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,FOREWORD

This work was performed by the Honeywell Systems and .Rsearch Center under

Contract No. F30602-81-C-0187. for the US Government. The research was

sponsored by the Defense Advanced Research Projects Agency (DARPA) of the

Department of Defense, and was monitored by the Rome Air Development Center

(RADC), Air Force Systems Command. This final technical report covers the

period from May 1981' through July 1982. The technical monitors of this

program were Lt. Col. A. Herzberg (DARPA) and Mr. R. Carman (RADC).

The program manager at Honeywell was Dr. Thomas B., Cunningham, ,and the

Principal Investigator was Dr. Michael F. Barrett. Mr. Dale F. Enns was -,.

Co-Investigator; Dr. Gunter Stein served as Technical Consultant. This
report was written by Dr. Barrettand Mr. Enns.
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SECTION 1

INTRODUCTION AND SUMMARY

BACKGROUND

A number of spaceborne surveillance and weapon system concepts of current interest

to USAF and DARPA require precision line-of-sight (LOS) control in order to

achieve their missions. Each of the four major concepts identified so far--High

Altitude Large Optics (HALO), Advanced Optical Technology (ADOPT), Large Beam

Expander Technology (LBET), and Large Optics Demonstration (LODE)--call for

stringent LOS and figure stability, despite strong environmental and on-board

disturbances, which exceeds existing technology. The Active control of Space

Structures (ACOSS) Program sponsored by the Defense Advanced Research Projects

Agency (DARPA) has funded a number of studies in support of an overall objective i;. {

"... to develop and understand a generic, unified, structural dynamics and control

technology base for large space structures (LSS) with stringent line-of-sight and

figure peiffor nce requirements that must be maintained in the presence of

on-board gihn•natural disturbances."

This report documents results of the fifteenth such study, ACOSS SIXTEEN,

,conducted by the Honeywell Systems and ReseArch Center for DARPA and RADC from May

"1981 through July 1982. The specific objectives of this effort were:

o To examine the potential for structural characteristics uncertainty

reduction using on-orbit identification

o To investigate control design approachesto-assess possible performanct.'"

improvements which reduced uncertainty may allow -

SUMMARY AND REPORT OUTLINE

There are four fundamental reouirements in the design of high-performance control

systems for flexible structures:

o A control problem definition

1 '
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o A reliable control design model for the structure to be controlled

0 A control desig4 proceddrC •that exploikts- this information

o The necessary hardware to implement this controller

These requirements are addressed in Sections 2 through 6 of the report. Their

essential features and results are summarized briefly below.

Control Problem Definition

The control problem addressed in this ;tudy is defined in Section 2. Motivated by

results of an earlier ACoSs Study (Ref. 1), a~control objective and disturbance

environment were defined, along with a generic feedback control structure

appropriate for attitude and structural vibration control. This feedback

structure consists of two feedback control loops--a low-bandwidth LOS pointing

loop and a high-bandwidth vibration control loop. Since the "slow" outer loop has

little effect on the "fast" inner loop, only the latter vibration control loop was

spAifically addressed in the remainder of the study. Candidate sensors and

actuators were selected and placed to define six concepts. Two of these were

selected to span a r(ange of difficulty for identification and control studies--a

baseline concept with identically located actuators and sensors (ILAS), and an

advanced concept with widely distributed sensors and actuators. Both concepts

assume paired shakers on the equipment section for actuators. The baseline

concept assumes gyros on the equipment section for sensors, whereas the advanced

concept assumes accelerometers on the optical structure.- Maximum allowable

control bandwidth for both concepts was restricted to less than 100 r/a to remain

within the range of model va Idity for the ACOSS II structure.

Control Design and Identification Model Requirements

Model requirements for control design are examined in Section 3. Using

Honeywell-developed methods for assessing stability and performance robustness to

*• plant uncertainty for multivariable systems, criteria for defining reduced-order

models (ROMs) were examined, as were modal-parameter accuracy requirements for

modes retained in this model. The resulting stringent accuracy requirements show

"* *. that identification is virtually unavoidable for the advanced vibration control

2



concept-. Due toý e ýspecialized nature of thebaseline ILAS.concept, :tbese

requirements may, however, be relaxed-considerably. -pround rules for

identification were iext established based on-a fundamental premise assumed ..

throughout-this study: since identification is-driven by the controlproblem, it

should impose no fundamental hardware requirements of its own.

Hardware Requirements

Hardware requirements imposed by the-Vibration control problem are also summarized
in Section.3. Required force/mass-stroke-capability foractuators rs dictated by.
.thai iequired to accommodate -the primary vibration disturbance, while;allowable

sensor errors are dictated- by closed vibrationi-control-ioop LOS pointing
requirements. The hardware requirements imposad by these constrai6ts are4severe.

But'the driving requirement isfor high, bandwidth--100( ,r/s for actuators and
,sensors, 200 Hz for computers--which pushes or exceeds the current state of the

art.

It was assumed that internal vibrationdisturbances may be, largely eliminated

during identification and that the available control, acý.uator capability may then
be.used to generate test signals to aid in identification. The relative -error

between delivered andcommanded actuator output was assumed-to be 10%. Two test
signal models'were examined--band-limited "white" noise at the force, (o' torque)

level, and the time derivative of this signal. Both concepts favor tbho-latter
test signal, which provides greater excitation of high-frequency modesd Three

measurement noise models were considered--band-limited white noise~at the
position, rate, or acceleration levels. Position-measurements are recommended for

the baseline concept, rate measurements for the. advanced concept. All
band-limited noise sources-were approx!imate'1by "equivalent" white noise sources

for subsequent analyses.,

Identification

The bulk of the study was devoted to examining the feasibility of identifying

modal parameters to sufficient accuracy for control design.

3



-General Procedure--Section 4 examihes-the general maximum likelihood' estimation-

(M iMLE) ident'ffication method, which .hasý been empi6yed at Hobeywell in- a number 'of
aerospace applicAtiohs over -Ehe--past 10• years. Recent developments by Yared (Ref.
"7)- -are exploited to simplify the, assessment of basic identificatiOn acduracy

(i:.e., identifiability analysis). The general method, however, :has proven to, be
computationelly impractical for the LSS application and is highly susceptible to

parameter biases under unavoidable model mismatches between the true system and
the identification model.

Simplified-'Procedures--Anumber of simplifications to the general MLE method are

'N pursued in section 5. Eiimination-of the Kalman filter associated with the:MLE
method is shown to offer the greatest promise. Results using the associated exact

identifiability analysissoftware show that this- achiieves a good compromise

between bias and stochastic error while yielding enormous computational

simplification. This'simplificatiofi makes the simultaneous identification of
frequency, damping, and modal influence coefficients for dozens of modes,

computationally feasible. Identification of a single mode at a time 'lso appears

promising. Since it is restricted-to modes for which damping' ratio is smali

compared to relative-frequency separation between modes, it'is'not suitable for
all modes (e.g., rigid-body modes and heavily damped isolator-modes). Never-

theless, this simplification'makes :the identification of literally hundreds of
modes-a practicalpossibility. ,

Results--The above assumption of small6-amping aillows analytical solutions for

basic identification accuracy, wh'cdh are .als9 -pursued In Section 5. Approximate,
•-• identifiability analysis software,, which-,evaluates tiese: solutions, provides an

inexpensive method to assess approximate id-ti1EficatU&i accuracy even when the
.1 small damping assumption. fails:,to hold. :Results show that. a6bievable- identifica-'

tion accuracy is consistent with-that ?:equirnd for c~ntrol design. The analytical
results allow a convenient frequency-domain graphical interpretati6n, which is

useful for obtaining a rough assessment of required identification time for

various test signal/measurement combinitions. Theee approximate-identifiability

analysis results are compared against exact results for the two concepts in,
T4

Section 6. Discrepancies are-generally insignificant fozeall modes except

2.4
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rigid-body and heavily damped isolat6r modes, which were n6f identified.

Identification times of 5 to 10 minutes shoulldsuffice for both concepts, assuming

recofmmended test •sigpal/measureimerit combinati6ns are employed.

Control •Design i

Control designs for the two concepts; are also presented in Section 6.

Baseline Concept--A simple controller was designed for the baseline ILAS concept
employing rate-gyro feedback, which allows the excellent "theoretical" robustness

propertiedsassociated with "positiVe-real"sy;stemi. Even after accounting for the
effects-ofsensbr/actuator dynamics, samplhingfor the digital control law.

mechanizationi and possible use of rate-integrating gyros with a lead-lag Fl
compensator, stability mardgins should'be :more than adequate. The resulting

control design, which has a maximum control-loop kgain-crossover frequency of
"100 r/s, fai.ls to meet performance requirements. Ultimate control performance

for this concept is not timited by controibaidwidth but by the presence of

uncontrollable/unobservable modes.

Advanced Concept--A more sophisticated controller for the advanced non-ILAS

concept was designed using a Honeywell-developed linear-quadratic-gaussian (LQG)
based method with robustness recovery (Ref. 2). Due to the nonminimum phase

nature;iof structural models for the non-ILAS case, control design, is far more
difficult to accomplish and fundamehtal limits to control perforihance are more

apparent thani for the ILAS case. The final control design, which was based, on a
24-mode (48-state) ROM,,achieves a maximum control-loop gain-croiusover of -100

r/s, but fails to meet performance requirements. The design hasl been shown to be

closed-loop stable for the 84-mode truth model, but is extremely•:sensitive to
additional design model uncertainty. Higher bandwidth would imp'cove performance,

but would require higher order control design (and identificatioi)) models; Its
sensitivity to model uncertainty could be improved by "tuning up," the design.

Ultimate control performance achievable for this concept, however, has not been
explored in sufficient depth and therefore is largely unknown at: this time.

Practical implementation of a 48-state, or larger, LQG compensator remains an open

issue.
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CONCLUSIONS- .

Theeprincipal conclusiqnsiof this,study. for idehtificati6n ýnd control may be

sumiarized as follows:

Identification

o MLE identification-withcut the Kaiman filter achieves a good-compromise

between bias and-stochastic errors and yields enormous computational

savings over general MLE identification.

o Simultaneous identification of all modal parameters associated with

dozens of modes is computationally feasible, and achievable parameter

accuracy is consistnt, with control requirement•.

o Identification of one mode at a time makes identifying hundreds of modes

a practicai possibility. This scheme is suboptimal only for modes ini

which the usual assumption that light damping compared~-to relative,

"frequency sap&ration fails to hold.

o Rough control design and identification model requirements can be

assessed graphically from Bode-like singular value plots of the open-loop

plant transfer function (i.e., number of modes,,number of parameters,

Parameter accuracy, identification time, test signals, measurement type).

o Identification times of 5-to 10 minutes should suffice for the two,

control cqncepts examined for the recommended test signal/measurement

-combinations,. This implies;some 60,000 to 120,000 data, samples for a&200-

Hz sample frequency.

o However, the stability-of modal-parameters over time is an open issue.

Periodic re-identification and control redesign w6uld probably be

necessary for practical-applications. Ultimately, an adaptive

N .identification and control scheme would be desirable.

Control

o Vibration control bandwidth requirements on the urder of 100 r/s would be

required to meet performance requirements for any control concept.

lp.6



o The maximum practical band4widh that,,the 84-mode ACOSS II model will"

allow is 100 r/s. Hence, th• two control concepts examined were so ,:.

iestlicted,-and,,some performance degradatipn must be expected..

o Required& bandwidth for control hardware-_-000 r/s for sensors and A

ia ctuators and 200 Hz for computers--pushes or exceeds the current state

of the art.

o A, simple rate-gyro-feedback controller for the baseline concept with a

maximum gain-crossover frequency of -1 0 r/s provi'des• good -stability

robustness, even after accounting for, ýensoi/actuat6& dynamics, sampling,

and possible implementation with -attitude feedback and> a lead-lag ,

compensator.

"o [,Ultimate control performance, achievdble for 'this concept is not limited k
dby ontrol bandwidth, but by the •ilesencq- of. uncontrollabie/unobservable

mnodes. This same lim;tatiod applies to the other ILAS cohzepts

considered early',in the study,. but should not be an inherent, limitation

with such concepts.

"a The •onminimum phase nature of structural models for the non-ILAS case

makes\control design extremely difficult to accomb-lish and im'poses

fundamental limits to control performance.

"o An LQG-býased control design using a 24-mode ROM, which achieves a maximum
control-loop gain-crossbver of -100 r/s, was shown to' be closed-loop

stable fo i'the 84-mbde truth model, but is extremely sensitive t9

additionaldesign model uncertainty.

"o Higher contril b•andwidth would improve its control performance, but would

require higher-or~der control design and identification models. Its

sensitivity t6 modal uncertainty could be improved somewhat by "tuning

up" the design.

"o Uleimate :control performance achievable for this -concept, however, has,

not been explored in any great detail and -therefore is largely unknown.

Siniilarly1 ,the'-practicality of implementing a 48-state, or larger, LQG • S

compensator remains an open issue. Generally, some simplification of

this compensator is possible.
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RECOMMENDATIONS

Recoimendations for further study for identifidation anrd 'bntrol include the

following:

Identification

0 The capability to identify rigid-body modes, to evaluate stochastic

errors due to process noise, and to include test signal shaping should be

added to the exact identifiability analysis software.

o An identification simulation should be developed to back up results based
on bias and covariance analyses. It should include a high-order truth

model, a reduced-order identification model with associated identification

software, and all relevant sensor/actuator/structural nonlinearities, test

signal/noise/disturbance shaping, sampling, etc.

-0 Open issues such as the effects of modal-parameter stability over time,

nonlinearities, etc. deserve attention.

0o The above identification software should be validated in a laboratory

setting by applying 'it- to an experimental structure. This would assess

the impact of real-world hardware limitations on actual identification
A performance. The proposed Joint Optics! Structures Integrated Experiment

(JOSIE) program would provide an ideal, vehicle for such validations.

Ultimately, on-orbit identification should be demonstrated in space.

Control

o More effective "control desigw tools" are needed for defining ROMS for

dontrol-design, as are practical and less conservative representations of

associated modeling errors, particularly for the general non-ILAS Case.

o Methods for sensor/actuator placement such that nonminimum phase zeros

,4N 6ccur beyond the desired control bandwidth should be investigated for the

X,% non-ILAS case.

0 Development of practical algorithms for designing control laws, which

maximize robustness to modal parameter uncertainty, should be addressed.

8i



Methods roPoSedfor evaluating stability robustness to parameter

identification errors for a given ,control design should be examihed

further.

o Existing advanced control design techniques, and any redtinpm •. q

available at the time of application, !should be validv,,.A in a laborato-."

setting by applying them to an experimental structure t6o, as£e.ss the .--.,

impact of real.-world hardware limitations. Heie again, thei•n oi
jOSIE program would provide an ideal vehicle fdr these evaluati6ns.

Ultimately, advanced control design ,cechniques should be demonstr 'tcd in

space.
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SECTION- 2,

CONTROL PROBLEM 'DEFINITION

This section defines thecontrol problem addressed -in the-ACOSS SIXTEEN

study. Wetbegin by-examining the ACOSS II model, which defines the structure,

the control system objectives to be met, and the disturbance environment to

which this control system will be subjected, Next, we examine a generic

feedback control structure appropriate for spacecraft attitude and vibration

control and then focua on fundamental vibration control requirements.

Finally, we examine candidate sensor ane',actuatorplacements appropriate for

vibration, control and identify the two-concepts selected for identification

and control studies in the contract.

BASIC CONTROL PROBLEM

ACOSS II Model

The space structure examined in this study was the Acoss 1I Model developed by

Draper Labs ýRef. 1). As, ill•ustrated in Figure 2-1, it consists of two basic

sections. The lower equipments ection (or "dirty box") houses all control

hardware (i.e., reaction jets, control moment gyros--CMGs, cyrogenic coolers,

etc.) and serves as the attach point Vor the flexible Solar panels. The upper

optical structure (or "clean box") supports the three mirrors and focal plane

of the optical mission sensor. The two sections are separated by three

isolators, each of which consists of a spring and dashpot damper. These

"isolators were designed to attel:uate the tran3mission of high-frequency

(>0.5 Hz = 3.14 r/s) disturbances from the equipment section to the

optical structure.

A finite-element NASTRAN model of the structure was supplied to Honeywell by
Draper Labs at the start of the contract. This model consisted of six (1 to

6) rigid-body modes and 78 (7 to 84) flexible-body modes, of which six (7, 8,

11, 12, 13, and 16) correspond to the isolators. The six isolator modes

Ui
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assumed a damping ratio of • = 0.707 (70.7%) while the remaining 72 flexible

modes assumed a damping ratio of • 0.005 (0.5%). Modal influence coefficients

(or mode shapes) were defined for 99 nodes for each. of the three translational and

three rotational degrees of freedom. The locations of several nodes that are

relevant in the following discussions are indicated in Figure 2-1. Modal

influence coefficients were also supplied to define optical LOS and DEFOCUS errors.

Control Objectives vs Disturbances

Control objectives for this study werealso adopted from the Draper study (Ref. 1)

and are summarized in Table 2-1. They assume optical LOS pointing error

specifications of

LOSx, LOSy < 1 Pr (2-1)

DEFOCUSz < 500 11m

TABLE 2-1. CONTROL OBJECTIVES VS DISTURBANCES

o iControl Specifications (line of sight errors)

-- LOSX, LOS < . ur
y

-- DEFOCUS < 500 pm,

o Disturbance Environment

-- Cryo cooler: F = 400 sin) 9 t N, 10 r/s n< 100 r/s
z4 6

-- Solar, gravity gradient, aerodynamic, thermal: Td < 0.02 N-m

"K 12



in the face of both internal and external disturbances. We have also assumed that

the primary internal disturbance i s a sinusoidal z-axis force at node 46 in Figure

2-1, given by

F6 =400'sin gt N (2-2)
46

which is due 'to mechanical vibrations in the equipment section of the spacecraft,

as might be produced by cryo coolers, CMGs, and other rotating machinery. Unlike

Ref. 1, we have assumed for this study that this disturbance occurs not at1the

single frequency S2 = 5 Hz = 31.4 r/s, but atsome unknown frequency in the
range 10 r/s < Q < 100 r/s. We have also chosen to =mit a similar disturbance
that is applied to the optical structure at node 37.

The motivation for the first choice was to allow for possible disturbance

excitation at any of several mode frequencies. Another possible choice, however,

would have been toassume a power spectral density (PSD) description, such as a

flat PSD over some frequency range. This latter choice, for example, would be
more appropriate if the dominant disturbance were due to coolant flow in the lines

rather than to discrete-frequency vibrations produced by mass unbalances in the

cryo pump itself. The disturbance at node 37 was eliminated because it appeared

to be somewhat at odds with the clean-box/dirty-box spacecraft design principle.

Even if some disturbance does bypass the isolator, it was felt that the 200 N

amplitude, assumed by Draper was too severe to allow a practical control solution.

In addition to the primary internal disturbance, various sourcc- for external

,disturbances'were examined--solar, gravity gradient, aerodynamic, and thermal.

Rough calculations showed that the largest-external disturbance, solar torque, was

bounded by

Td <2 q Ac

where

q = near-earth solar pressure constant 4.5 z 10-6 N/im2

:1 2
A = solar-panel area = 2 x (7 x 20) = 280 m

c =-center of pressure offset from cg 7.6m

13
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'Substituting these values giies 'roughly Td - 0.02 N-m At frequencies of orbit
5

r a rtte or less. This disturbance torque is 10 - times, smaller, than the sinusoidal

torque of 2000 N-m induced by the primary internal disturbance force ipplied at a

* moment arm of 5m.

Although the effect of constant external disturbances on LOS pointing errors is

7P negligible ever the ,short term,. it will ultimately dominate the effect of

sinusoidal internal disturbances over the long term,, that is, for periods greater

than

cYi, - 2 V2 T1 0 1. =14 sec (2-3)'•crii 71i Fe 31.4

since w3ri = l/T is well below the frequency of the first flexible mode

i /s, crit

(W7  r/s),exterhal disturbances are critical only for control and

identification of rigid-body modes.

Disturbance to LOS T-ansmissions

To illustrate the' severity of the control problem, frequency responses for the
transmissions from a z-axis force disturbance at node 46 to LOS',, LOS y and

a" , DEFOCUS are shown in Figures 2-2a through 2-2c. Mode numbers associated with

all significant flexure modes are indicated on each of these plots. Note that

modes 1 to 6 corresponding to the rigid body are not indicated, nor are modes 77

to 84, which occur above w = 1000 r/s. Damping ratio for the isolator modes,

which are indicated by an x over the mode number, was taken to be • = 0.005

for most of the frequency-response plots in this section in order to show the

location of mode frequencies. For the prescribed damping of • = 0.707 these

modes are nearly "invisible," and can usually be neglected.

% -14
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TRANSMISSIONFROMINPUT FZ46 TO OUTPUT DEFOCUSZ
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Figure 2-2c. Disturbance to DEFOCUSZ Transmission: Open-Loop

Also shown in these figures are the appropriate specifications on LOS and DEFOCUS
4•44* errors, normalized by the assumed 400 N internal disturbance force level. Note

That the DEFOCUS specification is met even without active control for all
disturbance frequencies Q > 0. Neither LOS specification is met open-loop in
the critical frequency range, 10 r/s < S - 100 r/s, except at certain zeros of
the transfer functions. The worst-case specification violation is 70 dB at'4•

mode 21 for LOS . Thus the LOS control problem is a difficult one.
y

FEEDBACK CONTROL SOLUTION

Overall Control Structure

A suitable feedback control structure for controlling LOS is illustrated in Figure

2-3. It consists-of two multivariable feedback control loops. The outer loop
feeds back sensed or inferred LOS through the primary CMG actuators. This is a

low-bandwidth loop designed to maintain the LOS within pointing specifications in

the face of low-frequency external disturbances--primarily solar, gravity

gradient, aerodynamic, and thermal.
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The inner loop in Figure 2-3 is 6 higb-bandwidth ioo --desighed to attenuate LOS
errors due to high-frequency internal disturbances--f6rces:ahddtcrques caused by

rotating and vibrating -machinery,- in the- eguipnient :sebti60_ -Sefisors anid

"actuators for this loop iiiust have'much higher-banqdwith than those for the outer

LOS loop.- But low-frequency accuracy of th~se instruments is-not critiaal'silhce

the vibration controller may be designed to high-pass low frequencies where the

LOS contr6ller operates. The primary CMG actuators may serve also as the

vibration control actuators if bandwidth is sufficient for cOntroi.

Control design for the outer LOS loop"may be accomplished based on simple

rigid-body miodels--of the spacecraft and is not of primary concern for •this

study. Rather, we cohcentrate here on the inner vibration control loop, which,'

calls for more sophisticated models, control hardware, and control design

techniques.

Based on LOS pointing accuracy requirements and the disturbance environment,

rough order-of-magnitude requirements for vibration-controlý-loop sensors and

actuators may now be established. To meet pointing accuracy requirements,

sensors must have resolutions of at least 1 pr for angular measurements or

1 pm for position measurements, aesumidg the smallest spacecraft dimensions

that affect angular:errors are on the order of lm. To accommodate

disturbances, actuators must be capable of delivering forces of at least 400 N

or-torques of at least 2000'N-m, asshming they are mounted onthe equipment

section. Smaller actuators might well suffice if they were mounted on the

optical structure to take advantage of the isolator's natural attenuation of

internal disturbances. It was further assumed that the force 6r. torque

delivered by actuators could be resolved to within 10% of the commanded level.

We note finally that these resolutions must hold over the frequency bandpass of

* the vibration control loop.

"Vibration Control Fundamentals

* As illustrated in Figure 2-3, active vibration control requires the placement of

"sensors and actuators on the structure to form the inner feedback loop. The

function of this loop is to remove vibration energy due to high-frequency

,o, 18



"a

'disturbances from the structure and thereby permit a simpler low-bandwidth control

loop to point the LOS. The control design objective., then, is to reduce the LOS
to disturban~e-transmission at high frequencies using a feedback control law of.

the form

u =-K(s)y

Neglecting sensor and actuator dynamics, this closed-loop transmission is given by

LOSCL [G G K(I. + K) G- d (2-5)-
CL U' 4. d (

"This expressioni•may be .further simplified by. assuming a modal expansion for each

elemnnt -of G, that is,
•Co

Gg b , q-= d,u (2-6aY.': pq L 1ý ýib qi

i-i1ipig

where b and c . are modal (position) input and output influence coefficients

for the i mode and

2 (s) (2-6b)•;•,js + 2ri0Wis +

N{th
is a scalar transfer function describing the dynamic ,characteristics of the i

mode wberer wi and ýi denote modal frequency and damping-. When these

t:ansfer functibns are dominated by the i mode near the resonance frequency

wt, that is,

G Gpg c pibT qWi (2-6a)'

then closed-loop LOS to disturbance transmission may be approximated by (using the

Matrix Inversion Lemma)

LOS [icb gici UiK(I + gicyibuiK) gic yibTj d (2-7a)

= 1 LOSoL

T L9

19
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-wher,'

iLos =GPd ~g ,c'bT d - 2-7b)

is the open-loop LOS-response to dishrbance.

- Lo6p-Gain Requirements

This simple equation: shows that LOS response to distu~rbance rear. each structural

resonance is attenuated by the action of a scalar feedback loop with loop transfer

function

S£.(s) = gi,(l)'.T .K(.) c (2-8)1 1 ui yi

To meet LOS pointing Specifications in the face of distuirbances, our design

objective for vibration control is then to choose K(jw) so that

{Z-(jw) j l+N(jo) j>ILOS0L'(j(±)I/LOsspec'R9
en 'near mode frequencies within the passbanJ of the disturbance. For stability,, we

require that the phase angle of Li9.j) be maintained in a limited range.
-41 whenever the magnitude of Zi(jiw) crosses over from large values (I9LI > 1)'

to small values (I1l < 1) ý(i.e., phase stabili-ation). If IZi(jdw)'l

never exceeds unity, on the other hand, phase mayremain arbitrary (i.e., gain
stabilization):, Since little attenuation of disturbances occurs in the latter

'4'", case, phase stabilizatiOn is unavoidable at critical modes for- effective vibration

44I control.

Sidestepping the stability issue for now, it is clear that good disturbance

attenuation at the 1 mode can be achieved if K(jw), for frequencies near

)= . is chosen so that:

1. Its magnitude is large,
2. Its direction serves to align the vectors bui and PRIKcyi) (or
!',; opR~yg)b(or

equivalently cy and bui)), where PR(.) denotes the
projection oi a jector in the complex vectors space Cn onto the real

vector space R , and

20
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3. The phase angle of Zi(jW) is close to zero so as to maximize

•2.

These attributes can be" achieved using an ideal control structure of the form (for

s jW)
.k.-(s) ,b .C / 'u''Iy c(

2.,A bulc/y j yi cyi l ui (2-0a)

•: •K .ls ) = ' 11s c.i -bui (2-1ob)

"where kIs) is a scalar transfer function chosen such that/g,(jw)k(jW) 0

for W =i. The second case (2-10b) assu.,mes identical location of actuators

and sensors (ILAS). More general statements for condition 2 will allow more

general control structures, but are unnecessary for our purposes. By substitution

of (2-10a) into (2-8) it is easily shown that

9I (S 9 j(S) jk(s) I cyil 1b,,j (2-11)i u
= [,Igi(s) I jcyij Ibuil] [fks) 11 R

-- (G yu(s)) T(K(s))

where

S(A) ,maxl Ax Fmax{ (A*A)} (2-12)
1 12 k

:jdefine, respectively, the maximum and minimum singular values of the matrix A.

S~These quantities represent the maximum and minimum amplification of the unit

"- vector x by the matrix A, as measured by the Euclidean norm, 1. 12'

644
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Given vibration`control, loop gain requirements imposed by equation (2-9) and the

LOS to disturbance transmissions of Figures 2-2, equation (2-11) ailow6, us to

directly relate these requirements to Bode-like plots of the singular values of
the transfer function ihatriXk-u (S0 for 'Various input/output pairs. Thus for

4~~ps~ yu ptthe worst-case open-loop specification violation .of -10 dB at mode 21,

O(G (jw)-). must exceed the,,effective 0dB line by 70 dB. Thus roh

"bandwidth requirements for vibration coitroi may be 'established graphically.,

It should be recognized, that these analyses are technically ,valid only over a
limited range for control gain. Altbough disturbance to LOS transmissions is

attenuated at the mode frequencies of controllable/observable modes, for
sufficiently high gain the exact expression (2-5) gives (assuming the ,appropriate

inverses exist)

LOS I_ G0 uG[ LOS
L_1 uyy k dj~ CL

for all frequencies except near uncontrollable or unob'se:vable-modes. Thus

disturbance to LOS transmissicns .need hot be attenuated, and may in fact .be
-amplified, at frequencies away from the mode frequency., -unless G - G~u and

~G and G GM. yur -thi
-"d= G~d or Gy ad G - . Forthi reason,, it is desirable to place.. Gyd Rd yu Gyd' ba d

actuators near the source of the disturbance, or to use sensors whose measurements

closely approximate the LOS, or both. To the extent that these desirable features
are unachievable, potential vibration control pertormni~ce is largely limited to

damping of controllable/observable modes.

SENSOR/ACTJATOR PLACEMENT FOR VIBRATION CONTROL

Given the primary set 4 actuators for the low-bandwidth LOS conLrol loop, we now
4;' examine candidate se,._r/actuator placements for vibration control. In view of

equation (2-9) it is clear that sensors should be placed to maximize the
"observability (i.e., maximize Ic y1) of modes that are critical to the LOS

in the critical frequency band-of the disturbance. Similarly, actuators should be

placed to maximize controllability (i.e.. maximize lbui 1) ot modes e:xcited

by the disturbance.
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Generally, strong controllability favors placing actuators on the (rigid)
equipment section near the source of the primary disturbance, while strong

Observability favors distributing sensors about the (flexible) optical structure
V near nodes. that strongly affect LOS. On 'he other hand, control design and

implementation favor identical location of actuators and sensors (ILAS) for which

simple control, laws suffice and robustness to model uncertainty is large. rhus,

there are trad.offs to be made.

Candidate Concepts

A number of candidate sensor/actuator placement Concepts are identified in

Table 2-2, along with advantages and disadvantages of each. Each concept is r
discussed in greater de!.ail below. In all cases, Bode magnitude and phase plots

are presented for sele';ted input/output pairs (usually diagonal elements of the
transfer function matrix G(jw)J. These plots are followed by a Bode-like plot
of the singular values of G(jW), which bound the gain of G(jb)).

Concept 1: Accelerometers and Shakers at Node 46--Concept 1 in Table 2-2 is an

ILAS concept using translational-motion sensors and actuators located at the
source of the disturbance, node 46. Note that ILAS concepts require that both
sensors and actuators sense and actuate either translational motion, rotational

motion, or some linear combination of the two. Although a sinigle actuator that ,4

supplies a z-axis force at node 46 wojuld, in theory, suffice for the assumed
disturbance, actuators in three axes allow for the more realistic case in which

disturbances are not confined, to F single axis. Clearly, reaction jets are

inappropriate for, the high-frequency, continuous operation required for vibration

control. Proof-mass thrusters or shakers, however, are ideally suited here since

their mass-stroke product can be sized to absorb odcillatory disturbances.

Accelerometers in three axes also located at node 46 provide a suitable sensor

complement to measure translational motion at this node. Bode loop transmission

from force inputs to position outputs at node 46 are shown in Figure 2-4. Only

te diagonal elements )f the symmetric 3 x 3 matrix transfer function are shown

23
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TRANSMI'SSION FROM INPUT FX46 TO OUTPUT POSX46
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- - 46

8'5
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TRANSMISSION FROM INPUT FZ46 TO OUTPUT POSZ46
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since off-diagonal elements, while nonzero,_ convey no additional information.

Note that phase plots, for the ILAS case are confined to the range -180 deg < 4 <

0 deg. Singular value plots that b6(id the magnitude of the- transfer function

matrix are shown in Figure 2-5. While all plots shown here are for position

output, those for velocity (acceleration). 6utput differ only by the addition of

+20 dB/decade ('+40 dB/decade), to the magnitude. and +90 deg (+180 deg) to the phase

of G(jW•).

The most obvious disadvantage of this concept is that not all critical modes are

strongly controllable and observable from node A46 Mode 21, for example, is

critical to LOS performance, but appears in none of the transmission of Figures
yI

2-4 or 2-5 and hence will not be attenuated by the, vibration controller. This

occurs because the influence coefficient for mode 21 is small at node 46,

(l 2l1  10-) while that at the LOS is large (Ic 2 ij 10). Thus the

icotrollability/observability product is small (lb 21 I 10 ) for transmissions from
node 46 to node 46, but oi~moderate size (Fc2 1 j1b 2 1 1 J 10 for transmissions fL6m

.node, 46 to the LOS. Similar comments apply for modes 30, 35, 37, and 38. As

indicated in Figure 2-4, loop gain requirements imposed. by modes 24 and 36 imply a

control gain requirement of k u 145 dB with ioop crossover around w = 600 r/s.

Another disadvantage of this concept is strongcoupling between axes and between

rotational and translational modes. Modes 15, 23, and 33, in particular, are

strongly coupled between at least two axes'. This coupling increases the order of

the model necessary-for control design. Neglecting. isolator modes, a multi-input,

iiiulti-output (MIMO) control design with three, four, and seven flexible modes for

the xi y, and z axes, respectively, would most likely be necessary to achieve a

reason&:le fit with the truth model.

' Concept 2: Accelerometers and Shakers at Nodes 42z, 43z, and 42x--Concept 2 in

*'.,., Table 2-2 alleviates coupling between axes. of concept 1 to some extent by moving

accelerometers and shakers to nodes 42 and 43, which lie in the y-z and x-z

planes, respectively. Bode loop transmissions from force inputs to position

A-04 outputs for diagonal elements shown in Figure 2-6 indicate somewhat less coupling

S'.
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than before. Only•m ode 7 is strongly coupled between two axes. Even so, a MIMO

control design model with -four, five, and three flexible modes for the three axes,

respectively, would most likely be necessary. Here again, modes 21, 30, 35, 37,

and 38 are absent in all transmissions and hence will not be attenuated by the

vibration controller. As is evident from Figure 2-7, control gain requirements of

-180 dB imply a control loop crossover beyond 1000 r/s. Thus, this concept

offers little if any advantage over concept 1.

Concept 3: Gyros and CMGs at Node 44--Concept 3 is another ILAS concept that uses

rotational-motion sensors and actuators located at the center of the equipment

section. This choice produces essentially uncoupled dynamics between axes and

little excitation of translhtional modes. Bode loop transmissions from force

inputs to attitude outputs at node 44 for diagonal elements shown in Figure 2-8

indicate that three single-input, single-output (SISO) design models with four,

three, and three flexible modes for the x, y, and z axes, respectively, would give

a nearly perfect fit with the truth model. Once again, however, modes 21, 30, 35,

*a 37, and 38 fail to appear in any of these transmissions and hence will not be

attenuated by the vibration controller. This concept offers essentially the same

vibration control performance potential as concept 1 because z-axis disturbance at

node 46 can be decomposed into torques about the x and y axes, and a negligible

force along the z axis at node 44. Figure 2-9 shows that control gain

requJSrements of -165 dB imposed by modes 24 and 36 imply a loop crossover beyond

300 r/s.

Two fundamental limitations with this concept are a serious lack of contr6l torque

capability to handle dist'irbance torques of Td = (5m) (400 N) = 2000 N-m and

the need for very high bandwidth CMGs. Bandwidth requirements of roughly w -

1000 r/s are necessary to control vibrations out to 100 r/s in order to ensure

Sadequate control loop rolloff. Similar bandwidth requirements, of course, apply

to vibration control sensors and actuators for all ccncepts. These requirements

eliminate CMGs as practical vibration control actuatori.

Concept 4: Gyros and Paired Shakers at Node 44--The above torque and bandwidth

requirements, however, could conceivably be met using three pairs of shakers

mounted symmetrically abcut node 44 on the equipment section to produc-e net

.. torques about each axis. Concept 4, then, is just a practical means of

2 F33
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implementing concept 3. Should, as is likely, sensor bandwidth requirements

prove impossible to meet with gyros, a similar scheme using paired.

accelerometers, which have greater' bandwidth capabilities than gyros, could be

used to sense angular accelerations and thereby eliminate the gyros. In any

case the basic loop transmission characteristics of Figures'2-8 and 2-9 still
2apply, subject to obvious 0or W corrections to produce angular rate or

acceleration outputs.

Concept 5: Accelerometers at.Node lland Paired Shakers at Node 44--Concept 5

is the first '(and only) non-ILAS concept. It uses paired shakers to produce

torques on the equipment section and accelerometers on the optical structure.

The accelerometers were placed at node 11 near the focal plane since all modes

critical to LOS pointing are observable from this node. Bode loop

transmissions for the three torque inputs to z-position output in Figure 2-10

show that all critical modes are controllable and observable. In practice, x-

and y-axis acceleroi0eters would also be included to complete the triad.

Since this is a non-ILAS concept, phase for the three loop transmissions of

Figure 2-10 is no longer confined to the range -180 deg < < 0 deg. Thus,

control design for this concept is considerably more difficult and requires-a

more accurate model than for the ILAS concepts. This places more stringent

requirements on the control design model. The stronger coupling between axes

further increases model complexity. Neglecting isolator modes, some 21
flexible modes below 100 r/s appear in Figure 2-11, many of which would likely

be required for this model. Figure 2-11 shows that control gain requirements

of -200 dB imply a loop crossover beyond 200 r/s.

Concept 6: Accelerometers and Shakers at Node 11--The last concept in! Table

2-2 uses three-axis acceler:ometers and shakers, all mounted on the optical

structure at node 11. Bode loop transmissions for diagonal elements in Figure

2-12 show at least eight flexible modes below 100 r/s that are significant.

Six 1flexible modes above 100 r/s also appear critical for control. Some modes

critical to LOS performance, however, such as modes 22, 24, and 29, are absent

and hence will not be attenuated by the vibration control loop. A significant
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J 'azdiantag~e of thiS cahcept is that actuators, r.•i•i;ted' on the optical structure

require c,9siderably ess control authority to attenuate disturbances at the LOS

than 'wh• týey are moguntedbon the equipment section, since much of the work is

accomplished&'by the passive ,isolatr. Thus it is conceivable that careful

placemnnt of additional sensors and actuators could make thOis concept viable,. As

evident from Fi:ure 2-13, control gain kequirementsbf -165 dB imply a loop

crossbver beyond 500 ri/.

<• Con•eptSeledtion a

Beýause, some critical.modes are not both controllable and observable, none of the

ILAkS concepts of Table'-2ýare suitabie for disturbance attenuation over the'

entire disturbance irequency range 10ir/s < C < 100 r/s. Rather, most are

limited to a frequency range of about 15 r/s < 50 r/s. Nevertheless, -the

* simplicity of control and identification, for the IILAS case.favored the selection

of-one of-these concepts-for identifiability and-control analyses studiesi, Of the

ILAS concepts, concept 4 was selected as the baseline concept due to its lack of

inter-axis'coupling, its relatively small control'bandwidth requirements, andi its

potential for siiple, l6w-6rder control designi model representations. Concept '5,

on 'the other hand$ was selected as the 6dvanced concept because it was the only

concept examined that could, in theory, meet control requirements over the entire

disturbance frequency passband. Moreover-, Lt offered a significant practical

challenge to-our identification and-control design-capabilities.

it should be observed-that all of th'ý vibration control concepts examined,
including the two selected for further analyses, call for control loop gain

crossover frequencies in excess,6f w - 100 r/s. It is generally recognized,

however, that finite-element models are unreliable for frequencies beyond those of

the first half of the modes included in the model. Thus the ACOSS II model, and

,hence the frequency responses pr~isented in this section, are probably good out to

frequencies no larger than W ZOO r/s. Good engineering judgment, therefore,

dictates that we must relak control requirements somewhat to ensure that loop

gains do not-exceed one for frequencies above 100 r/s, and accept the fact that

stringent pointing specifications in the face of severe disturbance levels call

for more reliable models. Even this control design philosophy pushes the validity
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of the ACOSS II Model in that certain high-frequency modes above 100 r/s are

"clearly unaccounted for, even in the 84-niode finite-element approximation. The

t rue vehicle, for example, would almost certainly contain several solar panel

modes above 100 r/s if a finer finite-element approximation were used for the

solar array. Even for these relaxed requirements, bandwidth for all control
hardware--sensors, actuators, computers, etc.--must be nearly 1000 r/s to ensure

phase stability throughout the control-loop gain crossover region.
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SECTION 3

IDENTIFICATION PROBLEM DEFINITION

This sectioh defines the identification problem.addressdd in the ACOSS SIXTEEN

study., We begin by examining model requirements impoged by control requirements.

Using Honeywell-developed methods for assessing stability and performance

robustness to plant uncertainty for multivariable systems,. we develop criteria for

defining reduced-ordermodels (ROMs) for.,control design and modal-patameter

accuracy requirementý;7for modes that are retained in this model. The resulting

stringent accuracy requirements show that identification is in general virtually

uhavoidable for vibration c6ntrol. Next we.examine the identification problem,

establishingg4round rules and specific requirements for the;two selected

identification and control concepts. Finally we address the subjects of test

signal selection and measurement noise definition, for identification studies.

These results along with other hardware requirements for identification and

control are summarized for the two concepts.

CONTROL REQUIREMENTS DRIVE IDENTIFICATION

In Section 2 we examined a generic two-MIMO-loop feedbac!,control structure

suitable for both low-frequency attitude and <high-frequency vibration control. We
then focused on the inner vibration control loop and examined control performance

,kequirements imposed by LOS pointing specifications in the face of disturbances.

We now re-examine this inner loop, which we have redrawn in the -standard MIMO form

of Figure 3-1, from the broadei perspective of performance and stability.. Here c

denotes the command inputs, u the input to the structure together with the sensors

and actuators, G(s), y the output, and e the error input to-the controller K(s).

In addition, w denotes the disturbancesi v the sensor measurement error, and P(s)

a possible command shaping network. Regardless of the technique utled to generate

the feedback law, the fundamental requirements for control, model fidelity, ana

sensors and actuators are most easily specified in the frequency domain.
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COMMAND

-S9SHAPING CONTROLLER SiRUCTURE

-P(SY.x)

IV

Figure 3-1. Standard Feedback Cohfiguiation

Control Requirements

Given the control objetoive and--appropriate descriptions for the disturbance
envirbnment' and desi-ed response to commands, control requiremerpts may typically
be specified for three, frequency regions. These are illustrated on a Nyquist plot,

for the SISO case in Figure 3-2. Magnitudes of scalar quantities in the SiSO case,
are ,replacedeby maximum and minimum singular values (U and ar) of matrix.

quantities in the MIMO case.

Low Frequency--At low frequeficies, +control requirements are dominated by

performance constraints of the form'

U(I + -GKN(jW)) 6 a_(GK(jW )) > R(W) W0 < < (3-)

where (W0, l) defines the passband of the disturbance and/or command-input
spectra and R relates these characteristics te +control accuracy specifications.
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PERFORMANCE CONSTRAINT: IM
IGK(QW)12! 1 + GOKW)I> R

- .• STABILITY CONSTRAINT:
.. '"It1 + GK~jw)]> rKI STA•BILITY CONSTRAINT: •

•.•, 1 r• W< W3<o~ IGK(Q•)I< 1.r

RR

MUST KNOW BOTH RAi e

AND PHASE OF G(w)
NEAR CROSSOVER

Figure 3-2. Control Design Requirements Drive Identification:
Typical Control problem

This is a MIMO generalization, familiar to classical control engineers, of the

requirement for high loop-gain at low frequencies to achieve performance. In most

"applications w0 is taken to be zero0 for the vibration control problem it is

not since very low frequency disturbances are controlled by the outer vibration,

control loop.

Mid Frequency--At mid frequencies, control requirements are dictated largely by

staoility robustness constraints of the form

a(I + GK(jW)) > r, W2 < W < W 3 (3-2)

where 0 < r < 1. This is a MIMO generalization of the classical control

requirement to avoid the critical point. Equation (3-2) ensures "adequate"

stability margins to gain and phase variation uncertainties in the plant G(,jw).

In most applications R(W) >> 1 > r for 10 < w < Wi so that (3-2) is

automatically satisfied for low frequencies. Here we may take W2 > WI"
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For the vibration control problem, however,'R(w) must be large only for

frequencies near poles (or mode frequencies Wi) and may well approach zero

near zeros of the disturbance to LOS transmissions. Thus, low-frequency

performance constraints and mid-frequency stability robustness constraints

overlap. For all practical purposes we may assume that w =WO

High Frequency--At high frequencies, control requirements are again dictated by

"stability robustness constraints of the form

C7(GK(jw)) < 1 - r, W > W3  (3-3)

"This is a MIMO generalization of the classical requirement for small loop-gain at

high frequency. Equation (3-3) ensures gain stability in the face of,phase

variations, which invariably exceed +180 deg at high frequencies in any practical

system.

Model Requirements

From the above discussion, and Figure 3-2 in particular, it is clear that detailed

knowledge of plant characteristics is unnecessary for either the low (w < w2

or high (W > W3) frequency regions. Here simple magnitude, or norm, bounds on

G(jW) are usually sufficient to ensure that closed-loop performance and stability

constraints are met. It is only for the mid-frequency region (w2 < W < W3) that

more detailed knowledge of both gain and phase for G(jw) is necessary to ensure

closed-loop stability. This critical mid-frequency band is illustrated, for

example, on a Bode plot for a hypothetical SISO flexible loop-transfer-function

magnitude, IGK(jw)l, shown in Figure 3-3, where seven flexible modes fall

within this region. A suitable model for design of a controller for the

corresponding open-loop transfer function G(jW), illustrated in Figure 3-4,

would require no more than seven flexible modes plus the rigid-body mode.

There are two important exceptions to this rule--open-loop unstable systems and
nonminiinum phase systems--which are characterized by right half-plane poles dnC
zeros, respectively. The first is not relevant for spacecraft applications but
the second is.
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Stability and Performance Robustness--These arguments, however, only establish

upper bounds on model complexity. Lower bounds, unfortunately, are not as easily

"established in general. Ultimately, they depend on specific characteristics of

both the structure and controller in question. To be more specific about model

requirements, we consider the following problem in multivariable robustness.

MIMO Robustness Problem: Let G(s) be the true system to be controlled, let

Go(S) be a model for the true system, and let AG(s) = C(S) - Go(s)

define the error between them. Given a controller Ko(s), for which -the

model closed-loop system

To 4 GoKo(I + GoKo) GO(I + KGO) K (3-4a)

is stable and meets performance requirements, under what conditions does the
-" true closed-loop system

T = G Ko(I + GKo) A G(I + KeG) K (3-4b)

0 01 0

remain stable and meet performance requirements?

This problem has been examined by many investigators (Ref. 2,3,4). The most
useful results are due to Doyle and Stein (Ref. 2), --. derive sufficient

conditions for robustness to model uncertainty starting from the Multivariable

Nyquist Theorem. Assuming loops are brokei :,t the output (y), the conditions for

stability robustness may take either cf •o forms:

()4Z AKjWI <_or CI + GoW >_ 0 (3-5a)

or

CT (3-5b) *km(•0) -6KOt•oj•) (GoKolJW) ) (3-5b

< [I + (G0K0(jWfl i 1/a [G0K0(I + G 0 K0 ), W1 > 0

XIn most applications, the multiplicative perturbation in Go is defined via
G(s) A (I + L(s)) Go(s) so that the lefthand side of (3-5b) becomes
km (W) 7A a (L (jW).
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That for performance robustness isggiven by

IWOw[(G K (jw)] >,R(6))(l - m()), /° <w -< 1, (1) < l, (3-6)

These conditions provide practical means for testing robustness. The lefthand
sides of stability conditions (3.-5a) and (3-5b), respectively,, define measures of

so-called additive and multiplicative uncertainty for Go, while the righthand
sides define lower, bounds for the return difference and inverse return
difference. The latter is also the inverse. magnitude of the model closed-loop

transfer function (T0 ). Good control loop design demands that the inverse
return difference be approximately equal to 1 for low frequencies, much greater

than 1 at high frequencies, and only slightly less than 1 for mid frequencies near
control-loop gain~crossover. Performance condition (3-6) differs from (3-il) in
that the righthand side is divided by 1 - 9m (w) to account for model
uncertainty. Note that performance constraints can only be met for frequencies in
which Zm () < 1.

Stability conditions (3-5) are particularly •well suited to so-called unstructured
uncertainty, for which only an additive or multiplicative bound £(W) is
known. For structured uncertainties of the type we shall consider shortly, these

conditions can be very conservative because they represent sufficient conditions
only. That is, they fail to hold and thereby'predict potential instabilities
where none actually exist. Less conservative conditions for closed-loop stability
in this case may be derived directly from a related, but stronger, stability

condition (Ref. 3,4) originally used to prove (3-5a), that is,

det (I + Go(jW) Ko (jw) + £AG(jW) Ko(jw)] 6 0 (3-7)
0 0

for all b > 0 and 0 < e I 1. Condition (3-7) is sometimes also stated in
%ither of two other equivalent forms--as a condition for nonsingularity of the

matrix [], or as a singular-value inequality, oa*] > 0.

For the space structure application, the true system can be represented by an

infinite-dimensional transfer function of the form

t* TG(s) L (s) = _ g.(s)c b. (3-8a)
i~li=l 1 11
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where
•,,,.,•g Os) Y

g2 2s 12~. (3-8b),-w. + 2• s + 2.
21 1 1

th
SHere ,, and" denote frequency and damping ratio for the i mode while

L 1

b. and' c. dOote -input and output influence coefficient vectors. Suppose now

that a-,finite-dimensibnal ri-mode model for the. true system is given by

n n
G s G (s)="t go,(s) c ib i(3-9a)

0 .. oi . 01 o0lilii .- ii=l

where

goi.(s) 22 + 2 = 1,2,...,n (3-9b)

0101, 10

Then the error between the true system and the model is given by

AG(s) =G(s) -G (s) (3-10a)0

n
A

= 3.(S) + Gis
i=li=n+l

The first term represents the error in the retained modes; the second represents

the error due to neglected modes. To first order, the error due to the ith

retained mode is given by the linearized expression

G.s(A 2 . 2bT.

AG = -goi + sA2 ico o (3-lOb)

+ g ob + Ac b T < n

"where A(*) denote errors between the true and model parameters. We now

examine the impact of eachi of the two classes of errors identified above.

Model Errors Due to Neglected Modes--Assuming for the moment that errors due to

retained modes in Go(s) are zero, that Go and Ko are both square and

nonsingular (i.e., AGi = 0, i < n), and that
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AG= n G. =G. g cibT (3-10a)

i=n+l 1
th

at the mode frequency wi for the i mode, conditions (3-5) for closed-loop
stability in the face of errors due to neglected modes reduce to the following:

(W l Ij'll~ 'KT(jI'b* < CF[I + G0 ~j)] (3-11a)

Ici jT (i3) b a + (K j) (3-11b)

Conditions (3-11) provide a ,practical means for testing stability robustness to

neglected modes. The former is best suited for mode frequencies above' crossover,

while the latter is best suited for mode frequencies below crossover because the

righthand sides approach 1 in this case. Modes that satisfy either condition may

safely be neglected in the model for G without compromising closed-loop
-0

stability. Modes that fail to satisfy eith~er condition should be retained in the

model. Analogous stability donditions for loops broken at the input (u) may be

obtained from (3-11) by- interchanging the roles of bi and ci and replacing

G d K with KT. Unfortunately, few modes will satisfy
0 0 0 0

these conditions.

Somewhat stronger stability results can, however, be obtained directly from (3-7)

as follows:

det + GoK + egicibiK A 0 (3-12a)

det TbiK(I + GoKo) 0 (3-12b)

T -i4- 1 + egibiKo(I + GoK) K i A 0 (3-12c)
~- gilo I 0 oo-ic 0 0 - (3-12c)

-11

c. ;& - -2d

110 0 0 1

T -1 -i+-1 l C -1- gibiGo + (GoKo) i (3-12e)
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for a >1 0 and 0 < C < 1. These, f ive conditions are all equivalent. Condition

-4 (3-12b) follows from the fact that I + GoK6 is nonsingular, while (3-12c)

'follows from, the standard determinant identity,

det[I + cbT] -1 + bTc (3-13)

The fourth condition is obvious. Condition, (3l12e), assumes that Goand K0 are

both square and nonsingular. When these conditions fail to hold'G0  can be'# GT G - I G 1 T0
replaced by its pseudo-inverse, Go"= ( G Q . provided GT and KO are of

full rank. It is easily shown Using thepidentity

IyTAXI <lIyIIAX I < lyla(A) (3-14)

and minor manipulation that condition (3-12d) is implied by (3-11a), while (3-12e)

is implied by (3-ilb). Thus, conditions (3-12d) and (3-12e) are stronger (or less
conservative) conditions for stability. Unfortunately, it is impossible to apply

them unless the controller is explicitly defined. Thus conditions (3-1) are to

be preferred for frequencies near control-loop gain crossover.

For frequencies well after and well before crossover we have, respectively,

I + GoKo- I, W0 >> Wc (3-i5a)

I + G% It << (3-15b)

so that (3-12d) and (3-12e) reduce to

Tg-(jW)b.K (jw)c. -0 < W > W (3-i6a)
44 ~1 0o

T-l -1-i
gi(Ji)biGo (jW))ci p - , 0 < C 1, W << 4c (3-16b)

These last conditions are the strongest (or least conservative) ones available for

-defining ROMs for identification and control in the' frequency ranges indicated.

Unfortunately both condition (3-16a) and its singular value version (.-lla)' depend

explicitly on the controller Ko(jw). Since the controller is not normally

explicitly defined at the model definition phase, it is necessary to replace the

matrix Ko by its magnitude, U(Ko), which presumably is known, to define a

more practical condition for high frequencies. In this case, these stability

conditions for high frequency reduce to
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G.-df =_jWjj)j 1,jfljdj-bi ,ý1/rKj)),'> c- (3-17'a

this more, conservative stability condition also allows for the :possibility that

only the#magnitude 06(G), but, not the "directlon,!" cibT/Ici.bi, of the ith

rMode is known, which becomes more and more iikely for- high-frequency modes.

Should this -same "direction" -information ,also ibe udiaai-lable for modes below

,crossover, ,tihen-~c6fiditions: ,(3a16b);.andI (3-hlb) must be reduced, to

a(G ll l << . 13-7

Conditions (3-17) are the-weakest :(or most conseryvative) -ones for. defining ROMs.

For most applications, -condit.Lons (3-!16b) -and (3-17a) should be most appropriate.

Model Errors Due to Retaihed Modes--Assuming now that errors- due to neglected

modes are indeed1 negligible, we next examine conditions for closed-loop stability

in the face ofi errors in the retained mode-s. For retained modes we can- safely.

assume that the- it mode dominates for frequencies near its mode frequency

* a' 'awi,

"G .bT j3-18a)•l}•i0 Go" oi oib i

-i M -gi i + b24iw coib + go iAb.i + Acib (3-18b)

"Because G is singular and AG is highly structured, the stability robustness
0

conditions (3-5) are not appropriate here. We turn instead- to the more

fundamental condition (3-7). Substituting (3-18) into (3-7) and using the*i-
determinant identity

'1T T T T T T
det[I + cb + cAb + Ab 1 + bc + Abc + bAc (3-19)

TT T T
Ac + c AbAcb b cAb

we get (retaining only terms to first order in parameter errors)

1 + g .bT.K c e g2(Aw. + jw K (3-20)
Ooi 0 1 0 oil +1 2i i oi oo-20)

J c. + JoK o,
oi 103.1 01
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Now'dividinj (3-20) 'by 4J. b• Koo, taking the'magnitude of each term, and
_00 010 0

.recognizing that

01 2101

we find that (3-20) is implied by

&-. j ) if i lI . 1Ab
TF + +(3-21)

re 2 •6. • 2 -. • jcose 1 ((A)) Ibi-

,__ _1 _ . IAc l , 1 ,

IcoO.wT Jo) .1
1211,i oil goiijw) b.oikj b 0()1c

where

AT/ *io,1coe.j) b.K ~(jwi)ci I1K (jw)coJ'bi (3"22a)

<define complex direction cosinesbetween theapprop1 iate vectors. aNote thatic

except for these direction cosines, all n the lefthand side in (3-21), are

independent og frequency.

It can be shown that the term on the right above is closely related to one over

the maximum singular value of the model closed-loop transfer function (T-). As

noted earlier, this term near crossover must be greater than some constant

0 < r' < 1 in order that the scalar loop-transfer-function avoids the critical

-1 + jo point in the Nyquist plane. For good stability robustness, it is

desirable that r' be as close to 1 as possible and that K0(Jw)coi and boi,

or KT(jw)boi and co, be nearly parallel for w near Woi', so that

Icoseli¢(%) "" Icosei2 (woi)- -

The "ideal" control structure given earlier in (2-10) meets these objectives

precisely. In this case (3-21) can be approximated by

TF-e - + + -+ - < 1 (3-21)r e 2 *oi. Ib. Jc
01 0oi011o ol I oi
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-. i-- Thus rough model accuracy requirements for control design can be.stated in terms
of relative errors as (assuming 40i << 1)

•',;• . •02o

2 2< (3-23a)

01

IA~~t , iW IAi
<<. - 1- (3-23b)

Iboi « 1(3-23c)

<< 1 (3-23d)

Note that model accuracy requirements are most stringent for modal frequency

(i.e., relative errors must be of order damping (1oi)). This is not surprising in

view of the fact ýthat smax-. errors in mode frequency, which move the resonance

peak in the transfer function, produce large ,errors in AG near resonance. All

other requirements call ,for relative parameter errors of order 1. When, as will

generally- be the case, these model accuracy requirements cannot be met for
retained modes .by ground-based testing, then on-orbit identification will be

required. 2These general requirements-may, however, be relaxed in certain special
cases, such as ILAS, which exhibit inerent robustness to parameter uncertainty.

IDENTIFICATION PROBLEM

Having established that identification requirements are driven by control

requirements, we now examine the identification problem. We begin by establishing
general ground rules--for identification. Next we present specific identification

requirements in terms of the number of modes, the number of parameters per mode,
identification accuracy, etc. for both the baseline and advanced concepts. We

then address the use of test signals to provide persistent excitation of modes
during identification. Two test signal models are developed: (1) band-limited

"white" noise, which produces a flat power spectrum over the identification

frequency passband. and (2) the time derivative of this signal, which produces a

., -



spectrum that grows. as w 2. Finally, we define measurement noise models for
the various types of measurements--positions, 'rates, and accelerations (both

angular and, linear). These results ýare tabulated and-recommendations are made for
the two identification and Control concepts.

Identification Ground Rules

A number of ground:rules were established to define a meaningful identification
problem. First, it was' assumed. that internal disturbances generated on-board the
spacecraft codld be largely eliminated during identification. In-particular,

cryo-coolek and other vibrational disturbances were assumed absent during
identification. This assumes, of course, that the spacecraft's payload is not
operational during 'the identification interval. Second, it was assumed that the
same sensors and actuators used for vibration control would be available to excite

the structure via test signals andto measure its response to those inputs.
Though additional sensors and-actuators might possibly improve the identification

of modal frequency and damping, these instruments would obviously not improve
identification of input/output influence coefficients for the primary vibration

control loop. Thus there appeared to be no •fundamental reason for including,
additional control hardware for identification. Finally, it was assumed that

identification itself could be accomplished off-line. The only real-time
capability assumed necessary for identification was that necessary to excite the

structure and sample its measurements at sufficiently high rates (100 Hz or so).
Presumably real-time capability for control would;,dominate these requirements for

identification. Sampled data could either be processed on-board, or relayed to

the ground periodically through telemetry links for ground processing.

Specific'Identification Problem

Using the general criteria for control design model requirements developed

earlier, We now define the specific identification problems addressed in this

study for the two concepts selected in Section 2.

Baseline Concept (ILAS)--Recall that this concept assumes the identical location

of actuators and sensors and is therefore characterized by a transfer function in

which output and input modal influence coefficients are identical for each mode
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(i.e.,c. i b.). Tnis Aproduces the familiaralternating pole-zero pattern
'_ 1 .that was illustrated in the Bode plots ofFigure 2-8. Because phase is confined.

%to-180 deg to 0 deg for this casge, robust control.solutions (Ref. 15)' employing

simple lead networks with carefully contrdlled rolloff in each channel suffice to

stabilize such systems. Control structure (2-10b) meets this requirement.

Thus when robust controi solutions are employed, detailed knowledge of frequency

(Wi), and influence coefficients -(bi)'for each mode is unnecessary for

control design. Given that desired modes are strongly controllable and observable

and given, sufficient gain to, meet performance, requirements, only a bound for tlheo

open-loop frequency respoihsb envelope, which implies a: lower bound on dampj•g

ratio (ýi) for each mode near the desired control-loop crossover, is necessary

toensure stability ,of' the*,corresponding closed-loop system. When this

information can be determined~from-ground tests, no on-orbit identificati.on is,

necessary. ýOnly when such. bounds are unavailable is on-orbit identification

>1 necessary for the ILAS case. Even herei identification requirements are critical

only for dampingjowhere relative errors in identified damping subtract directly

from available gain margins (e.g., a worst-case :relative error of 1 implies a

possible 6 dB loss in gain margin). 'As a practical matter, however, it is

difficult to identify damping without also identifying, frequency and influence

coefficients.

When less robust control solutions are employed, identification requirements

become more demanding and ultimately must approach the more general requirements

called for in ,(3-23) as the, controller exploits more and more information about

the model. Because of the difficulty in identifying damping alone, we opted to

impose the same stringent identification requirements on ILAS as well as non-ILAS

concepts.

The final selection Of modes for identification was based on a graphical procedure

analogous to that suggested earlier in Figure 3-3. In Figure 3-5, we have

replotted the singular values of the transfer function G(jW), shown earlier in

Figure 2-.9, with damping on the isolator modes now increased to r = 0.7.

Superimposed on this plot is a representative inverse control gain characteristic

(1/k), which is designed to achieve a final gain crossover near the maximum
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allowable frequency of w = 100 r/s. This controller develops lead over a

two-decade-wide frequency band (1 to 100 r/s), and should provide roughly 45 deg

of phase margin at the extremes of this band and nearly 90 deg at the center (10

r/s). Since all 10 of the lightly damped flexible modes apparent in this figure

intersect l/k, in view of condition (3-17a) all should be included in the control

design (and identification) model.

Since the transfer function G'jw) for this concept is essentially diagonal,
model identification may be carried out for a single axis at a time. With

reference to Figure 2-8, the number of modes (n) to be identified for each axis
assumes the ranges indicated in Table 3-1, depending on whether isolator modes are

included. Since there are three parameters per mode for each axis (wi,•i,bi), the

total number of pa,4 meters is 3n. Thus, at most a total of 21 parameters

(corlesponding to seven modes) would have to be identified simultaneously. If

inodes for all three axes were identified simultaneously, still assuming a diagonal
structure, a total of some 30 to 48 parameters would be required. For an assumed
nondiagonal structure, this would increase to some 50 to 80 parameters since bi

is a 3 x 1 vector for this case.

TABLE 3-1. COMPLEXITY O IDENTIFICATION PROBLEM

Number Number of Total Number
Concept/Axis of Modes Parameters of Parameters

(N) Per Mode (Np)

Baseline.- ILAS

-- Roll (x) 4-7 3 12-21
-- Pitch (y) 3-4 3 9-12
-- Yaw (z) 3-5 3 9-15

10-16 3 30-48 (diagonal)
5 30-80 (nondiagonal) r

Advauced: Non-ILAS

-- All axes (x,y,z) 15-21 7 105-147
N[ni 2] ILAS wherenNote: N. 2ni number of inputsNote: Nn = Uin. + n + 2 - 1J Non-ILAS A

So n. = number of outputs
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[
Advanced Concept (Non-ILAS)--Since this concept assumes distributed actuators and

sensors, it is characterized by a transfer function in which output and ýnput

modal influence coefficients are di'fferent for each mode (i.e., ci # bi).

This Okoduces the more'geheral irregular pol.-zero pattern that was illustrated in
the Bode plots of Figure 2'10. Because phase is no longer conlined to -180 deg to

0 deg, robust control solutions no longer apply., Here detailed knowledge of

frequency (w.), damping.(si), and output.and input influence coefficients

(c i and bi) for each mode near crossover is necessary for control design.7N.
Regardless of the control structure assumed, non-ILAS concepts are inhekently more

sensitive to parameter variation than ILAS concepts. The stringent model accuracy
requirements called for in (3-23) are most relevant for this case. Because these 12,

requirements call for relative errors in modal frequency for critical modes of

less than ;(= 0.5%), it is unlikely that they can be met by any means short of

on-orbit identification. The final selection of modes for identification for this

concept is -illustrated in Figure 3-6. Here again, we have replotted the singular.

values of'ýG(jw) for heavily damped isolator modes and have postulated an inverse

control gain characteristic designed to achieve a final gain crossover near Wc

= 100 r/s. For the non-ILAS case, design of a stabilizing controller is a
nontrivial problem, In theory, there is no guarantee that a stabilizing

controll.lr with the asymptotic characteristic-shown even exists. However, because

the general plant ko-loff characteristic is roughly 1/s , the controller

characteristic shown appears reasonable. Here again, all of the lightly damped

flexible modes-apparent in this figure (except modes 26g 28, and 35) intersect,

1/k, and according to (3-17a) should be included, in the dc,'trol design (and

identification) model.

It should be noted that transfer functions for the general non-ILAS casq are

nonminimum phase (i.e., they contain right nalf-plane transmission zer:os). When

these zeros occur at frequencies beyond the control passband, they cause no

difficulties. Recenrt analyses (Section 6) for the advanced concept, however, show

that several right half-plane zeros occur within the desired control passband.

The presence of these near-in unstable zeros imposes fundamental limitations on

control system performance and places grbater demands on model fidelity. Thus,

the heavily damped isolator modes and a few more lightly damped modes were

included in the control design model and should have been included for identification.
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As shown in Table 3-1, some 14 to 21 flexible modes may require identification

(not counting the isolator modes). Since there is no diagonal structure to take

advantage of here, all three axes must be identified simultaneously. Since one

element of either the bi's or the ci's is redundant and may thus be eliminated,

there remain seven parameters per mode to be identified. This is true because

either the bi or ci vector for each mode may be normalized to have unit

magnitude, so that the resulting scale factor may be absorbed by the other

vector. This leaves a grand total of some 105 to 147 parameters for possible

simultaneous identification. This would appear to be a formidable problem, even

for super computers. Thus, suboptimal schemes and various other simplifications

are essential in our approach to identification.

Test Signal Selection

To aid in identification it is advantageous to use test signals to excite mode

frequencies of interest. For ground-based vibration testing it is common practice

to employ impulsive test signals using a calibrated hammer-like device. Since the

power spectral density (PSD) of an "ideal" impulse is flat, such test signals do

excite modes over a wide frequency range. But conventional control actuators

designed to accommodate sinusoidal disturbances are not ideally suited to

•.2 generating impulses for on-orbit testing.

Although reaction control jets would seem to be an exception to this claim, the

actual impulse they deliver is not highly predictable. Moreover, the long

identification intervals that are required for structural model identification

favor the use of persistent test signals which continue to excite the structure

long after transients due to impulsive inputs have died out. Thus we are forced

to consider other alternatives.

Our analyses in Section 2 showed that control actuators mounted on the equipment

section must be sized to accommodate sinusoidal internal disturbance forces of 400

N or torques of 2000 N-m. Assuming paired shakers are used to generate this

control force, this implies that a mass-stroke product of
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PI.

Fd I
(3-24)

400

31.4

0.4 kg-m,

is necessary to buck ,sinusoidal disturbances at the frequency assumed by Draper

(Ref. 1). For a disturbance frequency of f = 10 r/s, which is at the low end of
the desired frequency range for vibration control, this requirement would increase•,
to 4 kg-m. Assuming internal disturbances are absent during identification, this

control capability is available to generate test signals to aid in structural

identification. We would now like to bound the magnitude of this test signal and

show that external disturbances are dominated by inaccuracies in our knowledge of

the actual test signal delivered by the actuators.

{. Test Signal 1--A natural choice for a test signal is a white-.noise sequence since

.4 its PSD, like that for the impulse, is also flat. Unfortunately a white-noise

test signal cannot be gendrated in practice since the actuator's mass-stroke

product has an infinite root-mean-squared (rms).value. As we will see shortly, to
bound this rms a low-frequency attenuation of at least fourth order at the PSD

level is required. This can be implemented by passing white noise through a

second-order high-pass filter at-w = w A second-order low-pass filter at
. -4L"

w) = ttk can also be used to provide high-frequency attenuation, although no

high-frequency attenuation is necessary to bound the mass-stroke product rms. In

practice, the actuator's natural rolloff characteristics would likely provide

sufficient high-frequency attenuation. A wide-bandwidth test signal with a power

spectral density characteristic like that shown in Figure 3-7a, for example,

closely approximates the flat PSD for frequencies in the ranvý wL < w « wH and

should be well-suited for identifying modal frequencies in this range. Once we
have established the appropriate intensity levels, the actual test signal may be

approximated by an "equivalent" flat PSD of the same intensity.

In order to meet mass-stroke limitations, we must relate control forces to

mass-stroke product. Since the latter is just the double integral of applied

force, the mass-stroke product PSD of Figure 3-.7b is obtained by multiplying the

.44. force PSD by / This follows from the well-known formula
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VI 2
PSD (0) = iH(j0i) 2 PSD (W) j3-25)-

y U

where y and u are related through

A1
y(s) = mx(s) - F(s) = H(s) -u(s) (3-26)s2

The mean-squared value f6r each signal in Figure 3-7 is obtained by integrating

the corresponding PSD over all frequencies. Performing these integrations for the"

asymptotic approximations of Figure 3-7 and exploiting the fact that

W <« f gives
.4.'!

H 4Qi"0

WH

mS PSDm (L)&A 13-27b)

0h

.4Q1 4w 4 Q1 1iL4 1

dw + J ýW) 1

Eliminating the force spectral intensiti QI from (3-27), assuming that WL
0.1 r/s and H= 1000 r/s bracket the frequency range of interest, and

substituting for RMSm from (3-24) implies test signal force constraints of

RMSF = RMS (3-28a)

< (0.1) (1000) (0.4)

"" 0.4 N

%'•
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-3 2 -4 2
3r u-m 4 x 0 N/HZ' (3-28b)

"Q=W 4 L

For paired thrusters located near the edges of the equipment section, the

-corresponding mome,,t arm of d 5m implies test signal torque constraints of

.:RMS ii2d RMS (3-729a)
T 1

I < ~(0l,(.4)

= 4.0 -N-m

and ,.

A.= (2d Q x 104 2 (N-M) 2 /Hz (3-29b)

-"'t.-is .r~asohabl6 to assume that control actuator characteristics will be known K.

(Oia groufid testing) to within i0% of their true values over the above frequency

passband. Constant ,(bias) errors are not critical here since the vibration

'controller -and the test signal used for identification are both high-passed.

Thui-i disturbance torques arising from actuators used to generate the test signal

should- bed no larger- than- 10% of ihe test signal level, that is,

*I9¢ T. , tp.

•'• idntifiction.

0.4. N-in

and

2 -4 2
W (0.l1iii 4 x 10 (N-rn) /H!z (3-30b)

This-disturbance due to inaccuracies between the torque commanded and that

actually delivered by the actuators clearly dominates external disturbances of

T 0.02-N-in, Thus we can safely neglect exterfial disturbances during

identification.

One drawback associated with generating a wide-bandwidth flat PSD test signal with

the control actuators is that it severely limits test signal amplitude. This is

evident when we compare the large assumed 400 N force capability of the actuators
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at a single frequency (w = 31.4 r/s) with 0.4 N rms level associated with the PSD

of Figure 3-7a. The impact of test signal limitations on the two identification
concepts is illustrated in the singular-value plots of G(jw) in Figures 3-8 and
3-9. Superimposed on a. (G) in each case we show the square root of the ratio
of measurement noise power (R) to test signal power (Ul), assuming angular

and linear position measurements, respectively (indicated by the dashed line).

Measurement noise power was assumed to be flat, with intensities to be defined
shortly. We have tacitly assumed that test signal and measurement noise

statistics are independent and identically distributed for each axis (i.e.,
W = WlI, R = RI). The extent to which the magnitude of G(w) exceeds

R'/U7 defines the square root of the signal-power-to-noise-power ratio (SNR)
for signals reflected to the output. For the baseline concept this quantity
ranges from roughly 1 to 2.5 orders of magnitude for all mode peaks, so that
identifi-ation of these modes appears feasible. For the advanced concept, this

quantity is less than 1 for roughly half the modes. Thus, identification for this
case would appear to be next to hopeless. Therefore, we are.obliged to examine

other possible test signals.

Test Signal 2--An alternative to the "flat" PSD of Figure 3-7a is illustrated in

Figure 3-10a, which corresponds to the first derivative of white noise over the
frequency band (bL, WH). It too may be implemented by passing white noise
through two second-order filters--a high-pass at w cascaded with a lead (s x

low-pass) at WH. As before, noise intensity Q2 is constrained by RMS
Q2 mx

0.4 kg-m. Using an approach analogous to that developed for Test Signal 1, we
find that noise rms and intensity are given by

RMSF 2 = (H/"L) 1 (3-31a)

2 2
Q2 = (W/WL)2 Q1  (3-31b)

Note that noise intensity for Test Signal 2 is equal to that for Test Signal 1 at

L) 3L and increases to a factor of (wI/WL) = 10 larger at W = " At the

rms level this amounts to an increase of (WR/L) = 104,
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These results for Test Signal 2, after converting to torques using the expressions

(3-29a) and (3-29b), are displayed in Figures 3-8 and 3-9 for comparison against

results for Test Signal 1. The improvement in both cases is dramatic. Square

root SNRs for the baseline case now range from roughly 2.5 to 4.5 orders of

magnitude, so the ease of identification should be greatly improved. For the

advanced concept, all indicated modes should, in principle, be identifiable.

It should be recognized, of course, that mass-stroKe constraints are not the only

actuator limitations. The rms force level, which works out to RMSF 2 = 4000 N

for this case, would undoubtedly exceed the actuator's force capability. Thus, in
practice the high-frequency bandwidth limit (N) would have to be relaxed

* somewhat. As evident from the equation for RMSF 2 in Figure 3-10, a reduction to

wH = 200 r/s would limit rms force to 400 N, which is necessarily within the

actuator's capability and' i's stil',more'thanadequate to excite all modes critical

for vibration control.

Measurement Noise Definition

Early in Section 2, we established that resolution requirements for vibration

control sensors must be of order 1 pr for angular position and 1 In for linear

position. These requirements should be interpreted as rms requirements outar the

control passband which extends from wL t6 W0 the desired crossover

frequency of the control loop. This is true because measurement noise power below

will be attenuated by the high-pass in Figure 2-3, while that above w

will be attenuated by the vibration control loop feedback. It is assumed,

however, that sensors, just like actuators, must provide "intelligence" bandwidth

out to some frequency (N,) well beyond control-loop crossover in order to

ensure phase stability throughout the gain crossover region.

Three types of measurements Were considered for both the linear and angular

cases--position, rate, and acceleration. Selection of the appropriate spectral

noise intensity for position measurements is straightforward. We simply assume a

flat noise spectrum (RI) over the -,, sband WL to W , such that its rms

level (RMSy) over the narrower control passband wL to w is equal to the

specified 1 Pr or I pm values. Noise intensity selection for the rate and

-r
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acceleration levels is less obvious. The approach used in our early analyses was

to allow the noise spectrum for rate and acceleration measurements to grow with
2 4frequency (i.e., R2 = for rates and R3 = R for accelerations). Thus, the

corresponding noise spectrum at the position level would remain theý same for all

three types of measurements, so identification performance would be insensitive to

the type of measurement.

Although the above approach would seem to allow a fair comparison between

different types of sensors, it is not consistent with physical characteristics of

rate and acceleration instrumefits. That is, their noise power does not, in

general, grow with and w4 , respectively. While actual noise spectrums

are seldom flat over wide bandwidths, this choice is certainly more realistic than

our earlier assumptions. Thus, for more recent analyses we have assumed a flat 4•4

noise spectrum over the passband WL to WH for position, rate, or .acceleration

measurements with intensities RI, R, and R3 , respectively. These intensities were

chosen to give a constant rms position error (RMS y) over the.control passband.

Thus, errors for each type of measurement still have the same impact on

closed-loop control performance.

The corresponding noise spectrum at the position level is illustrated for all

three types in Figure 3-11. Relationships between noise parameters for each type

were derived using procedures analogous to those used for test signals. Assuming

again that w L= 0.1 r/s and WH = 1000 r/s, choosing an "ideal" control-

loop crossover frequency of w c = 250 r/s, and letting RMSy = 1 pr for

angular and 1 pm for position measurements, gives noise intensities of

31 2 -14 2 2R=- M 1 lx 10 r /Hz (or m /Hz) (3-32a)R1 4 Wc y

R= WLcRl 2.5 x 10 (r/s) /Hz (or (m/s) /Hz) (3-32b)

3 -15 2 223 LCR1 -2.5 x 10 (r/s2)2/Hz (or (m/s ) /Hz) (3-32c)

Comparison of noise power at the position level for the three cases shows that for

WL < H
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%- accelerationlevels is less obvious. The approach used in our early analyses was

to allow the noise spectrum for rate and acceleration measurements to grow with
2 4frequency (i.e., R2 = R for rates and R3 = RIW for accelerations). Thus, the

corresponding noise spectrum at the position level would remain the same for all
thr•e types of measurements, so identification performance would be insensitive to

the type of measurement.

Although the above approach would seem to allow a fair comparison between

different types of sensors, it is not consistent with physical characteristics of
.i rate and acceleration instruments. That is, their noise power does not, in

general, grow with and wz4, respectively. While actual noise spectrums
are seldom flat over wide bandwidths, this choice is certainly more realistic than

our earlier assumptions. Thus, for more recent analyses we have assumed a flat

noise spectrum over the passband W1, to w.H for position, rate, or -acceler~ation

measurements with intensities R1' R2, and R , respectively. These intensities we:e
* chosen to'give a constant rms position error (RMS ) over the,6ontrol passband.

y
Thus, errors for each type of measurement still have the same impact on

closed-loop control performance. ,*

The corresponding noise spectrum at the position level is illustrated for all

three types in Figure 3-11. Relationships between noise parameters for each type

were derived using procedures analogous to those used for test signals. Assuming p.

again that wL = 0.1 r/s and w, - 1000 r/s, choosing an "ideal" control,-

loop crossover frequency of w 250 r/s, and letting RMSy 1 pr for

angular and 1 pm for position measurements, gives noise intensities of

3 7r 2 -14 2 2R = 3 - RMS = 1 x 10 r /Hz (or m /Hz) (3-32a) 0,

. -13r 21 21 -
R= IILWCR 1 2.5 x 10 (r/s) /Hz (or (m/s) /Hz) (3-32b) .

3 -15 Z 2 2 2
R= 3 LcRl = 2.5 x 10 (r/s ) /Hz (or (m/s /Hz) (3-32c)

Comparison of noise power at the position level for the three cases shows that for

-L H I
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•" ¢ Figure 3-i1. Measurement-Noise Power Spectral Densities (at position output)
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2 c

1-2 = (3-33a)

c -( ) '(( (3-33b)

W, I,

Thus, noise power for rate or acceleration measurements is larger than that for

position measurements at low frequencies but smaller at high frequencies. Also,

noise power for acceleration measurements is smaller than that for rate

measurements over the.entire passband. The fertquencies at which these PSDs

intersect are.given by

Wl2 = 5 r/s for pozition and rate measurements

13= = 0.707 r/s for position and acceleration measurements

= L= 0.1 r/s for rate and acceleration measurements

I4 The impact of test signal limitations on the two identification concepts when rate

measurements are used is -ilustrated in Figures 3-12 and 3-13. As expected, TestL

Signal 2 yields much higher SNRsat the output than Test Signal 1. -Comparing

,these figures with those for position measurements in Figures 3;8 and 3-9, we find

that rate measurements yield larger SNRs for frequencies above 12 ' 5 r/s,

but smaller SNRs below that frequency. Corresponding results for acceleration

measurements in' Figures 3-14 and 3-15 follow similar trends. SNRS for the

acceleration cases are smaller than those for the corresponding rate cases for all

frequencies above w23 = 0.1"r/s, and exceed those for the corresponding

position cases only for frequencies below w33 = 0.707 r/s. Note that results

for Test Signal 1 and acceleration measurements are identical to those for Test

Signal 2 and rate measurements.

Hardware Requirements Sunuiry
.4

SHardware requirements for control and identification are summarized for both the

baseline (ILAS) concept and the advanced (non-ILAS) concept in Table 3-2. In both

cases, vibration control of modes in the 10 to 100 r/s bandpass demands sensor and

actuator bandwidths that span 0.1 to 1000 r/s, and computer sample rates of
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roughly 200 Hz (. 1250 r/s) to ensure phase stability throughout the -ibration

control loop gain crossove-" region. Actuator test signal and associated noise

characteristics over this same passband are shown for the two types of test

signals just described, along witl the control design constraints used to define

'these characteristics. Sensor noise PSDs are given for measurements at the

"position, rate, or acceleration level, as constrained by the allowable position

noise over the control passband (WL - Wc). Note that low-frequency

accuracy below = 0.1 r/s is not critical either for sensors or actuators.

Computer requirements in Table 3-2 indicate that sample- frequency must be on the
order of fs = 200 Hz to meet stability and performance requirements, while

throughput musttbe roughly 100,000 "operations"/sec. The latter requirement is

driven by computational requirements to implement a steady-state,[QGq controller
with as many as 40 states, 3 inputs, and 3 outputs at the 200 Hz sampiý rate.

The high sensor resolution required for t;Oth concepts favors the use of rate-
"initegrating gyros for the baseline concest and rateý-integrating accelerometers for

the advanced conce-pt. These instruments use pulse-rebalanced loops to generate

quantized measurements of angular position (AE). and. linear velocity (Av),

"respectively. Since quantization errors wilL likely dominate measurement errors

over the passband 0.1 to 1000 r/s, the effective measurements are angular position

for the baseline concept and linear velocity (or rate) for the advanced concept.

In view of Figures 3-8 and 3-13, and the need to generate sufficient excitation
for all modes near control-loop crossover, Test Signal 2 is the recommended choice

for both concepts. Test signal, disturbance, and sensor noise characteristics
corresponding to the above choices are enclosed in boxs, in Table 3-2.

It should be noted that the combination of high bandwidth 3nd high resolution
pushes or exceeds the state of the art for most control hardware. Whereas

bandwidth requirements could be relaxed by perhaps a factor of two for the ACOSS
II Model as defined, the probable existence of significant unmodeled flexural

modes for the solar panels above 100 r/s actually favors increasing hardware
bandwidth by a factor of 2 to 5.
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- SECTION 4

.MAXIMUM LIKELIHOOD.ESTIMATION, IDENTIFICATION

Identificatidn is the -process of determining a mathematical model for an unknown

system's response,!to (possibly known) inputs in the face of unknown-distuibances-

•arametric identification, which generates a parameterized mathemat-Anal model, is

-particularly conivenient (often imperative) when this model is also required for

control design. The general pro-zedure, as applied to large flexible--space

structures (LSS), is- illustrated-generically in Figure 4-1. Here awide-bandwidth

test signal (u) is used to excite both the true structure, tbrough-its control

actuators, and a parameterized (computer) model for this structure. The response

of the true structuree as' measured'by its control sensors, and the response of the

model are dif~erenced to form a residual error ;(r). This error is then processed

by an identification-aigorithm that periodically updates theunknown parameter

vector (a) to minimize some function of the residual error. The true
structure's response is• of course, corrupted by disturbances, which include both

process 'errors (w) and measurement errors (v). -

Although simpler identification methods suffice for certain applications, none can

match the power of maximum likelihood estimation (Ref. 5,6), which employs a

Kalman filter within the identification algorithm. Honeywell has used this

technique extensively over the past 10 years ,(Ref. 8 through-13) and has developed'

a number of variations on the basic-method t6-improve its speed and make it -more

ec6nomical-and/or make it feasible for on-line use. Recent developments by Yared

(Ref4 7) greatly simplify the evaluation of theoretical identification accuracy.

The general method, however, is extremely complicated for the LSS application due

to the large number of potential parameters needed 'to describe highly flexible 1'
structures.

1MLE METHOD

Maximum likelihoW. estimation addresses the problem of finding unkrown parameters

"in the modei of a noisy dynamic system from observations of tne system outputs in

•,,r.88
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response to (poi'sibly known) inputs. This problem can be stated in mathematical

"terms as follows.

"Model Forms

'Consider tfle linear disciete-time system of the form

Discrete-Time Model:

X,,+l = ;A~xk + B u + B w (4-ia)

* k

where k is the discrete-time index, xk is the" Z,-dimehsional state vector,
u is the n.-dimensional input vector, y is `he-n0-dimensional output

k1 1fp~ ve.r 0k'h
-vectoi, and wk and vk •are (wiite) ýOrdcess,-and ,measurement-i,o)ise. vectors, al'l

of appropriate dimensions. Assume.that noises w and vk are, zero-mean and

uncorrelated with covariances;

,T1"E. kw, Wd*6 k, (4-2a)

.I'k. v} Rd* 6 kZ

where 6  i8 the Kronecker delta fIunction'.

Assume further that the known test, ',ignal• uk is also zero-mean,and uncorrelated

with either-vk or wk and has known variance

T]IUk~ Ud6k9, (4-2c)

For future reference, it is further assumed that the aoove discrete-time

repiesentation has an equivalent continuous-time representation in block-diagonal

, modal-coordinate form, that is,
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WCntinuous-Time- Model:

x i'Fx, + Gu + GW (4-3a')

y * CX' + (4-3b)

where, •

(4-3d)
WI -

C, -row {[c#- 011

Here n, corresponds to the number of modes, while 2n,,.again .corresponds to the

numbei of states. The vectors u, w, and v now represent continuous-time

uncorrlated whIfte (or wide bandwidth) noise processes with spectral intensities

E{wltlwTT)} = W,6"lt - T) (4-4a)

E{v(t)vT(T)} a R,•(t - %1 (4-4b)

E{u Mt UT (T)"V = US (t. -T) (4-4c) ::

where 6'N) is the dirac delta function. The above state-space-model also has

the transfer function equivalent

n, **T
1 i

G, ls) = *

•2 * *2i=l s2+ 24ibWis + Wi

It well known that these models are related via

IF T

A*= e* I + F*T (4-5a)

B= F* (I - e *T)G* GT (4-5b)

Wd =W,/T (4-5c)

Rd =R,/T 14-5d)

Ud U/T (4-5e)
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where T is the 'sample interval for the discrete system. The above approximations

for A* and B, h6ld for sufficiently high sample rates, such that IW.*TI << 1 for

each mode.

Let the true system (4-1) be designated by

* {A*,B*,iC*,Wd, Rd'

where the matrices in M, depend on the true parameter vector a*.
N•...,

"Likewise let

Ma a {A,BC,W,Rd
aW dd

denote a model set with the' same structure as (4-1), but with state vector of

dimension 2n (possibly different from 2n,), where the matrices in Ma depend

on the ,bnknown parbmeter (vector) a.

The problem then is to find the parameter value, 61, which maximizes the

probability of occurrence of the observed sequence of measurements. In order to

evaluate a, functional forms for the probability density functions of process

noise (w) and observation noise (v) must be known or assumed. If all noise

processes are assumed gaussian the solution ::,s obtained as follows.

Likelihood Functions

•'+ Let rk (c)AY A

k - (C) denote the residual sequence of the Kalman filter
corresponding toM . It can then be shown, that the maximum likelihood

A a
estimate C for C at time NT is the value of a that minimizes the nagative

log likelihood function

N N
L""' "ia) = A N L~) (4-6a)

where

A :.+ik-i

... ( a) = L (Y k I ) (4 - 6 b )

1%%.+ A= - log det Sk+- (a)Sk rk a)
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is the condi'ti&nal negative log likelihood function, and

S E [y A A (-cS k:, a {k- Y K(a) ][yk (0) 614c)

is the predicted residual error covariance for ,the Kilman filter based on the

parameter a, Here

kA" {Y0,tyl•• ... ,ykl (4-6d)

denotes the collection of measurements up to time kT.

It is well known that-the above quantities can be obtained from the Kalman filter

correspodding to Ma:

A + Ar(4-7a)Ak+l k A (o. +B rk(a)

.5. r(a) A A A
kj(a ~k Yk.(01) yk -Cxk (c1) (4-7b)

where -,

K k = Z SkC (4-7c)

sk = CEkC + Rd (4-7d)

ýT T T T
=k~ AtA + BWdB ~AKkS K A (4-7e)

define the filtergain, residual covariance, and state covariance, respectively.

The parameter estimate c, which minimizes (4-6a),

A Aa = Arg{min L0(a)), (4-8)

cannot, in general, be solved for explicitly. In practice, it is necessary to use

iterative numerical methods to accomplish this minimization.

Iterative Algorithms

TWo iterative, numerical minimization techniques are commonly used for this

purpose.
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Gradient Method: This method uses a parameter update iteration of the form:

-A-+1 A]' NAi)
R3 =a - ( a- (4-9a)

where the superscript j refers to the jth iteration of the algorithm and

c > 0 is a' step size pirameter 'that is usually adjusted in some ad hoc

manner t6 improve convergence.

Newton-Rhaps6n (NR),Method: This method employs a parametcr update iteration
'.4. of the form:

a,-- a (V L'V)I _%lVLN(a) (4-9b)

The distinguisbing feature of this algorithm is that, the ad hoc (scalar) step

-A size parameter eJ is replaced by the inverse of the Hessian matrix.

Here

"N A NL N DL (a) (

V2 N (a) Aa%~ a 1 . (4-l0b)

:.:• k=O

2 (N Lk0. LkaV! L C) 20-U 4-10b)

denote, respectively, the first and second partial derivatives of the likelihood

function with respect to the unknown parameter vector, a, evaluated at a =,,a.

These quantities will sometimes be referred to respectively as the gradient vector

and Hessian matrix of the likelihood function. The general procedure is
illustrated in Figure 4-2.

In general, the computational effort required to evaluate these partials is

N.
enormous. For a vector of Np unknown parameters, evaluating VL is roughly

equivalent to propagating N 2n-dimensional Kalman filters of the form (4-7).

Likewise, evaluating V'L is roughly-equivalent (due to symmetry) to

propagating (1/2)N 2 Kalman filters. Thus the computational effort required
p 3

to perform a single iteration of (4-9) is of order NNpn multiplies for the

gradient method and NN2 n3 multiplies for the NR method. Clearly some
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simplifications are desirable to tduce MLE identification to a tractable problem

for space structures. Before pursuing such simplifications, however, we first

examine potential accuracy of tne MLE method.

IDENTIFICATION ACCURACY

Given that data1'has been collected for a time interval Nk and that the likelihood

function and A's partials have been accumulated and associated parameter updates

(4-9) have been carried-out fora-"sufficient"-number of 1iterations, we now

address two related questions--what is the accuracy of the resulting parameter

estimates, and what :factors influence*this accurady?

It is well known that the MLE identification procedure of Figure 4-2 commits twoU

types of errors--systematic and stochastic. -Each o6ithese is illustrated for a

two-dimensional parameter space in Figure 4-314 Without loss of generality, the

true parameter is taken to be the origin of the parameter space., Systematic error

or bias is indicated as the distance from the center of the 1-sigma ellipse to the
origin. Stochastic error is indicated by the size and ýhape'o6f'f" e -l-sigma

ellipse.

2 AAel -- 2

*P1 BIAS PI

•, Figure 4-3. Parameter Identification Errors: Systematic and Stochastic

•:." 9 6
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Systematic Errors'

•'. 4

Systematic errors (or biases) are defined as the expected error between the converged

parameter estimate and the true parameter, that is# %BIAS E = A - aL.

(In theory, this comparison cannot be made unless dim(c,) * dim(c). In

practice, however, it is usually possible to pair each element in c with a

corresponding element in t1 .) These arise from (1') model-order mismatches

between the theoretically infinite-dimensional representation for the true

structure and its finite-dimensional representation used for the identification

model, '(2) similar mismatches between true actuator and sensor dynamics and the

"1 simpliied models used to represent them. and (3). systematic disturbances such as

constant or slowly varying solar torques, gravity gradients, etc., as well as

sensor and actua/or biases. The first two can be greatly minimized'by using

band-passed test signals '(u) that emphasiie the dsaiked krequency' band of interest

for the identification model, as opposed to the white (or wide bandwidth) test
signals assumed earlier.

Stochastic Errors

Similarly, stochastic (or random; errors are defined as the covdiiance of the

parameter estimation error, that is, Cov{a} - E,{(O - These arise

from random disturbances, as well as sensor and actuator noise. Stochastic

parameter -errors. are normally proportional :to thbse disturbance and noise

covariances, but inversely proportional to both test signal intensity and the

identification time interval. For the LSS application, errors between the

commauded test signal and that actually delivered to the structure by the

actuators constitute the primary disturbance source during identification. Thus,

the assumption of identical input matrices for test signal u and disturbance w in
equations (4-1) and (4-3) and in Figures 4-1 and 4-2 is justified.

Identifiability Analysis

Identifiability analysis provides a theoretical prediction for parameter errors
that would remain after MLE identification. Following the approach developed by

S.-97
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Yared (Ref. 7), the expected parameter estimate is obtained formally by taking

expectations in (4-8) with respect to the true parameter set M, to give

Ta=Argfmin, E,[LN(X)) -Arglmin 1 (6) 1

where

I* t) E, L (a) I (-lb)

k=O

and

* A 11 -
-!log~= det 1S1 (4-1-1c),qIk (r)[(a)]. iog 2 Sk +.Tr;(Sk Sk'

are, respectively, the expected. values of thp total and conditional log likelihood

functions, both with- respect to the true parameter set M,, and

S~ E{( A A T (-~d
S E*{ l~yk' - )](WY* - Y(a)] 41d

is the actual residual error covariance based on the true parameter set M*.

Letting

devote the covariancd' for the. augmenie~d 2 (n, + n) -dimensional 4gtate-victdr,
-T .*T T 11) anb

xk=(xk Y1, c the actual residual error coVatriance .14-c ca eevaluatiidý

•'.• using

4- -T

S Sk E L d(4-12b)

-T -T

(x A1) th Acta residua +ro coaQc (44-12anbeevlut,

j4-

7-.* -- *
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'A A,.

n [ki B [B] (4-12d)

Al ALC Qki BT0
C. IC, -C], Qk (4-12e) ,.

S-mAN rdKWAT]I

Here KkI Sk' and Zare as given in (4-7c) to (4-7e).

We observe'once again that the minimization in (4-11a) cannot be performed

explicitly, but must be accomplished by iterative numerical techniques. For the

gradient and NR schemes employed earlier in (4-9), the corresponding parameter

updates now take the form

a*+3 A) j Aj)

and

A A+I 2j Z ^Aj -1 N A
u, - ,, - [ ,(,) I,(,) (4-13b)

where
N

N A NVIN0 Vl*(co (4-14a)
k=

k.0

l2W A 2*
V (I ) V I (4-14b)

dente E k(a)k-0

denote, respectively, the first and- Second. partialsQof the ekpycted log likelihood

function with respect to the parameter vector ',.

3.4

" I Computational requirements to assess identific¢ation accuracy. are comparable to.

~ij those required for identificati6n alone. Evaluating VI, a.nd V2N requires
propagating, respectively, N and (1/2)N2  2(n, + n)-dimensiona! Lyapunov equations

P P-N

N.99



for each measurement update. Thus the total computational effort required to perform

a single iteration of (4-13a) and (4-l3bl is, respectively, of order NN (n* +4 ;'-)

multiplies for the gradient method a NN(n, n)multiplies -the

method. Thus simplifications for accuracy analysis are, also highly desirable,.

-Note that the evaluation Of r assumes that the true system is known. Though

this assumption will never hold in practice, it is nevertheless useful for

analysis and experiment design purposes. When the true system is known, the bias

in the parameter estimate can be directly determined by comparing the true
S~A

parameter a* with the estimate Aa.
, '- 2*

Similarly, knowledge of the true system allows us to bound the stochastic error, in P

parameters. Asymptotic normality of• maximum likelihood estimators, when the model

set contains the true parameter set, implies tUe. following classical result. "

Matched Model',-: Let A. be the maximum likelihood estimatb of d at time

NT and let a, * a, be the value of a that minimizes (41-l1a). Then

as N j, - ) is asymptotically normally' distributed with

zero mean and covariance matrix

On the other hand, when the true system is not contained in the model set, the

following result can be shown to hold.

Mismatched Models: Let be the maximum likelihood estimate of a at

time NT and let A a* be the value of a that minimizes

(4-11a). Then as N + , - a*) is asymptotically normally

distributed with zero mean and covariance matrix

A E~F~ a* aks Tf (4-15b)CovaN=

[o2 I -N ) [V (T (A-
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F

.•I is easily verified'that when C,=1, *i,:

•-.J In which cas (4-15a) and (4-15ýb} are equivalent. In general, however, (4-15b)' 'i,% i:

-4., considerably more complicated 'to evaluate than (4--15a). -,

Steady-State Identifiability Analysis
ACohly ,used•apprcximation in, Kalman:filter -.-.-...-.. to -t

(constant) steady-state filter gain in place of'ýthe optimal time-varying gain. :;

This approximation g'tyr-edb~es' comput..at~i6'nal "reciuir'emts f£or both sitate

estimation arid parameter identification in that the dominant filter gain :

computation need be performed only once, rather than at every measurement updatel.

once initial transients :have subsided after a few time constants-for the slowest
flexible-mode (Tmax = i(,"min =' 100 sec for 'the first non-ibdlator i

mode for the ACOSS II moaejT), state estimates in either case willI be the same..

%Assguming the identification time interval is much,,longer than this initial !'

transient period, identification accuracy predictions based'on steady-state :,

analysi's will closely match time-varying prediction's.

The computational savinigs realized for, stecidy-stateo identificatioti accuracy (or :'

• ° L

identifiabi!ity) analyýi.•'i,;.1s'ev~n more dramatic. Here the expected phrameter •2:
estimate (4-11a): becomes

AA

0 E,{a} Arg mn('N + 11) ,1• .(ti•Arg mn I (a .. . (4-11a),P'/

where. e v

In * ilo det 4 are enr (4-11b) '.

i the (time-invariant) expected conditional logt aipeltihood;functione. Thus in

steady-state it suffices to minimizenthe conditional rather than the total

expetimd 1 p4 rameteribo' fiunctionfao that a factor ofmN savings in computational

effort is realized. Note that both reoidual covariances in (4e-r b)m are now up :
time, invariant. That predicted by the filter (S) is obtained from the sloes

steady-state version of the Kalman filter corresponding to M (4-7):i

m rS ot th ,'

~1 Asumng- he denifictio tim inervl ismuc~ logertha thi intia
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Ak1(' `Axk +.,Buk + AMrkict)(4.7)

A A A A -b)
(a "=y - y "y Cx (a) 14-7b)

where,

K, EC ST 1 (4-7c)'

S CECT + Rd (4-7•)"

T T T TZ A• + BWd_ -MAKSA A (4-70)'

Actual residual covariance (S*) is given by the steady-state version of (4-1.2):.

"S- A -- - R (4-12b)'
d

AXA + (4-12c)'

where'

'[A B01*
A = LAXC AIK-]) (4-12d)

AKC4~ A( C

( C -C), (4-12e)

"IThe minimization in (4-11a)' is now accomplished using, respectively, the gradient

and NR iterations

A~j+l NA * Aj (-3)

A-j+ Ai 2*tA6j-1 A["a* - E•vI* VI * (4-13b)'

"while parameter error ,.ovariances for, respectively, the matched and mismatched

models cases become
"*A -.. (4-15a)'

and
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2 A A2
Cov[-a 1 [2I (I )VEV] a*)VLN()[ (4-15b)'

LNE[V v-2 -^ JI (at)

Note that the cete ter of (4-15b)' in valves the expected value of a product of

summations. Though this term is exceedingly difficult to evaluate for the

mismatched models case, it can be shown that its growth is linear in N for large

N. Thus, parameter error covariance is in both cases inversely proportional to

the number of measurements taken.
'I:

PRELIMINARY IDENTIFIABILITY ANALYSIS STUDIES (NASA Langley Study)

Early in this program, and in a parallel LSS identification study for NASA Langley-

(Ref. 14), it was recognized that, because of the large number of potential

parameters, full-blown MLE identification and associated accuracy .analyses, with

gradient and NR paranLter update loops, was not a practical possibility for LSS.

Clearly some simplifications beyond the already mentioned steady-state filter gain r
approximation were necessary to redace the computational load to manageable levels.

Expected Likelihood Program

In order to get some feeling for the scope of the identification problem and to

test out various simplification schemes, a computer program was developed under

the NASA Langley contract to evaluate the expected likelihood function I* (C) as

a function of modal frequency (0i) and'damping (ýi) for each mode of an

n-mode truth model. Modal influence coefficients (b. and c.) were assumed
fixed for these analyses. By evaluating I*(a) for a sufficiently'fine sweep of

the 2n-dimensional parameter vector, and locating .local minima, a relatively I%

simple procedure could be provided for steady-state identifiability analysis which

S avoided the formidable task of evaluating first and second partials of I*(G).

The steps that this program was designed to carry out are:

1. Define continuous state-space representations (4-3) for the truth model and

the identification model, parameterized'by the known and unknown parameter

:, vector ct, and a, respectively.

2. Discretize these models for some specified sample time (T).
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3. Compute the discrete steady-state ;Kalman filter gain, (K) and pkedicted

r.esidual covariance (S) using o(4 -7 )'

4. CoiNpute the actual -steiady'state covariance, (S*) using (4-1l2),'.

-5. Evaluate I*(a) using (4-11b)'.

SThese stes are; repeated for each combination of frequency (wi) and d&,iV.ng

(•i) for i =, ,...,n:

- ý=Si + 1 i 0i , (•Fi WSi)A/4i

=i S + Mit' mi 0'1 '''or %;i - i)A~

where S and F subscripts define the range limits for the parameter sweep and
,� A(.) defines the increment.

V• Computational Simplifications

The block-diagonal structure of truth and identificatioi models was exploited

wherever -possible to minimize computational effort. Discretization of continuous
state-space models was reduced to explicit evaluation of 2 x 2 matrix exponentials

for each mode. One-time state-covarianoe evaluation for tbe truth model was
reduced to solving (l/2)n* 2 x 2 algebraic Lyapunov equations (ALEs), which

amounts to a factor of n, computational savings over the general 2n, x 2n,

problem. No significant computational savings due to model structure-was possible

for the filter gain or 2n x 2n identification model state-covariance evaluations
because the Kalman filter couples the dynamics for all states together. However,

"cross-covariance between the truth and identification model states was reduced, to
solving n, 2 x 2h ALEs, which amounts to a factor of n, savings for each

parameter combination. When the number of modes to be identified is much less
than the number present in the true system (i.e., n << n,), these Computational

savings can be substantial.

Technically, only the identification-model-dependent part is repee.ed. Truth
model definition, discretization, and state and output covariance evaluations• are performed only one time.)
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Preliminary Identification Results

For purposes of illustration the program was exercised on a 14-mode truth model,

which was used to represent the Shuttle orbiter, together with a payload attached

to .the flexible remote manipulator system arm and a one-mode identirication

"N •" model, Influence coefficients ,(bi and'ci), for the identification model were

set equal, to the truth model coefficients for the fiest flexible mode, which

occurs at w* = 0.5692 r/s with, * e 0.005. For this two-parameter

3 •ntification problem it is possible to plot the expected likelihood function

surface versus identification model frequency 'and damping and examine local minima

graphically. This is illustrated *if Figures 4-4 through 4-6 for three cases. The
first case, in Figure 4-4, is a coarse parameter sweep that reveals a local

• !i minimum (determined from numerical output) at w = 0.55 r/s and • 0.005,

"which is as close to the true val.ues as can be expected for the coarse parameter

increments used here. Although not shown here, a broader sweep in frequency

reveals that local minima occur at frequencies near several of the modes of the
truth mode'. Such minima do not occur, however, when the influence coefficients

for these modes are nearly orthogonal to those assumed for the first mode.

The second case, illustrated in Figure 4-5, uses a finer sweep over a narrower

parameter range thaithat used for the first case. It reveals a local minimum in

I*(a) at w n 0.558 r/s and • 0.005? These errors between the truth and
identification model parameters are much larger than the corresponding parameter

increments and correspond to relative errors of 2% in frequency alnd 4% in

damping. Although the damping error is acceptable, the frequency error is large

enough to cause potential closed-loop instabilities for control design based on

the identification model. Recall that from Section 3, relative errors for

critical modes should be much less than ý(= 0.5%) for frequency and l(- 100%)
for &,mping to ensure closed-loop stability. The only possible explanation for

these errors is the .iodel-order mismatch between the truth and identification
models, since all noise and test signal statistics for the identification model

were assumed equal to those for the truth model. Evidently, the Kalman filter

attempts to compensate for this mismatch by producing biases in parameters.
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Figure 4-4. Expected Likelihood Function: Coarse Sweep

THETA *69.96 PHI '30.60
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Figure 4-5. Expected Likelihood Function: Fine~ sweep
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"THETA,= 60,0,0 +PHI= 38.68

"C) A.575

•tool

•tool;

,;, :,j w-0,001

" •*•- 0..0001

'1. $lMi t J

Figure 4-6. )Expected tikelihood Function: Fine Sweep, No Process Noise (W = 0)

When process noise is reduced, so that filter gains approach zero, these biases

disappear. The ~limiting case for no process noise "W = 0) is illustrated in

Figure 4'-6. The identi~fication model frequency and damping which mi1imize I.*(a),

for this case match the true values to within the assumed parameter increments.

That is, no biases occur when the Kalman filter is absent. Furthermore, this

fortuitous result has been shown to hold even under process and measurement noise

mismatches, provided the Kalman filter is absent (i.e., Wd is assumed to be zero

for filter design) and no correlations between the test signal and these noise

sourcqs exist.

Bias, of course, represents only one component of the identification error. The

other component, stochastic error, is largely determined by the second partials

matrix of I (a), which is just the "curvature" of the I (a) surface. As

evident from Figures 4-4 through 4-6, the curvature in the W1-dimension is much

larger than in the c-dimension, relative to the nominal parameter values. That
*

is, a 10% variation in frequency produces a much larger variation in I (a)

than does a 10% variation in damping. Since stochastic error is inversely

proportional to this curvature, the relative error in damping after identification

can be expected to be much larger than that in frequency. As might be expected
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curvature increases, and thus stochastic error decreases, as process noise

decreases. The same observation also applies as measurement noise decreases.

Elimination of the Kalman filter when process noise exists, however, does incur a

cost in identification accuracy--an increase in stochastic error. This cannot be

predicted by the curvature in I (a), because of the inherent noise mismatch
*

between the truth model and the identification model (i.e.i Wd = Wd = 0).

This can only be assessed using the more general expression for stochastic error

(4-15b)'. Technically this same qualification also applies to model order

mismatch. Model order mismatch is, however, believed to be much less critical

t:.an noise mismatch in stochastic error evaluations. We examine the quantitative

effect on identification accuracy of eliminating the Kalman filter and other

simplifications in the next section.
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SECTION 5

NASA Lanley "x • IIIENT1F1ABILITY ANALYSIS SIMPLIFICATI9NS' 2
ThL us. fa,, we hav ad tbeogeneral Kalman-filter-based MLE idehtificgation

%%•procedure and d~ijscugised appropriaite methods ýfbr, assessing idenltif ication ac uracy

for both transient and steady-state analysis. Based on the insight gained on the

NA-SALangley contract with the expected likelihood computer program just,
described, we now discuss various means bf- simplification for the general- MLE

identification method that were investigated in the current ACOSS SIXTEEN

identificat3.on and control study for DARPA.

We begin by examining asymptotic characteristics of a Kalman filter for a MIMO
system with only one flexible mode as the processIto-measuremeht-noise ratio

approaches either zero or infinity. Next we examine the impact of eliminagng the
Kali~an filter on identification and identifiability analysis. We then explore the

potenti'3l for computational simplifications, which are possible once the filter is
absent, due .to,,the blockrdiagonal structure adsociated with systems in modal

coordinate form. Characteristids of the "exact" identi'flibility analysis

software, which incorporates these simplifications, are described next. Further

analytical results are then presented that summarize" findings on parameter

convergence analyses, and the impact of various types of model mismatch on

parameter biases for MLE identification with and without the Kalman filter. Next,

we exploit the light damping common to flexible large space structures (LSS) to,

show that MILE identification can be accomplished one mode at a time with a

negligible loss in identification accuracy,. An approximate identification

accuracy analysis program, which exploits these simplifications, is described, and

a frequency domain interpretation is presented that allows a graphical assessment

of approximate identifiability analysis. Finally, procedures are examined to

verify closed-loop stability in the, face of parameter identification errors for

controllers designed for the identification model, but implemented on the true

system.
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ELIMINATI.N OF KALMAN FILTER

In order to determine conditions- under which the Kalman filter can be eliminated,

we examine the filter gain and estimation error for a model with a single mode,

but several inputs and outputs. For simplicity we work with the continuous case,

recognizing that conclusions drawn for this case will carry over to the discrete
-4h

case for sufficiently high sample rates. Thus we assume a model of the form

__(2 2 = + .(u + w) s Fx + G(u + w) (5-la)

01I + v Cx + v (5-1b)

I IxJ

with corresponding transfer function,

* cbT
G (jdw) = (5-ic)•",":::"•! :... :."" ,: Wo- w, + j 2400•ow

The vectors u, v, and w are assumed to be uncorrelated white noise processes with

zero mean and spectral intensities U, R, and W, respectively.

The continuous Kalman filter for this system is given by

A F'+ G u + K (y -d)(5-2a)

"where

A p. -2c1

T. T - l ._2(5-2 
)

with

-2 + j(22 ;%7 + 2Q(o+bTWbcTR C (5-2d)
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We now examine this filter under two extreme noise assumptions. The noise
.conditions that define these cases can be stated in terms of a weighted,,

singular-value test applied to the transfer function evaluated at some frequency,

Small Process-to-Measurement-N'ise Ratio

The general condition that detines this case,

'3[R"'G1 2j*oW1 2] bbTR-lc
Wbc <c < (5-3)

402

may be .simplified when W = WoI and R = R01 to giVe

a (G i (jw o ) < a / -o (5-3 ) '

which says that the magnitude of the transfer function evaluated at the mode

frequency is much less than the square root ratio of measurement to process

noise. For this case it is readily shown'that the following approximations hold

,(to first order in p):

p b wb cRc << oo (5-4a)

P -3 0 00-

"bTWb l + 0 as W 2 
(54b

4ýoWO (o r R + co)Large Process-to-Measurement-Noise 
Ratio

S The condition that defines this case, 
,;

,,

A K~bT~b [TR~ + asW 0 (-4c



1/bcR 2l 1/ >> 1/2C°

GL G(jb) N. 0(5
0 0

0 0

may-be simplified-when W = WoT and R 0 Ro1 to give

Y(G (i(J o)) >> / 2 (5-5)

which says that the magnitude of the transfer function evaluated at the mode

frequency is much greater than the square-root ratio of measurement to process*

noise divided by 240. For this case we have

, =, Tg b CTw 1C-l >>V 2V Wo (5-6a)

P = 2 (5-6b)p 
132

"' .- [_5-6b )[-2l + 1 0s asWR+0
c [Yc 72 \ p3

ot~o R 0

c' - cR1 + cOas W+ cO(5-66)
J lc L VbTWbcTR-c (or R + 0)

These two cases illustrate the asymptotic properties of the Kalman filter under

two important .noise assumptions. The first case shows that both filter gains and

the estimation error approach zero as W + 0. More important, it is apparent

that the estimation error for this low-gai% filter is to first order in p the same

as that for a zero-gain filter. Thus the Kalman filter may safely be eliminated

for this case with no apparent degradation in estimation or identification

performance. The second case yields a high-gain Kalman filter. In the limit as

W + - (or R + 0) the filter may (ideally) be eliminated and the measurements

differentiated repeatedly to generate estimates for position and rate states, and

accelerations as well. Parameters may then be estimated using the classical

least-squares method. There is also a tnird case, intermediate to these two

extreme cases, but of no particular interest here. It can be shown further that

conditions for the first case also appy for rate measurements if we replace

•The above conditions may also be defined in terms of the magnitude of Gi at

zero frequency, but the definitions here are easier to verify graphically.
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2 2R by R or for process noise due -to Test Sigrial -2 f -w rei.lac2-W b 2 W .w

ýPj Similar results are expected to hold for- other pioess/measuremen `noise-

combinatfons. ,.

Applicabillty: to ACOSS ItMboldel .. . .

To establish which, if either, of the limiting cases -pply for this problem, we

re-examine the singular-value, plots for G(jW) for the 'two identification
"concepts in Figures 5-1 and 5-2-, assuming p6sition measurements and 'Test signal 1.

.4Superimposed on each of thes e plots we haive ~showrv R1 1'/ 1' /' afd;'
for VW1 = 0.41UV,-,2 0 = .0.01. -For 'the, baselihe- concept we find• that only the last

four modes satisfy the -first cbndit-ion (5-,)-", while none satisfy the second

WN condition (5-5)'. The fitstsi'x modes lie intermediate to the two conditions.

"Thus identification without the Kalman filtrr -is- "optimal -only for the last four

modes. For the advanced cbncept, all but four modes, satisfy the first condition,

so that identification without the Kalman f-ilter is ""optimal" for ill but these

mnodes. -

""Tiese comparisons, however, point up a fundiimental conflict between the desire for

la'rge test signals for which,

a(G(.jw)) >>V R ,.

,and small process<inoise for which-

5(G (jW) <=_ý1ý 1OVVjlt~

-"i This conflict becomes even-more severe for the sm~ller high-freguency measurement

noise associated with rate and acceleration measurements, as well as for the
4 larger high-frequency process,\noise associated with Test Signal 2. For the

recommended test signal/mmasurement combinations given earlier in Table 3-2 for

the two concepts, these analyses tend to favor 'the- use of the Kalman filter for

identification (or least-squares estimation when R/W - 0). Thus, there wil-I be
a stochastic error performance penalty associated-with identification without the P

Kalman filter. But this penalty must. be balanced against the increased suscep-
tibility of Kalman-filter-based identification to bias errors under model order

"- 113



0 LL,

0 -0

* UU

44 4.

C-4 04

-- 0
41 wa~~( 4-J V..

0 to

w_ 0
-A wu4

o *v

t11

%% %44a



ICC

"C2 JI
CA IUv

C.3I
4 0 I0 Ut

Aw '

2 -- 4

Ur-7

dW4'

A~~ - 1ýA~

- -- - - -* - - - -



mismatch observed in Section 4 and examined analytically later in this section.

More detailed analyses have shown that the stochastic error penalty is the lesser

of the two evils. Therefore, the Kalman filter, was eliminated.

I )ENTIFIABILITY ANALYSIS WITHOUT,.KALMAN FILTER

When the Kalman filter is eliminated, evaluation of the expected likelihood

function and its partial's 'is, greatly Simplified,.

Expected Likelihood-Function

Since K = . = 0 implies.S = Rd, the general egqutions for the expected

likelihood function simplify to

* A 1 -I (a) =log det R + (Tr (5-76)

where

• T T T T cMT'T

d

is the actual residual-error covariance, and

T + T *TX* x, A*XA, + B*UdB; + B*WdB* (5-8a)

T TX =AXA +BUB (5-8b)

d•' M AM, + BUBT

"", are the now uncoupled state covariance equations for the partitioned systemi where

xk x •T
([x k]' k 1

L defines the partitioned coyiriance matrix. Note that we have dropped the ",symbol

:t'::""in A for K = 0. Note also that the original 2 1u* + n) x 2(n, + n) ALE •for state

'•colvariance has been reduced to three independent ALES of dimensions 2n, x ,2n,,
S 2n x 2n, and 2n, x 2n, for a net computational savings of as much as a factor of 2.L
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r 6r sufficiently high simple rates, s6ht'that IwiT! << I for. each mode, and
consequentlyA " I FT, 'B,. =GT, Wd •w*/T, it R*/T

"1_ A,.GT-WI R+-(5-9a)L

= Iý+ FT, B. GT, Wd W/.T,,d / U U/T

we cari replace discrete-time ALEs by their continuous-time equivalents,

F +X"T T TF*X* XF + G UG + G*WG; 0 r5l~a)

T TFX + XF + GUGT0 +(5-10a).

The main advantage of these continuous-time equations is that ,partfals of r and-G
"w with respect to the parameters wi, ýi, and b. are fmuch easier to compute

(analytically) than are partials of their exact discrete-ýtime counterp~rtsi .

FT -1 FTA =es B F (I -e )G

Patials of C with respect to c are the same in either casq.. The requirement
WIWTI << 1 is not a severe one, since 'identification of modal ftrequency 'and

damping must~ultimately require several samples per cycle. Moreover, this
requirement is consistent with sample-rate requirements for digital control 6f
,flexible modes.

First and Second Pai-tials

Partials of theN expected likelihood function I (a) with respect to theparameters can n6w be taken -h relative ease. For the first partial with
th,

respect to the p element ok a, we have (from 5-7a) assuming Rd is constant:

*I (a) V 
"1V

p
th th ":•while the second partial with .respect t6 the p and q element i9 given by(

2  *1 p-V2
Vp I (a) •'Tr s*"pq pq= 5-11bS (5-
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Partials'of S* and,ý In turn, M and X 'In (5-7), and' expected parameter update

iterations (4-13)' are now relatively straightforward, albeit tedious, to carry

out. But the computational requirements to do so are still of order N (n, + n)-

for each gradient parameter update and N '(n + n), for each NR parameter
p

update. Thus simplifications to reduce computational requirements are still

desirable.

Parameter Error Covariance

Similarly, parameter error covariance jValuations for the mismatched models case

simplify somewhat when S ,= Rd is constant.' The difficult center term in

(4-15b) ' now becomes

*Ra*
ipg E, LN(a, (5-12a) -

E rTR -' V r rT dlV .E. ZE, d pr k ZR q
k=O Z-0 r~dpkd q2 '

~~ N, N l1 r
,Tr R S k) 2 R S (Z k)

S wher e}ý

Sdr k) =,kE, r)r (5-12b))T,

rr Z ),.O
S (P -) -E, rlJ) (5-12c)

are, respectively, the auto-correlation function of the residual r and the

cross-rcorrelation function of its partials V r and V r. Note that the third• E P *qequality in (5-12a) holds only '.en a , where I (a) is minimized and

VI(O,) = 0. The approximate equality, which applies only for N >> 1, exploits

the fact that for stable A* and A the correlation functions aprroach zero

(exponentially) as 19S k1 + o, so that the doubly infinite summation has a
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,limit. Note also that, in general, the order of differentiation and expectation
i~s important in (5-12d) since

, S1 (9- k) = , iJ). (5-13)

,* * r,

SV rV (I" - k) + SV rV r z k)

*pg * 2(2P , -q (2,

Thus, the direct approach for evaluating VTI and V is not comp2tible with

' I that required to evaluate I pq.
,pg

The correlation functions in (5-121) can be generated from the cross-covariand•e
T Ix*T T

matrix for two 2(n, + 2n)-dimensional- augmented-state vectors, x - I V. Y,

a ndx , (x*,xT, Vx) to give T.p

T T<.S S (Z - k) =CoXo(Z k)C + Rd*69 (5-14a) ,

S (ik) -C x(2, k)c (5-14b) IV rV r P0
pgq

* • where

eFp - k)Tx Z > kX (2-k). E, [ T 15-14c).o E* XPA k~) F. (k - Z) T Z < k ,•
4o Xoe --q¢X0e

is the cross-correlation function for the ,states, and 41

F X + X FT + G UGT + G WG; = 0 (5-14d)p0 oq pg o 0

dT(defines the cross-cvrac X0 =E x~kg Here
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IF ,0 A F , 0 0 1
0 V F F VqF F

'A .*] -A A jG A
"0o L 0]' G Gq

L 0. VpG V JIGI

A
,, [C* -C 01

A
• (0 -vpc -C]

C.q [0 -VqC -C]

i5 For the SISO case I may, when IWiTl <k for all modes, be approximated
"pg

further to give

.- * � + . * *I
I = -- S ( k) (5-16a),p R2  rr Vpr

"" R d k=' p q

Rd *

= N 1 •2 SVprVq 0)

'• 20J"~R qtoC q~ ~ d

FTtT Ft T
+(N + 1) Rx f % e q C0C pe~p XC ýdt

0

"Rd * 2 T
(N+ 1) S (0) + (N +1) -+ - CXHXC

R2 V prV 9r R2T ooooq

where H is the solution, to the 2(n. + 2n)-dimensional adjoint Lyapunov equation

T T T. o (5-16b)•:.• FH + HFT +c~c
g o op op

A similar but more complicated approximation for Ipq holds for the MIMO case

as well. When the only mismatch between the truth and identification models is

due to process-noise- the first term in (5-16a) becomes

(N + l)VpqI(a*)
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Thus when I dis substitdted'into. (4-15b)', this first term gives the usual

stochastic error due to "measurement noise R predicted for the matched models case

(4-15a)', while the second term givesj the correction due to process noise W,.

SIMPLIFICATIONS DUE TO DIAGONAL STRUCTURE

4"

Now that the Kalman filter is absent, the block-diagonal nature of both the truth

and identification models may be used to full advantage.

Expected Likelihood Function

The expected likelihood function for this case can be simpli'fied to give (in view

of (4-3))

. (a) 1 = 6 (log det (.R/T) + Tr(R-1 (5-17)

" •+ + exij TX.
i,jeJ* i•e

c T-TT 8.e Mie

jci* ii 1 ii 1j&.T

where

FiXij + XijFj t e 2 e 2 = 0, i,jeJ (5-18a)

T "T
F.X. + X .F. + e e =0, i,jej (5-l8b)

11 1) ij 2 2

-' FiMi. + MijFj + e e - 0, icJ ,)jJ (5-i8c)

are "normalized" 2 x 2 covariance equations relating the ith and jth modes of

the, truth and identification models, with the definitions

.1



rFX*1' rbT(U + W*)bjXj hiUb.Mi

I*T _ ý . . (5-19)I..xk L J J. [b *Ub .M l?•Ub.X..,

F. jjj
F. 2i' . .

'~W.

Y- "'i j: i3 j,3 z

T A T

1 -=Li (1 0,J*

* iA
K.. on thY.-e C 'R b cn b tWhb iieje.l*

F*ad ehaereue *opt-tio6 efor in *vla-n ()t hto

"Z;ij i ji * ]

,v* 4, *T...

d d sc.R cab Ub. fI8jij

.4-, *R-I j *
8icj lcb*TUbji*, J

e • ( 0),,e 2  =•(0 1)

,'4 V. *,, .. } 4i{,2 n

F These equations follow from (5-7) and (5-10) bytinspection. Normalized covariance

Peuations (5-18) are employed for convenience, to eliminate the dependence of Mi.
|.•and Xij.on the parameters b. and b., ,thus sizplifying subsequent evaluation of 1

evpartials with respect to the parameters. By exploiting the diagonal structure of
VJ F, and F we have reduced cormputational; effort in evaluaping I (a) to that of

:;'t:, solving (1/2)I(n, + n)2 2 x 2ALEs, for anet savings of In, n)oe the general

,•,'':I nondiagonal case. Moreover, exact analytical solutions for these 2 x 2 'ALEs are

•":" readily derived, so that numerical evaluation of I (a) can be reduced 'to

summing up a series of exact Lyapunov-equation solutions that are each evaluated

1. A

; parameter vector a, we have (since R and R* are constant)
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T " "T Ta.
, (a)ee V i e 1  (5-!-20)

-T ( lJ* VpiMje- Vp .ijeij 1
i ej + e

where

+ F + Xi FT + V 0 (5-21a)

• ~T M IT ,
FV Mj + V MijF- VF 01 (5-21b)

th gth
Similarly, for the second partial with respect to the p and q- elemeý6t- of -d,

we have

V2 -* . ' ijelVpq xijel + VpaeTXij e (5-22)
VpqI 2, 1ilp il ni,1ij

T,
+ e1 VX e -e Xt7 _.e7

j ~- 1 p ,I p e ie +V2, ije e + "q5 1

jej

+1 +V ae 7V M.e 1 + V $ eTV M. e
P ij 1 q ii lpij lj

where B,.

Fi Vpq'ij + Vpq Mii Fj + p ij qgF + VqM ijVp~j =0 (5-23b) L5

2 2 T

These equations assume that V 2qFi = 0, which will be true if we choose w 2 and ,.

247.0i~as parameters rather than W0i and ýi" This choice also simplifies the
s itucture of the partial derivative equations for Mip &)J Xij. Though these(

partials still appear fo"mildable, it should be noted that t'e' driving terms in :
•pth pUSh th

r[ .....

22 TTThs equati.onser aslyumen that andaeercrepnd oethr e o

mode. Similarly, the driving terms in VIth d notzed o tt then d iving pt i
moe Smlal, h diin ersinVi are nonzero only when either the p';

th .th thor q parameter corresponds to either the i or J mode. Thus it is possible to
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*4.

sum up the contributions to I , V I , and V I all within" the'same i,j
p pq

double loop. Moreover, outside of that required',for a few .2 x 2 matrices, the
2only storage required is the N + N + 1 elements needed to store the final

* * 2* p p
results--I , ,andV I

Computational Requirements

Computational requirements necessary to make one parameter update iteration, in

terms of both the number of 2 x 2 ALES and the number of multiplies, can be

summarized as shown in Table 5-1 (assuming 16 multiplies per 2 x 2'ALE).

TABLE 5.-i. COMPUTATiONAL REQUIREMENTS 'FOR EXA..Y- tDENTIFIABILITY ANALYSIS

.- EaNumber of Approximate Numbe'r
Evaluation 2 x 2 ALEs of Multiplies

Likelihood: . (1/2)(n, + n) 2  8(n,+ n)

Gradient: Vi 2n(n, + n) 32n(n, t

Hessian: V2I* 4n(n + n) 64n(n, + n)

NR: (V2 I*)-lr*I (,1/3) ((no + ni + 1)n]3

STotal/Iteration (1/2) (n + n) (ný + 13n) 8(n, + n)(n, 13n)
*+,(f/3) (no,+ ni, + 1) 3 n3

:• Thus, not counting the NR update itself, computational requirements for

::-•identifiability analysis without the Kalman filter for systems~in block.-diagonal
'.-".•.modal form is of order n(n, + n) per iteration,, which represents an n(n,* + n)2
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savings over the general nondiagonal case. Note that identificatibn of influence

coefficients (b-'and ci) for each mode does not-increase the number of ALES to

be solved since these parameters appear only in the 'coefficents-Bij and i9 P,.
of I (a). Therefore, th~y-ha`ve neglig3.ble impact on computational require-

ments, assuming the number of system inputs and outputs is small compared to'°he

number of modes. When the NR update is included, however, total computational

requirements are dominated by the Hessian matrix inveisibn, which is' of order
3n.

The diagonal structure of F and F can also be used to simplify expressions of

(5-14d) and (5-16) for I , which is needed for parameter error covariance I

evaluations in the mismatched models case. Unfortunately, these simplifications

do not lead to as simple results for I as they do for I and its~partials.

Thus, we will pursue them no further here.

Rate and Acdelbration Measurements afid Test Signal 2

The setup just described applies only for position measurements with Test Signal

1. For rate measurements we' need only replace eI by e2 in (5-17) through

(5-23) to select the second state as the output and replace Ro = R1 by R0 =

R .Results for acceleration measurements, however, are a bit more involved.

C.-

For this case we must replaceR 0 = R, by RO =R and make the following

substitutions in (5-17):

T *T *e X e - d. X. .d. + 1/T (5-24a)

111
e TXije - dTXiidj + l/T (5-24b)

". e Mi ei - di Mi d + I/T (5-24c)

Swhere

d.T 4 *2 -%i 52ad*T 1A -(i5-25a1)--•'"

d -" -2i5-25b)
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define the second rows of F. and. Fi, respectively., Because di is i

function of the parameters, additional terms arise when the gradient vector and

Hessian matrix are evaluated in (5-20) and (5-22). Although these steps would be

relatively straightforward to carry out, they have not been implemented in the

current version,of the software.

Since Test Signal, 2 implies another level of differentiation, the setup for

position and rate measurements with Test Signal 2 is identical to that for,

respectively, rate and acceleration measurements with Test Signal 1, except that

'.4', U- 1 a W 1 are replaced by . U and WO = W Test Signal 2 with

acceleration measurements, however, cannot be accommodated in the current version

of ihe software.

"Exact Identification Analysis Software

A computer program was developed to compute identification systematic and

"stochastic errors for the parameters of an no x ni transfer function matrix

G(s) of the following form

T''n c.b
G (s) 2 2 (5-26a)

i~l s + 2t.Wis + ,i)

whero the true system is

n T

G(s) 2 * (5-26b)
i=l *+ 2iis + W.

The parameters are the natural frequency, Wi, damping ratio, ýi, the no

elements of the output influence vector, ci, and the ni elements of the input

influence vector, bi, for each of the n (n need not equal n,) modes, These

parameters are not all independent, as illustrated in the following cases:

SCase 1: SISO (ni = no = 1)

Only the product cibi is an independent parameter.

2- 26
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Case 2: ILAS (b. C) )

'Only the elements 0f one-oof the' Vectors are independenit.

Case 3: Non-ILAS (bi I c i) o.

-Oiily the directions of b. and ci and the product of their magnitudes are

independent parameters, hence only n"i - n - 1 of "the ni + no elerients
1 0

of the b. and ci vectors are independent.

The appropriate independent parameters are arranged into a parameter vector a as
follows for these 'three cases.

Canse 1:- aT 112,IbPW#2 2 2 2ý 0 bW, 2"'4+"12 ' 2•n 2nACn n J_
where a is a 3n x 1 vector

Case 2: a 2 ,2 •lbl #,W442,2 W b.*2,b24wb

where ci= bi and a is a (2 + ni)n x 1 vector

Case 3: T b TNT 2 bT-T 2 n'-"' lbl' 2Y 'b2'2'....' W"n 24nwn 2'

where either: b. = b. and c. , c. without the Mth element (i.e., eliminate the

M~t element of )
th tb

or: b. = b. without the L element (i.e., eliminate the

t element 'of b,), and c. = c.

The rule for eliminating an element is discussed later in this section.

The parameter vector may be chosen to include any subset of the above parameters.
Similarly, let a* denote the parameter vector containing the true parameter

values. The n modes included in the parameter vector must all have ýiwi > 0.

That is, the mcdel must be asymptotically stable or the residual covariance of the
MLE identification method grows without bound. This condition precludes the ý7'
identification of rigid-body input and output influence vectors. This is not a
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severe limitation since these vectors can be predicted very accurately on the

ground from mass, ,inertia, and.geometry properties of the LSS. The program could,

however, be adapted to accommodate these rigid-body modes.

The exact identification analysis software is only exact for zero process noise.

,.• This condition leads to a tremendous simplification of the computations required.

An exact treatment of the finite, process noise case was beyond the scope of this

study. An approximate treatment is examined in a later section. Both test signal

and measurement noise for this computer ,program..were assumed to be white.

The errors computed are

o Systematic errors (dr biases) due to model mismatch (e.g., n $ n.)

o Stochastic errors due to measurement noise

To evaluate these parameter errors the computer program must perform the following

steps:

Step 1: min I (c)

A

-Art¶ mn .

Step 2: "-.a Ea, -aS.. , °bias

'where E is an identity matrix without the columns corresponding to parameters

of the true system not included in the model, and, therefore is not estimate•d.

Note that when n = n,, E - I and a, = a* (i.e., systematic errors are

zero when there is no model order mismatdh).

Step 3: E 1I -(a,11 = [v2*

where V21 = - 1a)
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,whan n, -- n, .step -1 is,-tr-ivialIbecausez =: a ,. When n " n,, one (or,

both) of the following minimtization algorithms are used.

.4Gadient Method: This method uses a..parameter update iteration of the form.

Aj+r 4j Al2(I a Cj VI* (a (5-27)

a ~' =

wher 'Vi ta.`-1, (d#

the superscript j refers tO the j iteration 6f the algorithm, and -C> 0 is

a step size parameter that is usually adjusted in some ad hoc manner to
improve convergence. 'One method of adjustiwng thatwas useful'for*r
minimizing I over one of the frequencies is the fo~lowirig. Let a = -iw 'i(a

'scalar) and let

j-1l I('J)V
i:VI(" * .... l

1.3 CI (cc a,) > 0 (5-28a)

" ,~:0.2I:-1 VI ()VI*A(3") < 0, (5-28b)

This method will be referred to as the modified gradient method in the

'V following. .%

Newton-Rhapson Method: This method employs a parameter update iteration of
the form

Aj+l Ai [V2,*(Aij!lV ,A (5-29)

Tb'a distinguishing feature of this algorithm is that the ad hoc (scalar) step

size parameter ej is replaced by the inverse of the Hessian matrix.

Parameter Convergence Analysis

The MLE method is an iterative minimization algorithm and hence its success

depends on the convergence of this algorithm., When the quantity being minimized
is highly nonlinear, as i's the negative log likelihood function, this convergence

is dependent on being "close enough" to the minimum at the start of the

minimization algorithm. Another issue is that of reaching a local minimum rather
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than 'the global minimum. Only in the !simplest cases can any analytical. results be

derived for how close is "close enoughi;" and whether a. global minimum will be

found. Two of these simple cases will be described and then some general

statements will be ,made based on. these results and numerical results obtained K

using the exact identification analysis software.

Convergence of the MLE identification algorithm may be described in terms of an

identifiability region, which is defined as the subset of the parameter space
2 *

containing the true parameter, such that V I is positive definite.

Identifiability Region for Parameter--Let the true system be given by

b2

*~b 2
G,(s) = 2 2 (5-30a)1

""-' s + 2ýwS + W,4'

and the model system be given byb 2
G (s) =(5-30b)

s + 2ýws + (12

ip, *e' 3wfor I and can be derived and used to determine

the region of convergence for the parameter w2  A sketch of I 2 vs- /W, is shown
, s ethf I s w w- i ho n;~

in Figure 5-3.

Region of convergence for NR method:

2>2 0 start
°:'2 ----- 2 1 < 2ý (5-31)

3(w) 2

Region of convergence for gradient method:

* W2
2, 2 0 start-',.W < W, and- <0 < 1 (5-32a) .

2 3w

* 2
2 2 a 31 start 2/3 ('3-">• and--< (5-32b)"'!:'.;W-2 2 :
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LITYI

IDENTIFIABILITY
"REGION

- 2,

1-2" 1÷+2 V+4•2/3,

Figure 5-3. Identifiability Region for W2 Parameter

2
The global minimum corresponds to the true m value; however, it can be seen

that if w becomes too large bothý.NR and gradient methods will diverge.

Identifiability Region for 2_W and b parameter--Let the true system be given by

c, b,-.G,(S) 2" 2 (5-33a)

* S + (2Cw),s + 2,

and the model system be given by

G (s) -5"-33b)
s+ (2ýW)s 2ýW

Again expressions for I, aI /a2rw, /•I/b, DI/9(2ýW), I* /a(2Cw)9b, 92I*/3b2

can be derived and used to determine the region of convergence for these twoi

parameters. A sketch of the region of convergence is shown in Figure 5-4.
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4(4

1 ,(2k'w),

Figure 5-4. identifiability Region for 24w and b Parameters

The shaded region corresponds to the region such that the Hessiallmatrix is

positive definite. The circle of radius O.4 is the practical region of
convergence since the direction of the initial error will not be known in practice.

The gradient method's region of convergence would correspond to the whole plane.
There is only the global minimum in this case. Hence the gradient method would

converge for any starting parameter. From these two examples and numerical
results obtained using the exact identification analysis software, the valleys in

I for damping, and the b's and c's were found to be very broad, and are hence*
easy to find and follow to the bottom. However, the valleys in I for frequency

are very localized and steep, and are thus hard to find. Frequency updates thus

required special handling.

Satisfactory conv-.rgence was obtained with the following procedure:

Step 1: Update each of the frequency parameters one at a time with the
modified gradient method.
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Step 2: Update the entire parametervector, including the frequencies, with

," the NR. method.

By using this combination of mod'fied gradient and'.NR methods, convergence is

obtained-for starting values from 1/2 to 2 times the true parameter. in some

cases a much larger range is possible.

Analytical Predictions.for Systematic Errors

The exac, identification analysis software was used to generate numerical results

for the general case. Here, we examine analytical results for some special

cases. Parameter bias in general is determined by comparing the parameter v61ue

that minimizes I to the true parameter. The parameter value tbj' minimizes

I is obtained by setting the gradient of I to zero. This was done for the

following special cases. ItN

Parameter Bias Due to Measurement Noise--If the MLE method is applied without

usin~g a K"Iman filter, as is done in the exact identification analysis software,

measurementmnoise can. be factored out of the gradient. In this case measurement

noise cannot introduce a parameter bias. This is not true, however, when a Kalman

filter is used. The measurement'noise covariance will impact the Kalman filter

"gains. Thus it has theýpotential of introducing a parameter bias if the valua of •.

measurement noise covariance used to desiin the filter is in error.

Parameter Bias Due to Process Woise--here are four special cases to be discussed'

with respect to parameter biases due to process noise.

Case 1: MLE without the Kalman filter and no correlation between test

signal and process noise.

In this case the process noise covariance can be factored out

of the gradient and hence it cannot introduce parameter biases.

Case 2: MLE without Kalman filter and finite correlation between test

signal and process noise.

71-.
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-In' this '6ase parameter biases, ire possible;, an example will be

.disdussed. Consider the situation of a SISO ohe-mode true

system and model, that is, n = n, = ni =,no a 1 and b - c. Let

thed;orrelatibn bedteen test signal, u, and' process noise, w,

be of the form

2
ECuwI = C E[u2] (5-34)

F This is representative, of correlation due to a scale, factor

error in the actuator for the test signal input'. .The results

for this case are shown in Table 5-2 and are good approxima-

tions for the conditions listed. As evident from the table,
the MLE method tries t6 compensate for process noise by making

'the damping ratio slightly smaller, or the b parameter slightly

larger. The frequency bias is negligible for light damping.

For the case of estimating all three parameters, only the b

parameter is biased..

TABLE 5-2. PARAMETER BIASES DUE TO PROCESS NOISE (correlated

with test ,signall)yUSING MLE WITHOUT THE KALMAN FILTER

Parameter (s) Estimated

b W •,b,

1A A 2 A
b(1- Eb b, 1W - WI < 3 2 ^

"•I•I<< I ,<< b =-1+ b,let«It =\^ T
.t < 1/2 A ,
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Cases 3 & 4: MLE with the Kalman filter with and without correlation between
El test signal and process noise.

In these two cases an error ino thb value of the prOdess noise

covariance used to design the filter has the potent:Lal of'
introducing parameter biases.

Frequency-Bias Due to Model Order Mismatch Using MLE Without Cbe Kalman Filter--An
J i[' approximation for frequency bias was-obtaihed for the SISO n,-mode true system

and one-mode model system with •ki = v and bk* m cký for all n, modes of the true
system. A sketch of I vs'frequency is shown in Figure 5-5.

The true system's frequencies are indicated by the w,'s and the local -minimums
of I by w's. The difference-between the ,two is. the frequency..bias., Since

* the •damping ratio was assumed to be known, the only parameters to be estimated a'e
W and b of the model. The following approximate expressions were derived.

A2 2 nbk .r'b* .2 *
2 2 8t 

(5-35a).

bi k

A2 2*n
k k "8•4 2 +(5-35b)

where

"i 
(5-35c)

and

A1 (5-35d)
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I I,

biases are negligible.

SThe results for parameter bias are summarized in Table 5-3. These results show

that m•LE identification without the Kalman filter is less likely to give parameter

'biases than its counterpart with the filter., .Specifically, MLE identification

without the Kalman filter (which is itself a model mismatch when process noise is

present) gives unbiased estimi.tes under process and measurement noise mismatches,

assuming no correlation with th% test signal, Biases are, however# possible if
noiseFcorrelations exist or if mrcel isrder mismatches occur. For MLE

identification with the Kalman filter, on the other hand, biases in parameter

estimates are unavoidable under any model mismatch conditions. This evidence

points up the need for accurate disturbance/noise models for Kalman-filter-based

identification methods..
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TABLE 5-3. PARAMETER ESTIMATE BIAS

Process Noise Mismatch
MLE Measurement Model

Implementation Correlated Uncorrelated Noise Order
With With Mismatch Mismatch

Without Kalman bias y60 bias = 0 bias =0 bi'as a0
"Filter

With Kalman bias $ 0 bias yf 0 bias 0 0 bias A' 0
Filter

SIMPLIF:ZCATIONS, "'S TO LIGHT DAMPING-

Thus far, simplifications to the general MLE identification procedure have

"exploited general properties that may be expected to hold for most (if not all)

LSS identification problems--small sample times, long identification intervals,

small process-to-measurement-noise ratios, and the block-diagonal structure of

systems in modal form. We now examine one final simplification that exploits a

more specialized property also common to ,LSS's-ý-lightly damped modes. 1:

Hessian Matrix for Expected Likelihood Function U
We have already noted that the expected likelihood function and its partials can

be formed by using the computer to sum the exact contributions of individual mode

pairs. 'When these quantities are evaiuated at the parameter value &*, which

minimizes I (a) as is' appropriate for identifiability analysis, further

simplifications apply. Since MLE identification without the Kalman filter yields

essentially unbiased parameter estimates, we can assume that after identification,
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F.j(a*) F (5-36)

A *

2. (a*) C.

fo r~each Mode identified, wbichý implies

)t = Is ( -5- 7

x.A

By 'solving a' 2 x-2- ALE it' can be shoi4ri that, terms in I- (a') ir~ (5"17a) are
of thbe general form (assuming 4position measurements)

T~ ~ 2 ýpi¶ + ; W)

Since (5-38ý) exhibits a sharp resofia'ce when *j 0)i aný, 4i «j< 1-, it can be
shown that off-di'agonal (j $ i) terM in the summnation (5-17a) will be small
keat~etotb corresponding diagonal' ermis wqenever

~I~*/~2~ -~' -'for all i~j (5-39)-7/0" 1 I2 ( + 4jWj/4jWj)

When U -OI uW = Wol, and R - R01, a slightly weaker but easier to

interpret condition is given by

Icose' cose. -max{2ýi,2ý. (5-40a)

vi «

c A

cose. b~b./Ib 11b.I (5-40b)

define the direction cosines between the vectors cir C. and b,,, bjý respectively and
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y ~acbT 1,c 1fib. 1 (5-40c)

Y. a bT j= 'c. Ilb.I .(5-40c) .

" th th
define the magnitudes of the residues for'the i and j modes, respedtively.

When yi Y' condition (5-40) essentially ensures that off-diagonal t'eirmis-in

(5-17) will be negligible whenever damping is small relative to frequency separation,

or when either ci and- ci or bi and bj are nearly orthogonal. When ýj 3'

yj =yi' and Wj t, Wi' condition (1-39) can be reduced to the much simpler condition

2ý << 1A~ij I/W~ (5-401 '0:

which, says essentially that modal damping must be small relative to frequency

separation, where -ij A " Wi This condition is satisfied for virtually all
critical flexible modes for the-ACOSS II structure, except for the six heavily

damoed isolator modes.

Conditions (5-40) or (5-40)' also ensure that off-diagonal terms In V I*(9) and
V2 I (a*) are negligible relative to diagonal terms. Thus 'the doud'0-
pq*

summations over i,jeJ in (5-17) can be reduced to a single summation over ie3 .

Double summations over i,jeJ in (5-17), (5-20), and (5-22) reduce to a single

summation over ici, while double summations over i3 ,jeJ reduce to a

single summation over iejfl j. Under these assumptions, the H~essian matrix
2 *(

V I W*) reduces to a block-diagonal matrix, with nonzero elements

only where the p and q thelement f a both correspond to some parameter
th ae f o

associated with the i mode. Thus, the inverse of this matrix is also

block-diagonal, so that parameter updates using the NR method and error

covariances are uncoupled between modes. For all practical purposes, MLE

parameter identification and associated. accuracy analysis for lightly damped modes

may be accomplished orie mode at a time. ,4 4,

Under this assumption of lightly damped modes, it is possible to develop
analytical expressions for the Hessian matrix V I (1 ) by successively

solving .2 x 2 ALEs and substituting into (5-22). Results for a single mode are

summarized in Figures 5-6a and 5-6b for two cases--ILAS and non-ILAS. In both
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cases, wi and iidenote mode frequency and damping ratio, while bi and ci denote.

input and ouitput 'influence co6ffi'dient vectors. For simplicity, test signal

covariance, f-, ahd"measurement noise covariance, R, have been assumed to be a

scalar times' the identity*. Prbcess noise covariance W is assumed to be zer'o for

this analysis. The scalar SN1R is just the 'SNR of tist signal variance at the

output to measurement noise intensity for the 1tb mode. Note that T now

multiplieý SNRR in the expression for V so that it can be lumped with

(N + 1) factors that appear in (4-15a)' and (4-15b) '. For the ILAS case, the

parameter vector includes frequency squared (w 2 ), the damping factor

(2ýiwi), and the input vector bi. For the non-ILAS (case, the parameter

vector includes, in addition to the above, the output vector ci. •..'.-I

Stochastic Errors Due to Measurement Noise i

"In view of these structural simplifications, parameter error covariance due to

measurement noise for any lightly damped mode is given approximately by the

inverse of the Hessian matrix V2I- for that mode. V '

TABLE 5-4a. APPROXIMATE STOCHASTIC ERROR FOR MLE PARAMETER
IDENTIFICATION: ILAS CASE (Aii = bi)

Stochastic Error Due to Measurement/Process Noise
Parameter

Absolute Relative "

2'

a~ 2+ ) NNIl)
1 X SNRT(N +1TX SI'N+1

2 24 2

'•,• 2ýi.W 16ýi0 2 + 2Cý 4 1+ 2•i•-.;:w. 8,.

"1 11 b222, i 12 4 *2b2t 12

.4. 3

SNRý SNRR' =-~:-
lb. o 1 0
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ILAS Case-For case of Figure 5-6a, ýhe inhe&e of the pattitioned matrix

may be computed analytically by block manipulationS,. The diagonal. 9kements of
this inverse c0rrespord to the theoretical residual error variances for each

element qf th6 parameter vector a. that would remain after MLE-identification
based on a single sample. Both absolute and relativezerrors are-summarized for

this case in Table, 5-4a. Note that re•ative error variance-for bi is defined
as the rms absolute error variance divided by the'vector magnitude -biI 2, as
opposed to the scalar magnitude b i 2 , to avoid possible division by zerc.

All entries should be divided by a composite SNR, SN, and by the numier of

data Samples taken times the sample time, (N + l)T, to give error variance after
time NT. Note that SNR consists of the already defined inverse signal-to-
measurement-noise ratio, SNR -1, plus an inverse signal-to-process-noise

ratio, SN•w, which will be discussed shortly. It should be noted that
2 2relative errors for w are of order ý smafler 'than those, for 2 4iwi and

the elements of bi (at the variance level). These achievable accuracies are in
general agreement-with required accuracies called for~in (3-23).

Non-ILAS Case--For the non-iLAS case of'Figure 5-6b, the-lower (ni + no) x (n + n'),
block of the given Hessian-matrix is singular and -thus its inverse cannot be
codiputed. This it because one element of the bi or ci vector is redundant and

cannot be identified. Eliminating any nonzero element of either bi or ci from

the parameter vector and fixing its -value, at some ic6nstant makes the Hessian
matrix invertible and parameter identification, pdssible.

In practice, the parameter eliminated would be assigned some convenient value

(such as 1) and identification of the remaining parameters would proceed in the

usual manner. For identitiabiiity analysis studies it has proven more convenient
to fix the eliminated parameter at its nominal. value in the truth model so that

identification model parameters match those of the truth iodel-, as opposed to some
arbitrary scalar multiple of the truth model parameters.

th thGiven that either the L element of b. or the M element of c. is
1 1

eliminated, the inverse of the resulting-partitioned Hessian matrix may again be

computed by block manipulations. The corresponding parameter error variances are
2summarized in Table 5-4b. Note that errors for w and 2ýiWi are unchanged from the
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TABLE 5-4b. APPROXIMATE STOCHASTIC ERROR FOR MLE PARAMETER
7, IDENTIFICATION:. 'NON-ILAS CASE (ci 'y bi)"

StochasticError Due to measurement/ProcessNOise
Parameter Ab, olute ... . ... r" : , , .Absolute Relative "'

c.t -* x S (X + I)T (N + S

22 2 4 2.';

2,,221 24 4I 2C)

2 ~ 1. 2r b2w1 ZI '
b I2 + 1 -. 6 44. b1+ +, 1 - 6 4q

i IbrI1

2

1cmlol2 
+ - + 1 + tS 4]c.m i*÷ + (•l+6) l2

b 2 • C
2  1 2 2

I l l +1,

r2 d on w 2' b i elieliminated'

b2,Z .....t

"lbb a i2 c max =-1+i (bL eliminated

P , PC, iM

iI 3
I44iw R Wo

ISNR 1  
SNR + SNR 1I + W Icil2 lbi 2 % 0f~

Sp-*.,
IA c asholetose f or b for maiz L Tharoi egie a fathbotto of 4 Trmr arger Notb eet '.

further that, depending on which paccurameter is eliminated from aiwe have

-b X +1 (b eliminated) (5-41 a)
1b.

* ~2Lc.
im

, (S -1 (cim eliminated) (5-41b)c i12

2-3Since p. 1 and normally 84 << 1 < p ,to minimize error covariance we.,must

choose L or M to maximize P. The choice given at the bottom of Table 5-4b-meets

this objective. The achievable accuracies in this table are again generally

consistent with required accuracies stated in (3-23).
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It is interesting to note that this samechoiý,e for p also minimizes the

condition number withWrespect to inversion -of the lower (n + no - 1) x (ni + no - 1)
;':2 * vý

block of V I, which may be demonstrated by taking the ratio of the maximum

eigenvalue to the'minimum digenvalue-of this (symmetric) matrix.. If we further
2*

assume that appropriaite scali.ng. is used to. reduce V I. to a matrix with ones

along the diagonal, as is presently done in the general MLE algorithm NR update
2*

loop, the condition number of the scaled V7I matrix can be shown to be given by

K-= (5-42)

S4--p

When, as is often the case, either the b. or ci vector contains * ,e element
3. 1

that dominates the remaining elements, this dominant element may be eliminated

from theparameter vector, in which case p,+ 1 and K-* 1. This corresponds

to an ideal situation from a numerical analysis standpoint and thus ensures

maximum numerical accuracy of the inverse., At, worst, for n. inputs and n

outputs we have

p-> mx {ino,--no(-43a)

10 - 4nmax,n. »>1 (5-43b)1 101 1- 1/n.o

T, Thus, even for systems with many inputs and outputs, the above scheme for

Seliminating the redundant parameter guarantees good numerical accuracy for the

inverse of the Hessian matrix. Due to the excellent conditioning of the Hessian

matrix under the above-described scaling and redundant parameter elimination

"schemes, exact identifiability analyses and associated NR update iterations have

been carried for systems with as many as 147 parameters using a single-precision

36-bit word length.

Stochastic Errors Due to Process 11oise

To assess the effect of process noise W, on identification accuracy, we must

evaluate I using (5-16) and the definitions (5-15) for a single mode, and then

substitute this result into (4-15b)'. Even for a single mode, however, these
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steps are tedious to carry out analytically, and have therefore been carried out
. only for a few terms in the covariance mattix. These analyses indicate that the

resulting parameter-error covariances due to process noise W, have essentially

the same form as that given in Tables 5-4a and 5-4b, with an effective SNR bounded

by

U U0"0"" w W W- (5-44)

0 0

where process noise covariance W, .oI .has also been taken to be a scaldr

multiple of the identity.

These bounds also have a certain iituitive appeal since

:;.'ISrr(9, - k)', Sg rV r •-'k)

'k)'

in (5-16a), or more generally (5-12a), contain exponentially decaying sinusoids of

the form1 (1.....
Cose cos '11 t

Now, since

2 2
*Ic.1 Ib.;I

"'-.0-Sn 3.3. _

rr d -w R

T [Rd SV rV r() =

p q p

an upper bound for (SN)W) for parameter error covariance due to process
noise is given by

"':.' ~W0 r0• -riwtd W
WWa, f 2e

(SN:,i 0 (5-45a)
.0o 0 1iwi0

while a lower bound is given by

4",

,'"1
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(SN LB= 1e dt (5-45b)

0~
S, 2ýjd.U

1 "0

-in agreement with (5-44).

The upper bound (5-45a) may also be deduced from an upper bound for the process

noise (PSDY) r'efledted tb the output, ',hich is given by
-'T

S (6) - Gi (jW) Suu (W) Gi (-(j5) (5-46)

Letting Su (w), = WoI and recognizing that Gi(jw) reaches a-maximum at w -i wi, in,

upper bound for process noise reflebted to the output is given •bk the flat noise

spectrum

-2IcAbI
RW -a (Gi(Jwi))Wo0 = Womax g i~

Now, substituting for R in SNR, (defined in FigýUre 5-6b) gives
0

U UO

SNRW = ii %- -47)

which again ;agrees with (5-45a)

-, Thus, an inverse composite SNR that includes the effects of both process and

measurement noise is given by

SNR - SNR' + sN (5-48)
T R W

-1 SNRR
SNR
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MO + 1 _ 0
1ci bi o 0 ii o

Since (SNP (N + l)Tj multiplies parameter error covariance elements. in

Tables 5-4a and 5-4b, we see that these errors are proportional to both

measurement and process noise, as illustrated by the solid line in Figure 5-7.

For 32 (.i(jwi))Wo/Ro< < , the effects of prbcess noise are negligible, so

parameter errors with or without the Kalman filter are identical and depend only
.on measurement noise.- For -2 (Gi(J~i))Wo/Ro>> 1, the effects of measurement noise
no longer dominate, so parameter errors grow linearly with process noisb.

Finally, for 2(Gi(jwi))WIRo >> (1/2i) 2, stochastic errors are doiminaied by
process noise. Those for identification without the filter remain linear in
process noise, whereas those with the filter g row at a rate less than linear in

process noise. For this latter case least-squares estimation offers some
1 potential for improved performance. Independent analysis of the least-squares

estimation errors shows that the potential for improvement at the variance level
2is at most a factor of 2 for wj, 4 for 2;i~i, and l/-iWiT for b ig and cim. Thus

significant reductions in estimation error with least-squares estimation are
"� .possible only for the influence coefficients. Exact analytical results'of these

analyses, comparing identification errors with and without the filter, are

summarized in Table 5-5 for the SISO.case. These comparisons, however, apply only
for identifying a single parameter at a time.

Approximate Identification Accuracy Analysis Program

An approximate identification accuracy analysis program was developed to

incorporate these simplifications due to light damping. In essence, it evaluates
the appropriate simplified analyticc2 expressions for identification accuracy and

tabulates both absolute and relative errors for each parameter at each mode. The
program accommodatesoMIMO systems for both the ILAS and non-ILAS case and it

includes the effects of both process and measurement noise. Comparison of results
between the exact and approximate programs shows virtually exact agreement for all

lightly damped modes.
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'TABLE 5-5. STOCHASTIC ERROR DEPENDENCE-ONM PROCESS NOISE

'Assumptions: SISO one-mode true system~and model
Test signal covaeiance - U, measurement noise coyariance - R

Process noise covariance = W, sample time * T

Number of measurements N

Without Kalman Filter With Kalman Filter
Parameter o r <, 1< «, 1 (least-squares estimation)*

b4WT/44 3 R >> 1

a2 1 WR b2 W b b2W
b, (N + 1) b2 UT' b 4 (+1

S 32w + •w2 •_42w_ ,W '222 2 -w (N +1l) 64UT T U 24w (N + 1)T(U + W)'
-UT

2 2 3
W a2 44w W

-6 (N,+ l)T(U + W)

Rate and Acceleration Measurements--Test Signal 2

Results just described once again apply only for position measurements with Test

Signal 1. For rate measurements, we find that the condition for validity of

single-mode-at-a-time identification again reduces to (5-40). Moreover, assuming
that << 1, it can be shown that the Hessian matrix for rate measurements

differs in form from that for position measurements given in Figure 5-6 by simple
2multiplication by 2. Thus, we may simply replace RO = R, by Ro = R2 /wi for the

signal-to-measurement noise ratio, SNRR. Stochastic parameter errors due to

rate measurement noise in Table 5-4 are therefore effectively multiplied by

/R i, which yields improved performance for mode frequencies above = Ri

= 5 r/s. Stochastic errors due to process noise, however, remain unchanged.
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'For acceleration measurements assuming. <<4 W•T .<<« I, it can be',shown that the

Hessian matrix differs in form from that for position measurements by

multiý!'iqation by W1 . Thus, we may, ieplice 'k = R1 by RO i R2/- , so that

stochastic parameter errors due to aciceleration measurement noise are effectively

mul-tiplied by, R Tis yields improved performance over the position

measurement ca~e for mode frequencies above wi = = 0.707 r/s and improved
performapce over the rate measurement case for, mode- frequencies above wi

V = 0.1 r/sý Stochastic errors due to process noise are again unchanged.

Results for position and rate measurements with Test Signal 2 can be obtained, by
ý2' 2

replacing Uo i U1 and. =,W 1 by Uo = U2ci and W =, W ,,assuming 4;i << wiT

<< 1. 'These same substitutions apply also for acceleration measurements, provided

V3 4i/3i<< wiT << 1, which ensures thar-test signal variance measured

at the aqcel'eration 'level is dominated by the area under the PSD curve near

resonance.

Frequency Domain Interpretation,

Recall from Section 3 that to ensure stability of the closed-loop control system

an approximate upper bound on allowable modal parameter error deviations of the
th,true system from the design model for thb it mode was given by (3-21)', which

we repeat here (dropping the o subscript) as

2 I iWlI Ab] c

2 -2+ + - - 1 (-49Wi .

Approximate'Transfer Function Relative Erroi- •" convenience, we now assume that

modal parameter errors in (5-49) are unbiased and independent. Technically, the

correlation between parameter errors makes this a conservative assumption. Thus,

we can combine error, sources by simple RSS addition to get (assuming 1 - a errors)

1_ _ E_ _ _ _ _ _ _ E J) E (I~ bij 2) E l c ) 1/

TFre - 2 2 .2 2 2 i2 (5-50)
Sre (2. 2. 2 ( bi I Cii
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,IN,• Letting

TID (N + 1)T NT (5-51)

denote the identificati6n time, we see from Table 5-4b that the first two

- expectations are given by (assuming Ci << 1)

[SNRT TIDI= 8IiEi (5-52a)

;•![SNRT, TID] B 2ýiwi =16C i• 1 5-52b)

To evaluate the second two expectations, it is necessary to account for the

element among the bi and c. vectors that was eliminated for identification. We
;consider two cases.

Case 1: Element of b. eliminated.

'Let b1,Ab1 denote the reduced biAbi vectors. Then-recognizing that

E{1x12 } = EIx~x} = E{Tr(xx i} = Tr[E{xx }i (5-53)

we get (from Table 5-4b)

[SNRTID EPIAb 121 (5-54a) F
TID L 1 2~1 

,

(n. - 1) + p.,

= (n i - 1) bi + p'(1 - p) IbiI2

-= ( -2+ p- bi 12

[SNRT TID ] B A ci 2-

no= + * 1ci2 (5-54b)

Case 2: Element of c. eliminated.

Since covariances for Abi and Aci in Table 5-4b are identical for small

"damping, by reversing the roles o0 ýi and ci in case 1 we get
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ID.

Now .summinfg up the individual ýtermts in (5-50) .g-ives (in either case)

'I Tre (2, + 4, +-ni + no,+. 2p, (52-56a),ID -no

Corresponding re~sults for the ILAS case, In-which ci b., do ntrequire

eliminiating a-parameter and-are easily shown to be

TF (2+4 + 2 /)ni(SNRT TD 1 5!-56b)
re I

Therefore, in general, the relative transfer functio'h error due to parameter

errors in the i thmode is given approximately by

TFre c(SNR T -- + R557

Where

2+4+n. ILAS (5-58a)

c -
[+ 4 +n + n + 2p -2 Non-ILAS (5-59b)

Since the parameter elimination scheme used for the non-ILAS case ensures that

(from 5-43a)

p < max nnl

the coefficient (c) for the two concepts works out to'be

9Baseline concept (ni 3). (5-60a)

C

16Advanced conceýpt (n 0 n. = 3) (5-60b)

Note that we could have taken ni 1 for the baseline concept to allow for
independent identification of modal parameters for each axis, in which case
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c = 7. Note also that relati4e transfer function, error may be further

approximated for two process-to-fmeasurement noise extremes to give

aW la 'G. 1j 17(<f

a• (i) I I i (j~ji) )o >(5-61b)
TV..

V
where

10  )(W. (5-62a)
47"a 1 .aT

4.,~ 1 ýM ID
14'

_cW /UO 56b
iri

'ýM ID 56b

may be interpreted a's "absolute" and "relative" transfer function errors that

apply for the two extremes. The latter quantity defines a lower :bound on relative

error ,and will normally be much less than-one-since identification time must be,

much longer than 'the' modal 'time constant, ,that is,

•:;TD >> 1Ai~ (5-63a)

and

cWo/U = 0.Olc << 1 (5-63b)

for both concepts. Thus it is clear that relative transfer function6 error will be

less than one whenever

',• OI~~i (j0i) ) > 9a,(wi)(56a
0

and approaches a lower boundof Zr(Wi) whenever
r

CY(GiJi) >V RO/o (5-64b)-A-Ii

Graphical Results--These relationships are displayed on singular-value plots of

G(jW) for the various measurement test signal combinations for the baseline

concept in Figures 5-8 through 5-10, and for the advanced concept in Figures 5-11

through 5-13 for an assumed identification time of TID = 300 sec (5 min), which

I ID
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is about three times the longest modal time constant. In each case we-plot lower

and Upper constraints (k° and W) for G as a continuous function of frequency
'. Technically those constraints apply only at each mode frequency (Wi). Dashed

lines are ;used for Test Signal 1; broken (---) lines- are used for Test Signal

2. Similarly, heavy lines, arke.used for, the lower bound and f-ine -lines are used V_

for the upper bound.

Mode peaks, U(GiJ•wi)). that lie within these bounds produce essentially constant

absolute transfer functiotk errors for which the relative error is less than one.

Mode peaks that fall below' the lower bound, 9k, also produce constant absolute
a

,transfer function errors for which the relative error is greater than one. Mode

peaks that exceed the upper bound, i produce constant relative errors

with 9°(3) -V < 1. This defines a point of diminishing returns for
r

identification. "

-'The nominal control designs (1/k) are also shown superimposed on the plots for ,.

,, (Gl(jW)). Because the lower bound, 2 1w), represents an upper

bound on absolute errors in G(jW) it also defifies a lower bound on inverse

control gain; that is,

Baseline Concept--As evident from Figures 5-8 through 5-10, the nominal control

design for the baseline concept meets these constraints over most of the critical

gain crossover frequency range (0.2 to 100 r/s) for each of the six me'asurement/
vt gaie a point of

test signal combinations. Because the upper bound,R defines a point of

diminiihing returns for identification, there is little reason to 'favor any one

combination ovei another. The relative error P, in each.case is limited to
- r

-22% at W = 1 r/s and -2.2% at W = 100 r/s. Both position measu'ement cases do,

however, offer some advantage at low frequencies.

If control gain were, howevar, increased (1/k decreased) by a factor of 10, which

is roughly the gain needed to meet the "ideal" control requirements, identification

time would have to be increased by a factor of 100 to meet stability requirements

for position measurements with Test Signal 1. The corresponding identification

time interval for this case (8.33 hrs) is unacceptable. Furthermore, we would like
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to exceed these minimum stability requirements by some margin (say'a factor of 3.

for 3-a parameter errors). Required identification times for this case increase
2by a factor of 3 = 9 to become 0.75 hours for the nominal design and 75 hours

for the ideal design. The latter number is clearly ridiculous. Since these bounds
apply for the entire gain crossover region, position measurements with Test signal

2 defi,_, the only practical alternative. This choice is consistent with

preliminary recommendations made in Section 3. An identification timc interval of

5 to 10 minutes should suffice for this case.

Advance& Concept--Nominal control designs for the advanced concept shown in Figures .

5-11 through 5-13. fail to. meet identification constraints for Test Signal 1 with

position and rate measurement. Results for the corresponding cases with Test

Signal 2 are about equal. T1• former doee offer a slight advantage at low

frequency; the latter is identical to results for acceleration measurements.with

Test Signal 1. Results for acceleration measurements vith Test Signal 2 offer no
practical advantage over any of these three.

All four cases would allow an increase in control gain by a factor of 10 at

w = 100 r/s. Again, this is roughly the control gain required to meet ideal.
control requirements, assuming little or no increase at 3 = 1 r/s. It should be

recognized that increasing the gain calls for higher order control design and

identz 'ication models. Some increas" in stochastic error would result for position

*" measurements with Test Signal 1, but no significant change in accuracy would occur ,..
for the other three cases. Moreover, the latter all provide a substantial margin

for additional model errors, with no increase in identification time. Thus, our

earlier recommended choice, rate measurements with Test Signal 2; or its idt-iL cal

twin, acceleration measureme•its with Test Signal 1; remains the best alternative.

An identification time interval of 5 to 10 minutes should also suffice for this case.

Closed-Loop StabiLity Verification
S.1[

Critical Assumptions--The analyses and interpretation of the previous subsection

depend on two critical assumptions used in Section 3 to reduce relative transfer
function error (3-21) to the simpler forms (3-21)' or (5-50). The first 4.4

assumption, that for "good" control designs
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+ >
"g. (ji),b.KF`W)ci c

for w -i is a rpasonable one since modern LQG-based control design methods
j

us~ing robustness recovery (Ref. 2) produce return and inverse-return differences

which, inýtheory, can approach the ideai LQ state feedback guarantees of

a(GI + KG(jw)) > 1 (5-66a)
--

a[I + (KG(jw)) I > 1/2 (5-66b)

for i. 1 > 0. Note that the latter quantity is a lower bound for the lefthand

side of (5-65). Thusj the first assumption is a reasonable approximation for our

purpose.

The second assumption, that for "good" control designs ".

AT,
Cosi() A 'b.j) 1~ IKj (5-67a)

1 -i1 !'I;

for u) = i'w1 not as easily dismissed. Clearly it is a desirable property,

since from (3-2111._t maximizes stability robustness to errors in bi and ci,

particularly to those producing a change in direction. Whether it is achievable

for all controlled modes is an open question. For our LQG-based control design of M'

Section 6, we have verified that the above approximations are good for some modes

but not for all modes. Values observed for a few selected modes ranged from

r6ughly 0.1 to 1.0.

Failure of either assumption to hold is of course no guarantee of instability--

only a potential for instability. Thus, it is neces'sary to verify stability

robust[ .ss tc ?arameter uncertainty for any particular control design. Such

verifications, for example, might consist of testing condition (3-21) over all

frequencies w > 0 for all modes identified. But even this test is conservative

for it fails to consider the correlations between parameter errors. Condition
(3-20) is far less conservative, but impossible to apply sin%je MLE identifiability
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analysis provides only an estimate of parameter error variance and not raw

parameter errors. Thus, it is essential to develop more refined estimates for

transfer function errors.

"Transfer Function Error

We begin by developing an estimate for the error in AGi(jýu), which was

defined in Section 3 as (3-18b) anu is rewritten he for convenience is

A OGi(JA) TA gT c b b (5-69a)

. where

;7."

TAm ( G G (5-69b)8. = 9 w(1 jO))(-6c

We now let

6A 11
(A. maxq ](70

rms I k

define the maximum rms singular, value of the transfer function AGi(jw). h

above expectation is given by

E{AaT AG iJ(5-71)

"Aa b= + Tb + b AJ Ac + Ab+C

JgiJ2E[( -T TbcT 3.

L I12 Ir bb'h I

2[Ic~i 12(brPi
ig.I .b~b.+ JO. bTm C931

+ Ig.Jil 1 1(ab b i T

/TiT+ (b.OTP' c b + .biY .ObýI acI i 1. c1

+ 2fiTJ Ti
[gbf bc I bi + b iCi P cb~
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where p denotes the cross-covariance between the vectors x and ,y for the

ith mode. Note that this expression applies for all frequencies.

Since the trace of a matrix, is equal to the sum of its eigenvalues, that is,
n,

Tr (A) = L Xk(A) (5-72a)
kul

* and since.

(Tr x Y T Tr i' L y.x. (5-72b)

an upper bound for m (AGi) is given by
arms 1

-2r < Re T+ + 1b, LTr(Pg) (5-73)
rms Ia (Jb )15-7

P+ b, + 2 I bD 2 T/2 P(G + 2c))
iI I1 r'i ab I ri ac-ii cbJ

whereT

~r Re = (Re(g~ W1( (-4

Now evaluating at the modal resonance frequency (w wP where it reaches

its maximum, using covariarfces from Table 5-4b as well as cross-covariances not

shown in the table gives (assuming an element of hi as been eliminated)

g, ,,,

AG.(jW.)) 4rms I 1

E -l l -3 l)1/2
< 2+ 4) + (ni + p )+ (n0  2 + p )-2(2) -2(0) -2(p 1)

x fSNRT T (G/2 ((jWi)

1/2 1 /

{2 + ni + no)1 " (SNRT TI} 1  (Gi d(Oi)
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This result is particularly pleasing for two reasons. First, it is independent of

p-, which is a measure of the degree of difficulty in identifying the elements of
b. and c.. This is consistent with the fact that a transfer function should be

independent of its state space realization. Second, the final result (5-75) can be

shown to hold for the ILAS case as well by letting no a ni and ci = bi. and making

the appropriate substitutions. Associating no+ ni + 2 = 8 with the coefficient c

(used in the previous subsection) shows that earlier estimates for transfer

function absolute error were a bit conservative. Since this estimate is itself

conservative, the true additive error in AGi could be as much as a factor

•min (noni) smaller yet.

"Loop Transfer Function Errors

Since the total error in the transfer function consists of the sum of the

contributions due to all modes, that is,

AG AG (5-76) ,, .

and since the correlations of parameter errors between modes is negligible for

light damping, the total rms additive error in the transfer function AG is given

by

1/2 +5arms (AG) max gkE �AG (5-77)
k k -- i ' 4 "

Similarly, the additive error in the loop transfer function KAG is given by

-- 1/2 F "- ...

C. (VG) max g• E{(KW- KAG(5-78)
k ,.-. ..

while the corresponding multiplicative error is identical in form with K replaced

-1by (KG) K. These quantities may be. computed by replacing ci and Ac. in (5-71) by

Kci and KAci or (KG) Kc. and (KG)- KAci, recognizing that these multipliers may be

factored out of all expectations.
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Closed-loop stability for tOe true system in the face of parameter identification

errors in the model may then be verified by either of the followi-Ag tests:

-m (KAG(jw)) < T(I + KGl(jw) (5-79a)r rms

< •[I + (5-79b) .

• .4.,<.

-16 -

OrmsUG~jW) Kd~jW)] a(I (KGj...) ].,.:I..



SECTION 6

IDENTIFIABILITY ANALYSIS AND CONTROL DESIGNS

This section presents detailed identifiability analysis results and control

designs for the two concepts examined in this study. Identification results for,

both concepts are limited to Test Signal 1 with position measurements since this,

was the only case examined with our detailed identifiability analysis software.

Results for the other test signal/measurement noise combinations can be expected

to closely follow earlier presented analytical predictions. Control designs

employ simple rate-feedback for the baseline (ILAS) concept and linear-quadratic-

gaussian (LQG) methods with robustness recovery (Ref. 2) for the.advanced

(non-ILAS) concept.

BASELINE, CONCEPT

Identifiability Analysis

Because the light damping criterion (5-40) is satisfied for all critical modes in

the baseline concept, both exact and approximate identifiability analysis give

virtually identical results. Only results for the latter approximate analysis are

presented since they include the stochastic parameter error contribution due to -"

both measurement and process noise. Parameter biases,, which are available only

with the exact analysis, are negligible for this concept. Since there is essenti-

ally no coupling between axes, single-axis and multi-axis identification should be, ."

identical. Both were examined and are presented for purposes of illustration.

The following numerical results tabulate both absolute and relative parameter
•, errors, at the standard deviation level for each mode identified, using the ,;

approximate formulas described in Table 5-4a. Error source designations R, W, and

T ccrrespond to measurement noise, process noise, and their root-sum-squared

total, respectively, Test signal, process noise, and measurement noise

intensities assumed were those defined in Table 3-2 for Test Signal 1 and position

(attitude) measurements.
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YA All- rdifults are stated in terms of accumulated error at the end of an

.ident~ification time of one second. To determine errors for a sample length ,of

...TID secpnds,, simply divide stated results byV"

O6nly those modes for which

b Ic > ab

2;1 61l24

.were. assumed to be identified. This is an approximation to condition (3-17a),
- -,th

which neglect 'the effects of resonances near the 1 mode and ignores all modes
N ~ ~ on th I.. ,- 1

ey the i mode.

Roll Axis-'.Approximate identificationýerrors for the roll axis of, the baseline

ILAS concept are suimmArized in Table 6-la. For each mode, nominal frequency (W)

and damping (Z) are shown, along with the ratio (RATIO) of thpLHS to the RHS in

condition (6-1).ý Resiilts are tabulated only for those seven modes for which this

"-ratio is greater than 1. Following -the nominal values for each parameter are the

absolute and-,relative errors for each error source described above.

it shoild :be-observed that these approximate results for errors due to measurement

noise closely,match thle exact results for all modes except the well-damped

N isolator modes (11 and 16). Whereas mode 11 could easily be eliminated with

little loss- in modeil fidelity, pode 16 is evidently ii'rur,',ant for its asymptotic I

contribution-to the trahsfer futiction -model at high frequencies. Because of their

-heayy damping, both could be eliminated from-the model for control design purposes.

Thee results of Table 6-la show that errors due to measurement noise .dominate those

due to procese noise, except for mode 9 where the two -erro: contributions are

about equal, As is obvious from the expression of Table 5-4a (for the SISO case)

and supported by the results of Table 6-la, the largest relative error for each

mode occurs for the damping factor parameter (2C0o), while the smallest errors
2

occur for frequency squared (w ). Worst-case identific.tion errors occur for

mode 10, where a total relative damping error of C1 2/ = /• = 7.03 remains

after one second. To reduce rc.ative transfer, function error (5-50) below 1 would

require an identification time of
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TABLE 6-1a. "APPROXIMATE IDENTIFICATION ERRORS FOR
'BASELINE CONCEPT: ROLL AXIS (X) ft"

MODE 9 ; W 1.9936 R/S ; ZETA 0.0050` ; RATIO 25.g495

PARAMtTER W**2 2*Z*W 8'4

NOM VALUE 3.9,744E 00 L.9936`E,.02 4.7579E.04

ABS ERR-R 9.9421EE-02 3*5059E,-02 2,9583E.04

REL -ERR-R 00,'124 1.7586 0.6718

ABS ERR.W 5.6 9'27E'.-02' 3.9937E-02 3.3699E.04

R REL E R R1.•W -'0;0142 2.0033 0i7083 ,;" *

"ABS ERR-T 7,4'12E-02 5.3142E'.02 4,4841E.04

REL ERR-T 0,.0188 2.6656 0.9425 h...

MODE 10 ; W' 2.0916 RyS ; ZETA 0.0050 ; RATIO 5.7657

PARAMETtR W**2 2*Z*W B 4

NOM VALUE 4.3748E 00 2.0916E-02 2*5169E..04 ""o

ABS ERR-R 2.og9OE-0l 1.4125E-01 6.0096E-.04 *f

REL ERR-R 0.0478 6*7532 2 . 3 R77

ABS ERR-W 6.0499E-02 4,0907E-02 1,7404E-.04

REL ERR-W 0-90138 1.9558 0.6415

ABS ERR-T 2.1749E-0i 1.4705E.() 1 6.2565E.04

REL ERR-T 0.0497 7.0307 2*408

169-.

=• ~~1.69 -. '



TABLE 6-1a. APPROXIMATE IDENTIFICATION ERRORS FOR ..-

BAýSELIN.E CONCEPT:- AOLL; AXIS (X) (continued)

MQDE, 11 ;W ?2.7847 R/S .ZE-TA 0*7ý000 ;RATIO 1.,4397

PARAMETh.R W*.*2 .2,*Z*W B 4

NOM VALUE 7.7.547E,00 3.8,9,86E 00 -~1,4763E..;3

ABS F:RRR 2,73885E 01 1,9572E 01. 3,2038E..03

REL ERR-R 3.5318 50O202 2,1701

ABS ERR-W 1.61,97E 00 7,8584E-01 1.286~4E.-04

REL ERR-W 0.1418 0.,2016 O.OR 7l

ABS ERR-T 2.71410E 01 1.9587E 01 3.2064E-03

REL FRR-T *3 5347 5 .O?42 2.1719

MODE 16 ;W 9j4669 R/S ;ZETA :0.l7000 ;RATI'0 16,4746

PARAMETER W**2 2ttZ*W B, 4

NOM VALUE 7,1688E 01 1.1.854E 01 -9.8451E.03

ABS ERR-R 3,0185E 01 7*0943E 00 2.5471E_.03

REL ERR-R 0,4211 0.5985 0,25)87

ABS ERR-W 5,8301E 00 1,3703E 00 4,9197E.04, *5

ABS ERR-T 3.0743E 01 7,2255E 00 2,5942E-.03

RLERT 0.4288 0. 6096 0.2035
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TBE6-la. APPROXIMATE IDNIICTO ERRORSFO
BASELINE CONCEPT: ROLL AXIS (X) (continued)

MODE 22 ;W 18.7836 R/S ;ZETA 0.0050 ;RATIO 2 9'0.R4 3 1
PARAMETER W**2 2*Z*W B 4 K

I ,NOM VALUE 3.5282E 02 1.8784E-01 -1.7ISOE-0.2

ABS ERR-.R 9.7656E-02 7.3,526E-.03 2 3 '3E04

REL ERR-R 0.0003 0.0391 0.0138

ABS ERR~-W 1,6282E 00 1.2259E-01i 3.9073E-,03

REL ERR-W 0.0046 0,.6526 0,.2;07

ABS ERR-T 1.6311E 00- 1.2281E-0i 3.9644E.03

REL ERR-T 0.0046 0.653,8 0.2112

mODE 26 ;W :33.0515 R/S ;ZETA 090050 RAI ;)0
PARAMETER W**2 2*Z*W B 4

MO VALUE 1.0924E 03 3.3052E-.01 -4.4501E.-0

ABS ERR.-R 1,0481E.01 4,4849E-01 2.1350E-.03
REL ERR-R 0,0096 1,.3570 0.4798

ABS FRR-W 3.ri003E 00 1,6261E-.01 7.,7411E-.04 s.,.

REL ERR-W 0.0035 0*4920 0.1740

ABS ERR..T 1,1149E 01 4,7706E-01 2,2710E.03
REL ERR-T 090102 1,4434 0.5103 

-

"47
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TABLE 6-la. APPROXIMATE IDENTIFICATION- ERRORS FOR
BASELINE CONCEPT: -JROLL AXIS (X) (ccuc. uded)

MODE 29 ;W = 52.5275 R/4 ZETA 0j0050 ;RATIO - 14,7208

PARAMETER W**2 , *Z*W B 4

NOM VALUE 2.7591E 03 5.2528E.01 -7.8166E.03

ABS ERR-R 1,7192E 01 4*6287E-01 2.4353E._03

REL ERR-R 4.0o062, 0.8812 0 31'16'
'4 ABS ERR-W 7.614bE 00 2.0500E.01 1.0786E.03

-i,4 REL ERR-W 0.0028 003903 0".1-486

ABS ERR-T 1',8802E 01 5.0623E.01 2.6635E-.03

REL ERR-!T 0.0068 0,9637 0,3407

2 ( 2
1 I2D( a2 W(J 1alb" ) (6-2)

ID (2)22 24W/ ( =bI

2 22"" = (0.05/0.01) 4 7.03 + 2(2.5)2

87 sec

-To reduce this error below 0.1 (or 10%) would require 87 x 10 8700 sec, or
roughly 2.4 hours. As evident by its absence from Figure 5-8, however, this mode
is probably not critical for a nominal control gain cross6ver below wc = 100 r/s.

.--

Results for mode 9, the next most difficult mode to identify (not counting
isolator mode 11), indicate that identification times of roughly 12 sec and 1200
sec (1/3 hour) would be needed to achieve relative transfer function errors of
100% and 10%, respectively. To provide such margins of safety, it is evident that
either larger test signal intensity or smaller measurement errors are desirable to
reduce required identification time. The need for higher bandwidth control laws

leads to similar conclusions.
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Pitch Axis--Approximate identification errors for the pitch:axis of the baseline
ILAS concept are summarized in Table 6-lb for four modes. The first mode (7) is

an isolator mode and is included only for its (small) asymptotic contribution to

the transfer function model at high frequencies. Worst-case identification errors

occur for mode 14, where a relative damping error of 1.02 remains after one
second. Thus, identification time may be somewhat shorter for the pitch axis to

achieve relative accuracies comparable to those obtained for the roll axis.

Yaw Axis--Approximate identification errors for the yaw axis of the baseline ILAS -. W4.,

concept are summarized in Table 6-1c for three modes., Isolator modes 7, 8, and 13

were not identified since their impact on the transfer function model is

negligible. Worst-case identification errors occur for mode 15, where a relative
damping error of 1.00 remains after one second. Here again, identification times

may be somewhat shorter than for the roll axis to achieve comparable accuracy.. ,..'*•'.

All Axes Combined--Approximate identification errors assuming simultaneous r.. :

identification of all three axes are summarized in Table 6-2 for the total set of
14 modes included in the three single-axis cases just described. This MIMO

identification assumes that ,all three influence coefficients (b 4, b5 , b6 )

for the three input/output pairs are identified for each mode, rather than the
single nonzero coefficient identified for each mode in the three SISO cases. Thus

relative errors for coefficients which are nominally near zero are not
particularly meaningful. Normalization for identification errors in the b and c

vectors by the nominal vector magnitudes, Ibi and Icl, respectively, as

was done in Table 5-4a, is clearly more meaningful here.

Comparison of identification results for the three-axis case with those for the

three single-axis cases re,,eals that identification errors for w 2 2ýw, and
the dominant b parameter are virtually identical for all modes. This is, of "4

4' course, to be expected since the three axes are virtually uncoupled. Thus,

worst-case identification errors occur again for mode 10, which is a roll-axis
mode. When significaný coupling exists beti - .a axes, however, MIMO identification

should offer significant performance improvement over independent identification
, of each input/output pair.
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TABLE-6-lb. APPROXIMATE.IDENTIFICATION ERRORS FOR
BASELINE CONCEPT: PITCH AXIS (Y)

MODE 7; W 0.9144 R/S ZETA 0,7000 ; RATIO = o856

PARAMETER W**2 2*Z*W B 5

NOM VALUE 8.3617E-ol 1.2802E 00 1,5443E..03

ABS ERR-R 5.0786E-01 1.1052E 00, 5,7633E.04

REL ERR-R 0.6074 0,8633 0.3732

ABS ERR-W 2.0693E-01 4.5031E.01 2.3482E.04

REL. ERR-W 0.,2475 0.3518 0.1.521

AB5 ERR.T 5.4840E.01 1,1934E 00 6.2233E.04

REL ERR-T 0,6558 0.9322 0.4030

MODE 14 ; W 7,6891 R/S ; ZETA 0,0050 ; RATIO 957,.7576

PARAMETER W**2 2*Z*W B 5

NOM VALUE 5.9122E 01 7.6691E-02 5.5364E.03

ABS ERR-R 4.1125E-02 7.5640E-03 1.9256E.04

REL ERR-R 0.0007 0.0984 0.0148

ABS ERR-W 4.2642E-01 7.8432E.-02 1.9967E.03

REL ERR-W 0,0072 1.0200 0.3606

ABS ERR.T 4.2840E-01 7.8796E.02 2,0060E.03

REL ERR-T 0o0072 1.0248 0.3t23
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1 'TABLE 6-lb. APPROXIMATE IDENTIFICATION E11RORS FOR
BASELINE CONCEPT: PITCH AXIS (Y) (concluded)

MObE 24 ; W 21.2828: R,/S ; ZETA = 0.0050 ; RATIO : 421*6492
PARAMETER W**2 2*Z*W B 5

NOM VALUE 4.5296E 02 2.1283E-01 -1*1993E-02
ABS ERR-R 3.092lE-01 2.0547E..02 4.0936E.04

REL ERR-R 0.0007 0.0965 0.0141

ABS ERR-W 1.9637E 00 1.3049E...01 2.5998E.03

NRL EQP-W 0,0043 0.6131 0.2168

ABS ERR-T 1.9879E 00 1.3210E.01 2.6318E.03

REL ERR-T 0,0044 0.6207 0*2-94 ,9I,'I
oMODE 36 W 85.3456 R/5 ; ZETA 0.0050 ; RATIO 166.Q703

PARAMETER W**2 2*Z*W B 5

NOM VALUE 7.2839E 03 8.5346E-01 1.7229E.02,

"ABS ERR-R 1.9347E 01 3.2059E-01 2.2882E.03

REL ERR-R 0.0027 0.3756 0.1;28

ABS ERR-W 1.5769E 01 2.6130E-01 1.8651E.03

REL ERR-W 0.0022 0.3062 0.1083

ABS tERR-T 2.4959E 01 4.1359E-01 2.9520E.03

REL ERR-T 0.0034 0.4846 0.1713
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TABLE 6-ic. APPROXIMATE IDENTIFICATION ERRORS
'FOR ,USELINE CONCEPT: YAWSAXIs (Z)

MODE 15 : W . 8.1696R/S , ZETA,= 00050, ;,RAT'O 914."297

PARAMETER W•*2 2*Z*W B 6

NOM VALUE 6.6742E Ol 8.1696E-02 -,4, 8 091E.03,

ABS ERR-R 6.7388E-02 1*1666E..02 2,4279E.04

REL ERR-R 0.00010 0.1428 0.0505

ABS ERR-W 4.6r02E-01ý l8,0846,E.02 1,6826E.03
REL ERR-W 0.0070 0.9896 0.3499

ABS ERR-T 4,7185E-01 8,1683E..02 1,7000E.03
REL ERR-T 0i.0071 0.9998 0'3535

MODE 23 ; W : 19,9551 R/5 ; ZETA -,q005,0, ; RATIO 411,4595

PARAMETER W**2 2*Z*W B 6

NOM VALUE 3,9820E 02 1.9955E-01, 1,0291E...02

ABS ERR.R 3,3520E-01 2.3756E.02 4,3314E.04

REL ERR-R 0.0008 0.1190 0.0421

ABS ERR-W 1.7828E OQ 1,2635EQ.0l, 2,3037E.03
REL ERR-W 0.0045 0.6332 0,2•39

ABS ERR-T 1.3141E O0 1,2857E.-01 2.3441E.03

REL ERR-T 0.0046 0,6443 0.2278
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TABLE 6-ici APPROXIMATE 'IDENTIFICATION ERRORS FOR.

BASELINE CONCEPT: YAW AXIS (Z) (concluded)

MODE 33 ; W z 71.2905 R/S ; ZETA 0,0050 ; RATIO 80,R774

PARAMET•R W*42 2*Z*W B 6

NOM VALUE 5.0923E 03 '7.1290E-01 1.031BE.02 r
"ABS ERR-R 2,'8735E 01 5.7005E.01 2,9170E..03

REL ERR-R' '00057 0.79960227

ABS ERR-W 1.2039E 01 2e3882E-0'1 1,2221E.03 V

REL ERR-W 0.0024 0.3350 0.1184

ABS ERR-T 3.1155E''01 6.1,905E-01 3*1627E.03

REL ERR-T 0-0'061 0.8670 0s3065
!s!i

Identification time necessary to reduce relative transfer function errors for mode

10 below one for this case is now given by
.021 222+' " 2

TID = (0.05/0.01)2 + 7.032 + 2 + 2(2.5) + 2(2.5)

= 112 sec

Similarly, for a fixed TID the assumption of possible coupling between axes seems

to increase relative transfer function error over the single-axis (uncoupled)
case. This characteristic is believed to be due to the conservative assumption of
independent errors used to derive (5-50). It believed that when all correlations

between error sources are considered, such differences must disappear.

Control Design

We have noted earlier (Section 2) that to accomplish disturbance attenuation using

the vibration control structure of Figure 2-3, loop gains for each of the three
vibration control loops should be greater than 1 over the frequency range of the
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TABLE 6-2. APPROXIMATE IDENTIFICATION RESULTS
"FOR'BASELINE--CONCEPk- ALL NXES

MODE 7 : W 0.9144 R/5 ; ZETA =0,7000 ; RATIO

PARAMETER 2*Z*W B 4, B 5. ti 6

NOM VALUE 8.3617E-01 !,2802E 00 2.8304E.08, i,,5443E-03 .- ,,,.83E.o5

ABS ERR-R 5.0620E-01 1.1016E 00, 3.3444E.04 5,7476E.04 3..;,)51E,04

REL ERR-R 0.6054 0.8605 0.2.162 0.3716 0.2169

ABS ERR-W 2,0693E-01 4,5031E.01 1,3671l..04 2,3495E-04 .. 3715E.04

REL ERRW 0.2475 0.3518 OOR84' 0.1519 0.0887

ABS ERR-T 5.'4686E-01 1,1901E 00 3'.6130E.04 6,2093E04, l6246E.04

REL ERR-T 0.6540 0.9296 0.2136 0o401.., 0,2343

MODE 9 ; W 1.9936 R/S ; ZETA 0,0050 ;RATIO =jq495

PARAMETER W**2 2*Z*W .B 4, B 5 B 6

NOM VALUE 3.9744E 00 1.9936E-02. 4.,7579E.04 -1.0394E-11 -5.4119E-11

ABS ERR.R 4.9421E-02 3,5059E.02 2,9583E.04 2,958!.E0 4  2,e9581E.04

REL ERR-R 0.0124 1.7586 0.6218 0-6217 0,6217

ABS ERR.W 5.6297E-02 3.9937E-02 3.3699E.04 3.3697E.04 3,3697E.04

REL ERR-W 0.0142 2,0033 0.7083 0,7082 0,7082

ABS ERR.T 7,4912E-02 5,3142E-02 4,4841E.04 4,4839E-04 4,4839E.04

REL ERR-T 0.0188 2.6656 0.9425 0.9424 0.9424

.0
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,TABL-E 6-2. PPROX E IDENTIFICATION RSUTS
FOR BASELINE CONCEPT: ALL AXES (contihued)

MODE 10 ;. W 2.0916 R/5 ; ZETA 0.00050 5 RATIO 5d76 57
I PAOAMETER Wit,*2 2*Z*W ,B 4 ,B 5 B 6

MNOM VALYE '4.'3748E O0 2.0916E-0 2 -2. 5 169E.04 1,. 3 324E-Oq ý.6571E.O9

ABS ERROR 2.0pOE.-o1 1.4125E.01 6*0096E.04 6,0093E.'04 6,0093"..04

REi ERR-P 0,0478 6.7532 2.3A77 2.3875 2,3875
ABS ERR.W ,6,0499E-02 4,0907E.02 1.7404E._4 1*7403E.04 1,7403E404

REL FRR-W 0.0138 1.9558 0.6915 0.6914 0,6914
S ABS ERR.T 2,1749E...01 -,4705E.0O1 6.,2565E.04 6,2562E.0 4  6,2562E.04

S REL ERR-T 0.0497 7.0307 2.4A58 .2j4857 2.4857

MODE 11 ": W =: 2.7847 RS ; ZETA 0.7000 ; RATIO 1,1397
PARAMETER W**2 2*Z*W B 4 B 5 8 6
NOM VALUE 7.7547E 00 308986E 00 -1,4763E.03 -7,9q41E.lo 3.3207Eý.09
ABS ERR-R 2, 7 388E 01 1,9572E 01 3,2038E.03 1,8622E-003 1,8622E.03

REL ERR-R 3.5318 5ý0202 2.1701 1.2614 1,2614

ABS ERR-W 1,0997E 00 7.8584E.01 1.2864E.04 7,4770E-05 7.4770E.05
REL ERR-W 0.1418 0,2016 OO71 0.0506 0,0506
ABS ERRP.T 2 O7410E 01 1,9587E 01 3,2064E.03 1,8637E.03 1,8637E.03

REL ERR-T 3o5347 5.0242 2.1719 1.2624 1.2624
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TABLE 6-2. APPROXIMATEIDENTIFICATION RESULTS
'FOR BASELINE CONCEPT:f ALL-`AXES (dontinued)

MODE 14 ov W z 7.,6891 R/S ; ZT'A 0,0050 ;RATIO 1219,4851

PARAMEThR W**2 2*Z*W B 4 B 5 8 6-

I ~NOM VALUE -5,912ýE .01 T,6891E.ý02 -07E08 5,5'36 4t-03 7.6977E.05

ABS 'KERRI.R 4. 1117E-02 7*5'626E-03 1*9254.E..04 1.9254E..04 1.9254E..04%

m'.7*.

REL ERR-R -0e 0007 0.0984 0.0348 0.0348 0.0348

ýABS ERR-W 4.2'642E-0l17.8432E..02 Vj9968E-.03 1.,9969E-oi 1,9968E..03

RELl~RR..W 0.0072 1.0200 0.3 0O6 0'.36 0-6 0. 3606

,ABS ERR-,T 4.28940E-0l 7'.6796'E02 2.0061E.;.03 2.0'062E..03 2,006iE-.03

REL ERR-T 6~0072 1.0,248 0.36'23 0.3623 0.3623

MODE 15 ;W 8.1696 'R/S ;ZETA 0.,,0050 RATIO,; 916.0227

PARAMETER ,W**2 2*Z*W B 4 8 5 B 6

NOM VALUE 6.6742E 01 8o.l696E-02 2.i4 35E-06 6.7002E-053 -4*8091E-03

ABS ERR-R 6,7315E-02 1.1603E-02 2.4276E..04 2.4276E..;04 2,'4277'E.04

RE RR. 0.000*1428 0.0'505 6.o5n5 0-0505

ABS ERR-W 4.6702E-01L 9.0R4-6E-2 1.6827E-.03 1.6827E-03 1.6828E..03

REL ERR-W 0,0070 0.9896 0.349c) 0,3499 093499

ABS-ERR-T 4.7185E-oi 8,1681E-02 1.7001E-.03 1.7001E-63 1.7002t-03

REL ERR-T 090071 0.9998 0,3935 0,3535 0,3535
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TABLE 6-.APPR0XImAcTEiDErNTIFlC -A-T'ION "RESULTSFOR BASELINE-CONCEPT•: ALI, AXES (continued)

"MODE 16 ; W 8.466'9 0/S -ZETA 097000, - RATIO = 16.474-7

PARAMETER. W**2 2*Z*W- B 4 - B 5 B 6
'NOM VALUE 1.1688E 01 1.18'548 '01 -9.8451E._63 6.652'6&..0g .9.7898E.07

ABS ERR-R 3,0185E 01 7.0943E 00 2.547JE-O3 1,4805E-03 1.4a05E-03
REL ERR-R 0,4211 0.5985 0.2r87 0.1504 O.1504
"ABS ERRO-W 5.8361E 00 1.3703E O0 4.9197E0"04 2.8595E_.04 2.8595E,.04
REL ERR-W 0.0813 01156 O.0O0 000290 0.620
ABS 'ERR..T' 3O.b43E 01 7,2255E 00 2.5942E.03 1.5.078E.,03 1.5078E-03

REL ERR-t 0.4288 0.6096 0.205 10 532 0 1532

V,"

MODE 22 ; W -18.7836 R/5 ZETA =000,50 RATIO -1147g687

PARAMETER W,'**2 2*Z*W B 4 B 5 B 6
NOM VALUE 3 .5Ž8 2 E 02 1, 8 7 84 E.01 -1.7 1 5 0E.02 ' 3 . 7 56 5E-68 - 4 . 9 6 50E-08

ABS ERR.R 9.7656E-02 7,3526E.03 2,3735E.04 2,'3734E.04 2' 3734E.04
REL ERR-R 0.0003 0.0391 0.0138 0 013R 0.0138
ABS ERRE.W 1.6282E 00 1.,2259E.01 3,9573E.03 3.9571E,,C01 3.95'ý',E..03

REL ERR-W 0*0046 0.6526 0.2107 0.2307 0.2307
ABS ERR.T 1,6311E' 00 1#2281E.01 3,9644E.03 3,9642E-03 3,9642E.-03
REL ERR-T 0.0046 0.6538 0.2112 0.2311 0.2311
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TABLE 6-2'.. APPROXIMATE IDENTIFICATION RESULTS
FOR BASELINE CONCEPT: ALL AXES (c676tinued)

SMODE ?3 ; W 19.9551 R/5 ; ZETA 0,0050 ; RATIO 411.4819

PARAMETtR W**2 2*Z*W B 4 B 5 B 6

NOM VALUE 3.982 0E 02 1.9955E-01 -5.2503E.08 -4.1569E-05 1,0291E.02

•:• AS RRR -52E01 2,3756E-02 4,3312E_04 4.331,-E.6,4 4.3314%.0ý
ABS ER 3.320

REL ERR-R 000008 0.1190 Ot0421 0.0421 0.0421

, ABS ERR..W 1.7828E 00 1.2635E.01 2.3036E.03 2.3036E-03 2.3038E.03

REL ERR-W 0.0045 0.6332 0.2239 0.2239 ,',2239

ABS ERR-T 1. 8 141E 00 1,28,57E..0l 2*344(iE.0O1 2.3440E.-.0 2.3441E.03

REL ERR-T 0.0046 0.6443 0.2278 0.2278 0,2278

MODE 2,4 ; W 21.2828 R/S ; ZETA 0,0050 ; RATIO 423,666.1

-' PARAMETER W**2 2*Z*W B 4 B 5 B 6

NOM VALUE 4.5296E 02 2,1233E.01 5.6825E.08 -1,1993E-02 .2,8140E.05

ABS ERR.R 3.0 9 21E.01 2.0547E.G2 4,0934E.04 4.0q36E.04 4,0934E.04

REL ERR-R 0,0007 0.0965 0.0141 0.0341 0.0341

ABS ERR-W 1,9637E 00 1,3049E.01 2,5996E.03 2,5998E.03 2,5996E-03

REL ERR-W 0,0043 0,6131 0.2168 0.2168 0.2168

ABS ERR-T 1.9879E 00 1,3210E-01 2,6317E.03 2,6318E-03 2,6317E.03

REL ERR-T 0,0044 0.6207 0.2194 0.2194 0.2194

".)L,

"`8
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'.4,

TABLE 6-2. APPROXIMATE IDENTIFICATION RESULTS
'FOR BASELINE CONCEPT: ALL AXES (continued)

,4,

MODE 26 ; W = 33,0515 R/, ; ZETA 0,0050 ; RATIO 15j0447

PARAMETER W**2 82*ZW B 4 B 5 B 6

NOM VALUE 1.092 4E 03 3.3052E-01 -4,450iE.03 j,6294E-Oq -7.4501E-i0

ABS ERR-R 1.0481E 01 4,.4849E.01 2,,1350E-03 2.1349E-03 2,1349E.03

"REL ERR-R' 0.0096 1.3570 0,4798 0,4797 0,4797

ABS ERR..W 3.8003E 00 1.6261E.01 7,7411E0.C4 7,7407E-04 7,7407E.04

REL ERR-W 0*.0035 0.4920 0.1740 O.173q 0.1739

ABS ERR-T 1.'1149E 01 4.7706E.01 2.2710E.03 2.2709E-03 2.2709E.03

REL ERR-T 0.0102 1.4434 0.5103 0.5103 0.5103

MODE 29 ; W 932,5275 R/S ; ZETA 0,0050 ; RATIO 46,4166 6

PARAMETtR W**2 2*Z*W B 4 B 5 B 6

NOM VALUE 2.7591E 03 5.2528E-01 -7*8166E.03 -3,7546E-10 2,2738E-09

ABS ERR-R 1,7192E 01 4,6287E-01 2,4353E.03 2,4352E-03 2*4352E.03

REL ERR-R 0.0062 0.8812 0.3116 0.3115 0,3115

ABS ERR-W 7.6140E 00 2.0500E-01 1.0786E-03 1,0785E-03 1.0785E-03

REL ERR-W 0-0028 0.3903 0.1-80 0.1380 0.1380

ABS ERR-T 1.8,o02E 01 5,0623E.01 2,6635E.03 2,6633E-03 2,6633E.03

'4, 444 '4
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"p TABLE 6-2., APPROXIMATE IDENTIFICATION RESULTS
FOR BASELINE CONCEPT: ALL AXES (concluded)

MODE 33 ; W 7142905 R/S ZETA 0,0050 ; RATIO 8 0.R 7 74

PARAMETER W**2 2*Z*W B 4 B 5 B 6

MOM VALUE 5.082.3E 03.. 7.1290E.01 1.6504E:08.-5.9175E-08 1.0318E.02

ABS ERR-R 2.8735E 01, 5,7005E-01 2.9169E-03 2,9169E-03 2,9170E-03

REL ERR.R 0,0057 0.7996 0.2g27 0.2827 0.2827

ABS ERR.W 1,2039E 01 2.3882E-01 1.2220E,03 1.2220E-03 1,2221E.03

REL ERR-W 0.0024 0.3350 0.1184 0.1184 0,1184

ABS ERR-T 3.1)'55E 01 6.1805E-01 3.1625E.03 3.1625E-03 3.1627E.03

REL ERR-T 0.0061 0.8670 0.3065 0,3065 0.3065

MODE 36 t W 85.3456 R/S ; ZETA 0.0050 ; PATIO 166.9703

PARAMETtR W**2 2*Z*W B 4 B 5 B 6

NOM VALUE 7.2839E 03 8.5346E-01 2.7185E-07 1.7229E-02 -I.5168E-07

SABS ERR-R 1,9347E 01 3,2059E-01 2,2881E.'03 2.2882E-043 2.28slE-03

REL ERR-R 0.0027 0.3756 0.1328 0.1328 091328

ABS ERR.W 1.5769E 01 2,6130E-01 1,8650E-03 1,8651E-03 1,8650E-03

REL ERR-W 00022 0.3062 0.1082 0.1083 0.1082

ABS ERR-T 2.4959E 01 4,1359E.01 2.9519E.03 2.9520E-03 2.950E.03

REL ERR-T 0.0034 0.4846 0.1713 0.1713 0,1713
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.1.isturbance, 10 r/s < w.' 100 r/s. That is, their bandwidths should be greater

than 100 r/s. Since our models are not reliable beyond 3.00 r/s, however, we have

opted to reiax this requirement to ensure that loop gains do not exceed 1 for

frequencies above 100 r/s.

A control design consistent with this constraint is shown in Figure 6-1. Angular

rai'e feedback was zasumed here with a control gain of K = 1 x 105 in each axis.

Da:-ping for .solator modes was assumed to 0.005 for this design. These loop

cran-missions agree with our earlier assessment that all modes apparent in these

plots lie within the critical region described in Section 3. They should be

included in the identification model since they are all close to the critical zero

dB line, However, due to the favorable phase characteristics of these loops (-90

ueg < 4 < 90 deg), no instabilities would occur if the smallest two or three of
these were neglected. Technically, ILAS control loops .require only a. lower bound

on mode damping to guarantee stability and are relatively inaensitive to the

assumed mode frequencies. Practically, however, it is impossible to identify

damping without knowing ft'.quency. Thus, both frequency and damping of all

relevant modes should b.. identif.ed. This "positive real" control design exhibits

theoretical stability firgins of t- dB gain margin and ±90 deg phase margin.

After accounting for sensor and actuator dynamics and sampling of the digital

control system, p•.-ctical margir.s of ±6 dB and ±35 deg should be easily

achievable. Though this design assumes rate feedback, substantially the same

results could be obtained with attitude measurements front rate-integrating gyros
using the lead-lag compensator

K(s) 1 x 101
s + 100

Though the control design of Figure 6-1 pushes the bandwidth limit for model

validity, it fails to meet performance requirements at all frequencies in the

range 10 r/s < w < 100 r/s. The disturbance to LOS transmissions for the close..

vibration-control loop just defined are compaied with the open loop in Figure 6-2.

The DEFOCUS response is omitted since it meets st-ncification as open loop. As
expected, this design fai.ls to attenuate disturbances at certain mode frequencies .°

that are not controllable and observable (e.g., 22, 24, 26, 29, and 36). Between
these frequencies it provides little if any attenuation. It does, however, come
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within a factor of 4 (12 dB) of meeting the LOS specification at t& 31.4 r/s

(near mode 26), which was the disturbance frequency assumed by Draper (Ref. 1).

"As evident from Figures 6-1 and 6-2 and equation (2-7a), higher control-loop gain

(or control bandwidth) will not improve disturbance attenuation performance for

this concept. Rather, performance is limited by uncontrollable/unobservable

modes, so that "ideal" control requirements are unachievable with this concept for

any control design. The presence of uncontrollable/unobservable mode., therefore,

imposes a fundamental limitation on control performance. For the advanced

concept, which we examine next, all critical modes are controllable and observable

so that performance is largely limited by control bandwidth.

ADVANCED CONCEPT

Specific numerical results for the advanced concept identifiability analysis and

control design will be discussed in this subsection. The advanced concept, in

sharp contrast to the baseline concept, presents a much more difficult (non-ILAS

and strongly coupled MIMO dynamics) identification and control problem. But it
414k

has the advantage that all critical mode- are strongly controllable and observable.

Actuators and sensors were assumed to be the same for both identifY~cation and

control. This assumption was based on the philosophy that it is only necessary to

- identify dynamics that affect the control design. Other purposes for doing

identification, which are likely to require different actuators and sensors, were

not addressed in this study. As discussed in Section 2, actuators for the

advanced concept were chosen to be paired shakers to give a torque input about the

x, y, z axes at node 44. The sensors were chosen to be accelerometers about the

x, y, z axes at node 11. These sensors and actuators proauce an extreme case of

non-ILAS. That is, not only are the sensors and actuators not at the same

location, but they are on different parts of the spacecraft, which are separated

S.by the isolators. In addition, the actuator and sensor types are inconsistent

(i.e., torques and linear position). The finite-element model for the structure,

which was treated as the trLe system, had 84 second-order modes modeled. Of these

84 *nodes, 6 are rigid-body free-free modes, 6 are isolator modes, and the

"remaining 72 are flexible modes of the spacecraft. The damping coupling due to
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the isolators was ignored and was assumet. to give the six isolator'modes a damping

ratio of 0.7; the inherent structural damping was assumed to give all the other

"modes a damping ratio of 0.005.

Identifiability Analysis

Identifiability analysis was carried out using both the exact and approximate

identification analysis software. Both of these computer programs assumed that

Test Signal 1 and position output were used.

The numerical results obtained were consistent with each other and with the

frequency domain interpretation discussed in Section 5. The frequency domain

interpretation was used to make recommendations for test signal sizing and

shaping, type of measurement to use, and minimum time for identification. The

detailed numerical results for Test Signal 1 and position output will be discussed

next. It should be noted that, although results of Section 5 favor the use of

"I-est Signal 2 and rate measurements, these recommendations were actually made

after all identifiability analyses of this section were complete.

Stochastic Parameter Trror--Recall from Section 4 that stochastic error is the

error in the parameter estimates due to random effects. The contributions to

stochastic error from measurement noise and process noi.se were considered for MLE

identification without the Kalman filter. Specifically, the stochastic error was

defined as

Stochastic error: Z E (6-3)

th
where oN is the parameter estimate at the N sample time and • is the

limit of N, as N goes to infinity (i.e., ' is the expected value of the

parameter estimate). For MLE identification in general, stochastic error

decreases linearly with increasing measurement time, and increases nvnlinearly

with decreasing test signal intensity and increasing process noise and measurement

noise intensities. For MLE without the Kalman filter, these nonlinear

relationships become linear. These statements can be expressed as
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1.[ R + (6-4)N (N + l)T U "+-W]N 0

where T is the sample time and 7 R and Z W are the sensitivities of stochastic error

to measurement and process noise, respectively. The test signal, process noise,

and measurement noise intensities are assumed to be given by

Test signal intensity: U = UoI

Process noise intensity: W = WoI

Measurement noise intensity: R = R I
0

where Uo, Wo, and R are scalars and I is an identity matrix.

The sensitivity to measurement noise was computed exactly for true systems and

model systems of the same order using the exact identifiability analysis

software. An approximation to it was also computed using the approximate

identifiability analysis software, where one-mode true and model systems are
assumed. The sensitivity to process noise is exceedingly difficult to compute

-U ,.

exactly and was not implemented in the exact identifiability analysis software.
An upper bound to this sensitivity was, however, computed as a part of the

approximate identifiability analysis software.
% A

Typically, only the diagonal elements of Z are of interest, since they are

8•. proportional to the square of the standard deviations of the parameters. Also of

interest is the relative or normalized error. The relative errors are

dimensionless and are easily related to identification accuracy required for

control design. The relative errors for a specific mode were defined as

"A'"
a 2

w. irelative error -

-24W

2;w relative error =
2*W

b relative error = Ib-l = 1,2,3

cm
c relative error c m = 1,2,3
M *

192



where the star (*) subscript indicates the true or nominal parameter value. The
th thsymbols b% and cm stand for the 9Zh and m element of the parameter vectors b and

c, respectively. r

Numerical results for 21 flexible modes (147 parameters) in the frequency range
1 to 100 r/sec are shown in Table 6-3 for the approximate identification analysis

software and in Table 6-4 for the exact identification analysis software for the

following values:

T = (N + 1)T =1 sec

U x 102 (N-m) /Hz (Test Sicnal 1)

-14 20;
R = 10 r /hz (position output)

0

W =0.01 U0 0 •

As expected, relative errors for damping are the largc;-.t parameter errors for each

mode, It can be seen that the higher frequency modes are the hardest to

identify. This is again consistent with the frequency domain interpretation

regarding Test Signal 1 and position output. For comparison, worst-case results

for Test Signal 1 with position output and Test Signal 2 with rate output are

shown in Table 6-5 for a 300 sec identification time interval. Thus, while
identification time intervals would be unreasonable for Test Signal 1 with

position output, a 5 min identification time interval with Test Signal 2 and rate

output would be sufficient to reduce all relative errors to less than unity.

Worst-case results for stochastic error due to process noise are shown in Table

6-6 for a 300 sec identification time interval. These results are independent of

test signal since process noise intensity was assumed proportional to test signal

intensity. It is evident that all relative errors are sufficiently small.

It should be observed that approximate and exact results for stochastic error due

to measurement noise are essentially the same. Worst-case discrepancies are show;n

in Table 6-7. These discrepancies are due to "close" modal frequencies, which
make the one-mode-at-a-time assumption break down (i.e., AAw < 2•)
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TABLE 6-3. APPROXIMATE IDENTIFICATION ANALYSIS STOCHASTIC
ERROR RESULTS FOR ADVANCED CONCEPT

41D 9~ W 1.9936 R/ EA 0.0050 ; %ATIO 2A.4 3 92

PRAMLER~. :::;*:2 :** 4 P 5 B 6 C.R9:0 2 C:::;3
NOM VALUE 3.9 744E 00 1.9)36E-02 4.7579 F-.04 -1.0.394E-1.1 .5.4129 E.11 2.3927E.06 -206322E-04 -5.1421E-03

RE -- -12 .0087iOI 0.0812 0,84 014

ASSERPW 56?oE.2 3993E.0 0.4.655-044.755E045.1571E-.03 5.1630E-.03 7.2A8W~-03

RE 0- ,0142 2o0033 0. 1.0016 101k,06 .19 145

AHS ERP.T 5.64P2E..02 4.016sE..02 0. 4.7811E-04 4.7811F..04 5.1740E-.03 5.180l1E-03 7,3128E.03

'a REL ERR-T 0.0142 2.0098 0. 1.004q 1.0049 1.0049 1.0062 1*4201

MODEF 10 W ?.0916 R/S IZETA 0.005D RATIO 15.0073

PAOAMETtR 2WZ? 8 4 B 5 11 6 c I 2 *17

NOil VALvE 4.3*?48E 00 2,,0916E-.02 2.5169E..04 1.3324E-0a 5.65i71E-09 .9.8898E-07 4.9347E-03 7.8374E-.04

ABS ERR-R 1.0523E-02 7-1152E-03 0. 4.2809E-'05 4o2809E-05 8.4904E-04 IsI945IF-03 8.60Z3C-04

REL EQR-R n,0024 0.3402 0. 0.17ri 0.1701 0.1701 0.2391. (1,1722

ABS EIR-W 6.0499E.02 4.0907E..02 0. 2.4612E-.04 2.4612E.04 4.8859E-.03 6.8674E-,03 4.9457E.03~

REL ERR-W 0.18 1.9558 0. 0,9779 0.9779 0.9779 1,3744 099

ASS ERR-T 6.14naE-02 4o1521E.02 0. 2.49 81E-04 2.49 S1E'-04 4o9 5q3E-03 6.9706E-03 5.0199E-01

REL EQR-T no0140 1.q851 fl. 0,9925 0.9q25 0.9Q25 1.3;,51 -.0047

,, M:)DE 14 W : 7.6891 R/S 1ZETA a0.0050 1RATIO 0. 1;233

PARAMETIAf w*.2 2*Z*W B 4 B 5 8 6 C 1 C 2 C 3

- N O' VALuE 5.9172E 01 7.6891E-.02 -3,0726E-.08 5.5364E..01 7.6977E.05 4.8514E-04' 6.0668E-05 .8.1447E..05

ASS CERR-R 4o5931E-01 8.4482E-02 3.0417E..03 0. 3.04.Z0E.03 3*8104E-04 2.7432E-04 2.7594E-0~

REt. ERR-Fr 0.0078 1.0987 (1.5493 0. 0.5494 0.7688 0.5535 095567

A!.ýS SRRW 4..2642E.01 7.8432E-02 2.8239E_.03 0. 2.8242E..03 3.5376E-0' 2.5467E.04 2.561SE-0'.

REL EQR-W 0.0072 1.0200 0.5100 0,. 0.5101 0.71,37 06513e 005160

ABS E~RRT 6.2674E-01 1.1528E..01 4.1505E-03 0. .09.3 51QE0 3.143LE.04 3.75E0

REL. ERR-7 0,0106 1.4992 0.i496 0. 0.7491 1.0490 007552 0.7597
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,•. ;TABLE 6-3. APPROXIMATE IDENTIFICATION ANALYSIS STOCHASTICERROR RESULTS FOR ADVANCED CONCEPT (continued)

"V&t

M^DE 15 ,.Itq6 /S ZETA 0.005n ; RATIO Ap. .431

PAOAMETFR v.**2 2*Z*W P 4 6 8 6 C I C 2 C 3

N1)"' V' 6.6.4,2E 01 8.1t96E.02 2.14.35E.06 6.7892L.0, ._4.8091E.03 2.qO30E.03 .1.0413E.03 .5.881JE-04

SE 1.03?1E-01 1.7466r-02 5.2590E-04 5,2595E-04 0. 4.6761E-.04 3.617nE-Oi 3.4928E-04

REL EqR.R n.0015 0.2187 0.1093 0.10q 4  0. 0.1 48 0.1152 0.1

., ¶ AOS ERP..% 4.6702E-01 8.0946E-02 2.3797E.03 2.3799E-n3 0. 2.1159E.03 1.6367E-03 1.5805E-Cl
R REL FRR.h n.0070 0.9896 0 .4648 0 .4Q4A 0. 0.6739 0.5213 0.5034

AB5 EQP.T 4o70?2E.01 8.2796E-02 2.4371E.03 2.43736-01 0. 2.1 6 70E.03 1.6762E-03 1.6186E-03

RFL •Q-T 0.0072 1.0135 0.5067 0.5068 0. 0.6902 0.5339 0.5155

MýD0E 17 : W 10.8130 RIS ZETA 0.0050 ; RATIO 16.q035

PARAMETLR W**2 2*ZW R 4 B 5 8 6 C I C 2 3

NOM VALUE 1.16q2E 02 1.013E.-O1 -
3

.
9 5 8

9E- 0 7 
-8. 2

1
8

0E-n7 1.
4 0 7 4

F.04 1
.

5 0
4

8
E. 0 2 -1. 0 0 7 2 E-02 -6.24 19 E- 0 3

ABS ERR.R 1.5472E 00 2,0170E.01 1.3127E.04 1.3127E.04 0. 2.2718E.02 2.0183E.02 1.8788E-07

REL ERQ-R 0.0132 1.8654 0.9-27 0.9327 0. 1.1861 1,0538' 0.980q

ABS EqR.W 7.1113E-01 9.3010E.02 6.0532E.05 6.0532E.0 0. 1.0476E.02 9.3071F.03 8.6639E-03

REL ERR-W 0.0061 0,8602 0.4,01 0.4301 0. 0,5470 0.4859 0.4523

ABS ERR.T 1.6 9 8 2E 00 2.2211E.01 1.4455E.04 1455E.4W0 0. 2.5017E.02 2.2226E.02 2.0690E-02

RCL EQR-T 0.0145 2.0541 1,0770 1.0271 0 1.3062 1.1604 1.0802

MDDE 21 1 W 14.8503 R/5 Z ZETA 0.0050 RATIO 31.7395

PARAMETbR W**2 2*Z*W 1 4 1 5 B 6 C I C 2 C 3

NOi VALUE 2
.

2 0
5

3
E 02 1.

4
SOE..01 1 . 5 4 9'E- 0 7 - 2

. 7 118E.04 .2.4793E.0 .Z.O78 1
E.-0 3 

-3 .6152E.-03 1.1057.02

S ABS ERR.R Z.9n 6 6E 00 2.7 6 80E.01 3.4243E.04 4.3 6 15E.0 4  4.219Eý04 1.120 6 .-O 1.1587EX.02 0.

REL ERR-R 0.0132 1.8640 0.9120 1o1170 1.14O 0.9483 009605 0.

ABf, E.RR.W 1.1445E 00 1.0900E-01 1.3484E.04 1.7175E.04 1,6625E.04 4.4127V.03 4.56271.03 0.

REL ERP-w 0.0052 0.7340 0.3A7 0  0.4674 0.4525 0.3734 0.3661 0.

ABS ERR.T 3.1238E 00 2.9749E-.O1 3.6802E.04 4.6875E.04 4*,375E..0t. !Z.43F,02 1.2453'.0? 0.

REL E•q-T" 0.0142 2.0033 1.0016 1.2757 1.2349 1.0191 1.0538 0.
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TABLE 6-3. APPROXIMATE IDENTIFICATION ANALYSIS STOCHASTIC.•"4 ERROR RESULTS FOR ADVANCED CONCEPT (continued)

Zt..

4•0 12 W .-.7836 R/S ; ZETA 0.0050 1 RATIO 5 6.0853
PAJ~mETkR *2 2*Z*W S 4 13 ~ lC 3r

I'D" VALUE 3.52'Q2E (7 1,3784F.01 -1.7150E-O2 -3.7565•.') -220396E05 4.052aE04 -?.2701E-04

A63 ' Q-R 3. 6 :'l9E 00 2,711E.OI O. 1.238O..-02 1,2.;8.0.02 3.3597E-04 4.4528F-04 3.7353'F-04
REL F;R-R 0.0102 1.443a 0. 0.7219 0.771; 0.7226 0.9576 0.803

AB, FRR-W 1.6-)2E 00 1.2259E.01 o. 5.5q6?E.-O 5,5362E-03 1.5187E.04 2.0128F-04 1.6884E-04
REL EýR.W ) .004,k 0.6526 0. 0.3263 0.3763 0,3266 0.4329 0.3631
AlS ERR-T 3.9r28E 00 2.9761E.-01 0. 1.3586E-O.2 1.3586E.02 3.6 8 71E.O4 4.8865ý-04 4.0 99 1E.04

REL FRR-T ).0112 1.5844 ' 0. 0.7922 0.7922 0.7930 1.0509

M DF 23 w W r4.9551 RIS 4 ZETA z 0.0050 ; RATIO 93.1679

PAQAMETLR vq*2 2*Z*W B 4 B 5 6 C I C 2 C 3
iNO" VALUE 3.9'n2OE 02 1.99551.Ol .5.2503E.08 -4,1569E.,O 1.0291F..02 6.8976E.04 .9.1464E.04 .7.1273F.05
ABS FRQ-R 3.01ý,2E 00 2.1299E-01 5.491 6 E.03 5.4qlTE.0 0. 7-14 6 4E.04 7-8325E-04 6-1370E-04

REL ERR.R 0,0075 1.0673 0.5-37 0.5337 0. 0,6226 0.6824. 0.5347
ABS ERR.W 1.7q28E 00 1.2635E.01 3.2579E.03 3.2579E.03 0. '..2395E-04 4.6465E.04 3.6407E.04
REL ERR-w 0.0045 0.6332 0.3166 0.3166 0. 0.3694 0.4048 0.3172

ABS ERR.T 3.4Q43E 00 2.4765E.01 6.3853E..03 6.3853E-03 0. 8.3093E.04 9.1070E.04 7.1357E.04
REL ERR-T 0,.0088 1.2410 0.6205 0.6205 0. 0.7239 0.7934 0.6217

,MODE 24 : W 21.2828 R/S : zETA 0.0050 ; RATIO : 90.AO78

PARAMETER W**2 2*Z.W B 4 B 5 B 6 Cl C2 C 3

NOM VALUE 4.5?q6E 02 2.1283E-01 5.6425E-O8 -1.1993E-02 .2.8140E.05 -5.2388E.O5 1.1 9 39E-O0 -3.SO48E-04
ABS ERR-R 9,2200E 00 6.1267E.01 1.7262E.02 0. 1.7262E.02 5.8379E.04 6.0387E.-0 7.9693E.04
Rrt ERR-R ,).0204 2.8787 1,4193 O. 1.439ý 1.4515 1.5014 1.9814
ABS ERR-W 1.9A37E 00 1.3049E.01 3.6764E.03 0. 3.6764E.03 1.2434E.04 1,2861E.04 1.6973E04.

REL ERR-W 0.0043 0.6131 0.3n65 0. 0.3066 0.3091 0.3198 0.4220
ABS ERR-T 9.42a8E 00 6.2642E.01 1.7649E..02 0..02 5,9688E.0 6.1741E.O4 8.1480E-0,

- REL. ERR.T 0.0208 2.9433 1.4716 0 1.4716 1.4840 1.5351 2.0259
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-TABLE 6-3. APPROXIMATE IDENTIFICATION ANALYSIS STOCHASTIC
ERROR RESULTS FOR ADVANCED CONCEPT (continued)

.MOE '6 W 31•1515 P/S ; ZETA 0.005; RATIO 17.4843

PADMFUR %*42 2*Z*W 8 4 B 5 8 6 C C 2 C 3

""ll-' VALUE I.O,?4E 03 3.3152E.-0 .4.4501F.03 1.6?94E.0q .7.4501E.1O .5.4634F-06 3.3179E.05 -3.5396F-05

ABSS FP-R q. 5 ý40R 02 4.OA81E 01 0. 2.7521E-01 2.7521E-01 3.0381E-03 3*6506E-03 3.7294F-03

REL FRP-R n.8746 123.6881 6, 51.8425 61.8425 62.2286 74.7741 76.3884.

-ABS ERR-W 3.8'103F 00 1.67617..0t 0. l.0q47E-;'A 1.0947E.03 1*2085E.05 1.4521E.05 1.4834E-05 ''

PEL ERR-W. 0.0035 0.4q20 0. 0.2460 0.2460 0.2475 0.2974 0.3039

ABS FRR-T 9 .5541E 02 4.0881E 01 0. 2.7521E-01 2,7521E.01 3,0381E-03 3#6506F.-03 3.7294E-03 _,
REL FRR.T 0.8746 123.6891 0. 61.8430 61.8430 62.2291 74,7747 76.3890

MOF, 28 ; W 51.9991 R/S ; ZETA 0.0050 * RATIO 3.A127

PARAMETtR A**2 2*Z*W 0 4 8 5 B 6 I. C 2 C 3
•NO; VALUE 2.009E 03 5.099qE.01 .9.90761.07 3,2542E.0A -7.6340E-06 -4,0058E-13 1.28.0 3 7,.3376E-03

ABS ERR-P 1.3402E 04 3-,71 6 4 E 02 3.070 6 E..0l 3..'102E-0 0. 3,4 7 11E 00 3.1234E 00 4.2501E 00 i.

REL ERR-P R.1527 728.7195 367.4063 3q6.0720 0, 410.4296 369.3211 502.5335

A85 ERP.W 7.2041E 00 2.0199E.01 1.6689E.06 1.7q92E..06 0. 1.8866E.03 1.6977E.03 2.31C0E.03

REL FRP-W r,.0028 0.3306 O.Iq97 0.2151 0. 0.2231 0,2007 0.2731

A0D FRP-T 1.34.C2E 04 3.7164E 02 3.0706E.03 3.3102E-03 0- 3,4711E 00 3.1234E 00 4.2501E 00

REL FRR.T 5.1527 728.7196 367.4n64- 396.072Q 0. 410.4296 369.3212 502ý5336 1"

J DE 29 W 52.5275 R/S ; ZETA 0.0050 ; RATIO 6'4.5197

PAQP1rFTtR W**2 2*z*W B 4 B 5 a 6 C 1 C 2 C 3

Sl0m VALUE 2.75oE 03 5.2,28EE01 -7.8166E-03 -3.754 6 E.10 2.2738E-09 .8.0 6 94E.-00 .4.7428E-05 -1.9354E-0'

ABS FRR.R 6.7a•82 02 1.8142E 01 0. 1,31.98E.Oi 1.349SE.01 3.4467E.03 3.53q9E.03 4.7992E.0, 4

QEL E:R-R 0.2442 34.53l 0. 17.2686 17.2686 17.2826 17.7503 2. 064•,

ABS EPR-• 7,6140E 00 2.05OOE.-0 O 1.5252E.-'I 1.5252E.03 3.8q46E.05 4.000E-05 5.4220E-05

REt. ERR-W O.00.78 O.303 0. 0.1951 001951 0.1953 0,2006 0,2719

ASS FRQT 6.7Th7E 02 1.8143E )1 0. 1.3,99E.01 1.3499E.01 3.4469E-03 3,5402.-n3 4.7995E.-0

PEL F4•-T 0.2442 "4.5403 0. 17.2697 17.2697 17o2839 17.7515 74.066"1
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TABLE 6-3. APPROXIMATE IDENTIFICATION ANALYSIS STOCHASTIC
ERROR RESULTS FOR ADVANCED CONCEPT (contihued)

S51 
, : .q508 R/S ; ZgTA O.O5 o qATIO 52.h435

2*iW 6 4 3 5 B 6 C I C 2 C 3

_4 1 I0' VALvE 2.8;e)9E 03 5.3n51E.0l 1,3141E.04 -l.8262E-c, 3.256nE.O 4.900E05 -5.971SF-03 -1.1zF2.5E-3

ASS ERPP 6.4126I 02 1.7925E 01 0. 2.2039E-01 2.2039E.03 2?0041E.-01 2.2!53E-01 2.672AC-01

R"EL FaR.P .2235 31.6146 0. 15.806° 15.806; 15.8070 17.4727 ?•!.791

,5 ERR-w 7.q935F' 00 2.07"ie-.01 0. 2.6870E..0n 2.6870E-05 2.4434E.03 2.7009E.03 3.25R4E-03

,EL ERR- 0C.0077 C.3854 0. 0.1927 0.1q27 0.1927 0.2130 0.2570
A85- FRO-T 6.4,130E 02 1.7026E 01 0. 2.2041E.-O 2.204.E-03 ? 4 0043E.01 2.215SE-01 ?.672SE-0i

REL ERR-T 0%.2236 31.6170 0. 15.8081 "5.8081 15.8082 17.4740 2!.Opoh
S.. 

2' '.OSO

M'4,fE 33 W 71.2q05 RIS ; ZETA 0.0050 ; RATIO 4q.4160

PARAMET1R ý.**2 2*Z~w BA B3 B6 C I C2 C3

MOM VALUE 5.0,123E 03 7.1290E.Ol 1.6504E.08 -5.9175E-08 1.0318E.02 4.3431E.05 .5.8691E.05 -5.1668E-05
ASS ERR-1 3.314AE 03 6-575RE 01 4.758 6E.01 4.7s86E-0I 0. 4,5858E-03 4,9340E-03 4-7 640F-03

REL ERP-R 0.6522 q2.2400 46.1188 46.1189 0. 51.2690 55.1623 51.2618

ABS ERR.W 1.2M39E 01 2.3882E.01 1.7282F.03 1.7282E.C3 0. 1.6655E.05 1.7919E.05 1.7302F.05

, QEL FRR-W 0.0024 0.3350 0.lA75 0.167r 0. 0.1862 0.2003 0.1934

ABS ERD-T 3.314AE 03 6.5759E 01 4.7586E.01 4,7586E-01 0. 4.59 55E-03 4.9340E-03 4.7640E-03

REL ERR-T 0.6522 92.2406 46.1191 46.1191 0. 51.2694 55.1627 53.2621

Mý.. M ME 34 : W 72.2430 RS ZETA 0.O05U ; RATIO 1.7513

PAPAME;•C! W*.2 2*Z*W f, 4 B 5 8 6 C I C 2 C 3

NOM VALUE 5.2!QOE 03 7.22743E-01 1.7126E.05 7.8q78E-07 .9.0542E-06 5.0133E.04 3.4317E-04 -3.1113E-03

ABq -RR-R 5.Iq04E 04 1.0161E )3 1.8438E-02 •.370CE.07 1.5156E.02 2,2580E 00 2.24?RE 00 0.
""4 REL ERR-Q ),9452 1406.4938 946.6A31 703.8294 778.1365 712.3001 707.4Q41 0.

ABS ERR.W 1.22i1E 01 2.4041E.01 4.3626E..0 3.2435E-04 3.5859E.06 5.3425E.04 5.3065E.04 0.

REL ERR-W n.0024 0.3328 0.2P40 0,1665 0.1O41 0.1685 0,1674 ,

ABS EQR-T 5.190•4E 04 1.0161E ^, 1.8438E.02 1.3708E..0, 1.5156E.02 2.2580E 00 2.2428E 00 0.

RE, EZR-T 9.9452 1406.4q38 946.6R31' 703.8294 778.1365 712.3001 707s4941 0.
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TABLE 6-3. APPROXIMATE IDENTIFICATION ANALYSIS STOCHASTIC
ERROR RESULTS FOR ADVANCED CONCEPT (continued)

%71''

11C 35 7,j.;584. R/S ;ZETA z0.005n R ATIO ?038

PAQ tM• r-= -* *2 2*Z*W 3 4 0 5 B 6 C I C 2 C 3

"I" VAL'F 6.3,.*3E 0 7.9q58E..0 -8.8575E.05 6.8362E.-7 .1.7934E.06 -6.9326F.04 4.0320F.04 4*Z9.3

A15 FRP-?R 1.121E 04 2.OIORE 02 0. 1.1584E-02 1.1586E-02 5.7780E-01 50 7 307E-01 8,0030E-01

O 
0
EL ERP-R 1.8490 261.4n76 0. 130.744,. 130.7673 132.3805 131.2q76 183.3579

ABS FRP-W 1.4%00E O0 2.5292E.01 0. 1.4012E..05 1.4015E.05 6.9896E.04 6.9324E.04 9.681IE.04
REL ERP-W 0.0022 0.3163 0. 0-1587 0.1582 0.1601 0.1588 0H2218 V.

ABS EQP.T I.I;?IE 04 2.0908E 02 0. 1.1584E.07 1.1586E.02 5.7780E.01 5.7307E-01 d'.0030E-I

REL ERR-T 1.8490 2l.48q78 0. 130.7445 130.7674 132.3806 1 3 1.297b 183.35I1

MMDE 36 1 W 85.3456 R/S Z zETA 0.0050 RATIO = 29R.829

PAPAMETtF w**2 2*Z*W V 4 3 5 8 6 C I' C C 3
NOM VALUE 7.2n39E 03 8.5346E.-o 2.7185E'07 1.7229E-02 ,1.5168E.07 1.4179E-05 7-9660E.05 2.5561E.04

ABS ERR-R 124)32E 03 2.0601E 11 2.0794E.01 2.0794E.01 3.2404E-03 3.3757E-03 4.4711E.03

REL FRq-R n.1707 24.1388 1 2.0o9! 0. 1200691 12.0860 12.5907 16.6760

ABS FRR-W 1,576QE 01 2,6130E.01 2.6375E.03 O, 2,6375E.03 4,110lE.05 4.2817E.05 5.6710E.05 ,T

REL CQR.0 %.0022 0.3062 0.I;31 0. 0.1531 0.1533 0.1597 0.2115

ABS ERQ-T 1.2433E 03 2.0 6 03E 01 2.0796E-01 0. 2.0796E.01 3,2407E-03 3.3760E-03 4.4714E-03 I

REL Eq..T ti!1707 24.1408 
12

.
0 70

1 0. 12.0701 12.0870 i2.5917 16.6773

M:DE 37 W z 86.1685 R/,5 ZETA x 0.0050 ; PATIO 61t.8ý4 'N.

pARAMETrR %**2 2*Z*W B4 B 5 5 6 C I C 2 C 3

S NOM VALUE 7,42Q0E 03 8.6169E,01 6.1448E.06 .1.2412E..C .4.8017E.O6 1.1188E-.04 .5601E.03 I.6176E-.01

A05 ERR-R 2.1765 E 03 3.4901E 01 Z.513 6E-02 0. 2,513 6 E.O? 4# 5 6 2 5 E.02 5.5453E.02 5 o6 175E.02

REL ERR-R '-.2864 40.5037 20.2016 0. 20.2515 20,2764 24.6438 24.9423

ABS ERO.W 1.59o8E 01 2.6256E.0! 1.8910E.04 0. 1.8913E.04 3.4324E.04 4.1717E.04 4.2222E-04

REL EqQ-W n,0022 0.3047 0.1s24 0. 0,1524 0.1525 0.1854 0.1876

ABS ERR-T 2.1-26 6E 03 3.4902E 'I 2.5137E.02 0. 2.5137E.02 4,5627E.02 5.5454E.02 5.6126E.07

REL EqR-T 0,2864 40.5048 20.2R22 0. 20.2521 20.2769 2.65445 24.9430
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TABLE 6-3. APPROXIMATE IDENTIFICATION ANALYSIS STOCHASTIC
ERROR RESULTS FOR ADVANCED CONCEPT (conclUded)

-"-Ei 39 w~ 8;.9727 R,'S ;ZFTA 0.0050 RATIO 65.0530

PAqtMFTR 2.Z*W 8 4 B 5 8 6 (6 1 C z: C 3
N0' VALUE 7.91 6 1E 03 9.8973E.o1 2.188?E.05 1.4894E.C4. .1.1227E.05 -,11347E.03 2.1758E-03 .,,'

ASS F5qQ-R 3.8913E 03 6 -121SE 01 5.2488C..O3 0. 5.2079E.03 3.9510E.01 4.0037E-O1 5.,-'18,4 1 -i

RFI. FRIf..R e', 4.65 A8.8049 3,.7709 0. 34.4992 34.5754. 3r,*0364 ,% ,10840

ABS ERR.W 1.67ASE 01 2.'6OE.0EOI 2.?q,76E.05 0. 2.2697E.05 1.7219E.03 1.71-49E-03 2.4104E-Dli

, .EL ERR-W (1.0021 0.2999 O. I15 0. 0.1504 0.1507 0.1527 0.2110 :

ASS ERR-T 3.R513E 03 6.1218E 01 5.2489E.03 0. 5.2079E.03 3.95IE..01 4,003E.01 5.5318E-01

qEL ERP-T N48'.65 f8.8(1855 34.7712 0. 14.4995 34.5757 35.0367 48.4086

- M.OE 39 1 W 99.3460 RIS Z zETA z 0.0050 ; PATIO 3q.7356

PAPAMETLR .*2 ?*Z.W 8 4 B 56 CI ck 3
NOM' VALUE 9.6719E n3 9.8346,-f-o0 5 .4 2 78E.05 1.622 4E-.'f- 1. 2 676E'a06 -8.8208E.04 1.4 9 11E-0 3 -..6 114F-03
ASS SRP.R 1.7782E 04 2.5571E 02 0. 7.0646E..0 7.0633E.03 1,2748E 00 1.Z844E 00 1.7821E 00

REL ERR-R 1.8385 260.0121 0. 130,0609 130.0303 130.5329 131.5119, 18?,.4731

A0S E•P-W 1.9506E 01 2.8050E-01 0. 7.7494E-06. 7.74SIE.06 1.3984E-03 1.4089E-03 1.9548E-03
A REL ERR-W 0%.0020 0.2A52 0. 0.1427 0.1426 0.1432 C.1443 0.200?

A5S FRR-.T 1.7"'2E 04 2.5571E 02 0. 7.0646E-03 7.0633E-03 1.2748E 00 1.2644E 00 1.78?1E O0
REL ERR.T 1,8385 26n.0123 0. 130.0610 13U,,0383 130,5329 131.5119 182.,473?

M'IDE 40 .W H 100.)860 R/S I ZETA 0.0050 t RATIO = 47.19'4•,

PAQAMETtR W**2 2*Z*W 04 ti 5 8 6 Cl 1 Z 3

S NO'l VALUE 1.Ol8E 04 1.0099E 00 -2.8500E.06 5.7720E.05 2.,1964E-.06 4.3,,9'.E.o3 1.
7

n09E.03 .5.7912E-03

ABS ERR-R 2.4C',8E 04 3.3677E 02 9.6546E-03 0. 4.6('49E-03 1,.380E 00 1.2733E 00 1.5735E O0
"REL ERR.R 2.3580 333,/45i 166.9418 , !46.85')4 193,2295 171.1009 211.4417

"ABS EQR-W 2.0?q7E 01 2.8424E.01 4,1486E.06 0. 93,1445E.06 1,2136E.03 1.0747E.03 !.32ROE.03

REL FRR.W 0.002(0 0.281q O, 0.109 0, 0.140 0.1631 0.1444 ,1785

* ABS ERI-T 2.40'.RE 04 3,3677E 02 9.6546E.-03 0, 9.64qSE-03 l,'380E 00 1.2733E 00 1.5735E On

REL EIR.T 2.3580 333,4858 16b.9419 0. 156.859, 193.2295 171.1010 21!.44:0
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Table 6-4. EXACT IDENTIFICATION ANALYSIS SOFTWARE STOCHASTIC
ERROR RESULTS FOR THE ADVANCED CONCEPT

'SOOF 9 : W s 1.9936 ; ZETA = 0.0050 1 8wAGS 4.
7

579F-04 ; CMAG: 5.1
4

88E-03

PARAMETER W*.* 2*Z*W 8 3 3 C I c 2 c 3

40OM VALUE 3.9744E 00 1.9936E.02 4.7579E.04 .1.0394E-11 .4119E-11 2.3927E.06 .6322E.04 .1471F-03
ABS ERR.R 4.5672E.03 3.2506E.03 0. 3.8659E:05 3.:659E.05 4:1870E:04 4 2066E.04 5.9361E.04
REL ERR-R 1.1491-.03 1.6305C-01 0. 8.1252-02 P.t252E-0Z 8.1426E-02 8.1807E-02 1.1544-O0

M
1
ODE 10 t W = 2.0916 t ZETA a 0.0050 t BMAGz. 2.5169E.04 t CMAG: 4.9966E-03

PARAMETER W**2 2*Z*W 6 1 B 2 3 3 C 1 2 C 3
40M VALUE 4.3748E 00 2.0916E.02 Z.5169E..04 1,

3
324E-09 S.&571E.09 .9.8898E-07 4.93i.7E. 03 7.8374E-04

ASS ERR.R 1.0524-.02 7.1403E.03 0. 4.21OE.-05 4.p810E.05 8.5057E.04 1.199ZE.03 8.6402F-04
REL ERR.R 2.4055E.03 3.4138E-0! o. 1.7009E-01 I.?709E-Oi 1.0853E 00 1.5300E 00 1.1024F 00

R0OF '4 t W z 7.6891 ZETA : 0.0050 t I8mAGz 5.5369E.01 I CMAGs 4.956
5

E-04

PARAMETER Wo*2 2Z*W 8 1 B 2 3 3 C I C 2 C 3
4OM VALUF 5.9122E 01 7 6891E.02 .3.0726E.08 5.5364E.03 7.%977E.05 4 s514E.04 6.0668E.05 .8.144?F.05
ASS ERR.R 4:5932E_.01 8:4569E.02 3.0426E.03 0. 3.1465E.03 3.8151E:04 2:7412E.04 2.7j96E.04
REL ERR-R 7.7691E-03 1.0999E 00 5.4950ELO1 0. 5 .%021E.31 4.6841E 00 3.3681E 00 3.3882E 00

M'04 I 5 W x 8.1696 ; ZETA x 0.0050 9 UiAG3 4.8095E-.01 CMAGx 3,1397E-03

"PARAMETER W**2 2*Z2W 81 B 2 8 3 C I C 2 C 3
NOM VALUrT 6.6742E 01 8.1696E-02 2.1435E-06 6.7892E.05 .4.p*O;1E.03 .2.9030E.03 .1 0413E.03 .5.88I1E.04
ABS ERR.R I,0321E.01 1.7886E.02 5.2604E.04 5.2669E.04 0. 4.68Z2E.04 3: 6 173E-04 3.4931E.04
REL ERR.R 1.5464E.03 2.1894E-01 1.0938E..OL 1.0951E-01 0, 7,9615E-01 6.1508E.01 5.9396F.01

MODE 17 : W a 10.8130 1 ZETA a O.OG30 I 1AG. 1.4075E.04 CMAGs 1.9153E-02

PARAMETER V..? 2*Zow 39 89 0  .. 2ec.7 2040 54A0 . 0 2 0  6~ 9 o
4OM VALUE 1.1692E 02 1.0811' 01 -3 9589-0 . 8 07. 1.50*4"1\ABS ERP.R 1.542E 00 2.0170E..tj 1.3127E.04 1.3127E.04 0, 2.2719E.0Z 1 .O184E.02 .. 87i2 E.O02

REL ERR.R 1.3190E.02 1.8654E 00 9 .3266E-01 9.3267F.01 0. 3.6397E 00 3.2335E 00 3.0101E 00

WOOF 21 W w 14.8503 1 ZETA s 0.0050 t BSAGx 3.6743E.04 I CMAGx 1.1817E-02

PARAMETER W.*2 2*zw 1 B ? 3 3 C I C 2 3
4OM VALUF 2.2053E 02 1.4850E,.o0 1.5491E.07 .2.7118E.04 .?,4793E.04 .2.0781C.03 .3.6152E.03 1.105TE.02
ABS ER•R. 2.9066E O0 2.7680E.01 3.4243E.04 4,3615E.04 4,P220E.04 1.1206E.02 1.1587E.02 0.
REL ERR.R 1.3180E.02 t.8640E 00 9.3196E.01 1,1870E 00 1.1491E 00 1.nl35E 00 1.n479E 00 0.

qOOE 22 W v 18.78ý6 1 ZETA a 0.0050 1 bNAOS 1.
7

150E-07 I CNAGx 4.6
4

98E-0
4

PARAMETER W*&. Z*Ze BI B2 3 3 CI C 2 C
40 VALUE 3.5282E 02 t,'8784E-01 -I.?150E-02 -3.7565E-08 .0,Q650E.08 -2.0396E-05 4,0520E-04 -2.2701F.04
ABS ER-.R 3.6019E 00 2 7137E.01 0. 1.2383E-02 1.1393E.02 3,3bO3E.04 4.4563E-04 3.735SE-04
QFL ERR.R 1.0209E.02 1.44479 00 0. 7.2203E.01 7.?25lE.01 14802E 00 1. 9 630F 00 1.645?F 00

WOOF 23 t W . 19.9551 ; ZETA . 0.0050 t BMAG& 1.0291E.0o7 CPAGz 1.147BE-03

.PARAMEER Wi*2 2*Zw 8 1 8 2 1 3 C I C 2
40 VALUE 3.9820E 02 1.9955F-01 -5.2503E.08 -4.1569E-05 i.n2?IE.02 6.8976E-0' .9.1464E_04 .7.1273E..05
ASS ERAP.R 3.0053E 00 .1?14E.01 5.497IE.03 5.4945E-03 o. 7.1480E.04 7.a396E-04 6.1388Fý04REL ERP.R 7.5471E.03 1.0M8E 00 5.3419E-01 5.3393E-01 0. 1.0029E 01 1.0999E 01 8.6131F O00

"MODE 24 1 W a 31.2828 1 ZEYA a 0.0050 1 BWAGx 1.1993F.-02 CWAG: 4.0220E-04

oARPIETER Wt*2 2*ZOW a 1 B 2 3 3 C I C 2 C 3
V)W V.LUF '.52960 02 2,1283E.01 5.6825E.08 .1,1993F.02 .-. l'OE.05 .5,2388E.05 1.1939E.04 .3.O048E.04

ABz tRR..R 9.2200E 00 6,1275E.01 1.7263E.03 0. 17.268E.32 5.8386E.C4 6.0402E.04 7.9698C.04

QRE'- ERR.P 2.0355E.02 i.8791E 00 1.4394E 00 0, 1.43;BE 00 1.5345C 00 1,5875E 00 Z.0947E 00

MOOF 26 1 W . 3t.0515 g ZETA . 0.0050 t B4AG3 4.4501E.01I CmAG: 4.8821E-05

PARAMETER -4*. Z*Z*w 8 1 8 2 a 3 C I C 2 c 3
,OH VALUE 1.0924E 03 3.3u52E.01 .. 4501E.01 1.6294E.0F - .75T1E..10 .5.4634E.06 3.3179E-05 .3.5396E-05
ASS ERR.P 9:5540E 02 4 0881E 01 0. 2.7521F.01 ?,7521F.01 3.0381E.03 3,6506E.03 3.7294F.03
REL ERR 8 745 9 F.01 4.?169F 02 0. 6.1843E 01 A.1843E 01 9.5832E 01 10n314E 02 1.053(E 02
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Table 6-4. EXACT IDENTIFICATION ANALYSIS SOFTWARE STOCHASTIC
ERROR RESULTS FOR THE ADVANCED CONC7PT (concluded)

"MODE 28 : W x 50.9991 t ZETA 3 0.0050 BMAG= 8.3575E.04 ; CMAG. 8.4573E-03
PARAMETER W#*2 2*Z*W 81 8 2 5 3 C I C 2 C 3NO4 VALUE 2.6009E 03 5.0999E-01 -9.9076E.07 3.2542E:06 -7.43402.06 -4.00582-03 1.2803E-03 7.3376E-03ABS ERR-R 1.3413E 04 3.7672E 02 3.1303E-03 3.3236F 03 0. 3.4793E 00 3 1279E 00 4.3189F 00REL ERR.R 5,1569F 00 7.3868E 02 3.7455E 02 3.9768E 02 O 4.7418E 02 4,2629E 02 5.8860F 02

MOOF 29 t W z 52.5275 ; ZETA a 0.0050 1 BMAG= 7.8166E.0l ; CMAGx 1.9943E-04

PARAMETER W**2 2*Z~w B 1 8 2 3 3 C I C 2 C 34MO VALUE 2.7591E 03 5.2528E.01 .7.8166E.03 .3.7546E.10 7.2738E.09 -8.0694E.06 -4,74282.05 -1.9354E.04ABS ERR.R 6.8113E 02 1.)752E 01 0. 1.3701E.01 1.3832E.01 3.484'E.03 3.6609E.03 5.1075F.03REL ERROR 2.4686E-01 3.7603E 01 0, 1.7528E 01 1.7695E 01 1.8003E 01 1.8916E O 2.7942O 01

MODE 30 t w x 53.8508 ; ZETA = 0.0050 1 8MAG= 1.3943E.04 I CMAG. 1.2679E-02
PARAMETER W.20 2*Z*W 8 2 83 CI C2NOM V0LUF 2.899 5*3 51E.0 1.391,31.04 .1.8262E.09 -.75602.08 4,90011.05 -5.q715E.03 -1.11W4-.02ABS ERR.R 6.5464F 02 1.8310E 01 0. 2.2246E-03 2.72552.03 2.0240E.01 2.3007E.01 2.97352.01REL ERP.R 2.2575E.01 3,4001E 01 0. 1.5956E 01 O 1.5962E 01 1.8097E 01 2.0571E 01 2.6587r 01

MODE 33 1 W • 71.2905 1 ZETA a 0.00.0 ; BMAG= 1.0318.0-, ; CMAG. 8.94452-05

PARAMETER W*.2 2*z2W 1 8 2 3 3 C C 2 C 3NMO VALUF 5,0823E 03 7.1290E.01 1.65042.08 -5.9173E-08 1.n3182.02 4.3431E.05 -5,4691E.05 -5.16682.05"ASS EQR.R 3.3958F 03 7.0524E 01 5.31432.01 4,8654r.01 0. 4.022EO-03 5.1395F-03 5.6044r.03
REL ERR.R 6.6816F.01 "9.8925E 01 5.1505E 01 4.7154F 01 n. 9.2943E 01 9.q470E.O 1.0847f 0?

MODE 34 1 : 72.2430 1 ZETA * 0.0050 18 tAG: 1.9477F.05 1 CMAG. 3.;70noEo 3

PARAMETER Wit? 2*Z*W 81 2 3 3 CI C 2 C 3
NOM VALUE 5.2190E 03 7.22432.01 17226E.05 7.8978E-07 -Q..542F.06 5.0133E.04 3.43172.04 -3.1113F.03"ABS ERP.R 5,3145F 04 1.0006E 03 1.9902E.02 I.4017E-02 1.7961F.02 2.:290E 00 2.4024E 00 0.
REL ERR.R 1.0183E 01 1.5096E 03 1.021O8 03 7.1968E 02 4.7218E 02 7.4858F 02 7.7214E2 0 0.

'. MODE 35 t W • 79.9584 1 ZETA x 0.0050 1 8MAG3 8.8597E,05 I 29AGz 4.3647E-03

PARAMETER W *2 2*Z*W 8 1 2 3 3 C C 2 .C
4MO VALUE 6.39332 03 7,9958E.01 -8.85762.05 6.83622.07..1.79342.;06 -.. 9326E.04 4.0320E.04 4.29042.03ABS ERR.R 1.18212 04 2,09402 02 0. 1,1604F.02 1.15902.02 5.77852.01 5.7317E.01 80176•.01
REL ERR.R 18490 00 2.6189E 02 0. 1.3097F 02 1.1082E O 1.3469E 02 1,33592 02 1.8687F 02
MODE 36 1 W v 85.3456 ; ZETA x 0,0050 1 8MAC- 1.7229e.0, CMAG0 2 468112.04

PARAMETER WO*2 2.Z.W B I 2 3 3 C C 2 C 3NON VALUE 7.28392 03 8.5346E.01 2.7185E.07 1.7229E-02 .%.j16s8.07 1.4179E.05 7.96602.05 2.556I2.01ABS ERR.R 1.8699E 03 3.1950E 01 2, 522E.01 0, 2.1507E.01 3.8360E.03 6,4e73E.03 1.0605•.02SREL ERR.R 2.5672F.01 3.7437E 01 1.A53E 01 0. 1.1644E 01 1.5007E 01 2,5419E 01 4.1487F 01

M 4ODF 37 W a 86.1685 I ZETA z 0.0050 1 GUAGS 1.2412E.03 ; CMAGs 2.2502E-03
, PARAMETER W*4*2 21Z*W B 1 62 8 3 CI C 2 C 3NOM VALUE 7.4250E 03 8,61692.01 6.1448C.06 -1.2412F.03 .4,R01TE.06 1.11882.04 1.5601E.03 &.617t.03ABS ERR.R 3.1881E 03 5.5247E 01 2,8421E.02 0. 2,8416E.02 5.4147E.C.2 1.0438E.01 1.4198E.0OREL ERR.R 4.2937E.01 6.4115E 01 2.28982 010, 0.7.794E 01 3.3473E 01 6.45262 01 8.7769F 01

-4ODE 38 1 W a 88,9727 1 ZETA x 0.0050 1 8MAG2 1.5096E.04 9 C4AG. II.427E.02
PARAMETER wH., 2*Z*W 81 2 3 3 C I C C 3
NON VALUE 7.9161E 03 8.8973E.01 2.18822.05 1.4894F.04 .1.1227E.05 .1.1347E.03 2.1758E.03 -1.1161F.02ABS ERR.R 3.8577E 03 6.2703E 01 5.2607E-03 0. 5.21732.03 3.96882-01 4.0500.-01 5,74112-01REL ERR.R 4.8732E.01 7.04752 01 3.48492 01 o, 3.4552E 01 3.55602 01 3.6288E 01 5.144o0 O0

MODE 39 1W 98.3460 1 ZETA : 0.0050 ; BMAGs 5.4317E.05 t CMAG: 9.7663E-03
U PARAMETER W,*2 2*Z*W B 1 8 2 3 3 C C 2 C 3"4NO VALUE 4.6719F 03 9.83462.01 5.42782.05 1,62242.06 I,7676E.06 .8.82082.04 1.4911E.03 -9.6114F.03ABS EqR.R 1.78002 04 2.5929E 02 0, 7228IF.03 7,0949E.03 1.2771E 00 1,7863E 00 1,P138F 00REL ERR.R 1.8404E 00 2.6365E 02 0. 1.33072 02 1.062E 02 1.3287E 02 1.4E 0212.8t1 02

MODE 40 g W : 101.9860 ; ZETA v 0.0050 1 BMAG: 5.7832F.05 I C4AGz 7.4417E.03

PARAMETER W**? 2*ZOW 6 1 6 2 33 CI C 2 C4OM VALUE 1.0190E 04 1.0099E 00 .2.8500.06 5,77202.05 .. 1954E.06 4.3494E.03 1,70992.03 .5,7912F.03U AS5 E2.R 2.40712 04 3,4155E 02 9.87302.03 0. Q. 923E.03 1.4421F 00 1.7754E 00 1.6056E 00
REL ERR.R 2.3603F 00 3.3822F 02 1,7072E 02 0, 1,%759E 02 2.4901F 02 2.2023E 02 ?,772,4r O0
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TABLE 6-7. PERCENT INCREASE IN STOCMASTIC ERROR
DUE TO "CLOSE" MODAL FREQUENCIES*

Mlode W2 21ýw b.' b2 b3 c1 c2 c3

29 1.1 8.9 1.5 2.5 1.1 3.4 12.7
* 4tt* 0.025
-- . 30 1.0 7.5 0.9 1.0 1.0 3.9 11.3

33 2.4 7.2 11.7 2.2 --- 4.7 4.2 17.6
0.013

34 2.4 7.3 7.9 2.3 18.5 3.1 7.1 --

36 50.4 55.1 13.1 --- 13.0 18.4 92.5 137.2
0.010

37 49.9 58.3 13.1 --- 13.0 18.7 88.2 153.0

Notes Expect a discrepancy when 2 0.010

Systematic Parameter Error--The systematic parameter errors or parameter biases
were also computed for the 21 flexible modes considered significant for the

* advanced concept. Parameter biases are defined as

%ias -

where a* is the true parameter vector. Parameter biases are only possible
when the identification model is not capable of being the same as the trri2 system
"model (i.e., a model mismatch).

Examples of model mismatches include 1) MLE without the Kalman filter with finite

process noise, and 2) MLE with the true system model order different than theidentification model order. As already discussed, the former only produces biases
'-". when process noise and test signal are correlated. The latter gives rise to

parameter biases even when these quantities are uncorrelated.

Model order mismatch is, in practice, always present for identification of LSSs.
The true system model is of infinite order and the identification model is of
finite order. For this part of the study the true system model was taken to be
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the 78 fleiible modes; and parameter biases were computed for an identification

model with 21 modes.

Relative parameter biases are also of interest for the same reason that relative

stochastic errors are important. The relative parameter biases for a specific
mode were defined as

2
rai s "bias "*W2 relative bias

2ýw - 2b,•,
2bw relative bias =

""P b b1,

b relative bias =1,2,3

;^C - c .
• -•m M,

c relative bias m 1,2,3•''•m Icl

Parameter biases differ from stochastic error in that they cannot be made smaller

by increasing measurement time, as is the case for stochastic errors. The biases
can be made smaller only by changing the identification model.

The expected value of the parameter estimate was found by numerically minimizing
the expected value of the negative log likelihood function with the NR update

method described earlier. Satisfactory convergence was obtained after three
iterations with starting values equal to the true values. These are not time

updates; rather, minimization updates of the expected value of the negative log
likelihood function. Note that the parameter value that produces the minimum is

slightly different than the true parameter value because of the model order
, -mismatch.

The absolute and relative biases for the 21 modes (147 parameters) considered

'4 significant for the advanced concept are shown in Table 6-8. The biases are due
to model order mismatch (21-mode ID model and 78-mode truth model). All the

relative errors can be seen to be less than unity. Worst-case results are shown

in Table 6-9.
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TABLE 6-8. EXACT IDENTIFICATION ANALYSIS SOFTWARE SYSTEMATIC
ERROR 'RSULTS FOR THE ADVANCED CONCEPT

!.5.
I1IAS R•- ULTS

P4AMhiE w ZETA B 7C I o c•c2'oz
NOR VALUE 1.9936E 00 5.ZOOOF.03 4.7579-04 -1.0349 9. 11 2.3Q27F.06 .6 352E0 4 .5.14;12.03
ID VALUE 1.9936F 00 513221E.03 4.757qE.04 .5.3979E.06 -7.,29s8E.06 I.0243E-06•-1.59E-.04 -5.4799E.03ABS BIAS .7.?21nr.-o 3.2214E.04 . .-5.3979E.06 .2.5287F.0', .-. 3685E.06 9.7282E.05 -3.1777F.04
REL OTIAS .6.1792E.07 6.4427E.0? 0. .- I.145E-02 .5.1•48E-03 .7.6578E-.04 1.88Q94E-02 -6.S6OICO?

MODF 10 W = :%0916 ; ZETA = 0.0050 ; BpAG= 2.516qF-04 ; C4AG= 4.9966E-03

PARAMETER W ZETA 8 I 8 13 3 C I C 2 C 3NOM VALUE 2.09 1 6 V 00 5.nO4)E.-03 2.5169E.:04 1.3324F.09 5.h57IE. 09 .9.8898E-07 49q347E.03 7.8374F..04
ID VALUF 20)9 16 r 00 5.4388E-03 2.5169E.04 _. 23 77ý.-07 -7.7T58E:.06 .1.5018E.05 5:3971E.03 4.6961E.04AbS BIAS 1.2547'C.05 4.3881E.04 n. .2.3410E.07 .- 7.7625E.06 .-. 1402qE.-05 4.6241E04 .. 3.1413F.04REL {IAS 5.998hr106 8.776E.-02 0. .9.301?E.04 .3.0041F.02 -2.8078E.03 9.2547E.02 .6.207OF.02

MOOF I4 W = f.6891 ; ZETA = 0.0050 t IIMAG: 5.536QE.-0 ; CMAG: 4.9565E-04

PARAMETER W ZETA. 8 U ? 3 3 C C 2- C 3NOMi VALUE 7.6891C 00 5*fl 01-3 .3072 61-.08 5.5364E-03 7.h977E.05 4.85IJ-04 6.,668E.05 -8.1447E.05
10 VAl.UF 7.6891C 00 4.9702E..03 1.4259E.05 5.5364F-03 3.7581F..04 4.8092E.04 5o9894E-05 -8.0251E405
ABS BIAs 1.60)91F-06 L2.9614E.05 1.4259F.OOq 0. 2.4984C.04 ..4.2150E.406 -7.7450E-07 1.t5kC-.06REL IAS ?.0q3930.07 -.5.62AiE.-03 2.5a80E.0i 0. 4,.4941E-02 R.5040E.403 -1.5626EC.01 2.4125C.03

MODF 15 1 W : A.1696 ; ZETA z 0.0050 : BuAGm 4.8095E-03 t CmAG: 3.1397E.03

PAQAMFTER w ZETA aI 2 33 CI C 2 C 3"NO" VALUE 8.1696( 00 5.00000.03' .i•435F.-06 6.?892F-05 .4.qO9IE.
0

3 2.90301E.03 -1.0413E.03 -5.A811F.-O
ID VALUF R.1696f 00 4.9228E.03 3.6a8OE.06 h.4038F.05 -4.4091E.03 2.8540E-03 -1.0307E.03 -5,8866E-04ABS BIAS 3.457 1

r.06 -7.7224E.,Os ,Sý,44(.OA .3.804nE.0 6  0. .4.896tE.45 1.0615E-05 -5.5267E-07REL BIAS 4.2315 F.07 .1,544SE.02 3.2112E.0
4 .7.9093E.04 0. .i.5594:F.07 3.3808E.03 .1.7603F.04

1BOOF 17 t W z 1 Z.8131 ZETA z 0.0050 t aMAGz 1.4075r"-04 ; CVAG. 1.9153E-0?

PARAMFTER W ZETA 61 3 3 C I C ? C 3NOY VALUF 1.OR1 3 P 01 5.*OOE0).n3 -3.9589L-O7 .8.2180C-07 I,;014F.04 1.5046E-02 -1.0072F.02 -6.2419E-03
ID VALUE 1.08 13C 01 5.3324C-.03 1.3548L..06 .1.306'7F,06 4.4074E.04 1.6304E.02 ... 468E.02 -6.2959F.03ABS BIAS -3.337F.o05 3.3245F.-O0 I.7, 7F.O -4e90.847E.07 0. 1.?.61E603 -3,9631E-O0. -5.?996F-05
RFL 0IAS -3486i)r-06 6.648qE9-0 1.2439E-02 -344s54E-03 0. 6.5582E-n? -z.0691E-oz -2.819IE-03

4MOF 21 W x 14.8503 1 ZETA : 0.'O450 I Bo-AG= 3.6743i.-4• 1 CAG= I.It17E-o1?
PA2AMEVER , ZETA I1 1 a? 3 3 C I C 2_ CNO" VALUF 1•4850- 01 5*flBoor.-3 1.54 9 1C-.37 -2.7118r-0, -.) 4793E0'4, .,.O7AIE..03 .. 6152FE.03 .. I0F7E.."2
ID VALUF 1.4850' 01 499*27.'0i 4.76aQE.-6 .?.;'01HE'.0 4  717E'4 -.27036E-03 -3.i.36F.03 1.Iu57r-.0?IJ . ADS 41AS Q.536,E07 -7.256,E.-01, 4.hl•,2F..l, l.no00onC.n 7.5s29F-07 .1.257SE.,04 1.6251E-06 0.P.V, FL W•AS 6.&2?,lr-Oh -1.4,511E-04 1.2'55nF.0;- 2.7216F.01l 2.1•5ii)f-O .i.n642E-02 1.3754E.04. 0.

MOnE ?2 1:.7836 ; 4ETI : -. )010 ; UMAG: 1.7150r-.0; COG- 4.64qE-r4

PA-AMFTER w ZETA 4 1 3 7 C c C 7 C 3
-NO4 V7LUE 0.878 01 5.lnOO.o03 .-1.7150F.12Z -3.7565F.08 4.i50WC.08 .?.n396C.05 4.05 8E 0 -2.?701F04
10 VALUE 1.03784' 01 5 .0985S-03 -1.710(7-02 -2..976C.-0 -?.jPZ7E-05 -?.0642F05 4.13QOE-04 -2.3081ý-n4IA~ rIAS -7.14 5 'r-05  9.A45,)F.-f), 3. .2.0600E.06 .2.377ef.'-O .7.'61nE 07 8.6185E-06 -3.$0tSF..O, L dIAS -. ,142'.206 |.0I.96')'5F- 0 . 1.20i2E.04 .386[.03 .5.?2?1E.04 1.8535E-02 -Rp.75?7.0?
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STABLE 6-8. EXACT IDENTIFICATION ANALYSIS SOETWARE SYSTFMATIC
ERROR RESULTS FOR THE ADVANCED CONCEPT (contintdd)

M ODF 23 1-,.951,1 ZETA (l.ns50 iiG(: 1*.0291ý-Op CPAG= 1.1A478-t3
PA0AMCTE w ZEtA 5 3 3 C I C 23'N4• VALUe " 01 5.'o00..n3 -s.2 o3:4.0 9.7669E.-n l.3291F.0o '.19?6E.04 -9.1464E-04 -7.1273r-05ID VALUF I.qgq5' 01 5.nl34i.03 4.760(F-05 -4.4,38F-05 1.1291E.02 6.q772?..0 -9.13s28-04 -7,05|gF-05AhS •IAS -5.722(.C06 3.47,10E-O. 4.77'2F.-0, -,-.(695F.06 0. 7.955rE-.0 -3.63ARE-06 7.53A?F.07REL 5IAS -2.06 ',r.r07 6.955,F. I)l e.•1 -4ro; - 2.kt57Eh E-0. 0. 6 o9307E -03 -1.169q E-03 b.5( 761O'-O

OlF 24 W= ?:.2q2 ; ZETA l.nnSO ; j4A(= ::.19q3F.03 CvAG= 4.02?.OE-04
PAOAMETE; w ZETA ( 1 b 2 3 C 2 C 3NO• VA.UE 2.laA3r 01 5.0000V.3 5.4A?5E.)n -I*|993E-02 -••140E-.05 -5.Z38SE-05 l.1939E-:4 -3,80 8F-O0ID VALUF 2.12 8 3r 01 5.0036E-03 -,.0752E.04 -1.1993C-02 -A7.j0if.OJ5.I907E.05 1.1953- 4 -3.8069F-04PrL 31AS - I . 120 n-08 0.0a:0+-,TZ .O -+ 3.465E-£01 1.1971V.01 3.611')F-04 -5.?292F-04

MODE 26 t W = 3.0515 ZETA 0.,0050 ;BpiAG= 4.450IE.-0 ; CPAG= 4.8821E-05
PAPAMFTER W ZETA 8 1 B ? 3 C I C 2 C 3N01ý VALUE 3. 30 5 2c 01 5.000OC-03 -4.4501E-03 1,6294E-09 -7.4501E-10 -5.4634E-06 3.3179E-05 -3.5396F-05I4 VALUE 3.30501- 01 6.050317-n3 -4.4501E0r3 _1 

2
048F-O5 -2.1704E-04 -7.3914F-06 5.4212E-05 .4.7300E.05ABS OIAS -1.3974E-03 -1.0503E-.03 . -1.2050L05 -2I1904F-.04 I.i9280E-06 2.1033E-05 -1.1905F-05RFL BIAS 4.*2283or.5 2.1005F.-0 0. -2.7077E.03,-4922OF.-07 -. 949LE.-02 4.3082E"O1 -2.4384E-01

MODE 28 : W z 5).9991 1 ZETA = 0.0050 ; BNAG= 8.35759.-0 ; CtIAG: q.4573E-03
PAPAHETER w ZETA 0 1 8 2 5 3 C I C 2 C 340" VALUE 5.0999," 01 5°00001-03 -9.9076E-07 3. 2

542E-0b -7.4340E-Ob -4.0058r-03 1.2RO3E-03 7
.3376E-03ID VALUF 5.09q99 01 6.0500E.03 -7.2739E.07 2.b48IF-Ob -7.304OE.06 -9.q740'.03 2.626LE.03 9.23?IF.03Abs BIAS -1.3447F-04 1.OnOAE..3 Z.6137F.0 .-6.0611E.07 n. -5.9682E-03 I.3459E-03 1.8945F-03RFL nIA5 ..2.616'r-06 2. OO0)E.-.0 3.1513r.o, -7.2523E.02 0. -7.056qE.-01 .5914E-01 2.240IE-01

MODE w9 a 5?.5275 ; ZETA = 0.0050 ; BMAG= 7.8166•.-0l ; CkAGm 1.9943E-A4
PARAMETER w ZETA 1)I B1 2 3 C I C 2 C ?40M VALUF 5°252OF 01 5,OOOE..03 -7.8166E.03 .3.7546E.10 2,>738E.09 -s.0694C.06 -4.7428E-.15 -1.9354F.04ID VALUF 5.252zF 01 5.0169E-.03 -7.8166E.03 1. 3

164fE-06 -. 6,1q5E.05 -R.0953E.06 -4.417SE.05 .1.9519E.04ABS BIAS 1.0441F-04 1.6937E.05 0. 1.316PE.06 .3.576?E-05 .?.5969E-OR 3.2497E-06 -1.6543E-06REL BIAS 1.9Pe"E-06 3.387SE-03 0. 1.6846E.04 .4.703().C03 .1.30?2E-04 1.6295E-02 -8.2952F-03

MODF i0 W 2 5'.8508 I ZETA = 0.0050 1 B•AG= I.3943!-04 I CkAG= 1,2679E-oZ

PAPAMFTFR W ZETA B I B? 5 3 C I C 2 C 3,OM VALUF 5.3851F nl 5.OOOF-03 1.3943E-.04 -1.962E-09 1.2560E.-8 4.90OIE.05 .5.9715E.03 -1.1184-.OZ- ID VALUF 9.3R51f 01 5.0370E.03 1.3943E.04 -1. 3
898F.00 -I.A596E.07 5.137?E.05 -.6.ROOE.03 -1.117ZE.02ABS BIAS .?.76%5F.0'3 3.778YE-0• O. .1.2071E.OH .. I152£.07 ?.3709E.06 -2,09325-0a 1.?4 .SRFL BIAS .. ,.!35nr.07 7.5574E.03 D. -8.657 8 E.05 .1.5673F-.03 i*6qBE.04 -I.50O9E-02 9.8315-04

MOV4F 33 W z 71.2905 ZETA = 0.0050 ( pMA(= 1.031•E.-3• CAG= 8.9445E-05
PAPAMFTFP . ZETA B 3 cI C? C34NO VALUF 7.129 0" 01 5*nlO00.jn3 -,440,E.0 .5.9175F.08 1.13i8E.02 4.343BE.C5 .5,q6glE.05 -5.1668R.05
ID VALUE 7.129I' 01l 5.15IS-'3I.3 1 1717;: 4 ..I!489FjO5 1.1318E.0? 4.5BOSE 05 -b 0131E..05 -5.224bE-05ABS BIAS 9.756!.- 4 1.59itE.-4 i.171C.0 - 14305 -05 0. 5.3738i.06 -1.4407;-06 .5.7919F.)7RFL 8AS 1.368IF-.0 3.182!E.02 1.1354F.02 .-11077C.03 0. .S53qE-02 -1.61085-02 -6.4754E-03

F' 
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TABLE 6-8. EXACT IDENTIFICATION ANALYSIS SOFTWARE SYSTEMATIC
- ERROR RESULTS FOR THE-ADVANCED CONCEPT (concluded)

mOrF 34 W *7:). 2430 ZETA 0.0050) BvAG= 1.94771..-05 CYAG= 3.1700E-413

PACAMFYER W ZETA B 1 6 2 8 3 C I C2 C 3110' VALUF 7.2243: 31 5.')OOOE.-0 1.7226-.05 7.8978F.07 0.3542E.06 5.0133E.04 3,4317E.-0 -3.1113E.0310 VALUE 7.2249= n1 4.6578,".03 ',048E-05 4.2724r-07 .. ,,N)56E.-5 2.0413K.04 ..b*,4f0O..04 .3*1113--_0O
Ae5 BIAS 4.601'F.F03 .3.4?.17r.-04 3.1783E..OA .[,625?5E...07 .2.01517.0t ..2.972OF04 -0.7797E.04 0.Rr.L 31AS 6;3 6 9 4F-05 -6.8431F-..1 .631qF.oi -.8.3456F.-03 .6.1591tr.O, -4.3757E.-02 -3.0051E-01 0.

410DF 35 • w = 7Q.9584 ; ZETA = 0.0050 ,8 tAG- 8.8597f-0. ; CMAG- 4.3647E-03

PA'AMFTE. w ZETA B 1 a 2 3 3 C I C 2 C 3J08. VALUF 7.91581 -1 5.OOOOE-03 -A.8576E-05 6:8362E-07 -1.7934E-06 -6.9326F-04 4.0320k-04 4.2904E-03ID VALUE 7.9959C 01 4.9701E..03 -8.8576E.05 8.3792F-07 -1.799E.-06 .6.9925F..04 6.1909F-..04 4.2110E-03ACS BIAS A .e50AF.-05 2.989F..05 1. 1.5430E.07 3.d54..OA -95.q857E-06 2o1589E-04 7.?7387k.05
PEL BIAS 1.1561F-'06 .5.9780E.3 01. 1.741 6E-03 4.3403E.04 -1.1714E03 4.9463F.-n2 -1.81,'opO2

r

4
OCE 36 W = 8S.1456 I ZETA : q.'0050 B MiAG: 1.7?29F.07 ; CmAG: 2

. 6 8
L.E- 0 4

PARAMETER 1, ZETA 3 1 B 2 a 3 C I C 2 C 3NO" VALUE 8.5346F n1 5.O0OOE.03 2.7lq5 E.07 I.?229F-.02 .s168E.07 1.4179E.05 7o9660E-05 2.5561E-04
ID VALUE 0.534 6F 01 5.0031E.03 1.6145F.05 1.7229E-02 I.flý49E.05 1.4128E-05 7.9667E.O5 Z.55?2E.O0AFPS BIAS 3.7I93E.95 3.0798E.06 1.5873F.0s a 1.070,-05 i.1244E-08 4865E-09 1.068IF-07
RFL BIAS 4.358fP.07 6.1597E.04 ;.7131E.-04 0. 6.211(E.004 .-. 9113E.04, 2.4193E-05 3.9839E-04

MODF 37 ; W 2 86.1685 1 ZETA : 0.0050 B OBAG: 1.2412E.01 ; CMAG= 2.2502E-03

PARAMETER W ZETA 81 B 83 Ci C? C)NOo VALUE 8.b169F 0I 5..OOO..03 6.1448E-06 -. I.2412F-03 .4.RO17F.06 1.1188E.04 1.5601E-03 1.6176F.03ID VALUE 8.6169F 01 4.9 9 68r.03 1.272817. 6 .4 2412E..O3 -4.h661E06 I.1242F.04 1,5596E.03 1.6177E-03ABs BIAs .7|68.05 .s3.742E.06 .BIA7SOE. 0. 1.3568E-07 5.3603E.07 -5.1539C-07 6.501RE-08REL oBAs .. 1.qz2E.07 .6.3485:-04 -3.9252E.-01 0. .0931E-.0 2.382ZE-04 -2o2904E.04 2.8095F-05

'
4
0CE 38 t w 2 88.9727 ; ZETA = 0.0050 ; UPAGA 1.5096E.04 i C01AG; 1.1427E-02

PARAMETER W ZETA B Ia 63 C C 340M VALUE 8.R973E 01 5.0000F.03 2.l82E.-05 1.4694E-04 -1.1227E-05 -1.13,,7E.03 2.1758E.03 -1.1161F.02
ID VALUE 8.A973E 01 4.9915E.03 2.1164F.05 1.4894C.04 .I.1815E.05 -I.1494E.03 2.1590F.03 -1.1151E.02ABS BIAS -4.7684F-06 -8.540IF.-06 7.I24h6r0 7  0. .3.0777E-07 .I.'76SE.05 -1.6754E-05 lo0I94F.05
RFL BIAS -5.3594F.08 .1.708E.-03 .- 4.7197E.01 0. ,.2.°56lE.-0 .-. 2924E.03 -1.4662E.03 8,921IF.04

,MODF 39 t W = 9q.3460 ; ZETA = 0.0050 ; BMAG= 5.431 E.05 t CMAGx 9.7663F-03
,JARAMFTER w ZETA 6 I B 2 3 3 C I C 2 C 30%1I VALUE Q.9346C 01 5.n000'.03 5.4278E.E5 1.6224F-06 1.2676E.06 .8.80ORE.04 I*A9IS---03 -9.b114E-03ID VALUE q.9347 'n1 5.0439r-03 5.4279F.05 1.6332F...06 7.7W20E.-07 .9.7371FE-4 1.7520E.03 -9.h303r.33ARS BIAS q?.307T.'3,4 4.392)F.-0, 3. 1.079OE.08 .4.R944E.07 R.3641E..06 -2.3915E.K04 .I.886IF.05
REL BIAS Q.,4644F.06 8.784SE.01 0. 1.987aE.04 -.9.moOr.O R.5664"E.04 -2..4R7E-O2 -1.Q3912f-3

',OOF 40 0'.qR60 ; ZETA x ).0050 & 6,AG: 5.7832F.0 ; cIAG= 7.4417F-03

8;•. PA:AMFTEP W ZETA 0 1 8 a 3 C I C 2 C 340"' VALUF 1|0Qnqr 02 5.n000..ý03 -2.8500E.06 5,7720F-05 -. I)564E09 ý-.3,9•.r-03 1I.099E.03 -5.7912E.03
ID VALUE 10098W '12 4.7280,7-13 -2.4857E.5-6 5,772(F.05 .1. 017E-36 4.1902E.03 1.6614E-03 -5.5!49F.03Arls BIAS .3.472IF.03 .2.719C&-04 3.6436E.07 06 6.9T73F.O -1.5920E04 -4.R463E-05 .7h26P-.0REL BIAS -3.4384.E-05 -5.439)E.02 s.3003E•0i 0. 1.2313E-02 .2.1393E.02 -6.5123E-03 .3.712!F.02
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TABLE 6-9. WORST-CASE RESULTS FOR BIAS ERROR FOR
21 ID MODES AND 78 TRUE SYSTEM MODES

Mode 24w bI b2 b3 cl c2 c3

'1 " 4"

'2 =0 21% 3% -7% -- -7.% 16% 22%

The numbers listea for frequency squared are considered to be larger than the true

parameter bias. This is true because all computations .were done in single

precision on the computer so that smaller numbers than those Listed are not

significant. Thus, earlier analytical results for frequency bias are consistent

with these numerical r.esults.

Add One Mode at a Time--Another simplification to the MLE identification method,

called add one mode at a time, was tried for the advanced concept. A step-by-step

procedure for identifying the parameters corresponding to one mode at a time is

Step 1: Estimate the parameters for a one-mode ID model

Step 2: Increase the number of ID model modes by one 6.

Step 3: Estimate only the parameters of the new mode

Step 4: If more modes are desired go to step 2; otherwise, quit

SThe procedure gave essentially the same results as all modes at the same time for

up to 10 modes. The success of tois procedure is due to the light damping of the

modes. In some cases it is expected that maybe two or three modes would have to

"be added at one time. The benefit of this procedure is that the total number c.

parameters being identified at one time is considerably smaller than when

identifying them all at once.
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The expected value of the negative log likelihood function, I , decreases as
"another mode is added to the ID model, as indicated in Figure 6-3. The modes

. '" f. added one at a time from low frequency to high frequency are the first 10 in the
subset of true system modes discussed earlier. The leveling off of the plot with

o" TID model order is due to the missing isolator modes that were not identified.

Identifiability Analysis Conclusions--Though the number of parameters to identify
is enormous (147 for 21 modes) for the advanced concept, the identifiability

analysis shows that identification of all the parameters is a practical

possibility. Many simplifications to the general MLE algorithm were employed,
such as eliminating the Kalman filter and the one-mode-at-a-time results for light

"damping. The achievable accuracy was found to be sufficient for control design
•.: for an identification time interval of 5 min, if the recommended test signal and

measurement are used.

Istbr Dependence On ID Model Order

100O - _____

40--

4..

I 4.'J10.S 'N2

Figure 6-3. Expected Value of the Negative Log Likelihood

•". Function (I*): Dependence on ID Model Order
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Control Design

Recall from Section 2 that the objective of the control design is to co,'t;ol LOS
response to a force disturbance at node 46 by measuring the position of node 11

and applying control torques about node 44.

Open- and closed-loop transfer function relations are given by

Open-loop response:

Gu F'u [d]l FZ46

=1 ~ ] Td (6-5a)
Y L Gyd GyuJ Lu u [T44X T44Y T44Z]

(LOS LOS DEFOCUS (6-5b)
x y z

Jy - (Pi1 Pi1 Pil] (6-5c)yX y z

Closed-loop response:

=[G, - G uK(I + GyuK) Gyd d (6-6)

where p- -Ky and the Laplace variable s has been suppressed for convenience.
The control deoign means constructing a compensator matrix K(s) to meet the above
objective.

Sensor and Actuator Placement--Ideally, to meet the objective of the design, the
control actuators should be as close to the disturbance as possible in both type
(force and torque) and placement, and the output to be controlled should be

measured. Neither of these is satisfied exactly for the advanced concept. For
frequencies of interest, nowever, the actuators and ensors were chosen such that
the following approximate relations were satisfied:

Gu -Gyu

G yGGyd - XGd

In other words, these relations imply that the critical modes that affect
disturbance to LOS transmission sho.,X also dominate the actuator-to-sensor
transmissions. Under these conditior1 z large loop gains imply small closed-loop
disturbance to LOS transmissions.
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Control Law Design Procedure--As already mentioned, the sensors and actuators are

not collocated. The design of the compensation matrix for this non-ILAS problem

was carried out with the following step-by-step procedure. For convenience let

G(s) = G (s); the steps are:

Step 1: Choose bandwidth and loop gain needed to meet specification.

Step 2: Find state space realization of reduced-order model (ROM) of G(s),
A -

that is, find {A,B,C} such that G(s) = C(sI - A) B G(s).

Step 3: Compute magnitude of the multiplicative perturbation for this ROM,
=-A-1

that is, Y[L]= a[-G G - I]. If &[L.1 > 1 for (,j less

than desired bandwidth, go back to step 2.

"Step 4: Find H such that H(sI - A)- B has desired bandwidth and loop gain
of step 1.

Step 5: Compute full state feedback gain matrix, K , to minimize
4 c

J = [xTHTx + uTu dt where A = Ax + Bu.
0

Step 6: Compute Kalman filter gain matr.ix, Kf, for process noise intensity
2B
q BT where q is a scalar. Here measurement noise intensity is I.

Step 7: Compute K(s) = Kc(SI - A + BKc+KfC) _K

"Step 8: If K(s)G(s) has desired bandwidth and loop gain, quit. Otherwise,

increase q and go to step 6.

The design was achieved by making use of the frequency domain properties of the

LQG feedback synthesis technique. These design steps have evolved over the years

at Honeywell Systems and Research Center and are described in more detail in

"Ref. 2. It was necessary to add the model reduction steps to make the order of

the matrices involved manageable. The parameters of this ROM would in practice be

determined by identification. Each oi the steps will be discussed in more detail

in the following pages.
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Desired Loop Gain and Bandwidth

The open-loop disturbance to LOSx LOS , and-DEFOCUS frequency retPonse were

presented in Section 2 and ate repeated in Figures 6-4a,b,c. Also shown is the

LOS. specificatiod divided by the 400 N disturbance force to show the amount of

attenuation required. The frequency range of interest is 10 r/s to 100 r/s. In 4.

this range it can be seen that as much as 70 dB attenuation, or a factor of over

3000, is required to meet the irnpbs'ed LOS.specification. The DEFOCUS plot shows

that no additioraT&'aVttefiuation is required (i.e., it meets specification open-

loop). These plots are of.interest.for sizing the amount-of loop gain needed to 0

satisfy the control objectives. Fundamentals of feedback dictate that to

attenuate the disturbance to LOS response by a factor of 3000 at some frequency
requires a loop gain of approximately 3000 at that frequency.

g. f46z-1osx

p. t

-150- __ _ _ _____ ____ _

-20
•,' -3e " I C '.

-200- gill ...

44

•I:•. ~Figure 6-4a. Open-Loop Frequency Response for Disturbance to LOSX •:
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g. f46z-)os9j

.'-1500- ___.___.

-259

I1 I Ir 1 1 1

frec *"

Figure 6-4b. Open-Loop Frequency Response fir VDistturbance to LOSy •!

9. f4z-defocus ..

- I I to - t,

Figure 6-4c. open-Loop Frequency Response for Dist~urbance to LEOUSy
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The singular values of the open-loop true system Gt(s) were also shown in

Section 2, and are repeated in Figure 6-5 for the torque actuator at node 44 and

the position sensors at node 11. This response is of interest in determining the

bandwidth sufficient to provide the loop gain needed to attenuate the disturbance

to LOS transmission. By roughly sizing the ga.-, of just the lead portion of the

"compensator, and performing the multiplication KG to obtain the loop gain, a

bandwidth requirement of roughly 1300 r/s would be necessary to meet

specification. This required bandwidth was considered to be higher than would be

practical for the control design and identification model. A bandwidth of 30 r/s

was deemed practical and the design proceeded, recognizing that it would not meet

the imposed specification but should attenuate disturbances in the frequency range

of 10 to 30 r/s.

Elimination of Uncontrollable or Unobservab'e Rigid-Body Modes--A minimal state-

space realization was desired for The control-law oomputationq. Therefore all

;A" uncontrollable and unobservable modes were eliminated. Of the six free-free

G t. s i ma

<:''C

• [ 1-3

dtme

1 1 10 10

0ie

log frequency

Figure 6-5. Open-Loop Frequency Response (Singular Valui of Gt) for
True System: Actuator Inputs to Sensor Outputs
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"rigid-body modes, only two were both controllable and observable. Specifically,

the three translation modes are uncontrollable due to torque inputs. Also,

:" position outputs at node 11 imply that the rotation mode in the direction of the

line connecting node 11 and the spacecraft center of mass is unobservable. This

also explains why the minimum singular value of Gt (Figure 6-5) flattens out at
2

low frequency, whereas the other two have the familiar 1/s behavior.

Reduced-Order Model--The ROM was obtained by truncating the full-order model past

"100 r/s and some of the nearly uncontrollable/unobservable modes below 100 r/s.

No optimal model reduction procedure was attempted. The resulting ROM had 24

second-order modes, including two rigid-body modes. The frequency response for
A

the ROM, G(s), is shown in Figur-, 6-6. The singular values of the multiplicative
A..l

perturbation L = G G - I are shown in Figure 6-7 and can be seen to be less

than 1 for frequencies less than the desired bandwidth of 30 r/s. Note, however,

that they are larger than 1 past 40 r/s due to truncation. Tlis plot indicates

V that the ROM should be satisfactory for design of a 30 r/s bandwidth control law.

Gh.sisiqa

10-9.

*~~ Ll 0 _ _ __ _ __ __ _ _

I.-.

log frequency
Figure 6-6. Open-Loop Frequency Response (Singular Values of G) for

ROM: Actuator Inputs to Sensor Outputs
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*e-8 . . ....

N.,'•81

1Figure 6-, Singular Values of the Multiplicative

ýTPerturbation Implied by the ROM

SLinear Qualratic Gaussian (LQG) Design--The H matrix was chosen to be a scalar

•L3times the C matrix. The scalar was chosen such that the bandwidth of the loop
would be 30 r/s. The singular values of H(jtI - A) i B vs are shown in

Figure 6-8. The idea is that this will be the approximate shape of the eventual
LQG loop that will be the final design. The fact that the minimum singular value
is less than 1 below the desired bandwidth is undesirable, but the design was
continued in the interest of time.

The full-state feedback LQ loop, K c(SI - A) -B, is shown in Figure 6-9. It
can be seen to be approximately the same as the desired loop below 30 r/s and to
have the guaranteed 1/s rolloff above 30 r/s.

After iterating up to q = 109, the loop gain for the LQG compensator is shown in
Figure 6-10. The loop gain of the LQG loop has not quite reached the loop gain of
the LQ loop. This could be theoretically improved by increasing q, but numerical
difficulties prevented increasing q any further. The final plot (Figure 6-11) is
the same as Figure 6-10 (i.e., K(s) G(s), the loop gain of the final design) butwith more frequency resolution and a larger frequency range.
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I ac: Singular values of H*invCsl-A>*8

S..' 184.

U0

iA

SI~~og frelque•ncW/

i::iFigure 6-8. Singular Values of Desired Loop Transfer F~unction

'"-' dc: Singular values of Kc~tny~sI-A0SG4104
1 22 • i 68 0

0 182,-

g 8. 4 •6 e% i 4 516 7e189

log frequenCo

Figure 6-9. Singular Values of Full-State Feedback LOOP LQ Design
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ac: Sii•gular values of K<s>*G-s>.q-!1.e9

-4

2 - A
,Is

0

S

------- r Tr

I '_,,_ _ a 3 4 T _?___

S "U

log freqqencgj

* ,II Figure 6-10. Singular ValueAq of LQG Loop (Final decign)

KGh.siima
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o to - t.8

-•'•lo 10 fre auen eg

II.

',•Figure 6-11. Singular Values of LQG Loop (Final design with

;" finer frequency resolution and larger frequency range)
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"Evaluation of the Control Design--After completing the design of K(s), we

investigated its performance and stability with the true system. LQG guarantees

stability of the closed-loop system when there are no modeling errors. Since the

design was carried out using a ROM, closed-loop stability with the true system

must be verified. Finally, the closed-loop disturbance to LOS frequency responses

were compared to the corresponding open-loop frequency responses.

Poles and Zeros--A subset of the open-loop poles is plotted in the s-plane in

Figure 6-12. The flexible modes ere all lightly damped (• = 0.005) except for

the six isolator modes (• = 0.7). There are also four poles at the origin that

are not indicated.

Transmission zeros are defined to be the values of s such that

det 0

A subset of these open-loop transmission zeros is plotted in the s-plane in Figure

""6-13. They correspond to the control inputs and measurement outputs for the

advanced concept. The zeros of interest are the ones in the right half-plane.

These nonminimum phase zeros limit performance of the feedback system.

Also plotted are the regulator and estimator closed-loop poles in Figures 6-14 and

6-15 for the ROM. They are, of course, all stable as the LQG design method

guarantees. A theorem of the LQ recovery procedure says that the estimator

closed-loop poles asymptotically approach the transmission zeros as q goes to

infinity, or their left half-plane mirror images for nonminimum phase zeros. This

can be verified by comparing the two plots (Figures 6-13 and 6-15).
* %

"Verification of Stability of Closed-Loop System--The control law consists of a

"compensator with order equal to the order of the ROM, so it has 24 x 2 = 48
states. The true system has 84 x 2 = 168 states. The closed-loop system thus has

168 + 48 = 216 states whose eigenvalues must lie in the left half-plane in order

for the closed-loop system to be stable. The eigenvalue routines available were

not considered reliable for computing such a large number of eigenvalues. The

frequency response of the true system could, however, be computed very efficiently
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ad accurately a's the suni'cof tecoditribft ions of ech ~te8 ecn-re

mfodes. Lik'Wiýi;e,' the- frequb~hcyIrespodse of the 48th-brder.1ompensator could be

computed accurately. These'tw&Vfr'bguency r'espon'se eftluatidns 'allow the

assessment of closed-loop stability of the control law with the true system using

the multivarilable Nyquist Tbeoremý.

Nyquist Theorem: The cloted-14oop sy'stem is stable if and only if the number -of

coi~nterclockw!ise encirclements of the origin obtained by

mapping the Nyqu-ist D contour by det(I- + KG] is equal to the

number of undtable poldt' of G.

A c6mp~iter program was written to count encirclements and check for 6nough

frequency resolution of the data computed. The rescult, indicated qualitatively in

Figure 6-16; was'thadt the det(I + KG] showed one counterclockwise encirclement for

j <+ < j , wicfi 'implies two'counterclockw'Ide 4ncircleimentgr for the part:

of the Nyquist D contour from jO +to jO_. The indentation'around the b1rigin
of the D contour, required because of the rigid-body poles of the true system, was

U-9

E - 0

ROIS.

By the det(II+KG)I aIdct~gClsdLo tblt

:1225



handled separately. The det[I + KG] showed two clockwise encirclefients for theý

indentation.part of the D contour. There were thus no net encirclements, so.the

control law. is closed-loop stable with the true system..

Compensator Frequency Response--A plot of the three singula; values of

compensator, K(jw), is shown in Figure 6-17. The compensator exhibits the

familiar lead characteristic in the crossover region, that is, W = 30 r/s.

Notch filters are very evident in the minitnum singular-value plot. These notches

are likely to be very sensitive to the parameters of the degign model of the true

system that was used to design the compensator, This indicates the need for very

accurate identification of parameters for non-ILAS control system design. Another

item of interest is the dramatic rate of chanoe of gain with frequency near w =

10 r/s and w = 30 r/s. This is especially interesting since the nonminimumrn

phase zeros have magnitudes of 10 r/s and 30 r/s. Although no MIMO results arle

available to explain these peculiarities, they are consistent with intuition from

S SISO Bode gain-phase relations.
K.sigsq

A.. -.

.4., 0

i - to
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Figure 6-17. Singular values of the Compensator Matrix Transfer Function
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AReturn Difference Frequency Reoonse.--Singular values of I + KG, theoreturn

difference, are plotted vs frequency in Figure 6-le. Fundamentals of feedback

require that the return difference b,-, large in the frequency range of interest to

achieve the -benefits of feedback (i.e., disturbance: rejection). The plot

-o.' indicates that disturbance rejection is ýcjieved for two directions in the

input/output space %or frequencies less than 20 r/s. However, directions, in

input-output spade co.-responding to the minimum singular value do not share these

'-"', benefits. In fact, the return difference 'is less than unity, which means that
tI-

Xi feedback actually ampli.t.es di.L*turbances in these directions. This poor
performance is a fundameolual limitation of using feedback to control a nonminimum

phase plant., ,

Multivariable Stability iMargins--The plot of the singular values .of I + (KG)
vs w in Figure 6-19 is an indication of multivariable stability margins with

respact to multiplicative perturbations. When the maximum singular value of a
A

multiplicative perturbation to G is less than the minimum singular value oE

I+K~h. sisma

* A

' I

VVv

Ti e6 i J.

los fr'equency

AA'A ^

.',Figure 6-18. Singular Values of the R.•turn Difference: I + KG
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. Figure 6-19. Singular Values of I + (KG )_l

•.'. I •(KA)-I the cl'osed-locp system, is guaranteed to be stable in the face of the
5['5..•perturbation. This condition is sufficient for stability, but is not necessary.

•,'. Thus it "is conservative in some cases. It is especially conservative fori•'•j,,•a•,' app~~~~lication to the multiplicative perturbation -(I,mut=•l )ipidb

.',the ROM. Comparing the two plots (Figures 6-7 and 6-19), it can be seen that thesufficient condition for stability is violated for 10 r/s < w < 250 r/s.

" (GHowever, the closed-loop system was earlier shown to be stable in the face of thiespecific perturbation. For perturbations that are unstructured but bounded,

punlike the highly structured perturbation implied by the ROM, the condition is not
conservative. From the plot in Figure 6-19 an 6-19), it can be seen thatt

sufficient~~~~ ~~~~ codiio for stbeit ise viltdhoa0r/t 20rs

the stability of the closed-loop system is guaranteed for unstructured
multiplicative perturbations of less than 15% b uslow 30 r/. More robustness would

ibe required for u practical implementation of i ehis controller
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Closed-Loop Disturbance Attenuation Performance--Final evaluation of closed-loop

-; performance is made by comparing the frequency response of the closed-loop system

and open-loop system for disturbance to LOS. The disturbance has a frequency

between 10 r/s an) 100 r/s'Soi5'nly this range of frequencies need be compared.

LOS and LOS (Figures 6-20a,b) are the only plots of interest since DEFOCUS

(Figure 6--20c) meets the specification both open- and closed-loop. The plots in
Figures 6-20a,b show that performance was improved for the modes 22 in the LOS

X
response and 21 and 24 in the LOS response; all these have frequencies in the

y
range 10 to 30 r/s.

At the out-at of the design it was recognized that to meet specifications, a

bandwidth of roughly 1300 r/s was required. This was considered impractical for
the model of the spacecraft available and performance was compromised for the sake

of a practical bandwidth. Sensor and actuator placement were baset, critical

mode controllability and observability in the frequency range 10 r/s to 100 r/s.

Loop gain greater than unity was achieved for frequencies less than the bandwidth,

30 r/s. Considering these factors, we expect performance improvement in the

frequency range 10 r/s to 30 r/s.
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Figure 6-20a. Open- and Closed-Loop Frequency Response
for Disturbance to LOSx
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Control Design Conclusions--A compensator matrix for the advanced concept was

designed and found to be stable with the true system and to provide some

performance improvem~nt. The performance improvement-is.not.enough to meet the

LOS pointing specification, but it was not expected to do so. Control performance

was compromised for the sake of a practical controller bandwidth. The nonminimum

phasetzeros of the plant impose fundamental limits to performance, as was observed

in the return difference magnitude plots.

Alth6ugh the 'cosed-loop system was stable with the true system, it is not very

robust to modeling errors of the unstructured type. The multivariable stability

margins were found to be less than adequate for a practical design. This

sensitivity is in large part due to the limitations of controlling such an

.2 extremely non-ILAS plant.

S Further iterations on the design would have to be carried out -to achieve a more

practical control law, but were not possible in the limited time available. It is

evident that the advanced concept is a good example of a very difficult control

problem, because of the tight performance specification required for a non-ILAS,

nonminimum phase plant with highly coupled MIMO dynamics. Though it is believed

that the tools of modern control theory are capable of dealing with such difficult

problems, ultimate performance will always be limited by nonminimum phase zeros.
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