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SATURATION OF THE LOWER-HYBRID-DRIFT INSTABILITY
BY MODE COUPLING

A first principles theory of the nonlinear saturation of the lower-
hybrid-drift instability and associated particle transport is presented. A
nonlinear equation describing 2-D lower-hybrid-drift turbulence 1is derived
which 1includes the nonlinear E x B and polarization drifts of the
electrons, adiabatic ions, and realistic sources and sinks of energy. The
equation is solved numerically to obtain the evolution and saturation of
the wave spectrum, as well as the self-consistent particle flux which
ylelds the diffusion coefficient.

The lower—hybrid-drift instability is a flute mode (k * B = 0) which
is driven unstable in a plasma with strong inhomogeneities, p 1/Ln >
(me/mi)]'/ l,' where p 1 and I..u are the i{ion Larmor radius and density scale
length, respectively. The linear behavior of the instability is well
understood.l>2 In the weak drift regime (vdi < vy, where vdi = vf,mil‘n is
the ion diamagnetic drift velocity and vy is the ion thermal velocity) the
mode is driven unstable by the resonant interaction of the wave with the
drifting ions when m/ky <V ai° The growth rate maximizes at ky ~ p;: =
pzl(milme)ll g The mode is stable for kypes >> 1, aad approaches marginal

3
stability as kypes + 0.

The wave frequency 1is such that Qi Ko KL ﬂe 80
that the electrons are strongly magnetized while the ions can be treated as
unmagnetized. In a finite B plasma the resonant interaction of VB drifting

electrons with the wave is stabilizing.

The nonlinear behavior of the 1instability 1s much less well

understood. Ton trapping has been observed to quench the growth of the

4

instability in particle simulations. The onset of stochastic electron

heating has also been propcsed to explain saturation 1in these

simulations. 5

On the other hand, ion trapping is not a viable saturation
mechanism when a broad 2-D spectrum of waves is excited, and it has not

been observed in recent simulations using realistic mass ratios where such
6

spectra develop. In this letter we focus on the nonlinear coupling of
stable and unstable waves to saturate the instability. T
We consider a slab equilibrium of cold electrons and warm ions with a Tl
density profile np(x) supported by a magnetic field B,,5(x). The
equilibrium {on velocity distribution is taken to be a Maxwellian with an L )
aversge drift velocity ¥, = V,, ;y' Because of the flute nature of the -“11
instability (k * B = 0), we self-consistently limit the spatial variations 1
mnpprond November 24, 1982. 1 ; 1
-
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to the xy plane (as contrasted with universal drift-wave turbulence which
is 1inherently 3-D). In the weak drift regime the ilons respond to the
perturbed potential ¢(x,y,t) adiabatically to lowest order since w << kv
Thus,

10

9

- -1,,-1
n, = no[l + /n v, |v I(sz-

9
{ +Vy S;J]exp(-e¢/Ti) (1)

where the term proportional to V7 in (1) is a small correction describing
the resonant ion interaction. The perturbed electron motion 1s simply

given by the E x B and polarization drifts,

-

c c d
Ye=s™ > "m_ar " 2

where d/dt = 3/3t + !e-V. Using (2), the electron continuity equation can
be written as

d - -2 4 g2

T ln n, Pes Tk v (e¢/Ti) 3)
Finally, invoking charge neutrality (ne = n;) and combining (1) and (3), we
obtain the nonlinear equation

L=V +o =¥V e +0.) +v

+ (% x &, V) V4 Th x e VIVTHIG, +40) = 0 (4)

~

whefe 6 = pesV, T = (pelen)ﬂet, ¢ = (e¢/T1)(Ln/pes) and the subscripts

on ¢ denote a derivative with respect to that variable. The quantity Ya
represents the wave damping due to VB resonant electrons in a
llzvdilvi < 1 since
the adiabatic 1ion response can only be justified in this 1limit.

finite B plasma. Equation (4) is only valid for YO = q

Linearizing this equation, we obtain the complex eigenvalue (in our

normalized units),

- .k k2 (k| .
we=w =—%+1iy = -y, == . (3)
kol 0 (1ﬂ2)3 e 142

A i et ‘B 7
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In the limit Ye' Yo * 0, (4) reduces to the Hasegawa-Mima equation in

7 This
equation has two 1invariants, energy and enstrophy, neither of which 1is

which the nonlinearity arises from the nonlinear polarization drift.

preserved 1in the wmore general (4). When Yo is finite, the E x B

nonlinearity also appears in (4). This nonlinearity has been considered by

8

Horton and, more recently by Waltz,9 in studying universal mode

SR, SRR B

turbulence. However, our equation differs fro their work in that we do
. not assume that ¢T + ¢y is replaced by it linear counterpart -1(mk - ky)¢.
Thus, our equation 1s second order in time rather than first order.

The direction of energy flow described by (4) can be understood by

calculating the stability of a single large amplitude wave ¢0 with ]5'0

0 satisfying (5). A perturbation of wavevector k is coupled through

[
Lot o at g Lo

and o

e

the pump to modes with k + pso (p = 1,2,...). For simplicity, we consider

only the coupling of (w,k) with its nearest neighbors (w +,5+) where
w, = v t vy and Lgi_ =k tky i.e., p=l. The dispersion” relation for
this (1,5,5+) coupled system is
.. MCk ok OM(K, k) . .
2t SO~ :
e(k,w) + 191 ———— + (kg * k)] = 0 (6) e
€ (kyo0,)
where e(k,w) = w[l + kz(l - 16k)] - ky + 1Ye, Gk - Y(.)(ky--m)/k3 and
- ." 2 - - 2 _ . '
“(51’52) 51 x 52 ez [kl(l 16k1) k2£1 {sz)]. When YO and Ye are “.‘;
neglected in (6) and we take the limit w D) Wres the decay modes are purely e |
groving with a growth rate which peaks around k ° kg 0 with |k| < lgol. 1
1

PPy
A

A necessary requirement for instability is that one of the decay waves
3 (5,1&*) has a longer wavelength than the pump. For this situatiom, in which o]
L . (%) “reduces to the Hasegawa-Mima equation, the wave energy inevitably hd

cascades to longer and longer wavelength so that no stationary wave

St
R “

spectrum can reault.lo When Yo is 1included, this conclusion no 1longer
remains valid. Taking the limit IEOI 1< 4 Il‘gl and again assuming » >) wk,
the dispersion relation is given by L4

-y
! o 200015k x koo )’ K Y w(2+k2) -
. 0' '~ " ~0 "z 0
- w? = x5 1+ 1 =] N
- ¢ 1+k [k |7 (1+c)
o Equation (7) yields a dissipative instability which is driven unstable by [ 2
- Y
3 oY
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the E x B nonlinearity. This instability produces a flow of energy from
long to short wavelengths and, as will be demonstrated, enables the wave

spectrum to reach a steady state.

We solve (4) numerically by decomposing it into two coupled, first-
order (in time) differential equations which are advanced in time. These
equations are solved by a spectral method developed by Fyfe et al., based
on the work of 0rzag.12 The potential ¢ is Fourier-decomposed i.e.,

0 ~ exp(lk * 3) where k = n/A and g = n_e +n ey with ny and ny
integers, and A = 5 (which fixes the [n| for which |kl = 1). The numerical

results presented in this letter are nominally computed on a 32 x 32 mesh.

The electron damping Ye controls the region of instability in k space
by stabilizing short wavelength modes. We have chosen

- 117 ~2.=2 =4
Ye = Yolkl71 + i) A (8)

with k = 1.6, which yields an unstable wave spectrum which is realistic
for the lower-hybrid-drift instability in finite 8 plasmas. The growth
rate peaks at (k .k ) = (0,+1) and is stable for ky > 1.6 and k > 1.

The ¢ spectrum 1s initialized with random noise with ¢ ~ 10 -2 - 10-?

and the system is allowed to evolve until the wave energy, given by

W/aT = (o /rm) ¥2 £ (1 +k%) 1§ |2 (9
e 170 K k
reaches a steady state value. The mean square of the poteantial
fluctuations,
P = <(ea/DDY? « (20 frm) v2 £ I 12112 (10)
e 170 K k
as well as the nonlinear and quasilinear diffusion coefficients
- 3¢
1/2 2 k
Dot ™ Dp1/VegPes = (2 /Tm,) 2 (k /lkl) ¢k (k ¢k 37) (11)
- 1/2 2 “ 2 ~2.-1
Dyy = Dq1/VegPeg = (2my/mm,) ; gl k2 18,17 1+ %) (12)

respectively, are also computed. The nonlinear dfffusion coefficient Dnl

POV Sear T e dndedacende P DU PSP R UG G S P, WP S T ime B 3D
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is derived by averaging the particle flux in the x direction over y, i.e.,

Dnl = <an>y. The quasilinear expression 1s then obtained by approximating

3/t = -1mk and using (5) in (11).

In Fig. 1 we show instantaneous 2-D wave spectra in n space for
YO = ,5. Figure la shows the spectrum during the 1linear phase of the
instability, and Fig. 1b shows the spectrum after saturation. In the
linear regime, the wave spectrum is strongly peaked around the most

: unstable modes, (nx,ny) = (0,#5). The spectrum begins to saturate as these
modes couple through a ny = 0 mode (typically with a, ~ 4) to damped modes

with n, > Ny. A peak in the wave spectrum appears around (4,0) at this
time. This transient phase is completed as the total wave energy saturates
and spreads through most of the unstable, weakly damped volume of n space
as shown in Fig. 1lb. The spectrum typically remains peaked around n, ~ 0
with oy typically somewhat smaller than that of the linearly most unstable
mode [see Fig. 1lb for which the dominant modes are (nx,ny) = (0,+3)]. The
2-D wave spectrum exhibits substantial variability in time, even after
saturation, as the unstable and stable modes countinue to exchange energy in

a dynamic manner.

The time evolution of the total wave energy (W), mean square of the
potential ;luctuations (P), and the nonlinear (Snl) and quasilinear
diffusion (Dql) coefficients are shown in Fig. 2. All of these quantities
exhibit a similar temporal behavior. The 1initial decay (t € 4) {is
;, asgoclated with the rapid dissipation of energy initialized in the damped

modes, and is followed by a linear growth phase (4 < T < 20). Subsequently,
mode coupling occurs which leads to saturation of the instability, albeit

with some initial overshoot (T ~ 24). The levels of the total wave energy -~ o

and other parameters of Fig. 2 are quite stationary in time after ::i:
y saturation. Also, the stationary values of all four quantities are :f
l. relatively insensitive to the initialization of ;. ' .
[: We note that in Fig. 2, the quasilinear diffufion coefficient (Bql) f-"j
_T tracts the actual, nonlinear diffusion coefficient (Dnl) quite well during : ,g
] the entire time evolution of the instability. An important point which o
;‘ must be emphasized with regard to Bnl is that both species, electrons and .}
3 ions, continue to exchange both energy and momentum even after a steady --71
t: state is reached; the electrons through the VB resonance and the ions by
3 . 4
: 5 ]
! .

. o '. - o U TP U Sy PR e .




___________

direct resonant ianteraction. If the instability had saturated by ion
trapping and the electrons had no resonant interaction with the wave, there
would be no diffusion in the steady state since the electrons could not
exchange momentum with the ions. Both species must have a dissipative
interaction with the waves to have diffusion.

A number of runs have been made for different values of YO' the drift

parameter. The saturation level of ; is found to be nearly independent of

2 2 ,.2
Yo Thus, from Eqs. (11) and (12), it is found that Dnl “ Y vdi/vl'

Next, we compare our stationary values of P and Dnl with these
13 The “energy bound”

results from equating the wave energy with the kinetic energy associated

obtained from “"wave energy bound™ calculations.

with the relative drift of the electrons and ions, mgn(Vy4q - Vd.)zlz. This
free energy bound is actually an extreme underestimate of the free energy
in a finite B8 plasma, since the instability can also feed off the magnetic
free energy, which typically greatly exceeds the drift cnergy.“
Nevertheless, this bound has been widely invoked and seems to yield
reasonable transport rates when compared with experimental observations.
The "drift energy bound” yields a potential Pgp = (Il./‘lli)lleo. where we
have assumecl To << Ty« The scaling of P, 1is identical with that given in
(10) since ¢ 1s independent of Y,. For the case Y, = «5, P/Pgp * 3 (from
Fig. 2) so that the actual fluctuation level obtained from our code 1is
slightly larger than calculated from the “energy bound”. Finally we
* compare Bnl with that obtained from the simple form}a B » (v/k? i’évespes’
j:;_' where Y and k are evaluated where Y ?eaks. We find D = (me/"':l) Y2,

- vhich again has the same scaling as Dnl but is a factor of 2.4 smaller for
=, Yo ™ 0.5 (from Fig. 2).

- 0

Measurements of lower-hybrid-drift turbulence in a 8-pinch by Co2 ~
15

lagser scattering have been reported recently. The observed wave spectra
w.",. were flute-like (k B = 0) with clear peaks around ky = 0.7 (a factor of

two smaller than the most unstable linear mode), and kx < ky. Data was

taken for three different filling pressures, corresponding to three values

of Vqq/vqy+ Electron-ion collisions were apparently significant

{v
e

compare our results with the data from the lowest filling pressure, which

L~ (ﬂeﬂi)”z] for the two highest filling pressures so we can only

corresponds to Vdilvi = 0.52 (YO % 0.9). The measured density fluctuationm,
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E/n0 ~ 0.014, is quite close (smaller by a factor of 2) to our theoretical
prediction of ;/no = 0.025. In addition, the shift to long wavelength is

consistent with our calculated spectra (compare Figs. la and 1lb).

Computer simulations of the lower-hybrid-drift instability with
realistic mass ratios have also been performed recently using a fluid-

kinetic numerical scheme.6

Unfortunately, these computations have been
carried out for Vdi/"i > 1, which is outside the range of validity of our
present theory. Nevertheless, a broad spectrum of modes is observed in k

space in the simulations which is consistent with our calculations.

In conclusion, the lower-hybrid-drift instability can saturate via a
mode coupling process. The basic saturation mechanism involves a transfer
of energy from the growing, long wavelength modes to the damped, short
wavelength modes. The nonlinear E x B drift plays a crucial role in this
saturation mechanism by preventing the polarization drift nonlinearity from
driving the wave energy towards the undamped, long wavelength modes. The

saturation energy and diffusion coefficient associated with the wave
turbulence scales as (Vdilvi)z'
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- Fig. 1. Ianstantaneous 2D wave spectra of lower-hybrid-drift wave
}'. turbulence. (la) Linear stage: The dominant 1linear modes
< are (nx,ny) = (0,+5). {(1b) Nonlinear stage: The dominant modes =Y
- ‘
| - are (n ,n ) = (0,+3). Note the shift to longer wavelength in the
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. nonlinear saturated state. 1
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