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SECTION I

7.. INTRODUCTION'C,

".41. BACKGROUND

Fiber-reinforced composite materials are being introduced into pri-

mary structures of modern jet fighter aircraft, e.g., vertical and

horizontal stabilizers on the F-15 and F-16 fighters. These materials

are made up of many layers; each layer consists of many rows of parallel

fibers bound together by a matrix material of different composition than

the fibers. Failure often occurs in these composites via delamination

which initiates at gas bubbles (porosity) remaining in the matrix after

the manufacturing process. For this and other reasons, non-destructive

inspection techniques capable of determining the presence of the porosity

are being sought. Current efforts include inspection with elastic waves.

Items of interest include comparison of the response from the fibers to

that from porosity and the degree to which the fibers may appear trans-

parent to the waves.

For this study, the fibers are modeled as cylinders and the porosity

as isolated spheres. Many studies have been done on the scattering from

cylinders and isolated spheres (References I - 3), linear arrays of

parallel cylinders (Reference 4), and two-dimensional arrays of parallel

cylinders (References 5, 6). These studies, however, all provide

frequency-domain solutions. Current inspection techniques utilize

broadband time-domain pulse techniques; thus, a time-domain solution for

the scattering might be more readily applied to the inspection problem.

2. PROBLEM AND SCOPE

The problem investigated in this study is the solution for the dila-

tation wave backscatter from cylindrical and spherical inclusions result-

ing from incident dilatation pulses which are representative of the

pulses produced by piezoelectric transducers. Obtaining and exploring

the differences between backscatter from spheres and cylinders and .

comparison with an experimental result were the major objectives of this

project. A secondary objective was a study of the transparency of common

- : . . .-. .... . ' " " . , - .: , - : ' " . : ' ° : . ' - . . -o ' • -.: . . .- .: • . . : . .- ,: -, .,1 . ,0
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composite-reinforcing fibers to elastic waves in order to assess the

feasibility of non-destructive inspection with backscattered dilatation

waves.

The analysis is limited to backscatter from single cylindrical or

spherical inclusions of arbitrary homogeneous anisotropic elastic compo-

sition embedded in a homogeneous isotropic host. The solution for the

cylinder is obtained for normal incidence of the dilatation wave with

respect to the cylinder's axis of symmetry. All media are considered

to obey the laws of linear elasticity and are assumed to be non-attenua-

ti ve.

3. APPROACH AND PRESENTATION

A review of Lee's development (Reference 7) of a time-domain integral

equation for the scattered field is given in Section II, followed by a

statement of the time-domain first Born approximation and the form of

the solution for the scattered pulse resulting from this approximation.

A "transparency condition" is then obtained for a general anisotropic

homogeneous inclusion in a homogeneous isotropic host. In Section III,

the solution for backscatter from cylinders and spheres is worked out

in detail. Power series, Laplace transform methods, and recursion

relations are used to obtain the solutions. Some specific results in

the form of graphs of backscattered responses are presented and discussed

in Section IV, where comparison to an experimental result is also

presented. The transparency of typical fibers is also addressed in

Section IV. Conclusions and recommendations are presented in Section V.

2



4...

.AFWAL-TR-82-4044

SECTION II

PLANE PULSE SCATTERING

The first section is intended to be a brief exposi of Lee's theoret-

ical analysis of dilatation wave backscatter from an object insonified

by a plane dilatation pulse (Reference 7). The time-domain first Born

approximation is presented therein to linearize the resulting expression

for the scattered displacement field. A product of this study is pre-

sented in the following section where a result obtained in Reference 7

for scattering from a void is generalized for any homogeneous anisotropic

scatterer. It will be shown that, in the first Born approximation,

certain combinations of density and stiffness of the host and scattering

materials render the scatterer "transparent" to the incoming waves.

1. THE FIRST BORN APPROXIMATION

Following the development of Lee in Reference 7, consider a piece

R of linear elastic material bounded by the surface aR. A transducer

located on a subset A of aR launches a dilatation pulse which encounters

a region B of different linear elastic material located somewhere within

R, as shown in Figure 1. If B is far enough away from A, and if the

radii of curvature of A are large enough compared to the dominant wave-

lengths of the pulse, both the wave incident upon B and the scattered

wave received by the transducer can be approximated by plane waves. The

analysis which follows is not initially restricted to backscatter, i.e.,

the observation vector x may point in any direction. (This would, of

course, require another tranducer to receive the scattered waves.) The

condition for backscatter is imposed later in the section.

The material densities and stiffness tensors are given by

p(x) p , x R-B (I)
- pO+Ap , B

and

C= jkl '' 6j 'kl + "°(8ik 6 jl 6i ) x 6 R-B

C cjkl + Ac+jkl, xt B

(2)

3
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where Xo and p0 are the Lame constants in R-B and 6.. is the Kronecker13

delta defined by

6ij 1 i j (3)

The incident pulse is of the form

inc (x,t) = v e.x (4)

where a. is the dilatation wave speed in the region R-B and e is a unit

vector characterizing the direction of propagation of the pulse. The

constant B allows the time origin to be adjusted so that t = 0 corresponds

to the instant that the pulse first encounters B. Thus,

0 = -min(e x) (5)

In Equation 4, the scalar potential *(s) satisfies

*(s) C C(3 )  (-3,)) (6)

and

f(s) - 0, s < o (7)

A minor modification of Equation 5.4.2 of Reference 7 defines the

pulse length of Tp as that time after which a specified fraction c of

the total energy in the pulse remains according to

fT I(s)l ds e < 1 (8)
p

The displacement field then satisfies

{u itc (x,t) - < t < o-n sc -(9)
(x,t) =  (x,t) + u (x,t) , t > 0

An application of Love's integral identity (Reference 8) gives the

scattered field as

scr
ui  (x,t) =f U rt(Ac usc) - pUsc + b] dvy (10)

B ik - " klmnum,n'l k blk k

where bi (x,t) is a body force field which is dependent upon the incident
d

displacement field along with the density and stiffness perturbations

5
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uinc), P.inc (1
bi(x,t) = (Ac in - 1-i j k l k . i

In Equation 10, the dots indicate differentiation with respect to time,
and the functional Uik is given by

I 3rirk 1Uik[Er'-twf - aw(t - ar)d

r r il/ao

rirk Ir t _ - w
~(12)

where

r = r Ix + y (13)

and bo is the shear wave speed in R-B. Equation 10 shows that the

scattered field arises in an obviously nonlinear manner. It may be

possible to solve for u SC(x,t) by an iterative solution of Equation 10;

however, a simpler, linear problem results by assuming that the inter-

action of the scattered field and its derivatives with the scatterer is

much smaller than that of the incident field. This requires that

AciAkl ,, uSC(x,t), and uSC(x,t) be small in some sense so that

'f U(Ak'tlc.(ACklmnucn) l -Apuk dvh-. B M ,

<< fff U ik[r,tb k(y,.)I dvy
B -kY (14)

Equation 14 is a statement of the "time-domain first Born approxima-

tion" for elastodynamic scattering which then gives the scattered field

as

u sc [r,tb(.] dvyui : $ Uik k (4 (15)

B

6
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Useful results may be obtained by considering far-field dilatation

wave backscatter resulting from a plane d ' *tation pulse input. Generally,

both dilatation and shear waves will be scattered due to mode conversion

at the scatterer's boundaries; however, at distances which are large

enough, time-gating may be employed to observe only the response due to

the faster-traveling dilatation waves.

Be expanding Equation 15 with Equation 12, discarding terms which

are 0(x 2 ) and terms corresponding to shear waves, and applying Gauss'

divergence theorem to what is left, the far-field scattered dilatation

field ui (x,t) is obtained as

U. - AC___ (..Yix (t
ff x ^ N^f ACklmn)m,n - ao)

,ic  4 rpOa2 x B a

^^ Y 6inct r) (16)

+ xixk Ap(y) ( - ao_ (y

where

x= (17)

and x
(18)

Taylor's expansion of r and order of magnitude arguments allow further

simplification of Equation 16. The resulting expression for the

scattered dilatation field for an incident plane dilatation pulse is

pao2 (x,t) = (19)

xACkee + AP(Z Y  t ' + .

x Nklmn im n a. aoa

B

where

y(t) - ;(t) (20)

is the amplitude of the incident displacement field, and

t a (21)
ao
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2. A HOMOGENEOUS ANISOTROPIC SCATTERER

The result obtained in Equation 19 is a statement of the first Born

approximation for the most general anisotropic inhomogeneous scatterer

embedded within an isotropic homogeneous host. Reference 7 goes on to

consider further details for the special case of scattering from a void.

In this report, Equation 19 is evaluated for a homogeneous anisotropic

inclusion. The solution has the same form as that for the void, with
the addition of a multiplicative amplitude factor which depends upon the

materials' elastic constants.

The perturbations attributable to the scatterer are taken as

Ap B p (22)

and

AC CB  _c
ijkl ijkl ijkl (23)

B B

where p and the c are constants within B, and c? kl is as defined
1 jkl Ikin Equation 2. Substituting these into Equation 19, evaluating with the

Kronecker deltas, and setting x = -e for backscatter, yields

3^sc
4wp aoUi (xt) =

fBf- ekelemencklmn]eiB o + 2po k+ km
: x- _p 22

a. ao

S y(t'_ 2e y + ) (24)
- 2 dva, y

Consider the product eiejekelCijkl in Equation 24. If the c are
k1 ijli kl

contracted according to the method described by Nye (Reference 9), the

product can be written out in its full glory (for future reference) as

8
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e ee eC e4c, 4 C +e4
eieieke1 ijkl 1 4. 2 2 2 4. 3c3 3

+4e 2 e2c + 2e 2~ 2e 2~

2 3 44 4 1 e 3 C 5 5  1 4 e 2 C6 6

22 2 2~ 3 1 2 2 22

3 3 3
1eI 3 C15 + 1e 2 C16 4eI1 2 c26

+4e 2 e 3 C2 4 + 42e3c34.+ 4e 3 3

+. 4e2 * e 4.+ 4e e *2 C + 4ea
1 2 3 14 12325 123 6

+ e 2  2 4 .2. C
Be ec + Be e e C +B1 2 345 1 2 346 1 2 356 (5

N~ow, since

)t=X0 + 2110 (26)P 2ao

* and
cj1  a. (27)

Equation 24 can be rewritten as

e2B _f eke eec 11, 2e dvy
~s(X) ~ ~ lm 2]JJyt- a, d (28)

Equations 25 and 28 together give the backscattered dilatation wave ampli-

tude from any homogeneous anisotropic scatterer in the first Born approxi-

mation. This result has the same form as that obtained for a void P

(Reference 7), i.e., the backscattered dilatation wave amplitude is

proportional to

9
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sc(tu) f t' - 8o d% (29)
B Y)

It is shown in Reference 7 that performing the integration results in

,sc(ts) =-- f (t' - T) A(T)dT (30a)

0

or toaof
*sc(t') =2 f y(t' - T) A(T)dt (30b)

for both y(t) C c(2) (--, -) and A(t) £ c(2) (--, -), where Equation

30a is obtained for j(O) = 0 and Equation 30b for A(o) = 0. To obtain

these results, a coordinate system has been introduced with the z axis

parallel to e and the time T is defined by

+ 2zB+z(31)
a.

Note that t(zmin) - 0 so that

0 = -2Z n  (32)

The function A(T) is a function which describes the scatterer's cross-

sectional area as a function of twice the one-way transit time of the

plane wave passing through the scatterer. The dependence of A(T) upon

twice the travel time makes sense physically, since the backscattered

portion of a pulse which travels some distance into the scatterer must

also traverse the same distance back through the scatterer.

By combining Equations 28 and 29, the scattered displacement field

can be expressed as

asc *i Msc

ui (xt) = 4 x (t) (33)4iai

where the material-dependent amplitude M is defined as
B

0 P!. + ekelemencklmn 2 (34)

10
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It is instructive to consider a homogeneous isotropic inclusion B

in order to obtain Misotropic in terms of familiar engineering quantities.

It is convenient to define

A o + n (35)

B 0 (36)ii =i.'0 +Ap

EB -E + AE (37)

B +(38)

where E and .v are Young's modulus and Poisson's ratio, respectively.
B

Substitution in Equation 34 of an equation for Cljkl, analagous to Equa-

tion 2 for isotropic media leads to

BB ccc - 2 (39)
Misotropic = *- 4 +2(39

Note that this expression reduces to the result obtained in Reference 7

for scattering from a void, namely

M =-2 (40)
void

Equation 39 is alternately expressed in terms of E and v as

p EB(1 - v )(I + vo)( 1 _ 2v)
isotropic pO E°( - v°)(l + BB)(1 - 2vB) (41)

which is linear in AE and Ap.

Consider the ratio in Equation 41

BR (l -V)(l + vO)(1 - 2v)
V (1 -vO)(l + vB )( - 2v

B
Substituting for v from Equation 38 and expanding yields

R I vO- AA 1 1
V I V 20 (43)

R1 I V 1 2I
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If Av satisfies

11 + v°1 -1 < v° < -1/A

l,& Il<<
I I ) V l : -1/4 < v ° < 1 2 (44)

Rv can be approximated by keeping the first two terms in the geometric

series for the last two factors in Equation 43

R I + 2v(2 -v )  A (45)

(1 - v° 2 )(I - 2v ° )

Thus, M is also linear in Av for small Av.

The possibility of a scatterer appearing "transparent" to a plane

dilatation pulse in the first Born approximation is suggested by Equations

34 and 39. By setting M = 0, one form of the "transparency condition"

for an isotropic scatterer is obtained from Equation 41 as

BBv + B B 2 B F B
p.EB ( - vo)(l +vB)(l 2 2vB) 1 (46)
p°E° = (1 - VB)0 °)(1 - 2v) P O

12
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SECTION III

SCATTERING FROM SPHERES AND CYLINDERS

The results of the previous section for a scatterer of arbitrary

shape are applied to spheres and cylinders. First, the cross-sectional

areas of the scatterers as a function of time are determined. A model

for the amplitude of an incident displacement pulse as a function of

time is then introduced. The form chosen for the pulse is not only

mathematically attractive, it also closely models the pulse which is

produced by physical transducers. With the area and pulse functions

determined, sc (t) is evaluated according to Equation 30a for spherical

and cylindrical inclusions of arbitrary isotropic linear elastic constants.

The analytic character of these solutions is investigated, followed by a

look at scattering in the long wavelength limit.

1. CROSS-SECTIONAL SCATTERING AREAS

Consider a plane dilatation wave pulse traveling in the positive z
direction and incident upon a spherical scatterer B, of radius s, as

shown in Figure 2a. The cross-sectional area A (z) "seen" by the wave
s

is the area of the family of circles subtended by the plane on the sphere
T =I ( s 2 - z 2 )  -s <z <s

s(z) 0 otherwise (47)

Recalling Equations 5 and 31 for 0 and T, the area A (T) is obtained as
O

2~ 1~4s T 2 0 < 4sa. 0aTAS(T )  a

, otherwise (48)

A (T) is parabolic as illustrated in Figure 2b.

5

Now, consider a dilatation wave pulse incident upon a cylinder, where

the vector e is perpendicular to the axis of symmetry of the cylinder,

as shown in Figure 3a. If the radius of the cylinder is c, and the length

of the cylinder over which the wave can be approximated by a plane wave

is L, the cross-sectional area is the family of rectangles described by

13
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Figure 2. Plane Wave Interaction with a Sphere
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Figure 3. Plane Wave Interaction with a Cylinder
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€ 22
2 L -z ,-c < z < c

Ac W (49)
c , otherwise

or a- - 4corLao 4c T -T 2  0 < 4c<

A (T ) = a -a. (50)
0 , otherwise

which describes half of an ellipse, as illustrated in Figure 3b.
sc

Since * (t) is given in Equation 30a as a convolution of a pulse am-

plitude function with A(T), Figures 2b and 3b suggest (by considering graph-

ical convolution) that, perhaps, spheres and cylinders will give similar

scattered time waveforms. This topic is considered in more depth

in the section on long wavelength scattering. However, the finite slope

of the sphere's area function at T = 0 and T =s compared to the infinite
ao

slope of the cylinder's area function at the corresponding points will

be shown to give characteristically different scattered responses when

the long wavelength limit is not valid. Note that it is precisely the

infinite slope Ac(0) which requires the use of Equation 30a instead of
c s

Equation 30b to obtain sc(t) for the cylinder.

It will prove convenient, in what follows, to introduce a normalized

time

2;t' = _t

2b (51)

where

b = c0 , sphere2c (52)
ao ,cylinder

This allows the incident pulse to be characterized in terms of the width

of the scatterers' cross-sectional area time functions. Note that 2b

is the time it takes the wave to completely traverse the scatterer in

the incident direction and again in the backscattered direction.

F .7....16
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Using Equations 51 and 52 in Equations 48 and 50, the normalized

area functions are

Wab2 (T '2 ) 0 < ' < 1

s = otherwise (53)0

and

2bLao./ ' < T < I

C , otherwise (54)

2. INCIDENT PULSE MODEL

A mathematically tractable and physically representative model of the

incident plane dilatation pulse is given as

te-qtsinwt ,t > 0

y(t) = (55)
0 , t< 0

where w is the center frequency of the pulse. The factor of t is used to

obtain j(0) = 0 for use of Equation 30a. Differentiating twice with

respect to time

2q 2  - t -qt
(q2 _ w )te-qstnwt - 2qwte-qcoswt

-2qe'qtsinwt + 2we- qtcoswt , t > 0

(56)

Using Equations 51 and 52 in Equations 55 and 56, the normalized incident

pulse amplitude functions are

2bt'e "2bqt ' sin t' t , t' > 0

Y (t') = (57)
0 , t'<0

and

17
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I 2 e-2bq
t ' 'e"2bqt '  t'2b~~q 2 - = )bt' sinb't'btco'

-- 2qe' sinwt ' + 2e- cosw't '  t' > 0

0, t' <0

(58)

where

'= 2bw (59)

is the normalized radian frequency. In terms of the period T vs
o}

T (60)

2b

gives the period of the pulse relative to the time width of the scatter-

ers' area functions.

It is revealing to put this time domain pulse normalization in the
perspective of the frequency domain wavenumber normalization ka employed

throughout the literature where a is the characteristic dimension of

the scatterer, and k = - is the wavenumber. If a corresponds to eithera. _
radius, s or c, recalling Equations 52 and 60 for b and T' yields

21 ' (61)

3. SOLUTION FOR THE SPHERE

With all the pieces now available, the normalized solution for the
backscattered amplitude function ,sc(t') for scattering from a sphere

may be obtained. Either form of Equation 30 may be used to obtain

,sc(t') since A (0) = 0. For the form given by Equation 30b, the
S s

required second derivative of the area function is

.a2b 2[6(t') 2 + (m' -1)) - 1 0 < t'< 1
AS(T' ) =

10, otherwise (62)

18
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The delta functions greatly simplify the convolution with the incident

field in Equation 30b and only the convolution with the constant (-2)

must be worked out in detail. The situition is not so pleasant for the

cylinder and Equation 30a is required due to the singular behavior of

A (t') at T' = O'and at T' = 1. In order to provide a unified treatment
c

of scattering from both objects, the form of Equation 30a is chosen,

obtaining the solution in terms of the area function convolved with

second derivative of the incident pulse.

Substituting Equations 53 and 58 into Equation 30a prodices

-sc 2a3b3  2 .2)(t, - ',)e'2bq(t' - si) nw(t, ')

-2bq(t' - T)-b't-t
-2b t' T') "2 b t' 'cosw'(t' - '

-qe -2 bq (t ' 
- T')sfw'(t' - T') + wecosw'(t' -To))

x {r' - T dr', T > 0 (63)

where dT = 2bdT' is employed, and

0 < t' < 1

1 t' > 1 (64)

which limits the integration to that portion of the sphere whichis en-

countered by the wave at time t'. Introducing the complex exponent

K= 2bq _ iw' (65)

and using Euler's formulae for the sine and cosine functions, Equation

63 is expanded and rearranged to obtain

W--_ -ilA*(t') - B*(t') I eKT' d

2raob-

+i(A(t1- B(t) J T'eK+ T dT'

++{*(t')[t' + 1] - B*(t') ).T e dT's

-iJA(t')Et' + 1] - B(t') I T2eK+T'dT '
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-i A*(t') e dT

3K+T'
4i A(t') ' d' , t' > 0 (66)

where

A(t') + ib2qw] eKt (67)

and

B(t') 2+ -2- (68)

The asterisk denotes complex conjugation and i = rT. The integrals in

Equation 66 are easily handled by defining

a 4+j ,Ke+T'
C (0) f '* e dT' (69)

0

Integration of Equation 69 by parts leads to the recursion relation

jKc
C a e - - C.(a) (70)
J K+ K+  j-

which is particularly useful, since Cl(a) is readily evaluated. Note

also that

Ct(a) = XT'Je K  dT' (71)

so that Equation 66 can be rewritten as

~'S ti

Os 2 i[A(t')Cl(a) - A*(t')C((%)] t.27ra 3 b2

* -irA(')C(:) -,At(')C> 0 (72) l
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If Im(-) denotes the imaginary part of a quantity, the backscattered

wave amplitude from a sphere is finally obtained as

- IA(tC))t

-Im[B(t')C(a))t

-Im[A(t')C 2(a)] [t' + 1)

+Im[B(t' )C2 (a)]

-Im[A(t')C 3(a)]} , t' > 0 (73).

where, recall, a equals t' or 1 according to Equation 64.

While Equation 73 is not particularly revealing, it is a beautifully

simple result that is, together with Equations 69 and 70, quite amenable

to numerical evaluation. It is easy enough to observe from Equations 67

through 70 and Equation.73 that ,Cc(t') has the same center frequency

as y(t') and falls off as te " bQ ' for large t'.

4. SOLUTION FOR THE CYLINDER

-sc
By a similar development as that for the sphere, (cct') is obtained

for the cylinder by substituting Equations 54 and 58 into Equation 30a

producing, upon rearrangement

cCt)= [b(q2 t2)t,- bq sinw't' 4j2b qt -b] cswt
4Lab a +2b

Di f+ 2 q eT'"-r' cosw'T'dT'
0

U f[b2 (q 2_O2)tin-bjcoswlt +2b 2qtl4wsinw't' e} 2bt

- x{ q e+2bqt' -T bq sinw' d'
L/- 0

b 2(q1_w)sinw-t, " 2b'q'coswt ,  e,a +2bqi,'
Li xf e" "'F' -r'Z'7 cosW 'T'dT'
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+b2 (q-_w2 )coswt' +2b Wqsinw't' e- 2 bqt'

f e" T' - 2sinw'r'dr' , t' > 0 (74),.; 0

where, again a = t or 1 according to Equation 64. The integrals in

Equation 74 lead to a solution for fsc(tt) which is not as straightfor-
-sc C

ward as *sC(to) obtained for the sphere. Consider the integral

t -

tt 2 bqr' gr (e..)2 cosw', r dT' (75)

- Expansion of the radical in a binomial series gives

11 (t') =' eb' /r'cosW',T' (-1)j 'dr (76)
j=0

provided 0 < t' 1. Now, since the series is uniformly convergent with-

in the interval, the summation and integration may be interchanged to

obtain

(t') = (-l)J c (t') (77)
j=0

where

Ac (t') - e T +  2bqT- COSW' T' dT' (78)

Similarly,

12 (t') e e- sin'-' d' (79)

becomes

j0
I t) o~ j"A (t-).80

where

A3(t) T ; eqT1 sinw'T' dr' (81)
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The functions Ac (t') and As(t') lend themselves to recursion relations

which make them computationally attractive. Integrating Equations 78 and

81 by parts yields

A '(to) e2bt' (2bqcosw't' + w'sin't']
(2bq)2+,2

.+)2 A (to) A (to) (82a)
(2bq )2+w,2 A - (2bq )2+w,.2 Aj-

and

t,f+j 2bqt '

sitb) 2  [2bqsinw't' - w'cosw't']

(2bq)2+ ,

( +J)2bq As 1 + j AC

(2bq )2+w, 2  J- t') "(2bq)2+w' 2  j 1

The appearance of the recursion index j in the numerators of the forward

recursion relations((Equation 82) is not desirable since truncation errors

introduced in the numerical evaluation of the functions will be amplified

as j gets large. A numerically stable evaluation scheme results from

manipulation of Equation 82 which leads to the reverse recursion relations

;~s 1 [ 3/2+j e2bqt' s c ]
A(t') = [ t' cosw't' + W'A +l(t') -2bqA +l(t')] (83a)

s;. I [ 3/2+j e2bqt' ,c (' s  tA (t'e sinw't' + A (to) -2bqA+1 (to) (83b)

A5 t' 1/+ Lt2 'J+l l

Note that

l11 ^c(t') - u AS(t') = 0 (84)

which is easily seen by considering Equations 78 and 81 remembering that

O <t' 1.

Because of Equation 84, the reverse recursion relations are also

convenient in that an exact expression is not needed for one of the

recurring functions in order to start the recursion. For large J.
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S J-1 ( (85)

So, by substituting A^-1 (t') for A(t') in Equation 82, the recursion

relations are started for j * by

/ s t 3/2+j e2bqt' 13/2+J+2bojsinw't' - w'cosw't'J^j : j -(86a)

(3/2+J+2bq)
2 w2

and

c V 3/2+j e2bqt' cosw't' +W'A

3/2+J+2bq , j e (86b)

It would be nice to somehow insure that the functions are being

generated correctly as j is decreased from its starting value to zero.

A great deal of confidence could be placed in the scheme if the final

recursions to Ao(t') and A0(t') matched a known "correct" answer to

within some desired degree of accuracy. Surprisingly enough, the zeroeth

integrals can be evaluated in closed form. This requires a momentary

diversion to consider the integral

I - ks s ds (87)

2
Making the substitution s = u

1= 2 o u2 eku2 du (88)

which can be written as

[2 e du] (89)

2 2
Now, let v = ku2 . This gives

I = d eV dv] (90)

Furthermore, the substitution v = in, where i = /-, renders

I 4 " e 2 dn] (91)
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which is recognized to contain a form (Reference 10) of the complex error

function

1I= " i erf (i/ (92)

Performing the indicated differentiation (Reference 10)

/t" ek t  i
I = t + erf (i/ kt) (93)

Back to evaluating i'(t') and c (t'), Euler's formulae for the sine
and cosine functions in Equations 78 and 81, and an application of Equa-
tion 93 to both yield

A'(t').- Vt ' e2qbt
qc(t') [2bqcosw't' + wsinw'"' (2bq) 2 + w'

+ ~erf (iA/RVr) erf (ilZ'V)] 9a+ T K+)3/2  -K)3/2 (94a)

and

AS(t') = [2bqsino't' - wcosw'tg
0. (2bq)2+w'2

+ _ [ WK V'KT' erf (i/KT (94b)
/(K+)32 (K-)3/2 J

where, as before K! = 2bq ± iw'. Equations 74, 78, and 81 can now be
combined to give the solution valid for 0< t' < 1, i.e., when the front
edge of the pulse is within the scatterer. The result is

.i t 4-- (-l)J [A (t)

4Lab j=0

- A2 (t') AS(t')- A (t') A j(t,)+ A4 (t.) As+ (t, ,

0 < t' < 1 (95)

where
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A 1 (t) u[b (q _W) t' -bq~sinw't' [2b qwt - bw] cosw't' (96a)

A2 (t) =[b2 (q 2 W 2) t' - bq]cosM't' +[2b2 qwt'- bw] sinwIt (96b)

A3 (t') = b
2(q2-w2) sinw't' - 2b2qutos't' (96c)

A (t') =b2(q2-2) cosw't' + 2b2qstinw't' (96d)
4

The functions A(t') and Ac(t') are started by Equation 86, evaluated

by Equation 83, and compared to Equation 94 to insure a desired degree

of accuracy.

The solution for t' > 1 must still be obtained. Equation 74 for

sc:"'" ' c(t!) is equivalent to a form more indicative of the convolution opera-

tion (indicated by an asterisk), and thus, amenable to Laplace transform

methods. The desired form of Wc(t) is

,i"SC(t)
q - )f (t ' ) 2b2qwf 2(t') 3 bf 4 (t')

4La~b

where

fl(t') = (t' e-2bqt' sin't') * e(t') (98a)

f2(t) = (t' e-2bqt' cosw't') * e(t') (98b)

f3(t') = (e' 2 bqt' sinwt') * e(t ) (98c)

f4 (t') = (e2bqt' cost') * e(t') (98d)

and where

t 1 t 2  0 < t'<1

-e(tl)

0 , otherwise (99)

26



AFWAL-TR-82-4044

If L . denotes the one-sided Laplace transform of a quantity, the

required transforms are evaluated in terms of the transform variable s as

r-qt 1L [te sint w (l~oc)

I(s+q)2 + w

L t e~ coswt -*M (100bd)
I(s+q) + W

and from Reference 11,

L [Vt -t2] w/ ~ L Ij/2) (101)

where IH is the modified Bessel function of the first kind of order
v. Denoting I!:f 1(t')] by F 1(s), for i = 1, 2, 3, 4, the F 1(s) are ob-
tained by the multiplication of the appropriate transforms in Equation

100 by the transform in Equation 101. The f Wt) are conveniently
obtained by summning the residues at the poles of et F.(s), which poles

are, in all cases

s = K -[2bq ±w (102)

Note that is an entire function of s and, therfore, s =0 is not i

pole of the F 1(s). Saving the details, the result, valid for t' > 1,

is obtained as:

c j{[q - b 2 (q 2_W 2)t] ImjIE(t')]

+ bw (1I 2bqt') Re [E(t')J
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Sb 2 (q2-W2)lm [DWt'

-2b 2 qw Re [D(t')]} ,t' >1 (103)

where

Dlt') -=e"K l '  (1(+ IV) + Io (-j (104)

(K+)2  2K+  2 o 2

and
11(K+ )

E(t') e-K+(t' ) 1 (105)K+

and where Re(-) denotes the real part of of the quantity.

Equations 95 and 103 together give the solution for scattering fron

a cylinder for all t', including the critical point where the solutions

are pieced together at t' = 1. Again, the form of the solutions is not

particularly revealing, however, the same observations as those made for

the scattering from the sphere can be made with respect to the scattered

center frequency and the form of the solution for large t'.

Given the simplicity of the solution for t' >_ 1 compared to the

solution for 0 < t' < 1, one is tempted to look for a Laplace transform

solution valid for all t'. However, the above inversions are valid only

for t' > 1. Consider, for example, est ' F3(s) in the form
st, W.e (t ' -A )s I (s/2)

e F(s) = Wi1
s(s-s+)(s - Sp) (106)'

p p

The asymptotic expansion of Iv(z) (Reference 10) for large z and jarg(z)j< 1

along with the fact that 11(z) is an odd function of z yields

L-s/2
Os/2): " - arg(s) < 3 (107)
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Thus,
Ir e(t'-I )s

est'F3(S) lsl-" 2 s(s-s*)(s-s-) ' < arg(s) < 3 - (108)
p p

Since the poles of est' F3(s) are in the left half of the complex plane,
eStF 3(s) is required to vanish as Isl -> in order to sum residues to

obtain f3(t'). However, for s in the left half plane (with a negative
real part), lim eSt1F3(s) -,D, unless t' > 1, which therfore limits

Isi 1 i F3(sthe Laplace transform solution to the region t' > 1.

5. SMOOTHNESS OF THE SOLUTIONS

The interaction of the incident pulse with scatterers having abrupt
onset and terminating boundaries raises questions about the smoothness

of the scattered waveforms. Recall the scattered field's second time
derivative must be sufficiently integrable so that Equation 14 is
satisfied for the first Born approximation to he valid. The solution

for the cylinder is particularly suspect due to the infinite slope of the
area function A C(T') presented to the wave at T' = 0 and T' = 1. Thus,
c (to) is treated here first, in the form presented by Equations 97 and

98.

By writing out the convolutions as integrals, keeping the first terms
in the expansions for all factors in the integrands, and then performing

the integrations, the result obtained is

) t_: 2bw t3/2 t' << 1 (109)

4La ob

Thus,

c t ) bt<

4Lamb 
<

and

*sc Ct) bw"gc tt-1 o<

4a, t' (111)
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Note that f SC(to) fSC(tm), and * ct') are all zero if to < 0. Thus,
C C

only f (to) is discontinuous at the onset of scattering, with an infi-

nite discontinuity from a t~ singularity.

*Recall, in the convolutions of Equation 97, the upper limit of inte-

gration is to for 0 < to < 1. Differentiating with respect to t' accord-

ing to Leibnitz' rule (Reference 12) yields

fc (t) = -2bq Ib 2(q 2w2) bww] f1 (t)

4La~b +[w'b (q~ 2  + 4b'q~c~ 2 t

+ [b2(q 2_.2) + 2b'q 2 _ bww'] f3(t9)

[4b 2qw + bqwjf4(t')

+ bw/Vi - 0 < t' < 1 (112)

where the f.(to) obviously give back combiniations of the f.(t') and the
1 1

last term results from differentiating f4(' l ebiz For t' > 1,

* tsc
*c (to =2bq [b2 (q 2_w2) - bww-] g,(t') +[wlb2(q 2 _w2 ) + 4b 3 q2]g2(t.)

+[ 2_ w 2) + 2b 2q2 _ tbwx&g 3 t' [42ii + bqw]g94 (to)

(113)

where the g1(t') are the same convolution integrals as the f.(to), except
1

that the upper limit of integration is 1, instead of tin. Since g (l)-

f 1) for i = 1, 2, 3, 4, comparison of Equations 112 and 113 implies
tht sc(t.) is continuous at t' = 1. Moreover, since the f(o

that important, physically expected, result that, -sc( ti) CfiC is

*obtained. Now, differentiating 'sc(tl) introduces ca factor of

(t _t,2 2  for 0 < to < 1 which obviously means that isc(tU) is not
c

continuous at t' 1. In fact,

lim sc,)(114)
tin ~ 1 4bLao
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Similarly, for t' > 1

"sc t' '

lrm < (l15)
+ 4bLa0

Thus, 5c(t') has an infinite discontinuity at t' 1 just as it does at
c

t' =0.

It is reasonable to question the validity of the first Born approxi-

mation in the light of these results for 05c(tI), since this relates

directly back, through Equation 33, to Equation 14. The approximation

is not threatened, however, since the V -  singularity is sufficiently

Integrable in Equation 12 and volume-integrable to insure that Equation

14 holds.

The same analysis applied to the sphere yields that

SSC t 2  tV << 1

s  2

*sc(t')= bwt' t' << 1 (116)

sc(t')= bw t' <<1*«1

Again, the second derivative is discontinuous at the onset of scattering

although finite for the sphere. The discontinuity bw is alternately

expressed as

bw - 2ka (117)

where ka is as mentioned in the section on the incident pulse character-

istics. The second derivative is found to be discontinuous at t' = 1

by -bw, and more importantly, sc

.4 31
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6. LONG WAVELENGTH LIMIT

The time-domain first Born approximatioia can already be thought of as

a long wavelength approximation in its own right. This seems reasonable

since it's an approximation based upon weak interaction of the incident

field with the scatterer; weak interaction is intuitively appealing for

wavelengths long compared to the size of the scatterer. However, it

appears that the approximation as stated in Equation 14 could be satis-

fied by sufficiently small perturbations Ap and Acijkl even in shorter

(or at least resonant) wavelength regimes. This certainly is ar, item

begging for further attention.

The long wavelength limit is stated according to T' > 1, or equiva-

lently, ka << 2-' In this case, Equation 30a is particularly revealing
2

since both A (T) and A (T) now sample the second derivative of the
s c

incident pulse over sufficiently small intervals to produce results

similar to convolutions with a delta function. Thus, in the long wave-

length regime, spheres and cylinders produce essentially identical

backscattered fields which have pulse amplitudes given, very nearly, by

the second derivative of the input pulse amplitude. This result is

obtained independent of the shape of any small scattering object. The

most significant differe-'e between the backscattered fields, in the long

wavelength limit, will be the amplitudes of the scattered fields due to

the "strength" of the delta function. This strength depends upon the

size of the object and is manifested, in the case of cylinders and spheres,

in the volumes Lwc 2 and 4ws 3/3. Of course, the material dependent ampli-

tude factor M introduced earlier plays a rrle in the scattered amplitude.

As an example of how the delta function strength anu affect a

backscattered response, consider the problem of distinguishir the responses

from a long cylindrical inclusion and a spherical void in the iong wave-

length limit. The scattered time functions will have indistinguishably

similar form, to within a minus sign attributable to M, and only the

relative amplitudes may be strikingly different. The cylindrical inclu-

sion may very well have an M which is quite small compared to that for

the spherical void. However, if the length L over which the cylinder is
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illuminated by the appyoximately planar wave is large enough, the response

from the weakly scattering inclusion can dwarf the response from the

relatively strongly scattering void, due to the strength Lwc 2 which is

unbounded in L. This problem is of considerable interest to the Air

Force for non-destructive inspection of fiber-reinforced composite

materials, where detection of gas bubbles (porosity) in the epoxy matrix

(host) is desirable. It would be nice if the cylindrical fibers were

relatively transparent to the incident dilatation pulse, as compared to

a spherical void, allowing the response from the porosity to stand out

against a "background" of cylinders' response. Further attention is
given to this item in the following section.
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SECTION IV

t NUMERICAL RESULTS

Some of the numerical techniques used for computer evaluation of the

scattered responses from cylindrical and spherical inclusions are

presented. Responses obtained for incident pulses having various normal-

ized center frequencies ka are then presented to illustrate the differ-

ences and similarities between scattering from cylinders and spheres.

An experimental result for scattering from a cylinder is presented and a

comparison made to the response predicted by the theory. Finally, the

transparency of the fibers in a fiber-reinforced composite material is

addressed.

* 1. NUMERICAL TECHNIQUES

Recall, the incident pulse amplitude is modeled as an exponentially

damped sinusoid according to Equation 55. For the following results,

the length of the pulse T defined by Equation 8 was chosen to be theP
time after which ten percent of the energy in the pulse remains. With

a desired pulse length and center frequency specified, substitution of

Equation 55 into Equation 8 leads to a transcendental equation for the

damping q which was solved, most conveniently, by the simple method of

bisection, as described in Reference 13.

The error function and modified Bessel functions of complex arguments

were evaluated by routines based upon the forms of the functions given

in Reference 10. Power series and continued fractions were utilized to

provide at least eight significant figures. Asymptotic expansions were

employed in the appropriate regions. The reverse recursion relations

(Equation 83) were considered to provide accurate results if they matched

the closed form expressions (Equation 94) to seven figures. Finally,

251 points were calculated for each theoretical plot displayed from here on.

2. TIME-DOMAIN BACKSCATTER WAVEFORMS

A typical incident pulse and its second derivative are shown in Figure

4, illustrating the particular case when the pulse length is equal to the
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Figure 4. Incident Pulse Waveforms
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period. This may, of course, be specified for a pulse of any period.

The specific case of scattering when T' = 0.5 (ka = n) is shown in

Figure 5. The most interesting difference between the responses from

the cylinder and sphere occurs around the point t' = 1. It is at this

time that the portion of the wave which makes the round trip through the

entire scatterer is felt at the observation point where the wave first

enters the scatterer. The more interestingly "structured" response from

the cylinder is due to the more abrupt nature of the change in density

and stiffness which the wave sees as a result of the infinite slopes of

the cylinder's area function. While the first Born approximation is not

guaranteed (or expected) to be valid when ka is this large, these results

are interesting in that they predict marked differences in the backscatter

from cylinders and spheres at shorter wavelengths. Figure 6 illustrates

the scattering when ka = . , for the same pulse shape (Tp = T') as that

in Figure 4. These results illustrate less structure around t' = 1 than

for ka = i. This is to be expected since increasing Tp and T' have the

effect of narrowing the bandwidth of the frequency spectrum of the inci-

dent pulse and centering it around a lower center frequency. This effect

then carries through to the spectrum of the scattered pulse and is evi-

denced in a time-domain pulse of less structure.

3. COMPARISON TO EXPERIMENTAL RESULT

While the first Born approximation may be suspect for values of ka

as large as in the examples above, excellent agreement between an experi-

mental result and theoretical predictions for smaller ka will be presented.

The experiment conducted at the Materials Laboratory is illustrated

in Figure 7. A voltage waveform f(t), input to the transducer, pro-

duces a plane dilatation pulse which interacts with a cylindrical void

(radius 50.8 Pm) located inside a piece of linear, homogeneous,ani iso-

tropic elastic material. The scattered wave gives rise to an oitput

voltage g sct). The incident wave also reflects from the planar "back

wall" producing the response g bw(t). This response can be considered

to be unperturbed by the incident and reflected wave traveling through

the scatterer, since the magnitude of the scattered field is much smaller

than the incident and reflected fields. It is shown in Reference 14

that treating
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gsc i t) = gbw(t) * A(t) (118)

is completely equivalent to treating the convolution (Equation 30a) for
the scattered field.

Figure 8 shows agreement between theory and experiment for scattering

from the cylindrical void when ka = 0.32 (T' = 4.85). The solid curve

in Figure Ba is the back wall reflection, modeled numerically by the

broken curve given by

y(t) = t(e-qt -e-Pt)sinwt (119)

The length of the abscissa is I usec for all graphs.

The scattered response and the numerical prediction are similarly illus-

trated in Figure 8b. Such agreement between theory and experiment lends

credence to this approach to elastic wave scattering. The lower center

frequency of the reflected pulse can be attributed to high frequency

attenuation present in the host material and not accounted for in the

model. The scattered pulse is not affected as much, since it travels

through only about one-half the distance that the reflected pulse travels
through. Figure 8c shows the second time derivative of Equation 119.

Figures b and c illustrate the result predicted earlier that the scattered

field, in the long wavelength regime, is very nearly given by the second

time derivative of the incident field's pulse amplitude.

4. TRANSPARENCY CONSIDERATIONS

The transpa:r-ency of a single carbon or graphite fiber in an epoxy

matrix Is considered based upon the fiber elastic constants reported by

Smith (Reference 15). Adopting the notation in Reference 15, the coordi-

nate axes are defined with the 3 axis parallel to the fiber. For a plane

dilatation pulse normally incident upon the fiber, e3 = 0. Characteristics
of the fiber (modeled as having hexagonal crystal symmetry) imply that

C16 = c26 = 0, lc = c2 2, and c66 = (cll - c12 ). Using these to evaluate

Equation 25 for the product etejekelCtjkl, the amplitude Mflber is ob-

tained according to Equation 34 as
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B B

= P + -2 (120)Mfibe r  p C ,

Note that this is the same result obtained for isotropic media in Equation

39. This is a consequence of the hexagonal model of the fiber and the

normal incidence of the dilatation pulse. It is well known (Reference 16)

that a hexagonal structure will appear the same to a normally incident

wave, independent of where e lies in the 1-2 plane, i.e., the fiber is

"transversely isotropic ."

Table 1 illustrates the scattering amplitudes for the fibers consi-

dered in Reference 15.

TABLE 1

FIBER CONSTANTS AND SCATTERING AMPLITUDES

Fiber 3 10 fiber fibe
(g/cm3) (10Pa) i

WYB 1.32 3.13 5.10 6.50

T-25 1.38 1.94 2.89 2.09

T-40 1.57 1.42 2.06 1.06

T-50 1.67 1.25 1.82 0.83

T-50S 1.69 1.22 1.78 0.79

T-75S 1.88 0.97 1.47 0.54

VYB 1.53 4.92 8.69 18.88

PAN 1.72 2.31 3.88 3.76

HTS 1.69 1.60 2.51 1.58

T-400 1.77 2.33 3.97 3.94
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The epoxy density was taken as p0 = 1.16 g/cm3 and c11 was calculated

from E° = 3.27 x lO Pa and v = 0.35 according to

E(0 - v) (121)(1 + v) (1 -2v)

The last column in the table compares the backscattered energy from the

fibrous material to that from a void of the same shape. For only three

materials is the backscattered energy less than for a void.

Practical consideration of detecting porosity in an array of fibers

must also include the geometry of the scatterer, i.e., the "strength" of

the scatterer mentioned in the section on long wavelength scattering.

The factors 4s 3/3 and Lc2 are what is to be considered, not the factors2 b

4bLa 2 and 21a 3b2 appearing in Equations 73, 95, and 103, which are due
0 0

to the time normalization employed. Consider, for example, fibers 8

microns in diameter, illuminated by a normally incident wave which is

approximately planar over a length of 1/4 inch (the size of a typical

transducer face). Without considering the material parameters, the

amplitude response from a single sphere will exceed that of a single fiber

for porosity diameter greater than about 3.3 mils (I mil = 25.4 microns).

By including the material-dependent amplitudes from Table 1 and requiring
3 2that (41rs /3)M void be greater than Lc Mflber' one finds that the lower

limit of porosity size that produces a larger backscattered response than

an 8 micron diameter fiber varies little compared to the range of energy

ratios in the table. For energy ratios varying from 0.54 to 18.88, the

lower limit of "detectable" porosity varies from 3 to 5.5 mil in diameter.
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SECTION V

CONCLUSIONS AND RECOMMENDATIONS

1. CONCLUSIONS

The first Born approximations to solutions of a time-domain integral

equation were used to obtain the backscattered dilatation wave response

from spherical and cylindrical inclusions of arbitrary homogeneous ani-

sotropic elastic media embedded within a homogeneous isotropic host. For

relatively large values of normalized center frequency ka, the time wave-

form responses from cylinders and spheres are markedly different due to

the difference in slopes of the scatterers' cross-sectional areas which

the wave sees as it first meets the scatterer and then as it exits the

scatterer. For ka o 0 the responses from the cylinder and sphere have

identical time form and are given by the second derivative of the input

pulse time profile; they differ in amplitude and the difference depends

upon the volume of the scatterer. Excellent agreement with an experi-

mental result for scattering from a cylindrical void was obtained at a

value of ka = 0.32.

A "transparency condition" was obtained, which states that for certain

combinations of both density and stiffness of the scatterer and host, the

scatterer appears transparent to the incoming wave in the first Born

approximation. For inclusion-host combinations which do not satisfy the

condition exactly, a useful quantity is the energy scattered from an

inclusion normalized to that scattered from a void. This is of practical

significance for non-destructive inspection of fiber-reinforced composite

materials with long wavelengths. A lower limit exists on the size of

spherical voids which give a larger amplitude response than a cylindrical

inclusion of a given size based upon both the relative transparency of

the inclusion and the volume of both scatterers illuminated by the wave.

For an 8V diameter fiber Illuminated over 1/4 inch, this lower limit on

the spherical void size ranges from 3 to 5.5 mil in diameter for a wide

variety of fiber compositions. Since these values are within the range

of practical interest (I - 20 mil), it appears from this simple analysis,

that an inspection technique based solely upon backscattered waves should

not be dismissed without further analysis.
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2. RECOMMENDATIONS

Extensions of this study, immediately applicable to the non-destructive

inspection problem, should include considerations of backscatter from

spheres in the proximity of an infinite linear array of parallel cylinders.

All angles of incidence with respect to the plane normal and the direction

parallel to the fibers should be considered, since normal incidence alone

is not usually used in current inspection techniques. Investigation of

the effects of periodic, almost periodic, and random spacing of the array

could prove useful. Since the number of cylinders needed to simulate the

problem numerically would be very large in the long wavelength regime of

interest, the computer program developed for use in this study would not

be useful, providing as it does, complete solutions for the scattering

from each fiber in the array. Further analytical work, summing the

responses from the cylinders, should be carried out first, and the scat-

tering from spheres obtained against a "background" response from the

cylinders. The extension to many randomly distributed spheres near the

array would then provide a model which closely approximates the physical

system in the non-destructive inspection problem.

Basic questions regarding the validity of the time-domain first Born

approximation need to be answered. The statement of the approximation,

Equation 14, suggests that perhaps, larger ka problems might be solved

by this technique provided the perturbations in density and stiffness

presented to the wave are sufficiently small. Certainly, as Ap 0 and

Acjkl ' 0, the backscatter goes to zero, and a regime of first Born

validity should exist for small material perturbations. Another nagging -

point is the artificial unboundedness of the material-dependent amplitude

factor M in the ratios of density and stiffness. An upper bound needs to

be obtained for the magnitude of M beyond which the first Born approxima-

tion ceases to be usable.
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