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SATURATION OF THE LOWER-HYBRID-DRIFT INSTABILITY

BY MODE COUPLING

A first principles theory of the nonlinear saturation of the lower-

hybrid-drift instability and associated particle transport is presented. A

nonlinear equation describing 2-D lower-hybrid-drift turbulence is derived

which includes the nonlinear E x B and polarization drifts of the

electrons, adiabatic ions, and realistic sources and sinks of energy. The

equation is solved numerically to obtain the evolution and saturation of

the wave spectrum, as well as the self-consistent particle flux which

yields the diffusion coefficient.

The lower-hybrid-drift instability is a flute mode (k B 0 0) which

is driven unstable in a plasma with strong inhomogeneities, p I/L > . -

1/4 i(m/m) where P and L are the ion Larmor radius and density scale
*ei i n

length, respectively. The linear behavior of the instability is well

understood.1 ,2  In the weak drift regime (Vdi < vi, where Vdi a v2/29 iLn is

the ion diamagnetic drift velocity and vi is the ion thermal velocity) the

mode is driven unstable by the resonant interaction of the wave with the

drifting ions when w/k ( V d The growth rate maximizes at k - P-1

-1l2 Te y di* y e
S(m/m)' . The mode is stable for k P >> 1, and approaches marginal
i ie yes

stability as k y0 es + 0.3  The wave frequency is such that Qi << W << a so

that the electrons are strongly magnetized while the ions can be treated as

unnagnetized. In a finite 8 plasma the resonant interaction of VB drifting

electrons with the wave is stabilizing.

The nonlinear behavior of the instability is much less well

understood. Ion trapping has been observed to quench the growth of the

instability in particle simulations.4  The onset of stochastic electron

heating has also been proposed to explain saturation in these .0

simulations.5  On the other hand, ion trapping is not a viable saturation

mechanism when a broad 2-D spectrum of waves is excited, and it has not

been observed in recent simulations using realistic mass ratios where such

spectra develop.6  In this letter we focus on the nonlinear coupling of S

stable and unstable waves to saturate the instability.

We consider a slab equilibrium of cold electrons and warm ions with a

density profile nO(x) supported by a magnetic field BzO(x). The

equilibrium ion velocity distribution is taken to be a Maxwellian with an

average drift velocity Vi Vdi ey. Because of the flute nature of the

instability (k * S - 0), we self-consistently limit the spatial variations

Mmuswerpt approvd November 24, 1982. -



to the xy plane (as contrasted with universal drift-wave turbulence which

is inherently 3-D). In the weak drift regime the ions respond to the

perturbed potential *(x,y,t) adiabatically to lowest order since w << kvi -

Thus,

ni - no[1 -" " v1 Iv- 1I - + Vdi .Y)]exp(-e$/Ti) (1)

where the term proportional to 1w in (1) is a small correction describing

the resonant ion interaction. The perturbed electron motion is simply

given by the E x B and polarization drifts,

c A c d
Ve V x ez  e  (2)

where d/dt = 3/at + V .V. Using (2), the electron continuity equation can

be written as

d.ln n= 2 d V2 (e$/Ti) (3)
dt e esdit

Finally, invoking charge neutrality (ne - ni) and combining (1) and (3), we

obtain the nonlinear equation

A2 : l- • Al-I+ A-, = 4
(l+; ) ; + yo I .o )+

+*V zv + Y V* X e. VIV lo* + *)-0 (4)

where V p es VP T (Pes /Ln )ae t, (e /Ti )(Ln pes and the subscripts

on * denote a derivative with respect to that variable. The quantity y

represents the wave damping due to VB resonant electrons in a

finite 0 plasma. Equation (4) is only valid for y0 = fl 2 V /v 4 1 since
di L

the adiabatic ion response can only be justified in this limit.

Linearizing this equation, we obtain the complex eigenvalue (in our

normalized units),

AZ 0 (l+k2)3  + 2 •
A A k -

Wnk A2 i Ye 2' (5)
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In the limit Y*e Y0 
+ 0, (4) reduces to the Hasegawa-Mima equation in

which the nonlinearity arises from the nonlinear polarization drift.7  This

equation has two Invariants, energy and enstrophy, neither of which is

preserved in the more general (4). When Y is finite, the E x B

nonlinearity also appears in (4). This nonlinearity has been considered by

Horton 8  and, more recently by Waltz, 9  in studying universal mode

turbulence. However, our equation differs from their work in that we do

not assume that *T + y is replaced by it linear counterpart -i(wk - ky

Thus, our equation is second order in time rather than first order.

The direction of energy flow described by (4) can be understood by

calculating the stability of a single large amplitude wave *O with k
and w 0 satisfying (5). A perturbation of wavevector k is coupled through

the pump to modes with k + pk0 (p- 12,...). For simplicity, we consider

only the coupling of (w,k) with its nearest neighbors (+,k) where
+ =w 0 and k k + k0, i.e., p-l. The dispersion relation for

this (k,k) coupled system is

a~~ 0* k !~i)M(kok)
k)+ ,o1 - +(k + k)] -O (6)

where c(k,w) - w[l + k2 (l - i6  k + iy, 6  y (ky-)/k3 and

M(k ,k ) - k x k-e [k2(l - 1 6 kk2(l -i6 ) When y andy are-1-2 -1 2z 1 kl 2(  k2 0 e
neglected in (6) and we take the limit w >> wk the decay modes are purely
growing with a growth rate which peaks around k * k0 - 0 with (I 4 I o.
A necessary requirement for instability is that one of the decay waves

has a longer wavelength than the pump. For this situation, in which

(4) reduces to the Hasegawa-Mima equation, the wave energy inevitably

cascades to longer and longer wavelerigth so that no stationary wave
10

spectrum can result. When Y0 is included, this conclusion no longer

remains valid. Taking the limit 1ko1 I IkI and again assuming w >> w

the dispersion relation is given by U
112( a 2 a4  a 2
a 2I~,I(~ ~0 e~)k yw(24k)

£1:2 + a [l + l 3 (1+]2 (7)

Equation (7) yields a dissipative instability which is driven unstable by V

3



the E x B nonlinearity. This instability produces a flow of energy from

long to short wavelengths and, as will be demonstrated, enables the wave

spectrum to reach a steady state.

We solve (4) numerically by decomposing it into two coupled, first-

order (in time) differential equations which are advanced in time. These

equations are solved by a spectral method developed by Fyfe et al.,1 1 based

on the work of Orzag. 12 The potential is Fourier-decomposed, i.e.,A A A

exp(ic • 3) where k - n/l and nx e x + ny ey with nx  and ny

integers, and X - 5 (which fixes the Inj for which Iki - 1). The numerical

results presented in this letter are nominally computed on a 32 x 32 mesh.

The electron damping y controls the region of instability in k space

by stabilizing short wavelength modes. We have chosen

e Y 01k 17(1 + k m)-2k-4 (8)

with k -1.6, which yields an unstable wave spectrum which is realisticm
for the lower-hybrid-drift instability in finite 0 plasmas. The growthA AA A .

rate peaks at (k ,xk ) (0,±1) and is stable fork > 1.6 and k x 1.

The * spectrum is initialized with random noise with * ~ 10- 2 - 10-

and the system is allowed to evolve until the wave energy, given by

W/nT (me/wm )y (1 + ^2) I;k (9)
k k

reaches a steady state value. The mean square of the potential

fluctuations,

P - <(e*IT) 2 >1 2 = [(22 1m) 220 1/ (10)

as well as the nonlinear and quasilinear diffusion coefficients

A 1/2 2 k
D 2m /Vese P (2% / 2 OE (k /Ikl) (k (11)
Dni - n1/ves es inZe 1i2 0 k y kky ki3T)(1

1/ 2 A
2

A 2 + 21-
Dq q/vae (2m /wmi)&V usk I* ( k)(2Dql ql/Ves es e "k..

k y k

respectively, are also computed. The nonlinear diffusion coefficient Dl

4
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is derived by averaging the particle flux in the x direction over y, i.e.,

Dn1 <nV > . The quasilinear expression is then obtained by approximating

a/aT = -iw and using (5) in (11).
k

In Fig. 1 we show instantaneous 2-D wave spectra in n space for

Y0 .5. Figure la shows the spectrum during the linear phase of the

instability, and Fig. lb shows the spectrum after saturation. In the

linear regime, the wave spectrum is strongly peaked around the most

unstable modes, (nxny) - (0,±5). The spectrum begins to saturate as these

modes couple through a ny M 0 mode (typically with ax - 4) to damped modes

with nx Z ny. A peak in the wave spectrum appears around (4,0) at this

time. This transient phase is completed as the total wave energy saturates

and spreads through most of the unstable, weakly damped volume of n space

as shown in Fig. lb. The spectrum typically remains peaked around nx - 0

with ny typically somewhat smaller than that of the linearly most unstable

mode [see Fig. lb for which the dominant modes are (nx,ny) i (0,+3)]. The

2-D wave spectrum exhibits substantial variability in time, even after

saturation, as the unstable and stable modes continue to exchange energy in

a dynamic manner.

The time evolution of the total wave energy (W), mean square of the

potential fluctuations (P), and the nonlinear (Dnl) and quasilinear

diffusion (D ) coefficients are shown in Fig. 2. All of these quantitiesql )

exhibit a similar temporal behavior. The initial decay (T 4 4) is

* associated with the rapid dissipation of energy initialized in the damped

modes, and is followed by a linear growth phase (4 4 T 4 20). Subsequently,

mode coupling occurs which leads to saturation of the instability, albeit

with some initial overshoot (T - 24). The levels of the total wave energy

and other parameters of Fig. 2 are quite stationary in time after

saturation. Also, the stationary values of all four quantities are

relatively insensitive to the initialization of *.

We note that in Fig. 2, the quasilinear diffusion coefficient (Dql)

tracts the actual, nonlinear diffusion coefficient (D nl) quite well during

the entire time evolution of the instability. An important point which

must be emphasized with regard to Dnl is that both species, electrons and

ions, continue to exchange both energy and momentum even after a steady

state is reached; the electrons through the VB resonance and the ions by

5
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direct resonant interaction. If the instability had saturated by ion

trapping and the electrons had no resonant interaction with the wave, there

would be no diffusion in the steady state since the electrons could not

exchange momentum with the ions. Both species must have a dissipative

interaction with the waves to have diffusion.

A number of runs have been made for different values of Y0, the drift

parameter. The saturation level of is found to be nearly independent of

Y0 " Thus, from Eqs. (II) and (12), it is found that Dn Y2 Vd/vi.

Next, we compare our stationary values of P and D with these

* obtained from "wave energy bound" calculations. 13  The "energy bound"

- results from equating the wave energy with the kinetic energy associated

with the relative drift of the electrons and ions, men(Vdi - Vda)2 /2. This

free energy bound is actually an extreme underestimate of the free energy

in a finite 0 plasma, since the instability can also feed off the magnetic

free energy, which typically greatly exceeds the drift energy.14

Nevertheless, this bound has been widely invoked and seems to yield

reasonable transport rates when compared with experimental observations.

The "drift energy bound" yields a potential Pb- (i./mi )1 2 ON where we

have assumed T << Ti. The scaling of P is identical with that given In

(10) since * is independent of T0 For the case Y0 - .5, P/Peb 3 (from

Fig. 2) so that the actual fluctuation level obtained from our code is

slightly larger than calculated from the "energy bound". Finally we

compare Dnl with that obtained from the simple formula D - (Y/k2 ) /V p"" nI es es

where y and k are evaluated where y peaks. We find D a (me/Wmi )  O2 2

which again has the same scaling as D but is a factor of 2.4 smaller for
ni

Y0 W 0.5 (from Fig. 2).

Measurements of lower-hybrid-drift turbulence in a 9-pinch by CO2  4
recetly15 --

laser scattering have been reported recently. The observed wave spectra

were flute-like (k B 0 0) with clear peaks around ky 0.7 (a factor of

two smaller than the most unstable linear mode), and k k * Data was
x y .1taken for three different filling pressures, corresponding to three values

Of Vdi/v i. Electron-ion collisions were apparently significant

I for the two highest filling pressures so we can only

compare our results with the data from the lowest filling pressure, which

corresponds to Vdi/vi = 0.52 (y0  0.9). The measured density fluctuation,

6
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n/n 0 - 0.014, is quite close (smaller by a factor of 2) to our theoretical

prediction of n/n0 = 0.025. In addition, the shift to long wavelength is

consistent with our calculated spectra (compare Figs. la and 1b).

Computer simulations of the lower-hybrid-drift instability with

realistic mass ratios have also been performed recently using a fluid-

kinetic numerical scheme.6  Unfortunately, these computations have been

carried out for Vd±/vi > 1, which is outside the range of validity of our

present theory. Nevertheless, a broad spectrum of modes is observed in k

space in the simulations which is consistent with our calculations.

In conclusion, the lower-hybrid-drift instability can saturate via a

mode coupling process. The basic saturation mechanism involves a transfer

of energy from the growing, long wavelength modes to the damped, short

wavelength modes. The nonlinear E x B drift plays a crucial role in this

saturation mechanism by preventing the polarization drift nonlinearity from

driving the wave energy towards the undamped, long wavelength modes The

saturation energy and diffusion coefficient associated with the wave
2

turbulence scales as (Vdi/VI)

5.2- 0.24-

3.9- 0.18-

_ 2.6- ( 0.12

1.3-

~0

S 1 16 -12 -8 -4 0 4

-12 -8 -4 0 4 - 44!nny

(a) (b)

Fi. 1. Instantaneous 2D wave spectra of lower-hybrid-drift wave

turbulence. (1a) Linear stage: The dominant linear modes

are (nx,ny) - (0,±5). (1b) Nonlinear stage: The dominant modes

are (n,,n y) - (0,+3). Note the shift to longer wavelength in the

nonlinear saturated state.
7
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