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NON-ZERO-SUM TWO-PERSON REPEATED GAMES
WITH INCOMPLETE INFORMATION*

by

Sergiu Hart**

. Introduct ion

An incomplete information environment is one where at least

some of the participants do not possess all the relevant data. Much

interest has been devoted in recent years to the analysis of such

situations. In the economic theory literature, for example: the

principal-agent problem; the theory of auctions; signalling (e.g., in

insurance markets); rational expectations equilibria; and so on.

What are the main difficulties in such problems? First, consider

the "informed" persons--those who know more than others. On one hand,

it is to their advantage to make use of their additional information

(in order to improve their own final outcome). On the other hand, by

doing so they actually reveal this information--and their relative

advantage vanishes. Thus--what is the good of being more informed, if

one cannot profit from it? This type of conflict is an essential issue

in the analysis of incomplete information environments.

*This work was partially supported by National Science Foundation Grant
SES80-06654 and Contract ONR-NO0014-T9-c-0685 at the Institute for Mathematical
Studies in the Social Sciences, Stanford University. It was also supported
by CORE and the Mathematics Department, Universitg Catholique de Louvain.

I wish to acknowledge many useful discussions with R.J. Aumann, J.-F.
Mertens and S. Zamir.

**Department of Statistics, Tel-Aviv University, Tel-Aviv, Israel 69978.



As an idealized example, assume someone has "inside information"

that a certain small company has Just succeeded in developing a new

product, for which a very profitable market exists. He thus expects

that the value of the shares of this company in the Stock Exchange

will raise dramatically. Should he immediately buy a large quantity

of these shares? By doing so, he will implicitly signal to the others

the success of the company--and everyone will want to buy its shares,

raising their value immediately and lowering the profits of the initially

informed person. The answer clearly lies in him buying the "right"

quantity of shares--not too large to draw attention, and not too small

to make his profit insignificant.

The results of the analysis of such models of incomplete infor-

mation usually indicate that some transmission of information does occur

(possibly, in an implicit way only; namely, deducing information from

actions taken by those possessing it). Thus, there is need for communi-

cations, and some sort of cooperation may arise (e.g., "trading

information")--even though everything is based on purely selfish

(non-cooperative) motives.

There is yet another conflict--this time, for the "uninformed"

participants. Should they trust the information transmitted by the

informed ones? In the Stock Exchange example--maybe the purpose of

buying a large quantity of shares is just to convince everyone that a

technological breakthrough indeed occurred, leading to a big buying

activity, which may finally make a good profit for the one that started
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it all. This, also in case no new product has been at all developed by

the company!

Game theory is a tool for studying conflict situations--by

definition, inter-personal conflicts. However, one obtains as an outcome

resolution of intra-personal conflicts (like the ones mentioned above)

as well--based on individual rational behaviour. This is true in parti-

cular for games with incomplete information--a class of which forms the

subject of this paper.

An important development in game theory in recent years has been

in the study of multi-stage games--especially, the so called repeated

games, where the same game is played repeatedly. This suggests itself

as a good framework for incomplete information games, for two main

reasons.

The first one is that by its very nature, a repeated game has

enough structure to allow the kinds of complicated behaviour we described

above (and many others as well). There is enough "time" to enable players

to "generate" certain beliefs in other people, or to make deductions,

statistical inferences, and so on. There is also place for threats,

for punishments--and for rewards too.

The second reason is more formal--although closely related to

the first one. Consider an infinitely repeated game with complete

information. A well known result (called the "Folk Theorem" since its

authorship is not clear) states that the non-cooperative equilibria in

4
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the repeated game precisely correspond to the individually rational and

jointly feasible points in the one-shot game. The importance of this result

is that one obtains cooperative outcomes in the one-shot game from

non-cooperative behaviour in the infinite game. Thus, the cooperation

we usually observe is explained here not as an outcome of altruistic

motives--but of purely selfish non-cooperative ones (which many feel are

the only rational ones).

One is therefore led in a natural way to the study of repeated games

of incomplete information. The first research on these was done in the

Mathematica [1966-68] reports, in particular by Aumann, Maschler and

Stearns. It turned out that the very complex structure of these games--

which, as we pointed out above, is one of the reasons for studying

them--creates many difficulties. Up to date, essentially only two-person

zero-sum games have been completely analyzed (see the forthcoming book

of Mertens and Zamir 11980], or the notes of Sorin [1980] for details).

As for the non-zero-sum case (still, only two players), a first

study has been done by Aumann, Maschler and Stearns [1968]. They

characterized a special class of equilibria, in the so-called standard

one-sided information case, where one player has more information

than the other one, and both observe during the play all the

actions taken. These equilibria--called "enforceable joint plans"--

essentially consist of a transmission of information from the informed

to the uninformed player ("signalling"), followed by a completely

non-revealing play from then on (similar to the Folk Theorem). Moreover,

I
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they showed that this does not exhaust all equilibria--one could have

joint randomizations of enforceable joint plans, and so on.

Our main result in this paper is the complete characterization

of all equilibria in such games. We will show that every equilibrium

is equivalent to a collection of non-revealing "plans", one of which is

chosen at random. This choice is done via a sequence of communications,

which are of two types: signalling (i.e., implicit transmission of

information), and jointly controlled randomizations (i.e., "lotteries"

in which no one player can unilaterally change the probabilities).

Thus, we are able to characterize in a formal way all the kinds

of cooperation and communication that arise out of non-cooperative

behaviour in these games; moreover, we obtain a precise structure that

guarantees it does not pay any player to do anything else (e.g., revealing

less or more, or double-crossing, cheating, and so on). We would like

to point out that the model is not the most general possible (in parti-

cular, in terms of the information structure); this paper is to be

regarded as a first step in the analysis of non-zero-sum repeated games

with incomplete information.

The formal model is described in Section 2, together with various

notions of equilibrium. The main results are stated in Section 3, which

also includes additional discussion and intuitive interpretations.

Sections 4 and 5 are devoted to the two parts of the proof, and in

Section 6 we present some results on enforceable joint plans. We would

like to point out that Sorin [1981] has recently proved the existence of

such equilibria whenever the number of possible games is two.
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Some notation: R is the real line, and Rn the n-dimensional

Euclidean space. For vectors x = (xl,... ,x) and Y in
Rn , ='l"'n

nR , x > y means xi > yi for all i = 1,2,...,n, and x * y is the
n

scalar product I xiYi . For a finite set L, ILI is the number of
i=l

elements of L, and RL the ILl-dimensional Euclidean space with

coordinates indexed by the members of L (thus, we write

x = (x) = (x() for x in RL). The unit simplex in RL

will be denoted by AL

A L= {x E R: x k> 0 for all £ in L, x£ =}

Finally, N is the set of positive integers (1,2,...).

2. The Model

The class of games we study is given by the following:

(i) Two players, player 1 and player 2.

(ii) A finite set I of choices for player 1 and a finite set

J of choices for player 2; I and J contain each at least two

4 elements2/

(iii) A finite set K of games; to each k in K there

corresponds a pair of I x J matrices (A k,B k), with

k kk (BGiC-Ak = (Ak(i,J))iEI  , Bk = (BkiJi •

JI
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(iv) A probability vector p = (pk)k K  on the set K

(i.e., p e AK; without loss of generality, we assume pk > 0 for

all k in K - otherwise, we may discard those k that have zero

probability).

Based on (i)-(iv), a game of incomplete information r.(p) is

given as follows:

(v) An element K of K is chosen according to the probability

vector p; player 1 is told K, player 2 is not.

(vi) At each stage t = 1,2,..., player I chooses an element i

in I and player 2 chooses an element J in J; the choices are made

simultaneously (or, without either player knowing what the other did).

(vii) Both players are then told the pair (itit), and they get

the payoffs AK(it,it) and BI(itJt), respectively (but they do not

observe these payoffs).

(viii) Both players have perfect recall (i.e., they do not forget

what they were told at all previous stages).

(ix) All of (i)-(viii) is common knowledge to both players (see

Aumann 119761 for a precise definition).

Usually, (v) is called one-sided information (see also the

discussion below), and (vii) and (viii) - standard information. Note

that the players observe only the actual choices it  and it, and not

the randomizations used.

Following Harsanyi 11967-681, this can be equivalently viewed as a

game with complete but imperfect information (namely, where the

uncertainty players have is not about the "rules of the game" - e.g.,
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payoffs - but only on moves previously made, by the players or by

chance). This is done by adding a stage t = 0, at which "nature"

chooses an element K of K according to the probability p. At each

stage t = 1,2,..., the information player 2 has consists of the

sequence of previous choices by both players: (iljl),(i2,J2),...,

(it 1,jt.l)* As for player 1, he in addition knows K.

This completes the description of r,,(p). It should be pointed out

that more general games can be made to fit into this model. In

particular, consider the case where player 1 does not have full

information on K, but player 2 knows even less (see Mertens & Zamir

f1980, Ch.III]). Formally, a partition of the set K is given for each

player, which is informed only what element of his partition contains

the chosen K. For example, let K = (1,2,3,4,51, the partition of

player 1 is {1,2),{3),(4,(5}, and that of player 2 is {1,2,3),{4,51.

The (common) prior is p =(1/5, 1/5, 1/5, 1/5, 1/5). First, we observe

that both players distinguish between (1,2,3) and (,5) - thus, there

are two completely disjoint games. In the first, both do not distinguish

between 1 and 2; therefore, this corresponds to K' = ((1,21,(3)} and

p1 = (2/3, 1/3), where the payoff matrix for (1,21 is A 1 12 ) =

(1/2)A I + (1/2)A 2  and similarly for B. Note that 2/3 is the

conditional probability that K E (1,21 given K E (1,2,3), 1/3 is

P(K = 31K E (1,2,3}), and 1/2 = P(K = 11P E (1,21) =

P(K = l1K E {1,2}) = P(K = 21K E (1,21). In the second latter game,

K" = {4,5) and p" = (1/2, 1/2). Thus, the original game has been

decomposed into two games, each fitting our model. It should be clear

4!
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how to generalize the construction given for this example.

Next we describe the Bets of strategies of the players in

r (p). For each t = 1,2,..., let Ht be the set of histories up to

(but not including) stage t, namely,3-

H =(I x J)t- .
t

A pure strategy a of player 1 is a collection a = {t}tj where
t t=l

(2.1) at: Ht x K + I

for all t = 1,2,... . Thus, for every history ht  in Ht  and every

k in K (the "true" game K chosen), at(ht; k) is the choice i t

made by player 1. In a similar way, a pure strategy T of player 2 is

r = {-t ) = l , where

(2.2) T t:Ht + J

for all t =1,2,....

A mixed strategy is, as usual, a probability distribution over the

set of pure strategies. Since r (p) is a game with perfect recall,

one can restrict the study to behaviour strategies (cf. Kuhn 119531 and

Aumann 1196141), where players make independent randomizations at each

move. A behaviour strategy is thus defined in the same way as a pure

strategy, with (2.1) replaced by

(2.3) at: Ht x K AI

and (2.2) replaced by
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(.)T Ht Aj "

Since we never use pure strategies specifically, the term "strategy"

will henceforth mean behaviour or mixed strategy.

We have not yet defined payoffs in P (p) - only sequences of

payoffs. Given a pair of strategies (a,T) of the two players, we

denote

k 1 T k(i(2.5) T A 2. T
t=l

T
(2.6) 1T = B'(itJt

t=l

k

for all T = 1,2,... and all k in K. Thus, aT  is the average

payoff up to (and including) stage T to player 1, if the rue game is

= k; this dependE on the choices of it's and Jt's, made according to

a and T (actually, only a(.; k) and T matter). Let Ek (a )
a, TT

denote its expectation. For player 2, 8T is his average payoff up to

T; it depends on a,T and also on the choice of K (according to

p). Let E ),T,p(OT  be its expectation.

A pair (a,T) of strategies is a (Nash) equilibrium point in

r(p) if

k k k k(2.7) lim inf E (a)> lim sup E , (a)
T+w  a T T-w a T T

for all strategies a' of player 1 and all k in K, and
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(2.8) lim Tinf E OT ) > lim sup E ,pT

for all strategies T' of player 2. If we take a' = a in (2.7), we

get a vector a = (ak )kk such that

(2.9) limE (a ak
T~ a T

for all k in K. Similarly, T' = T in (2.8) Zives B with

(2.10) lim E Ttp(OT) = •
T+a,

We will call a and B the payoffs of the equilibrium point

(a, i).

Note that they are computed ex-post--namely, after the choice of

c was made and player 1 was informed of it. Therefore, player 1

considers his payoffs in each possible state K = k, whereas for player

2 only his expectation over K matters. It can be easily checked that

the definition does not change if we replace (2.7) by ex-ante

optimality, namely:

lim inf E0 9T(u ) > lim sup E0 , (T )

Tie* Tie

where 0T is defined in the same way as 8 T (thus, aT = ). Indeed,

since the value k of K is in any case part of the information player

1 has at every stage, he can choose his best response against
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T independently for each k. In the imperfect information version of

r (p), the adequate payoff is indeed this expectation over K; in the

incomplete information one, the vector of payoffs should be considered

instead since, given any "type" k - in Harsanyi's terminology - it

does not care about the payoffs to all the other possible types!

A strengthening of the definition of equilibrium is suggested by

the results obtained in the zero - sum case (i.e., where

Ak + Bk : 0 for all k in K). A pair of strategies (a,T) is a

uniform equilibrium point in r,(p) if

Ek T a' k Ek k
(2.11) lim inf E (a k > lim sup(sup E k (a ))

oF,r T 0y ,r T

for all k in K, and

(2.12) lim inf E (,T, T) -> lim sup (sup E ,T, p

T+= T+- T

Clearly, every uniform equilibrium point is also an equilibrium point

(if we change the order of limsup and sup in (2.11) and (2.12), we

obtain (2.7) and (2.8), respectively). The payoffs (a,$) are given by

(2.9) and (2.10).

To emphasize the difference between the two definitions, we

translate them into the "e - language". A uniform equilibrium satisfies

the following: for every e > 0 there exists To  T (e) large enough
00

such that for all T > To,

k k k

(2.13) E, T(aT ) <a + e and

a
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EOT, () < 0+

for all k in K and all strategies a' of player 1 and T' of player

2. For a regular equilibrium (according to (2.7) and (2.8)), To may

also depend on a' and T'. The importance of (2.13) uniformly in a' and

T' is that it implies that (0,T) generates an c - equilibrium in all

long enough but finite games rT(p) (which are defined in the same way

as r (p), but they only last T stages). Since rm(p) may be viewed

as an "idealization" of such games, the uniform definition may seem more

appropriate.

However, we will prove the following result:

Proposition 2.14: The sets of payoffs of equilibrium points and

of uniform equilibrium points in r,(p), coincide.

Thus, although it is clear that there exist equilibrium points

that are not uniform, they are always payoff-equivalent to uniform ones.

Other definitions of equilibrium are also possible. For example,

one could use Abel instead of Cezaro summability; namely, limits as

p > 0 converges to 0 of

- xt
E(PX

where {xt)t 1  is the corresponding sequence of payoffs (this is

interpreted as the limit, as the interest rate goes to zero, of the

current value). Banach limits (see Section 4) can also be used.



-14-

However, in all cases the set of equilibrium payoffs will not change.

In view of this result, we can unambigously define the set of

equilibrium payoffs of r(p). Our main result will be a

characterization of this set.

Can one further strengthen the definition of equilibrium by

changing the order of limit and expectation? The answer is no - as an

example by J.-F. Mertens and the author shows already in the zero-sum

case.

3. Statement and Interpretation of the Main Result

In this section we state our main result - the characterization of

all equilibria in r,(p).

The Folk Theorem in the complete information case states that the

* set of equilibrium payoffs coincides with the set of feasible and

* individually rational payoffs. We consider first the notion of

individual rationality; it is to be understood in the sense of what each

player cannot be prevented from obtaining (i.e., the "minmax"). The

study of the zero-sum case (Aumann & Maschler [19661) enables us to

characterize individual rationality in r(p).

We need some notation first. Let p be a probability vector in

AK; let p * A be the matrix k A (i.e., whose (i,J)th element
~kEK

4 is p kAk(ij)). Consider the two-person zero-sum game with payoffs
kEK

to player 1 given by p • A, and let (val A)(p) denote its value (when

played just once). Thus,

(3.1) (vallA)(p) = max min (p • A)(x,y) = mn max (p • A)(x,y)

AI yA J yEA xEA
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where x = (x)i , = (Y and

(p.A)(xy) = j x IYj  pkAk(ij)
iGE JEJ kEC

Similarly, let (val2B)(p) be the value to player 2 of the two-person

zero-sum game with payoff matrix p • B to player 2. Clearly,

(3.2) (val2 B)(p) = - (val1 (- B))(p)

For a function f on AK, let vex f denote its convexification;

namely, vex f is the largest convex function on AK  that does not

exceed f. We will write (vex val2B)(p) for the evaluation of the

function vex (val2B) at the point p.

can now define: a vector a = (ak))_K in RK  is an

individually rational payoff vector to player 1 in r_(p) if

(3.3) q.a> (alA)(q) , for all q in AK
1

A scalar 8 in R is an individually rational payoff to player 2 in

r.(p) if

(3.4) 8 > (vex val2B)(p).-- ,2

These definitions are the correct ones, in view of the following

results. A set Q in RK is approachable by player 2 (cf. Blackwell

119561) if there exists a strategy T of player 2 such that

lim (sup E (d(Qa))) =0
T-) ,T T

Vq
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where T= (aT)k (recall (2.5)), d is the Euclidean distance in

RK, and the supremum is over all strategies a of player 1.

Proposition 3.5: Let a be a vector in RK . Then (3.3) is a

necessary and sufficient condition for the set Q = {x E RK : x < a) to

be approachable by player 2.

Proof: Blackwell 119561; for example, see Aumann & Maschler

[1966). Q.E.D.

Thus, if (3-3) is satisfied, then player 2 can guarantee that the

payoffs to player 1 will not, in the limit, exceed a for all k in

K simultaneously. If (3.3) is not satisfied, then given any strategy

of player 2, player 1 has a strategy such that, for at least one k

kin K, he will get more than a

For player 2, we have

Proposition 3.6: Let 8 be a scalar in R. Then (3.4) is a

necessary and sufficient condition for player 1 to have a strategy

a such that

lim sup (sup E T9p(T)) < 8 ,

where T  is given by (2.6) and the supremum is over all strategies

T of player 2.
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Proof: Aumann & Maschler [19661; see (3.2). Q.E.D.

Again, this means that player 1 can hold player 2 down to

(vex val2B)(p) in r(p), but to no less than that.

Having completed the study of individual rationality, we come next

to feasibility. Let us consider a simple case first. Fix i in I

and j in J: is there an equilibrium resulting in the pair (ij)

being chosen at every stage? Clearly, the answer depends on the actions

the players will take "outside of equilibrium" - namely, when (i,j) is

no longer been played. Again as in the Folk Theorem, it is easy to see

that the necessary and sufficient condition is precisely individual

rationality for both players (each will use the corresponding strategy

given by Propositions 3.5 and 3.6, respectively, immediately after the

other deviates from (i,j)). Therefore, the payoffs a = (A k(i,J))kK

and B = 0 plBk(i,j) will be equilibrium payoffs in r(p) if and only
kEK

if (3.3) and (3.4) are satisfied.

This reasoning can now be extended to any convex combination by

using the corresponding frequencies. It generates a class of equilibria

n in rO(p), which result in player 1 actually playing the same for all

k in K (i.e., independent of K ). Note that this is true only "in

equilibrium" (i.e., so long as there are no defections); "out of

equilibrium", the strategy given by Proposition 3.6 may depend on K. We

will thus call these equilibria non-revealing.

To define formally the corresponding payoffs, we denote by

I (A,B)(i,j) the vector
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kij) kK
(A,B)(i,j) - ((A (iJ))k.K, (B (i,J))kE) RK x R

for all i in I and j in J. Then, let

(3.7) F =cony {(A,B)(i,j) i E I, j e J)

where "cony" denotes the convex hull of a set. F can be viewed as the

set of feasible vector payoffs (in the one-shot game).

Let M be the maximum absolute value of any possible payoff:

(3.8) M = max {IAk(i,j)I, lBk(i,J)l: i E I, j e J, k e K)

We then write N for the set of all vectors in R, all of whose

coordinates are bounded by M. We also put RM for the real interval

K K K K
[-M,M] (thus = ( • Clearly, F is a subset of x RM.

Finally, we define the set G as follows: it consists of all

triples (a,S,p), with a in K, $ in RM and p in AK , such that

(3.3) and (3.4) are satisfied, and there exist c and d in RK with

(3.9) (c,d) E F

(3.10) a> c and p a =p c

(3.11) p = P e d

As in the zero-sum case, we will find it necessary to consider all

Kthe games r.(p), as p ranges over A , at the same time; a triple

(a,O,p) is understood as (aj) being payoffs in r(p).

In view of our previous discussion, G is essentially the set of
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payoffs corresponding to non-revealing equilibria (note that (3.10) can

k k k k kbe restated as: a = c if p > 0, a > c otherwise - therefore,

a and c are identical for all relevant games).

Our main result states that, based on the set G, we can

characterize all equilibrium payoffs. We thus define the concept of a

G-process, as follows.

Let g = (a,B,p) E Rjm x RM x AK. A sequence {gn n = {(an'On'pn)n=l

K K
of x Rm  ) - valued random variables (on some probability space)

is called a G-process starting at g if:

(3.12) g g a.s.

(3.13) There exists a non-decreasing sequence {Z nn of finite

fields4/ with respect to which {g is a martingale.
n n=1l

(3.14) Let g, be an a.s. limit of gn (as n + -); then

g E G a.s.

(3.15) For each n = 1,2,..., either an+l = an a.s., or

Pn+l = Pn a.s.

The martingale condition in (3.13) means that gn is Zn- measurable

and E(gn 1 Zn) =g a.s. for all n. Together with (3.12), it

implies

E(gn) = g for all n. Since the sequence is uniformly bounded, the

Martingale Convergence Theorem implies that it has an a.s. limit - thus

(3.14) is well defined. It then means that g. (a.,o.,p.) satisfies
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a.s. individual rationality for both players (i.e., (3.3) and (3.4)),

and also (3.9) - (3.11).

The last condition (3.15) is slightly unusual; at every step,

either a or p remain constant (while the other may change - but inn n

such a way that the conditional expectation does not, by (3.13)). If we

disregard the Bn  coordinate, such a process may be called a bi-

martingale (see Proposition 3.18 below). The study of such objects will

be taken up in a forthcoming paper of R. J. Aumann and the author.

Finally, we define G* as the set of all points g = (a,B,p) in

KK
x RM x AK  such that there exists a G-process starting at g. We

note here that (3.12) and (3.15) are essential conditions; without

either one, G* will just be the convex hull of G.

We are now ready to state our main result.

Main Theorem: Let a E RK and $ E R. Then (a,$) are equilibrium

payoffs in r.(p) if and only if (a,B,p) E G*.

Thus, the set G* is the graph of the equilibrium payoffs

correspondence (as p ranges over A K).

The Main Theorem and Proposition 2.14 will be proved together (we

know of no direct proof of the latter alone). This will be done by

showing first (in Section 4) that all equilibrium payoffs, according to

the regular definition (2.7) - (2.10), belong to G*. And second, by

constructing (in Section 5) a uniform equilibrium (cf. (2.11) and

(2.12)) corresponding to any point in G*.

- - - - - -
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The second part of the proof leads us to an important additional

result; namely, that all equilibrium points in r(p) are equivalent to

a special class of equilibria (those we construct in Section 5).

Informally, such an equilibrium consists of a "master plan", which is

followed by each player so long as the other does it too; and of

1"punishments", which come into effect after a deviation from the master

plan has been detected.

The master plan is a sequence of "communications" between the two

players, the purpose of which is to eventually settle on a point in G

which is played forever from then on (using frequencies), and leads to

the desired "payoffs".The communications are of two sorts:

"signalling", where the informed player 1 plays dependent on K (and

thus reveals some of his information to player 2, who can update his

posterior probabilities); and joint decisions, more precisely "Jointly

controlled lotteries", where the two players make together a

randomization on how to continue the play. Signalling has already been

obtained in the zero-sum case; however, the jointly controlled lotteries

(in which the uninformed player plays a no lesser role than the informed

one) are a feature of the non-zero-sum case only.

At the end of the communication period (which we assume for the

moment to consist of finitely many stages only), player 1 will play

independent of K (otherwise, he will reveal additional information) -

and thus a non-revealing equilibrium results from then on (a point in

G). In the general case, the sequence of communications may be

infinite. However, after a long enough time, almost everything that was
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ever going to be revealed (by player 1) or decided (by a joint

randomization) has already occured - and we are essentially at a non-

revealing point again (i.e., in G). To generate the right payoffs,

"payoff accumulation" periods are then introduced between communications

- at which both players choose prescribed moves (again - with the

correct frequencies).

Finally, punishments are always in accordance to the strategies

given by Propositions 3.5 and 3.6, respectively (see Proposition 3.16).

The structure of such equilibria is summarized in Figure 1.

Figure 1

signalling

1communications jointly controlled

master prandomizations

payoffs
(by frequencies)

deviation
detected

punishments
(to individual
rational level)
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The G-process is thus "followed" during the play. At each stage,

the corresponding gn = (an'Bn'Pn) will serve as a "state variable",

with an  in being the vector payoff player 1 will get from then

on, 8n in RM  the same for player 2 (averaging over k), and

pn in AK the vector of posterior probabilities for K.

Why is an equilibrium thus obtained? Deviations during

communications stages are not helpful: jointly controlled lotteries are

so designed as to have each one of the players generate the right

probabilities even if the other does not; as for signalling by player 1,

it occurs precisely when an+l = a in the G-process, which makes him
nl n

indifferent among the various alternatives. In all other cases, the

punishments keep the players in line. This is due to the following:

Proposition 3.16: Let [(a ,snp be an (R x RM x A K
n n n n=l14 4

valued martingale, converging a.s. to (a.,O.,p.). Then:

(i) a satisfies (3.3) a.s. if and only if an  satisfy (3.3)

a.s. for a11 5 / n = 1,2,...

(ii) (S.,P.) satisfies 6 1 (3.4) a.s. if and only if

(0n,Pn) satisfy (3.4) a.s. for all n = 1,2,...

Proof: The "if" part is obtained by taking the limit as

n + (in (ii), we use the continuity of the function

vex val 2B - e.g., see Mertens & Zamir 11980, Theorem 3.141).

Let {Z n be the corresponding sequence of o - fields, then
n n ) g"

we have an = E(alZn) by the mrtingale theorem. The "only if" part
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in (i) is obtained by taking conditional expectations over Z . As forn

" (ii),

= E(B IZ_) > E((vex val2B)(p.)IZn)

> (vex val 2B)(E(p.Zn) = (vex val 2B)(p n )

where we used the convexity of the function vex val B . Q.E.D.
2

This last result leads to an additional interpretation of G* as

outcomes of bargaining processes - see Aumann [19811.

Corollary 3.17: Let (a,8) be equilibrium payoffs in

r.(p). Then a and 0 are individually rational for player 1 and player

2, respectively.

Proof: Proposition 3.16 for n = 1 (recall (3.12)). Q.E.D.

Another property of a G-process (which led to the name "bi-

martingale") is as follows.

Proposition 3.18: Let {(anpn)}n1l be an (K x AK) valued

martingale with respect to a non-decreasing sequence of a - fields

U {Zno._ If (3.15) is satisfied, then {an * PnIl is also a

* martingale with respect to {ZnI
n n-l'

Proof: Let n be such that an+l = an a.s.; then

E(an+l " Pn+llZn) = E(an * Pn+llZn) = an E(Pn+IZn) = an Pn

since an is Z - measurable. The same when pn+l = Pn Q.E.D.

n



-25-

4. From Equilibrium to Martingale

This section contains the proof of the first part of our result;

namely, given an equilibrium point we construct the corresponding

G-process (see Proposition 4.43 at the end of the section for a precise

statement).

We start with an informal discussion of the proof. Let

(c,T) be an equilibrium point; to simplify the arguments, let

us assume that the frequencies with which the various pairs (i,j) in

! × J are played, always converge. Let c = (ck ) and d = (dk )
0 kEK M kEK

be the limit payoffs, then clearly (c ,dw) E F. For every history

h up to stage t, we then define the following: for each k in K,

t

ak (ht) is the expected payoff to player 1 if K = k (thus, ak(ht) is

k
Just the expectation of c. given h t) ; 6(h t ) is the expected payoff

to player 2 (the expectation of d.0 given h t); and pk(ht ) is the

(posterior) probability that K = k (again, given ht). We next

introduce "half-steps", i.e., we define the above conditional expecta-

tions when given both ht and the next move i t of player 1; we will

thus write ak(ht,it), and so on.

Assume ht has positive probability of occurring when K = k.

Then all possible moves i of player 1 (i.e., those with
t

c(ht; k)(it > 0) must have the same expected payoff a k(hti t). Other-

wise, player 1 could give probability 1 to that i leading to the
t

highest payoff; this would be "undetected" by player 2 (since this it

is possible according to a), thus giving an expected payoff

- -
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of ak(ht,it), which is higher than that given by a. This contradicts

the equilibrium conditions, therefore a (hti t) must be constant--tthe

hence, equal to ak (ht) --for all possible it's. A similar argument

shows that for the other i 's an inequality is obtained (if they are
t

not chosen, then their corresponding payoff cannot be higher); this will

eventually lead to the condition (3.10).

Next, consider the half-step from (ht,i) to h = (h itJ).

Since player 2 does not know K, jt is independent of it, and the

posterior probabilities cannot change. We thus have pk (h it )t' t
4 k

pk(h t+).

It is easy to check that in all other cases, the martingale

k k
conditions are satisfied; e.g., E(a (ht+1 )1ht it  = a (ht,it), and

so on. We have therefore obtained a martingale (with the index set

being that of half-steps), which furthermore satisfies (3.15). The

individual rationality conditions (3.3) and (3.h) also hold

(since otherwise (o,T) will not be an equilibrium), and one can show

that, in the limit (which exists by the martingale convergence theorem),

a point in G is a.s. reached.

The actual proof will be quite complicated. Since we have no

convergence of the payoffs, we will need to use Banach limits. To

facilitate following the arguments, we divided the proof into a sequence

of subsections.
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4.1 The Probability Space

For each t E N (the set of positive integers), we defined

La Ht = (I x J)

the set of histories before stage t. We also define the set of

infinite histories

H = R (I x J)
t=l

an element of H being a sequence (itt)) of moves made by

the two players at all stages.

On H. we define for each t E N the finite field generated

by Ht, and call it Ht; thus, two infinite histories belong to the

same atom in Ht if and only if they coincide up to (but not including)t

t. Let H be the a-field generated by all the H 's (usually calledGo t

the cylindrical or the product a-field on the space H..).

The basic probability space will also include the choice of

K in K by chance. Thus, let n = H. x K be endowed with the

a-field Un 2K . Each pair of strategies (at) and each probability

K
vector p E A for the initial chance move determine a probability

distribution on this space. We denote it by P GTp ; note that E ,T, p

used in Section 2 is precisely the expectation with respect to P GvTp$

and Ek is the conditional expectation given K = k.
a ,
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We will use some additional fields on H . For each t E N,

let

H t = (I x J)t-i x I H Ht x I

and denote by Ht+. , the finite field it generates. We have now

defined H and Hs for all half-integers s, namely alljS 5

s G N2  {I, 1 , 2, 2,.. .1. Note that {H is an increasing2 is annceain

sequence of finite subfields of H., converging to H as s - c.

Since our probability space is actually R = H x K and not

H , we will denote the field generated by Hs on Q also by Hs; this

will generate no confusion.

h.2 Banach Limit

In order to deal with the non-summability of the sequences of

payoffs, we introduce the concept of a "Banach limit" (e.g., see Dunford

and Schwartz [1958], p. 73),

As usual, let £ be the (Banach) space of all real bounded

sequences x = {x 100 A Banach limit is a real operator L on 1,0
n n=l*

with the following properties-(holding for all x = {XnI n  and

y {YnIn in 9,, and X,p in R):

4n n

(+ .) L({ *n + V = * L({Xn}) + * L({ynd)

(4l (X n ,

4t . . . . . " " " n ' n : " "n l• n l" " [/ •ia 1
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(4.2) L((xn+ll _l)  L( X.( ln=l )

(4.3) lim inf x < L({xn) < limr sup x
n"- n -

n+

In particular, note that (4.3) implies-

(4.4) L(x n1) = lim x , if {x I is a convergent sequence
L n  n n

Therefore the Banach limit is an extension of the notion of limit

(to all bounded sequences). To slightly simplify the notation, we will
henceforth write L(x I for L({X n n

n n n=l

Three further properties of Banach limits will be needed.

Lemma 4.5: Let L be a Banach limit, and let {xnl n ,

nnn
{Yn} n E A • Then

IL[x n - L[yn]I lim sup Ixn - Yn

Proof: Immediate by (4.i) and (4.3). Q.E.D.

Lemma 4.6: Let L be a Banach limit, and X = {X I an

9 -valued 
random variable 

(i.e., X is a measurable 
function 

from

some probability space into Z.). If X has only finitely many values,

then

L [ E ( X ) ] = E ( L [ X n )
n n
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Proof: Immediate by (4.1). Q.E.D.

In particular, this result will be useful for conditional expec-

tations over finite fields. One could actually define a stronger con-

cept of Banach limit, which commutes with the expectation operator for

any uniformly bounded (or, even uniformly integrable) sequence of random

variables-without the finiteness assumption. The construction of such

a so-called "medial limit" requires however the use of the continuum

hypothesis--and it is not needed in our proof (cf. Mokobodzki, see

Meyer (1973]).

Lemma 4.7: Let L be a Banach limit, and C a compact and

convex subset of some Euclidean space Rm . Let {x 1n be a sequence
n n1l

in C, with xn =(1) (2) ""'g(m)). Let n (r) = L[C(r)] for
n n n n n

r : 1,2,...,m. Then y = ( 2.1) ,... ) E C.

Proof: Let q be any vector in Rm , then by (4.1), (4.3)

and x E C,n

q y =L~qex n ]< lirasup qo•x sup {q •c: c C1 .

This holds for all q; since C is a compact convex set, it implies

y E C. Q.E.D.

Given a Banach limit L, we can now define the concept of an

L-eguilibrium point in % (p), by replacing (2.7) with
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and (2.8) with

(4.9) L[E (8 p )T > L[EIE p(( .9 T.[,r,p()_ T [-.a,t,,p(8T)],

where the limit L is taken with respect to the index T = 1,2,...;

this convention will be kept throughout this section. The corresponding

payoffs will then be

(4.1o) L[a (a)]= ak

for each k in K, and

(4.11) LIEa  ,p (ST )] 8

Weput a = (ak)kEK.

In view of (4.3), every equilibrium point is also an

L-equilibrium point for any Banach limit L.

Throughout this section, we fix the following: a Banach limit

L, a probability vector p in AKI and an L-equilibrium point (a,T)

in r,(p) with payoffs (a,8) E x RM. Unless stated otherwise, the

probability measure P S P is assumed (on the space Q), with

E = E the corresponding expectation operator. Thus, all statementsV9TP

"a.s.", "martingale", and so on, will be with respect to P. Also, we

will use Ek for the conditional expectation E(.IK = k).
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Our purpose is to construct a G-process starting at (a,8,p).

The probability space on which it will be defined is Q, and the

sequence of fields is {fH Is 2 "

4.3 The Martingale {ps}

For each k E K, s E N2  and an history hs EH let p.

p (h) be the conditional probability of the "true" game ic of being

k, given 0, T, p and h (namely, if s = t C N, the first t - 1
5

moves of each player; if s = t + ., t C N, the first t moves of

player 1 and t - 1 moves of player 2). We can thus write

k = ,Tp(K = kH) = P(kHs)

(on each atom h E H of s Ps is a.s. constant, thus a.s. equal

to pk(h)). We put PS = (PkCk(

Proposition 4.12: The sequence {p} sEN2 is a AKvalued

2

4martingale with respect to {H ssEN 2 satisfying:

(4.13) P1 s p

(4.1h) Pt+ =Pt+l for all t E N
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(4.15) There exists a A -valued random variable p, such that

P p a.s. as s -* c.

Proof: The fact that {p k I forms a martingale is immediate

from its definition. Since it is bounded, it must converge a.s., say
k k

to pk; then p. = (P ) (4.14) follows from the fact that given

ht.3 (actually, only ht  suffices), the t-th move Jt of player 2

is independent of K; as for (h.13)--at t = 1 there is no history

yet, hence posteriors and priors coincide. Q.E.D.

44 The Martingales {ys and {Us I

In Section 2, we defined the average payoffs of the two players

up to time T (see (2.5) and (2.6)). We will find it useful to define

also

T1

(4.16) 1T = A (it'Jt)
T Tt=l

(i.e., a = aT). For each s E N2, let
•T

Ys = L[E(aT1Hs) ]

6 = L[E(STIHs)]

s.

i, - -, i J = . . .
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Thus, Ys and 6 are the (Banach) limits of the expected average

payoffs to player 1 and player 2, respectively, given a history hs

Proposition 4.17: The sequences lys } sE N
2 and {6sI sE N

2 are

RM-valued martingales with respect to {Hs}ssEN, satisfying:
2

(4.18) Y1 = p * a and 6l

(4.19) There exist RM-Valued random variables y. and 6 such

that y -y. and 6 s6B a.s. as s -

Proof: We can use Lemma h.6--the field H being finite, ys

has finitely many values:

E(y 5 IHs) = E(L[E(aTIHs4;2)]Hs)

= L[E(E( TIHs ) IH)s ]

= L[E( TIHs)] =

Thus {ysIsEN2 forms a martingale. It is bounded by M (which bounds

all possible payoffs by (3.8),hence also averages, expectations and

limits--by (4.3)--of those). Therefore it converges to some limit y.

For s =1, we have

E(QTIH) 'E E(T) = [ pkEk(ak)
kEK
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hence (4.1) and (4.10) give y1 p a. The sequence {s is dealt
5

with in a similar way (61 = s is just (4.11)). Q.E.D.

4.5 The Martingales {cs I and {ds I

We now associate vector payoffs to each infinite history. We

define, for each k in K and T in N,

k 1T
b I kbT = B Jt

t=l

kin a similar way to the definition (2.5) of ak . Note that these are

random variables, HT+l-measurable (k is fixed; in ccntrast, aT  and

BT  in (4.16) and (2.6) are (HT+1 2 K)-measurable). We further remark

k kthat a and bT  are defined for all histories--even those which may

be incompatible with c = k according to (G,T).

If the limit of 4 (as T + c) would always exist,

it would imply E(lim = lim E(aT). However, this is not the case,

and the Banach limit L commutes with the expectation operator if

there are only finitely many values (see Lemma 4.6 and the discussion

thereafter). We define, for each s E N 2

k iC = L[E(akTHs) ]

dk L[E(b kH) ]
s
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(again, for each k in K). Note that the expectations are not condi-

tional on K = k; thus, the probability of any history is its total

probability, summed over all k in K.

One can interpret ck and dk as follows. Let h E H have

positive probability, then ps = ps(hs) is the vector of posterior

probabilities for the various games k. Assume that after h occured,s

player 1 replaces his strategy o by his average non-revealing strategy

there; namely, for all k in K, he uses p k t(ht; k) instead
kCK

of at(ht; k) whenever t > s and ht coincides with h up to s.

The expected average payoffs up to T in game k will then be

E(aljhs ) and E(b Ths), respectively. As we shall see later, the

difference in payoffs due to this change in strategy becomes negligible

as s (Proposition 4.23). Intuitively, this is due to the fact

that after sufficiently many stages, player 1 has already revealed

(almost) everything he is ever going to reveal about the true game K;

therefore, he must thereafter play (almost) non-revealing, or (almost)

independent of K. In technical terms, this occurs whenever the martin-

gales are close to their limits.

As usual, we write c for (ck k and d for (d) kK . The

set F was defined in (3.7) as the set of all "feasible" vector payoffs

to both players (in the one-shot game).

Proposition 4.20: The sequences {c s and {ds) are

K -valued martingales with respect to {Hss2, satisfying:
4 s sEN 2

.44
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K(4.21) There exist R-valued random variables c and d such

that c ) c and d d a.s. as s c oS CD S Go

(4.22) E F a.s,.

Proof: The martingale property and (4.21) are proved in a

similar way to Proposition 4.17. For every T in N, the vector

((aT) kE( (b)kEK) belongs to the compact convex set F, as an average

of such vectors. The same holds for its expectations, and by Lemma 4.7

for its Banach limits (c,d s) too. (4.22) now follows by letting

s . Q.E.D.

The next proposition makes precise the statement that, as s ,

player 1 plays "almost" non-revealing after s (see the discussion

following the definition of ck and dk).s

Propositio 4.23:

Ys -Ps " s 0

s - ps d s + 0

a.s. as s + @.

Proof: We prove here the first part. Fix s E N2, and let

t > s, t ( N. Conditioning over Ht+I and K gives (recall that

k = P(K = k1Ht+l)) :

6*

0
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E(A(itjt)IH) E( I pk Ak(i.,Jt)IHt S IK t+l s

s E (A ( j )H

+ pkE(A(p t,Jt)iH)
IEK

+ E((Pt+ 1 - pk)Ak~it,JtHI~s )

We sum this for all t in the range s < t < T, and note that total

payoffs up to s are bounded by sM, to obtain

IE(TIH s ) - k IHs)I
REK

1k kII

s_ M + 1 M E(Ip .+ 1  Ps
tEN kEK

s<t<T

We denote (for each s E N2

s sup~t - PskP

t> s

and let T + . By Lemma 4.5 and (4.1),

Iy-PS cI < M E(' ilH)

Since {ps s converges a.s. as s + by (4.15), it follows that

E(7T ) - 0 a.s. as s + ; this assertion is proved in the next

lemma. Q.E.D.
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Lemma 4.24: Let {X nc_ be a bounded sequence of real random
n n~l

variables, converging a.s. as n + ®, and let {F be a non-
n n1l

decreasing sequence of a-fields. Define

Yn- sup Ixm - In
Yn S mlXX n

m>n

then

E(Y nF) 0

as. as n4-.

Proof: Let X,= lim X nand put Z = sup IX - X.J. Thenn' n m m_
m~n

{Z I' is a non-increasing sequence as n + , converging a.s. to
n n=.

zero. Therefore {E(Z IF )n* is a bounded super-martingale- with
n n n1l

respect to {F}...,} hence converges a.s. to some Z. Now

E(E(Z nIFn)) = E(Z n ) - 0, thus E(Z) = 0 and Z = 0 a.s. Noting

that Y < 2Z completes the proof. Q.E.D.n- n

Finally we have

Corollary 4.25:

y. = pw c . a.s.

6 = p. d. a.s.

Proof: (4.15), (4.19), (4,21) and Proposition 4.23. Q.E.D.
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4.6 The Martingales {e and {fs}

For each k in K and s in N2, we define

e = sup L[Eak (aIH)]
s 0 aT

where a' ranges over all strategies of player 1 (note that the

expectation now is conditional on K = k). Thus, for every history

k
h s E H s, es is the most player 1 can obtain if the true game is k

and player 2 uses T --given that h has already occurred.s

Proposition 4.26: For every k in K, s in N2 and t in

N:

(4.21) e k a k

k k

(4.28) ek > c k

k k

(4.29) et+ =EtiHt+,)

*k k

(4.30) et(ht) = max etk (ht,it) for all ht in H

i El
t

Proof: (4.27) is just (4.8) and (4.10). To obtain (4.28), we

consider the following o': if K = k and h occurred, play the

average non-revealing strategy given by a; namely,
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kv

at(ht; k) a Psat(ht; k') for all t > s and ht  in Ht  that!S t

k'EK
coincide with h up to s (see the discussion following the definition

of c and d in subsection 4.5).s s

To prove (4.29), note that the additional information from

t + to t + 1 is J - whose distribution depends on • and ht

only, hence is the same in Ek , as in E. Therefore

ksup L[Ek a h(aT ht+h t)

=sup L[E(Ek,(ai )h )

-- a aT ht+ , Jt )ht+ )

= sup E(L[E ,,(akjh )]1ht+)
o , T Tt+1

(we used Lemma 4.6). Given ht+ . the first stage player 1 has to

choose a move is t + 1, and by that time he will already know it'

Thus, the best he can do given h is just to do his best givent4
(ht+.,iJt) = ht+,. for each possible Jt" Therefore, the last expression

is

- E(sup L[E, (a1ht ht+; )

proving (4.29).

Next, let ht E Ht  be given. For any a', its rlevant part

for L[ ,,T(&lht)S consists of a probability distribution

i at(h; k) in A for choosing it, and some strategy afterwards

4
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a" a"(i t) = a'((htit,'); k), for each possible it ' Therefore

(again using Lemma 4.6)

et(h t) sup sup E'k(L[E'k(aklhtit)]lht)

7EA t(it

where E'k is just Ek . The choice of a"(it ) can be done

separately for each it, therefore we can interchange the first Elk

with the supremum over a"(it), to obtain

ek(ht) = sup r(i)ek (htit)
I iE7rC-A t

The supremum is attained by giving positive probability n(it) only

to those it  for which ek (ht,it) is maximal; this proves (4.30).

Q.E.D.

It is easy to see that (4.29) and (4.30) imply that

es =(e) forms a super-martingale. To obtain a martingale, we
5s kEK

define

fk ek + I (ek _ eks = s r r +

r<s

for all k in K and s in N and put fs (fk
2 sk ..
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Proposition 4.31t The sequence (f s s EN  is an -valued
2

martingale with respect to {HsISEN29 satisfying:

(4.32) f! - a

(4.33) ft =ft+', for all t in N

K
(4.34) There exists an RM valued random variable f such that

f -+ f a.s. as s co

(4.35) fs> s> c for all s in N2

(4.36) f > c and p • f = p • c a.s.

Proof: (4.32) is immediate from (4.27) and the definition

of fl" Let t E N, then

k - k k k k ket.31 + Ie e r+31 + (e t  e et+1

r<t

k .k k k
et =(e e ft

rEN

r<t

proving (4.33). Moreover,

k i k k= e I
t* t+;- et+l et,
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since the sum of the additional terms is identical in bothf andt+l
fk+ Using (4.29) completes the proof that {f I indeed forms a

s

martingale (note: with respect to the probability measure P E Pc,p

Since it is bounded, (4.34) follows.
By(430, k k

By (4.30), fk> ek (all the additional terms are non-negative),S - S

hence ek > c k and fk> ck a.s. (recall (4.28) and (4.21)).

Therefore p • > p * c =y (by Corollary 4.25). To

obtain the opposite inequality, we note that {p I and {f I form a
S S

bi-martingale, hence {ps " fs is a martingale (Propositiin 3.18), and
5S

we have by (4.13), (4.32) and (4.18)

E(pw • f) = E(p I • f1) = p•a = E(y 1 ) = E(y.)

proving that pc • f = y p • c a.s. Q.E.D.

4.7 Individual Rationality

We start with player 1.

Proposition 4.37: For all vectors q in AK  and all s in N2
4

q o f>q*e > (vallA)(q)

Proof: Let q E A K , and consider the one-shot zero-sum game A(q).

By definition (3.1), player 1 has a strategy u E AI  such that for any

strategy v E A of player 2,
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(4.38) (VallA) (q) < uiv. qkAk(iJ).

iE i j

Let h E H have positive probability (under (a,T)). Define a newS s

strategy a' of player 1 as follows: a'((h s I); k) = u for all k, and

c' equals a otherwise (thus, after h has occurred, player 1 makes
s

independent randomizations with distribution u at all stages and all

k). By (4.38), we have for all t in N, t > s

(val A)(q) EG IT( k qkAk(itJt)1hS)

k
As T + ®, payoffs before s become negligible in a, and we have

(by (4.2), (4.3) and then (4.1)):

(VallA)(q) < LIE G,,T ( k qka T h s)

kEK a

Recalling the definition of ek  (note that given hs, Ek is

independt:it of k),

(valA)(q) < k ek(h) = q e (h)
kEK s

and q • e < q * f follows from (4.35) . Q.E.D.
s -
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Corollary 4.39: For all q in AK

q • f > (val A)(q) a.s.

Proof: (4.34) and Propositions 3.16(i) and 4.37. Q.E.D.

We consider now player 2.

Proposition 4.40: For all s in N2

6 > (vex val 2)(ps ) a.s.s 2 s

K 2Proof: For each q in A , let r(q) be defined in the same

way as r(q), but with payoff matrices (-Bk)kEK instead of (Ak)kEK

for player 1. This is a zero-sum repeated game; therefore player 2

(the uninformed player) has a strategy T E T(q) such that

lim sup E, ( (-BK(it'J))) < (cav (val (-B)))(q)

= -(vex val B)(q)

for all a' (cf. Aumann and Maschler [1966] -- T may be taken to be

the corresponding Blackwell strategy; "cav" is the concavification of a

function, and we use (3.2)). Thus,

(4.41) lim inf E , (8T ) > (vex val B)(q)T 4- ,Tq T - 2

Let h E H have positive probability under (a,'), and consider5 5

the following strategy T' of player 2: after h has occurred, T' is
S
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T(ps
) where ps = Ps(h ) is the vector of posterior probabilities

given hs; otherwise, T' equals T. Let T > s, then we condition on

H, to obtain

E( ) - E'(ST) = P(hs)(E(STIh s ) - E'('TIhs))

where E' = E , (up to stage s -- no difference between E anda , T )p

E'; afterwards--only if h has occurred). Apply the Banach limit L
s

as T ; since (0,T) is an equilibrium (see (4.9)), we get by (4.1)

0 < P(h )(L[E(OTIhs)] - L[E'(STIhs)])

hence

6 s(hs) = L[E(BTIhs)] > L[E'(TIhs)]

(since P(h) > 0). By (4.3) and (4.41) (with a' = a; note that

payoffs up to s do not matter as T + -), the proof is completed. Q.E.D.

Corolla V 4.42: 6W > (vex val2B )(p.) a.s.

Proof: (4.15), (4.19) and Propositions 3.16(ii) and 4.40. Q.E.D.

4.8 The G-Process

We have thus completed the proof of

i4
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Proposition 4.43: Let (a,B) be the payoffs of an L-equilibrium

point (o,T) in rF(p). Then there exists a G-process starting at

(a,a,p).

Proof: The probability space is (P,H ,P ,TIp); the sequence of

fields is {HssN, and the G-process {g I is given by

-- (fs,6sPs). All the required properties are indeed satisfied:

gl - (a,O,p) by (4.13), (4.18) and (4.32); the limit g C = (f ,,,p )

(see (4,15), (4.19) and (4.34)) belongs to the set G a.s. by (4.22),

(4.36) and Corollaries 4.25, 4.39 and 4.42; and finally the "bi" property

(3.15) is given in (4.14) and (4.33). Q.E.D.

5. From Martingale to Equilibrium

This section is devoted to the proof of the second half of our

result; namely, given a G-process the corresponding uniform equilibrium

point is constructed.

Let g = (a,0,p) belong to G*. Thus, we are given a probability

spaceI-/  (Z,Z,Q), a non-decreasing sequence {Z }O of finite subfields' n n=l

of Z, and a G-process {gnn = {(f ,6 ,p )}0 with respect to
n n=1 n n9 n n=lw

Z}n, starting at g; i.e.,

(5.1) (fl,61 ,pl) (a,O,p) Q - a.s.

Without loss of generality, we will assume that Z is the trivial
1

field {Z,¢}. Let g® = (f ,6 ,p.) be a Q - a.s. limit of gn as

n . ; then g E G a.s. . We will find it useful to weaken the

4i
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bi-property (3.15) to the following:

(5.2) Ifn+l - f n * lipn+l - pnH = 0 a.s. for all n = 1,2...

This means that on each atom of Zn, either fn+l is constant (and

thus equals fn) , or pn+l is constant (and equals pn ); however, which

one of the two is true may differ from one atom to the other. It is

easy to see that G* does not change (to obtain (3.15) from (5.2),

insert between each Z and Z an additional field Z and put
n n+1 n+ '

gn+l = gn+l if fn+l = fn and gn+; = gn otherwise).

5.1 Standard G-Process

To simplify the construction of the equilibrium point, we will

work with a G-process having the following additional property:

(5.3) For every atom z of Z there are exactly twon n

atoms z and z" of Z contained in z
nln+l n+l n

and Q(z' + n (z" 1 j = 1/2
n 1 Zn) = "  n"+llZn)

Such a G-process will be called standard.

Proposition 5.4: For every g in G* there exists a standard

G-process starting at g.

Proof: We will show how to "transform" any G-process into a

standard one.
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Given a G-process {g =l with respect to {Z 10, we can
nnel nnal

describe the sequence of fields as a "probability tree" as follows.

The nodes in the n-th layer are the atoms of Z ; the root (i.e., then

first layer) can be taken to be Z (by (5.1)). A (directed) arc

leads from an atom zn of Z to an atom z of Z if and only ifn m m

m = n + 1 and z Z + C z . We associate the probability
If fll

Q(znl Iz ) to this arc and define the probability of a finite path

starting at the root to be the product of the probabilities of all its

arcs. This clearly equals Q(zn), where is the endpoint of the

path. This probability distribution is then uniquely extended in a

standard way to all infinite paths in the tree starting at the root;

we will denote this probability measure also by Q. This completes

the description of our probability tree.

The G-process {g_100 can now be regarded as being defined

on the nodes of the tree; we will write g (z ) for the value of g
n n

on the atom z of Z . The properties (3.12)-(3.14) and (5.2)n n

defining a G-process become:

(i) g1(Zl) = g.

(ii) E(g n+l(z n+l)IZ n+ succeeds z) = gn (z n) for all z n.

(iii) The sequence {gn(z) =  converges for almost all
n n n1

infinite paths, and the limit g belongs to G a.s.

(iv) For each node zn, either fn+l (zn) = fn (z n) for

all successors Zn+l of Z, or Pn+l(Zn+l) = Pn(Zn)

for all successors z of z.

na
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In order to obtain property (5.3), we need two kinds of modi-

fications of the tree--and thus, of the G-process. First, we make the

number of (immediate) successors of each node exactly two; and second,

we make the probability of every arc precisely 1/2.

For the former, we have two cases. If there is only one successor

Zn+l of zn" we can add an additional copy of the whole subtree starting

at Z+ I, and thus obtain two successors z and z' (which isn+l n+l

identical to z n+l ) --and moreover with probability 1/2 each (from zn)"

Now, assume z has more than two successors, say {z r Im We then
n n+l r~l*

introduce additional nodes in between; e.g., at level n + 1 we will

1 2 m
have Z+I and the union of Zn+l,. .. ,Z ; from the latter, at level

n+2 we will have Z+I and the union of z3  ,; so on.n n+l,...,n+l;ndso.

The probabilities of the new arcs will be defined as the corresponding

conditional probabilities; the value of the G-process at the new nodes,

as the conditional expectation. As an example, see Figure 2; the value

of the G-process at the new node will be

2 2g ( 2  k ( 3

2 +3gn+l (zn+l)+ 2 +3 gn+l(zn+l )

X~ +, X

Clearly, all four properties (i)-(iv) continue to hold after such modi-

fications.

Next we have to make the probabilities of all arcs precisely

1/2. Let z' and z" be the two successors of zn, and let '
n+l n+ln

4-

4-
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Figure 2

z nz nZn Zn

zI  z 2  z 3  z I

n+ 1 n+1 n+1 n+ I

A2  x3

X2 X3x2+\

2 3
z z
n+1 n+ I

and A" I - A' be the corresponding probabilities. We want to

obtain zl with probability X' and z"+ with probability "
n+l n

by using the probability 1/2 only. This is done as follows: we

express A' as a binary fraction

with X = 0 or I for all m. We then consider an infinite sequence

of independent Bernoulli trials, with "success" and "failure" having

probability 1/2 each, up to the first occurrence of "success". If this

happens after m trials, then z' "results" if = 1 and z"
n+l Im n+l

"results" if X 0. Thus, the total probability of z' is precisely
Im  n+l

' (since the first "success" occurs at the m-th trial with probability
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1/2m), and that of z" is X". This structure now replaces the
n+l

original randomization between zn and z" in the tree. As ann+l n+l

example, see Figure 3 (note that ' = 2/3 gives X = 1 for m oddm

and A = 0 for m even). Again, the value of the G-process at a newm

node is the corresponding expectation.

Figure 3

z z
nn

211

n+l n+l n+/
1

II

2

zz

n+1

z n+4
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With probability one, either z' or z" will be reached.n+1 n+l

If we do this modification at all nodes, the properties (i)-(iv) will

not be affected (there are only countable many nodes, hence the proba-

bility of "success" not occurring in even case is still zero). Q.E.D.

Henceforth we will assume that the G-process we start with is

already standard.

5.2 The Sequence {O }

n

The limit g. of the G-process belongs to G a.s.; by (3.9),

a corresponding point in F is thus obtained--and from it, a point

in the set AI J  of "feasible joint actions".

For e =(e(iXj) ~aj~ in AI× J  and k in K, we will

denote

A k(e) = [ e(i,J)A k(i,j)
iEI j J

and A(e) = (Ak(e))kEK; similarly for B.

Proposition 5.5: There exists a A IJ-valued random variable

e., satisfying Q - a.s.

(5.6) f > A(O) and p. f p. A(6)

(5.7) 6 =p B(e.)

I@
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Proof: By definition, g. E G implies the existence of (c ,d ) e F

satisfying f. > c., p. • f =p c and 6O = p dc. Since F

IxJ
is precisely the set of (A(O),B(8)) for all 0 in AI , there is

e. in Al ×J  such that c0 = A(0,) and d = B(e). The measurability

is obtained by the Measurable Selection Theorem (e.g., see Hildenbrand

[1974]). Q.E.D.

Proposition 5.8: There exists a sequence {On}n= of
n n1l

A IJ-valued random variables, satisfying Q - a.s. for all n in N

and (i,j) in I x J:

(5.9) 0 is Z -measurable

(5.10) le (i,j) - E(0 (i,j)IZ)j 1n n -n

(5.11) 0 +0 as n- .
n

(5.12) nen(i,j) is an integer

Proof: Define 0 E(eIZ ), then n1= forms a martingale
n n

converging to 0 . Choose 0n to be a rational approximation to 0n

with denominators n (e.g., let n'(i,j) = [nen(ij)]/n, where [x]

denotes the largest integer not exceeding x, then en(ij) is either

e'(i,j) or e'(i,j) + 1/n, so as to have the sum equal 1). Q.E.D.n n '%

5.3 The Strategies a and T

We can now define the pair of strategies (o,T). In a similar

way to the so-called "Folk Theorem" for repeated games with complete

4I



-56-

information (for a detailed proof, see the Lecture Notes of Hart

[1980, Section IV]), they are based on a master plan and punishments.

Each player follows the master plan as long as the other one does it

too (at least, as long as no deviation is detected), and uses the cor-

responding punishment otherwise.

The master plan consists of two parts. Stages t = n! , for

all n = 1,2,..., are communication stages; the moves made serve as

a mean of transmitting information (from the informed to the uniformed

player), or of making a joint decision. All the other stages are payoff

periods; well determined moves (namely, pure) are used in order for both

players to accumulate the "right" payoffs. The sequence n! was chosen

since (n - 1)! is negligible relative to n! as n goes to infinity--

thus only the last periodll- / really counts. Any other sequence with the

same property could be used just as well.

The master plan is derived from the G-process. The moves at

stage t = n! correspond to the arcs from z to z in the tree (seen n+l

subsection 5.1), whereas at stages (n - 1)! < t < n!, one "stays" at z nn

Thus, a function C is defined inductively from the set of finite

histories in the game for which no deviations occurred, to the set of

atoms of the fields {Z } --or, equivalently, to the set of nodes in the
n

tree.

Let i' # i" be two elements of I, and J' # j" two elements

of J, fixed throughout the remainder of this section. These two (pure)

moves for each player will actually be their communication alphabet

(thus, they essentially "talk" in a binary language).l2 1
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Let t = n1, let ht  be a history with no deviation from the

master plan, and let z = e(h ) be the corresponding node in the tree.n t

We will define now the behaviour of each player at stage t, and also

the resulting C(ht+l). If Pn+l = pn and fn+l = f at both nodes

7' and z" succeeding z , the two players play arbitrarily at t n1,n+1 n+1 n

and for all i and Jr,(ht+l) = Z' , say. Otherwise, we distinguish

two cases:

() Pn+l 0 pn (and thus fn+l = fn )

(ii) fn+1 0 fn (and thus p = Pn ) "

In case (i), we define for each k in K

p kPn+l ( zn +l )  ,if it =i

2pk (zn n

a(ht k) (it = Pnl k~ ,1
n+l if i tkt

2pn(z)

0 , otherwise

Since pn(zn ( (ZI +~ P (z" ))/2 by (5.3), a(ht; k) is indeedS ne P(n ) =(n+1(n+1 + n+l n+l" t

a probability distribution over I. As for player 2, we let T(h ) be

arbitrary in this case, and then for all jt in J, we put

,(ht,i',it) = Z' and t(ht," j t) =Zn+.



-58-

Lemma 5.13: Assume that P(ic klh) p k(C(ht) for all k EE K.

Then

P(C(ht~ =ZA+llht)= P(C(ht+,) =z"Ih lt~l nn+l1ht 2

* and

+l n t+1

Proof: Assume it ilj, then we have

P =i ilIht t P = i'jht9K= k)* P(,c k~h t)

L k (n n

kEK 2Pn(znn)

2E 1 n+l\zn+1 = 2

* Therefore

P(ic klht+1 ) = P(K = klht~it= '

=-~ = i'IhtI = k) *P(K =klh t)

P(it = lh)

2p k(z) nk

1 ~ n+1 (z'~
2

Similarly for it ill Q.E.D.
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Thus, if the posterior probabilities for the various values of k
k

at stage t = n1 are pn then the new posteriors generated after the

moves at time t are precisely p+l" Case (i) therefore corresponds

to a transmission of information (about the value k of K) from

player I to player 2; we will henceforth call this signalling (by player 1).

In case (ii), f # f = P we define for all k
n+l n an n+1 Pn

in K

if it i t ,
2' = i"

o(ht;k)(it) = 1 if i t  il'

0 , otherwise

if Jt
2'

T(ht)(it)= U , if it

0 ,otherwise,

and then C(ht,i',J') = C(ht,i",J") = Z'n 1 , (hti',J") = C(ht i"'J')

n+l

Lemma 5.14:

P((t+l Z+lht) = P(4(ht+l ) = zn+lht,it)

= P(C(ht+l) = Zn+l htJt )  2_t~l n~ t 2 9

where z stands for either z' or "1 for V or i",
n+l Zn+ l  t

and t for J' or J".
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Proof: The choices of i and J are made independently. Q.E.D.
t it

Thus, in case (ii) a lottery with probabilities 1/2, 1/2 is

performed among Z' 1  and Z+ 1 . Moreover, no player has any control

over the outcome--whichever of his two possible moves he chooses, the

probabilities are the same (1/2, 1/2). Therefore, this is called

(following Aumann, Maschler and Stearns [1968]) a Jointly controlled

lottery.

This completes the definition of the master plan for t = n!

(the communication stages). It corresponds to advancing one step in the

tree (from zn  to Zn+l). We next consider the payoff periods. Let

Z (n-l)!+l (thus, we are just after zn was determined at stage

(n - 1)!). Let n = 0 n(z n ) in A I J  be given by Proposition 5.8

(see (5.9)). At stages (n - 1)! + 1 through n! - 1, the players will

play en by frequencies; namely, the pair (ij) will be played 6n(ij)

of the time. Since all the denominators are n by (5.12), this can be

done in cycles of length n each. For example, assume n(i',j') = 1/n,

en (i",J") = (n - 1)/n and 0 n(ij) = 0 otherwise, then player 1 plays

i' once (at t = (n - 1)! + 1), then n - 1 times i" (at

t = (n - 1)! + 2, ... , (n - 1)! + n), repeating this n-stage cycle up to

(and including) t = n! - 1; as for player 2, he chooses J' at

t = (n - 1)! + 1 and J" at t = (n - 1)! + 2, ... , (n - 1)! + n, and

so on. Clearly, we put (ht) = Zn for all (n - 1)! < t S n1, when the

two players play as described.
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We introduce the following notation: for every i in I, J in

J and u, v in N with u <v, let

(5.15) Ov(i,J) = 1N u t < v it  i t ill

Thus, ov(i,j) is the frequency that the pair of moves (i,j) was
u

used at stages u, u + 1, ... ,v. Note that it is Hv+l-measurable.

Lemma 5.16: Let t E N, (n - 1)! < t < n!. Then, for all i

in I and j in J,

-n~ - 1)!( n-1)1+1,J - nil t - (n - )' T

Proof: Every n stages, the frequency e is precisely obtained.n

The inequality follows by ignoring the (at most) n - 1 stages following

the last complete n cycle. Q.E.D.

Finally, we have to define the punishments--what each player does

after detecting a deviation from the master plan by the other player.

Two results are needed from the theory of zero-sum games (see Propositions

3.5 and 3.6; the more precise statements here are needed to obtain a

uniform equilibrium).

Proposition 5.17: Assume the vector y in Rk satisfies (3.3).
Then player 2 has a strategy = (y) such that

eg (a) ify+ M ,

for all strategies a' of player 1, all k in K and all T in N.
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Proof: The precise bound is obtained from the proof of the

approachability theorem (cf. Blackwell [1956], or Mertens and Zamir

[1980, Ch. I]). Q.E.D.

Proposition 5.18: For every q in A , player 1 has a strategy

o(q) such that

E (aT ) < (vex val2B)(q)O,T',q

for all strategies T' of player 2 and all T in N.

Proof: The above inequality actually holds with B'((it,Jt instead

of aT, for all t (e.g., see Mertens and Zamir [1980, Thoerem 3.15]). Q.E.D.

The definition of o and T can now be completed. Assume first

that player 1 deviated from the master plan, either by playing i # i',i"
t

at some t = nI or by not playing the "right" it at some (n - 1)! < t < n!.

Let D be the stage at which this deviation of player 1 occurred.

Thus, all moves in h are according to the master plan, and i is the

D D

deviation move (which is observed by player 2 before stage D + 1). Let

z = C(h ) be the corresponding node just before the deviation; then

strategy T prescribes then that after h D+ (i.e., from stage D + 1 on),

player 2 should use -T(y) with y = f (z ) (See Proposition 5.17, and note
n n

that (3.3) is satisfied in view of Proposition 3.16(i)).

Next, assume player 2 deviated from the master plan at stage D

(and was detected). From stage D + 1 on, player 1 then uses j(q)

with q = pn(Zn) as defined in Proposition 5.18 (again, zn = (h D)).

This ends the definition of the pair of strategies a and T.



-63-

5.4 Payoffs and Probabilities for (aT)

In this subsection we assume that both players use a and T,

respectively. Thus, only the master plan matters; there are no derivations

and no punishments.

We first analyze the payoffs. Let T E N, (n - i)1 < T < n1,

and let hT in HT be a history possible under (a,T); i.e.,

PoaTp(hT) > 0. We will write en for en((hT)) --the value of n

on the atom C(hT) of Zn; similarly for the other random variables

defined on Z. Recalling definition (5.15) of the frequencies *, we
have

Proposition 5.19: Let T E N, (n - 1)! < T < n!, hT E HT with

P, (h > 0. Then, for all i in I and 3 in J,

IfT-l(ij) - [I - (n - i) (n - i)! l(i,j)] <
1 T 1 )e (i,j) T 1 n- n

Proof: If 4/n > 1, there is nothing to prove (both and the

expression [...] lie in the interval [0,1]). Let n > 5, then

T-1 (n - 1)! (n-l)!+ (T - 1) - (n - 1)! T-I
1 T- i i T - (n-1)1+1

The frequency e n I  is "played" at stages (n - 2)! < t < (n - 1)!,

therefore

I(n-l)! (n -2) + 1

fl U n-B-~ S ( )
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(the difference is due to 1 < t < (n - 2)1 and t = (n - 1)!; in

total, (n - 2)! + 1 stages; note that 6 n-1 requires a cycle of

length n - 1, which divides (n - 1)!). Together with the inequality

in Lemma 5.16 for the second term, we obtain an overall difference of

at most

(n - 2)! + 1 + n - 1 < (n - 2)! + n 4
T - 1- (n -l)! n

the last inequality being easily checked (for n > 5). Q.E.D.

This result shows that the frequencies obtained are close to

those given by the sequence {6 } . The next two corollaries will be
n

needed in the sequel; we will write M = M ji• II.

Corollary 5.20: For all k in K,

k - fk + (n- 1)! f kf +51
& - n T- i n-1 n n

Proof: By Proposition 5.19,

k k T-1 ~ IO

T- A ( ) < 'TAk('n) + n.kn  n

with A' = (n - l)I/(T 1- ) and 1 = 1 - A .

T T

Recalling (5.10) gives

A k(0 < E(A k(o)IZn) + .n n n
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By (5.6) Ak(e.) < fk, hence

Ak(e) fk +M
n- n n

Similarly for enI, and we obtain

from which the result follows. Q.E.D.

Corollary 5.21: For all q in AK

q B( T <_ max {q • B( ), q " B(e )} +

Proof: Immediate from Proposition 5.19. Q.E.D.

Next we deal with the probability P and the induceda ,r ,p

posteriors.

Proposition 5.22: Let n 6 N, z an atom of Z and T G N,
n n :

(n - ) T < n!. Then:

(5.23) P0rp (C(hT) =Zn) Q(z

(5.24) P (K = k(hT) = pk(z) for all hT in HT with C(hT) = z

and all k in K.

Proof: Induction on n. For n = 1, there is only one history h1

(the "empty" history), thus (5.23) is Just 1 = 1 and (5.24) is p = p1

(recall (5.1)). The induction now proceeds as follows.
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At stages (n - 1)1 < t < nI (payoff stages), neither C nor

any probabilities change (both players make pure choices). At t = n!, the

probabilities of C(ht) = z' or z" are 1/2 each by Lemmata 5.13
t+l n+l n+l

and 5.14, thus equal to Q(z' +Z n ) = Q(z"+l zn) by (5.3) (recall that
nln n~l

our G-process is now assumed standard). As for the posterior probabilities

(of K = k), they change only when there is signalling (t = nI and case

(i))--and we use again Lemma 5.13. Q.E.D.

We will now show that (a,T) result in the payoffs (a,a).

We need first the following result (Ek is the conditional expectation

given K = k, and fk = fk(C (h))).
n n '

Proposition 5.25: Let T E N, (n - 1)! < T < n! and k e K.

Then

Ek (fk) ak

Proof: The probability distribution of Zn =(hT) induced

by P is precisely Q (by (5.23)); therefore0 ,T ,p

E (fk(4- E (fk)
E,9T 9p( n((T)) =(Z)(n )

where E denotes expectation on the space Z (with respect to Q;(Z)
note that E and Ek are on Q). Since {fkl is a martingale

YTp aT n n

and f = a by (5.1), the above equals ak .

. - 1
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We claim that the same expectation is obtained when using
aT

instead of P . Indeed, the induced probability distributions overa )T ,p

the tree differ only in case of signalling (in a 3ointly controlled

lottery, it is 1/2 in both cases by Lemma 5.14); however, in that case

fm+l fm' so that the expectation is the same. Q.E.D.

Remark: Actually, the conditional expectations (with respect

to P and Pk) are also the same--thus, {f} is a martingale alson n

kwith respect to the probability distribution induced by Pk. Moreover,

any strategy a' of player 1 that differs from a only in the proba-

bilities used for signalling has this property (as we shall see in the

next subsection).

Proposition 5.26: For all k in K

lim E (a) =ak

lim E
T+_ arp T

Proof: We start with player 2. Let (n - 1)! < T < n!;

conditioning on HT, we obtain (E = E

EkBkk(k T-I)

ET-I1T)= PnB (1

k kwith p p ((hT as usual. By Proposition 5.19,rwntT
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B(-) _ [iBk(e k(en

where T' = (n - )'/(T- 1) and = - . As in the proof of

Proposition 5.25, the distribution of z = C(h T ) induced by P P PYT,p

is Q (see (5.23)). Therefore,

IE(T) E(z)(p . Bk(e + X Bk(6 ) < 4M

As n 0 , en - 6 and en 1 4 0 Q - a.s. by (5.11); also pn p ,

hence (XT, > 0, XT + XT i and everything is bounded):'0~T T T

lim E(ST_) =E (z)(p. • B(6))

By (5.7), thii is E WZ(6-) l = 8 (recall (5.1)).

For player 1, the asme argument gives (a was defined in (4.16)):
T

lim E(aT_) = E(z)(p A(B)) = E(zl(p • f) = p1  f p" a
T+Wo 1- WWG

(see (5.6), Proposition 3.18 and (5.1)). If we condition on <, we have

E ( T -1) p k a, _ ,

kEK

where Ek = E, = E, C( j< = k). As in the proof of Corollary 5.20,
aT aap

we obtain
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k < fk + X, fk +5
T-1 - Tn Tni n

By Proposition 5.25

Ek(a _ <Xk + Xak + 2_

hence

lim sup E(aT < a

which together with

lim I pkk( ) = T pk ak

T kE kEK

and p > 0 for all k completes the proof. Q.E.D.

Remark: The above proof actually shows that, if both players

use (a,T), then the average payoffs converge a.s. to the corresponding

= lim en , where e = e ( (h )). Therefore, one can interchange
n n n T

the order of limit as T w) and expectation (and there is no need for

Banach limits!).

At this point we can show intuitively that (a,T) is indeed an

equilibrium point (at least--in the weak sense (2.7)-(2.8); the compli

cated inequalities in the next two subsections are in part due to the

fact that we want to prove the uniform property (2.1l)-(2.12)).
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Consider player 1, and fix k in K (the true game). As we

noted in the last Remark, the average payoff to player 1 for infinite

histories without deviation from the master plan is the corresponding

A k(e ), which is < r. If the game has proceeded up to a point

corresponding to the node z in the tree, his expected payoff willn

thus be at most Ek(fkIzn) =fk (see Proposition 5.25 and the Remark

following it). This will also be the expected payoff if player 1 decides

to deviate now--by Proposition 5.17. This shows that he cannot gain by

detectable deviations. How about undetected ones? He can only make

those at communication stages (at payoff stages, the moves are pure).

If a jointly controlled lottery is performed, he cannot influence the

outcome--the two alternatives have probability 1/2 each no matter what

player 1 chooses (since player 2 randomizes truly according to T).

If he is in a signalling case, then fk+ = fk, thus fk is constant,
nl n n+l

and any "signal" he uses gives him the same expectation. Therefore

undetectable deviations do not help either, and a is optimal gainst T.

Consider now player 2. Since player 1 uses a, the posterior

probabilities are given by pn" Therefore the expected average payoff

of player 2 at a node z --if he does not deviate--is preciselyn

E(B(e )Izn), which for n large enough is close to E(p. • B(e.)Iz)

hE(6iZn n (since pn - pO). If he makes a detectable deviation,

he will get thereafter at most (vex val2 B)(Pn) < 
6n --thus he cannot

gain by doing so. The only other possible change in strategy is in a

U
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jointly controlled lottery; again, if player 1 uses a, player 2 cannot

influence the resulting probabilities. Thus T is a best response

against a.

5.5 a is Optimal Against T

We will show here that a is a best response of player 1 against

the strategy T of player 2. Moreover, the uniform condition (2.11)

will be proved.

Thus, let c > 0; we have to find T T (e) such that for all
0 0

T > T and all a'

0 T) < ak + C

for all k in K (see (2.13) and Proposition 5.26).

As usual, P, Pk, E and Ek refer to aj,p, whereas p, p,k

E' and Elk to a',T,p.

If both players use (o,T), there are no deviations from the

master plan, and C is defined for all possible histories (i.e., those

with positive P). However, when we consider alternative strategies, it

will be useful to define 4 for all histories (i.e., even those that

are not possible under (a,T)); (h t ) will be of the part of h t

up to the first stage a (detectable) deviation occurred. Thus, we

define

(5.27) D sup {t E N :P(ht) > 01

-It
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D is a random variable on Q with values in N U {o), and is H-

measurable. For every infinite history, D is the stage of the first

detectable deviation, if any; D otherwise. Note that P(ht ) > 0t

just means that the sequence of moves used by both players at stages

1,2,..., t - 1 is possible under (a,T); more precisely, that h is
t

possible under (o,T) when K = k for some k in K.

Let DAt E min {D,t}, then we define for all t in N and ht

in Ht

(5.28) (ht) = (hDAt)

The right-hand side was given in subsection 5.3; we thus extend the

definition of C to all histories.

Next, we "translate" the G-process to the space 0, as follows:

(5.29) gt(h) gm(zm

where zm =(h t ) (and thus, by (5.28), we have (m - 1)! < DAt < m!).

m t
As usual, g = ( f,6tPt with f ()kEK in R 6t  in R and

^k AK

P pt= t ke( in A

Proposition 5.30: Let k E K. The sequence {f}D is a
t t~lkH

martingale on (,H Ipk) with respect to {H ttl Moreover, for all

t in N, h in Ht  and all i in I,
t t - t

(5.31) Elk(t hi) =
t+lats t t

-lka.s.
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This proposition is a crucial assertion in our proof. (5.31)

means that the strategies a and T have been constructed in such a

way that player 1 is indifferent among his various choices of i t  at

all histories h --and this includes both detectable and undetectable
t

deviations from a (see also Proposition 5.25 and the subsequent Remark).

Proof: The measurability of ft with respect to Ht is

immediate by definition. As for the martingale property, namely

E'k(ftijht) = fk it will follow from (5.31) (which is stronger, since
t~l t

it holds for all it  in I, not only in the average).

We now prove (5.31). It is easy to see by (5.29) that

t fk only when DAt = m! and DA(t + 1) = m! + 1, and thust+1 t

D>t+1 and tml. Let z =(h t ); since f"+ fk, case (ii)--
m t m+l m

a jointly controlled lottery--occurs at zm . But it must be either

i' or i" (otherwise, player 1 deviated and D t); in both instances,

4(ht+ l ) is z'm+l or z" 1 with probability 1/2 each by Lemma 5.14,

and (5.31) reduces to

f fk+ (z, + fk ,,

4(Zm) 2+l( m+l 2 m+l(Zm+l)

which holds by (5.3). Q.E.D.

For each T in N, we define HDAT  to be the finite field

generated by all events of the form
13/

{h and DAT > t)
t-



-74-

for t in N, t < T and ht in HT . This is the field of events

prior to the first detectable deviation. Note that D + 1 (but not

D) is a stopping time relative to the sequence {H t t=l and so is

(D + I)A(T + 1) = (DAT) + 1. The field of events strictly before

(DAT) + 1 is precisely HDAT. It is easy to see that HDAT C HT,

and an atom in HDAT, which we denote by hDAT, is of the form

h {h and DAT= t
DAT t

for some t in N, t < T and ht  in Ht .

From now on, we fix a strategy a' of player 1, an element k

in K, and T in N. To shorten notation, we will write D for DAT

and HD  for HDA T .

Consider Ek(aT_l); we separate it into three parts: before D,

at D, and after D (note that only the first or.e is always non-empty).

Thus,

k D - 1 k + Ak(i
aT-1 = T - aD-l T - 1 i DD)

T-1

i-+ T-1 Ak(itsJt)
t-D+l

The middle term is at most M/(T - 1), hence

(5- 2)Elk(a k_ l E- _k D - 1 k_ ) + M
(5.32) 1 E1 - aD T - 1

+Ek (T 1 T1 Ak(it,Jt))

t=D+l
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For the first term, we have

Lemma 5.33:

kD - 1 k k D - 1 5M + 2ME' -(a _ ) c E' (D_--1- ) +E -lT -l < T-1 T n-i

Proof: We use Corollary 5.20:

( .34) El k D- 1 D-k <- Ef T --D - Y 1 f E k D-? 1 (m - -
5 Dl- T - 1 m T - 1 D - 1 rn-i m

lkD_-11+ 5R, ( -) I

where f' and rn-i are evaluated at the corresponding C(hD) (note

that m here is a random variable, (m - 1)! < D < ml).

By definitions (5.28) and (5.29), the first term is precisely

El (- 1 T

The second term is separated into two parts. If D < (n- 1)!, then

m < n- 1, hence

(M-l)1 (n- 2) n 1T -1 <-(n Fi) n - 1

giving a bound of 2M/(n - 1). Next, we claim that

Ek (m - 1)! (f - ) X _
T 1 -i m {D>(n 1)!)

4.4
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where X, denotes the indicator function of the event {...}.

Let u = (n - 1)!, then D > u if and only if P(hu+l ) > 0 (see the

definition (5.27) of D). But player 2 does not deviate from T,

therefore we have P' -a.s.: P(hu) > 0 if and only if P(hu4i) > 0.
u+l u ii

Conditioning on h and i gives
u U

Ek(T 1X{p(hu,i )>O}" E 1k(fk n

BY (5.29)u n-ik and k u+ recalling (5.31) shows that then- u n u+l

whole expression is zero.

The last term in (5.34) is also separated into two: for

D < (n - 2)!,

Dl-1 1 (n -2)! 1
T-1 m- (n 1) -n-I

for D > (n - 2)!, m > n -1 and

D-1 1 <1 1*
T-1 m- n-i

This gives a bound of 5M/(n - 1); together with 2M/(n -)

from the second term, the proof is completed. Q.E.D.

For the last term in (5.32), we condition on HD.

Lemma 5.35:

k 1 l k T - D -1.k + 2M
1 1 A Di,~I~ T -1 Tt=D+l AT 1
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Proof: Given h D , player 2 uses the punishment strategy i(y)

starting at t = D + 1, with y = fm(C(hD)) = fT (see (5.29)). The

inequality is obtained from Proposition 5.17, applied to

T-1
1 1 A k(it'Jt) 

Q.E.D.
t-D+l

Finally, we have our result.

Proposition 5.36: For every e > 0 there exists T T (c)
0 0

such that for all T > T and all a'
0

Elk(4) < a + e

for all k in K.

Proof: Combining the inequalities in Lemmata 5.33 and 5.35,

we obtain from (5.32)

kk < El-,kT- 2 ?) + M 5M-+ 2M + 2M
S -T - T- n - A - 1

The first term differs from E'k(T ) = fi = ak (see Proposition 5.30

and (5.1)) by at most another M/(T - 1). All additional terms are

independent of a', and converge to zero as T 4 (hence, n - too). Q.E.D.

5.6 T is Optimal Against a

Here we prove that T is a best response of player 2 against player 1

using a; as in subsection 5.5, we obtain the uniform prn-"-rty (2.12):
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Given e > 0, we show that there is To  T (c) such that for all

T > T and all T'
0

E,(T) < 8 + C

(recall Proposition 5.26). We will use the notations E' and P' for

a,T' ,p.

In subsection 5.5 the time of the first detectable deviation was

defined (see (5.27)); also, the G-process was translated to the space of

histories by (5.28) and (5.29). Thus, 6 t(h t) is the value of the sequence

{6m(zm)}m just before the deviation (if any, up to stage t). We have

Proposition 5.37: The sequence {6t= is a martingale on
t t=l

OD

(Q,H ,P') with respect to {H tt=I.

Proof: Similar to that of Pruposition 5.30. Again, we actually

prove a stronger assertion (but which will not be needed in the sequel),

namely

E'(6t+llhtjt) = 6t

P'-a.s., for all t in N, ht  in Ht  and jt in J. The only case

to check is t = ml and D > t + 1. The probabilities of z' and
m+l

ZVI are 1/2 each no matter what player 2 chooses at stage t; this is
m+l

so by definition of a in case (i) (signalling), and by Lemma 5.14 in

case (ii) (a jointly controlled lottery; since D > t + , jt =j' or

J" then). Q.E.D.
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An important property of a is that player 2 cannot increase

the probability of reaching any node z in the tree (he may be able
n

to decrease it by making detectable deviations in previous stages).

Proposition 5.38: Let t E N, (n - 1)! < t < n!, and let zn

be an atom of Z . Thenn

P'(4(ht) = zn )  Q(zn )

Proof: Induction on n. For n = 1 we clearly have equality.

Let u = (n - 1)!, then definition (5.28) gives

P'(C(h t ) = zn ) = P'((hu) = zn  and D > u + 1)

SP'( (hu+I) = Znk(h U ) Z n I  and D > u + 1)

• P'(D > u + ik(h) = Z P'( (h) Zn)

The same argument as in the proof of Proposition 5.37 shows that the

first factor is 1/2 (since D > u + 1, in both cases (i) and (ii) the

probabilities do not change); the second is at most 1, and the third at

most Q(Z) by induction. This completes the proof, since

Q(zn) (1/2) - Q(Znl) by (5.3). Q.E.D.

Let T' be a fixed strategy of player 2, and fix T in N,

(n - i)! < T < n!. As in subsection 5.5, we divide E'(STl) into three

parts, as follows (D stands for DAT):
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(5.39) E'( _) < E'(D - - 1  + M
T-1 T -1 D-1 T-l1

T-1

+E'T 1 (it,jt))
t=D+l

In the first term we condition on HD, to obtain

(5.4o) E'( D - 1T E' D - 1  B1 PI( kJH ) B k(D-l))T - 1-T-1-T - 1 DEK 1

Lemma 5.41: Let h be an atom of HD, and (m - 1)! < D < m!.

Then

k
P'( = klh D) = pM((hD

for all k in K.

Proof: Given hD, player 1 did not detect any deviations by

player 2 up to D. Therefore he played according to the master plan,

and the result follows by (5.24). Q.E.D.

Lemma 5.42: For every e > 0 there exists T1  T (c) inde-

pendent of T' such that

ED- D-1

E'( T 1 aT-1) < E' T - T) +

Proof: On the space Z, we define for all n in N

Srj = max {pn B(n) p B(6n-l

n n|
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Clearly inn  is Zn-measurable, and nn + 6 Q-a.s. as n 4 (indeed:

Pn 0 n + e by (5.11), and 6 = p. B(e.) by (5 v)). We also

have 6 6 as n + ®, thereforen

lim E (I0
(Z) (n - 6n) = 0

(everything is bounded by M). Thus, for every e > 0 there is

n = n (e) large enough such that

E (in <
(Z) n - 6n) < £

for all n > n1.

Using Lemma 5.h and then Corollary 5.21 (with q = p), we

obtain by (5.ho)

D - 1 D - 1 D - 1 1E' -- 8 )< E -- + 4fE'( 1 m)
T-lT-l - T -l1m T -l1m

where (m - 1)! < D < m!, and nm = n ( (h )). As in the proof of
m D

Lemma 5.33, the last term is no more than hM/(n - 1), vhich can

be made arbitrarily small for large enough T (independent of t').

Therefore, it remains to bound

ED 1 -1 In -6

(recall that 6= T 6(C(hD))). We 3eparate into three parts: m < n - 2,

m = n - 1, and m = n. The first one is bounded by 2M/(n - 1) (since

D < (n -2)1). Let z be an atom of Z ,then
n-

4.
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P'ChD) = z) = P'(C(hT) = z) < Q(z)

by (5.28) and Proposition 5.38. This implies that

E D- 1
(T 1- m - m• X{m.nl}) E(Z)(' n -n

Similarly, let zn_1  be an atom of Z n-, then

P,(C(hD) Z nl) P'(C(h n) = Zn_ and D < n!) < Q(zn-1 )

4q and

E61 <~m ii (Z)'nl -
T 1- l'm ml X{m=nl) -E Inn 1  -1

If n > n (c), both expectations are bounded by c, which completes the
1

proof. Q.E.D.

For the last term in (5.39), we again condition on HD.

Lemma 5.4h3:
1 T-1

E'( IBi~ J < - -

t-D+l tt D T-1

Proof: By Lemma 5.41, the posteriors at hD are given by

PM= Pm(C(hD)). From stage D + 1 on, player 1 uses his punishment

strategy; by Proposition 5.18, the expression we consider is thus no

more than

i4

4 , " | i ' - ln m m ' J -Im -



-83-

TT-iD -1 (vex val B)(Pm) < T-D-
Tl 2 pm T-l1 m

(we used Proposition 3.16 (ii)). But (T  m( (hD)), completing the

proof. Q.E.D.

Proposition 5.44: For every E > 0 there exists T T (e)
0 0

such that for all T > T and all T'
0

E' ( T )< B+ e

Proof: Similarly to Proposition 5.36, we combine (5.39),

Lemmata 5.42 and 5.43, Proposition 5.37, and (5.1). Q.E.D.

We have completed the proof of the second half of our main result.

Proposition 5.45: Let (a,O,p) E G*. Then there exists a

uniform equilibrium point (a,T) in r (p) with payoffs (a,O).

Proof: Propositions 5.26, 5.36 and 5.44. Q.E.D.

6. Enforceable Joint Plans

Let us consider now equilibria that require finite sequences of

communications. For every positive integer m, let

Gm {g r G*: there exists a G-process (g In starting
n n1l

at g such that gn gm for all n > m)

4 0 . .. .. . I | L "l ' i , i ' '
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Thus, G corresponds to those G-processes for which the limit go

is reached already at stage m. Clearly, G = G (recall (3.12)).

2
Therefore, the first such set to study is G

The following is easily obtained: A point g = (a, ,p) belongs

to G2  if and only if g can be expressed as a convex combination of

points in G, all of which have the same a coordinate or the same p

coordinate. Thus, there is a finite set S such that g = p(s)g(s),
S

with p = (p(s)) in AS , g(s) = (a(s),8(s),p(s)) in G for all s

in S, and either a(s) = a for all s or p(s) = p for all s.

The latter case (p(s) = p for all s) leads to no additional

points outside G; this is due to the fact that, for a fixed p, the

set of (a,B) such that (a,B,p) belongs to G is a convex set

(indeed, all conditions (3.3), (3.4), (3.9)-(3.1) are invariant under

convex combinations--again, when p is constant).

Therefore, the only interesting case is a(s) = a for all s

(and p(s) not constant). This generates points in G2 that do not

necessarily belong to G, and that correspond to equilibria with one

communication only- / (signalling), followed by payoff accumulation

henceforth (using frequencies). Following Aumann, Maschler and Stearns

[1968], this is called an enforceable joint plan.'

An interesting question is: how many different signals are needed?

Since the only information player 1 has (that player 2 has not) is the

value of K, it seems reasonable that no more than I KI signals should

be required. Namely, the most player 1 can transmit to player 2 is
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Just K, which has IKI possible values. However, it turns out that

this is not the case, and the correct bound is IKI + 1 rather than

IKI; i.e., no more than IKI + 1 signals are needed, and there are

examples which do indeed require IKI + 1.

For every integer £, let G 2() be the set of all g - (a,O,p)

in G2  such that

g p(s)g(s) , p p(s) =1 , g(s) = (a,B(s),p(s))e G
s=l S=l

and p(s) > 0 for all s= 1,2,...,L

Proposition 6.1:

G2 = G2 (Kj + 1)

K
Proof: For fixed a, the vector (O,p) lies in R x AK , which

is a IK!-dimensional Euclidean space; we now apply Caratheodory's

Theorem. Q.E.D.

We will next present an example where G # G2 (IKI), showing

that IKI + 1 is the best bound,

Example 6.2: Let K = {1,21, I = (1,21, J = {1,2,3,4,5,6,71.

The two games are (player 1 chooses the row, player 2 the column):

1
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.\J 1 2 3 4 5 6 7

k =1 1 0,0 o,4 0,-5 -1,-9 -1,-3 -1,3 -1,6

2 0,0 o,4 0,-5 -,9 -1,-3 -1,3 -1,6
___2 4___ 6______ :: K 2 : __

21 3 i, 5 7 1

k =2 1 0,0 0,-5 o,4 -1,6 -1,3 -1,-3 -_-9

2 0,0 10,-5 1o,4 -1,6 -1,3 -1,-3 -l-9

It is easy to see that (val1A)(p)= -1 for all p in A , and

(vex val2B)(p) = (val2B)(p) = max {-9p
I + 6p2 , -3p1 + 3p2 , 3pI - 3p2 ,

1 2 1 26p - 9p 1, where p = (pl,p2). Therefore, the intersection of G with

the hyperplane a = (0,0) consists of exactly three points:

1 1

g(l) = ((0,0), 0, (3',))

g(2)= ((0,0), 1,
3'3

g(3) = ((0,0), 1, (1,
3,3

1 2 1 2
where we write as usual g = ((a ,a ),8,(pl,p )); these three points

correspond to j = 1, j = 2 and J = 3, respectively (i does not

matter). Indeed, since a = (0,0), j = 4, 5, 6 and 7 are not possible;

individual rationality for player 2 (namely (3.4)) then implies that

j = 1 can be used only at p = (1/2, 1/2), j = 2 only at p = (2/3,1/3),

and J = 3 only at p (1/3, 2/3).
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Therefore G2will contain the convex hull of g(l), g(2)

and g(3) --however, no interior point of this triangle can be expressed

using only two of its vertices.

It is easily seen in this examiple that an additional condition

may reduce the number of signals to 2 = IKI. In general, we have

2Proposition 6.3: Let (a,O,p) E= G . Then there exists 8' in

2
R such that 0' > B and (a,V',p) E G (IKI)

Proof: By Proposition 6.3,

I I.
g =(a,O,p) = p(s)g(s) , p(s)=1

s=l s1l

g(s) = (a,B(s), p(s)) C: G and P(s) > 0 for all s =l2.,.,where

L. < JKJ + 1. Assume L. = JKJ + 1, and consider the I vectors

2.~)') Z= inAK x .They must be linearly dependent; let
s 1Z

{W(s)) be not all zero and such that w i(s)p(s) = 0 and
s1 s

2. 2.
w i(s) = 0. Without loss of generality, we assume that w i(s)O(s) > 0

s=l s1l
(otherwise, replace all it(s) by -it(s)). Let n~ = min f-p(s)/it(s):

is)> 01, and put p'(S) = p (s) + nrr (s). Then p'(s) > 0 for all

s =1,2,... ,1 and at least one p'(s) is zero; moreover,

Sp'(s) 1,~p'(s)p(s) = p and 8'S0p's8s)>8 Q.E.D.

Sl sl S=l

The following is now immediate.
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Corollary 6.5: Let (a,$) be the payoffs of a Pareto optimal=='

enforceable joint plan equilibrium in r,(p). Then no more than fKJ
signals are needed; namely, (a,B,p) 4 G2 (IKI).

What about Gm  for larger values of m? It is easy to see that

each Gm  is obtained from the previous Gm  by taking convex combi-

nations--with either a fixed (when m is even) or p fixed (when m

is odd). New points are usually obtained; Aumann, Maschler and Stearns

[19681 provide examples where G 0 G and G 0 G . It is probably

not difficult to use the same ideas in order to generate examples where

Gm  Gm-I for arbitrary m.

An open question still remains. Is G* the union of all the

Gi? If one ignores the game structure, and just considers the notions

mof bi-convexification (G ) and bi-martingale (G*), the answer is

negative: G* may contain points that do not belong to any G (and

it is not just a matter of closure either-- G* may be a very different

set). For details on these problems, the reader is referred to the

forthcoming paper of R. J. Aumann and the author.

4i

K .I
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Footnotes

1/ The standard example is the well known children's way of choosing
among two alternatives with equal probability ("two-finger
Morra"): they each show, simultaneously, either one or two
fingers. If they match (i.e., both show the same number), the
first alternative is chosen; if not, the second one. If both
choose the number of fingers at random (i.e., with probabilities
1/2, 1/2), the two alternatives each have probability 1/2, even
when one of the participants uses any other strategyl (This is
better than tossing a coin, which may be counterfeit - a fact
known to one but not to the other). This idea of jointly
controlled randomizations is due to Aumann, Maschler and Stearns
119681.

2/ In this case, one may duplicat the single strategy of a player:
this enables him to make choices, which do not affect the payoffs,
but serve as "signals".

3/ The set H1 , being an empty product, is defined to consist of one
element only.

41 A finite field means a field with finitely many elements; such a
field is equivalent to a finite partition of the space (the atoms
of the field being the elements of the partition).

5/ The statement is to be understood as: [a...] if and only if
[a n... for all n]; similarly in (ii).

6/ I.e., with 8. or 8 for B, and p. or p5  for p in (3.4).

T_/ Henceforth we will always use t for integers in N, and s for
half-integers in N2.

8/ We list here only those we will need in our proofs; the existence
of such L is guaranteed by the Hahn-Banach Theorem (see the
reference above).

9/ I.e., E(E(Zn+IFn+)IF n) _< E(ZnIF

0/ Z is a set, Z a a-field on Z, and Q a probability measure

on

1_/ By "period" we will usually mean the stages from (n-l)! to n1
for some n.
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12/ If there are more than two strategies, the communications may be
"shortened" (i.e., less stages). This is not important in our
model, since payoffs in finitely many periods do not matter, but
will be so if a fixed discount rate is assumed.

13/ This is the set of infinite histories which coincide with ht up
to time t, and for which D A T is no less than t.

li_! If the G-process is standard (cf. subsection 5.1), this would

require one stage in the game; in general, this may take longer
(e.g., if player 1 uses only i' and i" as in subsection 5.3,
then at least log2  stages are needed, where A is the number of
different values of g2 ).

15/ They only define "Joint plans" - and then find conditions under

which these can be "enforced" by equilibria. As Sorin [19811
pointed out, one of their conditions should be slightly
strengthened - and then it corresponds to our characterization
of G

16/ I.e., such that there is no other enforceable joint plan
equilibrium in r(p) with payoffs (a',B') satisfying
(a',0') > (a,O) and (a',$') * (a,8)

4!
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