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\/ ABSTRACT

We have demonstrated previously (Lewis [1981]) that within the
framework of recursive functions, a distinction must be made between
representations of the paradigm of consumer choice, and realizations
of a given representation. The present paper extends our previous
framework to show, in brief fashion, that the concept of a recursive
rational choice function defined as an effectively computable represent-
a@ﬁion of Richter's [1971] concept of rational choice, attains by means
of an application of Church's Thesis to the degrees of unsolvability
associated with a classification of types of subsets of the natural
numbers, & minimal bound in a measure of computational complexity

entailed by its realization in an effectively computable manner.
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RELATIVELY RECURSIVE RATIONAL CHOICE*

by

Alain A. Lewis¥*

I. Introduction

The purpose of the introduction is to acquaint the reader with
the key concepts and terminology employed in the derivation of the
principal result of our previous paper, to which the present work is to
be considered as a sequel. The reader is encouraged to refer to the
earlier paper (Lewis [1981]) for a more extensive exposition of the items
that are summarized in the following discussion. The idea that is basic
to the construction and definitions is that recursive structures of number

theoretic character, by means of what is known as Church's Thesis?,

AT

represent a very general class of effectively computable procedures, that

in another sense, typify ideal devices of artificial intelligence.

By a recursive space of alternatives is meant a pair <R(x),Eh >

n

where R(x) 1is the image of a subset, in Hi+ , that is compact and

Aol a e ol re L

convex, in a recursive metric space, M(Iin), which is in turn comprised

of n-tuples of R-indices of recursive real numbers; and where Eh is the :‘
-y

class of all recursive subsets of R(x). A recursive choice on <R(x),ﬁﬁa>

is a set valued function defined on the class TF_, C : Fp~ P(R(x)),

R £

#*This work was sponsored by Office of Naval Research Contract ONR-NOOO1L- -
T79-C-0685 at the Center for Research on Organizational Efficiency at B
Stanford University. :

##Department of Mathematics, College of Science, National University of
Singapore, Kent Ridge, Singapore, 0511.

+The discussion of Church's Thesis in Chapter 1 of Rogers [1967] is
an excellent introduction to this concept.




such that for any A€ F_, C(A) C A. We call the choice on <R(x),]FR>

a recursive rational choice if (1) there exists a binary relation

> ¢ R(x) x R(x) + {1,0} termed the preference ordering; (2) there exists

a function f : R(x) > IN such that if it should be true of @ ,

B € R(x) that a s B then £(a)2 £(B); and (3) for any A€ T,

c(A) ={a €A :yB€A f(a) > £(B)} . A recursive rational choice on
<R(x),1FR> is thus rational in the sense of Richter [1971] and is
representeble also in Richter's sense. The graph of a choice on <'R(x),]FR>

is an enumerated collection of pairs of sets <¥F_ , C(IF, )> indexed

R
by JE€ N whose domain* is {]F‘R } , and whose co~domain is
J JEWN
{(','(IFR )} . The elements of the domain of graph (C) are members of
J JEW
the class ]F‘R , and it can be demonstrated+ that if the choice on

<R(x),]FR> is recursive rational, then the elements of the codomsin
C(IF‘R ) are also members of the class IFR . A further result is that
J

a recursive rational choice on <R(x),]F‘R> is also recursively representable

in the sense that the components of graph (C) are all effectively computable

by machine devices, in which case graph () - FR X ]F‘R . A recursive

rational choice on <R(x),]F‘R > 1is said to be recursively reslizable, for ;
suitable choice of domain, if and only if graph (C) is recursively solvable -
or equivalently if graph (C) is a recursive subset of Fpx Fp . The i
*The domain is full if 3K EN Vi* jJ>K F, 4 Fy *¢

J i :
tcr. Lewis, [1981], Proposition V.2, -




ment of the main theorem of Lewis ([1981] Theorem IV.4) which places
a distinction between the notion of recursive representability and

recursive realizability.

Theorem I.1: Allow <R(x), ]FR> to be a recursive space of

alternatives derived from the recursive metric space of Bn, M( Rr" )s

for R(X) the recursive representation of a compact, convex subset

of B:_l . Let C: ]I"R -+ FR be the nontrivial recursive rational

cl_:oice on <R(yx), ]FR > and select from the class of sequences

N
(Fg )™, element ({Fp ! C F_ that comprises a full domain for

Ry sem

graph (C) C Fp x Fp . Then, per fixed selection of {TFp} .
J JEN

graph (C) is recursively unsolvable and therefore is not recursively

R

realizable.

The method of proof of the above theorem employs the fact that
the restriction of graph (C) to its codomain was unsolvable by showing
that any predicate that was adequate for describing the codomain
belonged to a specific place in the Kleene-Mostowski Hierarchy that
clessifies subsets of the natural numbers by the complexity of their
descriptions®. We presently exploit this feature of the proof to obtain
a lower bound on the degree of difficulty of computing the graph of
a recursive rational choice function by identifying the complexity of

descriptive predicates in the hierarchy with a measure of computational

LARS. e i 2l S e it 4 Pl A [ e AR N

#A brief discussion of the Kleene-Mostowski Hierarchy is given in
Appendix I of Lewis [1981]. A fuller discussion is in Rogers 119671
Ch.14, pp.301-33k.
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difficulty. The assertion of Church's Thesis which equates those
functions that are effectively computable by ideal computing devices.,
then becomes relative to the descriptive complexity of the predicates
that are used to describe the function. PFunctions that are effectively
computable in this sense of complexity are termed the relatively

recursive functions.

II. ‘Relatively Recursive Rational Choice

The concept of relative recursiveness originates with the work
of the logician, Emil Post+, and is concerned with the reduction of a
decision procedure for a given set of natural numbers, A, to that of
another set of naturel numbers, B. Intuitively speaking, a set A of
natural numbers is reducible to a set B of natural numbers, if for a
total predicate ¥ : N -+ {1, 0}, if the restriction to B, ‘P|B, can be
recursively realized, i.e., there exists a recursive ¢ : N =+ K such

that
¢(n) =1 wvhen \VIB(n) is true

#(n) = 0 when V’B(n) is false.

Then there exists a recursive realization for the restriction of ¥ to

A, \le, i.e., a recursive T(¢) : N - IN .Luch that

%Cf. Lewis [1981], Ch.II, and Rogers [1967] p.130.

¥'Degrees of Recursive Unsolvability", (Preliminary Report),
Abstract Bulletin of A.M.S.. Vol.Sk, [1948], pv.6k1-6L2,
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r'(¢)(n)

1 when VlA is true

r(2)(n)

0 when Yln is false

Alternatively, the set A is said to be recursive relative to B, or

»
recursive in B.

In a subsequent article, jointly authored with Kleene [1], Post
develops more fully the concept of relative recursiveness in terms of
degrees of unsolvability, which in turn is based on relations of
reducibility between decision procedures for subsets of the natural
numbers.+ The subject of degrees of unsolvability has been developed
into an extremely sophisticated branch of mathematical logic following
the article by Post and Kleene. To attempt a discussion of the substance
of the theory of degrees of unsolvability would exceed the bounds of
the present paper, and we will confine ourselves to using only those
items that bear on the relative recursiveness of rational choice,
referring the interested reader to more comprehensive works.**

A possible means of interpreting the assertion of Theorem I.1
is, that when recursively represented on subsets of the natural numbers,
a non-trivial rational choice function does not contain enough mathemat-
ical information in its graph to render the recursive solvability of

its graph. This is not to say that there may be in fact other subsets

of the natural numbers that do in fact contain enough mathematical

#*The discussion in Rogers [1967], Ch.IX, pp.127-13L.
+Cf. Ch. 13 of Rogers [1967].
#%Gerald E. Sacks, Degrees of Unsolvability, Annals of Mathematics

No. 55, Princeton University Press, [1955), and Joseph R. Shoenfield [19T71].
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information. We are then led to the natural inquiry of just how much
mathematical information is required to recursively solve the graph
of a recursive rational choice function. What we wish to show in the
discussion that will fellow is that by way of the notion of relative
recursiveness, it is possible to characterize which subsets of the
natural numbers contain enough information for the decision procedure
of recursively representable rational choice. Alternatively phrased,
we wish to inquire into its degrees of unsolvability.

We may first make the observation that there are three classic
notions of reducibility of decision procedures for subsets of the

natural numbers:

Definition I: A set A 1is generally recursive reducible to a

set B if A is recursive in B¥,

Definition II: A set A is Turing reducible to a set B if

there exists a Turing machine that reduces the decision procedure for
A to that of B. The reduction is performed by means of an oracle
that provides requisite information about the set B in the computation

of the set A as is required.*

Definition III: A set A is canonicslly reducible to a set

B if both A in IN-A are B-canonical sets in the sense of Post®*¥,

#This is due to Kleene, "Recursive Predicates and Quantifiers,”
Transactions A.M.S., Vol.53, [1945], pp.lL1-T3.

tcf. Rogers [1967], p.129.

*#Post, [19L4].
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It is another significant feature of recursive function theory
that the above three notions of reducility of decision procedures are
all equivalent (cf. Post and Kleene [1954], p.379) and hence, no generality
is lost in considering sets of natural numbers that are relatively
recursive versus sets of natural numbers that are Turing reducible in
discussing results 6n degrees of unsolvability.

Let us next denote the fact that a set A is recursive in a set
B by the relation A < _B. Then it can be shown* that for sets of

R

natural mumbers the following items are true:

(i) YA[A < RA]

(11)  VAVBYC[A < Bz B < (C) => A < .C]

& If we mean by A = RB that both A < RB and B < BA, from items
(i) and (ii) we see that =p 1is en equivalence relation among sets of

.l natural numbers from which the following definition can be obtained.

Definition IV: The degree of unsolvability, with respect to

- <R, of a set A is defined to be:

[A]={B§m:AsRB}=dgA

In terms of the definition, the following facts concerning

degrees of unsolvability can be derived.

#Cf. Rogers [1967] p.T78 or Schoenfield [1971] p.kk.

(i Thube “Sadain aust “sten e Rbue BUtR rege i S St PN AR A - EEdEEE A




3

8-

Proposition II.1 : Allow A and B to be sets of natural

numbers. Then

(i) A= RB <=> dgA = dgB .
(ii) If a <Db means that for some A and B a = dghA and

b = dgB, then dgA < dgB <=> A < RB and dgA < dgB <=>

(A< gB A BEA) .

We may view the concept of degrees of unsolvability in terms
of a sort of relativized Church's Thesis, in that if A < RB maintains
then we should think of A as at least as easy to, or alternatively not
more difficult to compute by effective means as B is to compute by
effective means. From this, A = RB would mean that A and B are
equally as difficult or equally as easy to compute by effective means.
It can also be observed that the relation < on the equivalence classes
under EiR partially orders the set of degrees, ani thus if the degree
of a set is a measure of the difficulty involved in effectiwvely computing
that set, then the higher the degree under the order < , the more
difficulty involved in effective computation.

If it should happen that set A is recursive, 1i.e., Zo-wo o
then under the relation of relative recursiveness, for any set B, it

happens to be true that A < B, and thus that dgA < dgB for any dgB.

R

*The ,5-"0 classification is the first classification in the Arithmetic
Hierarchy. Cf. Lewis [1981] Appendix I or Rogers [196T] Ch.1k.
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Therefore, there is a smallest degree denoted as 0, and O 1is the degree
of every recursive set A, i.e., every Zo-no set. On the other hand,
if for some set A, it were true that d4dgA = 0, then the set is recursive,
i.e., Zo-wo . The latter assertion follows from the fact that for any

recursive set B, A < RB . Therefore we have the following :

Proposition II.2 : A set of natural numbers A, is Zo-no

if, and only if dgA =0 .

From the proposition, and the relationship it provides between
a recursive set of natural numbers and its degree of unsolvability we
are led, by way of the structure of the partial order on the set of

degrees, to certain deeper qualities of the Arithmetic Hierarchy by

associating degrees of unsolvability with levels and compartments in

the hierarchy of sets of natural numbers.

Let us now remark that Theorem I.1 can be given an interpretation ;;
at this point in terms of the theory of degrees that we have just \;
developed. The gist of what Theorem I.l1 seys is that if we view a non- E
trivial recursive rational choice function as a correspondence between .é

=]

classes of recursive sets the graph of the correspondence cannot be

recursive. By means of Theorem L Sec.5 p.24 of Sclnenfield [1971], if

G 1is the graph of & relation T, then dgG = dgl', and thus a further

interpretation of Theorem I.1l is that, in viewing C as & correspondence,
since graph (C) is not recursive and the degree of a recursive set is O,
dgC # 0 by way of Proposition II.2 . In terms of a relativized Church's

Thesis, if we sz that dgC # 0O then we merely say that the level of




difficulty incurred in an effectively computable realization of C is
not as easy as that of the recursive sets. It is desirable however, to

say more than this, to which purpose we now turn to the main result.

III. The Minimal Degree of Recursive Rational Choice

The purpose of this section is to provide a statement on the
lower bound of the degree of unsolvability of recursive rational choice
by means of associating degrees with the classification of sets provided
by the Arithmetic Hierarchy. Observe first, that an alternative means

of defining the components of the Arithmetic Hierarchy to that of using

Kleene strings*, as was done in Lewis |1981], can be obtained by

n+l

defining the Zn and L sets inductively as follows: . i’
- 1

(i) The L ~m sSets are the recursive sets. 5

(ii) A set is ¢ if it can be defined as: éi

x €A <=> Iyl(x,y) € B]
for B, a w_ set. O
n

(1ii) A set is LA 5

x € A <=> Wl(x,y) € B]

for B, a I set.
n

*A Kleene string is a quantified expression in the first order predicate
calculus of a recursive predicate on IN.

1
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Tg ) From this defining framework it is possible to prove the following

E_:Z ] propositions by means of induction on the arity of the set*, and give

.'-
rules for when sets are Zn or "n .

Proposition III.1: If A is Zn(ﬂn) and B is defined by 3

X €EB <=> ¥(x) €A where Y is a recursive function, then B is Xn(nn).

Proposition II1.2: If A is I or = for some m < n, K

4

then A is I and m_. !
n — n 4

Proposition III.3: If A is Zn(ﬂn), then N-A is wn(zn). i

Proposition III.L: If A and B are Zn(nn), then A UB

and ANB are I (v ).
n''n

A PR

The first three propositions are in fact properties of the Arithmetic
Hierarchy, and the last says that per fixed arity, the Zn and L sets
are closed under set operations. These properties are in turn useful in !

enabling one to evaluate the degrees of the En and "n sets.

Lemma IIT.5: A set of natural numbers A is Zn if and

+1
only if for some set B, AiReB** and B 1is T %

#The arity of a Zn or m set is n.

+The proofs are found in Schoenfield [1971] pp.31-32.

##The relation A < R
- Re

weakens A < B . Cf. Schoenfield [1971] p.2h.

B reads A 1is recursively enumerable in B and
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Proof: By definition, A < o B is true wvhen x €A <=> yl(x,y)] € B].

R

If A is I ., thenby (ii) of the inductive definitions, A :-ReB

for Bm . ] i
n

Conversely, suppose that A < _ B, and B is “n and suppose

Re
I indexes A in B, then x €A <=>XET?<=> ala EB./\,XGT;] .
where T? yields elements in accordance with I with an oracle for

B, and a is a finite sequence of elements in B. One can visualize

Lag 2ty

B
TI as a Turing machine that lists the elements of A wusing information

about the set B. To see that A is zn+l’ it will suffice to show that

o
I 1

has a recursively enumerable graph and thus is 21. By Proposition III.2

a CB and x €ET. are L.c BY vay of Proposition III.L, x € T;

it is therefore Zn+ We observe next that a C B <=> Yn < 1n(a)®

1
[Wa(n) = ?B(n)] where ¥ and V¥, are the definig predicates of

o and B respectively. Since a is finite, by Proposition IITI.4, it

nt+l
expression verifies this by way of Proposition III.4 directly:

will do to show that x = WB(n) is I . However, the following

4
3
1

x = ¥p(n) <=> [(¥p(n) =1 A n€B) y, (¥(n) =0 A n€B)] Q.E.D.

L 7 Uy

The next definition, when applied to the set of degrees, will

provide us with the means to make an assertion about the relative

B IR

difficult in effectively computing recursive rational choice.

*1n(a) is the length of a .

. N .
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Definition V: For a set of natural numbers A, define the Jump

or completion of A as:
A' = {y : QQ(X) =1} ={x : x € TQ}

where Ti is the domain of ¢i , for Qﬁ 8 defining partial predicate

*
for the set A with G8del index ¥ .

The completion of a set A always has the property that A! < ReA’

and that A < RA'. Furthermore, if A < B then A' < RB'. From this
latter fact when we consider the completion of the elements of the set

of degrees, starting with the minimal degree 0, we can form an ascending

chain: oi 0" 0' iRol" 0" iRolll’ ol" :Rollil’ O|l||:Rol|'ll’..‘

R
This is significant in the light of the next lemma.

Lemms ITI.6: Let A bea I ore m set. Then dgA < o,

for 0n the nth completion of the recursive degree O.

Proof: By induction, if we consider n =0, if A is Zo - T

the result is trivial as dgA = 0 necessarily. Assume then that the

Lemma is true for "n sets, then from taking Lemma III.5 forward, and
by the properties of the completion operator if A were 2n+1 and B
were T, A< RB implies that dgA < dgB < 0". The case for Zn sets

can be obtained from Proposition III.3 by means of the same argument, Q.E.D.

g

P

I

%*Cf. Rogers [1967], p.132, p.135, and p.255.

t+Cf. Rogers op cit Theorem I(a), p.255.
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Definition VI: A set is said to be & complete En set (or complete

L set) if A is L (or nn), and if B is an arbitrary I set

(or L set) B < RA .

We now demonstrate the main result of the present paper.

Theorem III.7 : Allow C : ﬂ%‘ -+ ﬂﬁ‘ to be a nontrivial recursive

rational choice on a recursive space of alternatives <R(yx), B%‘>

derived from the recursive metric space of R", M(R") for R(x), the
recursive representation of a compact, convex subset of Rn. Then for

any fixed choice from (F)nq of full domain, the degree of unsolvability

of graph (C) and therefore that of C , viewed as a correspondence on

sequences in (]l“R)]N cannot be less than 0> .

Proof : We begin with the observation that the following
concept of strong reducibility implies general recursive reducibility

of Df. I.

Definition VII: Allow . and 9, to be elements of U P(INJ)*
1 2 e

such that ¢. is n-any, and ¢, 1is m-ary. Then 01 is strongly

1 2

reducible to @2 written 01 << 02

-’.
n-aty functions frseees fm » for which ¢ C (xl"°’xn) ¢2(f1(xl,...’xn),

if there are partial recursive

cees fm(xl,...,xn)) .

We next observe that the following concept of strictness implies

completeness as described in Df. VI.

R N I U S S S o —t OUS Y TS R T
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Definition VIII: An element of U P(NJ) , ¢, is said to be
JEN

strictly m, (or EK) if ¢ is m. (or ZK), and if any other
AE U P(INY) is such that A << & .
JEm

Then, from the fact that strong reducility implies general recursive

reducibility if a relation is strictly (or ZK)’ then its graph,

K
in accordance with Df. VI is a complete e (or ZK) set. We have

shown in Lewis [1981], Theorem IV.4, however, that the non-recursiveness

of the graph of a recursive rational choice function per fixed choice of

full domain, occurs in fact because its codomain is strictly 22, and thus

in light of the above equivalence, the codomain of graph (C) is a restriction
of graph (C), i.e. codomain graph (C) € graph (C) in the sense of Df.X

of Lewis [1981], it follows that the degree of unsolvability for graph (()
cannot be léss than the degree of unsolvability of the codoamin. For,

allow graph (T') to be the codomain of graph (C). Then from Theorem L

of section 5, p.24 of Schoenfield [1971], dg(T) = dg(graph (T)) and

since dg(graph (T)) = 0° by Lemma III.6 if graph (T) is a complete 22

set, then, from the fact that T C C, graph (C) = graph (I') U graph (C - T)

and by Proposition III.2 and Proposition III.U4 applied in successsion,

* U P(IN'j ) is the class of all relation on IN.
JEN

+This is Church's A-notation, and Ax ®(x) is read "the partial

function <x,y> that gives y as s value when x takes an integer
value.
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dg(graph (C)) > 02. The assertion for C viewed as a correspondence
from Ek to 'FR follows from another application of Theorem L4 of

Schoenfield, by which dg(graph (C)) = dgC and thus dgC 2 02. Q.E.D.

We have not, as of yet, verified a somewhat natural conjecture
that the degree of unsolvability of a recursive representation for
rational choice can be no more than 02. If true, by precisely bounding
the degree of recursive rational choice in this fashion, further connections
would be possible within the realm of contemporary theoretical computer
science, as 02 happens to be the degree of unsolvability of the inherent
ambiguity problem of computer science, and alsoc coincides with the

decision degree of finite classes¥*.

#Cf. A. Ready and W. Savitch, "The Turing Degree of the Inherent
Ambiguity Problem for Context-Free Languages", Theoretical Computer
Science, Vol.l, 11976], pp.T7-91, and Rogers [196T], pp.264-265.
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