategies for Nonrenewable Resource Deposits," by Richard J. Gilbert.
- Bargains and Ripoffs. A Model of Monopolistically Competitive Price Dispersions," by Steve Salop and Joseph Stiglitz.
- The Design of Tax Structure: Direct Versus Indirect Taxation by A. B. Atkinson and J. E. Stiglitz. 86
 - Market Allocations of Location Choice in a Model with Free Mobility." by David Starrett. 8
- 'Efficiency in the Optimum Supply of Public Goods," by Lawrence J. Lau, Eytan Sheshinski and Joseph E. Stiglitz. Į
 - Risk Sharing. Sharecropping and Uncertain Labor Markets," by David M. G. Newberi,
 - "On Non-Walrasan Equilibria." by Frank Hahn.
- "A Note on Elasticity of Substitution Functions." by Lawrence J. Lau.
- 'Quantity Constraints as Substitutes for Inoperative Markets. The Case of the Credit Markets." by Mordecal Kurz. Incremental Consumer's Surplus and Hedonic Price Adjustment," by Robert D. Willig. 10 10 10 10

Inflation and Taxes in a Growing Economy with Debt and Equity Finance," by M. Feldstein, J. Green and E. Sheshinski. "The Specification and Estimation of a Multivariate Logit Model," by Takeshi Amemiya. 213 213 210.

"Some Minimum Chi-Square Estimators and Comparisons of Normal and LogisticaModels in Qualitative Response Analysis," by Kumio Morimune.

"Optimal Depletion of an Uncertain Stock," by Richard Gilbert.

5 8 206

"A Characterization of the Optimality of Equilibrium in Incomplete Markets," by Sanford 1. Grossman.

- Prices and Queues as Screening Devices in Competitive Markets," by Joseph E. Stiglitz.
- "Conditions for Strong Consistency of Least Squares Estimates in Linear Models," by T. W. Anderson and John B. Taylor
 - "Utilitarianism and Horizontal Equity: The Case for Random Taxation," by Joseph E. Stiglitz.

 - "Simple Formulae for Optimal Income Taxation and the Measurement of Inequality." by Joseph E. Stiglitz.
- "Temporal Resolution of Uncertainty and Dynamic Choice Behavior," by David M. Kreps and Evan L. Porteus. "The Estimation of Nonlinear Labor Supply Functions with Taxes from a Truncated Sample." by Michael Hurd.
 - "The Welfare Implications of the Unemployment Rate," by Michael Hurd.
- "Keynesian Economics and General Equilibrium Thenry: Reflections on Some Current Debates." by Frank Hahn.
 - 'The Core of an Exchange Economy with Differential Information," by Robert Wilson.
- "A Competitive Model of Exchange." by Robert Wilson.
- "Intermediate Preferences and the Majority Rule," by Jean-Michel Grandmont.
- On Stockholder Unanimity in Making Production and Financial Decisions," by Sanford J. Grossman and Joseph E. Stighitz. "The Fixed Price Equilibria: Some Results in Local Comparative Statics," by Guy Laroque.
- "Selection of Regressors," by Takeshi Amemiya.
 - "A Note on A Random Coefficients Model," by Takeshi Amemiya.
 - "A Note on a Heteroscedastic Model," by Takeshi Amemiya.
- "Welfare Measurement for Local Public Finance," by David Starrett.
- "Unemployment Equilibrium with Rational Expectations," by W. P. Heller and R. M. Starr.
- "A Theory of Competitive Equilibrium in Stock Market Economies," by Sanford J. Grossman and Oliver D. Hart.
- "An Application of Stein's Methods to the Problem of Single Period Control of Regression Models." by Asad Zaman.
- "Second Best Welfare Economics in the Mixed Economy," by David Starrett.
 - "The Logic of the Fix-Price Method," by Jean-Michel Grandmont.
- "Tables of the Distribution of the Maximum Likelihood Estimate of the Slope Coefficient and Approximations." by T. W. Anderson and Takamitsu Sawa.
 - "Further Results on the Informational Efficiency of Competitive Stock Markets," by Sanford Grossman.
 - "The Estimation of a Simultaneous-Equation Tobit Model," by Takeshi Amemiya.
- "The Estimation of a Simultaneous-Equation Generalized Probit Model," by Takeshi Amemiya.
- "Numerical Evaluation of the Exact and Approximate Distribution Functions of the Two-Stage Least Squares Estimate," by T. W. Anderson and Takamitsu Sawa. "The Consistency of the Maximum Likelihood Estimator in a Disequilibrium Model," by T. Amemiya and G. Scn. 235. 236. 237. 238. 239.
 - "Risk Measurement of Public Projects," by Robert Wilson.
- "On the Capitalization Hypothesis in Closed Communities," by David Starrett.
- "A Note on the Uniqueness of the Representation of Commodity-Augmenting Technical Change." by Lawrence J. Lau.
 - "The Property Rights Doutrine and Demand Revelation under Incomplete Information," by Kenneth J. Arrow.
 - "Optimal Capital Gains Taxation Under Limited Inforration." by Jetry R. Green and Eytan Sheshinski "Straightforward Individual Incentive Compatibility in Large Economies," by Peter J. Hammond
- "On the Rate of Convergence of the Core," by Robert J. Aumann.
- "Unsatisfactory Equilibria," by Frank Hahn.
- Existence Conditions for Aggregate Demand Functions: The Case of a Single Index," by Lawrence J. Lau.
- "Existence Conditions for Aggregate Demand Functions: The Case of Multiple Indexes," by Lawrence J. Lau.
 - "A Note on Exact Index Numbers," by Lawrence J. Lau.
- "The Existence of Economic Equilibria: Continuity and Mixed Strategies," by Partha Dagupta and Eric Maskin. "Linear Regression Using Both Temporally Aggregated and Temporally Disaggregated Data." by Cheng Huao.
- "A Complete Class Theorem for the Control Problem and Further Results on Admissibility and Inadmissibility." by Asad Zaman.
- "Measure-Based Values of Market Games," by Sergiu Hart.
- "A Representation Theorem for "Preference for Flexibility"." by David M. Kreps. "Altruism as an Outcome of Social Interaction," by Mordecai Kurz.
- "The Existence of Efficient and incentive Compatible Equilibria with Public Goods," by Theodore Groves and John O. Ledyard.
 - "Efficient Collective Choice with Compensation," by Theodore Groves.
- "On the Impossibility of Informationally Efficient Markets." by Sanford J. Grossman and Joseph E. Stights. 259.

REPORTS IN THIS SERIES

Without Sidepayments: Some Difficulties With Current Concepts," by Alvin E. Roth. "Values for Games"

Martingles and the Valuation of Redundant Assets," by J. Michael Hurrison and David M. Kreps.

egressive Modelling and Money Income Causality Detection." by Cheng Mauo. remeet Error in a Dynamic Simultamous Equations Model without Stationary Disturbance," by Cheng Mauo.

The Measurement of Deadweight Loss Revisited," by W. E. Diewert.

The Elasticity of Derived Net Supply and a Generalized Le Chatelier Principle," by W. E. Diewert.

'Income Distribution and Distortion of Preferences: the R Commundity Care," by Mondecai Kurz. "The a⁻² Orden Mean Squared Errors of the Maximum Lingtichood and the Minimum Logit Chi-Square Estimator," by Takehi Amerriya.

emporal Von Neumann-Mugenstern and Induced Preferences," by David M. Kreps and Evan L. Porteus.

"Fake-Over bads and the Theory of the Corporation," by Stanford Grouenna and Oliver D. Hart "The Numerical Values of Some Key Parameters in Econometric Models," by T. W. Anderson, Kinix Morimune and Takamitu Suwa. "Two Representations of falormations Structures and their Comparisons," by Jerry Green and Nancy Stokey. Asymptotic Expansions of the Distributions of Estimators in a Linear Functional Relationship when the Sungle Sus is Large." by both Kunstomo.

"Public Goods and Power," by R. J. Aumann, M. Kurz and A. Neyman.

An Axiomatic Approach to the Efficiency of Non-Cooperative Equilibrium in Economies with a Continuum of Traders," by A. Mas-Colell

Tables of the Evert Distribution bunction of the Limited Information Maximum Lidethood Estimator when the Covariance Marrix in Koowa, "by T.W. Anderson and Tahamitsu Swe. 274.

pressive Modeling of Canadian Money and Income Duta," by Cheng Hsiao 276.

"We Carl Daugree Forever," by John D. Geanakopios and Neraklis Polemarchakis. "Constrained Everss Demand Functions," by Herklis M. Polemarchakis.

"On the Buyesian Selection of Nash Equilibrium," by Akira Tomioka.

aquilibrium Econometrics in Simultaneous Equations Systems," by C. Gourierous, J. J. Laffont and A. Monfort. 2.2

Duality Approaches to Microeconomic Theory," by W. E. Dicecct.

A Time Series Analysis of the Impact of Catadian Wage and Price Controls." by Cheng Hsiao and Oluwatayo Fakiyesi

"A Strategic Theory of Inflatton." by Mordecai Kurz. "A Characterization of Vector Measure Games in pNA." by Yair Tauman

"On the Method of Tavation and the Promision of Local Public Guods." by David A. Surrett. "As Optimization Problem Artining in Economics: Approximate Solutions, Linearity, and a Law of Large Numbert." by Sergiu Hart. "Asymptotic Expansions of the Distributions of the Estimater of Occificients in a Simultaneous Equation System." by Yasunori "BigKosh, Kimo Marinum, Neoo Kantonion and Masanobu Tangkuch.

Optimual & Voluntury Income Distribution," by K. J. Arrow.

Asymptotic Values of Mixed Games," by Abraham Neyman.

Time Series Modelling and Causal Ordering of Canadian Money, Income and Interest Rate." by Cheng Hsiau.

"An Analysis of Puwer in Exchange Economies," by Martin J. Obburne.

'Estimation of the Reciprocal of a Normal Mean," by Asid Zaman.

improving the Maximum Likethood fistimate in Linear Functional Relationships for Alternative Parameter Sequences," by Kimio Vorteurne and Nanio Kantionso.

"Cakutation of Bivariate Normal integrats by the Use of Incomplete Negative-Order Moments," by Kei Takewhi and Akimichi Takemur On Partitioning of a Sample with Binary-Type Questions in Lieu of Collecting Observations." by Kenneth J. Arrow, Leon Peorchindry and Walton Sobel. 562 ž

1

The Two Stage Least Absolute Deviations Estimators," by Takeshi Amemiya. Three Essays on Capital Markets," by David M. Kreps.

"Infinite Horizon Programs," by Michael J. P. Magili.

Electoral Outcomes and Social Lop-Likelihood Maxima." by Peter Coughlin and Shmuei Nitzan. 5 5 5 9

"Notes on Social Choice and Voting." by Peter Coughlin. Ē

Overlapping Expectations and Mart's Conditions for Equilibrium in a Securities Model," by Peter J. Hammond

Directional and Local Electorate Competituoes with Probabilistic Voting," by Peter Couphlin and Shmuel Nitzan

Asymptotic Expansions of the Distributions of the Text Statistics for Overidentifying Restrictions in a System of Simultaneous "queixees," by Kunitomo, Movimure, and Yokhuda. 20 ğ

"Incomplete Markets and the Observability of Risk Preference Properties," by H. H. Polemarchakis and L. Selden,

Multiperiod Securities and the Efficient Altivistican of Risk. A Comment on the Black-Scholes Option Pricing Model." by David M, Kreps. 8 ŝ

Asymptotic Fygunssons of the Distributions of k-Class Estimators when the Disturbances are Small," by Naoto Kunitomo, Viene Mormune, and Yonhihika Tsukuda. 202

"Arbitrage and Equilibrium in Economies with Infinitely Many Commodities," by David M. Kreps.

"Unemployment Equilibrium in an Economy with Linked Prices," by Mordecal Kurz.

"Pareto Optimal Nash Equilibria are Competitive in a Repeated Economy." by Murdecai Kurz and Sergiu Hari.

"Identification." oy Cheng Huso.

"An Introduction to 1 wo-Person Zero Sum Repeated Games with Incomplete Information." by Sylvain Sorin

"Estimation of Dynamic Models With Error Components," by T. W. Anderson and Cheng Hsiao. ЗЗ.

"On Robust Estimation in Certainty Equivalence Control," by Anders H. Westlund and Hans Stenlund. Ē

"On Industry Equilibrium Under Uncertainty," by J. Drèze and E. Sheahinski. 315.

の言語ではないでは、「言語」となっていた。

"Cost Benefit Analysis and Project Evaluation From the Viewpoint of Productive Efficiency" by W. E. Diewert. 316.

"On the Chain-Store Paradox and Predation: Rejutation for Toughness," by David M. Kreps and Robert Wilson. 317.

"On the Number of Commodities Required to Represent a Market Games," Sergiu Hart. 318.

"Evaluation of the Distribution Function of the Limited Information Maximum Likelihood Estimator," by T. W. Anderson, Nacto Kunitomo, and Takamitsu Sava. 319.

"A Comparison of the Logit Model and Normal Discriminant Analysis When the Independent Variables Are Binary," by Takeshi Amemiya and James L. Povell. 320.

"Efficiency of Resource Allocation by Uninformed Demand," by Theodore Groves and Sergiu Hart. 321.

"A Comparison of the Box-Cox Maximum Likelihood Estimator and the Nonlinear Two Stage Least Squares Estimator," by Takeshi Amemiya and James L. Povell. 325.

"Comparison of the Densities of the TSLS and LIMLK Estimators for Simultaneous Equations," by T. W. Anderson, Naoto Kunitomo, and Takamitsu Sawa. 323.

"Admissibility of the Bayes Procedure Corresponding to the Uniform Prior Distribution for the Control Problem in Four Dimensions but Not in Five," by Charles Stein and Asad Zaman. 324.

"Some Recent Developments on the Distributions of Single-Equation Estimators," by T. W. Anderson. 325.

"On Inflation", by Frank Hahn 326.

Two Papers on Najority Rule: "Continuity Propertius of Majority Rule with Intermediate Preference," by Fere Cougning and Kama-Pin Lin, and "Electoral Outcomes with Probabilistic Voling and Mash Social Weifare Maxims," by Ferer Cougnin and Shmuel Mitsan 327.

"On the Endogenous Formation of Comitions," by Sergiu Mart and Mordecai Kurz. 3č8.

"Controlisbility, Pecuniary Externalities and Optimal Taxation," by David Starrett. 8

"Monlinear Regression Models," by Takeshi Amemiya. 330.

"Paradoxical Results From Inada's Conditions for Majority Rule," by Herve Raynaud. 331.

"On Welfare Economics with Incomplete Information and the Social Value of Public Information," by Peter J. Hammond. 332.

"Equilibrium Policy Proposals With Abstentions," by Peter J. Coughlin. 333.

"Infinite Excessive and Invariant Measures," by Michael I. Taksar. 334.

"The Life-Cycle Hypothesis and the Effects of Social Security and Private Pensions on Family Savings," by Mordecai Kurz. 335.

"Optimel Reitrement Age," by Mordecai Kurz. 336.

"Bayesian Incentive Compatible Beliefs," by Claude d'Aspremont and Louis-Andre Gerard-Varet. 337.

"Qualitative Response Models: A Survey," by Takeshi Amemiya. 338.

"The Social Costs of Monopoly and Regulation: A Game Theoretic Analysis," by William P. Rogerson. 339.

Reports in this Series

1

- 340. "Sequential Equilibria," by David M. Kreps and Robert Wilson.
- 341. "Enhancing of Semigroups," by Michael I. Taksar.

- 342. "Formulation and Estimation of Dynamic Models Using Panel Data," by T.W. Anderson and Cheng Hsiao.
- 343. "Ex-Post Optimality as a Dynamically Consistent Objective for Collective Choice Under Uncertainty," by Peter Hammond.
- 344. "Three Lectures In Monetary Theory," by Frank H. Hahn.
- 345. "Socially Optimal Investment Rules in the Presence of Incomplete Markets and Other Second Best Distortions," by Frank Milne and David A. Starrett.
- 346. "Approximate Purification of Mixed Strategies," by Robert Aumann, Yitzhak Katznelson, Roy Radner, Robert W. Rosenthal, and Benjamin Weiss.
- 347. "Conditions for Transitivity of Majority Rule with Algorithmic Interpretations," by Herve Raynaud.
- 348. "How Restrictive Actually are the Value Restriction Conditions," by Herve Raynaud.
- 349. "Cournot Duopoly in the Style of Fulfilled Expectations Equilibrium," by William Novshek and Hugo Sonnenschein.
- 350. "Law of Large Numbers for Random Sets and Allocation Processes," by Zvi Artstein and Sergiu Hart.
- 351. "Risk Perception in Psychology and Economics," by Kenneth J. Arrow.
- 352. "Shrunken Predictors for Autoregressive Models," by Taku Yamamoto
- 353. "Predation, Reputation, and Entry Deterrence," by Paul Milgrom and John Roberts.
- 354. "Social and Private Production Objectives in the Sequence Economy" by David Starrett
- 355. "Recursive Rational Choice" by Alain Lewis
- 356. "Least Absolute Deviations Estimation for Censored and Truncated Regression Models" by James Powell
- 357. "Relatively Recursive Rational Choice" by Alain Lewis