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(1)
Overview

This report is organized as five separate reports covering
the five tasks of the contract. Four of these reports are in-
cluded in the present document plus a separate report written by
Prof, C. W. Merriam, III.

The first section of this report provides the asymptotic
theory and geometric procedure for determining the amplitude
of the crosscorrelation function for FM signals whose instan-
taneous frequency curves overlap at one point in time. In addi-
tion, the geometric procedure can be used to upperbound the cross-
correlation function for multiple int?;iing cases, where absolute
phase of the signal components is not generally known.

)

The second section provides a new definition of wideband
energy density function which allows for Doppler stretch. The
key to this definition and its properties lies in the use of the
Fourier-Mellon transform which converts time stretching to a
multiplicative exponential factor in the transform domain. The
relationship between the wideband energy density function and the
wideband ambiguity function is also established using a modified
two-dimensional Fourier transform. Using these new results,
we feel we can now extend the theory of wideband signal processing.

The third section discusses autoregressive techniques in-
cluding the maximum entropy predictive technique. Although no new
analytic results were found, the extensive simulations show that

these techniques have certain difficulties, particularly in

resolving closely spaced echos in a multipath environment. Thus,
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(ii)

except for particular circumstances, these techniques do not

do as well as a DFT. Caution should be used in applying maximum
entropy estimation to periodicity estimation. Included in this
section is a complete review of the multiple vays of viewing the
overall problem of autoregressive spectral analysis.

The fourth section has several new results concerning adap-
tive estimation procedures. An exponentially weighted least
squares algorithm (EWLS) is developed. The Widrow-Hoff algorithm
(LMS) is an approximation to the EWLS algorithm. Several impor-
tant cesults are presented. In particular, the importance of
choosing an input signal sequence whose wideband ambiguity function
is insensitive to Doppler scaling is established. Other results
include "misadjustment noise", stability, error in tracking time-
varying parameters, effects of additive noise, and the role of
the input signal. 9"

The fifth section, included as a separate report, covers
other gradient algorithms in parameter estaimtion. Included here
is a discussion of the effects of coefficient averaging and the
reduction of the misadjustment effects.

The only area in which we feel that definitive results did
not occur is in determining the effects of Doppler stretch on the
Wiener solution. The difficulty here is that although the original
signal and the Doppler scaled signal are stationary, they are not
jointly stationary. Thus, all efforts at formulating the problem

analytically failed, despite the fact the much initial effort

was devoted to this problem.




a5

..........

(iii)

Finally, the authors would like to acknowledge the heln
of several people without whose help this research could not have
been done. First, the help of the staff of the Perinatal computing
facility is acknowledged. Equipment funds from this contract
were used to purchase several peripheral pieces of equipment for
this facility and can now be used for future Navy contracts. We
would like to thank Dr. R, A. Altes for providing his manuscript
covering the Fourier-Mellon transform which proved to be the key
to the determination of the wideband energy density function.
Finally, we wish to thank DarrellMarsh for his patience in allow-
ing the authors to complete this work during a period of difficult
time for us.

Also, we would like to give a special thanks to Beth Dunn

for her typing of this report.

...... R T T T N T LTy - =t oan



.

, Asymptotic and Geometric Procedures
.

'.‘ for Estimating the Crosscorrelation
- Function of Frequency Modulated Signals
#

. by

‘Q . Edward L. Titlebaum

3

L Associate Professor of Electrical Engineering
E University of Rochester

E!' Rochester, NY 14627

K

4

9

\

‘9

\

b

x|

‘v



I. Introduction

For many Navy applications, Frequency Modulated (FM) signals
which have large time-bandwidth product are being considered for
underwater accu.tic communications. With the possibility of co-
herent processing and a large number of signals, it is clearly
desirable to find ways of evaluating the mutual crosscorrelation
functions of various signals. Using the method of stationary phase
we will derive an asymptotic formula for the crosscorrelation of
two FM signals whose instantaneous freguency curves cross at only
one point in time. For this case, a simple geometric procedure
for estimating the crosscorrelation is given based upon the over-
lapping area of two templates generated in time-frequency space.

For signals with more than one instantaneous frequency cros-
sing, the geometric procedure provides an upperbound on the cross-
correlation, since, in general the absolute phase between the two
signals may not be known.

Since the cross ambiguity function is a crosscorrelations

function we can apply this procedure directly to this case.




¢
; II. Asymptotic Theorv.
In this section we consider the problem of asymptotically
'(- estimating the crosscorrelation function between two FM signals,
E based upon crossirgs of their instantaneous frequencvy curves. We
E snall deal with complex (analytic) signals. In Appendix A we es-
b! tablish the relationship between the crosscorrelation of the real
parts of the analytic signals and the results for analytic signals
themselves.
’f‘ We begin by defining instantaneous frequency. Suppose we have
E an analytic signal of the form
o £(t) = a(t)el® () (1)
E By analytic we mean that the Fourier transform of f(t), F(w),
j: satisfies the condition

F(w)

0, w <0 (2)

Thus the signal has a one-sided spectrum. The instantaneous

L frequency of £(t) is the time-rate of change of its phase, thus

®

p- _d e(t)

:' wf(t) = Tl.———— \3)
" Thus, for example if

| o(t) = 2 % + wt (4)
(]

I.‘
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(1.3)

for a typical chirp FM signal, then

wf(t) = Bt + w (5)

We assume that the two signals of interest are of the

same form:

jAa (t)

f(t) = a(t)e (6-a)
g(t) = b(t)e IBR(E) (6-b)
and the cross correlation is given by
PeglT) = f f£(t) g* (t+1)dt (7)

-0

Without loss of generality we assume the analytic signals

have unit energy. Thus
[+ -} =]
f|f(t)|2 dt=.[|g(t)|2 dt = 1 (8)
- Q0 - 00
Thus, by the Schwarz Inequality, the maximum value of their auto-

and crosscorrelation functions is unity. Their instantaneous

frequencies are thus

< a2 da(t)
wf(t) = A Tt—-— (9-a)
and
_ _n dB(t) _
wg(t) = -B S (9-b)

1 .



(1.4)

The two constants, A and B, are assumed to be large.

Substituting equations (6) into (7) yields

Re (1) = 3L k(t,1)eIXR{E D) ge (10) |
where :
K(t,T) = a(t)b(t+T) (11-a) '

xh(t,T) = Aa(t) + BB (t+1) (11-b)

If we assume that A>B, without loss of generality, then we

have

X = A (12-a) .

a(t) + 2 8(t) (12-b) :

h(t,t)

Applying the method of stationary phase to the integral (4)

we have, as an asymptotic expression

T T R T T

1/2

Reg (1) ~ | 2o k(E,T)exp [jxh(E, 1) + jn/af (13)

x d“h(E, 1)
at?

T T —

where the stationary point t is the unique solution of the

equation

e wg(®) = u (®) = 0 (14)

It is assumed that g is continuous and h is twice continuously

differentiable with



t (1.5)

L‘. 2 A

i d”h(t,1) 0

F at?

;

LC Let us do an example of how this procedure works. We will
LN

first look at the cross correlation between two linear FM signals,

[.
[

one an up chirp and the other a down chirp. We let

:
j5t?

f(t) = a(t)e
~i3(T-t)%, 0<t<T

g(t) = b(t)e J

The instantaneous frequency curves for the two signals are

shown in Figure 1. ’

The unit energy condition reveals that

’l‘ T o
ve- ] a%(t)at = / b2 (t)dt = 1 :
0 0

Solving for the stationary point, with X=A we have that

2 2
- Eo o (t¥T-T)
BEAY =P ===
and differentiating "
_ dh(t,T) - .
: 3t =t + (t+71-T)
;. ¥
: Setting the derivative of h equal to zero and solving for t we
’ obtain
. A
[ _ T-1 4
: Ll -
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Instantaneous Frequency plots for

Linear FM sweep example.

Figure 1.
w
A
A
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The second derivative condition is satisfied since

a%h(t,1)

=250
at?

Solving for k(t,T) and h(t,t) we have

oy = als p (T
}\(trT) = a( 3 ) b ( ) )
Xh(t,7) = & (r-1)?

Thus we have as an estimate of ng

2 1/2
Reg (1) ~ a(50) b (B5 (17 Texplifc-m? + ju/a)

If we further assume that

a(t) = b(t) = 0<tx<r,

1
—
v T

thus the signals have rectangular envelopes. Then in the region of

overlap (-T<T<T) we have

Pl S

l m,1/2
[Reg ()| ~ 5 (7]

We observe that the total frequency deviation is AT

rad/sec. or 27nF rad/sec.

1/2
Req ()| ~ 3 s = L
= £g T 'Z7F
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We see that, as the TB product gets large the crosscorrela-
tion function diminishes as the recimrocal square-root of the TB
product. F

In order to check, the asymptotic results, several examples
were run on our Interdata 7-32 minicomputer. The signals are of

1

the form -
F(I) = a(I)exp[BI%+WIi], I = 1, N.

The amplitudes are rectangular except for a 10% raised cosine

at either end of the signals. Figures 2. and 3. show the two

s_gnals for N=128. The real and imaginary parts are plotted

consecutively on each graph. The parameters are

a) Upsweep B = 0.003, W= 0.3 i".

o
]

b) Downsweep -0.003, W= 1.068

Calculating the timewidth and Bandwidth

P = (0.9)(128) = 115.2
_ 0.768, _
Feo= (0.9) (S5—=) = 0.110

B T P N T B T TN N U N o PRy T & ¥ e I TSR T Y

Thus the crosscorrelation estimate is

Regl —L - 0.1986

/2T ¢F

Figure 4. shows the actual crosscorrelation function and

B e s e e e e i o




(1.9)
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the asymptotic estimate, shown as a straight line.

Suppose the 10% raised cosine window is not included then

T

£ 128

Ff = 0.768

and the estimate is Ing| ~ 0.179. This case is seen in figure

5., where the actual crosscorrelation and estimate are plotted

together.

A second example with larger TB product is given below.

Here the parameters are

N=256 a) Upsweep B

003, w = 0.300

b) Downsweep 8

-0.003, w = 1.836

- W Figure 6. shows the first half of the crosscorrelation functions

of the signals with and without the 10% raised cosine.
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Figure 2. Real and Imaginary parts of 128 point
Linear FM Upsweep sigral.
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Figure 3. Real and Imaginary parts of 128 point
Linear FM Downsweep signal
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Figure 4. Crosscorrelation function and Asymptotic
Estimate of Linear F! Up and Downsweep
with 1C% raised cosine window. t=0
corresponds to Time Delay = 127.
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Figure 5. Crosscorrelation function and Asymptotic
Estimate of Linear FM Up and Downsweep; NO
window, t=0 corresponds to Time Delay = 127,

o
2. CCF LIN FM, NO WIND, + ASYMP. EST,
&
=3
=
B /A A
T JANANAWA \
gt VAVARA'AY ;
> ,
O
&
o
o R
| ]
8
.00 49.00 80.00 120.00  160.00  200.20  200.00  280.00 _
TIME DELAY ;
o



(1.14) .

31

Figure 6. Half of crosscorrelation functions and Asvmptotic
estimates for 256 point Linear FM Up and Down-
sweeps, with and without 10% Raised cosine
window.

16

CROSSCORRELATION

@.12

@.08

8.04

a.ea

- '‘CCF LIN FM,WIND.AND NQOT,RSYMP. ESTIM.'S

I

-~ N -
R L o, M

! (AN AN AT AN AN

T I R ey,
VR A AR AR

.00 4o.00 80.00 120.00  160.00  200.28 2U0.00  250.00
TIME DELRY




(1.15)

III. Geometric Interpretation

In this section we show that a simple geometric interpreta-
tion may be applied to the asymptotic results for the cross-
correlation function. The geometric interpretation can be
very useful in calculating the crosscorrelation function. In

particular we show that asymptch:ic result is obtained directly

from the area of a parallelogram in the time-frequency plane.
We begin by defining a parallelogram in terms of two sets of _
parallel lines in the t-w plane. Figure 7. shows the 4 lines. ;
The area of the parallelogram is '
Area = Xy sin © (15) .;
We must calculate the three quantities separately. Tc obtain
sin 6 we observe that v
Tano= A, Tan B = B.
Note that wgq is defined with a negative slope. Thus we have .
Tan(90°-a) = &, Tan(90°-8) = &
A’ B
s . ’
Taking inverse tangents and adding we have ;
Tan"t(3) + Tan™? () =180 -a -8 =06 .
A B
[
Thus 1 "
Tan 6 = Tan [Tan Y(%) + Tan"1(})] = 2B _ A+ B_
A B 1l,.,1 AB -1
l-(X)(E) o



(1.16) |

Figure 7. Geometry for calculating the Area of ‘
Parallelogram enclosed by two sets of
parallel lines.




and from this we obtain

$in o = ats
/TATBY ¥ (AB=17 2
(16)
sin & = A td
/(A2+IS ZBZ+—1')

To obtain x and y we recall that the diameter of the in-
scribed circle for a triangle is calculated as the ratio of any

side to the sin of the opposite angle. Thus

C X D _ Y
sin © sin®& '’ sin® sin B
or
: D si
- CS?.rJ;nea A siénes (17}
but
sina= —5— ,  sinB= —3 (18)
AFI VB+1

Thus combining (16), (17), and (18) and substituting into (15)

we obtain

[
_ CD(AB)
Area = 135 (19)
: Finally we observe that

C D'
Tano = A = < TanB = B = ==

E‘f
£
:.
i
=
[
&
T
E
E
f_
f

f.
F -
|
L
[
F
l
3
:
2
]
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= ] (1.18)

2 and substituting we have

}

: _ chl

‘Kj Area = A+B (20)

Here C' and D' are the respective vertical lengths between

s T TR WSRO e w
i

EE the two sets of parallel lines and A and B are the tangents of
] the lines (one positive and one negative).
s

Consider now the magnitude - squared of equation (13), we

" obtain

Reg () |7~ 52— x%(&,7) (21)
L. X d°h(t,T)
5’ dt2
. which is
3 lng(T)|2~ = £ - a®(t,1) b® (%,1) (22)
dwg (£,1) _ dug(E,1)
dt dt

If we now assume that the two instantaneous frequency functions

are slowly varying, i.e. that we may replace We and Wy by the first

two terms of their Taylor series expantion about the point t,

for fixed t, then we may observe that if

L 3 C' = az(t,r)
D' = b2(t,1)
0 which are also assumed to be slowly varying, and




dw_(t,T)

--_1__93_
- T 2m t
Then we have that

1/2 (23)

Ing(r)I ~ [Area]
and the crosscorrelation function is asymptotically the square-
root of the intersecting parallelogram described above. The
results are clearly true for the two linearly frequency modulated
signals provided in the example, since all the assumption con-
cerning slow variations are true. Although we, as of yet,
have not been able to prove the result when we remove the slow
variation assumptions we feel the result is still approximately
valid. Thus, one could construct a template for each signal
such as seen in Figure 8,

Then overlaying the two signal templates, and calculating
the square-root of the overlapping area, we obtain an estimate
of the cross correlation function for that value of time dif-
ference. Moving the template horizontally would yield a new
value of crosscorrelation.

Although it may seem confusing as to why we plot the ampli-
tude-squared along the frequency axis, i.e. C' = az(g,r), observe
that for the rectangular amplitude case, as in the example,
az(E,T) = 1/T which has units of frequency, so that the results

are consistent.



Figure 8. Template for a typical Linear FM Upsweeo ,
(v signal with amplitude a(t). F
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(1.21) -
IV, Multiple Intersections

The case of multiple intersections and signals is considerably
more complicated. The reason for this becomes clear when we consider
a simplified case. Suppose that for a particular delay, the
instantaneous frequency curves have two intersections. Then we
may calculate the crosscorrelation contribution from each inter-
secﬁion, but since the actual correlation is the complex sum

_of the two since the phases must be considered. 1In principle

| LR

we have the asymptotic expression for the phases in equation (13)

S lal e B g _ 2 o 8 2 _L It

and could thus calculate the complex sum of the two contributions.

But if the twec signals are only specified by their time-frequency

i

:‘ plots and amplitudes we lose control of absolute phase. To show

this, suppose that g(t) is the same as equation (6-b) and

9

|

£(t) is ‘

]

e t"'

: ) : g

£(t) = aj () e?P1%il8) 4 o (g)IR20(E) (24) :

4

:

or Ai

. r

£(t) = fl(t) + f2(t) (25) 1

i

-

This could represent a signal with a fundamental and second 1

i

_‘ harmonic component, where, for example, the second phase could z
be

g

3

. i

Aja,(t) = 2[Alal(t)]




(L:22)

Using stationary phase once again for each of the two integrals,

the two stationary points t, and t,, are the unique solutions to

1 2
the equations

wfl(tl) - wg(tl) =0 (27-a)
and
wfz(tz) - wg(tz) =0 (27=b)
with
xlhl(t,r) = Alal(t) + BB (t) (28=-a)
x2h2(t,r) = Azuz(t) + BR(t) (23-")
and
kl(t,‘) = al(t)b(t+r) (29-a)
kz(t,f) = az(t)b(t+r) (29-b)
we have
1/2 .
ng(r)~ 5 47 kl(t,r)exp[jxlhl(tl,r) + jn/4]1 +
4 hl(fl,r)
X dt
(30)
1/2
21 k (E t)exp[ix,h (E t) + jm/4]
& dzhz(EZ,T) 272 2°2 72
2 gt?

Figure 9. shows a typical time-frequency plot.
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example.

3«

Figure 9. Overlapping templates for two intersection
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The two shaded areas are the square of the amplitudes of

s S Shan il . e A e R e

the two contributions. Since we do not know, in general, what
is the absolute phase relationship between the two components

we can only say that crosscorrelation lies between the limits
| (Area pts2 + (Area 2)1/2| (31)

Clearly an upperbound on the crosscorrelation would be the sum

of the square roots of the areas. Clearly, in more general

" SRR | GUSNa ~ ¢

[}

cases, an upperbound to the crosscorrelation would be the sum
of the square-roots of all intersecting areas. This would be

accurate only if all phases were the same.
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V. Crossabmiguity Functions

The results of the previous sections can be extended to

wideband crossambiguity functions. In order to accomplish this

consider
Afg(r,s) = Vs J;f(t)g*[s(t+r)]dt (32)

which is the wideband crossambiquity function for the two signals,
f(t) and g(t). The parameter s is the Doppler stretch factor.
If we assume that the functions are defined the same as in

equations (6-a) and (6-b) then we can observe directly that

k(t,t) = Vs A/*) bls(t+1)] (33)

and

h(t,t) = Aa(t) + BB(st). (34)

The stationary phase point occurs at value of t which is

the solution of

A

wf(é) - s wg(st) = 0 (35)

Thus equations (33) and (34) are substituted directly into

equation (13) in order to obtain the asymptotic estimate of

Afg'

If, as in the example of linear FM,

]

we (t)

At, wg(t) = A(T-t)
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(1.26)

then the stationary point occurs at

s({t-1)
1 + 52

t =
It should be observed, for this example, that the instantaneous
frequency line for vYsglst] is

ws () = -A s?t + SAT

and the amplitude of g is modified by the stretch factor as
well,

With these modifications in the functions h and k, the
geometric procedure is directly applicable to the asymptotic
estimate of crossambiguity functions. Clearly all comments and

results for the multiple intersection case are equally valid.

......
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VI. Conclusions

We have shown that a simple geometric procedure can be used
to obtain the asymptotic estimate of crosscorrelation functions
for signals whose instantaneous frequency curves cross at one
point only. In other cases this procedure produces an uppetr -
bound on the crosscorrelation function. The procedures des-
cribed can be applied directly to ambiguity functions since it
is a particular form of crosscorrelation function.

The particular utility of the geometric procedure lies in
cases with which large numbers of FM signals may be checked for
their correlation properties. Further as new electronic devices,
which can represent signals in t-w space, are developed the
area concept may proove useful as an identifier or matched

filter,

B g R N s e g an e -
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o
Appendix ‘

In this appendix we establish that if we have two analytic i
signals, k(t) and h(t), then the crosscorrelation of the real parts »

is equal to the real part of their crosscorrelation function.
Further that the magnitude of the complex crosscorrelation function
is the envelope of the real crosscorrelation, Finally, we give a
computer example demonstrating this fact.

To begin, we assume that fl(t) and f2(t) are real, unit energy
signals, and the transform

A

f(t) = H[f] (t) =

(A-1)

A
=
o+ ™
A2
DJ
~

is the: Hilbert transform. Then we form the analytic signals

- i T —2- :
k(t) = : (£, 6e) * § £7(8)] (A-2-a) &
= l 1 - - -
h(t) = = (£, (8) + 3 £5(8)1 (A-2-b)

Defining the inner product at

o<

(k,h) = f K (£)h* (t)dt (A-3)

-0

and using the properties of Hilbert transforms and their

spectra is can be shown that if




(k,h) = (fl'fz) + j[%./ Al(w)Az(w)sin[a(w)]dw] (A-5)
0

where

o(w) = el(w) - ez(w)

Recognizing that if

fl(t) = £(t) (A-6-a)
. o
f2(t) = g (t+T) (A-6-b)
Then the inner product is a crosscorrelation function and
R AR (1)} = ng(r) (A-7)
¢
; Further since Rkh has a one sided spectrum then its real and
imaginary parts are themselves Hilbert transforms and hence
« leh(T)I is the envelope of ng(r).

To demonstrate this figure 10. shows the magnitude of the complex
Ccrosscorrelation and the crosscorrelation of +he real parts of the

up and dovn linearly sweeped signals shown in figures 2. and 3.,

| -
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Figure 10. Complex‘crosscorrelation aad real cross-
correlation of 128 point Linear FM Examnle,
with 10% raised cosine window.
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Figure 11.

Complex autocorrelation and real autocorrela-
tion of 128 Linear FM Upsweep, with 10% raised
cosine window,
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plotted on the same graph. Figure 11., shows the same results for
the autocorrelation functions of the up sweep signal. The fact
that real signal does not touch the envelope at several cycles is
an artifact of the plotting routine drawing straight lines through
two sample points, neither of which are at the peak value of the

cycle.

Reference

1w, Erdelyi, A., Asymptotic Expansions, Dover Publications,
Ind,, 1956,
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g8 Wideband Energy Density Functions

In this section we outline our attempts at trying to find
a definition of Energy density function for wideband signals,
for which the Doppler effect is not a simple translation of the
spectrum but must be considered a stretching of the signal. The
procedure is to look for a transformation, T characterized by

a kernel Kk(t,p) so that if f(t) is some other transformation of

a signal £(t), and

Fip) = jf%(t)k(t,p)dt (1)

Then the function

Ag(£,P) = £(£) F*(P)k(t,P) (2)

would have scme or all of the properties of the narrow band
Energy density func:ion(l’z). Most of the transformations are
based upon combinations of Fourier and Mellon Transforms. The
reason for this is that the Fourier transform converts a time
delay to an exponential multiplier in the transform domain and
the Mellon transform converts time stretch into an exponential
Multiplier in the transform domain(3’4). In order to see this

~

consider a signal f£(t) and its Mellon transform F(x). Thus
= o, t. ixt
F(x) = M[£(£)] (x) =ff(e ) elXtae, (3)
- 00

Inverting, we ob“ain that

£(t) = Z—lﬂ-ff*(x)e‘jxm(t’dx (4)




(2:2)

An = _*ternate form for equation (3) 1is
F(x) = Jf £(rye I¥INT4. /p (5)
0
Now consider a stretch of f£(t),
g(t) = £(st)

Then, from equation (4)

0

from which we can easily see that
G(x) = E‘(x)e-]Xlns )

which has the exponential factor. If we assume small

stretching, ie.
S =1+ 3, |B|<<l

then
1nS = in(l+B) <~ B
and we have that

G(x) = F(x)e JXB (8)

R R R R R T o L N W N, T P P G p—

"'




(2.3)
which is clearly the form we desire.

However, if we consider the effect of time-delay on the

Mellon transform then we have that

£ (t-1) = ziw/~(x)e-len(t_T)dx (9)

and we observe that the kernel is not separable.

Suppose we try a Fourier-Mellon transform defined as(3)

o

Gf(x) = %/F(ew)ejxwdw (10)

-0
where F is the Fourier transform of f. Letting p = e’ in equation

10, we obtain

<o
A _ 1 >y . =jx1InP
Gf (x) = _Z—TF/F(P)e dp/p (11)
0

as an alternate form for the F-M transform.

Now we consider a time delay of the signal(4)

h(t) = £(t-1)
Then
H(w) = F(w)e I¥T
and o
Gy, (x) = -21,'”-'/F(em)e'-jwe ejxwdw (13)

- 00

or observing the Fourier form of this integral we observe that




(2.4)

LW .
Fe¥ye™3T® = th (x, e I %% (14)
where as
F(ew) = Gf(x)e_]xwdx (15)

- C0

We s2e that the only difference is an exponential factor.

Considering now a stretch of the signal so that again

g(t) f(st)
and

G(w)

F(w/S)

which has F-M transform

Gg(x) = Gf(x)elenS (16)

and still retains the multilicative exponential form.
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II. Possible Definitions of WBEDF ;
Based upon the form of equations (13) and (14) and the

properties of the F-M transform, we define a wideband energy e

density function as }

4

P ]

Rl ;

Ag(t,1) = £(r)F*(eF)eIte P (17) 3

/

|

4

|

We can show that this function has most of the integration !

:

properties of the narrow band EDF's. We assume that f(t) is a r

4

unit energy, analytic signal. ;

:

1

i )

Properties of Af R

ls Integration with respect to p

o o]
1 £(t -jteP
@ - ﬁfAf(t,mdp = —2‘—lfF*(ep>e =€ ePap,
- 00 -0

and letting eP = W, or p = Inw and dp = dw/w. Thus we have

@ [o2]
51_/ t,p)dp = f F* (w)e” 2 ®qy
oo 0

Since we are dealing with analytic signals F has support (is non-

zero) only for w>0 and we may extend the limits of integration

from o to (-»). Thus we have

o] o)
1 FiE -jtw
-Z—W-fAf(t,p)dp = Z(W) /F*(w)e IT944

(equation continued on next pg.)
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(2.6)

~0

R *
= £(t) %/F(w)ejtwdw 5

-0

The bracketed term is f*(t), so that finally
1 2

2. Integration with respect to t

=]

7 . P
./ Af(t,P)dt = F*(ep)ep-/af(t)e_Jte dt

-0

The integral is clearly F evaluated at e” so that

8

Ag(t,p)dt = IF(eP)l2 eP

1
8

We see that Ag has a positive t and p integrals.

Sl Integration with respect to t and p

From either equation (18) or (19) we obtain

(o]
00

2—1n- / Ag(t,p)dtdp = {If(t) |24t = 1

J
- 00 - Q0

(18)

(19)

(20)

A second possible definition which retains the same inte-

gration properties as Af(t,p). Here we define Af(t,p)

Ag(t,P) = GF(t)F*(eP)eJtPeP

(21)

T g gy g U g ULy Wy Mg
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Properties of A

£
.(. | 1 2—17;f;\f(t,P)dp = IGF(t)|2 (22)
| 2. [a e,prae = [F(eP)| 2P (23)
F 3, él?fflzf(t,P)dpdt =1 (24)
‘ The proofs of these properties are similar to the proofs for

Af, and will not be repeated.
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III. Two dimensional Transform properties

One of the most important properties of the narrow band
3? energy density function is its relationship to the narrowband -
; ambiguity function. Thus, by extracting the two-dimensional
; Fourier transform of the NBEDF we obtain the signal ambigui+: 3

function. We will now establish that a similar transformation

A
[ -
: converts the WBEDF defined by Af(t,p) to the WB ambiguity function,
except for the scale factor Vs.
;!I Consider the transform 5
r
l o b
T{A (tlp)](‘rlx) = _l‘ffA (t,P)ej(tA‘PTe )dtdp (25) i
bl 2T £
L" -0

&5 If we recall that w = eP then this is a two-dimensional Fourier

. transform. Substituting for Ag yields

=] a
1

i B :
r* (eF)efel® T/[GF(t)ejt(“mdt]dp (26) '

-0

: .

%k“xs

Eﬂ The bracketed term in equation (26) is F[ex+P] so that we have .
" ~ . P %

v(ag) = ok [ FieMPiEneP)efel® Tap (27) :

* ™ |
1

4 -m -
. P A : |

Letting w = e and s = e , we Obtain :

I. = , o0 . “
] = b * JT(L) 7 -
T[Af] 5T ./.F(sw)F (w)e dw (23) ‘

-0

Now substituting for F, we have

v L 4
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& (2.9)
~ 1 jswtl -jwt2 jTw
T[Af] =g _[Z]E(tl)e f*(t2)e e dwdtldt2 (29)
Integrating with respect to u and then t2 yields
(o 2]
= * X = i
fff(tl)f (t,)8(ty=st,~T)dt dt, :
(o 2]
= *
ff(tl)f (stl+1‘)dtl (30)
-1 Xf(Tls)
s

Equation (30) is the wideband ambiguity function for £(t),

except for the square-root of s factor. Thus, if the kernel

in (25) had been

; b
K(t,\,T,P ) = eA/2 eJ(tA+Te )

we would have an exact transformation.

Clearly since the transform is based upon a Fourier Transform

~

it is invertible and we can obtain Ag from y...

»-

P

=N
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IV. Conclusions

We have been able to establish that certain of the properties
of the narrowband energy density function we also valid for the
two definitions of wideband energy density functions, through the
use of the Fourier-Mellon transfcorm. The important observation
here is that signals should be represented in log frequency vs.
time plots, and stretches in frequency become translations. The
physical meaning of Af and/or gf are subjects of continuing study,
but we have established at least a link from the narrowband to

the wideband theory of energy density functions.
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Abstract

The possibility of using high resolution maximum entropy
periodicity estimation technique to resolve closely separated
echoes is studied in this report. By Fourier transforming
the matched filter output, a short length periodic series in the
frequency domain is obtained. The maximum entropy filtering
method is applied to this series. A study of the relevant
literature shows that tractable analytic models for determining
the performance of the maximum entropy method with short length
sinusoidal inputs do not exist. A limited number of computer

simulations indicate that the technique does not resolve closely

spaced echoes reliably.
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Notation

=y

‘C Unless indicated otherwise, the following abbreviations and

notations will be used throughout this chapter. 1
ACF : Autocorrelation function. i
AR : Autoregression H

{

ARMA : Autoregressive Moving average '
|

B : Nyquist frequency |

BW : 3 dB bandwidth '_j

C : (Cl'CZ’ . @ .CL)T = AR coefficients %
DFT : Discrete Fourier Transform %
E{ } : Expectation operator 1
£ frequency variable, -1/2<f<1l/: ﬁ

1

I : identity matrix

joo /-1

L : order of AR model o . -
LMS _
algorithm : "Least mean square" algorithm [51] b

N : Number of data samples

MEM : Maximum entropy method ’

s Sl ot t o el ed.

Prediction Error Filter
: Power spectral density

random variable L

E{x (i) x* (i+k)} = True ACF value of

{x} at lag K.

(Y(1), ¥(2), <oy @)?T

Estimate of the input PSD at frequency f by
method xx

"True" PSD of the input at frequency f; =

Fourier Transform of {y(k)}.




N (23.8)
{x(i)}i=l : set of N data samples
. T
Bp * (Xpe Xp_gs o oo Xpop)
{n(i)}§=l : set of independent additive noise samples.
3 : adaption constaat in LMS algorithm
Cj K ° Kronecker delta function
’

=1 1if j =k, 0 otherwise

w : radian frequency = 27f.

Double underlining indicates a matrix; and single underlining,

a vector.

superscripts: x* denotes complex conjugate of x.

A’f "

transpose of A

A

caret denotes estaimte, e.g. Y (k) = estimate of

Y (k)
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Section I.

Introduction

Underwater acoustic communication channels are often
degraded by multipath and doppler scaling effects. It is be-
lieved [53] that the multipath propagation can be adequately
modeled by a small number of point reflectors. If a signal
u(t) is transmitted into the channel, the received signal r(t)

can be represented by

T
Y(t) = igl a; u (S;(t=1,)) + n(t) (1.1)

where {Ti} are the delays associated with the multipath, {Si}
are the doppler scales, {ai} are the amplitudes and n(t) is
additive noise, usually considered to be white. The doppler
effect can arise, for example, due to relative motion between
transmitter and receiver.

Knowledge of {ai} and {ri} vield a better understanding of
the nature of the communication channel, and are also useful for
eliminating intersymbol interference effects.

The conventional technigque for estimating {ai} and {Ti}
is to use a matched filter [48]. The filter matched to s (t)
is a linear system with impulse response given by
h(t) = s(T-t) where T is a delay usually included to make the
filter realizable.

If the received waveform is processed with the matched

filter for u(t), the output is given by




e

el

A N4

(3.5)

I
x(t) = Y a; X, (5,,7,) +Noise Term (1.2)
i=1

where xu(si,ri) is the wideband ambiguity function of u(t) de-

fined by

X (S.,T.) = VS, u(t) u(Si(t—‘ri)) dt (1.3)

The effect of doppler scaling can be made insignificant

by choosing u(t) to be a doppler tolerant signal. Such a signal

is of the form

u(t) = a(t)eJklnt ’ c<t<T , where

a(t) and K determine the bardwidth of u(t) and a(t) determines

the sidelobe levels of Xu(Si,Ti). The doppler tolerant signal

has the property that

~ _JjklnSji
Xu(Si,Ti) ~ e Xu(l,Ti)

Thus the effect of using this type of sigpal is to convert
the nonlinear doppler scaling effect to a simple linear phase
shift. Detailed discussion of the ambiguity function and doppler
tolerant signals can be found in [6].

With matched filter processirng {ai} and {Ti} are estimated
as the largest I peaks of x(t).

The closest separation between any two delays {ri} that can

be detected by the matched filter is inversely proportional to

...
'
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the bandwidth of u(t) (with suitable definition of bandwidth
and resolution). In underwaﬁer acoustic channels, high frequency
signal components are highly attenuated. The low bandwidth of
the acoustic channel may limit the resolution provided by the
matched filter to unacceptably low levels.

The Fourier Transform of x(t) in eq. (l1.2) can be written,

if u(t) is a doppler tolerant signal, as

X(£f)

E:ai ejklnSi |U(f)|2 e-jZNfri

juce) |2 Ta, eIkInSi m32mery (1.4)

Equation (l.4) can be considered as a "time series" in
frequency domain. The problem of estimating {ai ejklnsi}
and {Ti} are frequency domain analogs of the usual harmonic
analysis of time series. However, since the bandwidth of
IU(f)l2 is low, the length of available data is very limited.

A nonlinear spectral analysis technique known as maximum
entropy method has been proposed to obtain high resolution
spectral estimates from small lengths of data. This report
investigates the possibility of applying this technique to the
resolution of closely spaced multipath delays.

Other nonlinear techniques are available for the estimation
(and possibly, removal) of multipath delays. The most important
among these are maximum likelihocd spectral estimation methods
[16,37] and cepstral analysis [10,54]. It is reported [14]

that the former is not superior to the maximum entropy method. -




(3.7)

No comparative study between cepstral analysis and maximum

entropy analysis exists.
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Section II.

Definition and Basic Properties of Autoregressive (AR)

.c Spectral Estimators.

. Unless otherwise indicated, the observed input will be

assumed to be sampled at periodic intervals of 1 time unit and

E that only the sampled values are available for processing. i

| Aliasing errors can be eliminated by lowpass filtering the analog
input before sampling and such errors will be assumed to be

:‘ negligible.

& The conventional method of spectrum analysis is to estimate
the autocorrelation function (ACF) of the observed data, multiply

-4 the estimated ACF by a suitable taper function and compute the )

» Fourier transform of the tapered ACF., [9,39,54] This technique

does not make use of any known structural properties of the

:Q observations. Consequently, one is forced to treat the spectral ';- . P

1 value at each frequency as an independent variable. Due to the

: large number of unknown quantities to be estimated, one requires o

E! large lengths of data in order to obtain adequate statistical )

stability.

Quite often, the input process can be satisfactorily approxi- ~j

e Ty ¢
H .
»

[ | mated as the output of a discrete linear system driven by uncor- A
5 related noise [1,12,13,24,27,32,35,43]). A special class of

linear systems consists of systems which have only poles and no

" zeroes. In this case, the observations can be modeled bv the '

stochastic difference equation .

i,
. x(k) = 2, ¢; x (k=i) + n(k) (2.1) !
i=1



I

v

»i.

where {Ci} = C are unknown.

Equation (2.1) has the appearance of a regression equation
in which the independent variables are past values of the ob-
servations themselves. Therefore, (2.1) is often called an
autoregressive (AR) model of order L. For obvious reasons, it
is called an all pole model also. Given x(k-1), x(k=2), ...,
the best prediction of x(k) (in a least squares sense; and in
a maximum likelihood sense if {n(k)} are gaussian) is a linear
combination of the past input values. Hence, the use of the
term "Linear Predictive Model". The terms {n(k)} are called
residuals, prediction errors, or "innovations" since they repre-
sent the "new information" in {x(k)} , i.e., the part that
cannot be predicted from past values. The filter with impulse
response (1, -Cl, -C2, ¥ i -CL), is known as a prediction error
filter (PEF), since the effect of operating on the input data
with this filter is to obtain the prediction errors, {n(k)}.
The PEF is sometimes called "whitening filter."

By multiplying both sides of (2.1) successively by n(k),
x(k), x(k-1) .... x(k-L) and taking expectations, the following
equations are obtained:

Y(0) = ¥(1) C; = ... = y(L) C, = o2

1 L

Y(L) = Y(0) Cl = eee = Y(L-1) CL =0

(2.2)

y(L) - y(L-1) Cl-... & v(M) CL =0

.
. . . ;
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from which the L+1 unknowns C and 02 can be estimated.

An alternative method of computing C is by solving the

linear equations

(YD) . . . . y(L-1) €y [y (1)

C, Y (2)
{ S
(Y (@-1) . ... Y(O)J CL} Y (L)

o e

and 02 can be calcualted from the first equation of (2.2).
Equations (2.3) are known as the normal equations, or Yule-
Walker equations.

The same equations can be obtained by minimizing the mean ]

squared prediction error

" "
L 5 |
E(x(k) = 2, C xlk=i)) (2.4) 41
i=1 |
:
By applying a z-transform [54] to both sides of the first :
equation in (2.2), it can be seen that ;
Power Spectral Density (PSD) of the input = SAR (£) :
2
0 -
= . . (2.5)
1 = ZC- . 321rf1|2 .
-
l "
This equation provides a method of calculating the input PSD ;
from a knowledge of the PEF coefficients. Since the PSD of the :

PEF is the inverse of the input PSD, the PEF is known as an inverse 1

filter.
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(3<2L)

An alternative inpterpretation for the AR spectral estima-
tion technique has been presented by Burg [15]. Burg observes
that the loss of entropy, in an information theoretic sense, by
passing (band limited) white noise through a linear system with

frequency response C(f) can be written as
be = - 1n |C(£) |2 af (2.5)

This expression is minimized subject to the constraint
that the inverse Fourier Transform of [C(f)l2 should be equal
to the estimated data ACF values up to lag L. The result of this
is equations (2.3). Burg labels this spectral estimation method

"Maximum Entropy Method."

Makhoul [31] observes that theAR spectral estimate minimizes

the integrated spectral ratio

1/2
f S(E) o
S, . (f)
-1/2 AR

This interpretation is useful for modeling a selected portion
of the input spectrum by an AR process.
The main attraction of the AR spectral estimation method
is, of course, that it reduces the number of unknown parameters
to the minimum, and therefore better satistical stability of
the estimates can be obtained. Possible sources of error of this

method are: (i) the presence of zeroes in the linear system which

e Ll So dad Coaion sl o o o . - S A o 2 R T . WO - VTS ORI . S T, N TP
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generates the observations, (ii) wrong choice of order of
model, L, (iii) presence of additive noise in the observations.
Due to the highly nonlinear nature of the technique, it is
extremely difficult to analyze its performance rigorously. In
the succeeding sections, we shall summarize the current state
of investigation of this topic.

Several applications of AR modeling have been discussed

in [3,4,11,12,23,25,30,33,36,38,44].
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Section III. Computational Algorithms.

There are at least three different computational algorithms
for the calculation of the AR coefficients, C. In each case,
it is assumed that the mean (dc) component of the data is zero
or has been subtracted out.

ITI.1l. By solving the Yule-Walker Equations.

In this method, the autocorrelation values of the data
up to lag L are estimated and the Yule-Walker equations (2.3)
are solved by directly inverting the ACF matrix. There are two
different methods of estimating the ACF. 1In method 1l(a), the

estimates are
” 1 ?i?
Y1) = g & Xp Xty v 0<3<L<N (3.1)

and in method 1(b),

A

1 nzj"
"{(J) = N X X oy 0
N-3 =i k "k+j

A
).
A

[

< N (3.2)

Equation (3.1) effectively assumes that the data is extended
with zeroes. Eq. (3.2) gives an unbiasedNestimate of v(j), the
true autocorrelation for lag j, if({ xi} ;gi are assumed to be
samples of a stationary stochastic process. Asymptotically, as
N+»», the two estimates become identical for all finite lags.
However, for small N, the two estimates may have significantly

different properties. The ACF matrix estimated from (3.1) is

guaranteed to be positive definite. It is quite possible that

ST T e T [ L T R ey e T e T P
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the ACF matrix corresponding to (3.2) may have zero or negative
eigenvalues, leading to computational instability and absurd
estimates of PSD. -

The Levinson algorithm [29] is an efficient method of solving ;
the Yule-Walker equations. Briefly, this algorithm iteratively
generates solutions of order k from solutions of order k-1. e
The solution for order 1 is trivial and can be written down by
inspection. When k=L, the algorithm terminates. The derivation f
the complex Levinson algecrithm is presented in Appendix - I. r
This algorithm requires on the order of L2 multiplications and
2L storage locations for temporary variables.

) It is interesting to speculate whether a different recursive
scheme will lead to an algorithm with a smaller number of multi-
plications. For example, can solutions of order k be generated
from solutions of order k/2? This "divide and conquer" concept ) ..
is responsible for the computational effectiveness of the Fast
Fourier Transform algorithm [17]. Our investigations along this
line have proved futile., However, it should be pointed out that
since L is usually relatively smal.l, the computational effort
required for computing the ACF far outweighs the effort to invert |

the ACF matrix.

III.2. Burg's Algorithm .

Burg [15] has proposed an algorithm for computing the MEM

filter coefficients which does not require explicit estimation -

R

of the ACF. This method calculates the prediction error filter

coefficients (p.6) by an iterative scheme that resembles Levinson's

algorithm. A derivation of the complex Burg algorithm is given s

- Y YRETTE s

R T
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in Appendix - II. Note the different error criterion, eq. A-2.8.
This ensures that the computed PEF coefficients will represent
a stable filter.
This algorithm requires =NL2 multiplications and =2N storage
locations. Clearly, this algorithm is most effective when the
number of data samples, N, is small. When N becomes large com-

pared to L, the Levinson algorithm and Burg algorithm tend to

become identical.

IIT.3. Gradient Based Methods.

It is possible to calculate the AR coefficients without
explicitly calculating or inverting the ACF matrix. The idea
is to use some form of stochastic approximation (gradient seeking)

method to solve eq. (2.3) (49,51,52]. The algorithms are of the

general form

- T
Chs1 = G * a(k) X (x(k+1l) - X

& G

k) ( 85 3%
where gk denotes the estimate of C at sampling instant k, a(k)

is a predetermined gain sequence and
T

The choice of u(lk) = o = constant corresponds to the Widrow-Hoff
LMS algorithm [51]. The most striking feature of this algorithm
is its simplicity, since only 2LN multiplications and L storage
locations are necessary. This aigorithm can also track slow

variations in C. The price paid for these advantages is that

| =
e e e TR e R TH R TSN K5 e W S Wy W N S




T T m———— TN e A e—— .- - T —— g e T— ® -

(3.17)

relatively long data sequences are necessary to obtain satis-
factory convergence of the estimates of C, and even then these
estimates are corrupted by the so-called "misadjusiment noise"

[(51].
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Section IV,

Statistical Properties of Spectral Estimators.

Before any statistical estimation procedure is applied in i
practice, it is useful to have an understanding of its statistical ;

properties, such as its variance, probability distributions, con-

ll-‘l

fidence intervals, etc. In the case of PSD estimators in par-
ticular, intelligent tradeoffs between resolution, variability 1
of the estimates and computational difficulty cannot be made

without a good understanding of the behavior of the wvariable

d

4

possible alternatives. 4
IV.l. Windowed DFT.

The statistical properties of the conventional windowed ™

Discrete Fourier Transform techniques are well known and are

discussed in detail in [7], (271, [9]), [39]1, and [54]. Briefly, ;

this method estimates the ACF values for lags 0, ..., N-1 via

equations (3.1) or (3.2) and estimates the PSD by the relation

~ N-l A -2

Sppp(£) = 2 Y(k) w(k) e I2TEk (4.1)
k=-(n-1)
Y(-k) = y(k). 0 < £ < 1/2

W(k) is a suitably chosen window (or taper) function such that

i W(-k) = W(k). It is often required that W(k) be a positive
N-1 b
oWk e 50 for 0 <cf<1/2 (4.2)

|
r semidefinite function, i.e.
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The purpose of this is to ensure that the resulting PSD
estimate is nonnegative, as it should be. Some of the commonly
used window functions are the triangular (Bartlett) window,
the raised cosine, Hamming, Hanning, and Kaiser windows.

If N is a highly composite number, (i.e. it can be decomposed
into a product of a large number of small prime numbers - for
example, N=2k), a fast algorithm known as the FFT can be used
to compute SDFT(f) at discrete values of fm = m/N. Fast
algorithms for the computation of the ACF and PSD are given in
[39] and [54].

Assume that W(k) = 0, |k|>m. Then if the true PSD of the
random process under consideration is continuous, it can be

shown that

lin | Sypp(f) = S(£)| + 0 in probability  (4.3)
IN->w

n-o

L/N-+0

This property does not hold if the data contains strictly
periodic components.

The effect of the window function is to locally average
the power spectral density estimate that would be obtained if the
window function were not used. This results in reducing the
noise component of the PSD estimate at each frequency, while at
the same time "smearing" sharp spectral lines into adjacent
frequency cells. Therefore, the use of windows reduces the
statistical variability of the PSD estimates at the expense of

a reduction in resolution.
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IV.2. AR spectral estimators.

If S(f) is assumed to be continuocus and bounded away from
'E, zero and infinity, a result due to Berk [8] states that the AR

spectral estimate is consistent.

i = o AT e T

lin | s

Lo

N>
L/N>Q

ar,n(®) - S(f)| - 0 in probability. (4.4) i

(4.5)

+ 0 in probability for f1 # f2

This result is intuitively obvious from the discussion in
Sec. II. As L»», N»»,LL,/N-»0, the first L elements of the inverse
A~ 1
1 Fourier Transform of Spr,, (£) tend to the true ACF values, and if |
. v ’ r*
o the tails of the ACF are negligibly small for sufficiently long 1
1
lags, it is apparent that 3
|
. Yo" ~ 4
: lin SAR,L(f) > (£ ]
I, > 1
"l
. Berk further shows that "
A i
Ny I (SAR,L(f) - S(f))/S(f) Iy
€ )|
has a limiting normal distribution with mean zero and variance é
equal to 2 for £ # 0 or 1/2 and equal to 4 when f = 0 or L/25% é
| a
and -;
i e A A
‘j cov | ¢ (SAR,L(fl) - S(fl), T (SAR,L(fZ) = S(fz)) 1
i
]
|
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These statements are valid only asymptotically. The be-
havior of the AR spectral estimator is seen tc be identical to
that of the conventional windowed DFT spectral estimator, as
L, N> « and L/N +0.

The Burg algorithm differs from the Levinson algorithm only
in that the first and last L data samples are ireated differently.
Therefore, the Burg spectral estimates can be expected to have
the same asymptotic properties as discussed above.

The AR PSD estimates using LMS algorithm cannot be consistent,

no matter how large N is.

IV.3. Confidence Intervals for AR spectral Estimates.

Quite often, it is desirable to form interval estimates of
parameters rather than point estimates. This is often done bv
setting up confidence intervals for the point estimtes. This
topic is treated in detail in most texts on statistical inference,
e.g. [41].

A

The derivation of useful confidence intervals of SAR(f)

has proved to be a very difficult, if not impossiblie, task.
The problem was approached as follows:
Since the autoregressive coefficients C have been obtained

by conventional least squares regression analysis, in the large

sample case, VN C has the approximate multivariate normal dis-

tribution with mean C and covariance matrix 52 AN-l where
N
2 _ 1 el 2
§ w i ;g% (xi C xi-l) and (4.6)

(equation continued on next pg.)

P RPN S NP N |



(3.22)

»-‘ N
1 T

: A = = Zx_ X
: =N N i=l—l-l —i-1
{
»(! Using this fact, the usual statistical inference on c,
0
' such as hypothesis testing, confidence intervals, etc., can

be carried out.

& - -j2mfi

F! The quantity (1 - }: Ci e J ) is also a Gaussian
- i=1

random variable whose mean and variance can be calculated in

2§§l . This follows from the

CEr e Te"e

terms of these of C, viz., C and ‘s

fact that a linear combination of jointly gaussian random vari-

ables is again gaussian.
L A
With suitable scaling, the quantity |1 - 2: C.

-j2mfi 2
3, & &I
1=

2

Sl s i ke wie i il
~

can be shown to have a noncentral x“ distribution with 2 degrees

of freedom. This quantity is, of course, the denominator of the

expression four S

.
4,

ar‘(E) -

2

The quantity s = y(o)- CT Y . appearing in the numerator of

the expression for gAR(f), is the estimate of the variance of

i the residuals. If the observations are gaussian, least squares
regression theory shows that with proper scaling, 52 is a x2
distributed random variable with N-L degrees of freedom. More-

y over, the numerator and denominator of gAR(f) can be shown to

be independent, since, fiom least squares theory, 52 and C

are independent. Therefore, at least in principle, the distri-

b ik S e b i

bution of SAR(f) can be calculated.

T ——1

There are several difficul:ies in the practical application

of the foregoing theory. First, there is no krown closed form

k

]
K
-
t

1

1
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expression for the distribution of the ratio of a X2 distributed

2

r.v. to an independent noncentral X~ distributed r.v. More
seriously, the unknown values of the true AR coefficients, namely
C, enter into the distribution of SAR(f) in a nonlinear manner

such that it cannot be factored or subtracted out =asily. This

h! restricts the utility of the oreceding theory to simulation
studies where C can be calculated exactly by analytic or compu-
tational means.

:‘ An approximate solution to the problem can be constructed

from the expression for the asymptotic distribution of

)

k y (SAR(f) - S(£)
. L S(E)

which is given in eq. (4.5). This expression is valid only if
- the number of observations is large, and it is not known how
large the set of samples should be before this formula can be

applied.

E! IV.4. Choice of the order of autoregression.
A good choice of L, the order of the AR model, is clearly

important. If L is too small, the resulting AR fit will not

7‘ represent the data very well in the sense of a small residual
mean square error, while a large value of L wastes computational
resources and may also lead to increased round off errors and
. other numerical problems.
There are several possible ways to choose an appropriate value '
: of L. The physical mechanism which produces the observed data,
o
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e
if known, may provide useful clues. Another n~ssibility is to
choose a large order, say Ll, AR fit to the okserved data and
Tf calculate the distribution of the AR coefficients. The hypothesis

that the true order of AR is L is equivalent to the hypothesis

that

CL+l = CL+2 F 5 3 6 € = 0.

This hypothesis can be tested bv statistical inference
:‘ methods [41]
| Perhaps a simpler method is to fit AR models of different orders
; to the observed data and in each case, estimate the variances of
the residuals. We have already indicated that the distribution

of these variances can be related to a x2

distribution. Now the
usual variance ratio tests can be applied to determine the
lowest order beyond which increasing the order of AR does not

result in a statistically signficant reduction in residual

variance.

U
= Akaik [4] has proposed an alternative which simplifies
: this procedure. He suggests a final prediction error (FPE)
statistic
X
FPE(L) = (1 + Eﬁi) sz, with s2 as (4.7)
¢ in Sec. IV.3., egn. (4.6}

The value of L which minimizes FPE(L) is taken to be the

true order of autoregression.
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This criterion is particularly simple to apply with gradient
algorithms.

Simulation studies of the use of the FPE criterion in
selecting the order of the AR model have been presented by
Ulrych and Bishop [46]. FPE(L) for different values of L,
using both *he Yule-Walker solution and Burg algorithm, have been
computed. The minimum attainable FPE for the Yule Walker solu-
tion is typically much lower than that for the Burg solution.
This is not surprising, since the former was developed by
minimizing the residual error energy. As L approaches N, the

FPE for both methods increases cons:derably.
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Section V. Generalizations.

V.1l. Pole zero modeling.

A more general model for the observed data allows the white
noise driven linear system generating the data to have poles and

zeroe:s. The data are modeled by the difference equation

L M
x(k+l) = 3 C. x(k-i) + > b, n(k-i) (5.1)
i=o * i=o *t

where the input white noise sequence {n(k)} is unknown. {Ci}
and {bi} are the unknown system parameters to be estimated.

If {n(k)} were known {Ci} and {bi} can be easily estimated
using classical regression methods. An alternative computation
technique, using the LMS algorithm, has been proposed by Widrow
et al [52] and called "Adaptive Noise Cancelling".

In statistical literature, the pole zero model (5.1) is
also known as the Autoregressive Moving Average (ARMA) model

or rational model.

Define the z-transform of a discrete sequence {x (i)} by the

relation
x(z) =2 x(i) 27+ (5.2)
1

The region of convergence of this series will depend on

the sequence {x(i)}.

With this notation,

X(z) = 2EL w2 (5.3)
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where B(z) = z:bi z *

C(z)

1}
.ML—’
0
=
N
1
=

The case where B(z) = 1 corresponds, of course, to an all
pole model.

The problem of identifying {Ci} and {bi}when {n(i)} are
unknown, is nonlinear and extremely difficult [7]. An approxi-
méate solution can be obtained as follows:

If all the zeroes of the numerator and denominator are

within the unit-z circle, it is possible to express 1/B(z) as

a Taylor series about 271 = 0:
X(z) = L . N(z)
C(z)+(1/B(z))
o 1 . N(z) (5.4)
L ; ) )
e,z XY oa, 2t
i=o * i=o *

Both the polynomials in the denominator of (5.4) are analytic

in the region |z-ll<l by virtue of the assumption that all the
poles and zeroes of X(z) are inside the unit circle. Therefore,
(5.4) represents a stable infinite order AR process. It is
reasonable to hope that the coefficients {di}Djl become

negligible for sufficiently large values of D, so that (5.4)

can be approximated by

v.-



X(z) = L (5.5)

@:o 1 Z-i> <f§o B z-i>

Spectral analysis of the all pole model (5.5) can be

carried out quite easily. The estimation of the coefficients
{Ci} and {bi} in (5.1) poses a more difficult problem. One
method, suggested by Graupe and Perl [20], is to estimate the
coefficients of the equivalent AR model (5.5), use these estimates
to calculate the residuals {n(k)} and use the estimated residuals
to compute {Ci} and {bi} by regression methods. An attempt at
estimating the error involved in this procedure has been made
in [19] and [20], but the expressicns for bounds on errors are
unilluminating.
Ve An alternative method, due to Durbin, is given in Anderson
(71.
An application of all zero ixodeling, in data communications,
is to the problem of eliminating intersymbol interference. If
the information symbols {S(k)}_: , usually assuuned to be in-
dependent, identically distributed random variables with a finite,
Ei discrete support, is transmitted over a ccmmunications channel
with impulse respon. 2 {hk}i , the received symbols {x(k)} can

be represented as
L
x (k) = i§0 hy S,_; + n(k) (5.6)

The problem is to reconstruct {Sk} given {x(k)}. One




-
Rl

b Yo

(3.30)

possibility is to rewrite the all zero mocel (5.6) as an equivalent

all pole model which can be identified. By passing the received
symbols through the all pole inverting filter, {Sk} can be
recovered.

It is essential to the success of this scheme that the
z-transform of the channel impulse response should have its
zeroes within the unit z circle. 1In order to keep the order of
the inverting filter low, it is also desirable that these
zeroes do not lie close to the unit circle.

The condition that all the zeroes of H(z) should be within
the unit circle can be relaxed if one is willing to tolerate
a non-causal all pole model for the input, i.e. x(k) is expressed

in terms of its own past and future values plus additive noise

M,

x(k) = 2 d; x(k-i) + n(k)
=

1

It is still essential that H(z) should not have any zeroes
close to, or on, the unit z circle. Communication channels with
a small number c¢f point target reflectors are common examples
that do not satisfy this condition and are, therefore, unsuitable
for the application of inverting filter models.

Several nonlinear algorithms, such as decision feedback
equalization and the Viterbi algorithm for maximum likelihood
sequence estimation, for the elimination of intersymbol inter-

ference can be found in a survey article by Proakis [38].

r
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V.2. Effects of additive noise and nonwhite driving noise.

Sometimes the output of the all pole system to be modeled
is corrupted by additive noise before it can be observed.

The appropraite mathematical model is

y (k)

L
2, C; v(k-i) + n(k)
i=1 i

(5.7)
x (k)

y(k) + na(k)

where, as before, {Ci} are the unknown parameters to be es-
timated, {n(k)} is the unknown white noise driving sequence and
{na(k)} is the unknown additive white sequence. {x(k)}are_the

observations and { y(k)} are the unobservable outputs of the

linear system to be modeled.

If we model the observations by an AR process

ey
x(k) = ), C; x(k=i) + ny (k)
i=1

the resulting normal equations for the estimation of Ci are seen

to be

(5.8)

The esimates of C obtained from this will not equal C,

i.e., bias in the estimation of C is unavoidable.




The effect of this on the AR spectral estimate is not

clear. With windowed DFT spectral estirates, the effect of
additive noise is simply to add a constant value to the noise-
free PSD, without affecting the "features" of the latter. This
is not necessarily true with AR PSD estimates. So caution has
to be exercised in modeling noisy data by an AR process.

Next we consider the case where there is no additive noise
but the driving noise sequence {n(k)} is non-white. 1In this
case, the AR coefficient estimates based on least squares will
be biased, and so, presumably, will the spectral estimates based
on these estimates. If the ACF matrix of {n(k)} is known,

a Gauss~Markov parameter estimation scheme can be used instead
of a least squares scheme can be used to get unbiased estimates
[41].

Another solution is possible if the driving noise ACF is -- v
known to be much narrower than the signal ACF, i.e. the ACF
of {x(k)}. A simple example of this is when {n(k)} is generated
by an all zero (moving average) process. If we assume the
structure given Ly eq. (2.1l), with E(n (k) n(k+kl))20 for
Ky 2 L; 21 for some small value of L,, the equations for the

unbiased least squares estimation of C are given by

Y(Ll) = Cl Y(Ll-l) +C, Y(Ll-2) + .. .+ cL Y(Ll—L)
Y(L1+1_) = Cl Y(Ll) +C, Y(Ll-l) + ...+ Cp Y(Ll-L+l)
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f These equations enable one to determine the poles of the

| linear all pole system generating {x(k)}. However, this knowledge

E: is not sufficient to estimate the PSD of {x(k)}.
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Section VI.a. AR spectral estimation wich sinusoidal inputs.

Recently published research literature indicates an interest
in applying AR spectral modeling to time series consisting of
sums of sinusoids and white additive noise [14,21,28,36,40,44,

46,52]. The motivation for this approach is that a sinusoid can

be generated by inputting white noise to an all pole system whose

poles are on the unit z circle. Unfortunately, this system is

unstable, and the preceding discussion of AR spectral analysis

is not applicable to this case. J

One may still model the observed time series formally by
an AR process, such that the poles of the PEF all lie on the
unit-z circle at z = ejwo, where Wy = radian frequency of the 0
input sinusoii. The coefficients C can be computed by solving
the normal equations (2.3) and the PSD estimate, from (2.5).

A simplified analysis of AR PSD estimatien with sinusoidal ;" ) 3
inputs has been attempted by Lacoss [28] and later, by Widrow ]
et al. [52]. For simplicity, first consider the case where
{x(k)} consists of a single complex sinusoid of frequency fo’ 3

and let w, = 2mf, be the normalized radian frequence. Define

u = (1, e, %0, | I(L-llwgT (6.1) i

26k,k where Gj,j is the Kronecker delta 3

function. The solution of the normal equations is

then v(k) = o

=

, and
o + L

(equation continued on next pg.) ]
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0 + L -1 1
S, (w) = 3

AR 2 + 1 L-1 5 (6.2a)
. 1 -jn(wa=w) k
(’." l = ) Z e 2 @ I !
= 0“+L n=0 :
i |
' From this expression, together with the assumptions that |
; i~
-. L>>}) and %»1, it can be shown that the height of the spectral ;
o] .

1

pea.i at w = wy is nearly equal to 1

SAR(wo) == (6.2b)
g
e and the 3-dB bandwidth of the spectral peak, defined as
¢? 5, ()
- 5 can be shown to be
dw W=w
, N @
= vl 2
BWAR = g°/mL (6.2c)

The corresponding equations for the conventional Bartlett

windowed DFT spec-ral estimates are

L-1 . 2
1 1 j(w. =w)n
Sopm (W) = = (l+4—>— | e’ "0 | ) (6.3a)
DFT L ch gg%
(
8. (w.) & =% (6.3b)
B'"o c2 i

== BWB = /E/TTL (6.30)
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Comparison of equations (6.2) and {(6.3) seems to indicate
that the bandwidth of the spectral peak estimated via AR modeling
is nearly 02/L times the bandwidth of the peak from DFT analysis.
For example, for an input signal to noise ratio of 10dB (02=l/10)
and AR estimator order of 10 (L-10), the AR spectral peak is
narrower than the DFT spectral peak by a factor of 100.

Several potential sources of trouble are ignored in this
analysis. It has been assumed that the ACF matrix of the

additive noise can be replaced by o2

I. 1In fact, this idealiza-
tion can be achieved in practice only if N is large. A more
careful analysis of the performance of the AR spectral estimator

2 2

should replace © I + Ny, where Ny is a random matrix

Ibyo
which accounts for—the effects of imperfect estimates of the
noise ACF matrix. The effects of N5 on the inverse of the data
ACF matrix can be considerable. T;e condition ratio - i.e. the
ratio of the largest eigenvalue to the smallest - of the data
ACF matrix for noisv sinusoidal inputs is on the order of L/oz.
When this ratio is large - the condition under which the AR
spectral estimator is claimed to have high resolution - the effect
of small random perturbation on the inverse of the ACF matrix
can be large. Therefo.e, the high resolution of the AR frequency
estimators is offset by large statistical variability.

The expression for the resolution of the AR spectral lines

is misleading for a second reason. The use of

as a measure of tile resolution of the AR

W=Wg
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spectral estimator is questionable. It is well known that the
ACF of the sum of uncorrelated random variables is equal to the
sum of the respective ACFs. For PSD estimators which perform
linear operations on the estimated ACF, such as the windowed
DFT methods, the use of the resolution measure given above is
acceptable. However, the inverse of two ACF matrixes is not
necessarily equal to the sum of the individual inverses. There-
fore, the AR PSD estimates are not additive, and the bandwidth of
one spectral line may be quite strongly influenced by the presence
of another spectral line nearby.

Computer simulation appears to be the only proper method of
evaluating the performance of AR spectral estimators with noisy
sinusoidal inputs. Results pres;nted in [40], [44], and [46]
suggest that AR spectral line estimation can indeed give high

resolution spectral estimates.

L_-.' il p o B g i ) Lo s o T T T S T IS DT TR SR TR WP R TR S A Th




R A —

(3.38)

Section VII. Computer Simulation of delay estimation with

matched filters and AR modeling.

In section I, we observed that the problem of estimating

i,

c

time delays is equivalent to the estimation or periodicites in
frequency domain. As shown in previous sections, no adequate
theoretical models exist for studying the behavior of AR fre-
quency estimators with short lengths of data. Therefore, we
had to resort to empir.cal computer simulation to study the
‘ problem,
A large number of variables can have possible effects on
AR delay estimates. Initially, we judged that the following were
® the factors most likely to influence the estimates.
1. Signal to Noise ratio (SNR): This was defined as the
signal energy divided by the noise variance. This definition is
the "output SNR" used in evaluating matched filter performance. ? P
The noise was appropriately bandpass filtered so that its band
occupancy was the same as that of the data. S'Rs c¢f 30, 20, and
10 dB were considered, representing low, moderate and high levels 9
of additive noise.
25 The shape of the matched filter spectrum envelope: Gaussian,
é triangular and rectangular spectral envelopes were used. These i
correspond to waveforms with low, moderate and high side lobe
levels in the time domain.
.Q 3. Number of data samples in the frequency domain. This
quantity was defined as the number of frequency samples between
3- ¢ points in the case of gaussian envelopes, and the zeroes of
® the envelope in the triangular case. The variable was made to

take on values of 32, 64, and 128 by appropriate choice of time

domain pulse. 1
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4, Location of delay: Since the AR technique is highly non-
linear, it is conceivable that the delay estimates could depend
on the actual location of the echoes. Three values of delay,
namely 25, 64, and 125 were considered.
5: AR order: Values of 4, 8 and 16 were exXperimented with.,
Obviously, the order of the prediction error filter is one greater
than the AR order.

The algorithm used for generating additive noise was of the
linear recurrence type described in Abramowitz and Stegun [55].
A sequence of uniformly distributed random variables was generated

by the nelation Upyy = (a u, + b) mod T where a = 129; b = 1;

35

T = 277 and ug = 10987654521,

After scaling by T, pairs of u(o,l) random variables were

converted to gaussian r.v.s by the relation

nl = y=21n ul cos 27 u2

n, = /=21n u, sin 2w u,

Double precision (64 bit) arithmetic was used to generate these
r.v.s.

The simulations were run on an Interdata 7/32 32-bit
machine. The Burg algorithm and Levinson algorithms were com-
puted with 64-bit precision, while the FFT calculations were
made with 32-bit precision.

The results are presented in Figures 1(B) through 34 (B)

and 1(L) through 8(L). The subscripts B and L denote processing

-



hg

e L e e’

ShE B e v . i i B

S AL e B ]v- T "

.

C

gl

-

(3.40)

with Burg and Levinson algorithms respectively.

It is hardly feasible to study all possible combinations
of all the different values of the variables listed above. 1In
order to make the investigation manageable, some of the variables
were omitted from further consideration when it appeared that they
did not influence the estimates much or when they degraded the
performance significantly.

Figs. 3(B) ard 6(B) show that at low SNR (=10 dB) low order
(=4) AR estimates are too flat and the high order (=16) estimates
show spurious peaks. Therefore, we did not cons‘der the low
SNR situation further.

Figs. 1(B) and 4(B), 2(B) and 5(B) anrd 9(B) and 11(B) show
that for the same SNR, there is lit:le difference between the
estimates with gaussian and triangular envelopos. So it was
decided to work further only with gaussian envelcpes.

It is observed from fig. 1(B) through 8(B) that the AR

delay estimates are indeed sharper than the matched filter

estimates. 1Increasing the number of data samples to 128 (Fig.9(B),

10{(B), 11(B)) do not affect the AR estimates to any great ex-
tent, while the matched filter estiamtes become sharper. When
the number of samples is decreased to 32, (Fig. 12(B) and 13(B))
AR estimates of order 8 and 16 show noticeable bias and a ten-
dency to split the single delay peak. This is in agreement with
the observation made in Sec. IV that the variability of the AR
coefficients increases sharply as the order of the AR model be-
comes comparable to the number of data samples. So long as

the order of the model is much smaller than the number of data
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samples, the AR estimates do not show much variation when the
number of samples is changed. We should add the disclaimer that
the few observations we have made are not sufficient to prove
this observation.

Figs. 14(B) through 21(B) do not indicate that the AR delay
estimate is significantly affected by the location of the delay,
at least for small AR orders.

The conclusions drawn from Figs. 1(B) through 24 (B) can be
summarized as follows. The AR delay estimator does not perform
well at low SNR or when the order of the AR model is greater
than apprcximately one-fourth the number of available data
samples. The location of the delay and the waveshape do not
appear to have significant effects on the AR delay estimates.

Figs. 24(B) through 33(B) are the results of simulations of
estimation of two delays. 1In figs. 24(B) and 28(B), both the
matched filter and AR estimator show the presence of two distinct
echoes. 1In Figs. 26(B), 27(B), 29(B) and 31(B), the matched
filter shows two modes, indicating two echoes, but the AR estima-
tors show only one peak. Finally, in Figs. 25(B), 28(B), 30(B),
and 32(B) neither the matched filter nor the AR estimator is able
to distinguish between the two peaks. The two modes of the 16th
order AR output in Fig. 30(B) could well be spurious, as can be
verified by comparing Fig. 30(B) and 22(B). After this series
of failures, we did not feel it worthwhile to continue the
simulations.

Fig. 1(L) through 8(L) do not indicate that any improve-

ment is obtained by substituting the Levinson algorithm for the

Burg algorithm,
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FIG. 1(B)
DELAY ESTIMATION WITH BURG ALGORITHM & MATCHED
FILTER; DATAR DESCRIPTION : SNR = 30 DB; NUMBER
OF DATA SAMPLES = 6Y; ACTUAL DELRY = G64; GAUSSIAN

ENVELOPE; AR ORDERS 4, 8 & 186.
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FIG. 2(B)
SAME AS FIG. 1(B), EXCEPT SNR = 20 DB.
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FG. 3(B)
SAME RS FIG. 1(B), EXCEPT SNR = 1¢ D3.
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FIG. 4(B)
BURG ALGORITHM ¥S. MATCHED FILTER FQOR DELAY
ETIMRTION : DATA DESCRIPTION ; SNR = 30 DB;
TRIANGULAR ENVELOPE; NUMBZR GF DATA SAMPLES = 6U;
ACTUAL DELAY = BY4; AR ORDERS 4, 8 & 18.
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FIG. 6(B)
SAME AS FIG. 4(B) EXCEPT SNR = 10 DB.
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FIG. 7(B)
COMPARISON OF BURG ALGORITHM & MATCHED FILTER FOR
DELAY ESTIMATION : SNR = 30 DB; NUMBER OF DATA
SAMPLES = 6Y4; REZTANGULAR ENYVZILOPE; AQcCTUAL DELAY
= Bl4; AR ORDERS 4, 8 & 16
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FIG. 8(B)
SAME RS FIG. 7(B) EXCEPT SNR = 29 DB.
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FIG. 9(B)
COMPARISON OF BURG ALGORITHM & MATCHED FILTER
FOR DELAY ESTIMATION; SNR = 3@ DB; GAUSSIAN
ENVELOPE; MNUN3ER OF DATA SAMPLES = 128; ACTUAL
DELAY = 5UY; AR CRDERS 4, 8 & 16.
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F1G. 10(B)
SAME FIG. 9(B) EXCEPT SNR = 20 D8.
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FIG. 12(8)
COMPARISOM OF BURG ALGORITHM & MATCHED FILTER FOR
DELAY ESTIMATION; SNR = 30 DB; NUMBER OF DATA
SAMPLES = 32; GAUSSIAN ENVELOFE; ACTUAL DELAY =
B4; AR ORDERS 4, 8 & 18.
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FIG. 13(8)
12¢B), EXCEPT SNR =20 DB.
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FIG. 1%(B)
SAME RS FIG. 1(B) EXCEPT ACTUAL DELAY = 125
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F1G6. 15(B)

COMPAR-SCN JF BURG ﬂLGORITHH & MARICHED
DELAY ESTIMITION; SNR

£D FILTER FGR
= 3@ DB; NUMBER CF JRTR
5518

S$aKPLFS = 12%: ACTUAL DELQY = 125; GAUSS
ENYELGPE; 9R ORDERS 4, 8 & 16
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FI1G. 18(B)
15(B) BUT NUMBER OF SAMPLES = 32
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Fir 17(R:
COMPARISOM OF DELAY ESTIMATES WITH BURG ALGORITHH
& MATCHED FILTER; SNR = 20 D8; NUMBER OF DATA
SAMPLES = G4; CARUSSIAN ENVELCPE; ARCTUAL DELAY =
125; AR ORDERS &, 2 ¢<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>