
AD-A123 566 INTERFACE SPECIFICATIONS FOR THE SCR (A-7E) EXTENDED 112.
COMPUTER MODIJLE(U) NAVAL RESEARCH LAB WASHINGTON DC
D L PARNAS ET AL. 96 JAN 83 NRL-MR-4843

UNCASFIEDDF/G 92NL

Ehmmmhhhhmu
mhhmhmhohohhEE
EEmhohhmhohhEE
mhEEEmhEmhhEEE
EohEEmhEEohEEI
EEEEEmmhhhhhhEE

&.8 2 &.

JL

11111.25 1111 '. 11.12.
11111= IIIII ILIIO

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS- 1963-Af.

NRL Memorandum Report 4843

uterface Specifications for the SCR (A-7E)
Extended Computer Module

D. L. PARNAS,* D. M. WEISS, AND P. C. CLEMENTS
~ .. Computer Science and Systems Branch

In~formation Technology Division

*UMiy&W&I of Vioria . . .

Victoria, AC. .

.. .H. BRI[ToN

IBM
Reawmh Trangle Park, NC 27709

January 6, 1983

JAN 0MeD

?4AVAL RZIMARCH LABORATORY
fuhgm D.C.

Approved for public release,distribution unlimited.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT IDOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPOR NUMBER2. GOVT ACCESSION NO. 3 CIPIE4T'S CATALOG NUMBER

4. TITL,E (and Sbtlto) S. TYPE Of REPORT & PERIOD COVERED

Interim report on a continuing
INTERFACE SPECIFICATIONS FOR THE SCR (A-TE) NRL problem.
EXTENDED COMPUTER MODULE G. PERFORMING ORG. REPORT NUMER

7. AUTHOR(e) 6. CONTRACT OR GRANT NUMBERt(s)

D.L. Parnas,* D.M. Weiss, P.C. Clements, and
K.H. Brittont

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA A WORK UNIT NUMIERS

Naval Research Laboratory 62712N; XF21242101;
Washington, DC 20375 75-0106-02

1I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Research Laboratory January 6, 1983
Washington, DC 20375 13. NUMBER OF PAGES

116
4. MONITORING AGENCY NAME & ADORESS(If difernt from Cafttrollin4 Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
1IS. OECL ASSI FICATION/ DOWNGRADING

SCHEDULE

16. OIJTRISUTION STATEMENT (of tihl Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20. It different from Report)

JAN 0

140. SUPPLEMENTARY NOTES -"

*Present address: University of Victoria, Victoria, B.C.
tPresent address: IBM, Research Triangle Park, NC 27709

19. KEY WORDS (Continue on reveree side It neceseeV end Identify by block numober)

Abstract interfaces Modules Software specifications
Avionics software Real-time systems
Information hiding Software engineering
Modular decomposition Software maintenance

20. ASSFWACT (Continue an reveree elde It necessary and Identify by block nuotber)

This document describes the programmer interface to a computing machine partially
implemented in so1.-ware. The Extended Computer is part of NRL's Software Cost Re-
duction (SCR) project, to demonstrate the feasibility of applying advanced software
engineering techniques to complex real-time systems in order to simplify maintenance.
The Extended Computer allows code portability among avionics computers by providing
extensible addressing, uniform i/o and data access, representation-independent data types,
uniform event signalling, a standard subprogram invocation mechanism, and parallel

(Cntinues\

DD , 1473 EDITION O 1 NOV65 iS OBSOLETE
SIN 0102*014- 6601

SECURITY CLASSIFICATON Of THIS PAGE (Wken Dote Itered)

S E C U R IT Y C L A S S IF IC A T IO N O F T H IS P A G E (ih m D a te n e., de.)

20. ASST RACT (C on-lnuod)

process capability. The purpose of the Extended Computer is to allow the remainder of the
software to remain unchanged when the host computer is changed or replaced.

This report describes the modular structure of the Extended Computer, and contains
the abstract interface specifications for all the facilities provided to users. It serves as
development and maintenance documentation for the SCR software design, and is also
intended as a model for other people interested in applying the abstract interface approach
on other software projects.

-7t

O SLO

S LO PN

-. ~~SEI
?C lY .AsIIrCATION OP TI1S PAO5(W llIe. 0... Eni.,.d)

"iii

w ,

::. CONTENTS

EC.INTRO Introduction. C 1 2
EC.DATA Data Manipulation Facilities... 4

EC.IO Input/Output. 28

EC.PAR Parallelism Control 33

EC.PAR.1 Process Mechanisms. 33

EC.PAR.2 Exclusion Regions 37

EC.PAR.3 Synchronization Variables and Operations, 39

EC.SEQ Sequence Control 42

EC.SEQ.I Statement Sequence Control Mechanisms 42

EC.SEQ.2 Program Invocation Facilities 47

EC.SEQ.3 Timer Facilities 52

EC.STATE State Control. 56

EC.TEST Diagnostic Test Facilities 58

EC.INDEX Indices. o 62

APPENDIX 1 Design Issues 70

APPENDIX 2 Implementation Notes 90

APPENDIX 3 Basic Assumptions 92

APPENDIX 4 Unimplemented Features of the Extended Computer 105

APPENDIX 5 Input/Output Data Item Name List 108

APPENDIX 6 Data Representation Catalogue 11

References 112

Acknowledgements 113

iii

-. . . / . < ._ . . . i . .' .' .- . , .. " ., ; . . .

EC INTRO

INTERFACE SPECIFICATIONS FOR THE SCR (A-7E)
EXTENDED COMPUTER MODULE

INTRODUCTION

The Extended Computer (EC) is a computing machine partially implemented in
software. It was designed as part of the Software Cost Reduction (SCR)
project at the Naval Research Laboratory. The design goals are 1) code
portability, 2) abstraction from computer hardware idiosyncracies, 3) more
easily understood code, and 4) sharing of solutions to comon machine
dependent coding problems. The Extended Computer is designed to be
efficiently implemented on avionics computers such as the IBM 4PI TC-2. The
instruction set allows straightforward, efficient code generation using a
macroprocessor.

The Extended Computer has the following features:

1) Extensible addressing: There is no syntactic limit to the amount of
memory that can be addressed. The actual memory size is a parameter
that is set at system-generation time.

2) Uniform data access: Hardware addressing techniques, such as use of
base and link registers, are hidden from progrmers.

3) Uniform subprogram access: Macro calls and subroutine calls appear
identical in the calling program.

4) Uniform input/output: Variations in I/O operations are hidden. All
input (output) data items are read (written) using the same
instructions.

5) Uniform event signalling: The difference between hardware interrupts
and software-detected events is hidden. All interrupt handling is
hidden.

6) Data types: Data types representing reals, bitstrings, and time
intervals are provided together with the necessary conversion
functions. Data representations are hidden. Hardware arithmetic and
bitstring operations are hidden.

7) Parallel processes: Programs can be written as a set of cooperating
sequential processes. The number of hardware processors and their
scheduling are hidden.

8) State control: Computer state transitions among various states
(including off, operating, and failed) are signalled to the user
programs. The mechanics of state transitions are hidden.

9) Built-in test: Diagnostic programs to test the integrity of memory
and the correct operation of the hardware are built-in. The tests
and evaluation criteria are hidden.

Manucript approved April 30, 1982.

7718a
Iq

EC. INTRO

10) Exception handling: Both a development version, with extensive
checks for programing errors, and a production version are
available. Programs that cause no undesired events [WUER76] on the
development version will compute the same values on both versions.
The version can be selected at system-generation time.

11) Efficient programs without the go to: Instead of a program counter
and commands that cause branches, the Extended Computerincludes the
it ti control structure described in (ITTIl] and [ITTI2].

The Extended Computer has been designed to hide the interface
characteristics of a computer with capabilities similar to those of the IBM
4PI/TC-2. Were the present A-7 computer to be replaced by one with different
capabilities, we would shift some responsibilities to/from other parts of the
software. For example, if the new computer used an external device for
timing, the implementation of the timeint data type would become a part of the
device interface modules. Or, if the new computer included a capability for
angle implementation, the machine-independent implementation of an angle data
type would be replaced by a machine-dependent module that was part of the EC,
but with the same interface as the present angle data type. Of course, under
such unlikely circumstances, the appropriate documentation (such as [REQ],
(MG], and [AT], as well as this document) would be changed to remain
consistent with the new hardware. If the EC design were to be used in an
application that did not require all of its capabilities, a compatible subset
could be used.

We recommend that this procedure be followed by anyone maintaining this
system, and by those who are designing other systems using a similar approach.

This document specifies the user interface to the Extended Computer.' The
contents, form, and notation are in accordance with the guidelines given in 9
[SO], with the following additions.

Subsection 2: Interface Overview

In addition to the contents described in [SO], the Interface Overview
subsection of each specification may contain the following entries:

Instruction Templates: In contrast to access programs, EC
instructions take programs (lists of executable EC statements) as
parameters. The Instruction Template table describes the format of
instructions provided by the module. Each instruction begins with a
keyword suggesting the instruction's purpose and usually ends with that
keyword reversed. Additional keywords are each followed by a parameter
list. The parameters are numbered separately for each keyword.
Instruction Template tables use the same parameter notation used in the
Access Program table.

7718a 2

EC. INTRO

Instructions follow the same rules as access program calls, except

that parameters in an instruction are not enclosed in parentheses.
Instructions bracketed by "++" may only be invoked at system-generation
time.

Built-in Objects: The built-in object table lists special keywords
representing objects provided by the module.

Subsection 3.2: Undesired Event Assumptions

The only undesired event assumptions documented in this section will

be those concerning undesired events that cannot be detected until
run-time.

I

7718a 3

EC. DATA
DATA MANIPULATION FACILITIES

"" EC.DATA.1 INTRODUCTION

EC.DATA.1.1 ENTITIES

The Extended Computer provides literals, constants, and variables. We
refer to these as entities. Literals are values appearing in programs.
Constants have names and values; run-time programs can read the values but not
change them. Variables have names and values; the values can be read or
written by run-time programs. A register is a variable with a faster access
time than other variables. There is one register for each process (see
EC.PAR). All constants and variables other than registers may be accessed
from any process of the program. It is possible to declare arrays of
variables or constants. An element of an array may be used as an individually
declared entity of the same type. Users are given the facility for providing
information to the Extended Computer about the relative speeds with which
declared entities should be accessed.

EC.DATA.1.2 TYPES

Types are classes of entities. The Extended Computer provides a hierarchy
of types; at the highest level are numeric and bitstring. Numeric types are
characterized by range and resolution; bitstring types are characterized by
length. The value of a characteristic for an entity is called an attribute.

A type class is a type that contains entities with different behavior. A
specific type (also called "spectype") is a subclass of a type class in which
all variables have identical behavior, i.e., they can take on the same set of
values and one may perform the same operations on them. The behavior of the
program will not change if two variables of the same specific type are
interchanged throughout the program.

For each type class, there are any number of specific types with fixed
(but different) attributes. There is also a specific type whose attributes
can vary at run-time.

Figure 1 provides an overview of the EC data types by showing the Extended
Computer's type classes and specific types. Lines connect a type with its
sub-types. The terminal nodes represent specific types.

The Extended Computer provides two numeric type classes illustrated in
Figure 1, but not described in this chapter. They are semaphores and timers,
whose operations are described in EC.PAR.3 and EC.SEQ.3, respectively.

UW

7726a 4

U

o-_ W

EC. DATA

I

All

lie
numeric tring

varying ranres fixed-ranres varying- fixed-
numerics numerics length length

bitstrings bitstrings

varying- varying- fixed- fixed- timers semaphores specific
ranres ranres ranres ranres bitstring
reals time reals time types; e.g.

intervals intervals boo lean

varying- varying- specific specific
ranres ranres real types time interval

semaphores timers (e.g. integer) types

Not all of these types are currently implemented; to see which ones, refer
to Appendix 4.

Figure I

7726a 5

EC. DATA

EC.DATA.1.3 SCALAR LITERALS

A scalar literal belongs to a particular type and may belong to more than
one specific type; acceptable formats for scalar literals are defined in the
table below.

In the format descriptions,
(A, B, C, ...)n means a sequence of length n composed of
elements selected from the list of elements within the
parentheses.

Table EC.DATA.a: Literal Formats

Type Values

boolean $true$ OR $false$; alternatively I OR 0

real numeric literal, in one of the following formats:

r
standard decimal notation e.g 112.345, .000234, 127

exponent notation: decimal number, followed by :En,
where n is an integer, meaning that the value is the
number multiplied by lOn
e.g. 1.12345E2 (- 112.345); 2.34E-4 (-.000234) p

power of two notation 2**n, e.g., 2**3 (for 8)

bitstring bitstring literal:
(0, 1)n :B, where n is a positive integer,
e.g. 011101:B -

timeint There are no literals of type timeint. Values of type
timeint can be specified by using real literals and one
of the conversion programs provided to convert real
values to timeint values. p2 in the conversion program
is not supplied when used in declarations or to provide
literals.

Array literals are described in EC.DATA.4 under "arraylit".

7726a 6

" - p

EC.DATA

EC.DATA.1.4 REGISTERS

A single register is provided for each process. Operations using the
register are likely to be faster than operations on other variables. A
register is a variable with varying type-class and varying attributes; each
instruction that uses a register must include information sufficient to
determine a type class and the appropriate attributes.

A process cannot access the register of another process.

A parameter that is specified as the !+destination+! of an access program
defined in this chapter may be a register only, or a list of vrriables
possibly including the register.

The contents of a register may be changed by a) using the ister as a
destination, or b) performing an operation without specifying 't the
register contents be preserved. Each access program defined % is chapter
may appear with or without a suffix "-SAVE" (e.g. +MINUS+ or .7 S-SAVE+).
Use of the suffix specifies that the contents of the register ... i be
preserved by the operation. Omission of the suffix indicates that the
register contents need not be preserved.

Table EC.DATA.b shows how the value of a register is affected by an
operation. Value undefined indicates that the value contained in the register
is unspecified. If a program reads a register when its value is undefined,
the results will be unpredictable. U

Table EC.DATA.b: Effects of Operations on Register Contents

Register use Suffix Effect of the operation on Register

read only none value undefined <
read only -SAVE value not changed

written or none new value produced

read and written by operation

written or -SAVE undesired event
read and written

not referenced none value undefined

not referenced -SAVE value not changed

7726a 7

EC. DATA

EC.DATA.2 INTERFACE OVERVIEW

EC.DATA.2.1 DECLARATION OF SPECIFIC TYPES

All specific types must be declared and given a name. Numeric types are
characterized by range and resolution, bitstring types by length. The type
declaration must indicate whether or not these attributes can vary at
run-time. For some types, the EC allows users to choose among different
versions of the implementation; each version is especially efficient for
performing certain operations. The versions, and the advantages/disadvantages
of each, are specified in Appendix 6.

Program name Parm type Parm info Undesired events

++DCL TYPE++ pl:name;I name of new type %name in use%
p2 :typeclass;I containing typeclass %inappropriate
p3:attribute;I attributes of type attributes%
p4:binding;l Can attributes vary

at run-time?
p5:version;I-OPT implementation version

Program Effects

A specific type that is a member of type class p2 and has attribute p3

with binding p4 and implementation version p5 _s declared to have identifier
pl. The identifier can be used as the spectype (p2) parameter in calls on
++DCLENTITY++ and ++DCL ARRAY++ in programs that follow the declaration.

Sr

7726a 8

IS I . .. i

EC. DATA

EC.DATA.2.2 DATA DECLARATIONS

EC.DATA.2.2.1 DECLARATION OF VARIABLES AND CONSTANTS

Variables and constants must be declared before they are used. The
declaration must specify the name of the new entity, a previously declared
specific type (one of the terminal nodes on the tree of figure 1), whether the
entity is a constant or a variable, and an initial value.

Program name Parm type Parm info Undesired events

++DCLENTITY++ pl:name;I entity name %undeclared

p2:spectype;I specific type of entity spectype%
p3:attribute;IOPT initial attribute %inappropriate%
p4:convar;I when writeable? attributes%
p5:constant or initial value %name duplication%

literal whose %unknown value%
value is in %wrong init
domain of type value type%
named by p2;I

Program Effects

An entity with identifier pl, spectype p2, initial attribute p3, and
initial value p5 is declared. p3 is supplied if the spectype p2 has varying
attributes. The entities that have been declared may be used as operands in
the programs that follow.

7726a 9

EC. DATA

EC.DATA.2.2.2 DECLARATION OF ARRAYS

Program name Parm type Parm. info Undesired events

++DCLARRAY++ pl:name;I array name as above, plus...
p2:spectype;I element type
p3:attribute;IOPT initial attribute %wrong init
p4:convar;I when writeable? value sizeZ
p5:sequence of initial value

constants and/or Zillegal index setZ
arraylits whose
values are in
domain of type
named by p2;I

p6:indexset;l array indices

Parameters

The set of parameters p2 through p6 can be repeated any number of times,
allowing arrays of different specific types. The union of the named index
sets must result in a contiguous set of integers.

Program Effects

A one-dimensional array with identifier pl, spectype p2, initial attribute
p3, initial value p5, and index set p6 is declared. p3 is supplied if the
spectype p2 has varying attributes. Elements of the array can be used
wherever an entity of the same specific type could be used. An array may also
be a parameter to a user-defined program.

7726a 10

_ _ _. - -,, - -. -, -

EC.DATA

EC.DATA.2.3 ACCESS SPEED RANKING OF DATA

The Extended Computer can implement a "not-slower-than" relation between
any two variables, constants, or arrays.

Program name Parm type Parm info Undesired events

++RANKDATA++ pl:name;I entity or array name %undeclared operand%
p2:name;I entity or array name

Parameters

pl and p2 each must be one of:
- the name of a previously-declared constant or variable;
- the name of a previously-declared array.

Users may supply any number of pairs of parameters pl and p2 in the same
call.

Program effects

For each given pair (pl,p2), using pl as an operand in an EC program will
take no longer than using p2 in the same program.

!il7726a 11

EC. DATA

EC.DATA.2.4 OPERAND DESCRIPTIONS

The data manipulation programs defined in this chapter take entities or
lists of entities as operands. Table EC.DATA.c describes the form of the
description of individual operands. The parentheses shown are required.

Table EC.DATA.c INDIVIDUAL OPERAND SPECIFICATION

Nature of Operand Form of Operand

Literal Literal value

Constant or variable Name of entity
with fixed attributes

Variable with varying (Name of operand, information
attributes determining attributes):

Array element (array name, array index,
information that would be given
for an individual entity of the
same specific type)
Array index must be an integer.

Register (REG, information determining
typeclass and attributes)

Information determining typeclass and attributes: The information may be
*: either the name of a specific type with fixed attributes, or the attributes
. themselves. Attributes may be given as literals, variables, or constants; see

explanation of "attribute" in EC.DATA.4 for further explanation.

Inconsistent information: If the information given when a variable with
varying attributes is used as a source (i.e., input parameter) is not the same
as that given when that variable was most recently used as a destination
(i.e., output parameter), the results are undefined.

Multiple operand destinations: Any operand described as a !+destination+!

may also be a parenthesized list of destinations. All of the destinations
will receive the same value; the assignments will be made in an arbitrary
order, or simultaneously.

Repeated operand lists: In any operation, the list of operands may be
repeated as often as desired. Such a construct describes a set of operations,
each element of the set corresponding to one of the operand lists; the
operations may be performed in an unspecified order or simultaneously.

7

7726a 12

E C. DATA

Undesired Events: The following Undesired Events can occur when operands
are specified: r

%constant destination% .1
%illegal array index%
%inappropriate attributes%
Zinconsistent register access%
%undeclared operand%
%undeclared spectype%

Ew'

76 1V

!7726a 13

tV

EC .DATA

EC.DATA.2.5 TRANSFER OPERATIONS

Program name Parm type Parm info Undesired events

+SET+ pl:see below;I !+source+! %inconsistent lengths%
p2:see below;O !+destination+! %range exceeded%

%list mismatch%

Parameters

pl and p2 are parenthesized lists of operands separated by commas. The
lists must both have the same length. If the lists only have one element, the
parentheses may be omitted. Corresponding elements of pl and p2 must be
either both real, or both timeint, or both bitstrings of the same length.
Extensions of +SET+ to allow additional operand types will be introduced in
later chapters.

Program Effects

+SET+ Let pli denote the ith element of pl, and

p2. denote the ith element of p2. For all i,
p2. - the value of pl before the execution of
+SkT+.

Note that if pl and p2 are disjoint, the assignments
may be done in any order. If pl and p2 have elements
in comon, the assignment will have the same effect as
if all values of p2 were saved in temporaries and then
the assignment was made to pl. This is equivalent to
Dijkstra's concurrent assignment statement [DIJK77].

t 1

. EC. DATA

EC.DATA.2.6 NUMERIC OPERATIONS

EC.DATA.2.6.I NUMERIC COMPARISON OPERATIONS

ProIram name Parm type Paru info Undesired events

+EQ+ pl:see belov;I !+source+! None
+NEQ. p2:see below;I !+source+!
+GT+ p3:boolean;O !+destination+!
+GEQ+ p4:see belov;IOPT !+user threshold+!
+LT+

* +LEQ.

Parameters

pl,p2,p4 must be either all real types or all timeint types.

Program Effects

+EQ+ p3 - (p1 p2)
+NEQ+ p3 -NOT (plinp2)

+GT+ p3 - p1 p2 is positive and NOT (p1 p2)*
+GEQ+ p3 = (p1 p2)* OR (p1 - p2 is positive)
+LT+ p3 - p1 p2 is negative and NOT (p1 -=)

+LEQ+ p3 - (p1 p2) OR (p1 p2 is negative)

*Definition of equality(i)

absolute value(pl - p2) is less than or equal to threshold, where
threshold is either p4 or, if p4 is not supplied, one-half of the
larger of resolution (p1) and resolution (p2).

*Extensions of +EQ and NEQ+ to allow additional operand types will be
discussed in later chapters.

7726a 15

EC. DATA

EC.DATA.2.6.2 NUMERIC CALCULATIONS

Program name Parm type Parm info Undesired events

+ABSV+ pl:see below;I !+source+! %range exceededZ
+CONPLE+ p2:see below;O !+destination+!

+ADD+ pl:see below;I !+source+!
+MUL+ p2:see below;I I+source+!
+SUB+ p3:see below;O !+destination+!

+DIV+ pl:see below;I !+source+I Zrange exceeded%
p2:see below;I !+source+! %divide by zero%
p3:see below;O !+destination+!
p4:same as p3;I OPT !+max div result+!
p5:same as p3;1 _OPT !+fall back value+!

Parameters

+ADD+ (1) all operands real, or
+ABSV+ (2) all operands timeint
+COMPLE+
+SUB+

+MUL+ (1) all operands real, or
(2) one of pl or p2 real, the other operands timeint

+DIV+ (1) pl,p2 and p3 real, or

(2) pl and p2 timeint and p3 real, or
(3) p1 timeint, p2 real, p3 timeint;

Program Effects

+ABSV+ p2 magnitude(p1)
" +ADD+ p3 pl + p2

+COMPLE+ p2 " - pl
+MUL+ p3 pl *p2
+SUB+ p3 p - p2
+DIV+ ((division successful*)

then p3 - pl/p2
(p5 supplied AND division unsuccessful*)

then p3 - p5 * SIGN(pl/p2)
(p5 omitted AND division unsuccessful*)

then p3 undefined)

*+DIV+ can sometimes result in the loss of all significance;
when this happens, it is said to be unsuccessful. Division
will not be successful if p4 (if supplied) is less than
pl/p2, but will be successful if p4 gteq pl/p2, or p4 is
omitted. If p4 is omitted, +DIV+ will be slower than if p4
is provided.

7726a 16

S

EC *DATA

Table EC.DATA.d

Resolution of Numeric Calculation Results

OPERATION RESOLUTION OF RESULT

+ADD+(pil,p2,result) MAX(resolution(pl), resolution(p2))
+SUB+(pl ,p2,result)

+MUL+(pl,p2,result) resolution(pl) *resolution(p2)

+DIV+(pl,p2,result,p4,p5) unsuccessful and p5 given: resolution(p5)
otherwise, resolution(pl) /resolution(p2)

+ABSV+(pl,result) resolution(pl)
.COMPLE+(pI,result)

Conversion between real Conversion of the resolution of the source
and another numeric
typec lass

7726& 17 4p

E C. DATA

EC.DATA.2.6.3 OPERATIONS CONVERTING OTHER TYPES TO REALS

Program name Parm type Parm info Undesired events

+R BITS_2COMP+ pl:bitstring;I !+source+! %range exceeded%
+RBITSPOSITIVE+ p2:integer;I !+radix pt ident+!
+R BITSSIGNMAG+ p3:real;O !+destination+!

+RTIME HOUR+ pl:timeint;l !+source+!

+R TIME MIN+ p2:real;O !+destination+!
+R TIME MS+
+R"TIME-SEC+

Program effects

+R BITS_2COMP+ p3 = real value equivalent to pl assuming that bitstring pl
is in a two's complement representation, bit 0 is the most
significant bit, and the radix point is specified by p2.

+RBITSPOSITIVE+ p3 - real value equivalent to pl assuming that bitstring pl
represents a positive number, with bit 0 the most
significant bit, and the radix point is specified by p2.

+R.BITSSIGNMAG+ p3 = real value equivalent to pl assuming that bitstring pl
is in a sign magnitude representation, bit 0 is the most
significant bit, and the radix point is specified by p2.

+RTIMEHOUR+ p2 = a real value giving the time pl in hours.

+R TIME MIN+ p2= a real value giving the time pl in minutes.

+RTIME- M+ p2 a real value giving the time p. in milliseconds.

+R TIME SEC+ p2 - a real value giving the time pl in seconds.

7726a 18

.7726a 18

EC. DATA

EC.DATA.2.6.4 OPERATIONS CONVERTING TO TIME INTERVALS
IF

Program name Parm type Parm info Undesired events

+TREAL MS+ pl:real;I !+source+! %range exceeded%
+TMREALSEC+ p2:timeint;O I+destination+!
+T REAL MN
+T-REAL HOUR+

Parameters

If pl is given as a literal, p2 may be omitted and the call used as a
literal of type timeint. If p1 is given as a constant, p2 may be omitted and
the call used anywhere that a constant of type timeint may be used.

Program effects

+TREALMS+ p2-timeint value equivalent to pl assuming pl to specify
the time interval in milliseconds.

+TREALSEC+ p2-timeint value equivalent to pl assuming pl to specify
the time interval in seconds.

+T REAL MIN+ p2-timeint value equivalent to pl assuming pl to specify
the time interval in minutes.

+TREALHOUR+ p2-timeint value equivalent to pl assuming pl to specify
the time interval in hours.

K.t
li

I

7726a 19I1

EC. DATA

EC.DATA.2.7 OPERATIONS FOR THE BITSTRING TYPE CLASS

Bits in all bitstring types are numbered from 0 upward. We refer to bit 0
as the leftmost bit and a shift of information from higher numbered bits to
lower numbered bits as a left shift.

EC.DATA.2.7.1 BITSTRING COMPARISON OPERATIONS

Program name Parm type Parm info Undesired events

+EQ+ pl:bitstring;I !+source+! %inconsistent
+NEQ+ p2:bitstring;l !+source+! lengths%

p3:boolean;O !+destination+!

Program Effects

+EQ+ p3 a (pl = p2)*
+NEQ+ P3 - NOT (pl p2)*

*Definition of equal () length(pl) - length(p2) and U

for all i such that 0 lseq i lt length(pl)
bit (i).of pl = bit (i)of p2

7

7726a 20
Ul U

EC. DATA

EC.DATA 2.7.2. BITSTRING CALCULATIONS
Program name Parmn type Parm info Undesired events

+AND+ pl:bitstring;I !+source+! %inconsistent
+CAT+ p2:bitstring;I !+source+! lengths%
+MINUS+ p3:bitstring;O !+destination+!
+NAND+
+OR+
+XOR+

+NOT+ pl:bitstring;I !+source+! %inconsistent
p2:bitstring;O !+destination+! lengths%

+REPLC+ pl:bitstring;I !+source+! %nonexistent
p2:integer;I source start position position%
p3:integer;I destination start position
p4:integer;I length 0
p5:bitstring;O !+destination+!

+SHIFT+ pl:bitstring;I !+source+! %inconsistent

p2:integer;I shift length lengths%
p3:direction;I shift right or left

p4:bitstring;O !+destination+!

Parameters

+SHIFT+ pl must be a parenthesized list of bitstring entities

separated by commas. If there is only one element, the

parentheses may be omitted.

Program Effects
+AND+ p3 = pl AND p2

+CAT+ p3 - pl followed by p2

+MINUS+ p3 - pl AND (NOT p2)
+NAND+ p3 - NOT (p1 AND p2)
+NOT+ p2 = NOT p1
+OR+ p3 - pl OR p2 W
+REPLC+ p5[p3:p3+p4-1] = plfp2:p2+p4-11
+SHIFT+ p4 - shift of the catenation of the elements of list pl, by p2

positions in the p3 direction. The vacated bits are set to "0".

+XOR+ p3 = (pl AND (NOT p2)) OR (p2 AND (NOT pl))

7726a 21

IW

VIV
EC. DATA

EC.DATA.2.7.3. OPERATIONS CONVERTING TO BITSTRING

Program name Parm type Parm info Undesired events "

+BREAL 2COMP+ pl:real;I !+source+! %left truncation%
+B REALPOSITIVE+ p2:integer;l !+radix pt ident+!
+BREALSIGNMAG+ p3:bitstring;O !+destination+!

I

Program Effects

+B REAL_2COMP+ p3 = two's complement representation of pl, such that the
radix point of the resulting bitstring is positioned
according to p2. Bit 0 of p3 will be the most
significant. The operation truncates all bits beyond the

highest numbered bit in the destination bitstring.

+BREALPOSITIVE+ p3 = bitstring representation of ABSV(pl), such that the
radix point of the resulting bitstring is positioned
according to p2. Bit 0 of p3 will be the most
significant bit. The operation truncates all bits beyond
the highest numbered bit in the destination bitstring.

+B REALSIGNMAG+ p3 - sign magnitude representation of pl, such that the
radix point of the resulting bitstring is positioned
according to p2. Bit 0 will be the sign bit and bit I
the most significant bit of the magnitude. The operation
truncates all bits beyond the highest numbered bit in the
destination bitstring.

72 •

7726a 22

V

EC. DATA

EC.DATA.3 Undesired Event Assumptions

1. User programs will not divide by zero.

2. The result of any operation will not be outside the range of the
destination variable.

3. In a replace operation, user programs will not specify positions that
do not appear within bitstrings or specify a substring with a start
position that is higher than the stop position.

4. After converting a numeric value to a bitstring, there will be no
bits to the left of the most significant bit of the destination
bitstring. l

5. Users will not supply a parameter in an array reference that is not
in the index set of the array.

EC.DATA.4 Local Type Definitions V

arraylit A set of literal values for a contiguous set of elements of
an array. The values must be of the same typeclass as the
array. The value for an element must also fall within the
range of the specific type declared for that element. The
syntax is:

(value sequence) where value sequence is a sequence of
literals or arraylits separated by
commas; or,

(repetition factor*(value sequence))
where repetition factor is a positive
integer

Examples:

(10, 2, -6) Array of size 3, first element 10,
second 2, third -6.

(15*(3.14)) size 15: all elements are 3.14.

(3*(5, 2*(0), 1)) size 12: (5,0,0,1,5,0,0,1,5,0,0,1)

7726a 23
!U

EC.DATA

attribute Either 1) a positive integer specifying length for
bitstrings or 2) an ordered triple of numeric entities
specifying lower bound, upper bound and resolution for
numerics. The lower bound and upper bound are often
refered to collectively as the range attribute.

binding Either FIX (meaning attributes do not change at run time)
or VARY (meaning attributes may change at run time)

bitstring An ordered list of values, each value represented by "0" or
"l". The number of such values is called the length of the
bitstring.

boolean Bitstring of length 1. Where convenient, $true$ may denote
"1:B", $false$ may denote "O:B".

convar Either ASCON (meaning constant that will not change without
a reassembly) or LOADCON (meaning constant that may be
changed by a memory loading device while the program is not
running) or VAR (meaning variable).

direction Either R (meaning to the right) or L (meaning to the left).

indexset A set of permissible indices. Only sets of contiguous
integers may be created. The set must be specified in the
following way:

(si..li) where "si" denotes the smallest index and "li"
denotes the largest index. Both si and li must
be integers. For example, (7..12) indicates a
six-element array indexed by the integers from 7
through 12. (-4..-4) indicates a one-element
array who index is -4.

integer Real with resolution = I.

name An identifier for an object created. A name must begin
with an alphabetic character and consist only of
alphanumerics.

real An approximation to conventional real numbers.

spectype An identifier that has been previously declared as a typein a ++DCL TYPE++ operation.

timeint Representation of a time interval

typeclass Either BITS (meaning bitstring), REAL, or TIMEINT (meaning
time interval).

version A version name applicable to the given typeclass. Version
names and characteristics are listed in Appendix 6.

7726a 24

i1

EC. DATA

EC.DATA.5 Dictionary:

Term Definition

!+destination+! variable, register or a list of such entities;
will contain results of operation.

!+fall back value+! programmer provided value to be used in case a
division is not successful.

!+max div result+! programmer's best estimate of the maximum result
of a given division instruction.

!+radix pt ident+! Interpreting the bitstring as a binary real 6
number with bit 0 the most significant bit# 2
raised to the !+radix pt ident+! power is the
significance of the rightmost (highest numbered)
bit. For instance, a value of zero means that
the bitstring represents an integer.

!+source+! variable, register, literal or constant; has a
value to be used as input to the operation.

!+user threshold+! smallest difference user programs specify for a
comparison operation; i.e., two numbers whose
difference is less than this are considered equal. W

EC.DATA.6 Undesired Event Dictionary:

%constant destination% A user program has specified a constant or a
literal as a destination.

%divide by zero% A user program attempted to divide by zero.

%illegal array index% The index supplied in an array reference is
not in the index set of the array.

Zillegal index set% The index set of an array is not:
(a) contiguous
(bX in ascending order
(c) integers
(d) constants or literals.

%inappropriate attributes% The attributes given are not valid for the
type class at hand.

7 a

7726a 25

EC.DATA

%inconsistent lengthsZ An operation has been specified with
bitstrings (or substrings) of different
lengths.

%inconsistent register An operation that changes the value of a
accessZ register has the "-SAVE" suffix.

%left truncation% The most-significant bits are lost in a real
to bitstring conversion. This results from
the user specifying a radix point too close
to the most significant bit in the
destination bitstring.

%list mismatch% In a +SET+ operation, the number of given
source operands differs from the number of
given destination operands.

%name in use% A name has been defined in two declarations.

%nonexistent position% A user has specified (1) a start position
that does not exist in the bitstring; or (2)
a start position and a length that define a
substring not contained in the bitstring.

%range exceededZ The value being stored into a variable is
outside the range of the variable.

%undeclared operand% Operand has not been declared.

%undeclared spectype% An entity has been declared using a specific
type that has not been declared.

%unknown value% A variable has been used in a declaration.

%wrong init value size% The set of initial values is not the same
size as the array.

%wrong init value type% A constant or literal used as an initial
value is not the type of the entity or array.

EC.DATA.7 System Generation Parameters: None

I

p

7726a 26
-P

EC. DATA

EC.DATA.8 Information Hidden

1. The representation of numeric objects in terms of hardware data types.

2. How range and resolution information are used to determine
representation.

3. The procedures for performing numeric operations.

4. The representation of bitstrings.

5. How to access a bit within a bitstring.

6. The procedures used to perform bitstring operations.

7. How times are represented for the hardware timers.

8. How to compute the memory location of an array element given the
array name and the element index.

72 2

I"

7726a 27

EC. 10
INPUT /OUTPUT

EC.I0.1 Introduction

This module implements two types of bitstring entities known as input data

items and output data items, which are used to communicate between the
computer and external devices. This interface does not include facilities for
i/o used during channel diagnostics (see EC.TEST.1).

Each aata item may be enabled or disabled by user programs. When enabled,
comaunication with the outside world is possible. The values of input data 3
items may be set by external devices. The values of output data items are
transmitted to external devices. When a data item is disabled, its connection
with the outside world is severed.

Although input data items are normally "read-only" and output data items
are normally "write-only", a few may be both read and written when they are r
disabled. These may be used as storage at such times. An input (output) data
item may always be used as a source (destination) in an EC statement.

User programs are able to check to see if an external communication has
been successful.*m

Some of the input is volatile. Programs will be notified when it is
available and will have a limited amount of time to obtain the values.

Within these constraints, an input or output data item may be used exactly
as other bitstring variables.

8

8929a 28

EC. IO

EC.IO.2 Interface Overview

EC.IO.2.1 Access programs

Program name Parm type Parm info Undesired Events

+DISABLE+ pl:dataitem;I name of data item Znot a data item%
Zalready disabledZ

+ENABLE+ pl:dataitem;I name of data item %not a data itemZ
Zalready enabledZ

+G SUCCESS+ pl:dataitem;I name of data item Znot a data item%
p2:boolean;O !+i/o success+!

Program effects

+ENABLE+ Enables transmission to/from the external environment. If pl
is an input data item, it will now change value when an input
transmission occurs. If pl is an output data item, the value
will now be transmitted externally each time it is changed.
If the item is read-write input, use of the item as a
destination in an.EC statement is now prohibited until
disabled. If the item is read-write output, use of the item
as a source in an EC statement is now prohibited until
disabled.

At system-generation time, all data items are enabled.

+DISABLE+ Transmission to/from the external environment will be
inhibited. If the item is read-write input, it may now be
used as a destination in an EC statement. If the item is
read-write output, it may now be used as a source in an EC
statement.

EC.IO.2.2 Built-in Objects

The names of all data items are listed in an appendix to this document.

Undesired Events associated with Built-in Objects

The following undesired events may occur when data items are used in EC
statements:

%read-write violationZ

8929a 29

EC. tO

EC.IO.2.2 Events signalled by incrementing a semphore

Some input data items may only be read intermittently. For each such data
item, the EC signals an event (by incrementing a semaphore) when that item may
be read. The event will be of the form

@T(!+ x ready+!)
where 'x is replaced by the name of the data item. The intermittent data
items, and the semaphore that will be incremented when each becomes ready, are
listed in an appendix to this document.

Event effects

An input transmission to the named input data item can only be expected to
be successful within #data available x# (where "x" is replaced by the name
of the data item) time after the event is signalled. At all other times,
the !+i/o success+! boolean associated with that data item will be false.

EC.tO.3 Undesired Event Assumptions

1. User programs will not attempt to
- use an enabled read-write input data item as a destination; or
- use an enabled read-write output data item as a source.

2. User programs will not disable (enable) a data item that is already
disabled (enabled).

EC.IO.4 Local Type Definitions

dataitem The name of any input or output data item. The data
item names are listed in an appendix to this document.

EC.10.5 Dictionary

Term Definition

Any item of the form
I+ x ready+! The named data item is now available for read

operations.

!+i/o success+! true iff the last transmission associated with
the named data item was successful.

8929a 30

U

EC. TO

EC.IO.6 Undesired Event Dictionary

Zalready disabled% A user program has tried to disable a data item
already disabled.

Zalready enabledZ A user program has tried to enable a data item
already enabled.

%not a data item% A user program has specified a nonexistent data
item.

%read-write violation% A user program has illegally used a data item
as a source or destination in violation of its
current read-write capabilities. In
particular, one of the following has occurred:
- a read-only item was used as a destination;
- a write-only item was used as a source;
- an enabled read-write input item was used as
a destination;
- an enabled read-write output item was used as
a source.

EC.IO.7 System-Generation Parameters

Parameter Type Explanation

#data available x# timeint (where "x" is replaced in turn by the
name of each intermittent data item)
Length of time that the named data item
is guaranteed to remain available after
@T(!+/ / ready+!).for that data item

#max i/o time x# timeint (where "x" is replaced by the name uf
each data item) The maximum time
interval that can elapse between the
beginning of the access program that
reads/writes the named item, and the time
it takes for the external transmission to
take place.

8929a 31itw

EC. O

EC.IO.8 Information Hidden

1. Hardware instruction sequences to perform I/0 operations.

2. The technique used to prevent simultaneous use of resources.

3. How the module detects that intermittent data are ready to read.

4. The values written out for discrete output word bits that are unused.

5. The assignment of information to channels and I/0 words.

6. How the success or failure of an I/O operation is determined.

7. When input operations actually take place.

7

8929a 32

EC. PAR. 1
PROCESS MECHANISMS

EC .PAR. 1.1 Introduction

The process mechanism allows the definition of a set of sequential
processes that will proceed in parallel and unknown relative speeds. Demand
processes are activated when specific events occur. Periodic processes may be
turned on or off, but are re-started at regular intervals when turned on.

EC.PAR.1.2 Interface Overview

EC.PAR.l.2.1 Instruction Templates

Keywords Parameters associated with keywords Undesired events

++D PROCESS++ pl:timeint;I !+max CPU time req+! %inconsistent
p2:timeint;I !+deadline+! time parms%
p3:program name;I process body Zmax CPU time

exceeded%

++P PROCESS++ pl:timeint;I !+max CPU time req+! %inconsistent
p2:timeint;I !+deadline+! time parms%
p3:timeint ent;I !+period+! %illegal synch%
p4:semaphore;I !+starting event+! %undeclared

ON OFF p5:boolean ent;t OPT ! on/off ! semaphore%
p6:program name;I process body %max CPU time

exceeded%
%missed deadline%

Parameters

pl and p2 must be given by a literal or constant.

Instruction effects

++D PROCESS++ establishes a demand process that becomes active after
@T(!+power up+!). The body of the process is the program
named by p3. The process remains active until it is
suspended as a result of a synchronization operation or
executes the last statement in its body. During the interval
when it is active, it will be given up to pl CPU time before
p2 real time has elapsed. A process that is suspended as a
result of a synchronization operation may start again. A
process that executes its last statement will start again w
only after a system generation.

7722a 33

EC. PAR

++P PROCESS++ establishes a periodic process that becomes active after the
semaphore named by !+starting event+! becomes nonnegative. The
body of the process is the program named by p6. While the S
on/off boolean named by p5 is true (or always if no boolean is
supplied), a built in semaphore, NEXTPERIOD, will be
incremented at the start of each !+period+! amount of real
time. After the start of a !+period+!, the process will be
given up to pl CPU time before p2 real time has elapsed. The
process must complete execution and perform +DOWN+(NEXTPERIOD)
+PASS+(NEXTPERIOD) before consuming more than pl CPU time.

If boolean entity given as p5 becomes false during execution,
the process will stop when it waits for the start of its next
!+period+! (by doing +PASS+(NEXTPERIOD)).

Both If two (or more) processes simultaneously execute sequences of
statements that read and/or alter the value of some data, the
results are unpredictable because the executions may overlap in
time. However, EC access programs are considered indivisible.
If two EC access programs are executed simultaneously by two
processes, the effect will be as if one of the processes
executed its access program before the other; the order is not
specified. Note that the invocation of a user-supplied routine
is the execution of a single EC access program, but the
execution of the body of that routine is a sequence of EC
statements.

EC.PAR.1.2.2 Built-in objects

Name Used to Refer to

NEXT PERIOD semaphore variable, private to each periodic process, that
will be incremented by the EC at the start of each period.
Each periodic process only has access to its own
NEXTPERIOD. Semaphores are described in EC.PAR.3.

EC.PAR.1.3 Undesired Event Assumptions

1. Each program will complete its processing in the time specified.

2. Demand processes will not need to run so often as to cause a periodic
process to miss its deadline.

7722a 34

I

EC.PAR

EC.PAR.1.4 Local Type Definitions

boolean ent The name of a previously-declared boolean variable
or constant.

program name See EC.SEQ.2.4.

timeint ent The name of a previously-declared timeint variable
or constant.

EC.PAR.1.5 Dictionary

Term Definition

!+deadline+! The maximum amount of real-time that can be allowed
to elapse between the time that a process can
proceed and the time that it reaches the next point

of suspension.

!+max CPU time req+! An upper bound for the amount of CPU time required
by a process before it will suspend itself. The
value of this parameter is machine dependent.

!+on/off+! the name of a boolean variable or constant whose
value will be used to start/stop the periodic
process in whose definition it appears. Its value
must be true whenever the periodic process is
supposed to proceed. If it becomes false, the
process will be suspended the next time it reaches
its starting point.

!+perioA+! The name of a timeint entity whose value will be
interpreted as the amount of real-time that sho-ild

elapse between the beginning of one execution of a
periodic process and the beginning of the next
execution. !f the named entity is a variable,
changing its value has the result of changing the
period of any process for which it was used as the
!+period+!.

!+starting event+! The name of a set ,ore that, when becoming
nonnegative, will ause the periodic process in
which it is named to 1 come active.

7722a 35

-I,

EC.PAR

EC.PAR.1.6 Undesired Event Dictionary

%illegal synch% a synchronization operation other than the
required +DOWN+(NEXT PERIOD) and
+PASS+(NEXT PERIOD) (see EC.PAR.3) appears in the
body of a periodic process; or those required
operations were omitted.

%inconsistent time the timing parameters are contradictory; e.g.
parms% !+max CPU time req+! exceeds !+deadline+!, or

!+deadline+! exceeds the current value of
!+period+!.

%max CPU time exceeded% a process has used more CPU time than the maximum
that was specified in its declaration.

%missed deadline% a process has missed its deadline because too
many demand processes have occurred.

%undeclared semaphore% User program has used a semaphore that has not
been declared.

EC.PAR.1.7 System Generation Parameters: None

EC.PAR.1.8 Information Hidden

1. How many processors there are, and how the processes are allocated
among them.

2. The data structures and operations required to load a pro'ess on a
processor.

3. The data structures required to represent processes and keep track of
their current states.

7I
7722a 36 .

1

EC.PAR

EC.PAR.2
EXCLUSION REGIONS

EC.PAR.2.1 Introduction

This module allows constraints to be placed on the potential concurrency
of processes executing regions of code by defining an exclusion relation among
them. Region 1 excludes region 2 if starting to execute region 2 is forbidden
while region I is being executed. Mutual exclusion is a special case of this
exclusion relation, which is based on [BELP73].

EC.PAR.2.2 Interface Overview

EC.PAR.2.2.1 Instruction Template and Access Programs "

Keywords Parameters associated with keywords Undesired events

++REGION++ pl:name;I region name %name in use%

p2:statement-list;I region body
END-REGION

Program name Parm type Parm info Undesired events

++EXCLUSION++ pl:exclusion-relation;I %undeclared .

region%

Instruction and program effects:

++EXCLUSION++ If the exclusion relation includes (A,B) then no process

will begin to execute region B in the interval that starts
when a process begins execution of region A and ends when
that process completes execution of region A.

++REGION++ pl may be used to stand for the section of code that is

given in p2. If the last action before the region causes a 6

process to wait, then the process is considered to be

inside the region when it is allowed to proceed. If the
last instruction in p2 is a wait operation, then the
process is considered to have left the region when it
begins to wait. Including regions in a process will
prevent the process from waking up, if doing so would
result in a violation of an exclusion region.

EC.PAR.2.3 Undesired Event Assumptions: None.

7722a 37

EC. PAR

EC.PAR.2.4 Local Type Definitions:

exclusion-relation a parenthesized list of ordered pairs- of region
names; the ordered pairs are separated by
commas. The fir&t region named in each pair
excludes the second region named in that pair.

EC.PAR.2.5 Dictionary: None

EC.PAR.1.6 Undesired Event Dictionary

%undeclared region% an exclusion relation includes regions that have
not been identified in the program.

S
%name in use% a ++REGION++ instruction has been given using a

previously defined identifier

EC.PAR.2.7 System Generation Parameters: None

EC.PAR.2.8 Information Hidden

1. How the exclusion relation is implemented.

7722a 38

EC.PAR

EC. PAR. 3

SYNCHRONIZATION VARIABLES AND OPERATIONS

EC.PAR.3.l Introduction

This module provides a run-time synchronization mechanism, semaphores,

with associated operations. They can be used where exclusion regions cannot

express the constraints. This mechanism is based on [BELP73]; the semaphore

operations are a more primitive version of Dijkstra's P and V [DIJK68].

EC.PAR.3.2 Interface Overview

EC.PAR.3.2.1 Creating a Semaphore

To create specific semaphore types, use the ++DCL.TYPE++ program
specified in EC.DATA.2, with:

pl as described there;
p2 = SEMAPHORE;.
p3 a semaphore-attribute, defined in EC.PAR.3.4;

p4 as described there; and
p5 omitted.

Semaphore entities must be declared before they can be used. Use the
++DCL ENTITY++ program of Section EC.DATA.2.2, with:

p1 as described there;

p2 as described there;

p3 (if supplied) a semaphore-attribute;

p4 as described there; and
p5 the initial value given as an integer literal

EC.PAR.3.2.2 Access programs

Program name Parm type Parm Info Undesired Events

+DOWN+ pl:semaphore;IO %undeclared
+UP+ semaphorey-

%constant
destination%

%range exceeded%

+PASS+ pl:semaphore;I %undeclared%
semaphore% -

7722a 39

EC. PAR

Program effects

In this section, we characterize informally the effects of the
synchronization operations. For a more precise description, see the formal
specifications in [TRACE].

Terminology:

Term Explanation
state Either "active" or "suspended".
state(self) the state of the process executing the operation
state(waiters)_, the state of all processes in the middle of a +PASS+

operation for that semaphore

Effect on the integer
Operation equivalent of the Effect on process state(s)

named semaphore

+UP+ incremented by 1 if the semaphore gteq 0 then
state(waiters) :- active*

+PASS+ none if the semaphore lt 0 then
state(self) :r waiting

+DOWN+ decremented by I none

a change in "state(waiters)", means that all the other processes in
pending +PASS+ operations on that semaphore may be made active in an
unspecified order. A process that becomes active may make the semaphore
negative, causing any other processes in the midst of a +PASS+ to remain in
the waiting state. Processes will be activated and complete the pass as long
as the semaphore is nonnegative.

EC.PAR.3.3 Undesired Event Assumptions

1. There is a range of values that will suffice for all semaphores, and
will not be exceeded by user programs.

EC.PAR.3.4 Local Type Definitions

semaphore The name of a run-time synchronization object
created previously by a user program; or NEXT
PERIOD, the builtin semaphore private to each
periodic process, defined in EC.PAR.l.2.2.

semaphore-attribute An ordered pair of integers specifying the lower
bound and upper bound of the type.

7722a 40

EC. PAR

EC.PAR.3.5 Local dictionary: None

EC.PAR.3.6 Undesired Event Dictionary:

%constant destination% A user program has tried to change the value of
a semaphore declared to be a constants

%range exceeded% A user program has caused a semaphore variable
to exceed its maximum or minimum value range.

%undeclared semaphore% A user program contains a synchronization
operation on an identifier that was not
declared as a semaphore.

EC.PAR.3.7 System Generation Parameters: None.

EC.PAR.3.8 Information Hidden

1. The data structures and algorithms required to keep track of
semaphore values and of process states.

2. How synchronization operations are made indivisible.

w

7722a 41
gS

EC. SEQ. I

STATEMENT SEQUENCE CONTROL CONSTRUCTS

EC.SEQ.1.l Introduction

The statement sequence control constructs allow the programmer to control
the order of actions within a program or process. It is based on the
deterministic version of the it ti. control structure, which has been formally
designed in [ITTI2]. The following is an informal introduction, which should
be read in conjunction with the syntactic definitions on the next page. We
assume the availability of sequences of statements (defined in EC.SEQ.1.4) and
a special class of such statements, called boolean sequences, which evaluate
predicates without changing the state of variables.

An LP defines a limited program; it limits the states in which a statement
list will be executed to those in which the guard (see below) is true.

An LPL (limited program list) is an optional guard definition (see below)
followed by a list of limited programs; when the LPL is executed, the first
limited program in the list that has a true guard will be executed. The
behavior of an LPL when there is no true guard is undefined.

Guards may be (1) boolean sequences, (2) limited program lists, or (3)
guard definition programs.

A boolean sequence is a statement list that changes the value of the
built-in boolean variable GUARDVAL. The value of a boolean sequence is the
value that it assigns to GUARDVAL. The semantics do not define the meaning of
boolean sequences that do not assign a value to GUARDVAL. They do not fully
define the meaning of boolean sequences that changes values other than
GUARDVAL.

A guard that is an LPL is considered true if and only if the guard of one
of its elements is true.

A guard definition program (DEF) defines a list of identifiers that can be
*used as guards. The body of a DEF is a DLPL, which is a list of DLPs
* (definition limited programs). A DLP is exactly like an LP except that, in

place of the statement list, there is either an identifier, the meaning of
which is being defined, or a DLPL. By executing the body of a DEF, one of the
identifiers will be selected. The identifiers, called defined guards, are
considered true in the states where they will be selected.

The IT TI brackets enclose a repeatable statement list. A decision about
whether or not to repeat the execution of that list may be made at any LP or
DLP within the list except those within an enclosed IT TI. The decision is
indicated by means of a key that indicates whether to continue the iteration
(CONT) or stop (TERM). The key in the last selected LP or DLP in the IT TI
determines whether or not iteration will take place. Any key in an LP or DLP
selected earlier has no effect.

The SKIP instruction has no effect on the state of the program. It is to
be used instead of an empty statement list.

7721a 42

S EC. SEQ

EC.SEQ.1.2 Interface Overview

EC.SEQ.1.2.l Instruction Templates

In the following table, the appearance of a keyword in the parameter
column means that the parameter is an instruction beginning with that keyword.

Keywords Parameters associated with keywords Undesired Events

~+LP+
+Lpl:guard;I %illegal guard%

p2:statement-list;I %key outside IT TI%
p3:key;I_OPT

PL
or

+LPL+
pl:+DEF+;I OPT %guard unused%
p2-pn:+LP+;I %no appropriate action%

LPL

+DEF+
pl:identifier-list;I %previously defined id%
p2 :+DLPL+ ;I %unde fined guard%

FED %guard unused%

+DLP+
pl:guard;l %illegal guard%
p2:defitem;I %key outside IT TI%
p3:key;I OPT %not guard id%

PLD g

+DLPL+
pl:+DEF+;IOPT %guard unused%
p2-pn:+DLP+;l %no appropriate action%

LPLD

+IT+
plzstatement-list;l %key missing%

TI

+SKIP+ None

Instruction Effects

The instructions are explained informally in the introduction. A formal V

definition may be found in [ITTI2].

7721a 43
U

EC. SEQ

EC.SEQ.1.2.3 Built-in Objects

Name Refers to Undesired Event

GUARDVAL a special boolean entity, which stores %illegal GUARDVAL
the value of a boolean-seq (see EC.SEQ.1.4). use%

INIT a boolean entity that is true on the first %illegal INIT use%
execution of the body of an IT TI after the
IT TI is entered, but false on subsequent
iterations of the body.

EC.SEQ.1.3 Undesired Event Assumptions

1. Except when an LPL is used as a guard, every LPL instruction will
include an executable statement list for every state in which the LPL
would be executed.

2. User programs will not attempt to use GUARDVAL as an operand outside
the context of an LP or DLP. When GUARDVAL is used, user programs
will not neglect to give GUARDVAL a value. They will treat the
initial value of GUARDVAL as undefined.

3. There is no way to execute the body of an IT TI without executing an
element with a key.

p

7721a 44

EC. SEQ

EC.SEQ.l.4 Local Type Definitions

boolean-seq a sequence of statements resulting in a boolean value
being stored in GUARDVAL. The sequence of statements
is not a boolean-seq if it fails to set the value of
GUARDVAL. If a boolean-seq that evaluates to false
changes the state of a variable, the value of that
variable is not defined outside the guard in which the
boolean-seq appears.

defined guard identifier that has appeared in DEF for this LPL or
DLPL

defitem either an identifier or a DLPL

guard boolean-seq or
LPL or
defined guard

identifier-list one or more identifiers separated by commas; the list

is enclosed in parentheses.

key either TERM or CONT

statement-list a sequence of EC instructions, invocations of EC
access programs, and invocations of user-defined EC
programs.

EC.SEQ.1.5 Dictionary: None

EC.SEQ.1.6 Undesired Event Dictionary

%guard unused% A guard has been defined in a DEF but is not used
in the LPL or DLPL that encloses the definition

%illegal guard% Either (1) a boolean-seq does not assign a value
to GUARDVAL or (2) the guard is not a
boolean-seq, an LPL, or an identifier that has

been defined as a guard by a DLPL

%illegal GUARDVAL use% GUARDVAL is not used in a guard of an LP or DLP,
or is not assigned a value in a boolean-seq where
it appears, or its initial value is not treated
as undefined.

%illegal INIT use% INIT used outside of guards in an IT TI

7721a 45
.W

EC. SEQ

%key missing% an IT TI has been written such that it is
possible to execute its body without selecting a
key.

%key outside IT TI% key specified outside of an IT TI

%no appropriate action% none of the guards in an LPL that must be
executed are true.

%not guard id% identifier in a DLP is not included in the guard
set of the enclosing DEF

%undefined guard% one or more guards in the identifier list have

not appeared in a DLP

EC.SEQ.1.7 System Generation Parameters: None

EC.5EQ.1.8 Information Hidden

1. The control structures that exist at the hardware level.

2. The hardware instruction sequences needed to implement the EC control
structures.

7

* VIl

*7721a 46

"I

EC. SEQ

EC. SEQ.2
PROGRAM INVOCATION FACILITIES

EC.SEQ.2.1 Introduction

The Program Invocation module provides mechanisms for declaring and
invoking programs with parameters.

EC.SEQ.2.2 Interface Overview

EC.SEQ.2.2.1 Instruction Templates and Access Programs

Keywords Parameters associated with keywords Undesired Events

++PROGRAM++ pl:name;I program name %parm access
p2:call-sort;I how invoked violation%

PARM pl:name;I formal parameter name
p2:type-spec;I parameter type required
p3:access-spec;I is parm input or output,

optional or required u

PARM pl:name;I formal parameter name
p2:type-spec;I parameter type required
p3:access-spec;I is parm input or output, W

optional or required

UE pl:name;I name of undesired event %duplicate TJEs%

UE pl:name;I name of undesired event d
UE pl:name;I name of undesired event

BEGIN

END pl:statement-list;I program body

Parameters

If the program has no formal parameters, then the PAM keywords and
parameters are omitted. If the program has no undesired events associated
with it, then the UE keywords and parameters are omitted.

7721a 47

0W

EC. SEQ

Program Parm type Parm info Undesired events

+program-name+ (p1, . . ., pn) parameter list %too few parms%
required by program %parm wrong type%

%too many parms%

(program name, . ., list of UE-handling %undeclared
program name), programs (optional)_. program%

%UE-handler has
parameters%

%no UE
correspondence%

++RANK PGM++ pl:program name;I program pl should be %undeclared
p2:program name;I invoked no slower program%

than program p2

%UE name% invoke program to %undeclared UE%
handle the named UE

Instruction and program effects

++PROGRAM++ The program pl may be invoked by any program that uses its
name. The invocation will be by inline expansion of the body
if p2 - MAC, and by subroutine invocation and return if p2 =

SUB. Supplying a list of UE names requires that when the
program is invoked, a program must be named to handle each UE.

+program-name+ (wheze "program name" is replaced with the name of a program
previously defined by using the ++PROGRAM++ facility) The
effect is as if the statement list that is the body of the
program (as declared using ++PROGRAM++) is (1) modified by
replacing the formal parameters with the description of the
entity, array, or array element that is the actual parameter
and then (2) inserted in place of +program-name+. If the

P resulting program modifies the value of a variable that was W
used to determine which element of an array is the actual
parameter, the effect is undefined. If an optional parameter
is omitted, any commas that would precede it and follow it
(were it supplied) must be given, unless no other parameters
trail it in the list; then the trailing comma may be omitted.

The program names will be associated with the UE's specified
when the program was declared; the correspondence is
positional. If the UE-program list is provided, there must be
one program name for every UE name. If the list is omitted,
the correspondence between UE names and LE programs is that
defined by the textually most recent call of the +program+.
Note that the UE-program list must be supplied at the earliest
textual point where the routine is called. A UE-handling
program is not allowed to have formal parameters.

7721a 48

EC. SEQ

++RANKPGM++ Expresses the preference that the time it takes to invoke the
program named by pl will not be more than the time it takes to
invoke the program named by p2. The Extended Computer will
order the programs' invocation speeds based on these preferences.

WUE nameZ (where "UE name" is replaced with the name of an undesired event
program that was declared when the enclosing program was defined
using the ++PROGRAM++ facility)_-Causes the UE-handling program
associated with this UE to be invoked. The association is
determined by the caller of the enclosing program at invocation
time.

EC.SEQ.2.2.2 Built-in Objects

Name Refers to Undesired Events

PARM GIVEN An array of booleans private to each program. %illegal PARM
There is one element for each formal parameter GIVEN use%
that was specified when the program was
declared. Correspondence is positional; the
first parameter corresponds to the first
element of the array, etc. When the program is
invoked, an element of PARM GIVEN will be true
if the corresponding actual parameter was given
in the invocation, and false if it was
omitted. PARM GIVEN may not be referenced 0
outside the body of a ++PROGRAM++ instruction.

EC.SEQ.2.3 Undesired Event Assumptions

1. When user programs invoke a program, they will not supply parameters 61
whose types are not consistent with the specification in the template;

2. A program will not neglect to assign a value to an output parameter.

7

7721a 49

EC. SEQ

EC.SEQ.2.4 Local Type Definitions

access-spec Input Output Input and Output
Required: I 0 10
Optional: I-OPT O OPT 1O OPT

I: input parameters, treated as constants;
0: output parameters, treated as uninitialized

variables;
10: input-output parameters, treated as previously

initialized variables.

call-sort Either SUB meaning subroutine linkage or MAC meaning
inline expansion, i.e. macro.

program name The name of a program declared via the ++PROGRAM++
statement.

type-spec Either:
1). the name of any type class or specific type. (see

EC.DATA)
2), the preceding, followed by "ARRAY" (See EC.DATA).

EC.SEQ.2.5 Dictionary: None.

EC.SEQ.2.6 Undesired Event Dictionary

%duplicate UEs% A UE has been named more than once in a
program declaration.

%illegal PARMGIVEN use% PARM GIVEN is referenced outside the body of P
a ++PROGRAM++ instruction, or in the body of
a program with no optional parameters, or
with an index that is less than one or
greater than the number of optional
parameters.

%no UE correspondence% The first (textually).invocation of a program
has been issued without specifying the
UE-handlers for that program.

%parm access violation% Use of a parameter inside a program does not
40 match the access specification given for it

in the program declaration; i.e., the value
of an input parameter was changed, or the
value of an output parameter was not assigned.

7721a 50

EC. SEQ

%parm wrong type% The type of a parameter, as supplied by a
calling program, is inconsistent with the
specification in the called program's
parameter list.

%too few parms% User program fails to provide one or more of
the parameters required by the called
program.

%too many parms% The number of actual parameters supplied by
the user is greater than that specified by
the called program.

%UE-handler has parameters% For a UE-handler, a program with formal
parameters has been specified; this is not
allowed.

%undeclared program% Program called or referenced has never been
declared with ++PROGRAM++.

%undeclared UE% Program has tried to invoke a UE-handler
program by referencing a UE that was never
named when the program was declared.

EC.SEQ.2.7 System Generation Parameters: None

EC.SEQ.2.8 Information Hidden

1. Whether a program is implemented as a subroutine or a macro. is hidden
from the caller of the program.

2. How control gets transferred to the program and later returned to the
user program including any subroutine linkage conventions, such as
saving and restoring registers.

3. How parameter information is communicated between the user program
and the program.

7a

7721a 51

E.S
EC. SEQ

EC. SEQ. 3
TIMER FACILITIES

EC.SEQ.3.l Introduction S

This module provides facilities for measuring real time intervals via

timers. A timer is a timeint variable that, when running, will increment or
decrement at a rate commensurate with real time.

A timer may be used anywhere a timeint variable may be used, but there are
two additional operations, START TTMER and HALTTIMER, that may be used.
START TIMER increments or decrements the timer until a limit is reached.

When a timer is declared, the user may choose between timers that
increment and timers that decrement, as well as between timers that halt when
they reach their limit and timers that "wrap around". The user may also 6
specify a semaphore that will be incremented when the timer reaches its limit.

EC.SEQ.3.2 Interface Overview

EC.SEQ.3.2.1 Declaring a Timer

Timers. are a numeric type class, as described in EC.DATA.1. To declare
specific timer types, use the ++DCLTYPE++ program specified in EC.DATA.2,
with:

pl as described there;
p2 - TIMER; P
p3 a timer-attribute, defined in section EC.SEQ.3.4;
p4 as described there; and
p5 omitted.

No specific type may have a resolution less than #min timer resolution#, or

else the undesired event %res too fine% will be raised.

Timer entities must be declared before they can be used. Use the
++DCL ENTITY++ program of Section EC.DATA.2.2, with:

pl as described there;
p2 as described there;
p3 (if supplied), a timer-attribute;
p4 = VAR; and

p5 the initial value given as a timeint literal

0

7721a 52
owl

EC. SEQ

EC.SEQ.3.2.2 Access programs

Program name Parm.type Parm Info Undesired Events

++TIMEREVENTS++ pl:timer;I timer name %undeclared timer%

p2:semaphore;I limit value event %undeclared
semaphore%

+START TIMER+ pl:timer;I timer name %undeclared timer%
+HALTTIMER+

Program Effects

++TIMER EVENTS++ Causes an event to be signalled (by incrementing p2)
every time pl reaches its minimum range value (if pl is a
decrementing timer)_-r its maximum range value (if pl is
an incrementing timer).

+START TIMER+ Causes the value of pl to be changed in value in real
time. The value will be increased or decreased according
to the declaration of the specific type to which pl
belongs. According to the declaration of the specific
timer type to which pl belongs, the timer will either
stop when it reaches its minimum (maximum) _alue, or
"wraparound"; i.e., continue from its maximum (minimum)
value. Starting a running timer has no effect.

+HALTTIMER+ Causes running timer pl to halt. Halting a non-running

timer has no effect.

EC.SEQ.3.3.2 Undesired Event Assumptions: None.

7721a 53

EC. SEQ

EC.SEQ.3.4 Local Type Definitions

timer The name of a time-keeping mechanism declared

previously by a user program.

timer-attribute An ordered 5-tuple of the form
(timeint, timeint, timeint, STOP/WRAP, UP/DOWN)

The first three elements specify the lower bound, F
upper bound, and minimum resolution, respectively, of
entities of the type. The fourth element is either
"STOP" (meaning that the timer should stop when it
reaches a limit) Qr "WRAP" (meaning that the timer
should wrap around when it reaches a limit).. The
fifth element is either "UP" (meaning that the timer

increments when started)-or "DOWN" (meaning that the
timer decrements when started).

EC.SEQ.3.5 Dictionary: None.

EC.SEQ.3.6 Undesired Event Dictionary

%res too.fine% User program sought to declare a specific timer
type with a resolution finer that the minimum
allowed.

%undeclared semaphore% User program has used a semaphore that has not
been declared.

%undeclared timer% User program has used a timer that has not been
declared.

EC.SEQ.3.7 System Generation Parameters

Parameter. Type Explanation

#max timer error# real maximum allowable error rate of all
timers, given as a fraction of the time
interval measured

#min timer resolution# timeint for all timers, the minimum resolution

7

7721a 54

EC. SEQ

EC.SEQ.3.8. Information Hidden

1. The number of actual hardware timing devices and their
characteristics, including range and resolution.

2. Data structures needed to keep track of all the active timers, and
algorithms needed to process all of them.

3. Which hardware timing device is assigned to a timing task.

7721a 5

* S

S0 EC.STATE

EXTENDED COMPUTER STATE

EC.STATE.1 Introduction p
This module controls and reports transitions between Extended Computer

states.

EC.STATE.2 Interface Overview
I

EC.STATE.2.1 Access programs

Program name Parm. type Parm.info Undesired Events

+SFAILSTATE+ - None

EC.STATE.2.2 Events signalled by incrementing a semaphore

Event Semaphore incremented when event occurs
@T-(!+power up+!) ECPOWUP
@T(U+failed state+!)_- ECFAILED

Program and Event effects

+S FAIL STATE+ The Extended computer enters its failed state,

increments ECFAILED, and executes an internal P
shutdown procedure.

@T(!+failed state+!) Programmers should assume that when #close down time#
has elapsed after this event, no more software
actions can occur.

@T(!+power up+!L_ The Extended Computer has entered the operating state
and is functioning correctly. A11 demand processes
are started.

EC.STATE.3 Undesired Event Assumptions: None.

EC.STATE.4 Local Type Definitions: None.

7723a 56

i
-

r • --- -.- - - -- -

"-

EC. STATE

EC. STATE.5 Dictionary

Term Definition

!+power up+! computer is in the operating state and may be
assumed to be functioning properly.

!+failed state+! computer is malfunctioning.

EC.STATE.6 Undesired Event Dictionary: None.

EC.STATE.7 System Generation Parameters:

Parameter- Type Explanation

#close down time# timeint The minimum expected time interval between
the moment that the extended computer
enters failed state and the moment when no
more software actions may occur.

EC.STATE.8 Information Hidden

I. How the hardware behaves when the power is turned on.

2. How the hardware behaves when it enters malfunction states.

3. How malfunctions in hardware functions are detected and reported.

4. How many actual states the hardware has, and what hardware
transitions are possible. '4

5. What internal malfunctions cause transitions from operating to failed.

6. What causes transitions to off, and to operating.

7

U

7723a 57

E:C. TEST
EXTENDED COMPUTER DIAGNOSTIC TESTS

EC.TEST.1 Introduction

This module provides diagnostic commands that can be used to check the
* reliability of the memory, input/output hardware, and the timer and interrupt
* hardware. Invoking these programs may interfere with other programs as

described below.

EC.TEST.2. Interface Overview

EC.TEST.2.1 Access Programs

EC.TEST.2.1.I Input/Output Diagnostics

Program name Parm. type Parm-info Undesired Events

+TEST AC+ pl:boolean;O !+test result+! None

+TESTCSA+ pl:boolean;O !+test result+! -
+TESTCSB+ pl:boolean;O !+test result+!

+TESTDC+ pl:boolean;O !+test result+!

+TEST DIOW1+ pl:boolean;O !+test result+!

+TEST DIOW2+ pl:boolean;O !+test result+!

+TESTDIOW3+ pl:boolean;O !+test result+!

+TESTXACC+ pI:boolean;O !+test result+!

+TEST YACC+ pl:boolean;O !+test result+!

+TESTZACC+ pl:boolean;O !+test result+!

EC.TEST.2.1.2 Memory Di-agrostics

+TESTMEMORY+ pl:boolean;O !+test result+! None

EC.TEST.2.1.3 Timer/interrupt Diagnostics

6+TESTTIMER. pl:boolean;O !+test result+! None

+TEST-INTERRUPTS+ pl:boolean;O !+test result+!-

7725a 58

S W

EC. TEST
EC.TEST.2.3 Program and Event effects

These programs set !+test result+! true if and only if the hardware
passed the associated test. If the test is performed periodically or
independent of user request, the result given will be that of the most recent

test. If the test is performed on request, the command will initiate the test
and report the result when the test is complete. In addition, the following
effects are observable.

EC.TEST.2.3.1 Input/Output Diagnostics

+TEST AC+ This program reports the results of the AC signal converter

check. It may interfere with:

output, when the data item is
//BRGDEST// //GNDTRK//

//RNGHND// //RNGTEN// //RNGUNIT// or

//STEERAZ// //STEEREL//

+TEST CSA+ This program reports the results of the cycle-steal channel

A and serial channel 1 check. It may interfere with:

output, when the data item is
//ASAZ// //HUDCTL// //USOLCUAZ//
//ASEL// //LSOLCUAZ// //USOLCUEL//

//ASLAZ// //LSOLCUEL// //VERTVEL//
//ASLEL// //MAGHDGH// //VTVELAC//

//ASLCOS// //MAPOR// //XCOMMF//
//ASLSIN// //PTCHANG// //XCOMMC//
//AZRING// //PUACAZ// //YCOMM//
//BAROHUD// //PUACEL//
//FLTDIRAZ// //ROLLCOSH//

//FPMAZ// //ROLLSINH//

//FPMEL//

input, when the data item is /LOCKEDON/ or /SLTRNG/.

+TEST CSB+ This program reports the results of the cycle steal channel
B and serial channel 2 check. It may interfere with:

output, when the data item is
/ICURAZCOS// //CURAZSIN// //CURPOS//

input, when the data item is

/ANTGOOD/ /DGNDSP/ /DRFTANG/
/DRSFUN/ /DRSMEM/ /DRSREL/

/ELECGOOD/

7725a 59

EC.TEST
+TEST DC+ This program reports the results of the DC signal converter

check. It may interfere with:

output, when the data item is
//FPANGL// //GNDTRVEL// //STERROR//

+TEST DIOWl+ These programs report the results of the checks on discrete

+TEST DIOW2+ input and output word pairs. 1, 2, and 3 respectively. These

+TEST DIOW34 programs may interfere with:

output, when the data item is
//OWl// I/DO W2/

input, when the data item is
/DIWI/ /DIW2/ /DIW3/
/DIW4/ /DIW5/ /DIW6/
/ANTGOOD/ /DGNDSP/ /DRFTANG/
/DRSFUN/ /DRSMEM/ /DRSREL/
/ELECGOOD/ /LOCKEDON/ /SLTRNG/
/SINSDD/

+TEST XACC+ These programs report the results of checks on the

+TEST-YACC+ accelerometer and torque registers associated with the X, Y,

+TEST-ZACC+ and Z axes of the IMS respectively. These programs may

cause the IMS to lose its alignment and velocities, and may

interfere with:

output, when the data item is
//GYCOMI// I1YGYCOM1 //ZGYCOMII

input, when the data item is
/XGYCNT/ /XVEL/ /YGYCNT/
/YVEL/ /ZGYCNT/ /ZVEL/

EC.TEST.2.3.2 Memory Diagnostics

+TEST MEMORY+ This program reports the results of the the memory

diagnostic program. It interferes with no other program.

EC.TEST.2.3.3 Timer/Interrupt Diagnostics

+TEST TIMER+ These programs report the results of the timer and interrupt

+TEST-INTERRUPTS+ hardware checks. They may interfere with normal operation
of timers and input/output commands in unpredictable ways.

S

7725a 60

W

-U EC. TEST
EC.TEST.3 Undesired event assumptions: None.

EC.TEST.4 Local Type Definitions: None.

ICI

,* EC.TEST.5 Dictionary

Term Definition

!+test result+! true iff hardware passes built-in test. U

EC.TEST.6 Undesired Event Dictionary: None.

EC.TEST.7 System Generation Parameters: None.

EC.TEST.8 InformationHidden

1. How the tests are performed and criteria used to.judge results.

2. Timing characteristics that affect test evaluation.

3. Which parts of memory are checked.

4. The algorithm used to check memory. •

7725a 61

U

U

EC.INDEX INDICES TO THE DOCUMENT

This section provides the following indices to the facilities described
in this document:

Access programs

Instructions and keywords

Builtin objects

Events signalled by incrementing a semaphore

Types provided

Dictionary terms

Undesired events

System generation parameters

9S

35 74a 62

1 EC. INDEX

Access Pzograns

Access program Where defined

+ABSV+ EC.DATA
+ADD+ EC. DATA
+AND+ EC. DATA
+B REALPOITVE EC.DATA
+B REAL_ OITVE EC. DATA
+B REAL SIONMAG. E C.DATA
+CAT+ -EC.DATA

.COMPLE+ EC.DATA

++DCLARRAY.. EC.DATA v
++DCL ENTITY++ EC. DATA
++DCL TYPE.. EC.DATA
+DISABLE+ EC.IO
+DIV+ EC. DATA

+DOWN+ EC.PAR.32
+EQ+ (bitstring) EC. DATA
+EQ+ (numeric)-. EC. DATA
+ENABLE+ EC. tO
++EXCLUS ION++ EC.PAR.2
+G SUCCESS+ EC. tO
+.GEQ+ EC. DATA
+GT+ EC.DATA
+HALT TIMER+ EC.SEQ.3
+LE Q4- EC. DATA
+LT+ EC. DATA

+MINUS+EC. DATA
+MUL+ EC. DATA
.NAND+ EC.DATA
+NEQ+ (bitstring).. EC. DATA
.NEQ+ (numeric) EC.DATA
+NOT+ EC .DATA
+OR+ EC. DATA
+PASS+ EC.PAR.3
+R BITS 2COMP. EC.DATA
R-B ITS POSTIIVE. EC. DATA

+R BITS SIGNMAG+ EC. DATA
+R7TI MEHOUR. EC.DATA
+R TIMEMIN. EC. DATA
R TIME ms. EC. DATA
+TIMESEC+ EC. DATA

..RAkD'ATA.. EC.DATA

..RANK PGM.+ EC.SEQ.2

.REPLC. EC. DATA

.S FAILSTATE. EC. STATE

85 74a 63

EC.INDEX

Access Programs (continued)

Access program Where defined

+SET+ EC. DATA
+SHIFT+ EC.DATA
+STARTTIMER+ EC.SEQ.3
+ SUB+ EC. DATA
+T REALHOUR+ EC. DATA F4
+T REALMIN+ EC. DATA
+T REALMS+ EC. DATA
+T REALSEC+ EC.DATA
+TESTAC+ EC.TEST

______ + C. ES

+TESTCSA+ EC.TEST
+TESTC+ EC.TEST
+TESTDCO+ EC. TEST
+TESTDIOW1+ EC.TEST
+TESTDIOW2+ EC.TEST

+TWSTINTERRUPTS+ EC.TEST
*+TEST MEMORY+ EC.TEST

+TEST TI MER+ EC. TEST
+TEST_XACC+ EC.TEST
+TESTYACC+ EC.TEST
+TESTZACC+ EC.TEST
++TI~gREVENTS++ EC.SEQ.3
+UP+ EC.PAR.3 5

+XOR+ EC.DATA

Invoking a user-defined access program EC.SEQ.2

3574a 64

EC. INDEX

Instructions and Keywords

The terms bracketed with "+1 or 1++" are instructions; other terms are

keywords associated with instructions.

Name Where defined

BEGIN EC. SEQ.2
+DEF+ EC.SEQ.1

+DLP+ EC. SEQ. 1
+DLPL+ EC.SEQ.1
++D PROCESS++ EC.PAR. 1
END EC.SEQ.2
END-REGION EC.PAR.2
FED EC.SEQ.1.
+IT+ EC.SEQ.1
+LP+ EC.SEQ.1
+LPL+ EC. SEQ. 1
LPL EC. SEQ. 1
LPLD EC. SEQ. 1
ON OFF EC.PAR. 1
PARM EC.SEQ.2
PL EC.SEQ.1
PLD EC. SEQ. I
++PROGRAM++ EC.SEQ.2
++P PROCESS++ EC.PAR. 1
++REGION++ EC.PAR.2
-SAVE EC. DATA
+SKIP+ EC.SEQ.1
TI EC. SEQ. 1
UE EC.SEQ.2

Builtin Objects

Name Where defined

GUARDVAL EC. SEQ. 1
INIT EC. SEQ. 1
NEXT PERIOD EC.PAR. I
PARM GIVEN EC. SEQ. 2
REG EC.DATA
All input and output data items EC.IO

8574a 65

EC. INDEX

Events Signalled by Incrementing a Semaphore

Event Semaphore Where defined

@T(!+/ENTERSW/ ready+!) ENTSWSEM EC.IO
@T(!+failed state+!) ECFAILED EC.STATE
@T(!+/KBDENBL/ ready+!)-- ENBLSEM EC.IO
@T(!+/KBDINT/ ready+!) KBINTSEM EC.1O
@T(!+/MARKSW/ ready+!)_- MARKSEM EC.IO
@T(!+power up+!) ECPOWUP EC.STATE

In addition, users may request timer-related
events by supplying their own semaphores. See EC.SEQ.3

Types Provided

Type name Where defined

access-spec EC.SEQ.2
arraylit EC. DATA
attribute EC.DATA
binding EC. DATA
bitstring EC.DATA
boolean EC. DATA
boolean-seq EC. SEQ. 1

call-sort EC.SEQ.2
convar EC.DATA
dataitem EC. IO
defined guard EC.SEQ.1.
defitem EC. SEQ. 1
direction EC.1DATA
exclusion-relation EC.PAR.2
guard EC.SEQ.1
identifier-list EC.SEQ.1
indexset EC.DATA
integer EC.DA'A
key EC. SEQ. 1
name E C. DATA
program name EC.SEQ.2
real EC.DATA

semaphore EC.PAR.3
semaphore-attribute EC.PAR.3spec type EC. DATA

statement-list EC.SEQ.1

timeint EC.DATA
timer EC.SEQ.3
timer-attribute EC.SEQ.3

typeclass EC.DATA
type-spec EC. SEQ. 2
version EC.DATA

8574a 66

L - -

-S,
EC. INDEX

Dictionary Terms

Term Where defined

!+deadline+! EC.PAR. I
!+destination+! EC. DATA
!+ENTERSW/ ready+! EC.TO
'+failed state+! EC. STATE
!+fall back value+! EC.DATA
!+i/o success+! EC. [0
!+/KBDENBL/ ready+! EC.IO
!+KBDINT/ ready+! EC.IO
W+MARKSW/ ready+! EC.TO
!+max CPU time req+! EC.PAR.1
!+max div result+! EC.DATA
!+on/off+! EC.PAR.1
!4period+! EC.PAR. 1
!+power up+! EC. STATE
!+radix pt ident+! EC.DATA
!+source+! EC. DATA

4!+starting event+! EC.PAR.l
!+user threshold+! EC.DATA
!+test result+! EC. TEST

lo

8574a 6

EC. INDEX

Undesired Events

UE name Where defined

%already disabled% EC.IO
%already enabled% EC.IO
%constant destination% EC.I)ATA, EC.PAR.3
%divide by zero% EC. DATA
%guard unused% EC.SEQ.1
Zillegal array index% EC.DATA
%illegal guard% EC.SEQ..
%illegal GUARDVAL use% EC.SEQ.1
%illegal index set% EC.DATA
%illegal INIT use% EC.SEQ.I
%illegal PARMGIVEN use% EC.SEQ.2
%illegal synchZ7 EC.PAR. 1
Zinappropriate attributes% EC.DATA
%inconsistent lengths% EC.DATA
Zinconsistent register access% EC.OATA
%inconsistent time parmsZ EC.PAR.1
%key missing% EC.SEQ.l
%key outside IT TIZ EC.SEQ..
%l~eft truncation% EC.DATA
%list mismatch% EC. DATA
%max CPU time exceeded% EC.PAR.I.
%missed deadline% EC.PAR.1
%name in use% EC.PAR.2, EC.DATA3
%no appropriate action%. EC.SEQ.l
%no UE correspondence% EC.SEQ.2
%nonexistent position% EC.DATA
%not a data item% EC.1O
%not guard id% EC. SEQ. I
Zparia access violation% EC.SEQ.2
%parm, wrong type% EC.SEQ.2
%range excceeded% EC.DATA, EC.PAR.3
%read-write violation% EC.IO
%res too fine% EC.SEQ.3
%too few parms% EC.SEQ.2

3 Ztoo.many parms% EC. SEQ.? U
ZUE-handler has parameters% EC.SEQ.2
%undeclared operand% EC.DATA
%undeclared program% EC.SEQ.2
%undeclared region% EC.PAR.2
%undeclared semaphore% EC.PAR.1, EC.PAR.3, EC.SEQ..3

*%undeclared spectype% EC.DATA
%undeclared timer% EC.SEQ.3
%undeclared UE% EC.SEQ.2_
%undefined guard% EC.SEQ.1

8574a 68

EC. INDEX

Undesired Events (continued)

UE name Wh,!re defined

%unimplemented attribute via variables% Appendix 4
%unimplemented binding% Appendix 4
%unimplemented disabling% Appendix 4
%unimplemented variable period% Appendix 4
%unimplemented variable shift length% Appendix 4
%unimplemented variable substring% Appendix 4
%unknown value% EC.DATA
%wrong init value size% EC.DATA

%wrong init value type% EC.DATA

System Generation Parameters

Parameter name Data type Where defined

#close down time# timeint EC.STATE

#data available (data item name)#, timeint EC.IO
#max i/o time (data item name)# timeint EC.TO
#max timer error# real EC.SEQ.3
#min timer resolution# timeint EC.SEQ.3

87 6

8574a 69

APPENDIX 1

INTERFACE DESIGN ISSUES

4
0p

Appendix I Design Issues

EC.DATA

1. We decided to give the programmer some control over the register, so
that he could take care of reducing register loads and stores by
being careful with the order of operations. The alternatives we
considered were notations much closer to high-level programming
languages. These notations make complex expressions easier to read,
but require a more sophisticated translator if we are to make
efficient use of registers.

2. There is a danger with fixed point division that the results will be
meaningless; this problem occurs when the numerator has more
significance than the denominator. An assembly language programmer
has some information that he uses to avoid this danger. The only way
we can get this information is to ask the programmer to provide it,
since it is dependent on the context and meaning of the division.

3. Two ways were proposed for user programs to indicate the radix of the
number for a bitstring-real conversion:

a. by giving an integer literal "i" such that the rightmost bit of p

the bitstring represents 2 raised to the ith power;

b. by giving an integer literal "i" such that i is the number of the
bit immediately to the right of the radix pt.

Alternative 2 most closely resembles the scaling notation used in the
current program, but we chose alternative I because most designers
felt that it was easier for newcomers to understand and remember.

4. There are two main reasons for including variables whose attributes
may vary:

a) ..they can be reused at different points in a computation, thereby
reducing the amount of space that must be reserved;

b) ..they allow the same code to be used to manipulate values in
widely differing ranges.

5. We require the programmer to specify a type for results stored into
and retrieved from variables. We considered permitting, but not
requiring, specification of the type of intermediate results and
letting the Extended Computer determine the specific type when the
programmer omitted the specification. We ruled out this alternative
because it requires a run-time support package to keep track of the
specific types of varying-type variables.

8944a 71

Appendix 1 Design Issues

6. We considered several alternatives for providing registers:

a) .Having a common register .for all type classes. This register can 5
be very simply mapped to the accumulator.

b) Having a separate register for each type class, implementing them
with the single accumulator, and leaving the problem of interference
between them up to the programmer. This was originally accepted
because it is the simplest alternative that provides type checking for S
results in the register. However it gives away the underlying
limitation, and imposes restrictions on the programmer that would not
be needed if the underlying hardware had more registers or if there
was multi-processor hardware.

c) Having a separate register for each type class, implementing them 5
with the single accumulator, and completely automating the problem of
interference between the registers, freeing the programmer from any
concern about it. This could be done by saving and restoring the
accumulator contents whenever a different register is used. While it
would be the most convenient alternative, the overhead would be
prohibitive. P

d) ..Having a separate register for each type class, implementing them
with the single accumulator, and partially automating the problem of
interference between the registers. The programmer would have to
indicate when he wants to reuse results in a particular register and
when he does not care.

We chose alternative (a) because it is the simplest and treats a
register as a variable with varying attributes.

7. We felt it important that the EC implementation avoid saving contents
of a register if they would never be needed and therefore put that
burden on the programmer rather than try to do register usage
analysis. We considered several ways to allow the programmer to
specify whether or not the value in the register would be needed
again. Among them:
a. Associate the information with the name of the register.
b. Associate the information with the name of the operation.

We chose (b) because we did not want to have two names for the same
object. Further, it allows us to localize the information in a place
related to the operations (of which it is a property) tather than the
registers.

8. An earlier version of this interface included operations such as
squareroot, exponentiation, log, and root-sum-squared. We decided to
move these operations to another module because they can be
implemented in a machine-independent fashion. These concerns do not
belong in the Extended Computer. p

8944a 72

Appendix 1 Design Issues

9. An earlier version of this module had two bitstring sizes,
corresponding to halfwords and fullwords on the target computer. We
then decided to have only one size because it results in a simpler
data type. We finally decided to have bitstrings of any size because
we noted that insisting on a fixed but unknown size made it difficult
to write efficient but machine independent code. The present choice
makes the interface unbiased with respect to word length and puts the
burden.for effective use of the actual hardware on the implementor of
the EC.

10. We considered specifying bitstring sub ranges in terms of
(starting point, length) instead of (starting point, ending point).
One parameter fewer would be needed on bitstring compares and
transfers, and we could avoid the unmatching lengths undesired event.
However, we found that people working with bitstrings find it easier
to work by identifying the boundary bits.

11. We considered having the EC monitor arithmetic operations for

excessive loss of significance but decided that this was a programmer
responsibility and could be done in a machine independent way. This
eliminated the undesired event %too much lost significance%.

12. We considered relegating time to the application data type module and
implementing it in terms of reals. We chose to include it in the EC
because the concept of time is basic to the specification and
implementation of real-time processes in the EC and because the
representation should be that used in the hardware timers.

13. We considered allowing array declarations to be shared by several
variables. We found this not particularly useful unless one has
operations that take whole arrays as operands.

14. We decided not to allow array elements to be structures. We lose the
ability to have arrays of arrays, but if this were necessary, it could
be implemented in a machine independent way and could be provided by
some other module.

15. We considered allowing index sets to be more general, but this seemed
unnecessary even for future extensions. Such extensions could be done
using the present arrays and the extension would be machine
independent. We also considered restricting the lower array bound to
be either 0 or 1. This seemed unnecessarily restrictive, especially
as it may be desirable to select array indices at sysgen time.

4 16. We considered fixing the value of the array index set at declaration
time, system generation time, or run time. Declaration time is too
restrictive; it is sometimes useful for the array index set to be a
system generation parameter. Run time fixing requires dynamic storage
allocation, which is not needed or practical for avionics applications.

9a

8944a 73

I

Appendix 1 Design Issues

17. We rejected the option of operations that apply to arrays as units,
e.g. multiplying arrays by scalars or arrays by arrays. Such
operations depend on mathematical algorithms, rather than on
characteristics of the computer and can be implemented in a
machine-independent way. The present design is the simplest way to
hide the hardware addressing mechanism. Extentions can be provided by
user programs.

18. We considered not allowing arrays of variables whose attributes vary

at run-time as it might simplify the implementation if all elements
had the same attributes at all times. Although the implementation of
arrays with varying attributes will probably be less efficient than
arrays of fixed attribute elements, this feature is occasionally
needed.

19. More than one reviewer asked if the Extended Computer shouldn't
provide stacks as a builtin data structure. If we need stacks, they
can be provided using the current EC facilities. The interface to
those facilities (probably in the ADT module) would be carefully
modelled after the EC. Should we transfer to stack machine, we could
move the interface into the EC, and user programs would not have to
change. This rationale also applies to floating point arithmetic,
multi-dimensional arrays, array operators, etc.

20. Entity names are global in the EC. This is because that is what
avionics computers provide; one can limit the scope of a name (if
desired) in a machine-independent way (e.g., using naming conventions,
or a pre-processor).

21. We recognize the need to represent data most efficiently for the
operations in which it will be used. Since only users can determine
how a datum will be used, the best the EC can do is provide a menu of
representations and tell the users what each one is best and worst at 9

doing. Hence, the "version" attribute in specific types.

8944a 74

Appendix 1 Design Issues

EC. 10

1. This interface does not include commands for the I/O used during
channel diagnostics (see EC.TEST.I). There are two reasons for this:
1) the diagnostic data items reveal secrets about how the channel
works, and 2) .the instruction sequences to. implement test commands
include timing tests as well as the normal success tests; they are
dependent on the computer and are hidden in a separate diagnosticsmodule.

2. We considered five alternatives for handling retries of unsuccesful
I/O operations:

1) having two different commands for these two cases: one that
retries, either once or until it succeeds, and one that instead of
retrying returns a failure.indicator;.

2) having a parameter on the command specifying how often to retry,
and having the command return a failure .indicator;

3) having a failure indicator, and having the user program try again
if it needs to retry transmission; -top

4) having a special "retry" command, with a label operand, which the
user can call to have the I/O command with the specified label
retried.

5) .omitting the failure indicator for the data items where it is not
currently used.

6
The.first and fourth alternatives yield a more complicated interface
than the third and provide no extra capability. The second results in
extra (non-machine dependent) programs in the EC. The fifth
alternative would build knowledge of the application into the EC. The
third alternative relegates decisions about retrying to the user
programs, and we chose this one.

8944a 75

Appendix 1 Design Issues

3. We have considered four alternatives for handling the discrete inputs
and outputs.

Alternative 1: Treating input and output differently, allowing user
programs to use a READ command to read in entire discrete input words,
but providing a special WRITEBOOL command so that user programs could
write individual bits appearing in the discrete output words.

Alternative 2: Adding a READBOOL command that would read in a
discrete input word, pick out the bit for a particular discrete input
data item, and return it as a boolean value. Alternative 2 was
rejected because not all the data items in discrete input words have
boolean values. For example, /IMSMODE/ has five values, one for each
switch position.

Alternative 3: Provide the user programs with a way to specify a
range of bits within both a discrete output word that they want to
write out and within an input word, so that they can request
individual discrete inputs in a symmetrical fashion. Alternative 3
leaves some of the responsibility for non-interference between
discrete outputs to the device interface modules, since they must
specify the correct ranges.

Current: All of the above alternatives were based oa the decision
that the EC would sometimes identify outputs and inputs by class name
rather than the individual data item name. This was done both for
efficiency reasons and because it was believed that knowledge of the

location of a data item within a discrete input or output word was
device dependent rather than computer dependent. A much more
consistent interface is achieved by always using the data item name.
The EC implenenter is now responsible for knowing the identity of a
TC-2 I/O item, but not responsible for knowing its meaning. The
efficiency problems are resolved by allowing a single command to take
a list of parameters so that the EC implementation may perform
operations to a single I/O word simultaneously rather than
sequentially. This also eliminates special treatment of double data
items.

4. We originally designed the reading of intermittent data with an access
function that indicated whether or not the data were available and an
undesired event if a user program tried an intermittent read operation
when the data were not available. This seemed dangerous, since a
slight timing difference could cause an undesired event, and the user
programs could not avoid the UE. Instead, we have chosen to allow the
read command at any time. If the ita are not available, the success
indicator returns false. This is consistent with our general policy
that it should be possible to avoid UEs by correct programming.

Because the intermittent data is read just like any other, we decided
not to have a separate command name for it.

8944a 76

w
Appendix I Design Issues

5. We considered having serial inputs identified by class names rather

than by individual data item name. Interpretation of the

identification bits was considered the responsibility of the

associated device interface module. We decided that identification of

the data item is an EC responsibility, but interpretation of the item

remains the responsibility of the DIM.

6. Note that sometimes an output should go to more than one data item.

We originally handled this by letting users repeat sets of parameters

to i/o commands. and saying that the order was unspecified. Since we

no longer have i/o commands per se, but rather use assignment (and

other bitstring)operations, we have expanded our general assignment

statement so that many sources and many destinations can be given at

once; the assignment happens in an unspecified order. 0

7. We promise that an output transmission will occur when an enabled

output data item is used as a destination. We do not say when an

input transmission will occur. This is because we can get away with

it in the latter case, but not in the former (because an output

transmission has visible effects). We hide when input takes place 0

because someday there may be direct-memory-access input, and the

computer really won't be able to control when an input item changes

value.

8. We did not include the names of the data items in the main document,

because we wanted to emphasize the fact that the architecture of the 9
Extended Computer's i/o operations doesn't depend on those particular

names. If the design of the Extended Computer were used with the TC-2

for some other application, the names of the data items would not be

part of the technology transferred.

8944a 77

Appendix I Design Issues

EC.PAR. 1

1. In earlier designs of this interface, timing constraints were
associated with specially designated blocks, implying that these
blocks were the scheduling units. The process mechanism was
unnecessarily complicated, put too many restrictions on the internal
structure of processes, and gave away more information than the one
here.

*0
2. We considered having START and STOP commands so that one process can

explicitly affect the ready/waiting state of another process. The
problem with a STOP command is that a process cannot be safely
stopped at any arbitrary point. We fixed this by adding "homing
points", but specifying homing points also cluttered up the algorithm
descriptions. So we dropped the idea, relying on more conventional -.
synchronization mechanisms instead.

3. Earlier versions made an outer "do forever" loop implicit. Thus the
process would execute a "INIT" block once whenever the process was
started and then repeatedly execute a "FREQ" block until the process
was stopped. We have decided not to include an implicit loop because
we do not want to limit the internal structure of the processes.
Also, the process would be easier to read if all the control was
shown explicitly. Process bodies can now be specified just as
subprogram bodies are, making the overrll specifications of the

Extended Computer simpler.

4. At one point we had intermittent processes wait for a start event and

then run until a stop condition existed. We found it simpler to
define a single boolean and have the process pass its start point
only when the boolean was true. This eliminated the need for the
event interface in the EC and eliminated ambiguous cases such as the
start event ocurring when tLie stop condition held.

5. kt one point we had a special class of processes called init

processes. We recognized these as a special case of Demand processes
and decided to simplify the interface by exploiting that fact. This
allows some processes to be used both as init processes and under
other conditions. 0

6. It is possible for a programmer to write a process that runs out of

statements to execute. We considered three alternatives:

a) Stating that it is an undesired event for a process to finish,
i.e., making it a requirement that each process contain an
infinite loop;

b) Assuming that a completed process is in the ready state, but
that it has a null statement list to execute if it becomes
running;

894 4a 78

U

Appendix I Design Issues

c) Assuming that a completed process is in a waiting state, waiting
for an event that will never occur.

We rejected a) hecause.it builds too much information into the

Extended Computer and it is an unnecessary restriction. We rejected

b) because there-is no point in having a completed process compete

for a processor. Alternative 3 is a reasonable compromise for the

Extended Computer interface. If it is 2onsidered undesirable to have

completed processes, this should be prohibited by programming

conventions.

7. We have decided not to include relative priorities for the different

processes because fixed priorities do not generally work when there
are real-time constraints. -

8. In an earlier version, we had no distinction between periodic and
demand processes because a periodic process can be viewed as one that

waits for a particular stimulus, i.e., the passage of a particular

amount of time. However, one of the timing parameters needed for

periodic processes is not useful for demand processes. In addition, -0
periodic processes must have restrictions on the synchronization
operators within the periodic loop because the indeterminate wait
associated with synchronization operators makes it difficult to prove

that the loop can be scheduled regularly as required.

9. In an earlier design, we did not explicitly distinguish intermittent
periodic processes. We now distinguish them in order to increase the

likelihood that we can take advantage of the intermittency in the

scheduling of processes. Earlier we distinguished them by calling

them intermittent, now we use the presence of the optioritsi ON-OFF to

distinguish them.

1O. We considered specifying periodic processes in terms of frequency

rather than in terms of time intervals. Because we wanted to specify

the deadline as an interval, we decided it would be more

straightforward to use two intervals. These two parameters
adequately constrain the variations in regularity.

11. We have an undesired event assumptions that says there won't be too

many demand processes for a periodic process to miss its deadline.
The assumption is worded with that orientation because it is
impossible to tell how often a demand process must run.

n

8944a 79

Appendix w Design Issues

12. We used to allow the body of a process to be any statement list. We
now restrict it to a call on a previously-declared program. In this
way we maintain a clear distinction between process and program, and
therefore allow future extensions to include run-time creation of
processes without run-time creation of programs, vice versa. The
restriction does not restrict what we can do with the current
version; it merely paves the way for future extensions.

8944a .30

Appendix 1 Design Issues

EC.PAR.2

1. Regions with an exclusion relation were selected for Extended S
Computer synchronization primitives because
a. they allow concurrency constraints to be expressed directly

rather than as an implication of run time synchronization;
b. they express the exclusion relationships in a form that can be

interpreted efficiently by a pre-run-time scheduler;
c. there is an algorithm for generating run-time synchronization

from the exclusion relations;

This is the simplest acceptable alternative. Rejected alternatives
included:
a. disabling interruption: once an identified section of code I

starts executing, it must run to completion. This alternative
was rejected because it is prejudiced toward a single
processor: it overly restricts the parallelism by stating that
no other actions can be taken simultaneously with the code
section, rather than specifying which other actions may not be
taken;

b. simple mutual exclusion: specifies all exclusion relations as
equivalent, i.e., a section of code that excludes any other
excludes all others This alternative still places to, many
restrictions on the parallelism because many of the identified
code sections need not exclude each other.

c. named regions with mutual exclusion. Rejected because it u
assumes that the exclusion relation is symmetric.

d. exclusion via synchronization primitives: using synchronization
primitives such as those in EC.PAR.3 to effect mutual
exclusion. Rejected because l) synchronization primitives that
are being used for other interprocess synchronization or
communication purposes cannot be distinguished from those used 0
for exclusion without additional commentary, (2) the exclusion
requirements are implicit in a solution based on synchronization
primitives, rather than stated explicitly as they can be with
identifiable regions, and (3) the exclusion information
(implying scheduling constraints) Js embedded in and scattered
throughout the text. These properties of the synchronism
primitives make it difficult to do pre-run-time scheduling
without substantial preprocessing.

2. Many useful forms of synchronization were rejected for the Extended
Computer because they do not depend on the implementation of parallel
process. Application-oriented synchronization operations may be
developed using the exclusion relations, and semaphores (EC.PAR.3).

3. Can a region be excluded from itself? Is that useful? Yes, because
in the case of non-reentrant code, this is how we will probably
prevent disastrous re-invocations.

8944a 81

Appendix I Design Issues -

EC.PAR.3

1. We originally had more complex synchronization operators that met
many immediate demands of our application. As we prefer the Extended
Computer to be as application-independent as possible, we chose
synchronization operations for the Extended Computer primitives that
would be as simple as possible, but that could be used as building
blocks for more specialized synchronization operators. For the more

complex synchronization operations, see the specifications of the
Application Data Type module [ADT].

All of the following alternatives for the Extended Computer
synchronization operations were rejected either because they are more
complex than the operations selected or because they can be built,

given the operations selected. 5

a. P and V operations on semaphores;

b. eventcounts [REED79]: Also rejected because we weren't sure we

would need them;

c. P and V supplemented by eventcounts;

d. UP, DOWN, and PASS supplemented by event variables. A simple

generalization of event variables, event-booleans can be

implemented in the Application Data Type module in a machine

independent way.

e. V, DOWN, PASS, and eventcounts.

2. At one point, we provided a semaphore-to-integer conversion program.

These were deleted when we could think of no reason to use it. If
such a need arises, it would be a straightforward extension, allowing

upward-compatability between programs written now and later.

8944a 82

1

Appendix 1 Design Issues

EC.SEQ.1

1. Alternatives considered for the syntax of a guard are shown below.

3. Boolean variables or constants only. All the boolean variables
must be assigned values before the limited program is executed.

b. Any sequence of statements assigning a boolean value to a
special guarded command register.

c. Allowing a limited program list as a guard.
d. Allowing a program to define the value of a guard (defined

guards).
e. All of the above.

Discussion: We chose (e). The semantics can easily be defined
formally [ITTI2]. Defined guards save code by avoiding duplication
of instruction lists, which would otherwise be required because of
syntactic limitations.

2. We chose to have the Extended Computer provide the IT-TI construct

rather than the more common IF-THEN-ELSE, CASE, and DO-WHILE
constructs because IT-TI serves for all purposes. It allows some
programs to be written as one loop that would otherwise require
several, thereby saving variables and predicate evaluation. IT-TI
has a mathematical semantics that allows systematic construction of
the program's function [ITTIl].

3. Dijkstra's guarded commands are nondeterministic; of the true guards,
only one is selected, but there are no rules defining which one is
selected. We chose a deterministic construct because they allow
simpler guards.

4. We considered providing a FOR command (FOR I = 1 to 10 DO...) but
decided against it because
a. the same purpose can be served with the IT-TI command;
b. many special cases and questions arise with the FOR command.

5. We considered having an implicit final LP of the form (true,SKIP).

We decided not to do this in order to encourage the programmer to
consider every case carefully.

6. Should statement lists be allowed to contain declarations, and what
is their.scope? We decided that it was harmless (from this module's
point of view).to allow it. The scope of all declarations is global
and items must be declared before they are used, but these are issues
belonging to the EC submodules that provide the declarations. (This
design issue also applies to EC.SEQ.2.)

8944a 83
4P

0 Appendix 1 Design Issues

7. in an earlier version we allowed Dijkstra's cor and cand. We have
eliminated them because the same effect can be obtained with the use
of defined guards. For example consider

+LPL+
+LP+ +CAND+(a,b),x PL,
+LP+ c,y PL,
+LP+ true,z PL

LPL

where a and b represent legal guards.

This can be written:
+LPL+

+DEF+ (m,n)
+DLPL+

*DLP+ a, +DLPL+ ,
+DLP+ true,n PLD

LPLD
PLD

+DLP+ true,n PLD
LPLD

FED

+LP+ m,x FL
+LP+ n,+LPL+

+LP+ c,y PL

LL+LP+ true,z PL

PL

LPL

8944a 84

* Ii

- - -- - - - - - - - p

Appendix 1 Design Issues

As a second example consider

LP +LP+ +COR+Ca,b),x PL
+LP+ c,y PL
+LP+ true,z PL

LPL

This can be written:
+LPL+

+DEF+ (in,n)
+DLPL+

+DLP+ a,m PLD
*DLP+ b,m PLD
+DLP+ true,n PLD

LPLD
FED

4LP+ m,x PL
4 +LP+ n,+LPL+

+LP+ c,y PL
+LP+ Lrue,z PL

LPL
PL

LPL

40

8944a 8

Appendix 1 Design Issues

EC.SEQ.2

I. Should actual and formal parameters be specified by type class,
specific type name, or using type attributes such as range and
resolution? We decided that type agreement should depend on the
specification chosen by the programmer. Other alternatives would
force us to write separate programs for each specific type or to
include a parameter passing mechanism that would be more general than
needed for most caseg.

2. We added PARMGIVEN because programs must be able to tell if an
optional parameter was supplied or not. We thought about making it a
built-in value that any type of variable could take on; then
programmers could ask, e.g., if pl=PARMGIVEN. However, because
output parameters can be optional, we didn't want programmers
checking their.."value".

3. Programmers- need not supply trailing commas when optional parameters

at the end of a parameter list are omitted. That is, instead of
+pgml+(a,b,,,) one may write +pgml+(a,b). Besides the obvious

convenience, this will allow us to add optional parameters to the end

of any access program parameter list, yet not force all calls on that
program to change.

4. We added the feature of ranking programs' access speed because the

current computer has the capability of doing fast subroutine linkages
in certain areas of memory. Because a replacement machine may not g
have such a capability, we made tne relationship "not-slower-than",
which we can trivially implement by doing nothing. We make no firm-
promise about the ordering, however, because we recognize that we
cannot make access to a subroutine not-slower-than access to an
expanded macro that simply lives in-line.

O

8944a 86

- -

Appendix I Design Issues

EC.SEQ. 3

1. In earlier versions, we had clocks and timers; clocks counted up and
timers counted down. They were completely distinct from timeint
entities; they were declared separately and had their own set of
operations. We removed the distinction as the interface grew and
grew, and we realized that it would be both useful and consistent to
let a clock/timer do most anything that a timeint can do. I

2. We considered providing only clocks or only timers (in the sense of
issue #1). Clocks are useful for measuring elapsed time; timers are
useful for detecting the end of a previously specified time
interval. We wanted the capabili'ies of both because otherwise user
programs would have to use one to simulate the other. This would
lead to inefficiency and possible duplicate efforts especially on a
computer that provided both.

3. We considered having this module offer a special "waittime" command,

instead of using the general semaphore mechanism. There seems to be
no advantage in using a special mechanism for timed events.

3. We considered treating the following actions as errors:

- starting a running timer,
- setting a running timer,
- stopping a non-running timer,
- reading a non-running timer,
- stopping a timer that has run down,
- reading a timer that has run down,

but these actions are not necessarily senseless.

4. We considered having a timer signal a UE if it runs past its
capacity. To have it start over seems the most useful. Further, a
timer might run past its usual limit, for no fault of the
software. In contrast, setting timer with too large a value is a
clear software error. Therefore we made exceeding the maximum
capacity an undesired event in a set operation.

5. In an earlier design, there was a single maximum capacity for all
clocks and a single maximum for all timers- It was pointed out that
clocks and timers are used for very different purposes, some for
measuring very small changes over a small period of time, and some
for keeping track of a long period of time, with less concern for
small changes. In order to achieve this flexibility without undue
use of resources, we decided to allow programmers to specify capacity

4 and minimum measurements for individual timers and clocks.

6. In an earlier version, clocks could only be set to zero, but this
seems unnecessarily restrictive. Dwight Hill: "I believe we may

need a +SET CLOCK+ for clock corrections or for time-of-day clocks."
The restriction went away when we merged timers and timeints.

8944a 87
1

Appendix I Design Issues

EC.STATE

1. The following transitions are not included in this interface for the
following reasons:

off to failed: not relevant to user programs;
failed to off: user programs cannot respond to anything
operating to off: when the computer .is off;

Note that failed to operating does not occur with the current

computer; it must be cycled through "off" to get back to operating
from failed. However, future computers may make this transition
possible (perhaps by re-booting), and so this transition is subsumed

by the definition of power up.
U

2. There may not always be a grace period after @T(!+failed state+!).

Two alternatives were considered: to leave out the grace period

altogether, or to include it as a system-generation parameter. We
selected the latter to allow for future use of an improved computer.

3. How do we distinguish between malfunctions that user programs must
detect and handle (possibly by calling +S FAILSTATE+) and

malfunctions that are detected inside the-Extended Computer?
Malfunctions are detected by this module if they are reported by the
computer without software action; for example, malfunctions signalled
by interrupts. Whenever a malfunction is detected because of an

action dictated by the requirements, such as a diagnostic test, U
detection is left to a user program. The malfunctions described in

EC.TEST belong to the latter category; all others, the former.

4. Future technology may make our three-state model appear

oversimplified, because a system may have degraded states: that is,
states without the full capability of "operating", yet not dead in

the water like "failed". A degraded state may occur .in a
single-processor system, or in a multi-processor system where one or

more processors have ceased to operate. It is important that
acquiring this capability results in adding to (not revising) _he

present specification. We cannot add a degraded state now, because
we cannot implement and programs depending on it would be not be U

correct. However, we can plan for the addition by assuming that
there are "at least three states", etc.

5. Which module is responsible for the close-down procedures? We

decided that any shutdown action that is required for every computer

failure and is computer-dependent should be done by this module. If
the action is device-dependent, such as setting the bomb-release

output to a safe value, it should be done by the device interface
module.

8944a 88

Appendix 1 Design Issues

EC.TEST

1. The signal converter is tested by sending particular values to it and 0
then reading back the results of the internal signal converter
manipulation on the values. The proper relationship between the
values sent out and the value read in can be characterized by a set of
equations. The design issue is how much of the knowledge should be
hidden within this module: both the equations and the choice of test
values, just the equations, or neither. The equations are based on
the behavior of the channel, and therefore belong within this module.
The choice of values could be considered part of the software
requirements; they affect the displays seen by the pilot, and are
documented in section 4 of the requirements. However, the choice of
these particular values is partly influenced by hardware
characteristics. Further, if they are not hidden, the interface to
this module becomes much more complex. We have chosen to hide all of
the information even though it means hiding some details about the
required functions in this interface. We assume that the test values
are likely to change with the hardware and not for any other reason.

2. We decided to hold user programs responsible for avoiding interference
between the diagnostics and the regular commands rather than build
monitors into the I/0 commands and diagnostics. The diagnostics are
not expected to be run when the software is doing anything else.
Monitors impose a run-time cost in the regular commands.

3. We considered dividing memory into banks that would be tested
separately, allowing partial rather than complete shutdown. We
decided not to do so at this time because the system lacks the ability
to exploit it and we could do so easily in the future.

4. A previous design implied that invoking the access program associated
with a test actually started the test. Because future computers may
have tests ongoing, or running in the background, we changed our
design to indicate that invoking a program merely returns the most
recent result of that test. If a future computer is required to start
a test at a certain time, we can add start-test commands later.
Returning the value may take a substantial amount of time in some
cases. The major change this caused was in the case of the memory
test. Before, there was a command to start the test, an event
signalled when it was done, and a program to retrieve the result. The
motive was that the invoking program would want to do something else
while waiting for the test to be completed. However, some program
would have to wait idly for the event to occur anyway, and so we lose
nothing by letting the memory test program just take a long time to
return. We gain a uniform interface, with no special cases.

8944a 89

APPENDIX 2

IMP LEMENTAT ION NOTE S

WE

8945a 9

Appendix 2 Implementation Notes

EC.DATA: None.

EC.IO

1. The part of the I/O submodule that handles the relation between data
item names and TC-2 instruction sequences should be a sysgen time
program and should be table driven. It should be organized into
submodules in accordance with the structure of the Device Interface
Module, because changes are likely to be concentrated on individual
devices.

EC.PAR.I: None.

EC.PAR;2: None.

EC.PAR.3: None.

EC.SEQ.l: None.

EC.SEQ.2

1. This module does not determine where programs are located in memory.
It uses programs in the memory allocator module to request space.

2. This module uses the System Generation module to do assembly-time 0
parameter type checking.

EC.SEQ.3: None.

EC.STATE: None,

EC.TEST: None.

8

8945a 91

APPENDIX 3

BASIC ASSUMPTIONS

* p

9162a 0

lp

W -R123-566 INTERFRCE SPECIFICATIONS FOR THE SCR (A-E) EXTENDED
2/2

I COMPUTER MODIJLE(U) NAVAL RESEARCH LAB WASHINGTON DC

D L PARNAS ET AL.,86 JAN 83 NRL-MR-4843UNLMhhmmhhmh9/2mu
*f f fl l lf f * N

11WL 1.0.511111= I~9 1211111 '* '140 W

11111.5 111Z.4 1. 6
=us

.7l~

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

Appendix 3 Basic Assumptions

EC. DATA

1. The Extended Computer can provide one priYate variable per process
(the register). that can store values of any type. Access to a
register will usually be quicker than access to other variables.

2. The attributes of a value will be known whenever a variable is used
as a source or a destination. If the attributes specified for the
variable when it is used as a source are not the same as were
specified when its value was determined, the result may be any value.

3. The Extended Computer can store numeric quantities with any desired
range and resolution. It can be expected that (a) variables with a
small range-to-resolution ratio will require less actual memory space
than variables with a large range-to-resolution ratio, and (b) that
operations on such variables will be faster than operations on
variables with a larger range-to-resolution ratio.

4. Range and resolution are adequate characterizations of a numeric
variable; i.e., the needs of an application programmer can be
adequately expressed by a lower bound, upper bound and guaranteed
resolution.

5. The Extended Computer can store bitstring quantities of any desired
length. Longer bitstring entities may require more storage than
shorter ones. Operations on longer bitstring entities may require
more computer time than operations on shorter ones.

6. Whenever a numeric value is stored into a variable with a resolution
different from the source, the value stored should always be the
closest value that can be represented in the destination. The
programmer need not specify the conversions to be made; the best
choice can be made by the EC implementation.

7. There is no need for operations that allow a bitstring value of one
length to be assigned to a bitstring variable with a different length.

8. The operations needed for calculating new numeric values are:

addition, multiplication, division, subtraction, absolute value,
complement and conversions.

.2

to "9 1 6 2 a 9 3-

• . • _ , . . . l l .' . _ .i • -- V

Appendix 3 Basic Assumptions

9. Division may result in a loss of all significance. This danger
cannot be hidden entirely from the programners, since they may have
information that can be used to choose safe, efficient algorithms.
The following division options are sufficient:

a. The quickest division can be performed if the programmer

provides an upper bound for the result. The better the bound,
the more significance is preserved. If the bound is too low,
all significance may be lost.

b. A slower algorithm can be used if the programmer cannot provide

an upper bound.

c. If the programmer cannot provide an estimate of the maximum
result and prefers to avoid the expense of the slower algorithm,
the Extended Computer can determine whether or not division can
be safely performed. The EC can return the sign of the quotient
even when the operation cannot be safely performed.

10. The rules in Table EC.DATA.d can be implemented.

11. Whenever the program compares two numeric operands for equality,

programmers need to define a threshold, such that if the difference
between two numbers is less than or equal to the threshold, the
numbers are considered equal. If no threshold is specified, two
numeric operands can be considered equal if the difference between
them is smaller than one-half of the larger of the two guaranteed
resolutions associated with the operands.

12. It is acceptable for the results of an operation to have a larger
resolution than the resolution of the destination. The
approximations needed to store the result can be assumed to be

acceptable for the application.

13. Only four kinds of entities are needed: variables, which can be
changed at any time; ascons and literals, which can be changed by
reassembling the program; and loadcons, which can be changed when the
program is first loaded into the computer but not while it is running.

9162a 94

Appendix 3 Basic Assumptions

14. The following operations are sufficient for efficiently producing new
bitstring values from existing bitstring values:

a. AND, OR, NAND, NOT, MINUS, and XOR, defined in the usual way, 7

operating on corresponding bits in two operands of equal length;

b. SHIFT operation: A bitstring is shifted either right or left a
specified number of bits with zeros shifted into positions
vacated by the shift;

c. REPLACE operation: A portion of a bitstring is replaced by the
value found in an equal-length portion of another bitsring;

d. CAT operation: A bitstring is formed by concatenating two
previously existing bitstrings.

15. If the result of converting a real to a bitstring has more bits than
the bitstring operand, the bits to the right of the rightmost bit of

the destination bitstring may be ignored.

16. Arrays with dimensions that vary at run time are not needed in
avionics applications.

17. Avionics applications do need arrays in which the type class is real,
and the elements are variables with attributes that may vary
independently of the attributes of other elements of the same array.

18. Arrays in which the indices are not a contiguous subset of the
integers, are not needed in avionics applications.

19. Avionics applications need to take advantage of any capability that
the computer has to allow faster memory access to certain data. The
Extended Computer can implement a "not-slower-than" relation for any
two declared entities x and y, so that x will be accessed no slower
than y. User programs can determine desired rankings at system
generation time; it is not necessary to change the rankings at
run-time.

9Vi

9162a 95

Appendix 3 Basic Assumptions

EC.IO

1. The only information needed by user programs to identify inputs or
outputs is the data item name given in the requirements document
[REQ]. It is possible to characterize all transmissions between the
Extended Computer and its associated hardware as either input or
output.

2. Input data items and output data items are bitstring entities. Some
can only be used as a source in a statement (read-only); some can
only be used as a destination in a statement (write-only);..some can
be used as either (read-write). No input data item is write-only.
No output data item is read-only.

3. It is possible to turn off (disable).input/output transmissions. A
disabled data item has no effect on and is not affected by the
external environment.

4. No application program will need the identity code and subitem
identifiers in Serial Input Register Data (see [REQ]).

5. It is possible for the software to determine the success of I/O
operations. (Of course, this assumption is obviously false if we
consider hardware failures. Uowever the correctness of our software
is contingent on that assumption.) An unsuccessful operation may not
change the value of the associated data item.

6. Some input data items are only available intermittently and the EC
can notify user programs when such data become available. The data
are expected to remain available for an amount of time that (for each
item) can be determined at system-generation time. Other data items
can be expected to be available at any time.

7. Each i/o operation can be guaranteed to complete within a fixed
period of time. This worst-case timing requirement varies among data
items; the time associated with each data item can be determined at
system-generation time.

9162a 96

Appendix 3 Basic Assumptions

EC. PAR. 1

1. Processes (executions of programs).may execute in parallel with no
restrictions on their relative speeds, except where they are
explicitly synchronized with each other (see EC.PAR.2).

2. The number of processes need not vary at run-time. It may be set at
system generation time.

3. All demand processes can start when the system is turned on (i.e.,
when @T(!+power up+!) occurs); some will perform initialization
routines; the remaining demand processes will wait for a semaphore to
become nonnegative.

4. The process mechanism will be able to detect the event
@T(I+power up+!).

5. Processes are not called as subroutines by other programs and donot
return control to other programs.

6. We need only distinguish two process states: active or suspended. An
active process can progress. A suspended process is ineligible to
progress (continue execution).

7. The state of a process changes between active and suspended only when
it uses the process synchronization mechanisms described in sections
EC.PAR.2 and EC.PAR.3 or when it has executed the last statement
(END) In its body.

8. All processes are either periodic or demand and exist throughout the
life of the system;

The bodies of periodic processes are to be executed at regular
intervals (their.period). The period of a process may change during
system execution. A periodic process may be suspended when a
specified boolean variable is false and start again when it is true.

Demand processes wait for a semaphore to be nonnegative. They should
be executed each time the semaphore is incremented. They will
decrement the semaphore once per execution.

9. Demand processes can be adequately characterized by specifying the
values of two timing parameters: maximum CPU time requirement and
deadline for completion. w

10. Periodic processes are adequately characterized by three timing
parameters: maximum CPU time requirement, deadline, and period.

9162a 97

* Appendix 3 Basic Assumptions

EC. PAR. 2

1. User programs may contain contiguous sections or regions of
run-time-executable statements that may not be executed
concurrently. These concurrency constraints can be expressed in
terms of an exclusion relation on the regions, i.e., where region 1
excludes region 2 if region 2 may not start while region 1 is
executing.

2. Regions may overlap other regions or be embedded in other regions.

4 '"p

71

9162a 98

"" " " , " "" " " - : " " -4 0 '

Appendix 3 Basic Assumptions

EC.PAR.3

1. There are two process states relative to synchronization: active
(which includes processes that are running and processes that are
ready) and suspended (ineligible to make progress). The active
processes are the only ones eligible for execution.

2. The only operations on semaphores that need to be executed in a way
that guarantees non-interference with other operations on semaphores
are the following:
a. An operation that does not affect the counter value of the

semaphore, but may put the process in the waiting state.
b. An operation to decrement the semaphore counter without any

effect on the state of the process that executes it.
c. An operation to increment the semaphore counter that may put

other processes in the active state.

., .

* -p

i° p

9162a 99
SF

Appendix 3 Basic Assumptions

EC.SEQ.1

1. The only sequence control constructs needed are those that (a) .imit
the states under which a statement list will be executed (and alter
the state before executing the statement list), (b)_.elect among
alternative statement lists, and (c) iterate if one of a specified
set of alternatives is chosen. There is no need for a go to.

2. Statements appearing within the sequence control constructs have
exactly the same semantics as they do anywhere else.

-7

. 1

9162a 100

.'

Appendix 3 Basic Assumptions

EC..SEQ.2

1. It is necessary to have parameterized procedures. These parameters
will be named by the programmer and are part of the specification of
the program.

2. The implementor of a program can specify the number, position, and
type of the program's parameters. (If a formal parameter is an
array, its specification includes the type of the array elements.)

3. Some programs should be invoked faster than others. Such a relation
will not depend on when the programs are invoked; the relative
ranking can be determined at system generation time.

4. If a program will be reentered while already in use by another
process, it is the responsibility of the programmer to make sure that
local storage is saved and restored as needed. EC programs are not
automatically provided with new storage when they are reentered.

*5. There is no need for a mechanism to allow programs to cause the
calling program to resume execution anywhere else than immediately
after the call.

6. There is no need for programs with more than one entry point.

7. The identity of a data entity that is passed to a program as an
actual parameter will not be changed while the program is executing.
For example, when an array element is passed as an actual parameter
to a program, if that program alters the value of the variables that
determined the index, the results will be undefined.

8. Parameters always fall into one of three classes: 1, 0, and 10 as
defined in EC.SEQ.2.4.

9. It is necessary to provide facilities for recovery if a programming
error is detected by a program during execution. It is up to the
author of a called program to determine what programming errors his
program can detect; it is up to the caller of a program to determine
the action that should be taken if one of those errors-occurs. It is
not necessary to pass parameters to the recovery program.

1 10. A program must be able to detect whether or not optional parameters,
were supplied in an invocation of that program.

9162a 101
l ,

Appendix 3 Basic Assumptions

EC. SEQ. 3

1. Avionics programs need timers that keep track of elapsed time, and "
that may signal when a given time interval has elapsed. They need to
be able to set a timer to a starting value, start it, stop it, and
read it whether it is running or not.

2. The maximum timing capacity of a clock or a timer can be determined
at system generation time. I

3. If a timer runs beyond a limit specified at run time, it should
either halt or start over. Sometimes it should signal that a range
limit has been reached.

5 The worst acceptable error rate for all timers can be determined by W
users at system generation time. This error can be specified as a
fraction of the running time.

6. Any number of timers can be implemented, provided that the number .is
known at system-generation time. There is no need to create or
delete timers, at run time.

9162a 102
S w

- - -' . .- - - -c ' .' - f*- - -

Appendix 3 Basic Assumptions

EC. STATE

1. The Extended Computer has at least three states: off, operating, and
failed. Only the following transitions between states affect user
programs:

- from off to operating

- from operating to failed.

2. User programs cannot cause the transition into the operating state.

3. A transition from operating to failed can either be caused by user
programs or occur when malfunctions internal to the Extended Computer
are detected. These internal malfunctions are other than those
described in EC.TEST. It should be assumed that after this
transition occurs, user programs will have at least a short interval
to execute shut-down sequences before the computer stops operating.
The minimum length of the interval before shut-down can be determined
at system-generation time.

4. Any actions that must be taken when a computer failure occurs are
independent of the state of the user programs, and can be built into
the EC.

9 a -1

9162a 103

Appendix 3 Basic Assumptions

EC.TEST

1. Each channel diagnostic program may interfere with a specified subset
of the input/output commands. They will not interfere with any other
commands.

2. Use of either the discrete diagnostics or the accelerometer-torque
diagnostics may cause the IMS to lose its alignment and velocities
(i.e., have the same effect as disabling the IMS temporarily).

3. The following aspects of the input/output can be tested independently:

the AC aspects of the signal converter channel,
the DC aspects of the signal converter channel,
the cycle steal channel A and serial input channel l,
the cycle steal channel B and serial input channel 2,
discrete input word 1 and discrete output word 1,
discrete input word 2 and discrete output word 2,
discrete input word 3 and discrete output word 3,
the IMS gyro torque registers and the accelerometer accumulators.

4. A memory diagnostic program can check whether portions of memory are
reliable. This program does not interfere with other programs. The
test may take a substantial amount of time to complete.

5. There are diagnostic programs that can test the hardware timers and
the interrupt mechanism separately, but may interfere with proper W,
execution of other programs.

Siv

9162a 104

U V

APPENDIX 4

UNIMPLEMENTED EXTENDED COMPUTER FACILTIES

Not all of the capabilities described in this document have been provided
in the current version of the Extended Computer. A few facilities, which are
not currently needed by the application program, have not been implmented. An
attempt to use an absent facility will result in an undesired event in the
development version. The unimplemented features are described below.

FEATURE: Periodic processes with periods that vary at run-time
WHERE DESCRIBED: EC.PAR.1
UNDESIRED EVENT: %unimplemented variable period%
CURRENT USE: The !+period+! parameter in the ++PPROCESS++ must be

given as a constant or a literal.

FEATURE: Ability to enable/disable all data items
WHERE DESCRIBED: EC.I0
UNDESIRED EVENT: %unimplemented disabling%
CURRENT USE: Only the following data items may be disabled;

attempting to +DISABLE+ or .+ENABLE+ any other is
prohibited.
//ASAZ// I/ASEL// //ASLAZ//
//ASLEL// //ASLCOS// //ASLSIN//
IIAZRIGII I /BAROHUDl/ //CURAZCOS//
//CURAZSIN// //CURPOS// //DESTPNT//
//FLTDIRAZ// //FPMAZ// //FPMEL//
//HUDAS// //HUDASL// //HUDFPM//
//HUDPUC// //HUDSCUE// //HUDVEL//
//HUDWARN// //LSOLCUAZ// //LSOLCUEL//
//MAGHDGH// //MAPOR// //PTCHANG//
//PUACAZ// //PUACEL// //ROLLCOSH//
//ROLLSINH// //USOLCUAZ// //USOLCUEL//
//VERTVEL// //VTVELAC// //XCOMMC//
//XCOMMF// //YCOMM//

FEATURE: Bitstrings/timeints with attributes that can vary at
run-time

WHERE DESCRIBED: EC.DATA
UNDESIRED EVENT: %unimplemented binding%
CURRENT USE: In the ++DCL TYPE++ program, users may not declare the

binding of bitstring or timeint specific types to be
VARY. In the ++DCL ENTITY++ and ++DCLARRAY++
programs, users may not provide an initial attribute.

S

9158a 105
lp

Appendix 4 Unimplemented Features

FEATURE: Timers with attributes that can vary at run-t..
WHERE DESCRIBED: EC. SEQ.3
UNDESIRED EVENT: %unimplemented binding%
CURRENT USE: In the ++DCL TYPE++ program for timers, users may not

declare the binding of timers to be VARY. In the
++DCL ENTITY++ program for timers, users may not
supply an initial attribute.

5

FEATURE: Semaphores with attributes that can vary at run-time
WHERE DESCRIBED: EC.PAR.3
UNDESIRED EVENT:, %unimplemented bindingZ
CURRENT USE: In the ++DCL TYPE++ program for semaphores, users may

not declare The binding of semaphores to be VARY. In
the ++DCLENTITY++ program for semaphores, users may
not supply an initial attribute.

FEATURE: Undesired events in the production EC
WHERE DESCRIBED: Throughout P
UNDESIRED EVENT: none
CURRENT USE: In the production version of the Extended Computer, no

undesired events will be checked for; no undesired
event handling programs will be assembled or
executed. It will be assumed that user programs will
invoke the EC facilities correctly.

FEATURE: Specifying substrings of bitstrings with variables
WHERE DESCRIBED: EC.DATA.2.7.2
UNDESIRED EVENT: %unimplemented variable substring%
CURRENT USE: In the bitstring +REPLC+ program, p2, p3, and p4 must

be given by literals or constants.

FEATURE: Specifying the length of a bitstring shift with a
variable p

WHERE DESCRIBED: EC.DATA.2.7.2
UNDESIRED EVENT:, %unimplemented variable shift length%
CURRENT USE: In the +SHIFT+ program, p2 must be given by a literal

or constant.

9158a 106

M .

Appendix 4 Unimplemented Features

FEATURE: Using variables to specify attributes of a specific
type, or of a variable or array with varying attributes

WHERE DESCRIBED: EC.DATA.4, EC.PAR.3.4, EC.SEQ.3.4
UNDESIRED EVENT:. %unimplemented attribute via variables%
CURRENT USE: To specify an attribute (as defined in EC.DATA.4), a

timer-attribute (as defined in EC.SEQ.3.4), or a
semaphore-attribute (as defined in EC.PAR.3.4),
literals or constants must be used.

95 107

I

*9158a 107

.-] • - L- - - - - "

APPENDIX 5

INPUT/OUTPUT DATA ITEM NAMES

The following table lists all data items known to the Extended Computer,
and tells whether each one is read-only CR), write-only (U), or read-write
(RW).

i

INPUT DATA ITEMS OUTPUT DATA ITEMS

Data item Data item
name R or .RW name U or .RU

/ACAIRB R //AAZ// R

/ACAIB/ R //ASAZ// RW

/AOA/ R //ANTSLAVE// U
/ANTGOOD/ R //ASLAZ// RU
/AP.PINT/ R //ASLEL// RU
IARPPAIRS/ R //ASLCOS// RU
/AP.PQUANT/ R //ASLSIN// RU
/BAROADC/ R //AUTOCAL/I U
/BRGSTA/ R //AZRING// RU
/BMBDRAG/ R //BAROHLTD// RU
/DIMWC/ R //BRGDEST// U
/DRFTANG/ R //BMBREL// W
/DGNDSP/ R //BMBTON// U
/ANTGOOD/ R //COMPCTR// U
/ELECGOOD/ R //COMPFAIL// U
/DRSFUN/ R //CURAZCOS// RU
/DRSMEM/ R //CURAZSIN// RU
/DRSREL/ R //CURENAEL// U
/ENTERSU/ R //CURPOS// RU

*./FLYTOTU/ R //DESTPNT// RU
/FLYTOTOG/ R f/ENTLIT// U
/GUNSSEL/ R //FIRRDY// U
/HUDREL/ R //FLTDIRAZ// RU
/IMSAUTOC/ R //FPANGL// U
/IMSMODE/ R //FPMAZI/ RU
/IMSREDY/ R //FPMEL// RU
/IMSREL/ R /IFLTREC// U
/KBDENBL/ R //GNDTRK// U
/KBDINT/ R //GNDTRVEL// U
/LOCKEDON/ R I/HUDAS// RU
/MACH/ R //HUDASL// RU

9159a 108

Appendix 5 Data Item Names

INPUT DATA ITEMS OUTPUT DATA ITEMS

Data item Data item
name R orRW name W or RW

/MAGHCOS/ R //HUDFPM// RW
/MAGHSIN/ R //HUDPUC// RW
/MARKSW/ R //HUDSCUE// RW
/MA/ R //HUDVEL// RW
/MFSW/ R //HUDWARN// RW
/MODEROT/ R //IMSNA// W
/MULTRACK/ R //IMSSCAL// W
/PNLTEST/ R //KELIT// W
/PCHCOS/ R //LATGT7O// W
/PCHSIN/ R //LFTDIG// W
/PMDCTR/ Rt //LSOLCUAZ// RW
/PMHOLD/ R //LSOLCUEL// RW
/PMNORUP/ R /ILWDIG1I/ W
/PMSCAL/ Rt //LWDIG2// W
/PRESPOS/ R //LWDIG3// W
/RADALT/ R //LWDIG4// W
/RNGSTA/ R //LWDIG5// W
/RE/ R //LWDIG6// W
/ROLLCOSI/ Rt //LW'DIG7// W
/ROLLSINI/ R //LLITDEC// W
/SINEVEL/ R //LLITE// w
/SINHDG/ ft //LLIT322// W
/SINLAT/ R //LLITW// W
/SINLONG/ R //MAGHDGHI/ ftW
/SINNVEL/ R //MAPOR// RW
/SINPTH/ R //HARKWIN// W
/SINROL/ R //PTCHANG// RW
/SLTRNG/ R //PUACAZ// Ru
/SLEWRL/ R //PUACEL// ftW
/SLEWUD/ R //RNGUNIT// W
ISTA2RDY R //P.NGTEN// W
/STA3RDY/ R //P.NGHND// W
/STA6RDY/ R //RNGUNIT/ W
/STA7RDY/ R //ROLLCOSHI/ RW
/STA8RDY/ R //ROLLSINH// RW
/TD/ ft IISTEERAZI/ W
/TAS/ R //STEERELI/ w
/THDGCOS/ R //STERROR// W
/THDGSIN/ R //TSTADCFLR// W
/UPDATTW/ R //USOLCUAZ// RW
/WAYLON/ R //USOLCUEL// RW
/WAYLAT/ R //ULITN// W

9159a 109

Appendix 5 Data Item Names

INPUT DATA ITEMS OUTPUT DATA ITEMS

Data item Data item
name R or RW name W or RW

/WAYNUMl/ R //0LIT222/f W
/WAYNTJM2/ R //ULIT32. W.
/WEAPTYP/ R //ULITS// W
/XVELTEST/ Rt //UWDIGl// w
/XVEL/ Rt //UWDIG2// W
/XGYCNT/ R //UWDIG3// W
/YVELTEST/ R //UWDIG4// W
/YVEL/ Rt I/UWDIG// W
/YGYCNT/ R //UWDIG6// W
/ZVELTEST/ R //VERTVEL// RW
/ZVEL/ R //VTVELAC// RW
/ZGYCNT/ R //XGYCOM// W

//XTORTEST// W
//XCOMMC// RW
//XCOI4MF// RW
//XSLEW// W
//XSLSEN// W
//YGYCOMI/ W
//YTORTEST// W
//YCOMM// RW
//YSLEW// W
//YSLSEN// W
//ZGYCOM// W
//ZTORTEST// W
//ZSLEW// W
//ZSLSEN// W

The following data item have events (signalled by incrementing a

semaphore) associated with them:

Event Semaphore

@T(!+IENTERSW/ ready+!). ENTSWSEM
@T(!+/KBDENBL/ ready+!) ENBLSEM
@T(!./KBDI.NT/ ready+!)- KBINTSEM
@T(I./MARKSW/ ready+!) MALNISEM

*9159a 110

APPENDIX 6

DATA REPRESENTATION CATALOGUE

For some data types, the Extended Computer .is capable of providing more
than one kind of representation. The version has no effect on the outcome of
an EC operation, but some versions allow some operations to be performed more
quickly than other versions.

The following table lists the provided version names for each EC data type

which has more than one version. When declaring a specific type, users may
'* request a particular version by using these names.

TABLE TBD

9

Sr

71

III

REFE RENCES

[ADT] Clements, P., Interface Specifications for the A-7E Application Data
Type Module; NRL Memorandum Report in preparation, April 1982.

[APC] Faulk, S.; "Pseudo-Code Language for the A-7E OFP", internal
memorandum, April 1982

[BELP73] Belpaire and Wilmotte, "A Semantic Approach to the Theory of Parallel
Processes"; in International Computing Symposium 1973.

[DIJK68] Dijkstra, E.; "Cooperating Sequential Processes", in Programming
Languages, ed. F. Genuys; Academic Press, 1968. pp. 43-112.

[DIJK77] Dijkstra, E.W.; A Discipline of Programming; Prentice Hall, c1976.

[DIM] Parker, R.A., Heninger, K.L., Parnas, D.L., Shore, J.E.; 1.'stract Interface
Specifications for the A-7E Device Interface Module, NRL Memorandum
Report 4385, November, 1980.

[FIXPT] Heninger, K.; "Prototype Implementation of the Fixed Point Data Type
Module"; NRL Technical Memorandum 7503-210:KH:kh, dtd 31 July 1979.

[ITTI1] Parnas, D. T..; An Alternative Control Structure and Its Formal
Definition, Technical Report FSD-81-0012, Federal Systems Division,
IBM Corporation, Bethesda, MD., 1981; accepted for publication in
Comm. of the ACM.

[ITT12] Parnas, D. L.; Understanding Programs, Technical Report, Federal
Systems Division, IBM Corporation, Bethesda, MD, in preparation.

[REAL] Heninger, K.; "Prototype Implementation of the Real Data Type
Module"; NRL Technical Memorandum 7503-209:KH:kh, dtd 27 July 1979.

[REED79] Reed, D.P. and R.K. Kanodia; "Synchronization with Eventcounts and
Comm. of the ACM, v. 22, no. 2 pp. 115 (1979).

[REQ] Heninger, K.L., Kallander, J.W., Parnas, D.L., Shore, J.E.; Software
Requirements for the A-7E Aircraft; NRL Memorandum Report 3876; Nov
1978.

[So] Software Cost Reduction project, Standard Organization for Describing
Abstract Interface Specifications; NRL Memorandum Report in
preparation. Until publication, readers should consult the Standard
Organization chapter of (DIM] instead.

[TRACE] Parnas, "Trace Specifications for D-Operations", NRL Technical
Memorandum 7590-000:DP, to be published.

CWUER76] Wuerges, H. and Parnas D.L.; "Response to Undesired Events in
Software Systems"; Proc. Second Int. Conf. Software Eng.,
pp. 437-446;.1976.

9161a 112

ACKNOWLE DGENENTS

The authors gratefully acknowledge the hard work and careful reviews
provided by the following people:

Naval Weapons Center, China Lake, CA:
Jack Basden
Richard Fryer
Sandra Fryer
Dawn Janney
Ray Martinusen
Jo Miller
Lee Thomson
Robert Westbrook
Richard Wolff
Janice Zenor

Vought Corporation, Dallas, TX:
Glenn Cooper
Dwight Hill

USAF A-7D/K OFP Detachment, Tucson, AZ:
Mark Jacobson
Richard Breisch

Bell Telephone Laboratories, Columbus, OH:
Don Utter

Gruman Aerospace Corp., Bethpage, NY:
Stephanie White

9161a 113

- , .- • . ' . " - " • o

FILMED

2 8 3

DTIC

