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EXECUTIVE SUMMARY

The task objective that guided the work reported in this document was to develop

the ARC User Language Specification based on user requirements, candidate ap-

proaches, and trade-off analyses. This work was motivated by the need to achieve

easier interaction between experimenters and the ARC in order to decrease the

time required to develop an experiment. The work resulted in a specification

of the Network Language LINGO which is included as Appendix A of this

document.

Technical problems considered in the development of LINGO included: the need

for evolutionary implementation of the design without obstructing use of .he ARC

for ongoing experiments, system synchronization problems including prevention of

deadlock, performance measurement and prediction, detecting errors in hooking

programs together, the desirability of adapting existing software rather than

replacing it, and the distributed system characteristics of both present and

future hardware configurations.

The general methodology consisted of a four-step approach:

1. Exploration of the problem and relevant previous work, including
the examination of previous ARC experiments, evaluation of exist-
ing ARC software, and conversations with ARC users and members
of the Systems Applications Branch to determine requirements.

2. Formulation of the general structure of a solution, in which many
alternatives were proposed and discarded on the basis of require-
ments, or logical or engineering flaws. This resulted in the
selection of the link-node, data-driven model on which LINGO is
based.

3. Test and refinement of the link-node model by applying it to more
detailed aspects of the requirements and proposed METAEXEC
architectures.

4. Completion of the formal specification of the LINGO Language which
involved many language changes to guarantee logical consistency.

The technical results of the LINGO design activity consist of a formal specifi-

cation of the syntax, an informal semantics of the experiment design portion

of LINGO, and specification of the user/equipment interface and computer
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r
programs required to support use of the language. These results are presented

in Sections 2 through 4 and in Appendix A of this report. The most significant

characteristic of LINGO is the degree to which it contributes to discovery and

prevention of system synchronization and resource allocation problems before

operation of an experiment. The rationale for the related design decisions is

explained in Section 2.

The important conclusions resulting from this work are:

1. System synchronization problems can be eliminated by the appro-
priate design of an experiment design language, its language
processor and a meta-executive. This type of disciplined solu-
tion is needed because of the extreme difficulty of testing and
debugging synchronizing errors when ad hoc solutions are used.

2. Performance prediction for an experiment network can be supported
by an experiment design language and its processor, subject to
certain conditions and limitations. Accurate manual estimates
of the performance of primitive nodes and links will be required,
and additional work is required on the derivation of the mathe-
matical relationship between primitive node performance and net-
work performance.

3. Previous recommendations for phased development are supported by
the results of this work.

As a result of the work on LINGO and reactions to the Design Review of June 7-8,

the following implications for further work have been identified:

1. The command language, for experimenter use in controlling experi-
ment operation, requires further design work. This design should
be closely coordinated with LINGO and the design of the METAEXEC
system software.

2. Design of system nodes and common signal processing nodes, plus
more detailed design of the METAEXEC system software is needed
to provide inputs for refinement of LINGO, as well as for their
primary purposes. The concern about adequate flexibility result-
ing from the Design Review of June 7-8 indicates the need for a
deeper understanding of the capabilities of the design and how
to exploit those capabilities in relation to the flexibility
needed by experimenters.

3. Development of the mathematical basis for prediction of the per-
formance of a LINGO experiment network is recommended. LINGO
(see Section 2 and Appendix A) provides a notation for including
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within a processing node specification of the primary information
needed for performance prediction. However, the algorithms for
calculating network performance from the primary information and
the degree of precision feasible have not yet been devised.

4. LINGO user's manuals will be needed. Two audiences exist, experi- F
ment designers and LINGO library designers.

5. Language processors will be needed. One processor, called the
LINGO linker, should be produced to analyze an experiment network,
link its nodes, and produce the control tables required for opera-
tion of the experiment. A second processor should be produced
to interpret commands during operation of an experiment. It
is expected that additional utility processors will be needed,
such as experiment loaders and node library managers, but
their functions and position in the structure of the system have
not yet been determined.

A

21
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1l.0 INTRODUCTION

-This document is a report of design work on the user language and computer pro-

grams required to support it. LINGO is divided into two major parts, experiment

description and experiment control. Because of dependency relationships among

these major language parts and the system support software, the experiment

description portion of LINGO has been designed and is presented here. Design

of the experiment control portion of the user language remains to be done.

Sections 1.1 through 1.4 provide background information, including a survey of

relevant previous work and a description of the language design criteria derived

from the requirements. Section 2 contains a general description of LINGO with

explanations of reasons for the critical design decisions. A complete formal

specification of the LINGO language is in Appendix A. Section 3 contains a

tentative specification of the user equipment interface. Section 4 describes

in general terms the computer programs required to support the LINGO language.

Section 5 is the test and verification specification for the language.

1.1 SPECIFYING COMPUTATIONAL TASKS

The development of a method for reliably specifying large scale computational

tasks by technically competent people has existed since Fortran attempted to

provide a solution in the mid 1950s. By-and-large, Fortran was a resounding suc-

cess in providing computer access to non-programmers. However, the problems

that were being solved in the mid-50s are miniscule compared to the problems

that the computer is being used to attack in the mid-7Os. Fortran is no

longer an adequate solution because the problems have changed and increased in

complexity. The computation of a function is rarely the problem today, rather

the design of appropriate functions and a reliable way of interconnecting re-

lated functions to perform a large integrated task are the new frontier.

Top-down design and structured programming are directed toward the identifica-

tion and implementation of appropriate functions for the performance of a given

task. This language design effort is directed toward the problem of

.1
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interconnecting those functional modules in a reliable way. LINGO is specifi-

cally aimed at large-scale computational tasks that do not require the con-

struction of new functions but rather employ existing well defined and reliable

programs.

LINGO has been specifically constructed to look forward to processing problems
of the future. It allows implementation on multi-machine configurations as well

as uni-processors. It encourages overlapped processing of functions. It

allows some degree of performance prediction indispensable in real-time process- r

ing and control.

1.2 SURVEY OF INTERCONNECTION TECHNOLOGY

Jack Dennis of MIT has been interested in the problems of interconnecting func-

tions for many years. He has written several technical reports that serve to

outline the subtle problems which characterize the interconnection of modules

and posed possible solutions [5]. Much of what follows has been drawn from his

insight and understanding. W

The interconnection of independent modules has been done since before Fortran.

The first Fortran facility on the IBM 702 provided automatic library resolution

of the Fortran-defined functions and run-time routines, although user-defined

functions had to be compiled individually and were then automatically linked.

Soon user libraries of functions and subroutines appeared. At this point the

real troubles began. Mismatch of the type or meaning of the argument to the

corresponding parameter made libraries somewhat unreliable to use and generally

pretty limited because the functions available were too specific. For

efficiency, many systems passed Fortran function data in common, creating many
more problems than were solved using the technique and even more narrowly limit-

ing the use of the subroutine library. Even now initialization and proper

linkage of independent Fortran subroutines are difficult and error prone.

To improve over the situation that obtained in Fortran, PL/I introduced the

EXTERNAL attribute and solved some of the problems. The problem of a consis-

tent definition of the external data was attacked by allowing the inclusion of
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source text from a library by the compiler. To guarantee consistent use the

data description was placed in a library and "included" in each routine where

it was used. If the description of the common data was to be modified, then the

library copy was modified and each independent subroutine which used the data

was recompiled.

The designers of Algo168C, a compiler for Algol 68 on the IBM 360/370 series of

machines, took an alternative approach. Instead of requiring the user to pro-

vide multiple linked declarations, the compiler maintains and "environment file"

which retains all declarative information. Programs must be compiled in the

appropriate order so that the environment already exists within the file, other-

wise an error is detected. This solves most of the bad linkage problems, but

does not solve the general library module problem because it assumes and builds

one large program even though elements are separately compiled and modifiable.

The need for a data sensitive linkage editor has been expressed in conjunction

with a somewhat simplistic formulation by R. G. Hamlet in the Communications of

the ACM [7]. This solution would check the type of parameter and argument and

link only when they matched in all cases. However, when structures are con-

sidered, the equivalence of two data descriptions becomes much more troublesome

and a solution that worked for one language might not work for another. In

this situation inter-language linking becomes a nightmare. If types are con-

sidered to be more general entities than just a description of the machine

format, the linker must become even more sophisticated.

Alternatively a language can be specified that is designed to aid in intercon-

necting independently built modules. There are several languages that treat

other problems in this way, including Gardner (6] and others.

One promising approach toward realistic interconnection of modules is offered

by a data flow graph. The source of the data is indicated followed by a series

of blocks that represent processing. Running from each processing block or

node are links that contain processed data. These links connect to another

node and become the source of data for further processing.
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This link-node technique seems like a fairly natural method for conceiving of

large scale programs. Several people have investigated languages and formal

systems for specifying general computation in graph form. The most well known

are the graph model of computation of Estrin and Martin [11], Petri nets, and

the data flow language/machine of Jack Dennis [5]. These systems are all aimed

at computing any function and are capable of simulating other machines. In this

sense they are data-oriented analogues of the algorithmic-oriented Turing machine.

1.3 DATA FLOW LANGUAGES

Data flow languages bring to the front a different series of problems ., do

algorithmic languages. The description of the data flow is inherently ;llel

and thus subject to race conditions and deadlock. Differences in proc, g and

communication rates allow queues to build up on interconnecting links. Data

that is time sampled and continuously flowing creates synchronization and con-

trol problems.

It should be a property of a reasonable data flow based network language that V

these problems can be handled in a system-independent way by only examining the

network and a finite set of node performance properties. In advance of execut-

ing a network it should be known that it will perform consistently and not unex-

pectedly terminate (deadlock), loop, or pruduce unreliable answers due to race

conditions. The meta-executive that controls such a network should schedule

node execution in such a way that network processing is never terminated be-

cause queues overflow on a network link.

To allow programming-in-the-large by technically competent but non-programming

people requires that the language behave in a reliable way that generates

diagnostics in terms that are understandable to a user, not just to a systems

programmer or implementer of a processing node. A non-programmer will, in general,

be unaware of the amount of computing resources necessary to perform a given

function. It is important, therefore, to be able to reflect network computing

costs in whole and on a part by part basis to the user. These costs are in

terms of computer cycles and memory because there is no real requirement for

dollars and cents estimates.
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Since the user has not constructed the processing nodes himself, the intercon-

nections should be checked in advance of execution of the network. At the very

minimum, the machine format of data should be checked for compatibility and even

the conceptual nature of the data could be checked by including it within the

data type. This was proposed earlier by Meertens [12] and also incorporated into

algorithmic languages by Cleaveland [4].

It is unrealistic to expect the unsophisticated user to check for race conditions

and deadlock; therefore, the language processor must be capable of automatically

checking a network in advance of execution. These were the goals that motivated

the development of the Network Language LINGO.

1.4 THE ARC ENVIRONMENT

The ARPA-ARC is an environfcent in which a network data flow language is espe-

cially applicable. The ARC provides a network of specialized and general pur-

pose computers that allow higher performance analysis of time series multichannel

acoustical data. The primary users of the ARC are scientists with some computer

background, but they are really specialists in their own fields of signal pro-

cessing and ocean physics. The current ARC configuration requires fairly inti-

mate knowledge of both its hardware and software characteristics for effective

use to be made of it. The production of an experiment tends to be costly and

time consuming, limiting the speed with which research can be conducted.

A network language in this environment would allow users to build their own

experiments rather than have to rely on programmers to build the experiments

for them. Specification of experiment topology done in LINGO allows easier

communication of processing concepts for everyone involved.

Viewed from the point of view of a research person, the ARC is a facility that

has a variety of special functions that operate on a common stream of experi-

mental data. The ARC system functions as the preprocessor of data for a re-

searcher's program. For most users of the ARC, it is a specialized machine for

doing signal preprocessing. For these users, the data flow from transducer to

program is the most important single consideration.

!V
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Other considerations include notational overhead imposed on a researcher to use

the ARC system, and the amount of cognizance of other researchers' activities

required in order to make resource allocation reasonable.

From the point of view of ARC administration, two facets are important. ARC

researchers come and go and the problems/research they do change. Therefore,

it should be easy for a new researcher to learn to use the ARC resources. De-

tailed checking coupled with good diagnostic messages will help teach a new

user. It will also keep more knowledgeable researchers from making simple

errors that might result in unnecessary and costly runs. Secondly, the hard-

ware available is subject to change and, therefore, the researcher should be

relatively insensitive to the particular hardware configuration.

The personnel within the ARC-configuration can be categorized into conceptual

roles which people can be expected to play at one time or another. These roles

do not represent real people; in fact, one person may play several roles or a

group may act in one role. The use of the categorization is to allow conception

of the support functions played by individual pieces of software.

For these purposes, five fundamental roles are identified:

1. Director: can either be a single person or a committee of prin-
cipal investigators who have the responsibility to allocate re-
sources during a real-time experiment (i.e., when allocation is
too important to be left to algorithms).

2. Principal Investigator: the person in charge of running an experi-
ment. He will probably have a programmer or two responsible for
building specific modules necessary for his particular needs.

3. Programmer: the person responsible for building specific experiment-
oriented modules in Fortran, Assembler, etc.

4. Node Library Designer/Programmer: a person who will probably be
part of the SDC System Support Staff and who has the responsibility
to design and build general modules for the Principal Investigators
and Programmers to use.

5. Systems Programmer: a person who is part of the SDC System Support

Staff having the maintenance responsibilities for the language
processors, meta-executive, utilities, and system interfaces neces-
sary to run an experiment.
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For each of these roles, resource allcation is one of the most important

single problems in the design and implementation of LINGO. Resource alloca-

tion depends upon the ability to predict the amount of computing and channel

usage that a particular experiment requires. This is important because the

reliability and responsiveness of the system depend on such knowledge.

Advance prediction of the system load will support rational scheduling and

grouping of experiments.

It is important to realize that this assumes that the hardware and software will

be in a reliable state so that rational resource allocation can be effective.

An important element in that design is to decouple processing from real-time

constraints as soon as possible within the ARC processing structure.
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2.0 THE USER LANGUAGE DESIGN

This section contains a general description of LINGO with explanations and some

of the alternatives considered for the critical design decisions. The formal

specification of the LINGO language is in Appendix A.

LINGO provides a general, uniform way to describe a large scale computing

process. Both real time and discrete processes can be described in terms of

data movement and transformations that are to occur on the data. The LINGO

language is designed primarily for disciplines in which a reasonable number of

known functional transformations are applied in various combinations to process

data. The language attempts to provide an easy safe way to interconnect these

preconstructed functions. The following sections describe the rules by which W

data is transferred from the output of one transformation to an input of

another. LINGO does not depend on a particular set of functions, but rather

*depends on an Application Library designer to supply a coordinated set of useful

functions.

2.1 THE BENOIT MODEL

Previous work by Benoit yielded a first cut at how a user could picture an

experiment. See Figure 2-1 for an example drawn from Benoit, et al [2].

Benoit modeled an experiment as a set of nodes connected by links. Each node

represented a program such as an FFT. Each link represented a storage area

into which the outputs of the previous node could be dumped and out of which

the inputs to the next node could be retrieved in a first-come first-served

fashion. The links connecting the nodes were divided into two classes: "data

links" -- high bandwidth channels used to carry data, and "control links" -- low

bandwidth channels used to pass parameters to nodes and to communicate status

information. Data input to the system was modeled by a data source node. The

experimenter was modeled by a control node that was the source of most of the

experiment's parameters and the recepient of most of the experiment's results.

Using the Benoit model as a starting place this section will attempt to derive

exactly what should be meant by "node" and "link," and what restrictions should

be placed on an experiment in order to meet the design criteria developed in

the previous sections. For convenience, these restrictions have been divided
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into two classes: link-time restrictions that must be met before the experiment

is run, and run-time restrictions that are checked while the experiment is in

progress. For convenience a port is defined to be the point where a link enters

(or exits) a node.

2.2 RELATIONSHIPS BETWEEN NODE INVOCATION AND INPUTS

Each node represents a program which presumably does some initialization and

then performs a system call asking for input. When should the system return

control to the node program in order to process the requested data?

The simplest form of an input request is a subroutine call that specifies which

port to read and a location to store the resulting data. This possesses several

undesirable traits. Deadlock could occur because two mutually dependent

nodes may ask for data in the wrong order or they can be accidentally linked

to some other node's outputs in the wrong manner. Since the subroutine call is

executable and a part of the general flow of control within the node, it is
I- unpredictable, in general, which parts will be used and in what order. In fact,

the amount of data processed from one node relative to another cannot usually

be determined, although for specific cases it could be predicted. In

this environment, performance prediction and qeneral behavior is hard if not

impossible to verify at link-time.

Some restrictions are needed on the order and amount of input as well as how

individual parts are handled. The following paragraphs describe the solution

chosen for LINGO.

Consider a program node with N inputs. Of these, M are high bandwidth data and

N-M are low bandwidth parameter ports. Because the high bandwidth ports

actually get data that should drive the node, they are connected to other nodes

by "running" links. The low bandwidth ports only give the node "advice," and

are connected to other nodes by "memory" links. We can actually ignore the low

bandwidth ports for purposes of determining when a node should be invoked.
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Thus, two types of links are distinguished: The first is the high bandwidth or
"running" link, and the second is the low-bandwidth or "memory" link. When a

node is invoked it can use the data supplied by the memory port. If no data

has arrived on the port's associated memory link since the last request for

data, the memory port will supply the same data. The term "memory link" arises

because an empty memory port always "remembers" the last data record it con-

tained. Memory links must be initialized at the start of the experiment in

order to prevent undefined results when a memory port is referenced for data.

Thus, memory links are always guaranteed to supply some reasonable user defined

data upon request.

If more than one block of data arrives at a port on either type of link, the data

is queued for sequential processing by the node.

Most program nodes will require only one running link input. These nodes can

be invoked when their running link contains data. When a program node requires
more than one running input, there are more choices. For example, with two run-

ning inputs a node could be invoked when both inputs are available (called an

ALL node), or it could be invoked when either link has input available (an ANY

node). With more input links more choices are available. With M running links

as input there are 2M rules for invoking a node using an arbitrary AND/OR

philosophy. Such complexity is undesirable and probably unnecessary because

most nodes will not have more than one or two running input ports.

A first cut at simplifying the situation is to allow only pure ALL and ANY nodes.

That is, an ALL node is invoked when all of its inputs are available and ANY

node is invoked when one or more of its inputs become available.

ANY nodes can be replaced with a less complicated structure by considering how

they would be used in an experimental situation. Most use of ANY nodes would P

be to merge data streams with no other processing; thus an experiment could

replace such an ANY node with a simpler concept, the idea of merging links.

When two links merge their data merges as well. Two such merging links must be
aI

6|
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carrying the same type of data so that the merged data stream is homogeneous.

The advantage of merged data streams over ANY nodes is the ease in predicting

their performance. The rate of flow in the merged stream is simply the sum

of input flow rates. Merging links are used in LINGO to solve this problem,

therefore, there is only one type of LINGO node: those that correspond to ALL

nodes in this discussion

A network with only ALL nodes and merging links can still deadlock and such dead-

locks can be prevented with the restriction that loops of running links are not

allowed. If a loop of links is desired, at least one of them must be a

memory link. This link-time restriction makes deadlock impossible because theK1  memory link in a loop effectively cuts off the synchronization which makes the
deadlock possible. These restrictions are employed in LINGO to prevent

deadlock.

2.3 RELATIONSHIPS BETWEEN NODE EXECUTION AND OUTPUTS

Certain experiment networks are undesirable because they imply infinitely grow-

ing queues on data links. The simplest example is a node that is accepting

real-time input at a rate faster than it can process. Such a situation can be

avoided by careful attention paid to performance prediction at link-time.

For example, any real-time inputs to an experiment will have data rates known

by the LINGO linker; similarly the standard LINGO library nodes will have been

benchmarked so that the linker can predict whether any experiment constructed

entirely from library nodes will be feasible. User-constructed nodes are

handled by allowing the user/experimenter to specify a maximum processing time

for a node which will be enforced by the system at run-time. If the input to

the experiment is arriving from an archive or a spool, the input rate can

be adjusted at run-time to fit the processing rate of the experiment.

The other major problem with infinite queues is caused by a node where one of

its input links has data arriving at a faster rate than some of the others. The

data on the fastest link will queue infinitely. This situation is prevented by

scheduling nodes so that the input rates of all links into a node will be equal

so that no queues can build up on a link.
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This need to predict the behavior of links implies a need to know the amount of

output a node generates for each invocation on each of its output ports.

Detecting data rate errors requires that the compiler knows exactly how much

output a node will produce for each invocation on each of its output ports. For

library nodes, this will be done by understanding them and describing their

behavior; for user/experimenter nodes, this can be done by allowing the user/

experimenter to specify the outputs per invocation and then checking the veracity

of the specification at run-time. Such precise knowledge of the output/

invocation ratio is needed only when many links are destined for an input to a

common node; with most experiment networks this restriction will not even be

noticed.

2.4 CONTINUOUS VS. BLOCKED DATA

Experimental data may be split into two classes: continuous data, such as time

data input to an FFT, in which the data consists of small loqical pieces blocked

physically for the operating system's convenience; and blocked data, such as the

output from an FFT, in which the data is already logically blocked. Note that

when two data links are merged, any single invocation from the merged link will

obtain data only from one of the data links; thus blocks are not broken up and

continuous streams are not intermingled within a given invocation.

Continuous data causes problems in analysis because a program node may need

varying amounts of it depending on other parameters. For example, an FFT may

have a memory link input telling it how much time data to "bite off" at each

activation. In such cases it is helpful to specify at link-time a minimum and

maximum of the amount to be bitten off; in most cases the minimum should equal

the maximum.

Performance for continuous data depends on the size of the input block, the

amount the input block should overlap the previous block, and the sampling rate.

For performance analysis purposes, these three statistics should be specified at

link-time, but if run-time parameter changing is desired the solution described

above may be employed.
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2.5 END OF FILE AND PARAMETER MODIFICATION

Eventually all experiments must stop. This can happen because the system

crashes, because the user/experimenter wishes to switch to a completely differ-

ent LINGO experiment, or because the same experient is to be run again with a

different organization. This document will ignore the first cause which is

treated in the METAXEC description [8] and concentrate on "normal" transitions

in LINGO experiment definitions.

Suppose a LINGO experiment is about to come to an end. This can be modeled by

placing an end-of-file mark on each input running link at some appropriate time.

When an EOF mark reaches a (single running input) node, it will cause the node

to do cleanup processing and, after its completion an EOF mark will be placed

on all its, (running) output links. As EOF marks arrive at ports they deactivate

the port. Eventually EOF marks will reach all the running input links to a node

and end-of-file processing will be initiated. Note that when two links merge

-Chat an EOF mark is found on the merged link only after both links have reached

an EOF.

The above method can be pictured as using the EOF marks to flush the old LINGO

experiment out of the system. If the new LINGO experiment resembles the old one

topologically with only a few parameter changes, these parameters could fall in

a special record which follows the EOF marks of the old experiment and which

leads the data of the new experiment. This method would allow parameter changes

to be synchronized cleanly from node to node such that if many parameters are

to be changed, the changes all fall on the next piece of new data rather than

haphazardly on all the data currently in the system. Asynchronous parameter

changes can be accomplished directly via memory links from the user/experimenter

to each node.

4 S
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3.0 USER/EQUIPMENT INTERFACE

This section contains a description of the user/equipment interface required

to support the LINGO language. The phased development planned for the language

significantly affects the need for various types of equipment to support the

user interface. Definition of the phases of development and allocation of func-

tional capabilities to the phases has not yet been determined in enough detail

for complete specification of the user interface equipment, especially the

terminals that will be required to support the graphical form of LINGO. How-

ever, it is clear that standard, typewriter-like terminals, e.g., Teletype, can

support the linear character form of LINGO. As more detailed design is com-

pleted and the development phases are more sharply defined, the requirements

for user interface equipment will be more completely specified.

3.1 CHARACTER FORM OF LINGO NETWORKS

The syntactic portions of Appendix A prescribe the way in which a LINGO network
Y is to be expressed in character form. Figure 3-1 shows an example LINGO program

using this character representation. The example is only included here to demon-

strate the character form of the user/equipment interface; the content of the

example is explained in Section 9.2 of Appendix A.

The character form of LINGO has been carefully designed to stay within the ASCII
128 cnaracter set (see Figure 3-2). However, it is possible to specify LINGO net-

works in the ASCII 64 character set which excludes the lower-case characters and

some special symbols.

3.2 GRAPHICAL FORM OF LINGO NETWORKS

The most natural way for a user to employ LINGO is to draw nodes and links so

that the network becomes a visual entity. In the future, a graphical LINGO linker

will be defined so that users may have mechanical interactive help in construct-

ing networks. Appendix A specifies a standard graphical representation for the

user portion of LINGO networks. The following sections summarize that material

and provide a general example. Figure 3-3 shows the same example program used

earlier for character representations in the simpler graphical form. This

demonstrates how a graphical, interactive LINGO linker would represent LINGO

networks.
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FIGURE 3-1 AN EXAMPLE LINGO NETWORK USING

THE STANDARD CHARACTER REPRESENTATION

def lib matpak; {include matrix library)

node grad t f =
import vector (150) f;
export vector (150) del t;
begin env ("/u/dt/gradtf",

fortran,
pdplO,
1000 ms,
del -t: 1 out/inv);end;

import matrix (150, 150) pq,
vector (150) f;

export file g; "

begincopy ort f -- > fl, f2;
times (port pq, grad t_f(f2))--> a;
times (<scalar(/s = "0.5"), port h>, a)-->b;
display (minus(fl,b)/format=" ... )--> port g

end
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FIGURE 3-2 USA STANDARD CODE FOR

INFORMATION INTERCHANGE

USA Standard Code
for Information Interchange

1. Scope

This coded character set is to be used for the general interchange of information among information processing
systems, communication systems, and associated equipment.

2. Standard Code

-W, b7__b6_0_0 0 0 0 0 1 00 1 1 1Bit0 b0 01 °1 0 0 1 1
Bob~ 1 0 1 0 1 0

S 4 b3 b2 ib
I 1 0 1 2 3 4 5 6 7

0 0 0 0 0 NUL DLE SP 0 _ P" p

0 0 0 1 1 SOH DC1 ! 1 A Q a q

0 0 1 0 2 STX DC2 2 B R b r

0 0 1 1 3 ETX DC3 # 3 C S c s

0 1 0 0 4 EOT DC4 $ 4 D T d t

0 1 0 1 5 ENQ NAK % 5 E U e u

0 1 1 0 6 ACK SYN & 6 F V f v

0 1 1 1 7 BEL ETB 7 G W g w

1 0 00 8 BS CAN ( 8 H X h x

1 0 0 1 9 HT EM ) 9 I Y i y

1 0 1 0 10 LF SUB * J Z j z

1 0 1 1 11 VT ESC + K [ k (

1 1 010 12 FF FS , < L \ I
11 0 1 13 CR GS - = M _ m I
1 1 1 0 14 so RS . > N ___ n ""

1111 15 SI US / 0 0 DEL
[I us
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FIGURE 3-3 NETWORK FOR g =f -HP qvT

Pq (fronm a file) f (from a file)

4 gradientt VT I

wit rxpeipetet

*t f

fonnat="(f .'m to ani

.3 exeietr

__________times



3-5 TM-5897/000/O0
30 June 1977

3.2.1 Graphical Form of Links

A running link is represented by a single line and a memory link by two parallel

lines. Merging links are represented by merging lines and a sump by an asterisk.

If a link has a link-id, the identifier is written on or next to the link. Thus: -

a •running link

bb memory link

IcIl memory link with
a(/r=4)1 c2 I =Z:initialization

stet
4I

__ a sump

run merging running link

mem merging memory link

3.2.2 Graphical Form of Nodes P

A node is represented by a circle with imports as arrow inputs to the circle

and exports as lines out. The name of the node is written in the circle. If

modifiers are present they are written in the circle separated from the node

name by a line. Thus:

.Stov
~pus1 M=10W
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3.2.3 Graphical Form of Copies

A copy is represented by a circle with one input and any number of outputs.

The circle is named "copy".

COPY

//

I'I

.. 1

*1

Si

S4

I

S"
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4.0 COMPUTER PROGRAMS

This section contains a specification of the computer programs required to

support LINGO. At the current stage of design, only general specifications

of the requirements for these programs can be determined; more complete S

specification of the requirements will be completed when the prerequisite

details of the METAEXEC and hardware configuration have been determined.

4.1 LINGO LINKER p

A computer program will be required to process LINGO to produce linking

directions for the METAEXEC. This program will have three inputs:

1. Control commands specifying parameters which control its mode
of operation.

2. An experiment network specification in the experiment design
language.

3. Libraries of node and subordinate network specifications in p
'-6 the experiment design language.

The LINGO linker will have two outputs:

1. A listing or display of the results of analyzing the experiment
network specification. These results will consist of error
reports and performance predictions covering space and processor
time and channel utilization.

2. Control tables suitable for use by the METAEXEC during
operation of the experiment.

The functional capabilities required of the LINGO linker are:

1. Retrieval of referenced node and network specifications from
library files.

2. Syntactic analysis. Syntactic errors will be reported with
meaningful messages.

3. Semantic analysis. Semantic errors will be reported with
meaningful messages derived from additional data supplied by the
node specifications from the library.
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4. Analysis of resources required for operation of the experiment
and estimates of the performance of the experiment. The results
of this analysis will be reported to the user in a form that both
supports evaluation of the load the experiment will place on the
system and support estimation of the feasibility of operating the
experiment at the same time as other experiments or with less than
the complete hardware configuration.

5. Production of tables to control operation of the experiment.
These tables must be compatible with the detailed design of the
METAEXEC system software and the interpreter of the experiment
control language.

Operation of the LINGO linker will not be subject to real time constraints so

there will not be hard constraints on its speed of operation.

4.2 EXPERIMENT CONTROL LANGUAGE INTERPRETER

A program will be required to interpret the experiment control language. The

requirements of this program cannot be properly determined until completion of

the language design, and a more detailed level of design of the METAEXEC system

software is available.

1. The interpreter will be an interactive program.

2. The user must be able to refer to elements of the experiment
network in terms that are similar to those used in specifying
that network.

3. The speed of operation of the interpreter must be compatible
with the real time requirements of experiments.

4. The interpreter must be capable of supporting testing and
debugging operations during experiment development.

4.3 AUXILIARY LANGUAGE PROCESSORS

It is expected that there will be a need for additional utility processing

programs to help support LINGO. One candidate function is management of the

libraries of primitive node programs, node/network specifications and

experiment control tables. It is not yet clear whether there should be a

distinct program for this function or whether it should be distributed among

the programs specified in Sections 4.1 and 4.2. A second candidate function
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is the process of loading and initializing an experiment. As the system design

is carried to a greater level of detail, specific requirements for these functions

will be determined and they will be allocated to system components.

P

0P
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5.0 TEST AND VERIFICATION

Computer languages and language ideas are generally tested for logical

consistency, usefulness and user acceptance. In the design of LINGO several

test and verification steps were undertaken and several remain to be done.

Logical inconsistencies of language features can be revealed by a formal

specification of the syntax and semantics of the language. Formal syntactic

specification will reveal errors in the general organization of the language

and the proper coupling of semantic concepts; however, it will not test for

ambiguity and deeper structural errors such as scope rule inconsistencies.

LINGO has been formally specified syntactically and the logical organization

of the language has been verified in terms of the related semantics. The

LINGO syntax has not been processed by a parser generator which would provide

yet another test of its coherence and logical consistency.

l. - LINGO semantics have not been formally specified; rather, English was used

as the semantic specifier. Testing of the semantics could be done by

implementing the LINGO linker which would force the degree of understanding

of the semantics necessary to clean up any remaining bugs.

The utility of language features is a more intuitive concept than that of

logical consistency. To provide validation of this concept an attempt to

judge the generality-utility cross product was done by critical evaluation

of the LINGO concepts by the implementation team. Independent judgment of

"critical users" was solicited by a presentation of the language concepts for

review. In every case these efforts led to an improved language. In the last
analysis the judgment of the user community will be the final verification of

the usefulness of the features included, Evaluation of this can be assisted by
using an automated complaint log for user comments.

User acceptance of a language is almost impossible to verify in the absence of

a language processor, so until an implementation of a LINGO system is

accomplished this goal is impossible to verify.

4
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A tale should be judicious, clear, succinct;

The language plain, and incidents well link'd.

--Conversation

Thousands ... 
li

Kiss the book's outside who ne'er look within.

--Expostulation

William Cowper (1731-1800)
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1.0 STRUCTURE CF THE LANGUAGE

1.1 GOALS

The Network Language, LINGO, was designed to:

0 Provide a notation which completely and concisely defines a system
composed of several programs operating in concert on one or more
machines.

* Provide for the creation, maintenance, and use of libaries of pro-
grams where each library represents a coherent set of data types and
parameterized nodes which operate on those types.

* Allow designers of node libraries to detect and announce misuse of
their designs as their nodes are linked into the user-defined net-
work rather than issue an error message after the network begins
execution.

0 Prevent deadlocks in user networks. A LINGO network which executes
on an idealized infinite-queue machine will never deadlock; any
implementation with limited buffers can detect potential trouble
spots at link-time before a network begins execution.

0 Allow precise estimates of requirements of system resources, par-
ticularly buffer space and processor time, to be provided by the
network linker prior to execution of a LINGO network.

1.2 NODES

LINGO is the control language for a general purpose linker for independent

programs called nodes. A node is defined by writing a program in some algo-

rithmic language such as Fortran, Algol, PL/1, or Assembler, or by writing a

network in LINGO which connects other nodes to perform the desired function.

* A node can be conceived of as an abstract function that operates on a set of

data records that are present at the node's input ports. The node executes

and produces a series of data records on its output ports. Eventually the

node will finish and go to sleep awaiting more data on its input ports. For

* brevity in the rest of this document input ports will be called "imports" and

output ports, "exports".

0
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Routines designed to be interconnected in a LINGO network and written in an

algorithmic language are called nodes. Primitive nodes are described within

LINGO by environment information which includes performance data, the name of

the executable program module, the location of the program, and on what machine

the program will execute. Performance data includes the amount of storage the

program requires, the number of buffers required, and estimates for the amount

of time each routine needs for every invocation.

1.3 LINKS

Links are used to c,nnect an export of one node to an input of another.

Records enter a link at one end and exit at the other end in the same order

as they were put on the link; thus a link is a first-in, first-out queue.

Within a LINGO network there may be many independent link entries that feed

records to a common destination. Records are never lost or overwritten on a

link. Since the processing at the destination end may be slower than the

processing at the source end of the link, data records may accumulate on the
link during processing. However, any link may be implemented by using a

finite amount of storage known in advance of executing a network.

LINGO was designed to connect together nodes operating on several inde-

pendently operating machines. In specifying a network the user links nodes

together to perform a task. A link which the user specifies to connect nodes

is a path upon which data flows from the export of one node to an import of

another. Since nodes may be operating on independent machines, the links must

provide the capability of synchronizing the node actions within the network.

Because of variance in the node processing capabilities and how nodes are

physically linked, a LINGO user may not assume how much time is taken by a

link to transmit data records or how soon records will be processed at the

receiving end.
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To help a user synchronize node activity, LINGO provides two types of links:

running links and memory links. The only difference between them is the

action they take when no data has arrived at the destination node. A memory

link always remembers the last data record. This remembered record is sup-

plied when a node requests data when no new data has arrived on the link;

thus, the memory link acts asynchronously with respect to other links. Run-

ning links are always synchronized and a node waits for data records to be

present on all of its running input links before it will begin execution.

Thus, data on memory links does not participate in deciding when a node is to

run.

Memory links are useful for transmitting slowly varying control information

or parameters to a node from Either another node or another source, such as

an experimenter's terminal. Running links are useful for transmitting data

to be operated on by a network. Thus, a LINGO network is a data-drivan system,

where the driving data is on running links and asynchronous control is

effected by memory links.

To prevent deadlock from a circular wait condition, running links may not

form a loop. Thus, if only running links are considered, a LINGO network

is purely a feedforward system. Memory links may loop back because they are

not used for synchronization and so cannot cause deadlock. If a portion of an

algorithm requires synchronous feedback, it may be written in an algorithmic

language and included as a primitive node.

1.4 NETWORK DATA

The data records to be transported on network links can assume an arbitrary

form that is fixed when the network is linked together. Each node specifies

a general configuration for data acceptable at each port. When a node is

linked into a network, the network linker checks to see that the specific form

of data flowing on each input link is compatible with the general configuration

aV
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of the import into which it flows. Once a node is linked into a network, the

network linker can determine the specific form of data flowing out of each

export by examining the import types, modifiers supplied by the user, and the

LINGO specification of the node.

1.5 NODE LIBRARY

LINGO depends heavily for its utility on the designer of the nodes that it will

eventually link. The node designer must conceive of reasonable functions and
data types that are well suited to solving problems in some application area.

For example, a library of application nodes could be defined using some stan-

dard form of collected data to perform signal processing applications,

statistical analysis, or report generation.

To help the node designer assist his users, LINGO allows him to specify a set

of computations to be done when a node is being linked into a network. This

allows the node designer to check properties that are being employed in

the node against specific properties of the input type on an import. Node-

dependent diagnostic warning and error messages can then be issued by the node

library via the network linker to the user.

1.6 REPRESENTATION ISSUES

The most natural representation for a LINGO network is a graph, with circles

representing nodes and arcs representing the links between them. This repre-

sentation makes the processing very clear and it is a nice conceptual aid.

However, a linear character representation is also useful to allow input from

any kind of terminal. LINGO has been designed with both of these forms in mind

and both are specified in the remainder of the document.

1.7 NOTATION FOR SYNTACTIC DESCRIPTION

Grammatical notations in this document are expressed in a somewhat simplified

form of Backus-Naur Form (BNF). This simplified form represents nonterminal

grammatical notions using a sequence of lower case letters. Thus, the BNF
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notion "<program body>" would be written "program body" in the simplified

notation. Terminal grammatical notions in BNF are written as is, but here they

will be represented by non-terminal notions which end in "symbol". Thus, in

BNF a comma between two items would be represented by "," in the grammar

whereas in the simplified notation it is represented by the notion "comma

symbol". Section 7 contains a list of all the LINGO symbols and their corres-

ponding typographical representation.

The remaining conventions used in specifying the syntax of LINGO is easy to
define by substituting a corresponding BNF rule. The BNF production symbol

"::=" is replaced by ":" in the simplified notation. The BNF or-bar "I",
separating alternatives, is replaced by a semicolon ;" in the simplified

notation. In BNF, two grammatical notions written in sequence indicate concat-

enation of the terminal productions from the notions. This is represented by

separating the notions by a comma "," in the simplified notation. The end of

a grammar rule is indicated by a period "." in the simplified notation.

To read a simplified grammar rule, substitute the following phrases for the

indicated punctuation:

":1 is a(n)

","1 followed by a(n)

or it is a(n)

Thus the rule:

program: program identifier, equals symbol, program body;

program body.

is read "A program is a program identifier followed by an equals symbol

followed by a program body or it is a program body." This same rule would

have been written in BNF:

<program> ::= <program identifier> = <program body> I

<program body>
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To ease the number of rules that need to be read to understand the intent of

the grammar several abbreviations are used. These abbreviations take the form

of several standard suffixes to a grammar notion. The suffixes include "list",
"option", "pack", etc., which have the meaning indicated in Table A-l. For

example, the notion "argument list" indicates that the grammar notion "argument"

will be repeated an arbitrary number of times separated by comma symbols. The

notion "argument option" indicates the "argument" is optional and can be omitted.

Composites are possible; thus "argument list option" indicates that the entire

list of arguments may be omitted including the commas separating members cf the

list, whereas "argument option list" indicates that some of the arguments may

be omitted but the commas forming the list will still be present even though a

particular argument is gone.

Using these conventional suffixes the earlier example rule for a program could

be rewritten:

program: program idf option, program body.

program idf: program identifier, equals symbol.

To properly define where comments, blanks, and other typographical display

characters (like newline, tab, etc.) can be placed, another conventional suffix

is used. Notions which end in "token" can be preceded by comments, blanks,

etc. Notions which end in "symbol" represent only the single associated typo-

graphical character. These suffix rules are formally defined in Section 7 of

this appendix.

1.8 ORGANIZATION OF THE LANGUAGE DEFINITION

This appendix treats the larger syntactic forms first, and then progresses

to smaller and smaller entities. Thus, a network-program is presented first,

while the section which defines the characters and symbols used in writing

LINGO networks is last. Sections 2 through 7 treat network and definition

statements, links, data paths, network data, computations at link time, and

finally the symbols and identifiers used to define the rest. Section 8 is an
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TABLE A-i SUFFIX FORMS USED IN THE GRAMMAR

SUFFIX FORM

list item, item, ..., item

option item or EMPTY

pack (item)

group item; item; ...; item

sequence item item item ... item

id an identifier

token a notion signifying some typographical
glyph which may be preceded by comments,
blanks and other typographical for-
matting characters

symbol a notion which signifies some typographical
glyph defined in Section 7

informal discussion that defines what a well behaved node is permitted to do

and how the node can interact with the LINGO run-time facilities. Section 9

presents a small sample-library of primitive nodes and a LINGO program using them.

The top-down organization of this document is an advantage because it generally

presents the important information first. However it has one major drawback:
Since larger entities are always defined in terms of smaller ones, examples of

larger entities use constructs which will be formally defined later in the

document. Sometimes the example involves syntax so far removed that it was
thought better not to confuse the reader with an example. In these cases,

ellipses (...) are placed in the portion of the example which would offend.
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The semantics for LINGO are defined in English and are thus relatively informal.

Within the descriptions of semantics a grammatical notion is written with hyphens

between words; thus if "actual record type" appears in a grammar rule, it is

referred to in the semantics as "acutal-record-type". Grammar notions are

written in the plural by adding an apostrophe followed by an "s". Thus
"actual-record-type's" is the plural.

Care has been taken to be as precise and complete as possible without relying

upon a particular implementation. For this reason it will be noted that the

internal notions of LINGO are specified more precisely than the parts of LINGO

which interface to the system which implements it. Once that system is defined,

an implementor can make the external notions of LINGO more precise.
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2.0 NETWORKS AND DEFINITIONS

2.1 NETWORK PROGRAMS

2.1.1 Syntax

a) network program: network idf option,

external node network.

b) network idf: network id, is token.

c) external node network: external import part option,

external export part, network body.

d) external import part: def prelude option, import token,

import info list, with token.

e) import info: actual type, import id,

file env option.

f) external export part: def prelude option, export token,

export info list, with token.

g) export info: actual type, export id,

file env option.

h) file env: environment token, file name list pack.

i) file name: string expression.

j) def prelude: definition token, definition group,

with token.
Examples

a) fme c = def lib arcfme;

import mpx remote, S

line director,

line sysin env ("/dev/terminal");

export line sysprint;

... end
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b) fmec=

c) def lib arcfme;

import mpx remote,

line director,

line sysin env ("/dev/terminal");

export line sysprint;

begin ... end

d) def lib arcfme;

import mpx remote,

line director,

line sysin env ("/dev/terminal");

e) line sysin env ("/dev/terminal")

f) export line sysprint;

g) line sysprint

h) env ("/dev/terminal")

i) "/dev/terminal"

j) def lib arcfme; V

2.1.2 Semantics

A network-program consists of five things:

1. An optional network-idf that specifies its external name.

2. Optional def-prelude's that gives preliminary definitions either
directly or from a library.

3. An optional list of import-info's, each of which specifies the
connection between a network-program import and an external
resource. Such a resource must have a type that matches the
import-info's actual type. The optional file-env can be used
by an implementation for additional information. For example,
it could be used to locate a specific file or a set of concate-
nated resources. If the file-env is absent then a file-name
derived from the import-id is assumed.

4. A list of export-info's, each of which specifies the connection
between a network-program export and an external resource. An
export-info is like an import-info except that it applies to
output rather than input.

5. A network-body, which will be defined in Section 2.2.
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External resources are connected to an import by successively transporting

logical records from the resource to the associated port. This continues until

an end-of-file is sensed at an import. At this time the port becomes inactive

and an end-of-file is placed on the associated link.

The action of a network-program is the activation of its external-node-network.

The network-program is active when its external-node-network is active and con-

versely. When the external-node-network is no longer active, an end-of-file is

transmitted to the external resources connected to each export, and the network-

program terminates by returning control to the operating system.

The scope of import- and export-id is the network-body portion of the external-

node-network in which the import- and export-id are defined.

2.2 NETWORKS

2.2.1 LINGO Node Networks
2.2.1.1 Syntax

a) network body: begin token, data path group,

with token option, end token;
begin token, primitive node spec,

end token.

b) definition: node def; record type def; value def;

library inclusion; use check.
Examples

a) begin ... end

a) begin env ("gradient", assembler, pdplO, 500 ms, v:l out/inv) end

2.2.1.2 Semantics

The network-body is the active part of a network-program. Each data-path in

its data-path-group acts independently and simultaneously. Therefore, data-

path's can be given in any order. When activated, a network-body activates all
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data-paths in the data-path-group. A network-body is active whenever any one

of its data-paths are active. A network-body terminates when all of its data-

paths are inactive. If a network-body contains a primitive-node-spec, it acti-

vates the program associated with that primitive-node-spec. It terminates when

the primitive-node program has finished processing an end-of-file invocation.

Activation and termination are LINGO technical terms which indicate the capac-

ity or incapacity to process records.

Definitions specify the identifiers associated with nodes, record types, and

values. They also specify the inclusion of libraries containing additional

definitions to be used, as well as use-check's to warn about improper linkage.

The scope of an identifier defined in any definition is that 
portion of the

containing (external-)node-network which follows the definition. The scope

rule thus prevents referencing an identifier before it has been defined.

2.2.2 Primitive Nodes S

2.2.2.1 Syntax

a) primitive node spec: environment token, primitive info pack.

b) primitive info: object file name, comma token,

language name, comma token,

machine name, comma token,

ms per invocation, comma token,

output spec list.

c) object file name: string expression.

d) language name: string expression.

e) machine name: string expression.

f) ms per invocation integer expression, ms token.

g) output spec: export id list, colon token,

output characterization option,

output ratio.

h) output characterization: worst token.

* p



A-21 TM-5897/000/00
30 June 1977

I
i) output ratio: outputs per invocation;

invocations per output.

j) outputs per invocation: integer expression, output token,

slash token, invocation token.

k) invocations per output: integer expression, invocation token,

slash token, output token.

Examples

a) env ("/dt/mat/gradient",

fortran, lit is assumed that "fortran" and "pdplO"l

pdplO, lare previously defined value ids

30 + 150*m ms,

v2: 1 out/inv)

b) "/dt/mat/gradient",

fortran,

pdplO,

30 + 150*m ms, p

v2: 1 out/inv

c) "/dt/mat/gradient"

d) fortran

e) pdplO p

f) 35 + 150*m ms

g) v2: 1 out/inv

h) worst

i) 1 out/inv

j) 1 out/inv

k) n inv/out
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2.2.2.2 Semantics

A primitive-node-spec gives information to the network linker about a primitive
node written in an algorithmic language. Its object-file-name gives the loca-

tion of the object module that implements the primitive node. The language-

name identifies the source language and thus the particular linkage conventions

of the object module. The machine-name identifies the machine on which the

object-module will execute. The ms-per-invocation provides an estimate of cpu

time, exclusive of system overhead, that the node consumes on every invocation.

The output-spec provides the number of outputs expected from each export for

each invocation.

Every export-id (including external-export-ids) of the export-part of the

network-body (or external-node-network) containing the primitive-node-spec must

appear once and only once in the output-spec. Each output-spec contains three

things: a list of export-ids, an optional output-characterization giving

output-spec accuracy information, and an output-ratio that specifies the

amount of collective output that may occur on the exports identified by the

export-id-list.

An output-characterization, if present, implies that the total amount of out-

put per invocation is unpredictable but will never exceed the amount specified

in the output-ratio. If the output-characterization is absent, the total

amount of output per invocation will always be the amount specified in the

output-ratio.

An outputs-per-invocation specifies that the output-ratio is in terms of the

number of outputs that are yielded by or arbitrary invocation of the node.

Conversely, an invocations-per-output specifies that the output-ratio is in

terms of the number of invocations expectea to produce a single output.
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2.3 NODE DEFINITIONS

2.3.1 Node Definition

2.3.1.1 Syntax

a) node def: node token, node id, is token,

node network.
b) node network: import part, modifier part option,

export part, 
net work body,

a) node grad def lib matlib;

import vector (mod n) f;
* export vector (n) del f; P

def unless 0 < n & n < = 4096

error ("grad:" # n #" out of range");

begn env ("/dt/mat/gradient", fortran, pdplO,

1!r. 50 + l00*n ms, n:l out/inv) end
b) import vector (mod n) f;

export vector (n) deldel f;

begin grad (grad (port f)) --> port del del f end

2.3.1.2 Semantics

A node-def defines the properties of a node and identifies the node with its
node-id. When a node-id is referenced in a node-invocation, it is identified

4 by its name and input types as described in Section 4.2.2. After it is
identified, its modifiers are determined from the node-modifiers of the node-
invocation, the defaults from its modifier-part, and the types of its exports
from its export-part. In doing this the network linker evaluates all of the
definitions within the network-body and issues any error messages given in any
use-check'c. The node is then considered linked into the network.

* p
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The scope of an identifier defined outside the node-network, which is the same

as an identifier defined within the node-network, does not extend into the

node-network.

2.3.2 Node Imports and Exports

2.3.2.1 Syntax

a) import part: def prelude option, import token,

import spec list, with token.

b) import spec: formal type, export id.

c) export part: def prelude option, export token,

export spec list, with token.

d) export spec: actual type, import id.

Examples

a) import line a, line b

b) line a

c) dim (1:10) line c

d) export line d, line e, line f

e) struct (real, line, dim (1:10) integer) diagnostic

2.3.2.2 Semantics

The import-part and the export-part together specify the number of imports and

exports and the type associated with each port. The formal-type in an import-

spec identifies a class of record-types acceptable to the corresponding import

and defines modifiers that have the value from the matching position in the

record-type connected to the port.

The actual-type in an export-spec must employ identifiers that will be known at

the time the node is linked. The actual-type specifies computations that allow

the network linker to compute the complete record-type for export links.
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2.3.3 Modifiers

2.3.3.1 Syntax

a) modifier part: modifier token, modifier spec list.

b) modifier spec: modifier id, default option.

c) default: is token, static expression.

Examples

a) mod a, b, c = 13, d = true, fmod
b) aname

b) aname = 13*a

c) = 13* a + b

c) = 27

2.3.3.2 Semantics

A modifier-part is performed by defining each modifier-id in the modifier-spec-

list with a preliminary value. A modifier-spec is performed by the network

linker by evaluating the static-expression of its default and assigning the

resulting value to its modifier-id. If the default-option is empty, the

modifier-id's value is undefined.

The scope of the modifier-id defined in a modifier-spec extends to all succeed-

ing parts of the node-network that contain the modifier-spec.

2.4 RECORD TYPE DEFINITIONS

2.4.1 Syntax

a) record type def: record token, record type id,

modifer id list pack option,

is token, string expression.

Examples

a) record vector (n) "dim (1:" # n #") real"

a) record line (n) = "struct (integer, dim (1:" # n #") char)"
a) record terminal = "line (80)"
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2.4.2 Semantics

A record-type-def defines a record-type-id for refering to a parameterized

record type. This allows a shorthand for data descriptions either of formal-

record-types or actual-record-types.

The string-expression is in terms of modifiers whose scope extends to the

position and local modifiers defined in modifier-id-list-pack where the string-

expression will be expanded. The scope of these local modifiers is the string-

expression. The resulting string value must conform to a formal-record-type or an

actual-record-type after expansion, depending on the context.

2.5 VALUE DEFINITIONS

2.5.1 Syntax

a) value def: value id, is token, static expression.

Examples

a) k = a*lO

b) message = n # "too large"

2.5.2 Semantics

A value-def is evaluated by the network linker by evaluating its static-expres-

sion and associating the resulting value with the value-id.

2.6 LIBRARY INCLUSIONS

2.6.1 Syntax

a) library inclusion: library token, library spec list.

b) library spec: library id,

library modifications pack option.

* c) library modifications: library modifier list.

d) library modifier: modifier id, is token, static expression.
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Examples

a) lib arclib, fme_ib, stablib(ncases 500)

b) arclib

b) statlib(ncases = 500) V

c) ncases = 500, missing = true

d) ncases = 500

2.6.2 Semantics

A library-inclusion specifies a series of external library names that are to

be included in this node-network in the order specified.

A library is a modifier-part-option followed by a def-prelude. Note that a AP

library may only contain definition's; no data-path's, import or export

specification, nor primitive-node-spec's may appear in a library unless it

occurs within one of its definition's.

A library-inclusion is evaluated by the network linker by replacing it with a

modified textual copy of the def-prelude portion of each library specified in

the library-inclusion library-spec-list. If there is more than one library,

the modified def-prelude's should be separated by with-token's. The result of

replacement is a group of definition's and use-check's each of which is

evaluated by the network linker.

The textual copy of a library's def-prelude is modified by replacing each occur-

rence of each modifier-id in the def-prelude with the value that resulted

from evaluating the static-expression corresponding to that modifier-id in the

library-modifications of the library-spec that specified that library.

2.7 USE CHECKS

2.7.1 Syntax

a) use check: unless token, boolean expression,

diagnostic.

b) diagnostic: diagnostic severity,

string expression pack.

c) diagnostic severity: warn token; error token; abort token.
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Examples

a) unless k > 100 warn ("storage problem")
b) warn ("storage problem" # k)

c) warn

c) error

c) abort

2.7.2 Semantics

A use-check is evaluated by the network linker by evaluating its boolean-

expression. If the result is true, the use-check succeeds; otherwise the

diagnostic is performed.

A diagnostic is performed by the network linker by evaluating its string-

expression and then sending the result to the network linker log. If the

diagnostic-severity is "warn", the diagnostic succeeds. If it is "error", the

check fails and the result will be a faulty node network. If it is "abort",

the check fails and the linker will immediately halt linkage of the current

node and any nodes dependent on the current node; the result of linking will be

an incomplete and faulty network.



A-29 TM-5897/000/00
30 June 1977

3.0 LINKS

This section deals with the way nodes are interconnected using LINGO Links. I
The two types of links, running and memory, are defined in terms of their
execution time actions.

3.1 SYNTAX

a) link imp: open pointy token, m link imp,

close pointy token;

r link imp;

export;

sump.

b) m link imp: m link id. "

c) r link imp: r link id.
d) export: port token, export id.
e) sump: sump token.

f) link ref: open pointy token, m link ref,

close pointy token;

r link ref.

g) m link ref: port token, import id;

init value;

init value, simple node invocation,

link env option;

init value, m link id,

link inv option.

h) r link ref: port token, simple node invocation,

link env option;

r link id, link inv option.

i) init value: node id, node modifications pack option.

j) link env: environment token,

link type name list pack.

k) link type name: string expression.
W
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Examples

a) <pdata>

a) data

a) port user

a) *

b) parms

c) matrix

d) port sysprint
e)*

f) <default, parms>

f) matrix

g) port sysin

g) blankline, randomdata (thing)

g) blankline, purple

h) randomdata (thing) env (spool)

i) blankline

i) line (/t = "l Statistics of Deadly Quarrels")

j) env (spool)

k) "/sys/spool2"

k) spool

3.2 SEMANTICS

Links are used to carry data, in the form of records, from the export of one

* node to the import of another. Exports are always associated with link-imp's

and imports with link-ref's. The record type of the data must be consistent

with both the export record type (where it is derived) and the import record

type (where it must be compatible). The definition of compatible is given in

Section 5.4.

A particular link is defined by starting at any link-imp and drawing a line to

the single link-ref that shares the same m-link-id (r-link-id). There may be

any number of starting points that feed a common termination. If more than one

SI



A-31 TM-5897/000/00
30 June 1977

m-link-imp (r-link-imp) shares a common termination, the group of links are

called merging links. Link names are entirely local to a node network. Any

reference to a non-local link must be done through a node network port.

For convenience, a link can be considered to have a name and a record-type.

The link's name is the one us,,I in a local node-network to place data in it and

receive data from it. Its record-type is the same as the records that it

carries. Merging links also have a single name and type.

When a record is placed on a link in some link statement, the record traverses

the link and eventually arrives at the terminating end. Links always maintain

records in a first-in first-out order. If records are already present on the

link when a new record is input, the new record is added to the end of a queue

at the termination. On a merged link records may arrive in an arbitrary order

from the various sources before being placed the queue formed at the

termination.

A link-imp may be a link, an export, or a sump. The link case was described in

the previous paragraph. An export works in a similar way except the record is

placed at the starting end of the external link connected to the nodes export

that is bound to the referenced export-id. A sump works by discarding the

record supplied.

Link-ref's are the terminating end of a link and are associated with a node's

import. Both m-link's and r-link's operate in an identical manner; however,

node invocation makes a distinction between them, and m-link-ref's must have an

init-value specified unless they refer to an import. The init-value record is

placed on the m-link before the network begins to operate; it is obtained by

invoking the import-less node identified by its node-id and placing the

resulting record on the m-link. The import-less initial value node must yield

exactly one output per invocation on its single export.

A network of r-link's that form a backwards loop is prohibited. A branch and

merge system of running links will be handled by the performance analyzer and

spools inserted automatically if necessary.

fU
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Besides records, running links also transmit end-of-file markers. An

end-of-file is handled somewhat differently than a record. Memory links do not

transmit end-of-file markers. Merged running links do not place the end-of-file

marker at the end of the termination's queue of data until an end-of-file has

been received from all the starting link-imps in the merge. A running link is

active when it has records on it or when it is transmitting an end-of-file. A

running link is inactive if the node has received the end-of-file marker and

removed it from the running link.

The link-env-options provide implementation-dependent information. For example,

the user might indicate a file name that will contain the data records. Thus,

at the end of network execution the file will contain all the data that

traversed the link.

3.3 GRAPHICAL FORM OF LINKS

A running link is represented by a single line and a memory link by two paral- li

lel lines. Merging links are represented by merging lines and a sump by an

asterisk. If a link has a link-id, the identifier is written on or next to

the link. Thus:

o running link

bb
P memory link

/real(/r=4)k c2 memory link with initialization

a sump

thing merging running link

mem merging memory link

,
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4.0 DATA PATHS: THE NETWORK ACTIONS

4.1 COPIES

4.1.1 Syntax

a) data path: copy; node invocation.

b) copy: copy token, r link ref, into token,

link imp list.

Examples

b) copy a --> b, c, <d>, b, port e

b) copy source (input) --> <f>, link2, j, k

b) copy port m -- > ml, m2

4.1.2 Semantics

The copy statement acts like a node that the user could build for himself. It

is included for its convenience and generality. Whenever the copy statement is

active, it awakens when a record is present on its r-link-ref. The data is w

read and copied to all the link-imp's in the limk-imp-list. The input must be a

running link, but the outputs from the copy may be a mixture of running, memory,

and exports. The type of each link-imp is the same as the type of the r-link

ref. After making the copy, the statement goes to sleep.

An end-of-file is copied from the r-link-ref to each running and export link-imp.

After the end-of-file is copied, the copy statement becomes inactive.

4.1.3 Graphical Form of Copies

A copy is represented by a circle with one input and any number of outputs.

The circle is named "copy".

copy
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4.2 NODE INVOCATIONS

4.2.1 Syntax

a) node invocation: node id, arguments pack, into token,
link imp list.

b) simple node invocation: node id, arguments pack.

c) arguments: link ref list option,

node modifications option.

d) node modifications: slash token, node modifier list. r

e) node modifier: modifier id, is token, static expression.

Examples

a) random line (linka, linkb) --> linkc, link_d

{two inputs, two outputs}

a) add (linka, linkb) --> c (two inputs, one output}

b) add (linka, linkb) {two inputs, one output}
c) link-a, link b

c) link-a, <t, bit>/m = 14*i

d) /m = 14*i, n = 27, t = "random"

e) m = 14*i

e) m = 27

4.2.2 Semantics

The network linker uses a node invocation to identify a particular node by

employing the following algorithm:
*I

1. Obtain input record-types for each import by examining its
link-ref.

2. Obtain the node-id for the node to be linked.

3. Make the most local node-network the search space.

4. Find all node definitions in the search space which have a
matching node-id and corresponding number of imports to the
number entering this node.

5. For all node definitions found in step 4, find if the respective
record-types are compatible with the formal-record-types given
in the definition.
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6. If only one node definition has compatible links, that node is
selected and the search is terminated.

7. If more than one node definition has compatible links, a warning
is issued, the first textual one is chosen, and the search is
terminated.

8. If no node definition is found with compatible links, the encom-
passing node-network is made the search space and step 4 is taken.

9. If there are no more encompassing node-networks, a matching defi-
nition cannot be found and the linker issues an abort message. It
should continue to link any other nodes that can be linked until
there is nothing more to do.

When the proper node-def is found, the node-modifier-list from the arguments-

pack is applied. This yields a set of values for the modifiers, each of which

replaces its corresponding modifier in the proper node-network. Then the use-

check's from the node-network of the node-def are evaluated to check the suita-

bility of the node and issue appropriate messages. If the node passes every

use-check, it is linked into the network.

The node-def includes the specification of one or more ports. The imports are

linked by matching them to corresponding positions in the arguments-pack. The

exports in a node invocation are matched to corresponding positions in the

link-imp-list. The actual-record-type of each export, and thus each link-imp,

is derived from the modifiers and the output record-type for each link. The

number of exports of the node-def must match the number of link-imp's in the

node invocation.

A simple-node-invocation has only a single export and it is matched with the

one in the export-list of the node-def. The simple-node-invocation implies an

unnamed running or memory link by the place it is used in the syntax. This

running or memory link acts exactly the same way a named link would act.

When a node is active it may be awakened or invoked whenever all its active

r-link-ref; connected to its arguments contain a record. To invoke or awaken

a node means that the next record on all available link-refs are transferred to
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the node's imports and the corresponding records are removed from the links

that carried them. Thus, if nothing has arrived on a memory link (m-link-ref),

no transfer to the corresponding import will be made and the node's import will

retain the same value, thus "remembering" the last arrival.

An end-of-file that arrives on an r-link-ref changes the link from active to

inactive. This may cause the node to awaken by removing from consideration one

of the imports attached to a running link. When all r-link-refs are inactive

but the node is active, it is invoked or awakened for one last fling. After

this final invocation, when the node falls asleep, an end-of-file is placed on

each running link associated with an export and the node is made inactive.

4.2.3 Graphical Form of Nodes

A node is represented by a circle with imports as arrow inputs to the circle

and exports as lines out. The name of the node is written in the circle. If

modifiers are present they are written in the circle separated from the node

name by a line. Thus:

S to v
plusO

0=1
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5.0 RECORDS AND NETWORK DATA

Data that flows on LINGO network links is described in terms of length (number

of bits) and usage (type information). The length is used to calculate buffer

sizes and record lengths. The usage information allows mismatches between

links and imports to be detected by the network linker. The type informa-

tion is arbitrary and dependent on the node designer. This is reasonable

because machine data types may differ in a network and only the node library

designer has the proper perspective to choose types.

Data may be grouped into blocks by building arrays and structures of other

data. Grouped data provides the form that describes the records used to carry

information from node to node within a network defined by an application node

library. Seldom will a node work on just a simple arithmetic or logical quan-

tity because this would imply too low a level of programming for the network

language to be effective. The notion record-type is never directly referred to

in the other parts of the grammar and will never directly occur in a LINGO pro-

gram because the grammatical notions of formal- and actual-type describe the

language use of a record-type. However, by the time linkage has successfully

completed, every link and associated port has a fully defined record-type which

characterizes it. w

Section 5.1 covers record-types and thus will never be used in parsing a LINGO

source program. Section 5.2 covers formal-types, each of which describe the

set of record-types an import will accept. Section 5.3 describes actual-types

each of which describes a single record type which can be computed by the

network linker.

5.1 BASIC ORGANIZATION OF RECORDS

5.1.1 Record Type

5.1.1.1 Syntax

a) record type: basic element; array data; structure data.
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Examples

a) bit (16) type ("2s compl", "fixed")

a) dim (1:16) bit (1) typ ("logical")

a) struct (bit (16) type ("logical"),

bit (32) type ("real", "IBM360"))

5.1.1.2 Semantics

The record-type describes the form of any record which traverses a link. The

record is the logical information holding entity that can be communicated

between nodes. Every record, basic-element, array-data, and structure data

possesses the attribute of length based on the number of bits in all its

subcomponents.

5.1.2 Basic Data

5.1.2.1 Syntax

a) basic element: bit token, length pack, basic attribute.

b) length: integer value.

c) basic attribute: type token,

machine format name list pack.

d) machine format name: string value.

Examples

a) bit (16) type ("2s compl", "fixed")

a) bit (64) type ("long real", "IBM370")

* b) 16

c) type ("2s compl", "fixed")

d) "2s compl"

5.1.2.2 Semantics

The basic data is an arbitrary type, depending on the needs of the node library

designer. Associated with each type is a length-pack giving the number of bits

used to represent the data, as well as a list of machine-format's. The set of

machine-format's is chosen by the node library designer.
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5.1.3 Array Data

5.1.3.1 Syntax

a) array data: dimension token, bounds list pack,

record type.

b) bounds: lower bound, colon token, upper bound.

c) lower bound: signed integer value.

d) upper bound: signed integer value.
Hq Examples

a) dim (1:16) bit (16) type ("2s compl", "fixed")

b) 1:16

c) 1
d) 16

5.1.3.2 Semantics

Array data represents a series of values in a record in row-major order in

which varying the right most subscript is varied the fastest.

Arriys are specified by preceding a record-type with "dim (1bl: ubl , lb2 : ub2,

lb3: ub3 , . . lb n: ub n)". This indicates an n-dimensional array with suc-

cessive pairs of lower-bound (ib) and upper-bound (ub). The lower-bound and

upper-bound may be parameterized in formal-types to allow the network language

processor to check dimensionally between input ports and to derive the size of

output arrays. All size descriptors for arrays must "e able to be established

prior to executing the network.

The array size of both input and output ports is accessible from a primitive

node by a modifier enquiry so that of any sized array can be properly processed

by the node. The value returned by the modifier will not change during the

execution of a particular node, although it may differ if another instance of

the same node is used in another place in the network.
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I

5.1.4 Structures

5.1.4.1 Syntax

a) structure data: structure token, string value,

record type list pack.

Examples

a) struct ""(bit (16) type ("logical"), bit (32) type

("real", "IBM360"))

a) struct "string" (bit (16) type ("unsigned", "fixed"),

dim (1:256) bit (8) type ("char"))

5.1.4.2 Semantics

Structure data represents a series of values on a record in the same order of

the data in the compound-data-list. The string-value allows structure types

that would otherwise be the same to be distinguishable.

5.2 ACTUAL DATA DESCRIPTIONS

5.2.1 Syntax

a) actual type: actual record type;

actual parameterized type.

b) actual record type: actual basic element;

actual array data;

actual structure data;

-4 anytype id.

c) actual basis element: bit token, actual length pack,

actual basic attribute.

d) actual length: integer expression

e) actual basic attribute: type token,

actual machine format name list pack.

f) actual machine format: string expression

g) actual array data: dimension token,

4 actual bounds list pack,

actual record type.

U p4
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h) actual bounds: actual lower bound, colon token,

actual upper bound.

i) actual lower bound: integer expression.

j) actual upper bound: integer expression.

k) actual structure data: structure token, actual tag,

actual type list pack.

1) actual tag: string expression.

Examples

a) vector(n)

a) struct "flex" (integer, dim (l:n) t)

b) struct "flex" (integer, dim (l:n) t)

c) bit(n) type (twoscompl, fixed) w

d) n

e) type (twoscompl, fixed)

f) twos compl

f) "2s compl"

g) dim (l:n) t

h) l:n

i) 1

j) n

k) struct "flex" (integer, dim (l:n) t)

1) "flex"

5.2.2 Semantics

The actual-type is used to define the record-type of an export in terms of link

time expressions, which can be in terms of modifiers set at the imports, in the

library, by the user employing the node, or by default. The result of evaluat-

ing an actual-record-type is the record-type obtained by evaluating every

expression and expanding every parameterized-type within the actual-record-type.
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5.3 FORMAL DATA DESCRIPTIONS

5.3.1 Syntax

a) formal type: formal record type;

formal parameterized type.

b) formal record type: formal basic element;

formal array data;

formal structure data;

anytype attribute.

c) anytype attribute: anytype token, anytype id.

d) formal basic element: bit token, formal length pack,

formal basic attribute.

e) formal length: integer expression; formal modifier.

f) formal basic attribute: type token,

formal machine format name list pack.

g) formal machine format name: string expression; formal modifier.

h) formal array data: dimension token,

formal bounds list pack,
formal type.

i) formal bounds: formal lower bound, colon token,

formal upper bound.

j) formal lower bound: integer expression; formal modifier.

k) formal upper bound: integer expression; formal modifier.

1) formal structure data: structure token, formal tag,

*formal type list pack.

m) formal tag: string expression; formal modifier.

n) formal modifier: modifier token, modifier id.

S
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Examples

a) vector (mod n)

a) struct "flex" (integer, dim (1: mod n) anytype t)

b) struct "flex" (integer, dim (1: mod n) anytype t)

c) anytype t

d) bit (mod n) type (twoscompl, fixed)

e) mod n

f) type (twoscompl, fixed)

g) fixed

h) dim (1: mod n) anytype t

i) 1: mod n

j) 1
k) mod r

1) struct "flex" (integer, dim (1: mod n) anytype t)

m) "flex"

n) modn

5.3.2 Semantics

Formal-types are used to describe imports in terms of modifier and anytype-id's

so that a class of record-type's can be processed. A formal-type can define one

or more modifier-id's, each of which assumes a value whenever the mode is linked.

5.4 COMPATIBILITY OF RECORD TYPES

Exports from a linked node can be characterized by the grammar notion record-

type. This implies that each piece of basic data has a given number of bits

associated with it and that it defines the structure that relates the parts.

Imports to a node are defined in a parameterized fashion and are described by

a formal-record-type. An algorithm must exist that determines if the record-

type on an input link is compatible with the formal-record-type characteristics

of an import.
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The algorithm for compatibility operates as follows:

1. Expand any parameterized-type's until all that remains is a
formal-record type. This description will contain structure,
specific numbers, modifier-ids, and anytype items.

2. Replace all formal-modifier's with a hash mark, "#", and all
anytype-attribute's with a dollar sign, "$". Compress all blanks
and comments from both data descriptions.

3. Match descriptions character-for-character starting at the left-
most item. If both descriptions match, they are compatible. If
the first character in which they do not match is a '#" in the
modified formal record description, skip the corresponding string
or number of the record description. The "#" should match the
first character of the string or number. The modifier-id that
the "#" represents assumes the value of the matched item. If the
first character in which they do not match is a "$" in the modi-
fied formal record description, skip the corresponding basic-
element, array-data, or structure-data component of the record
description. The "$" should match the first character in such a
component. The ayntype id that the "$" represents assumes the
type of the matched item. After skipping, continue to apply
rule 3. If there is a character mismatch that does not corre-
spond to either the "#" case or the "$" case, the record-types
are not compatible.

5.5 PARAMETERIZED TYPES

5.5.1 Syntax

a) actual parameterized type:

record type id,

actual type parameter list pack option.

b) actual type parameter:

static expression.

c) formal parameterized type:

record type id,

formal type parameter list pack option.

d) formal type parameter:

formal modifier; static expression.

U
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Examples

a) matrix (10, 20)

a) vector (n+l)

a) integer

b) 10

b) n+l

c) matrix (10, 20)

c) matrix (mod m, mod n)
c) vector (n+l)

c) integer

d) 10

d) n+l

d) mod m

5.5.2 Semantics

A parameterized-type yields a type by substituting each of its type-parameter's

for its corresponding modifier-id in the string-expression of the record-type-

def associated with the record-type-id. The number of type-parameter's must

match the number of modifier-ids. If the resulting string contains parameterized-

type's, those types must be expanded according to the same rules. Note that a

formal-parameterized-type always yield a formal-type and an actual-parameterized-

type always yields an actual-type.
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6.0 COMPUTATIONS AT LINK TIME

6.1 STATIC EXPRESSIONS

6.1.1 Syntax

a) static expression: operator expr; function expr;

substring expr; parenthesized expr;

if expr; primitive expr.

b) boolean expression: static expression.

c) integer expression: static expression.

d) string expression: static expression.

6.1.2 Semantics

Every static-expression yields a character string when evaluated. The details

for evaluation are given in the semantics of each kind of expression later

in this section.

There are two classes of character strings that are distinguished from the

general form. The first class in Boolean. Only two strings are Boolean:

"TRUE" and "FALSE". The second class is integer. Integers ar strings of the

following form: an optional minus sign, concatenated with an optional sequence

of digits the first of which is nonzero, concatenated with a single digit.

A boolean-expression, when evaluated, must yield a Boolean value. An integer-

expression, when evaluated, must yield an integer value. If these restrictions

are not met, an error message will be issued by the network linker.

6.2 OPERATOR EXPRESSIONS

6.2.1 Syntax

a) operator expr: unary expr;

binary expr;

optimized expr.

b) unary expr: unary operator, static expression.

c) binary expr: static expression, binary operator,

static expression.

- - - - - - -
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d) unary operator: not token; plus token;

minus token; length token.

e) binary operator: eq token; ne token; it token; le token;

gt token; ge token; eqs token; D

nes token; its token; les token;

gts token; ges token; plus token;

minus token; times token;

divided by token; exponentiation

token; concatenation token;

repetition token; index token;

scan token; verify token.

f) optimized expr: boolean expression, and token,

boolean expression;

boolean expression, or token,

boolean expression
Examples

b) - (3+4)

b) #s

c) a*b*c-d

c) s#*(3+d)

d) -

e) #*

f) (a<b) & (c<d)

S

6.2.2 Semantics

If an operator-expr contains several operators, the network linker will use

operator precedence to determine which operations are performed first.

The highest priority operator is performed first. If two operators of equal

priority appear in an operator-expr, the leftmost is performed first.

Priorities appear in Table A-2.
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A unary-expr is evaluated by the network linker by evaluating its static-

expression, performing the unary operation on the static-expression's result.

A list of unary-operators and their meaning can be fo'.,id in Table A-2.

A binary-expr is evaluated by the network linker by evaluating its two

static-expression's, performing the binary operation on the results, and

yielding the result of the binary operation. A list of binary-operator's and

their meanings can be found in Table A-3.

An optimized-expr is evaluated by the network linker by evaluating its first

boolean-expression. If the result is such that the result of the optimized-

expr is known, the second static-expression is not evaluated; otherwise the

second static-expression is evaluated and the operation applied as in normal

binary-expr' s.

In any operator-expr, the class of the operands must be the class expected

by the operator. If this restriction is not met, the network linker will

issue an error message. Expected classes are given in Table A-2.

6.3 FUNCTION EXPRESSIONS

6.3.1 Syntax

a) function expr: function id, static expression list pack.

Exampl es

a) min (a, b, c, d)

a) abs (c+2)

a) isinteger (e)

a) evaluate ("a+b")

6.3.2 Semantics

A function-expr is evaluated by the network linker by evaluating its static-

expressions, performing the function on the respective results, and yielding

0
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the result of the function. A list of functions and their arguments can be

found in Table A-3. LINGO does not provide facilities for defining new func-

tions or operators.

If any function-expr, the class of the argument(s) must be the class expected

by the function, otherwise the network linker will issue an error message.

Expected classes are given in Table A-3.

6.4 SUBSTRING EXPRESSIONS

6.4.1 Syntax

a) substring expr: non operator expr, sub token,

substring chooser, bus token.
•b) substring chooser: character chooser; string chooser.

c) character chooser: static expression.

d) string chooser: start pos option, colon token,

end pos option.

e) non operator expr: function expr; substring expr;

parenthesized expr; if expr;

primitive expr.

f) start pos: static expression.

g) end pos: static expression.

Examples

a) s[3:5]

a) (s#"abcd") [ :5]

a) s[n]

c) n

d) 3:5

e) s

e) (s#"abcd")

f) 3

g) 5
0"

S
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6.4.2 Semantics

A substring-expr is evaluated by the network linker by evaluating its

non-operator-expression, yielding a string S; and by evaluating its substring-

chooser, yielding a chooser C.

If C is a single integer i, the result of the substring-expr is a string con-

sisting of a single character, the ith in S. If i is less than one or greater

than the length of S, an error occurs.

If C is a pair of integers, i and j, the result of the substring-expr is a

string consisting of the i th, (i+I)st, .... (jl)St, jth characters, respec-

tively, in S. It is required that either i - j (in which case the result of

the substring-expr is the null string) or that both i and j fall between

1 and the length of S, inclusive; otherwise an error occurs.

A string-chooser is evaluated by the network linker by evaluating its two

pos-optionds, each of whcch must yield an integer. If the start-pos-option

is empty, "I" is assumed in its place; if the end-pos-option is empty, the

length of the string yielded by the non-operator-expr of the substring-expr

containing the string-chooser is assumed in its place. The result of the

string-chooser is a pair of integers representing the result of their respec-

tive expressions.

6.5 PARENTHESIZED EXPRESSIONS

6.5.1 Syntax

a) parenthesized expr: static expression pack.

Examples

a) (a+b)

a) (s# "abcd")
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6.5.2 Semantics

A parenthesized-expr is evaluated by the network linker by evaluating its

static-expression and yielding its result. Parentheses are used to alter the

default order of the evaluation established by operator priorities, as given

in Section 6.2.

6.6 IF EXPRESSIONS

6.6.1 Syntax

a) if expr: if token, if body, fi token.

b) if body: if section, then token, then section,

else body.

c) else body: else token, else section;

elif token if body.

d) if section: boolean expression.

e) then section: static expression.

f) else section: static expression.

Examples

a) if a<b then a#b else b#a fi

a) if a<b then -l elif a+b then 0 else +1 fi

b) a<b then a#b else b#a

b) a<b then -l elif a=b then 0 else +1

c) else b#a

c) elif a=b then o else +1

d) a<b

e) a#b

f) b#a

6.6.2 Semantics

An if-expr is evaluated by the network linker by evaluating its if-body.

An if-body is evaluated by the network linker by evaluating its if-section.
If the result is "TRUE" the value of the if-body is the result of evaluating

the then-section; otherwise, it is the result of evaluating the else-body.

9
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If the else-body begins with an else-token, its value is determined by

evaluating its else-section; otherwise, its value is determined by evaluating

its if-body.

6.7 PRIMITIVE EXPRESSIONS

6.7.1 Syntax

a) primitive expr: value id; modifier id;

value; length expr.

b) value: boolean value; integer value;

string value.

c) boolean value: true token; false token.

d) integer value: digit NUM token,

digit NUM symbol sequence option.

e) string value: open quote token, character sequence option,

close quote symbol.

Y -f) signed integer value: sign, digit NUM symbol sequence;

integer value.

g) sign: plus token; minus token.

h) length expr: length token, anytype id.

Examples

a) max int

a) n

a) 39

4 a) length t

c) true

d) 39

e) "daintiness of ear/To check time broke in a disordered string"

e) "" {empty string}

f) -39

g) -

h) length t
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6.7.2 Semantics

A value-id is evaluated by the network linker by obtaining the value associated

with the identifier. If no such identifier has a scope that includes the

value-id (i.e., the use of an identifier without a declaration), or if two

identifiers have such scopes (i.e., a doubly-defined identifier within the

same node network), the network linker will issue an error message.

A modifier-id is evaluated in the same way as a value-id. An additional error

that can occur with a modifier-id is the use of a modifier-id that did not

have a default value and was never associated with a value.

When evaluated, a length-expr yields the size, in bits, of the record type

represented by its anytype-id.

A value is evaluated according to its type. If it is a boolean-value, the

result is "TRUE" for a true-token and "FALSE" for a false-token; if it is ar

integer-value, the result is the string that represents the integer, as in

Section 6.1.1; if it is a string-value, the result is the represented string.

An open- or close-quote-symbol is represented within a string-value by two

such symbols in succession.

Sq

0i

1
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7.0 LINGO'S LITTLE THINGS

This section deals with comments, identifiers, basic tokens, and the LINGO

character set. In the preceeding sections the symbols which may be preceeded

by comments were indicated by the suffix "token".

7.1 COMMENTS

7.1.1 Syntax

a) NOTION token: artwork sequence option, NOTION symbol.

b) artwork: blank symbol; comment;

typographical display feature.

c) typographical display feature:

newline symbol; tab symbol;

new page symbol; vertical tab symbol;

other display feature.

d) comment: open comment symbol,

V) character glyph sequence option,

close comment symbol.

7.1.2 Semantics

The NOTION-token rule can be considered a model rule that exists for any

grammatical notion ending in "token". The artwork represents blanks, com-

ments, and typographical display features, all of which are used to beautify

LINGO networks for a reader. There is no definition given here for other-display,

4 feature; an implementor may choose what else to ignore; however, it may not

be another symbol defined in this report. None of the character-glyphs within

a comment may be an open-comment-symbol or a close-comment-symbol.

7.2 IDENTIFIERS

7.2.1 Syntax

a) NOTION id: tag.

4 b) tag: letter ALPHA token, alphanumeric sequence option. p
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c) alphanumeric: letter ALPHA symbol; digit NUM symbol;

underline symbol.

7.2.2 Semantics

The NOTION-id rule can be considered a model rule for any grammatical notion

ending in "id". A tag can be preceded by blanks and comments but it cannot

have internal blanks and it must occur on a single line.

7.3 PACK AND OPTION F

7.3.1 Syntax

a) NOTION pack: open parenthesis token, NOTION,

close parenthesis token.

b) NOTION option: NOTION; EMPTY.

c) EMPTY::

7.3.2 Semantics

The NOTION-pack rule is a model rule for any grammatical notion ending in
"pack". It places parenthesis around the notion. The NOTION-option acts

similarly, providing a rule to make the notion optional.

7.4 LISTS, SEQUENCES, AND GROUPS

/.4.1 Syntax

a) NOTION list: NOTION;

NOTION, comma token, NOTION list.

b) NOTION group: NOTION;

NOTION, with token, NOTION group.

c) NOTION sequence: NOTION;

NOTION, NOTION sequence.
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7.4.2 Semantics

These are three model rules that define how lists of items separated by commas,

semicolons, etc., are derived for notions ending in the appropriate keyword.

7.5 LINGO'S SYNTACTIC SYMBOLS

Table A-4 lists the LINGO symbols and a proposed typographical representation

for each one. The lists are organized into the basic areas of the language:

structural symbols, operator symbols, and declarative symbols. When LINGO

programs are written or printed, the underline beneath the symbol is recom-

mended so that keywords are easily recognized. However, when LINGO programs

are input on a terminal, the underline can be ignored and the LINGO lexer

4 will recognize them by using the usual keyword scheme. When keywords are

input, no blanks are allowed within the word. The character set has been

carefully designed to stay within the ASCII 128 character set.

7.6 THE LINGO CHARACTER SET

Table A-5 lists the LINGO symbols that constitute the basic character set used

for identifiers and numbers.

7.6.1 Syntax

a) character: letter ALPHA symbol;

digit NUM symbol;

other character symbol;

open quote symbol, open quote symbol;

close quote symbol, close quote symbol.

7.7 METAPRODUCTION RULES FOR GENERAL FORMS

7.7.1 Syntax

a) ALPHA:: a; b; c; d; e; f; g; h; i; j; k; 1;

m; n; o; p; q; r; s; t; u; v; w;

x; y; z.

j i | U
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STRUCTURAL SYMBOLS DECLARATIVE SYMBOLS

Name Representation Name Representation

import symbol import node symbol node S

export symbol export record symbol record

environment symbol env definition symbol def

begin symbol beg port symbol port

end symbol end modifier symbol mod

ms symbol ms library symbol lib

output symbol out unless symbol unless

invocation symbol inv warn symbol warn

with symbol error symbol error

comma symbol abort symbol abort S U

copy symbol copy bit symbol bit

into symbol type symbol type

open pointy symbol < dimension symbol dim S

close pointy symbol > structure symbol struct

slash symbol / anytype symbol anytype

sump symbol * colon symbol

open parenthesis symbol C is symbol

close parenthesis symboljJ
open comment symbol w

close comment symbol

!w

LU
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OPERATOR SYMBOLS

Name Representation Name Representation

not symbol close quote symbol

plus symbol + times symbol *

minus symbol - divided by symbol

length symbol # exponentiation symbol **

eq symbol = repetition symbol #*

ne symbol - index symbol

It symbol < scan symbol #:

le symbol <= verify symbol

gt symbol > and symbol &

ge symbol >= or symbol

eqs symbol sub symbol [

nes symbol bus symbol ]

Its symbol open parenthesis symbol (

les symbol close parenthesis symbol

gts symbol if symbol if

ges symbol =* then symbol then

true symbol true else symbol else

false symbol false elif symbol elif

open quote symbol fi symbol fi

V
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TABLE A-5 LINGO ALPHABET

Name Representation Name Representation

letter a symbol a letter n symbol n

letter b symbol b letter o symbol 0

letter c symbol c letter p symbol p

letter d symbol d letter q symbol q

letter e symbol e letter r symbol r

letter f symbol f letter s symbol s

letter g symbol g letter t symbol t

letter h symbol h letter u symbol u

letter i symbol i letter v symbol v

"! I
letter j symbol j letter w symbol w

letter k symbol k letter x symbol x

letter 1 symbol 1 letter y symbol y

letter m symbol m letter z symbol z

digit zero symbol 0 digit 5 symbol 5

digit one symbol 1 digit 6 symbol 6

digit two symbol 2 digit 7 symbol 7

digit three symbol 3 digit 8 symbol 8

digit four symbol 4 digit 9 symbol 9

underline symbol

- I

4p



A-65 TM-5897/000/00

30 June 1977

b) NOTION:: ALPHA;

NOTION, ALPHA.

c) EMPTY::

d) NUM:: zero; one; two; three; four; five; six;

seven; eight; nine.

7.7.2 Semantics

These rules create an independent context-free grammar which, when the terminal

notions (consisting of all small letters) are used to replace the large notion

in other rules in this book, create a grammar rule. Thus:

NOTION option: NOTION; EMPTY.

If by using the above meta-grammar one derived "program" from the rule for

"NOTION" and "" from "EMPTY", the replacement would create a new grammar rule:

program option: program;.

This formally defines the syntactic suffixes used previously.

6
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8.0 ROLE OF THE APPLICATION LIBRARY DESIGNER

LINGO provides a method for linking preconstructed programs together into a

useful network. Reliable behavior of such a network can only be predicted if

the application node library designer has given an adequate, honest description

of the limitations, behavior, and performance of each of the nodes used. This

means the data types that nodes manipulate should be carefully designed to be

neither too narrow nor too broad: too narrow and they overly restrict the user's

ability to perform experiments; too broad and they will not protect the user

from mistakenly misusing nodes. Therefore, to a large extent the effectiveness

with which LINGO can detect user mistakes depends on information contained in

the node libraries employed.

This section is devoted to informally examining the characteristics of nodes

that will operate well in a LINGO network. In particular it will show what node

behavior should be avoided in order to effectively use LINGO constructs. It is

suggested that the reader read this section in conjunction with the example

library presented in Section 9 to see the application of the principles discussed '

here.

8.1 PRIMITIVE NODE ACTIONS

A program associated with a node becomes "active" when a network that references
the node is activated by the operating system. This might be thought of as the

loading process in a conventional operating system. Unless a node is active,

the program cannot perform computations.

A program is normally invoked when it has data to process. If the node asso-

ciated with a program is reentrant, it could be simultaneously active with

itself. Each activation would be processing successive input quantities.

However, the output buffers associated with the invocations will be sequenced

so that exports emerge in the intended order. This is done to preserve data

synchronization in the network, a fundamental LINGO concept.
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While processing data, a node cannot unexpectedly request additional data from

a link. A node program should be conceived in terms of processing one set of

input data which provides corresponding output(s). In the parlance of LINGO

this is referred to as a single invocation.

A special invocation may occur when an end-of-file arrives at an import. The

end-of-file deactivates the port and may cause invocation of the node if records

have previously arrived on all remaining runnina links. Data can continue to

arrive at these other ports, which will continue to activate the node. There-

fore, for every invocation the node program could check a status flag associated

with each import to determine if new data has arrived for this invocation. If

the node cannot operate successfully with partial inputs, the node should

issue an error message and terminate. It is anticipated that in such situations

the most common action will be for the node to use the last piece of data that

had arrived on the deactivated ports.

When the last end-of-file arrives, the one which deactivates the final-remaining

import connected to a running link, the node is invoked for end-of-file

processing. Many nodes will ignore this invocation and just terminate. Other

nodes may compute summary information and export it on a special link before

they terminate.

A program may have static storage that successive imports will modify. For

example, a summation node could have one import and two exports. Normally the

data at the import would be summed and passed to the export. When an end-of-

file arrived at the import the summation node would export the total on the

other link.

A program may also make use of secondary storage. For example, a sort node may

have one import and one export. Unordered data would flow in the input and be

placed into a secondary storage. When an end-of-file arrived at the import, the

node would sort the data and export of all it on its output link.

I *... .....
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A LINGO node-program can be written in any language for which an implementor

has provided interface subroutines. These interface subroutines provide access

to import/export links and status information. Thus, Fortran, Assembler, Cobol,

PL/I, Algol or some other algorithmic language would be suitable for primitive

nodes. It is recommended that any program that is destined to become a LINGO

node include as many LINGO node declarations within comments in the program code

as it is possible for the application library designer to provide.

8.2 INPUT/OUTPUT PROPERTIES

Nodes have characteristic patterns of behavior that describe the way outputs

occur with respect to invocations. The best behavior, from the point of view

of the network linker, is for every invocation to result in a fixed number of

outputs for each export. The amount of output form export to export may differ,

but for any one port the amount output in successive invocations must be fixed.

This is called geared behavior because the ratio of invocation to exports on a

given link is calculable at link time. With geared behavior, the buffer require- V

ments are completely known in advance of execution of the network.

A less desirable behavior pattern is switched behavior. With switched behavior,

some subset of the exports are alternatives. For any given invocation, output

will occur on only one export and the other exports belonging to the subset will

be unused. With a switched behavior, fairly good estimates of buffer require-

ments are possible.

The worst type of node behavior is probabilistic behavior. This occurs where

the node varies the amount of data or which exports are used from invocation to

invocation. In this case, buffer space for the worst case must be allocated

to the node.

In designing an application library, nodes that exhibit probabilistic behavior

should be avoided because the resources necessary to support them are great and

performance prediction for succeeding nodes in the network is difficult. It

should be noted that in current systems of programs most things that vary
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performance are due to run time dynamic resource allocation because link time

semi-dynamic resource allocation is not available as it is in LINGO.

8.3 DATA TYPE USAGE

The data types belonging to links and ports are representative of concepts the

eventual user will use to interconnect programs. The application library

designer must conceive of these types in an implementation independent way so
that he maximizes the effectiveness of the node library. However, LINGO requires

that the application node designer specify the form of the data in machine-

oriented detail. Therefore, it is the node designer's duty to translate the

abstractions that will be employed by users into the concrete machine-dependent

implementation details employed by the network executor. For example, if a

system requires many parallel streams of data to be processed, each stream could

be associated with a link type and the user would have to duplicate the network

for each such stream he wished to process. Alternatively, the type could include

a tag to represent which stream it originated from. In that case, one link would

carry all the data and a modification of the number of streams to process would

involve changing only the source node. If the parallel streams must be syn-

chronized, some thought must be given to the conventions used by the source node.

It is considerations such as these which drive the choice of data types that an

application library will support. That choice of data types is the most

important decision an applications node designer will make because what the

nodes are capable of doing is by-in-large determined by the form of the informa-

tion they receive. In addition, the network linker chooses between nodes of the

same name on the basis of the import link types. Well-designed data types will

make the library very easy to use and facilitate modification of a network to

perform similar functions.

From this point of view, a LINGO application library should be a well thought

out amalgamation of data types, processing nodes, and predefined entities that

make it easy for a user to construct networks that accomplish some needed compu-

tation. In constructing the network a user should find it impossible to
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[9

mistakenly connect incompatible nodes and should come to expect timely, reasonable 4

diagnostics even for subtle misuses of nodes. It is the application library

designer who has the responsibility to live up to these goals. LINGO provides

the facilities that allows him to accomplish them.

8.4 DATA TYPE FACILITIES IN LINGO

LINGO requires great detail in the specification of data types that characterize

links. This detail was provided to prevent mistaken interconnection of incom-

patible links. It is not expected that a normal user will wish to specify each

type in such detail. The mechanism that frees the user of this burden is the

use of record type definitions.

The choice of these definitions is closely related to the actual choice of record

types as described in Section 8.3. The importance of the definitions lies in

the decision of which parts of the record type should be parameterized. With

some types, such as

record complex = "struct ""compl"" (real, real)"; "

or

record real "bit(64) type (""double"", ""1IBM360"")";

there should be no parameterization because nodes that operate on such types

cannot be easily parameterized to operate on similar records. However, some

records, such as

record vector(n) "dim (1:" # n # ") real";

are more naturally able to be parameterized because a node program can easily

be coded to handle arrays of varying sizes.

In short, in designing record type definitions an applications node designer

must carefully choose between the desires of convenience and implementability

(which favor fewer parameters) and flexibility (which favors more).

6 - V
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8.5 TOPOLOGICAL RESTRICTIONS

In designing an application library the LINGO constraint that forces flow of

data in a single consistent direction on running links within a network may

seem unduly restrictive. However, the restriction can often be eliminated using

side effects within a single node. For example, a summation node could replace

an add node which would sum data with a partial sum record running counter to

the direction of the network.

It is possible to route data backward via a memory link. However, the receiving

node must be prepared to synchronize the data by using local storaqe for data on

the running link. The data transmitted on the memory link should have a sequence

count or an alternating bit to allow determination of a new block arrival. This

places the burden of storage and control within the node and causes performance

estimates and output behavior to be probabilistic.

8.6 LIBRARY DESIGN PHILOSOPHY

The theme of this section has been that the application library designer has not

only the responsibility to provide maximum security for the user, but also to

provide for flexibility and generality of node design. Since the application

library designer must provide performance estimates and algorithmic code for

nodes, an application library design is tied to the performance of the nodes on

specific machines.

In doing the library design it is wise to consider the machine-dependent aspects

4 of the design and localize them into a separate series of type and value decla-

rations upon which the remainder of the library can be built. Then the work

required to transport an application library will center on respecifying the

base data types along with recompiling the source code and validating the per-

formance measures.

It should be pointed out that good diagnostics are the library designer's

responsibility. If a user employs link types that do not match a node, the net-

work linker will issue a "node not found" message. This will probably be
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somewhat frustrating for the user. If the library designer has anticipated

common errors of this type he will provide a dummy diagnostic node, which will

give the user a reasonable diagnostic message and point out a course of action

that will correct the situation.

iS
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9.0 AN EXAMPLE APPLICATIONS LIBRARY

9.1 A MATRIX MANIPULATION LIBRARY

This section gives the specifications for a LINGO node library that performs

matrix manipulations. This example was chosen for its clarity rather than for

its complexity. Matrix algebra is fairly standardized and operations in this

section are taken directly from the matrix subroutines given in a computer

science textbook.* Section 9.2 will give an example of how a user would employ

this library.

9.l.l Choice of Data Types and Defaults

As was noted earlier, the crucial decision in the design of a node library is

the choice of data types to be used. For simplicity it will be assumed that

all the programs are running on a PDP-1O and all are handling 72-bit floating

point numbers. For this reason the basic entry in a vector or matrix will be

called a "scalar" where "scalar" is a record-type-id which expands into the

appropriate definition. Once this is done the definitions for "vector" and
"matrix" are straightforward.

record scalar = "bit(72) type (""PDP-lO"", ""float"")"

record vector(n) = "dim(l:"#n#") scalar";

record matrix(m,n) = "dim(l:"#m#",l:"#n#") scalar";

Thus, for example, if a user writes the parameterized-type

matrix(15,25)

it will be expanded to

dim(l:15, 1:25) bit(72) type ("PDP-1O", "float")

A
which is what was desired.

*Lindsey, C.H. and van der Meulen, S.G., Informal Introduction to ALGOL 68.

London, North-Holland Publishing Company, 1977, revised edition.
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Some routines (e.g., matrix transposition) will operate correctly on any

* 72-bit quantity, regardless of whether it is a floating point number. For

these routines a slightly more general version of vector and matrix can be

defined:

record row(n,t) =1 m :In""t

record table(m,n,t) = dml"#,:#n)#t

where t can be any type. Within each such routine a use-check will insure

that the type is 72 bits large.

Once the data types are chosen, some thought should be given as to what

*defaults the user would like to use at each node. This cannot really be

determined until the library has been designed, but two things that would be

nice to specify when the library is included is the size of vectors (n) and

matrices (m by n). These will be determined by the library modifiers

"default in" and "default n" that a user can specify when the library is

included.

The choices made in this section are summarized in the text below which is the

first part of the matrix manipulation library.

mod default-m, default-n;

*def record scalar = "bit(72) type( ""PDP-lO"" , "foat")";
record vector(n) ="dim(l:"#n#") scalar";

record matrix(m,n) = "dim(l:"#m#", 1:"#n#") scalar";

record row(n,t) = "i0"n''t

record table(m,n,t)= "dim(l:"#m#", l:"#n#")"#t

* lother useful definitionsi

*obj = "/usr/dt/matpak/"; fobject file directoryl
fortran = "FORTRAN"; Isource languagef
pdplO = "POP-lO"; jobject machinel

S-

["
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9.1.2 Choice of Nodes

Once the data types are chosen the nodes can be chosen without too much

difficulty by inspecting a standard textbook. They are presented in this

section both in graphic format and in textual format. Interfaces with the

external world, such as module libraries and performance estimates have, of

course, been pulled out of a hat.

The nodes can be put roughly into four classes: constructing and disassem-

bling vectors and matrices, simple arithmetic on similarly-sized items,

matrix arithmetic, and display of results.

9.1.2.1 Constructing and Disassembling Vectors and Matrices

9.1.2.1.1 Zero Vector. This node exports a vector of length n containing

all zeros.

e ro v v
ivector(n)

node zero v =

mod n = defaultn;

def an = max(l,n);

unless n = an

error("n="#n#" is out of range.");

export vector(an) v;

begin env(obj#"zerov", fortran, pdplO,

20+an ms, v:l out/inv)

end;
9.1.2.1.2 Zero Matrix. This node exports an mxn matrix containing all zeros.

(zr mmat

matrix(m,n)
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node zero m =

mod m = defaultm,

n = defaultn;

def am = max(l,m);

unless am=m

error("m="#m#" is out of range.");

an = max(l,n);

unless an=n

error("n="#n#" is out of range.");

export matrix(am,an) mat;

begin env(obj#"zerom", fortran, pdplO,

25+am*an ms, mat:l out/inv)

end;

9.1.2.1.3 Unit Matrix. This node exports an nxn unit matrix. V.

uniLtm mat
matrix(n,n)

node unit m =

mod n = defaultn;

def an = max(l,n);

* unless an=n

error("n="#n#" is out of range.");

export matrix (an,an) mat;

begin env(obj#"unitm", fortran, pdplO,

* 30+an**2+2*an ms, mat:l out/inv)

end;

P
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9.1.2.1.4 Construct Vector from Scalars. This node imports n scalars and

then exports a vector of length n consisting of those scalars, in order.

The input scalars can be of any 72-bit type.

scalar vectoir(n)

node s to v =

import anytype t s;

mod n = defaultn;

def an = max(l,min(n,256));

unless an=n I"

error("n="#n#" is out of range.");

unless length t = 72

error("size of s="#length #" is not 72.");

export row(an,t) v;

begin env(obj#"stov", fortran, pdplO,

5 ms, v:an inv/out)

end;

9.1.2.1.5 Construct Matrix from Vectors (by Columns). This node imports n

vectors each of length m and then exports an mxn matrix the columns of which

are the input vectors, in order. The vectors' elements can be of any 72-bit

type.

v rto--yclmat
vector(m) n= matrix(m,n)

node v tom by-col =

import row(mod m, anytype t) v;

mod n = defaultn;

def an = max(l,n);
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unless an=n & m*an<= 4096

error("n="#n#" out of range.");

unless length t = 72

error("size of v[i]="#length t#"is not 72.");

export table(m,an,t) mat;

begin env(obj#"vtombc", fortran, pdplO,

30+2*m ms, mat: an inv/out)

end;

9.1.2.1.6. Construct Matrix from Vectors (by Rows). This node imports m

vectors each of length n and then exports an mxn matrix the rows of which are

the input vectors, in order. The vectors' elements can be of any 72-bit type.

v rvt-mb-o mat

vector~n} m matrix(m,n)
'*. p

node v to m by row

import row (mod n, anytype t)v;

mod m = defaultim;

def am = max(l,m);

unless am=m & am*n<= 4096

error("m="#m#" out of range.");

unless length t = 72
error("size of v[i]="#length t#" is not 72.");

export table(am,n,) mat;

begin env(obj#"vtombr", fortran, pdplO,

30+3*n ms, mat: am inv/out) VA

end; -I

9.1.2.1.7 Disassemble Vector into Scalars. This node imports a vector and

then exports a series of scalars which were that vector's elements, in order.

The scalars may be any 72-bit type. -

- -
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v s
vector(n-) v-o- scalar

node v to s =

import row(mod n, anytype t)v;

def unless length t = 72

error ("size of v[i]="#length t#" is not 72.");

export t s;

begin env(obj#"vtos", fortran, pdplO,

l0+2*n ms, s: n out/inv)

end;

9.1.2.1.8 Disassemble Matrix into Vectors by Columns. This node imports a
matrix and exports a series of vectors consisting of that matrix's columns,
in order. The entries of the matrix may be any 72-bit type.

mat

ma tri x(m, n vector (m)

node m to v_bycol

import table (mod m, mod n, anytype t) mat;
4 def unless m*n< = 4096 0

error("mat's size="#m*n#" is too large.");

unless length t = 72
error("size of m[i,j]="#length t#" is not 72.");

export row(m,t) v;

begin env(obj#"mtovbc", fortran, pdpl0,

15+2*m*n ms, v: out/inv)

end;

w

-
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9.1.2.1.9 Disassemble Matrix into Vectors by Rows. This node imports a

matrix and exports a series of vectors consisting of that matrix's rows, in

order. The entries of the matrix may be any 72-bit type.

mat m t b_ o 
v

matrix(m,n) 
tvbyrwvector(n) 

-

node m to v by row

import table(mod m, mod n, anytype t) mat;

def unless m*n<= 4096

error("mat's size="#m*n#" is too large.");

unless length t = 72

error("size of m[i,j]="#1ength t#" is not 72.");

export row(n,t) v;

begin env(obj#"mtovbr", fortran, pdplO, V

15+3*m*n ms, v: m out/inv)

end;

9.1.2.2 Simple Arithmetic on Similarly Sized Items

9.1.2.2.1 Add Vectors. This node imports two vectors and exports their sum.

• 

vector(n)

*

•1

qZP 11) 

1

Ito

qetl'
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node plus

import vector (mod n) vi,

vector (mod np) v2;

def unless n=np

error(n#" and "#np#" are incompatible sizes.");

export vector(n) v3;

begin env(obj#"plusv", fortran, pdplO,

20+3*n ins, v3: 1 out/inv)

end;

9.1.2.2.2 Add Matrices. This node imports two matrices and exports their

node pluss
importmtrx~ marxo n) o n a]

inatrix(inod mp, mod np) mat2;

def unless m=mp & n=np

error(" ('#m#" , 1#n#1 and ("#mp#", "#np#")1"#
"are incompatible sizes.");

export iatrix(m,n) mat3;

begin env(obj#"plusm", fortran, pdplO,

g 30+3*m*n ins, inat3: 1 out/mnv)

end;
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9.1.2.2.3 Subtract Vectors. This node imports two vectors and exports their

difference.

:vectoron

node minus =

import vector (mod n) vi,

vector (mod np) v2;

def unless n=np

error(n#" and "#np#" are incompatible sizes.");

export vector(n) v3; Y.
begin env(obj#"minusv", fortran, pdplO,

20+3*n ms, v3: 1 out/inv)

end;

9.1.2.2.4 Subtract Matrices. This node imports two matrices and exports

their difference.

mat3, matrix(m,n)
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node minus

import matrix (mod m, mod n) mati,

matrix (mod mp, mod np) mat2;
def unless m=mp & n-npF

erro r("("#m", "#n#") and ("#mp#" ,"#np#" ) #
"are incompatible sizes.'');

export matrix(m,n) mat3;

bgnenv(obj#"minusm", fortran, pdpl0,

30+3*m*n ins, niat3: 1 out/mnv)

end;

9.1.2.2.5 Scalar Times Vector. This node imports a scalar and a vector and 0
exports their product.

nodes time

vectorvmod n) vi

exor ectorn v2

einenvs j"iev, otapp

15+10*n ins, v2: 1 out/mnv)

end;
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9.1.2.2.6 Scalar Times Matrix. This node imports a scalar and a matrix and

exports their product.

matrix(m,n)

node times =

import scalar s,
matrix(mod m, mod n) matl;

export matrix(m,n) mat2;

begin env(obj#"timesn", fortran, pdplO,

35+l0*m*n ms, mat2: 1 out/inv)

end;

9.1.2.2.7 Scalar Operations. It is assumed that there are plus, minus,

times, divided by, etc., nodes defined on single scalars with the obvious

semantics. These definitions can be provided by a call on a previously

existing library "scalib." This would appear in the current library as

the library-inclusion

lib scalib;

Perhaps the most important node in scalib from the current point of view is

the node which exports a single scalar. For convenience this node definition,

which actually appears within "scalib," is repeated here. This node exports

the scalar that is represented by the string which passed to its modifier.
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node scalar

mod s ="0.0"; Idefault output is zerol
export scalar sout;

begin env("/usr/dt/scalib/scalar", fortran, pdplO,

4 end; 50 is, sout: 1 out/inv)

9.1.2.3 Matrix Arithmetic

9.1.2.3.1 Vector Innerproduct. Thins node imports two vectors and then
exports their innerproduct.

SS

nodeime timsalarc'

import vector (mod n) vi,

def unless n=np -

error("size of vl="#n#" and size of v2="#np#
"are incompatible");

export scalar s; 0
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egnenv(obj#"inner", fortran, pdplO,

20+6*n ins, s: 1 out/mnv)

end;

*9.1.2.3.2 Matrix Times Column Vector. This node imports a matrix and

vector and exports their product.

node timess

import iatrix(mod in, mod n) mat,

vector(mod np) vi; ~

def unless n=np

error("size of mat=("#m#","#n#") is '#

"incompatible with size of vl="#np);

export vector(m) v2;

begin env(obj#("timemv"), fortran, pdpl0,

35+m*(20+6*n) ins, v2: 1 out/mnv)

end;
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9.1.2.3.3 Row Vector Times Matrix. This node imports a vector and a matrix

and exports their product.

node times

import vector(mod m) vi,

matrix(mod mp, Eo n) mat;

def unless rn-mp

error("size of v1="#m#" and of "

"mat=( "#mp# , "#n#") are incompatible);

export vector(n) v2;

binenv(obj#"timevm", fortran, pdpl0,
35+n*(20+6*m)ms, v2: 1 out/mnv)

end;

9.1.2.3.4 Matrix Times Matrix. This node imports two matrices and exports

their matrix product.

rod t

times mat
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Ur

node times =

import matrix(mod m, mod p) matl,

matrix(mod pp, mod n) mat2;

def unless p=pp

erro r("size of matl = ("#m","#p#")"

#"and of mat2 = ("#pp#","##)

#11 are incompatible.");

export matrix(m,n) mat3;

begin env(obj#"timem", fortran, pdpl0,

l00+n*( 35+m*(20+6*p) )ms,

mat3: I out/inv)

end;

9.1.2.3.5 Transpose Matrix. This node imports a matrix and exports its

transpose.

matl tranposemat
matrix(m,n) =matrix(n , m) -- i

node transpose =

import table(mod m, mod n, anytype t) matl;

def unless length t = 72

error("size of m[i,j]="#length t#" is not 72.");

export table(n, m, t) mat2;

begin env(obj#"trans", fortran, pdplO,

35+2*m*n ms, mat2: 1 out/inv)

end;

'I
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9.1.2.3.6 Inverse and Determinant of Matrix. This node imports a square

matrix and exports its determinant and inverse.

m a tl - i n a d d

node inv and det =

impor matrix(mod n, mod np) matl;

def unless n=np

error("cannot take inverse of nonsquare "#
"matrix of size = ("#n#",11#np#")."1);

export scalar det,

l ,matrix(n,n) mat2; p

begin env(obj#"invdet", fortran, pdplO,

250+6*n**3 ms,

det: I out/inv,

mat2: 1 out/inv)

end

9.1.2.3.7 Inverse of Matrix. This node imports a square matrix and exports

its inverse. It is defined in terms of (9.1.2.3.6).

mat] ines mat2

matrix(n,n) matrix(n,n)
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node inverse =

import matrix(mod n, mod np) matl;

export matrix(n,n) mat2;

begin

inv_anddet(port matl) --> *, port mat2

end;

9.1.2.3.8 Determinant of Matrix. This node imports a square matrix and

exports its determinant. It is defined in terms of paragraph 9.1.2.3.6.

mat det
matrix(n,n) deeriatsaa ---

node determinant =

import matrix(mod n, mod np) mat;

export scalar det;

begin

inv anddet(port mat) -- > port det, *

end;

9.1.2.4 Display of Results

Once a useful vector or matrix has been calculated, it should be displayed.

To be useful, display requires a number of options which are closely related

to the underlying machine. Because the matrix library is an example of

something well understood, it was not thought advisable to design display

nodes in detail; rather, they will use notions that are purposely left

undefined here.

Sq7
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A display node will take as input a vector or matrix and produce an output on

a file port; "file" is purposely left undefined but can be thought of a

readable set of characters that displays the imported record. Control of this

display is specified by a "format", which is some character string; a format

can be thought of as a Fortran format specification.

Presumably the scalar library (see paragraph 9.1.2.2.7) contained an appro-

priate definition for the "file" record type so it need not be repeated in

this library.

9.1.2.4.1 Display Vector. This node displays its import vector according

to the format specified.

v (ds a f

vector(n) file

node display =

import vector(mod n) v; P

mod format;

def unless n<=24

warn("vector("#n#") will not "#

"fit on screen."); P

export file f;

begin env(obj#"dispv", fortran, pdplO,

200+l00*n ms, f: 1 out/inv)

end;
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9.1.2.4.2 Display Matrix. This node displays its import matrix according

to the format specified.

mat -(dfs la--

matrixtm,n) =file

node display "

import matrix(mod m, mod n) mat;

mod format;

def unless m*n<=24

warn ("matrix("#m#","#n#") will not"
# "fit on screen.");

export file f;

begin env(obj#"dispm", fortran, pdplO,

200+l00*m*n ms, f: 1 out/inv

end;

I
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9.2 A SAMPLE PROGRAM USING THE MATRIX LIBRARY

This section demonstrates how the library given in Section 9.1 can be used. The

example arises in minimizing time delay in message-switched communication net-

works. The problem is to do many calculations of

g = f - hP VT

where f is a flow vector, Pq is a projection operator matrix, T is a function of

f which is to be minimized, h is a step size to be determined by the experimenter

as the "experiment" is running, and g is the output flow vector.

A network that performs this calculation is displayed in Figure A-l. This net-

work reads successive pairs of Pq and f, polls the experimenter for an appropriate

h, and displays the results.

Because the "gradient vT with respect to f" node is special for this experiment

and is not in the matrix library, it must be written either in LINGO or in an

algorithmic language as a primitive node. Because it is written only for this

particular network, it need not be as qeneral as the nodes in the matrix library.

Its specification might run as follows:

node grad t f =
import vector (150) f;
export vector (150) del t;
begin env ("/u/dt/gradtf",

fortran,
pdplO,
1000 ms,
del t: 1 out/inv)

end;

Once the gradient node has been coded, the network in Figure A-l may be expressed

in a character form as follows:
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FIGURE A-1 NETWORK FOR g = f - HPqVT

Pq (from a file) f (from a file)

copy

gradient VT
with respect

to f

(from an
lz experimenter)

times

minus

display 9
format=" a file)
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def lib matpak; {include matrix library}
node grad tf =

{mentally insert the definition for
"grad t f" here};

import matrix T150, 150) pq,
vector (150) f;

export file g;
begin

copy r f --> fl, f2;
timesp!port pq, grad t f(f2))--> a;
times (<scalar(/s = "075'), port h>, a)--> b;
display (minus(fl,b)/format="...")--> port g

end

Notice that "times" is generic; when first used in the program it identifies the

matrix times column vector routine; when used second it identifies the vector

times scalar routine. Both identifications are done at link time, before the

program gets executed.

The linked version of the sample program is shown in Figure A-2, which shows the

object module for each node and the record types to be found on each link. This

figure is a pictorial representation of the tables that the network linker will

output to the system that executes LINGO networks.
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FIGURE A-2 LINKED NETWORK FOR g =f -hPqVT

file PQ file F

dim(l :150,l:150)scalar dim(1:150)scalar

copy

dim(1:150)scalar

/u/dt/gradtf

dim(1 :150)scalar

dim~l 150)salar usr/dt/matpak/timemv

terminal
H

dim(l:150)scalar 0.5

scalar

/usr/dt/matpak/tirnesv

dim(l :150)scalar

* /usr/dt/matpak/minusv

dim(l :150)scalar

/usr/dt/matpak/dispv _ __ _

fomat=".file G
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10.0 CONCLUSIONS

This report has concentrated on defining a language that allows a casual user to
compose a data driven network of library programs which perform useful work. The
level of composition encourages simple constructions rather than extensive condi-

tional and looping constructs to achieve the desired result. Therefore the user

needs only to understand the area in which computation will be done and LINGO's

simple rules which connect operational nodes together to perform computations.

The majority of LINGO, and therefore the bulk of this document, concentrates on

LINGO facilities for the applications library designer. These include methods

of specifying the performance of a node in terms of the user's requirements so

that the cost of executing a network can be predicted in advance; methods for

checking proper interconnection of application nodes; and methods for predefining

entities for users to make their use of LINGO system easier.

~ In doing the design of the Network Language LINGO, several ideas have been dis-

carded because they added yet another feature for the applications library
designer in an area that was already the largest part of the language. Without

doing the design of several libraries and evaluating the current complement of

facilities, it is difficult to know whether these additional features are needed. p

It is important to note that this report is a preliminary version and that

undoubtedly LINGO will be changed as a result of experience in node library
design. For example, one desirable, though perhaps impossible, change would be

to simplify the notions of formal- and actual-record types without taking away

any power or convenience.

Probably the most important extension considered was "alternative records" so

that more than one type of record could traverse a given link. We have also

considered methods for an import to consume more than one record at a time

during one invocation. This can be done now by insertion of a node which com-
bines together the desired amount of data and exports it. It is not clear that
more than this is really needed. For every simplification and extension, care
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r
must be taken that the original goals are met and that deadlock has not crept

in the back door.

After several application libraries are designed and some experience with LINGO

has been attained, changes should be integrated delicately and inconsistencies

repaired beautifully.

-4
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