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(i) 

Overview 

This report is organized as five separate reports covering 

m the five tasks of the contract.  Four of these reports are in- 

cluded in the present document plus a separate report written by 

Prof. C. W. Merriam, III. 

. . The first section of this report provides the asymptotic 

theory and geometric procedure for determining the amplitude 

of the crosscorrelation function for FM signals whose instan- 

taneous frequency curves overlap at one point in time.  In addi- 

tion, the geometric procedure can be used to upperbound the cross- 

correlation function for multiple intecting cases, where absolute 
A 

g       phase of the signal components is not generally known. 

The second section provides a new definition of wideband 

energy density function which allows for Doppler stretch.  The 

3   x%        key to this definition and its properties lies in the use of the 

Fourier-Mellon transform which converts time stretching to a 

multiplicative exponential factor in the transform domain.  The 

I       relationship between the wideband energy density function and the 

wideband ambiguity function is also established using a modified 

two-dimensional Fourier transform.  Using these new results, 

I       we feel we can now extend the theory of wideband signal processing. 

The third section discusses autoregressive techniques in- 

cluding the maximum entropy predictive technique.  Although no new 

I        analytic results were found, the extensive simulations show that 

these techniques have certain difficulties, particularly in 

resolving closely spaced echos in a multipath environment.  Thus, 
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(ii) 

except for particular circumstances, these techniques do not 

do as well as a DFT.  Caution should be used in applying maximum 

entropy estimation to periodicity estimation.  Included in this 

section is a complete review of the multiple ^.ays of viewing the 

overall problem of autoregressive spectral analysis. 

The fourth section has several new results concerning adap- 

tive estimation procedures.  An exponentially weighted least 

squares algorithm (EWLS) is developed.  The Widrow-Hoff algorithm 

(LMS) is an approximation to the EWLS algorithm.  Several impor- 

tant results are presented.  In particular, the importance of 

choosing an input signal sequence whose wideband ambiguity function 

is insensitive to Dopplfjr scaling is established.  Other results 

include "misadjustment noise", stability, error in tracking time- 

varying parameters, effects of additive noise, and the role of 

the input signal. 

The fifth section, included as a separate report, covers 

other gradient algorithms in parameter estaimtion. Included here 

is a discussion of the effects of coefficient averaging and the 

reduction of the misadjustment effects. 

The only area in which we feel that definitive results did 

not occur is in determining the effects of Doppler stretch on the 

Wiener solution.  The difficulty here is that although the original 

signal and the Doppler scaled signal are stationary, they are not 

jointly stationary.  Thus, all efforts at formulating the problem 

analytically failed, despite the fact the much initial effort 

was devoted to this problem. 
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(1.1) 

I.   Introduction 

For many Navy applications. Frequency Modulated (PM) signals 

which have large time-bandwidth product are being considered for 

underwater ace otic communications.  With the possibility of co- 

herent processing and a large number of signals, it is clearly 

desirable to find ways of evaluating the mutual crosscorrelation 

functions of various signals.  Using the method of stationary phase 

we will derive an asymptotic formula for the crosscorrelation of 

two FM signals whose instantaneous frequency curves cross at only 

one point in time.  For this case, a simple geometric procedure 

for estimating the crosscorrelation is given based upon the over- 

lapping area of two templates generated in time-frequency space. 

For signals with more than one instantaneous frequency cros- 

sing, the geometric procedure provides an upperbound on the cross- 

correlation, since, in general the  absolute phase between the two 

signals may not be known. 

Since the cross ambiguity function is a crosscorrelations 

function we can apply this procedure directly to this case. 

. 
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(1.2) 

II.  Asymptotic Theory. 

In this section we consider the problem of asymptotically 

estimating the crosscorrelation function between two FM signals, 

based upon crossirgs of their instantaneous frequency curves.  We 

shall deal with complex (analytic) signals.  In Appendix A we es- 

tablish the relationship between the crosscorrelation of the real 

parts of the analytic signals and the results for analytic signals 

themselves. 

We begin by defining instantaneous frequency.  Suppose we have 

an analytic signal of the form 

f(t) = a(t)« > je(t) 
(i) 

By analytic we mean that the Fourier transform of f(t), F((j), 

satisfies the condition . 

F(u) = 0, co < 0 (2) 

Thus the signal has a one-sided spectrum.  The  instantaneous 

frequency of f(t) is the time-rate of change of its phase, thus 

M n-\   - d 9(t) .3) 

Thus, for example if 

e(t) = | t2 + wt (4) 



(1.3) 

for a typical chirp FM signal, then 

■ 

CO. (t) = Bt + w (5) 

We assume that the two signals of interest are of the 

same form: 

f(t) = a(t)e^Aa(t) (6-a) 

I g(t) = b(t)e"jBß(t) (6-b) 

and the cross correlation is given by 

00 

Rfg(T) = / f (t) 5* {t+T)dt (7) 

X   "    * Without  loss  of  generality we assume the  analytic  signals 

have unit  energy.     Thus 

n oo 

/ |f(t)|2 dt = / |g(t)|2 ) r dt =  1 (8) 
— 00 _oo 

Thus, by the Schwarz Inequality, the maximum value of their auto- 

and crosscorrelation functions is unity.  Their instantaneous 

frequencies are thus 

»f(t) - Aä|^i (9.a) 

and 

«g(t) --a äj^i. (9.b) 

'    ■    ^ .  t a a .  _ -  * - m . <. . 
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(1.4) 

The two constants, A and B, are assumed to be large. 

Substituting equations (6) into (7) yields 

R 
fg 

where 

(T) = / k(t,T)e^h(t'T)dl 

k(t,T) = a(t)b(t+T) 

Xh(t,T) = Aa(t) + B3(t+T) 

(10) 

(11-a) 

(11-b) 

■ 

If we assume that A>B, without loss of generality, then we 

have 

X = A 

B h(t,T) = a(t) + | ß(t) 

(12-a) 

(12-b) 

Applying the method of stationary phase to the integral (4) 

we have, as an asymptotic expression 

1/2 

Rfg^ 
2TT 

Xd h(t,T) 

dt' 

k(t/T)exp Jxh(t/T) + J7T/4  (13) 

where the stationary point t is the unique solution of the 

equation 

üJf(t) - u (t) = 0 (14) 

It is assumed that g is continuous and h is twice continuously 

differentiable with 

MMMMH Ban 
1 
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(1.5) 

d^h(t,T 

dt2 
> 0 

Let us do an example of how this procedure works.  We will 

first look at the cross correlation between two linear FM signals, 

one an up chirp and the other a down chirp.  We let 

f(t) = a(t)e 
j-t2 

g(t) = b(t)e 
-j|(T-t)2, 0<_t<T 

The instantaneous frequency curves for the two signals are 

shown in Figure 1, 

The unit energy condition reveals that 

'• J    a?(t)dt = J    b2(t)dt = 1 

Solving for the stationary point, with x=A we have that 

h(t,T) =^+ (t^T-T)2 

and differentiating 

dh(t,T) _ 
dt = t + (t+T-T) 

Setting the derivative of h equal to zero and solving for t we 

obtain 

t = T-T 

^^—^B—a^-a ■ ■ ■     i 
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(1.6) 

Figure  1.     Instantaneous  Frequency plots  for 
Linear FM  sweep example. 

uJ 

** 
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(1.7) 

The second derivative condition is satisfied since 

d h(^T)  = 2 > 0 
dt2 

Solving for k(t,T) and h(t,T) we have 

k(t,T) = «(Sjl) b (SJI) 

lxh(t,T) = | (T-T)2 

Thus we have as an estimate of R 
fg 

,T-T,  .   -T + T.  .TT 1/2 
Rfg(T) . a(^) b (±Ji.) [J]   exp[j|(T-T)2 + J7T/4] 

If we further assume that 

a(t) = b(t) = — ,  0 < t < T, 

thus the signals have rectangular envelopes.  Then in the region of 

overlap (-T<T<T) we have 

|R*,(t)l - i ih1/2 
fg T lA' 

We observe that  the  total  frequency deviation  is AT 

rad/sec.   or  2ITF  rad/sec. 

1/2 
IWt)|  -ilrfÄj '    =-i kfg T   1

2TTF 
^FT 

■   "   ' 
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(1.8) 

We see that, as the TB product gets large the crosscorrela- 

tion function diminishes as the recinrocal square-root of the TB 

product. 

In order to check, the asymptotic results, several examples 

were run on our Interdata 7-3 2 minicomputer. The signals are of 

the form 

F(I) = a(I)exp[BI2+WI], I = 1, N. 

The amplitudes are rectangular except for a 10% raised cosine 

at either end of the signals.  Figures 2. and 3. show the two 

s.gnals for N=128.  The real and imaginary parts are plotted 

consecutively on each graph.  The parameters are 

a) Upsweep 

b) Downsweep 

B = 0.003, W = 0.3 

B = -0.003, W = 1.068 

Calculating the timewidth and Bandwidth 

Tf = (0.9) (128) = 115.2 

P* = (0.9)(0:Z68) = o.iio 
r 27T 

Thus the crosscorrelation estimate is 

R 
fg    /2Tp7 

= 0.1986 

Figure 4. shows the actual crosscorrelation function and 

- 
-------   - _i i • *- - . d 
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(1.9) 

the asymptotic estimate, shown as a straight line. 

Suppose the 10* raised cosine window is not included then 

Tf = 128 

Ff = 0.768 

and the estimate is |Rf I ~ 0.179.  This case is seen in figure 

5., where the actual crosscorrelation and estimate are plotted 

together. 

A second example with larger TB product is given below. 

Here the parameters are 

N=256   a) Upsweep 

b) Downsweep 

B = .003, w = 0.300 

3 ■ -0.003, w = 1.836 

^r 
Figure 6. shows the first half of the crosscorrelation functions 

of the signals with and without the 10% raised cosine. 

.' 
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(1.10) 

-1 I 

Figure 2.  Real and Imaginary parts of 128 point 
J"      Linear FM Upsweep sigral. 

REflL/IMG-PPRTS LINERR  UP  SWEEP 

0.oo 140. ao 80.00 120.00 
TIME 

160.00 200.00 2U0.00 280.00 

-    ,   . 
-  . . '    '   •        - ^^m m-L-m •    .        ^       -        -       -       .        . 



, - "WT'l. •   • J« » -F "^ ■ \  ^ T" 

'• 

(l.n.) 

Figure 3.  Real and Imaginary p^rts of 129 point 
Linear FM Downsweep signal 

0.00 

KJJL/JHO-PflRTS.  LINEAR pOWN|SWEEPx 

40.00 80.00 120.00 
TIME 

160.00 200.00 2U0.00 280.00 
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(1.12) 

Figure 4.  Crosscorrelation function and Asymptotic 
Estimate of Linear FM Up and Downsween 
with LOt raised cosine window.  T=0 
corresponds to Time Delay = 127. 

0.00 

CCF LINEAR FM, WITH RSYMPT. ESTIMPTE 

40.00 80.00 120.00 160.00 
TIME   DELRY 

200.00 2U0.00 280.00 
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(1.13) 

Figure 5.  Crosscorrelation function and Asymptotic 
Estimate of Linear FM Up and Downsween; NO 
window, T=0 corresponds to Time Delay = 127. 

0.00 

CCF LIN FM. NO WIND. + PSYMP. E^T 

40.00 80.00 120.00 
TIME  DELRY 

160.00 200.20 240.00 280.00 
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(1.14) 

Figure 6.  Half of crosscorrelation functions and Asymptotic 
estimates for 256 point Linear PM Up and Down- 
sweeps, with and without 10*  Raised cosine 
window. 

CCF LIN Ffi.WIND.AND NOT4QSYMP. ESTIM.'S 

0.00 

\   ,'       \ 

40.00 80.00 120.30 
TIME   DELAY 

180.00 200.00 240.00 ■>30.00 
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III. Geometric Interpretation 

In this section we show that a simple geometric interpreta- 

tion may be applied to the asymptotic results for the cross- 

correlation function.  The geometric interpretation can be 

very useful in calculating the crosscorrelstion function.  In 

particular we shov that asymptr';ic result is obtained directly 

from the area of a parallelogram in the time-frequency plane. 

We begin by defining a parallelogram in terms of two sets of 

parallel lines in the t-co plane.  Figure 7. shows the 4 lines. 

The area of the parallelogram is 

Area = xy sin 9 (15) 

We must calculate the three quantities separately.  To obtain 

sin 9 we observe that 

Tan a = A,  Tan ß = B. 

^       Note that a)d is defined with a negative slope.  Thus we have 

Tan(90o-a) = i, Tan(90o-a) = i 

Taking inverse tangents and adding we have 

Tan"1(i)   + Tan"1   (|)   =  180   -  a  -   ß  = 9 

Thus 
— + — 

Tan 9 = Tan   [Tan"1(i)   + Tan"1^)]   =    A       B       - A 4   B 

v         B      i-(i)(i)   kB-1 

I 
^*-^--*—""——"—    _    .-.        . ^ -   ..   - ^   . .   . .  , , -   - -        , > , . , ..  - t - .... ____.._.. 
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Figure 7.  Geometry for calculating the Area of 
Parallelogram enclosed by two sets of 
parallel lines. 

• 
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(1.17) 

and from this we obtain 

sin 9 =  A + B 

sin 9 = 

/(A+B) 2+(AB-l)2 

(16) 

A + B 

/TÄ2+1)(B2+T) 

To obtain x and y we recall that the diameter of the in- 

scribed circle for a triangle is calculated as the ratio of any 

side to the sin of the opposite angle.  Thus 

x = -X sin 9   sin a '  sin 9  sin ß 

or 

_ C sin a „  D sin B 
x " -HH-9 ' y  = -iiF-9 (17) 

but 

A        i a     B _3=:: ,   sin S = —^ 
/^ +1 /BZTl 

sina= —5— ,   sinß= —S— (18) 

Thus combining (16), (17), and (18) and substituting into (15) 

we obtain 

Ar.ö - CD (AB) 
Area " ~Ä+B— (19) 

Finally we observe that 

Tana  = A = ^-,   Tanß  = B =  ^- 

■tarn    —'--- -I--..- , _. . . . , . . , . . . . . ^_ . ....^      ... 
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and substituting we have 

Area . ^- (20) 

Here C and D1 are the respective vertical lengths between 

the two sets of parallel lines and A and B are the tangents of 

the lines (one positive and one negative). 

Consider now the magnitude - squared of equation (13), we 

obtain 

RfCT(T) \2  ~   A  k2(t,T) (21) 
v d h(t.T) 
x     2 

dt 

which is 

Rfa(T)|
2* — :  a2(t,T) b2 (?,!) (22) 

y      dwf(t,T) _ dw (t,T) 

^ 

dt       dt 

If we now assume that the two instantaneous frequency functions 

are slowly varying, i.e. that we may replace u« and u by the first 

two terms of their Taylor series expantion about the point t, 

for fixed T, then we may observe that if 

C = a2(t/T) 

D' = b2(t,T) 

which are also assumed to be slowly varying, and 
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Figure 8. 
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Template for a typical Linear FM Upsweeo 
signal with amplitude a(t). 
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(1.21) 
IV.  Multiple Intersections 

The case of multiple intersections and signals is considerably 

more complicated.  The reason for this becomes clear when we consider 

a simplified case.  Suppose that for a particular delay, the 

instantaneous frequency curves have two intersections.  Then we 

may calculate the crosscorrelation contribution from each inter- 

section, but since the actual correlation is the complex sum 

of the two since the phases must be considered.  In principle 

we have the asymptotic expression for the phases in equation (13) 

and could thus calculate the complex sum of the two contributions. 

But if the two signals are only specified by their time-frequency 

plots and amplitudes we lose control of absolute phase.  To show 

this, suppose that g(t) is the same as equation (6-b) and 

f(t) is 

f(t) = a1(t)ejAlai(t) + a2(t)ejA2ct(t) (24) 

or 

f(t) = f1(t) + f2(t) (25) 

This could represent a signal with a fundamental and second 

harmonic component, where, for example, the second phase could 

be 

then 

A2a2(t) = 2[A1a1(t) ] 

Rfg(T) - Rf g(T) + Rf g(T). (26) 
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(1.22) 

Using stationary phase once again for each of the two integrals, 

the two stationary points t, and t-, are the unique solutions to 

the equations 

wf (t1) _ wg(t1) = 0 (27-a) 

and 

wf2
(t2) - Wg(t2) = 0 (27-b) 

with 

X1h1(t,T) - A1a1(t) + Bß(t) 28-a) 

X2h2(t,T) = A,a,(t) + BB(t) 2^2 

and 

• (t, ) = a1(t)b(t+T) 

(23-1- > 

(29-a) 

k2{t,T) = a2(t)b(t+T) 

we have 

(29-b) 

Rfg(T) 
2TT 

d hl(fl'T) 

1 dF 

1/2 

k1(t/T)exp[ Jx1h1(t1,T) + JTT/4] + 

(30) 

1/2 

2TT 

d^h2(t2,T) 

2       dt' 

k2(t2,T)exp[Jx2h2(t2,T) -i- JTT/4] 

Figure 9. shows a typical time-frequency plot. 

*. 

- 
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Figure  9.     Overlapping templates  for  two  intersection 
example. 
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(1.24) 

The two shaded areas are the square of the amplitudes of 

the two contributions.  Since we do not know, in general, what 

is the absolute phase relationship between the two components 

we can only say that crosscorrelation lies between the limits 

1(Area 1)1/2 + (Area 2)1/2| (31) 

Clearly an upperbound  on the crosscorrelation would be the sum 

of the square roots of the areas.  Clearly, in more general 

cases, an upperbound to the crosscorrelation would be the sum 

of the square-roots of all intersecting areas.  This would be 

accurate only if all phases were the same. 

r 
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V.   Crossabmiguity Functions 

The results of the previous sections can be extended to 

wideband crossambiguity functions.  In order to accomplish this 

consider 

Af (T,S) = /i /f (t)g*[s(t+T) ]dt f IT,S; - /• y r(t)g*Ls(t+T)]dt (32) 
— 00 

which is the wideband crossambiguity function for the two signals, 

f(t) and g(t).  The parameter s is the Doppler stretch factor. 

If we assume that the functions are defined the same as in 

equations (6-a) and (6-b) then we can observe directly that 

k(t,T) = /i kit)   b[s(t+T)] (33) 

and 

h(t,T) = Aa(t) + B6(st) . (34) 

The  stationary  phase point occurs  at value  of  t which  is 

the  solution of 

wf(t)   -   s wg(st)   =  0 (35) 

Thus equations (33) and (34) are substituted directly into 

equation (13) in order to obtain tne asymptotic estimate of 

Afg- 

If, as in the example of linear FM, 

wf(t) = At, W (t) = A(T-t) 

9 
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(1.26) 

then the stationary point occurs at 

t = s(t-T) 

1 + s' 

It should be observed, for this example, that the instantaneous 

frequency line for/sg[st] is 

w~(t) = -A s^t + SAT 
g 

and the amplitude  of  g   is  modified by  the  stretch  factor  as 

well. 

With these modifications  in  the   functions-  h  and k,   the 

geometric  procedure  is  directly  applicable  to  the  asymptotic 

estimate of  crossambiguity  furctions.     Clearly  all  comments   and 

results  for  the multiple   intersection  case  are  equally valid. 
^ 

MMMM^^^M Ml 
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VI.  Conclusions 

We have shown that a simple geometric procedure can be used 

co obtain the asymptotic estimate of crosscorrelation functions 

for signals whose instantaneous frequency curves cross at one 

point only.  In other cases this procedure produces an upp«r- 

bound on the crosscorrelation function.  The procedures des- 

cribed can be applied directly to ambiguity functions since it 

is a particular form of crosscorrelation function. 

The particular utility of the geometric procedure lies in 

cases with which large numbers of FM signals may be checked for 

their correlation properties.  Further as new electronic devices, 

which can represent signals in t-w space, are developed the 

area concept may proove useful as an identifier or matched 

filter. 

- 
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Appendix 

In this appendix we establish that if we have two analytic 

signals, k(t) and h(t), then the crosscorrelation of the real parts 

is equal to the real part of their crosscorrelation function. 

Further that the magnitude of the complex crosscorrelation function 

is the envelope of the real crosscorrelation.  Finally, we give a 

computer example demonstrating this fact. 

To begin, we assume that f,(t) and f2(t) are real, unit energy 

signals, and the transform 

f(t) = H[f](t) m   k   I   Uli     dT (A-l) 

is th€. Hilbert transform.  Then we form the analytic signals 

k(t) = — [f1 (t) + j f (t)] (A-2-a) 
/2   1        i 

h(t) = — [f,(t) + j f,(t)] (A-2-b) 
/2 

Defining the inner product at 

:k,h) = j k(t)h*(t)dt (A-3) 

and using the properties of Hilbert transforms and their 

spectra is can be shown that if 

■ 

- ^ ■ -  - - — ■ - ' -.-*-■-—  -- «^ - - 
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P1(w)   =  A1(aj)e 
.19^   (CO) 

(1.29) 

(A-4-a) 

P2(a»)   = A2(a))e 
jö2(aj) 

(A-4-b) 

then 

CO 

(k,h)   =   if1,f2)   +  j [|   / A1(w)A2(a))sin[a(a)) ]doj] (A-5) 

where 

a(u»)  = ©,(«)   - e2(cü) 

Recognizing that if 

f^t) = f(t) (A-6-a) 

f9(t) = g(t+T) (A-6-b) 

Then the inner product is a crosscorrelation function and 

Re{Rkh
(T)} - Rfg^ (A-7) 

Further since Rkh has a one sided spectrum then its real and 

imaginary parts are themselves Hilbert transforms and hence 

lRkh(T)|  is the envelope of Rf (T). 

To demonstrate this figure 10. shows the magnitude of the complex 

crosscorrelation and the crodjcorrelation of tne real parts of the 

up and do.'n linearly sweeped signals shown in figures 2. and 3., 

^M nm*m   ._  ^._  _    _ 
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(1.30) 

Figure 10.  Complex crosscorrelation a.id real cross- 
correlation of 128 point Linear FM Exannle, 
with 10% raised cosine window. 
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(1.31) 

Figure 11.  Complex autocorrelation and real autocorrela- 
tion of 128 Linear FM Upsweep, with 10%   raised 
cosine window. 

x:   •• 

a: is 

UJo' 
Of 
De: 
O 

8s 
5r 

RCF RND ENVEL.LINERR UP SWEEP 

ty     m    m     11^,1 '^,1 

' 

0.00 40.00 80.00 120.00 
TIME DELAY 

160.00   200.00   240.00   280.00 

» 



(1.32) 

plotted on the same graph.  Figure 11., shows the same results for 

the autocorrelation functions of the up sweep signal.  The fact 

that real signal does not touch the envelope at several cycles is 

an artifact of the plotting routine drawing straight lines through 

two sample points, neither of which are at the peak value of the 

cycle. 

Reference 

1.   Erdelyi, A., Asymptotic  Expansions, Dover Publications, 
Inc., 19 56. 
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I.   Wideband Energy Density Functions 

In this section we outline our attempts at trying to find 

a definition of Energy density function for wideband signals, 

for which the Doppler effect is not a simple translation of the 

spectrum but must be considered a stretching of the signal.  The 

procedure is to look for a transformation, T characterized by 

a kernel k(t,p) so that if f(t) is some other transformation of 

a signal f (t), and 

00 

F(p) = / f (t)k(t/p)dt (D 
— 00 

Then the function 

Af(t,P) = f(t) F*(P)k(t,P) (2) 

would have some or all of the properties of the narrow band 

Energy density function(1'2). Most of the transformations are 

based upon combinations of Fourier and Mellon Transforms. The 

reason for this is that the Fourier transform converts a time 

delay to an exponential multiplier in the transform domain and 

the Mellon transform converts time stretch into an exponential 

Multiplier in the transform domainf3/4). In order to see this 

consider a signal f(t) and its Mellon transform F(x).  Thus 

m, 00 

F(x) =M[f(t)](x) = fflet)   ejxtdt. (3) 
— 00 

Inverting,   we obJ_ain that 

oo 

f(t)   ■  27/F(x)e-jxln(t)dx (4) 



(2.2) 

An r-'.':ernate form for equation (3) is 

■ 

F(x) = j   f(T)e"jxlnTdT/T 

0 

Now consider a stretch of fit), 

g(t) - f(st) 

Then, from equation (4) 

(5) 

2TT     / 
id)   =   ^    I    •(x)e~jxln(st)dt (6) 

0 

from which we  can easily  see  that 

. 

r 

y* 

ni   \       Z,   \   -jxlns ,.. m"   .   h G (x) = F (x) e J (7) 

which has the exponential factor.  If we assume small 

stretching, ie. 

S = 1 + 3, |ß|«l 

then 

InS = ln(l+ß) ~ ß 

and we have that 

G(x) = F(x)e"3XiS (8) 

p 

-      . 
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which is clearly the form we desire. 

However, if we consider the effect of time-delay on the 
; 

Mellon transform then we have that 

00 

f(t-T) ■ 2¥ ßMe^Xln{t-X)äx (9) 

and we observe that the kernel is not separable. 

Suppose we try a Fourier-Mellon transform defined as(3) 

Gf 

oo 

(x)  ■ n/p(^JXWdw (in) 

where F is the Fourier transform of f.  Letting p = ew in equation 

10, we obtain 

^ ■ '•"        Gf(x) = ^/p(P)r3xlnPdP/P (ID 

i as an alternate form for the F-M transform. 

ign Now we consider a time delay of the signal^4) 

h(t) = f(t-T) 

Then 

H(u) = F(a))e"jüJT 

and oo 

i 
Gh(x) = J- JF{e")e-i^ ejx«d U (13) 

or observing the Fourier form of this integral we observe that 

. ■ 

4 

'——■  -— ------.        
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CO 

(e   )e   J =      /Gh(x' 

(2.4) 

-1X0), 
e   J     doj 

where  as 

(14) 

■ 

00 

■/■ 
F(e   )   =    / Gf(x)e  J     dx (15) 

We i?ae that the only difference is an exponential factor. 

Considering now a stretch of the signal so that again 

g(t) = f(st) 

and 

G(w) = P{u/S) 

which has F-M transform 

1 

Gg(x) = Gf(x)e^lnS 
(16) 

and still retains the multilicative exponential form. 

_ 
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II«  Possible Definitions of WBEDF 

Based upon the form of equations (13) and (14) and the 

properties of the F-M transform, we define a wideband energy 

density function as 

Af(t/T) = f(t)F*(eP)e"jte eP (17) 

We can show that this function has most of the integration 

properties of the narrow band EDF's.  We assume that f(t) is a 

unit energy, analytic signal. 

Properties of Af 

1.   Integration with respect to P 

'• 

00 00 

. ^y Af(trp)dp = fit)_yFMep)e-jtePepdp^ 

and  letting ep = OJ,   or  p =  Inw  and  dp = dw/u).     Thus we  have 

oo oo 

^ /Af(t,p)dp = ^y FMa))e-jtwdW 2i 
-oo 0 

Since we are dealing with analytic signals F has support (is non- 

zero) only for w>0 and we may extend the limits of integration 

from o to (-«).  Thus we have 

m oo 

27 y Af (t,p)dp = ^1 f F*(W)e"jtClJdco 
— 00 

(equation continued  on next pg.) 

. 

i^B 
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* 

^/FC.).^ MD ^r |;-'( ,), J^dw 

The bracketed term is f*(t), so that finally 

oo 

^    JAf{tlp)dp   =    If(t)|2 '18) 

2.        Integration with respect  to  t 

00 00 

/ Af(t,P)dt = F*(eP)eP / f{t)e'^te  dt 

U) The integral is clearly F evaluated at e  so that 

Af(t,p)dt = |F(eP)I2 eP (19) 

We see that A- has a positive t and p integrals. 

3.   Integration with respect to t and p 

From either equation (18) or (19) we obtain 

00 

jL  / Af(t/p)dtdp = ||f(t)|2dt=l (20) 
iico —oo 

A second possible definition which retains the same inte- 

gration properties as Af(t/p).  Here we define Af(t,p) 

Af (t,P) = GF(t)F*(eP)ejtPeP (21) 

__^  .  .  . ■ . 
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Properties  of  Af 

5 ^    ^r/Af(t'p)dp iGF(t) 

2. /Af (t,P)dt  =   |F(eP) |2( 

(22) 

(23) 

3-        n//Af (t'P)dpdt  "   1 (24) 

The proofs of these properties are similar to the proofs for 

Af, and will not be repeated. 

 .  .^  .  .  -  . .  .  .  . 
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III.  Two dimensional Transform properties 

One of the most important properties of the narrow band 

energy density function is its relationship to the narrowband 

ambiguity function.  Thus, by extracting the two-dimensional 

Fourier transform of the NBEDF we obtain the signal ambigui4-: 

function.  We will now establish that a similar transformation 

converts the WBEDF defined by \£(trp) to the WB ambiguity function, 

except for the scale factor /s. 

Consider the transform 

00 

TlAf(t,P)l(T/X) = ^//^f (t'P)eJ(tX+Te ^tdp (25, 

If we reca.i 1 that u = e  then this is a two-dimensional Fourier 

transform.  Substituting for Af yields 

T[Af] 

oo 

„,  P, P je 
F*(e )e eJ 

00 

yuvt)^ (X+P) dt]dp   (25) 

The bracketed term in equation (26) is F[e   ] so that we have 

.   P. 
T[Af]   = ^ / F[eX+P]FMcP)ePejeiTdp (27) 

P X 
Letting u = e and s = e  , we obtain 

T[Af] =  ff   J  F(SU)F* (w)©11110^ (23) 

Now substituting for F, we have 

■ 



1    ■ •" .... ...   ..    I,.    . 

(2.9) 
JSWt, "j«t3    JTCO 

)e ■Lf*(t2)e ^e       dcodt1dt2     {29) 

Integrating with respect to w and then t2 yields 

= fff(t1)f*it2)6(t2-st1-r)ät1ät. 

=      / f(t1)f*(st1+T)dt1 (30) 

■ — Xf (T/S) 
/s 

Equation (30) is the wideband ambiguity function for f(t), 

except for the square-root of s factor.  Thus, if the kernel 

nr  in (25) had been 

k(t/A,T,P ) = eX/2 eJ(tA+Te
P) 

we would have an exact transformation. 

Clearly since the transform is based upon a Fourier Transform 

it is invertible and we can obtain Af from x .-. 

[■ 
^^ . i_ j 
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IV.  Conclusions 

We have been able to establish that certain of the properties 

of the narrowband energy density function we also valid for the 

two definitions of wideband energy density functions, through the 

use of the Fourier-Mellon transform.  The important observation 

here is that signals should be represented in log frequency vs. 

time plots, and stretches in frequency become translations.  The 

physical meaning of Af and/or Af are subjects of continuing study, 

but we have established at least a link from the narrowband to 

the wideband theory of energy density functions. 

-  -  . 
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Abstract 

The possibility of using high resolution maximum entropy 

periodicity estimation technique to resolve closely separated 

echoes is studied in this report.  By Fourier transforming 

the matched filter output, a short length periodic series in the 

frequency domain is obtained.  The maximum entropy filtering 

method is applied to this series.  A itudy of the relevant 

literature shows that tractable analytic models for determining 

the performance of the maximum entropy method with short length 

sinusoidal inputs do not exist.  A limited number of computer 

simulations indicate that the technique does not resolve closely 

spaced echoes reliably. 

mmmmmmm 
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Notation 

Unless indicated otherwise, the following abbreviations and 

notations will be used throughout this chapter. 

ACF 

AR 

ARMA 

B 

BW 

C 

DFT 

E{  } 

f 

I 

j 

L 
LMS 
algorithm 

N 

MEM 

PEF 

PSD 

r.v. 

Y(k) 

Y 

S  (f) xx  ' 

S(f) 

Autocorrelation function. 

Autoregression 

Autoregressive Moving average 

Nyquist frequency 

3 dB bandwidth 
T 

^C1'C2' * * '^L^  = AR coefficients 

Discrete Fourier Transform 

Expectation operator 

frequency variable, -l/2<_f<l/z 

identity matrix 

•=T 

order of AR model 

"Least mean square" algorithm [51] 

Number of data samples 

Maximum entropy method 

Prediction Error Filter 

Power spectral density 

random variable 

E{x(i) x* (i+k)} = True ACF value of 

{x} at lag K. 

(Y(l) , Y(2) , ...Y(L))
T 

Estimate of the input PSD at frequency f by 

method xx 

"True" PSD of the input at frequency f; = 

Fourier Transform of   {yOOK 

« 

a ■ ^^ 
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^# 

N (3.3) 
{>c(i)}i=1 :  set of N data samples 

SR '   (XR' XR-1' ' • • XR-L+1)
T 

in(i))^_1 :  set of independent additive noise samples. 

a :  adaption constant in LMS algorithm 

'■ k :  Kronecker delta function 

= 1 if j = k,  0  otherwise 

radian frequency = 2iff, 

r 
L . 

I' 
u 

Double underlining indicates a matrix; and single underlining, 

a vector. i < 

superscripts:  x* denotes complex conjugate of x. 

T 
A    "     transpose of A 

caret denotes estaimte, e.g. y (k)   = estimate of y(k) 

■ i 

 ^-  ,  
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Section  I. 

Introduction 

Underwater  acoustic  communication  channels  are  often 

degraded by multipath and doppler  scaling  effects.     It  is  be- 

lieved   [53]   that  the multipath  propagation  can be adequately 

modeled by a  small  number of  point reflectors.     If  a  signal 

u(t)   is  transmitted  into the channel,   the   received  signal  r(t) 

can be  represented by 

.L 

(t)   =   E    ^     u   (
S

H (t-T.))   + n 
i=l    1 1        1 

(t) (1.1) 

where (T . } are the delays associated with the multipath, {S.} 

are the doppler scales, {a.} are the amplitudes and n(t) is 

additive noise, usually considered to be white.  The doppler 

effect can arise, for example, due to relative motion between 

transmitter and receiver. 

Knowledge of {a.} and {T.} yield a better understanding of 

the nature of the communication channel, and are also useful for 

eliminating intersymbol interference effects. 

The conventional technique for estimating {a.} and {x . } 

is to use a matched filter [48].  The filter matched to s (t) 

is a linear system with impulse response given by 

h(t) = s(T-t) where T is a delay usually included to make the 

filter realizable. 

If the received waveform is processed with the matched 

filter for u(t), the output is given by 

.. . . _ . 
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(3.5) 

i ! 
x(t)   =    £    a.   X      (S.,T.)   +NoiseTerm (1.2) 

i=i   1  U    2.       ± 

where Xu(»^,Ti) is the wideband ambiguity function of u(t) de- 

fined by 

I 
Xu(S.,Ti)  = y^S-       U(t)  U(Si(t-Ti))  dt (1.3) 

The effect of doppler scaling can be made insignificant ! 

by choosing u(t) to be a doppler tolerant signal.  Such a signal 

is of the form 

i 

u(t) = a(t)ejklnt ,      o < t < T  ,   where 

a(t) and K determine the bandwidth of u(t) and a(t) determines 

the sidelobe levels of xu(Si,Ti). The doppler tolerant signal 

has the property that 

VW   : •jklnSi x^i^^ * 

Thus the effect of using this type of signal is to convert v 

the nonlinear doppler scaling effect to a simple linear phase 

shift.  Detailed discussion of the ambiguity function and doppler 

tolerant signals can be found in [6]. , 

With matched filter processing {a.} and {x.} are estimated 

as the largest I peaks of x(t). 

The closest separation between any two delays {T.} that can « 

be detected by the matched filter is inversely proportional to 

» 

^  - ■ - • - 
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the bandwidth of u(t) (with suitable definition of bandwidth 

and resolution).  In underwater acoustic channels, high frequency 

signal components are highly attenuated.  The low bandwidth of 

the acoustic channel may limit the resolution provided by the 

matched filter to unacceptably low levels. 

The Fourier Transform of x(t) in eq. (1.2) can be written, 

if u(t) is a doppler tolerant signal, as 

X(f) = 2^ ejklnSi  |U(f)|2  e-j27TfTi 

= |ü(f)|2  Ea. e^klnSi e-j27TfTi (1.4) 

Equation (1.4) can be considered as a "time series" in 

frequency domain.  The problem of estimating (a. e-1   1} 

and {T.} are frequency domain analogs of the usual harmonic 

analysis of time series.  However, since the bandwidth of 

|u(f)|  is low, the length of available data is very limited. 

A nonlinear spectral analysis technique known as maximum 

entropy method has been proposed to obtain hiah resolution 

spectral estimates from small lengths of data.  This report 

investigates the possibility of applying this technique to the 

resolution of closely spaced multipath delays. 

Other nonlinear techniques are available for the estimation 

(and possibly, removal) of multipath delays.  The most important 

among these are maximum likelihood spectral estimation methods 

[16,37] and cepstral analysis [10,54].  It is reported [14] 

that the former is not superior to the maximum entropy method. 

^ 
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No comparative study between cepstral analysis and maximum 

entropy analysis exists. 

r 
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Section II. 

Definition and Basic Properties of Autoregressive (AR) 

Spectral Estimators. 

Unless otherwise indicated, the observed input will be 

assumed to be sampled at periodic intervals of 1 time unit and 

that only the sampled values are available for processing. 

Aliasing errors can be eliminated by lowpass filtering the analog 

input before sampling and such errors will be assumed to be 

negligible. 

The conventional method of spectrum analysis is to estimate 

the autocorrelation function (ACF) of the observed data, multiply 

the estimated ACF by a suitable taper function and compute the 

Fourier transform of the tapered ACF. [9,39,54]  This technique 

does not make use of any known structural properties of the 

observations.  Consequently, one is forced to treat the spectral 

value at each frequency as an independent variable.  Due to the 

large number of unknown quantities to be estimated, one requires 

large lengths of data in order to obtain adequate statistical 

stability. 

Quite often, the input process can be satisfactorily approxi- 

mated as the output of a discrete linear system driven by uncor- 

related noise  [1,12,13,24,27,32,35,43]. A special class of 

linear systems consists of systems which have only poles and no 

zeroes.  In this case, the observations can be modeled by the 

stochastic difference equation 

W = £ C; x (k-i) + n(k) 
i=l 1 

(2.1) 

.  . _ 
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(3.9 

where {C.} = C are unknown. 

Equation (2.1) has the appearance of a regression equation 

in which the independent variables are past values of the ob- 

servations themselves.  Therefore, (2.1) is often called an 

autoregressive (AR) model of order L.  For obvious reasons, it 

is called an all pole model also.  Given x(k-l), x(k-2), ..., 

the best prediction of x(k) (in a least squares sense; and in 

a maximum likelihood sense if {n(k)}  are gaussian) is a linear 

combination of the past input values.  Hence, the use of the 

term "Linear Predictive Model".  The terms {n(k)} are called 

residuals, prediction errors, or "innovations" since they repre- 

sent the "new information" in {x(k)} , i.e., the part that 

cannot be predicted from past values.  The filter with impulse 

response (1, ~c-]_' ~C2' **' ~CL^ ' ^s '<nown as a prediction error 

filter (PEF), since the effect of operating on the input data 

with this filter is to obtain the prediction errors, {n(k)}. 

The PEF is sometimes called "whitening filter." 

By multiplying both sides of (2.1) successively by n(k), 

x(k), x(k-l) .... x(k-L) and taking expectations, the following 

equations are obtained: 

Y(0) - Y(1) C1 - ... - Y(L) CL - a
2 

Y(l) - Y(0) C1 - ... - Y(L-1) CL = 0 

(2.2) 

Y(L) - Y(L-l) C1 -... - Y(0) CL = 0 
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2 

from which  the  L+l  unknowns  C  and  a     can  be  estimated. 

An alternative method  of  computing C   is  by  solving the 

linear  equations 

Y(D)      .   . 

Y(L-l)    .   . 

Y(L-1)1     TC-L" yd) 
Y(3) 

Y(0) :
L) 

(2.3) 

LY(L) 

and a can be calcualted from the first equation of (2.2). 

Equations (2,3) are known as the normal equations, or Yule- 

Walker equations. 

The same equations can be obtained by minimizing the mean 

squared prediction error 

E(x(k) -  £ C.x(k-i))2 
i=l 1 

(2.4) 

By applying  a  z-transform   [54]   to both  sides  of  the  first 

equation in   (2.2),   it can be  seen  that 

Power Spectral Density   (PSD)   of  the   input =  S       (f) 

1 -   Ec.   e^27Tfi|2 (2.5) 

This equation provides a method of calculating the input PSD 

from a knowledge of the PEF coefficients.  Since the PSD of the 

PEF is the inverse of the input PSD, the PEF is known as an inverse 

filter. 
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An alternative inpterpretation for the AR soectral estima- 

T 

i 
« 

t ■•• 

m* 

tion technique has been presented by Burg [15].  Burg observes 

that the loss of entropy, in an information theoretic sense, by 

passing (band limited) white noise through a linear system with 

frequency response C(f) can be written as 

Ae = - In |C(f) |2 df (2.5) 

This expression is minimized subject to the constraint 

that the inverse Fourier Transform of |C(f) [2 should be equal 

to the estimated data ACF values up to lag L.  The result of this 

is equations (2.3).  Burg labels this spectral estimation method 

"Maximum Entropy Method." 

Makhoul [31] observes that the AR spectral estimate minimizes 

the integrated spectral ratio 

1/2 

/    S(f) df 
SAR(f) -1/2   AK 

j       This interpretation is useful for modeling a selected portion 

of the input spectrum by an AR process. 

The main attraction of the AR spectral estimation method 

i        is, of course, that it reduces the number of unknown parameters 

to the minimum, and therefore better satistical stability of 

the estimates can be obtained.  Possible sources of error of this 

method are: (i) the presence of zeroes in the linear system which 
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(3.12) 

generates the observations, (ii) wrong choice of order of 

model, L, (Hi)   presence of additive noise in the observations. 

Due to the highly nonlinear nature of the technique, it is 

extremely difficult to analyze its performance rigorously.  In 

the succeeding sections, we shall summarize the current state 

of investigation of this topic. 

Several applications of AR modeling have been discussed 

in [3,4,11,12,23,25,30,33,36,3 8,44]. 

*-•-      .----  -  -  - -    . ^      _._   .-. ■ . , __.-.  -.— .---. . , , -__ _._..__ ..^ 
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Section III. Computational Algorithms. 

There are at least three different computational algorithms 

for the calculation of the AR coefficients, C.  In each case, 

it is assumed that the mean (dc) component of the data is zero 

or has been subtracted out. 

III.l.  By solving the Yule-Walker Equations. 

In this method, the autocorrelation values of the data 

up to lag L are estimated and the Yule-Walker equations (2.3) 

are solved by directly inverting the ACF matrix.  There are two 

different methods of estimating the ACF.  In method 1(a), the 

estimates are 

1 W 
^(^ = N  ?   Xk Xk+j '    0 < j < L < N       (3.1) 

and in method 1(b) , 

Y(j) =  ^     ^     Xk Xk+j '   0 < j < L < N       (3.2) 
k=l 

Equation (3.1) effectively assumes that the data is extended 

with zeroes.  Eq. (3.2) gives an unbiased estimate of Y(j), the 
N 

true autocorrelation for lag j, if{ x.} T are assumed to be 
1 i= 

samples of a stationary stocnastic process.  Asymptotically, as 

N-»°°, the two estimates become identical for all finite lags. 

However, for small N, the two estimates may have significantly 

different properties.  The ACF matrix estimated from (3.1) is 

guaranteed to be positive definite.  It is quite possible that 
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the ACF matrix corresponding to (3.2) may have zero or negative 

eigenvalues, leading to computational instability and absurd 

estimates of PSD. 

The Levinson algorithm [29] is an efficient method of solving 

the Yule-Walker equations.  Briefly, this algorithm iteratively 

generates solutions of order k from solutions of order k-1. 

The solution for order 1 is trivial and can be written down by 

inspection.  When k=L, the algorithm terminates.  The derivation 

the complex Levinson algorithm is presented in Appendix - I. 
2 

This algorithm requires on the order of L multiplications and 

2L storage locations for temporary variables. 

It is interesting to speculate whether a different recursive 

scheme will lead to an algorithm with a smaller number of multi- 

plications.  For example, can solutions of order k be generated 

from solutions of order k/2?  This "divide and conquer" concept 

is responsible for the computational effectiveness of the Fast 

Fourier Transform algorithm  [17]. Our investigations along this 

line have proved futile.  However, it should be pointed out that 

since L is usually relatively smai:., the computational effort 

required for computing the ACF far outweighs the effort to invert 

the ACF matrix. 

III.2.  Burg's Algorithm 

Burg [15] has proposed an algorithm for computing the MEM 

filter coefficients which does not require explicit estimation 

of the ACF.  This method calculates the prediction error filter 

coefficients (p.6) by an iterative scheme that resembles Levinson's 

algorithm.  A derivation of the complex Burg algorithm is given 



^—^^^^^^■^^^^«••^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^■^Mi^ 

(3.15) 

in Appendix - II.  Note the different error criterion, eq. A-2.8. 

This ensures that the computed PEF coefficients will represent 

a stable filter. 

This algorithm requires =Nl/ multiplications and =2M storage 

locations.  Clearly, this algorithm is most effective when the 

number of data samples, N, is small.  When N becomes large com- 

pared to L, the Levinson algorithm and Burg algorithm tend to 

become identical. 

III. 3.  Gradient Based Methods. 

It is possible to calculate the AR coefficients without 

explicitly calculating or inverting the ACF matrix.  The idea 

is to use some form of stochastic approximation (gradient seeking) 

method to solve eq. (2.3)  [49,51,52]. The algorithms are of the 

general form 

'• 

^k+l ■ Ck + a(k) Xk (Xdc+l) - x£ Ck) (3.3) 

where Ck denotes the estimate of C at sampling instant k, a(k) 

is a predetermined gain sequence and 

rn 

xk = (x(k), x(k-l), . . . xdc-L+ir 

The choice of a^k) = a = constant corresponds to the Widrow-Hoff 

LMS algorithm [51].  The most striking feature of this algorithm 

is its simplicity, since only 2LN multiplications and L storage 

locations are necessary.  This algorithm can also track slow 

variations in C.  The price paid for these advantages is that 

—^ L .._-..     ^_.     .     -.. 
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relatively  long data  sequences  are necessary  to obtain  satis- 

factory  convergence  of  the  estimates  of C,   and even  then  these 

estimates  are corrupted by  the  so-called  "miffadjustment  noise" 

[51]. 

^ 
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Section IV. 

Statistical Properties of Spectral Estimators. 

Before any statistical estimation procedure is applied in 

practice, it is useful to have an understanding oi its statistical 

properties, such as its variance, probability distributions, con- 

fidence intervals, etc.  In the case of PSD estimators in par- 

ticular, intelligent tradeoffs between resolution, variability 

of the estimates and computational difficulty cannot be made 

without a good understanding of the behavior of the variable 

possible alternatives. 

IV.1.  Windowed DFT. 

The statistical properties of the conventional windowed 

Discrete Fourier Transform techniques are well known and are 

discussed in detail in [7], [27], [9], [39], and [54].  Briefly, 

this method estimates the ACF values for lags 0, ..., N-l via 

equations (3.1) or (3.2) and estimates the PSD by the relation 

SDFT(f) "    f    Y(k) W(k) e-j27Tfk (4.1) 
k=-(n-l) 

^ A 

Y(-k) = Y(k). 0 1 f 1 1/2 

W(k) is a suitably chosen window (or taper) function such that 

W(-k) = W(k).  It is often required that W(k) be a positive 

semidefinite function, i.e. 

N-l 

£ W(k)   e^2Trfk     >   0        for       0   <   f   <   1/2        (4.2) 
k=-(N-l) 
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The purpose of this is to ensure that the resulting PSD 

estimate is nonnegative, as it should be.  Some of the commonly 

used window functions are the triangular (Bartlett)  window, 

the raised cosine,  Hamming, Hanning, and Kaiser windows. 

If N is a highly composite number, (i.e. it can be decomposed 

into a product of a large number of small prime numbers - for 
v 

example, N=2 ), a fast algorithm known as the FFT can be used 

to compute SDFT(f) at discrete values of f  = m/N.  Fast 

algorithms for the computation of the ACF and PSD are given in 

[39] and [54]. 

Assume that W(k) =0, |k| >m.  Then if the true PSD of the 

random process under consideration is concinuous, it can be 

shown that 

lin | S   (f) - S(f)| ^ 0 in probability   (4.3) « 
n-»-oo 
n-»-<» 

L/N+O 

This property does not hold if the data contains strictly 

periodic components. 

The effect of the window function is to locally average 

the power spectral density estimate that would be obtained if the 

window function were not used.  This results in reducing the 

noise component of the PSD estimate at each frequency, while at 

the same time "smearing" sharp spectral lines into adjacent 

frequency cells.  Therefore, the use of windows reduces the 

statistical variability of the PSD estimates at the expense of 

a reduction in resolution. 

. 
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IV.2.  AR spectral estimators. 

If 8(f) is assumed to be continuous and bounded away from 

zero and infinity, a result due to Berk [8] states that the AR 

spectral estimate is consistent. 

lin   I SAR L(f) - s(f) I "^ 0 in probability.       (4.4) 
Jj-f-OO ' 

N-voo 

This result is intuitively obvious from the discussion in 

Sec. II.  As L-*», N-O^L/N+O, the first L elements of the inverse 

Fourier Transform of S^R L(f) tend to the true ACF values, and if 

the tails of the ACF are negligibly small for sufficiently long 

lags, it is apparent that 

lin  SAR,L(f) * S(f)- 
Zj-f-ao 

Berk further shows that 

T(SAR,L(f) " S(f))/S(f) 

has a limiting normal distribution with mean zero and variance 

equal to 2 for f ^ 0 or 1/2 and equal to 4 when f = 0 or 1/2; 

and 

cov 
,  L   ^L^V   "   S<fl>'      !   ^AR,L(f2)    "   S^2^] 

(4.5) 
0   in probability  for  f     fi  f- 

-■—i— -      -   - 
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These Statements are valid only asymptotically.  The be- 

havior of the AR spectral estimator is seen tc be identical to 

that of the conventional windowed DFT spectral estimator, as 

L, N ^ co and L/N ♦ 0. 

The Burg algorithm differs from the Levinson algorithm only 

in that the first and last L data samples arp treated differently. 

Therefore, the Burg spectral estimates can be expected to have 

the same asymptotic properties as discussed above. 

The AR PSD estimates using LMS algorithm cannot be consistent, 

no matter how large N is. 

IV.3.  Confidence Intervals for AR spectral Estimates. 

Quite often, it is desirable to form interval estimates of 

parameters rather than point estimates.  This is often done by 

setting up confidence intervals for the point estimtes.  This 

topic is treated in detail in most texts on statistical inference, 

e.g. [41]. 
A 

The derivation of useful confidence  intervals  of   ST-{f) 
AR 

has proved to be a very difficult, if not impossible, task. 

The problem was approached as follows: 

Since the autoregressive coefficients C have been obtained 

by conventional least squares regression analysis, in the large 
A 

sample case, /N C has the approximate multivariate normal dis- 

2   —1 tnbution with mean C and covariance matrix s A„  where 

2      1     Ä      AT       7 
s = N _ L T   (xi-c xi-i) and (4-6) 

(equation centi ""^ on next pg.) 

> ■ ■ p 

- 

J 
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i   N 

Using this fact, the usual statistical inference on C, 

such as hypothesis testing, confidence intervals, etc., can 

be carried out. 

The quantity (1 - J) Ci e"
:1^TTtl) is also a Gaussian 

random variable whose mean and variance can be calculated in 

terms of these of C, viz., C and s^AN  .  This follows from the 

fact that a linear combination of jointly gaussian random vari- 

ables is again gaussian. 

With suitable scaling, the quantity |l - £ C. e"3 27Tfi|2 

can be shown to have a noncentral x2 distribution with 2 degrees 

of freedom. This quantity is, of course, the denominator of the 

expression for S--(f), 
AH 

The quantity s ■ Y(O)- CT Y / appearing in the numerator of 

the expression for SAR(f), is the estimate of the variance of 

the residuals.  If the observations are gaussian, least squares 

regression theory shows that with proper scaling, s2 is a x2 

distributed random variable with N-L degrees of freedom.  More- 

over, the numerator and denominator of S.B{f) can be shown to 
AK 

be independent, since, from least squares theory, s  and C 

are independent.  Therefore, at least in principle, the distri- 

bution of SAR(f) can be calculated. 

There are several difficulties in the practical application 

of the foregoing theory.  First, there is no known closed form 

■ 

- - - ■ - _ . . 
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expression for the distribution of the ratio of a X  distributed 
2 

r.v. to an independent noncentral X  distributed r.v.  More 

seriously, the unknown values of the true AR coefficients, namely 

C, enter into the distribution of S  (f) in a nonlinear manner 

such that it cannot be factored or subtracted out easily.  This 

restricts the utility of the preceding theory to simulation 

studies where C can be calculated exactly by analytic or compu- 

tational means. 

An approximate solution to the problem can be constructed 

from the expression for the asymptotic distribution of 

yr f
sAR(f) - s(f), 

L  *    S(f)     ; 

which is given in eq. (4.5).  This expression is valid only if 

the number of observations is large, and it is not known how 

large the set of samples should be before this formula can be 

applied. 

IV.4.  Choice of the order of autoregression. 

A good choice of L, the order of the AR model, is clearly 

important.  If L is too small, the resulting AR fit will not 

represent the data very well in the sease of a small residual 

mean square error, while a large value of L wastes computational 

resources and may also lead to increased round off errors and 

other numerical problems. 

There are several possible ways to choose an appropriate value 

of L.  The physical mechanism which produces the observed data, 

'« 

- ■ 
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if known, may provide useful clues.  Another possibility is to 

choose a large order, say L., AR fit to the observed data and 

calculate the distribution of the AR coefficients.  The hypothesis 

that the true order of AR is L is equivalent to the hypothesis 

that 

CL+1 = CL+2 = • • • • c
Ll " 0. 

This hypothesis can be tested by statistical inference 

methods  [41] 

Perhaps a simpler method is to fit AR models of different orders 

to the observed data and in each case, estimate the variances of 

the residuals.  We have already indicated that the distribution 

of these variances can be related to a x2 distribution.  Now the 

usual variance ratio tests can be applied to determine the 

lowest order beyond which increasing the order of AR does not 

result in a statistically signficant reduction in residual 

variance. 

Akaik [4] has proposed an alternative which simplifies 

this procedure. He suggests a final prediction error (FPE) 

statistic 

FPE(L)  = (1 + £+1) i2| with s2 as (4.7) 

in Sec. IV.3., eqn. (4.6; 

The value of L which minimizes FPE (L) is taken to be the 

true order of autoregression. 
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This criterion is particularly simple to apply with gradient 

algorithms. 

Simulation studies of the use of the FPE criterion in 

selecting the order of the AR model have been presented by 

Ulrych and Bishop [46].  FPE(L) for different values of L, 

using both the Yule-Walker solution and Burg algorithm, have been 

computed.  The minimum attainable FPE for the Yule Walker solu- 

tion is typically much lower than that for the Burg solution. 

This is not surprising, since the former was developed by 

minimizing the residual error energy.  As L approaches N, the 

FPE for both methods increases cons'.derably. 

ri 

t4 
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Section V.  Generalizations. 

V.l.  Pole zero modeling. 

A more general model for the observed data allows the white 

noise driven linear system generating the data to have poles and 

zerot.s.  The data are modeled by the difference equation 

L M 
(k+1) = £ C. x(k-i) + £ b. n(k-i) 

i=0  x i=0  1 
(5.1) 

where the input white noise sequence {n(k)} is unknown.  {C.} 

and {bi} are the unknown system parameters to be estimated. 

If {n(k) } were known {c^} and (b^ can be easily estimated 

using classical regression methods.  An alternative computation 

technique, using the LMS algorithm, has been proposed by Widrow 

et al [52] and called "Adaptive Noise Cancelling". 

In statistical literature, the pole zero model (5.1) is 

also known as the Autoregressive Moving Average (ARMA) model 

or rational model. 

Define the z-transform of a discrete sequence {x(i)} by the 

relation 

x(z) = Ex(i) z"1 

i 
(5.2) 

The region of convergence of this? series will depend on 

the sequence {x(i)}. 

With this notation. 

- 
X(z) =|i|)- N(z) (5.3) 

_. .    >.        ... 
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_ ■ 

where   B (z) = ^ b. z 
i=0 1 

C(z) = E Ci 
i=0  1 

L 
-i z 

The case where B(z) = 1 corresponds, of course, to an all 

pole model. 

The problem of identifying {C.} and {b.}when {n(i)} are 

unknown, is nonlinear and extremely difficult [7].  An approxi- 

mate solution can be obtained as follows: 

If all the zeroes of the numerator and denominator are 

within the unit-z circle, it is possible to express 1/B(z) as 

a Taylor series about z  =0: 

X(Z) = C(Z)^l/B(z))    ' N(Z) «•- ■ . 

N(2) (5.4) 

-i  ^ .  2-i 

i=0 x i=0  1 

Both the polynomials in the denominator of (5.4) are analytic 

in the region |z  |<1 by virtue of the assumption that all the 

poles and zeroes of X(z) are inside the unit circle.  Therefore, 

(5.4) represents a stable infinite order AR process.  It is 

reasonable to hope that the coefficients {d.}D+1 become 

negligible for  sufficiently large values of D, so that (5.4) 

can be approximated by 



« I  ■  ^pa^v-^^ 

(3.29) 

x(z) = TZ ÄT^ Ä (5.5) 

Spectral analysis of the all pole model (5.5) can be 

carried out quite easily.  The estimation of the coefficients 

{C^} and {t^} in (5.1) poses a more difficult problem.  One 

method, suggested by Graupe and Perl [20], is to estimate the 

coefficients of the equivalent AR model (5.5), use these estimates 

to calculate the residuals {n(k)} and use the estimated residuals 

to compute {C^} and {b^ by regression methods.  An attempt at 

estimating the error involved in this procedure has been made 

in [19] and [20], but the expressions for bounds on errors are 

unilluminating. 

An alternative method, due to Durbin, is given in Anderson 

[7]. 

An application of all zero u.odeling, in data communications, 

is to the problem of eliminating intersymbol interference.  If 

the information symbols {8(k)}_* , usually assuned to be in- 

dependent, identically distributed random variables with a finite, 

discrete support, is transmitted over a ccmmunications channel 

with impulse respon =  ^hk^o ' the received symbols {x(k)} can 

be represented as 

L 
X(k) = E hi Sid + n(k) (5.6) 

i=0  ^^ K ! 

Ihe problem is to reconstruct {S } given {x(k)}.  One 

■ 
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possibility is to rewrite the all zero model (5.6) as an equivalent 

all pole model which can be identified.  By passing the received 

symbols through the all pole inverting filter, (S, } can be 

recovered. 

It is essential to the success of this scheme that the 

z-transform of the channel impulse response should have its 

zeroes within the unit z circle.  In order to keep the order of 

the inverting filter low, it is also desirable that these 

zeroes do not lie close to the unit circle. 

The condition that all the zeroes of H(z) should be within 

the unit circle can be relaxed if one is willing to tolerate 

a non-causal all pole model for the input, i.e. x(k) is expressed 

in terms of its own past and future values plus additive noise 

x(k) =  X  d. x(k-i) + n(k) 
i=-M. 

It is still essential that H(z) should not have any zeroes 

close to, or on, the unit z circle.  Communication channels with 

a small number cf point target reflectors are common examples 

that do not satisfy this condition and are, therefore, unsuitable 

for the application of inverting filter models. 

Several nonlinear algorithms, such as decision feedback 

equalization and the Vicerbi algorithm for maximum likelihood 

sequence estimation, for the elimination of intersymbol inter- 

ference can be found in a survey article by Proakis [38]. 

.■••-. 
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V,2.  Effects of additive noise and nonwhite driving noise. 

Sometimes the output of the all pole system to be modeled 

is corrupted by additive noise before it can be observed. 

The appropraite mathematical model is 

L 
y(k) = £ C. y(k-i) + n{k) 

i=l  1 

(5.7) 

x(k) = y(k) + n (k) 

where, as before, {C^} are the unknown parameters to be es- 

timated, {n(k)} is the unknown white noise driving sequence and 

{na(k)} is the unknown additive white sequence.  {x(k)}are .the 

observations and{y(k)} are the unobservable outputs of the 

linear system to be modeled. 

If we model the observations by an AR process 

L. 

x(k) = 2^ c. x(k-i) + n, (k) 
i=l 1 l 

the resulting normal equations for the estimation of C are seen 

to be 

m y\ /\ /\ 

^-^Na) £ - ^ (5.8) 

The esimates of C obtained from this will not equal C, 

i.e. bias in the estimation of C is unavoidable. 

M^^*^^M^^^_ '     -    - 
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The effect of this on the AR spectral estimate is not 

clear.  With windowed DFT spectral esti-ates, the effect of 

additive noise is simply to add a constant value to the noise- 

free PSD, without affecting the "features" of the latter.  This 

is not necessarily true with AR PSD estimates.  So caution has 

to be exercised in modeling noisy data by an AR process. 

Next we consider the case where there is no additive noise 

but the driving noise sequence {n(k)} is non-white.  In this 

case, the AR coefficient estimates based on least squares will 

be biased, and so, presumably, will the spectral estimates based 

on these estimates.  If the ACF matrix of {n(k)} is known, 

a Gauss-Markov parameter estimation scheme can be used instead 

of a least squares scheme can be used to get unbiased estimates 

[41]. 

Another solution is possible if the driving noise ACF is -- 

known to be much narrower than the signal ACF, i.e. the ACF 

of {x(k)}.  A simple example of this is when {n(k)} is generated 

by an all zero (moving average) process.  If we assume the 

structure given Ly eq. (2.1), with E(n(k) n(k+k1))=0 for 

K. ü L-i ü 1 for some small value of L, , the equations for the 

unbiased least squares estimation of C are given by 

Y«^) C1Y(L1-1) + C2 Y(L1-2) + . . . + CL Y(L1-L) 

YCLj+l) C1 Y(L1) + C2 Y (1*1-1) 
+  . . . + CL Y(L1-L+1) 

Yd^+L-l) = C1  Y(L1-L-2) + . . . + CL Yd-j-D (5.9) 

-'-"-- . _  _  _ _ ■ 
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These equations enable one to determine the poles of the 

linear all pole system generating Cx(k)}.  However, this knowledge 

is not sufficient to estimate the PSD of (x(k)}. 

* 
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Section VI.a.     AR  spectral estimation wiuh  sinusoidal   inputs. 

Recently  published research   literature  indicates  an  interest 

in applying AR  spectral modeling  to  time   series  consisting  of 

sums  of   sinusoids   and white  additive  noise   [14,21,28,36,40,44, 

46,52].     The motivation for  this  approach   is  that a  sinusoid   can 

be generated by  inputting white noise   to  an  all pole  system whose 

poles   are on  the  unit  z circle.     Unfortunately,   this  system  is 

unstable,   and  the  preceding discussion  of AR spectral  analysis 

is  not  applicable  to this   case. 

One may  still model  the  observed   time  series  formally by 

an AR process,   such that the poles of   the  PEF  all  lie on  the 

unit-z  circle   'it   z  = e^     ,  where OJ     =  radian  frequency of  the 

input   sinusoii.     The  coefficients C  can be  computed by  solving 

the  normal  equations   (2.3)   and  the  PSD   estimate,   from   (2.5). 

A  simplified  analysis  of AR PSD  estimation with  sinusoidal 

inputs  has been attempted by Lacoss   [28]   and  later,   by Widrow 

et  al.   [52].     For  simplicity,   first  consider  the case where 

{x(k)}   consists  of  a single  complex  sinusoid of frequency  f   , 

and  let w    =   2Trf0 be the normalized  radian  freauence.     Define 

u =   (1,   ejajo,   ej2uo,   .   .   .   ej(L-1)uJ0)T (€#1) 

then  y ik)   =  o   5 + e-   "o      where  S.    .   is  the Kronecker delta 
•wJC D / 3 

function.  The solution of the normal equations is 

C = ejUo -«=  , and 
a^ + L 

(equation continued  on next  pg.) 
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a + L L-l 2 (6.2a) 

a +L n=0 

From this expression, together with the assumptions that 

L>>] and -J>>1,   it can be shown that the height of the spectral 
a 

peal; at co - a)0 is nearly equal to 

(6.2b) 

and the 3-dB bandwidth of the spectral peak, defined as 

dw2 
can be shown to be 

(l)«U 

BWAR = a
2AL2 (6.2c) 

The corresponding equations for the conventional Bartlett 

windowed DFT spec-ral estimates are 

sDPT(U) =i (^-i-II
1 .H«o-")" 

o  L n=0 
(6.3a) 

SB(%) =ir a 
(6.3b) 

BWB = /^AL (6.3c) 

■ 
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Comparison of equations (6.2) and '6.3) seems to indicate 

that the bandwidth of the spectral peak estimated via AR modeling 

is nearly a^/L times the bandwidth of the peak from DFT analysis. 
2 

For example, for an input signal to noise ratio of lOdB (a -■■1/10) 

and AR estimator order of 10 (L-10), the AR spectral peak is 

narrower than the DFT spectral peak by a factor of 100. 

Several potential sources of trouble are ignored in this 

analysis.  It has been assumed that the ACF matrix of the 
2 

additive noise can be replaced by a I,  In fact, this idealiza- 

tion can be achieved in practice only if N is large.  A more 

careful analysis of the performance of the AR spectral estimator 

?      2 
should replace a" !_ by a  I. + Na, where N^ is a random matrix 

which accounts for the effects of imperfect estimates of the 

noise ACF matrix.  The effects of N^ on the inverse of the data 

ACF matrix can be considerable.  The condition ratio - i.e. the 

ratio of the largest eigenvalue to the smallest - of the data 
2 

ACF matrix for noisy sinusoidal inputs is on the order of L/a . 

When this ratio is large - the condition under which the AR 

spectral estimator is claimed to have high resolution - the effect 

of small random perturbation on the inverse of the ACF matrix 

can be large.  Therefore, the high resolution of the AR frequency 

estimators is offset by large statistical variability. 

The expression for the resolution of the AR spectral lines 

is misleading for a second reason.  The use of 

d2 S     (w) d     bAR 
^   2 dco 

as  a measure  of  the  resolution of  the AR 

i 
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spectral estimator is questionable.  It is well known that the 

ACF of the sum of uncorrelated random variables is equal to the 

sum of the respective ACFs.  For PSD estimators which perform 

linear operations on the estimated ACF, such as the windowed 

DFT methods, the use of the resolution measure given above is 

acceptable.  However, the inverse of two ACF matrixes is not 

necessarily equal to the sum of the individual inverses.  There- 

fore, the AR PSD estimates are not additive, and the bandwidth of 

one spectral line may be quite strongly influenced by the presence 

of another spectral line nearby. 

Computer simulation appears to be the only proper method of 

evaluating the performance of AR spectral estimators with noisy 

sinusoidal inputs.  Results presented in [40], [44], and [46] 

suggest that AR spectral line estimation can indeed give high 

resolution spectral estimates. 

. 
^. _ 
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Section VII.   Computer Simulation of delay estimation with 

matched filters and AR modeling. 

In section I, we observed that the problem of estimating 

time delays is equivalent to the estimation or periodicites in 

frequency domain.  As shown in previous sections, no adequate 

theoretical models exist for studying the behavior of AR fre- 

quency estimators with short lengths of data.  Therefore, we 

had to resort to empirical computer simulation to study the 

problem. 

A large number of variables can have possible effects on 

AR delay estimates.  Initially, we judged that the following were 

the factors most likely to influence the estimates. 

1. Signal to Noise ratio (SNR):  This was defined as the 

signal energy divided by the noise variance.  This definition is 

the "output SNR" used in evaluating matched filter performance.     _ 

The noise was appropriately bandpass filtered so that its band 

occupancy was the same as that of the data.  S11 Rs cf 30, 20, and 

10 dB were considered, representing low, moderate and high levels 

of additive noise. 

2. The shape of the matched filter spectrum envelope: Gaussian, 

triangular and rectangular spectral envelopes were used.  These 

correspond to waveforms with low, moderate and high side lobe 

levels in the time domain. 

3. Number of data samples in t-he frequency domain.  This 

quantity was defined as the number of frequency samples between 

3-a points in the case of gaussian envelopes, and the zeroes of 

the envelope in the triangular case.  The variable was made to 

take on values of 32, 64, and 128 by appropriate choice of time 

domain pulse. 

: ; 

■ 
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4. Location of delay:  Since the AR technique is highly non- 

linear, it is conceivable that the delay estimates could depend 

on the actual location of the echoes.  Three values of delay, 

namely 25, 64, and 125 were considered. 

5. AR order:  Values of 4, 8 and 16 were experimented with. 

Obviously, the order of the prediction error filter is one greater 

than the AR order. 

The algorithm used for generating additive noise was of the 

linear recurrence type described in Abramowitz and Stegun [55]. 

A sequence of uniformly distributed random variables was generated 

by the .velation uk+1 = (a uk + b) mod T where a = 129; b = 1; 

T ■ 235 and u0 = 10987654321. 

After scaling by T, pairs of u(o,l) random variables were 

converted to gaussian r.v.s by the relation 

n^ = /-21n u,  cos 2IT U. 

n2 = /-21n u^     sin 2IT U- 

Double precision (64 bit) arithmetic was used to generate these 

r.v.s. 

The simulations were run on an Interdata 7/32 32-bit 

machine. The Burg algorithm and Levinson algorithms were com- 

puted with 64-bit precision, while the FFT calculations were 

made with 32-bit precision. 

The results are presented in Figures 1(B) through 34(B) 

and 1(L) through 8(L).  The subscripts B and L denote processing 

, ^.i_^_ . 
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with Burg and Levinson algorithms respectively. 

It is hardly feasible to study all possible combinations 

of all the different values of the variables listed above.  In 

order to make the investigation manageable, some of the variables 

were omitted from further consideration when it appeared that they 

did not influence the estimates much or when they degraded the 

performance significantly. 

Figs. 3(B) and 6(B) show that at low SNR (=10 dB) low order 

(=4) AR estimates are too flat and the high order (=16) estimates 

show spurious peaks.  Therefore, we did not cons-der the low 

SNR situation further. 

Figs. 1(B) and 4(B), 2(B) and 5(B) and 9(B) and 11(B) show 

that for the same SNR, there is lit':le difference betwt.ei the 

estimates with gaussian and triangular envelopes.  So it was 

decided to work further only with gaussisn envelopes. 

It is observed from fig, 1(B) through 8(B) that the AR 

delay estimates are indeed sharper than the matched filter 

estimates.  Increasing the number of data samples to 128 (Fig.9(B), 

10(B), 11(B)) do not affect the AR estimates to any great ex- 

tent, while the matched filter estiamtes become sharper.  vVhen 

the number of samples is decreased to 32, (Fig. 12(B) and 13(B)) 

AR estimates of order 8 and 16 show noticeable bias and a ten- 

dency to split the single delay peak.  This is in agreement with 

the observation made in Sec. IV that the variability of the AR 

coefficients increases sharply as the order of the AR model be- 

comes comparable to the number of data samples.  So long as 

the order of the model is much smaller than the number of data 

_ - _ - 
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samples, the AR estimates do not show much variation when the 

number of samples is changed.  We should add the disclaimer that 

the few observations we have made are not sufficient to prove 

this observation. 

Figs. 14(B) through 21(B) do not indicate that the AR delay 

estimate is significantly affected by the location of the delay, 

at least for small AR orders. 

The conclusions drawn from Figs. 1(B) through 24(B) can be 

summarized as follows.  The AR delay estimator does not perform 

well at low SNR or when the order of the AR model is greater 

than approximately one-fourth the number of available data 

samples.  The location of the delay and the waveshape do not 

appear to have significant effects on the AR delay estimates. 

Figs. 24(B) through 33(B) are the results of simulations of 

estimation of two delays.  In figs. 24(B) and 28(B), both the 

matched filter and AR estimator show the presence of two distinct 

echoes.  In Figs. 26(B), 27(B), 29(B) and 31(B), the matched 

filter shows two modes, indicating two echoes, but the AR estima- 

tors show only one peak.  Finally, in Figs. 25(B), 28(B), 30(B), 

and 32(B) neither the matched filter nor the AR estimator is able 

to distinguish between the two peaks.  The two modes of the 16th 

order AR output in Fig. 30(B) could well be spurious, as can be 

verified by comparing Fig. 30(B) and 22(B).  After this series 

of failures, we did not feel it worthwhile to continue the 

simulations. 

Fig. 1(L) through 8(L) do not indicate that any improve- 

ment is obtained by substituting the Levinson algorithm for the 

Burg algorithm. 

-- ■ ■ ■ ■-■-■->- 
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FIG.   2(B) 
SAME  AS  FIG.   KB),   EXCEPT  SNR   =   20  DB 
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BURG RLOORITHH  VS.   MfiTCHED FILTER  FOR DELAY 
ETIMfiTION   :     DflTfl  DESCRIPTION  ;   SNR   =  30  Dß; 
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FIG,   6(B) 
SRME  PS  FIG.   !+(B)   EXCEPT  SNR   -   10  DB 
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FIG, 7(B) 
COMPfiRISON OF BURG ALGORITHM & MfiTCHEO FILTER FOR 
DELAY ESTIMATION i SNR = 30 DB; NUMBER OF DATA 
SAMPLES = 6i+j RE:TANGULAR EMYILOPE; ACTUAL DELAY 
= 84; AR ORDERS 4-, 8 & 16 
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FIG.   8(B) 
SAME AS  FIG.   7(B)   EXCEPT  SNR   =   20  DB 
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FIG. 9(B) 
C0MPRRI30N OF BURG ALGORITHM I MPTCHED FILTER 
FOR DELAY ESTIMATION;  SNR = 30 DB; GAUSSIAN 
ENVELOPE; NUMBER OF DATA SAMPLES = 12S; ACTUAL 
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FIG,   10(B) 
SAME  FIG.   9(B)   EXCEPT SNR  =  2G  DB 
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FIG. 12(B) 
COMPPRISOM OF BURG RLOOKITHM t dRTCHED FILTER FOR 
DELAY ESTIMATION;  SNR = 30 DB; NUMBER OF DÖTfl 
SAMPLES = 32; GAUSSIAN ENVELOPEj ACTUAL DELAY = 
81; AR ORDERS 4. 8 & 16. 
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COMPARISON OF  DELAY   ESTlMQiES  WITH  BURG  RLOORITHM 
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FIG.   22(B) 
SAME AS  FIG.   20(B)   BUT  NUMBER  OF SPMPLES   =   32 
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FIG. 23(B) 
COMPPRISON OF BURG PILGORITHM 4 MATCHED FILTER FOR 
DELRY ESTIMATION:  SNR = 20 DB; NUMBER OF SAMPLES 
= 64; GAUSSIAN ENVELOPE; ACTUAL DELAY = 25; AR 
ORDERS 4, 8 4 16 
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FIG, 21(B) 
DELAY ESTIMATION WITH BURG ALGORITHM AND MATCHED 
FILTER; DATA :  SNR = 30 DB; GAUSSIAN ENVELOPE; 
NUMER OF SAMPLES = Wj ACTUAL DELAYS OF EQUAL 
STRENGTH AT 61 & 100; AR ORDERS 4, 8 4 16 
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FIG. 25(B) 
DELAY ESTIMATION WITH BURG ALGORITHM 4 MATCHED 
FILTER; JATA :  SNR = 30 DB; GAUSSIAN ENVELOPE; 
NUMBER OF SAMPLES = 64; ACTUAL DELAYS OF EQUAL 
AMPLITUDE AT 64 & 80; AR ORDERS 4, 8 4 16. 
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FIG. 26(B) 
DELAY ESTIMATION WITH MRTCHED FILTER AND BURG 
ALGORITHM;  DATA :  SNR = 30 DB; GAUSSIAN ENVELOPE 
NUMBER OF SAMPLES = M] ACTUAL DELAYS OF EQUAL 
AMPLITUDE AT 84 4 84; AR ORDERS 8, 16 Ä 32 
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FIG. 27(B) 

DELfiY ESTIMRTION WITH BURG RLGORITHM & MATCHED 
FILTER; DflTfl : SNR = 30 DB; GPUSSIflN ENVELOPE; 
PCTUflL DELAYS OF EQUAL AMPLITUDE AT 6^ 4 84; 
NUMBER OF SAMPLES =L2S; AR ORDERS 8 4 16. 
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FIG, 28(B) 
DELAY ESTIMPTION WITH BURG PLGORITHM 4 MPTCHED 
FILTER; SNR = 30 DBj GPUSSIPN ENVELOPE; NUMBER OF 
DPTP SPMPLES '  6^; ACTUHL DELPYS PT 25 I ICO; PR 
ORDERS », 8 & 16. 
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FIG. 29(B) 
DELPY ESTIMATION WITH MATCHED FILTER 4 BURG 
RLG0R77HM; SNR = 30 DB; GflUSSIRN ENVELOPE; NUMBER 
OF SRMPLES = 6>t) TWO DELAYS OF EQUAL AMPLITUDE AT 
25 Ä 35; AR ORDERS - 4, 6 A 18- 
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FIG.   30(B) 
SRHE PS  FIG.   29(B)   BUT  NUMBER  OF  SAMPLES   =   32. 
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FIG, 31(B) 
DELAY ESTIMPTION WITH MfiTCHED FILTER & BURG 
PLGORITHM; SNR = 20 DB; GOUSSIfiN ENVELOPE; NUMBER 
OF SAMPLES = 84] TWO DELAYS OF EQUAL AMPLITUDE AT 
25 8.  35; AR ORDERS =   8 A 16 
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FIG.   32(B) 
DELAY  ESTIMRTION  WITH  MATCHED  FILTER  4  BURG 
ALGORITHM;   SNR   =   20  DB;   GAUSSIAN  ENVELOPE;   NUMBER 
OF  SAMPLES   =  32;   TWO  DELAYS  WITH  EQUAL  AMPLITUDE 
AT 25  &  35;   AR  ORDERS  8  Ä  16. 
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FIG.   33(B) 
SPME   fiS   FIG-   FIG.   22(B)   BUT   SNR   =   20  DB, 
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FIG. 311(B) 
DELPY ESTIMATION WITH BURG fiLGORITHM 4 MATCHED 
FILTER; SNR = 20 DB; GfiUSSIfiN ENVELOPE; NUMBER OF 
SAMPLES = S^i ONE DELAY A" 25; AR ORDERS = 8 4 16 
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FIG,   1(U 
DELAY  ESTIMPTION  WITH  LEVINSON   PLGORITHM  4  MPTCHED 
FILTER.      DPTP  SPME  PS   IN  FIG.   24(B) 
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FIG.   2(L) 
DELPY  ESTIMPTION  WITH  LEVINSON  ALGORITHM  4  MATCHED 
FILTER.   DRTfl  SPME PS  IN   FlG.SSCO) 
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FIG. 3(L) 
DELPY ESTIMPTION WITH LEVINSON RLGORITHM 4 MATCHED 
FILTER.  SNR = 30 DB; NUMBER OF SPMPLES = 6^; 
GPUSSIPN ENVELOPE; ONE DELPY PT 72; PR ORDERS 
8 I 16. 
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FIG.   ML) 
DELPY  ESTIMPTION  WITH  LEVINSON  ALGORITHM  4  MfiTCHED 
FILTER.     DflTR  SAME  PS  IN  FIG.   26(B) 
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FIG. 
DELAY ESTIMRTION WITH 
FILTER;  DflTR SAME PS 

5(L) 
LEVINSON   ALGORITHM  4  MATCHED 
IN  FIG.   27(B) 
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FIG. 6(L) 
DELPY ESTIMPTION WITH LEVINSON ALGORITHM i  MATCHED 
FILTER; DATA SAME AS IN FIG. 29(B) 
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DELRY  ESTIMATION  WITH  LEVINSON  ALGORITHM  &  MATCHED 
FILTER;   DATA  SAME  AS   IN  FIG.   30(B) 
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FIG.   8(L) 
DELfiY  ESTIMATION  WITH  LEVINSON  ALGORITHM  Ä  MATCHED 
FILTER;   DATA  SAME  AS  IN  FIG.   22(B) 
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Section VIII.  Conclus'ons 

While the AR delay estimates appear sharper than the matched 

filter estimtes when only one echo is present, this property 

apparently does not translate into the ability to resolve two 

or more closely spaced echoes reliably.  It is easy to display 

examples where higher resolution is really obtained, but it 

is also quite possible that a single actual spectral line may 

have split into two components.  Obviously, analogous observations 

apply to high resolution AR spectral estimation also, by inter- 

changing the roles of the time and frequency domains. 

An application of AR modeling to the problem of estimating 

the instantaneous frequency of a frequency modulated waveform 

is discussed in Appendix III. 

r 

^^^^__   
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Appendix - A.l 

The Levinson Algorithm [29]. 

The Levinson algorithm computes the solution of the equations 

A C = v, (A.1.1) 

where A is a Toeplitz Hermxtian  (LxL) matrix, in a number of 
— 2 

steps proportional to L . 

r  i 

Let A = PV 

Y Y2 L-l 

L-2 

Y£-i 

1 H 
n 1 

li = (Y1' Y2, yj 
» 

li = (Yi' Vl' • • • Y2, Yi) 

-i = (vl' v2' • • • • vi) 

A. 
—l 

YJ 

Yi  Y: 

1   Y. 

Yi-1 

Y i-2 

Y i-1 Y 1   l 

and 

C. = AT1 V.. 
—i  —i   i 

tbMMBMBMBMM -   * ^     '    »      '   - -  -    '<   -     l    - 
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Then using matrix inversion lemmas, the following algorithm 

can be derived: 

«1= ^1 

For   i  =   1,2,   .   .   .   L-l  do; 

^i     =       ^     ^i     ■     Vi+l^i 

ni = (Xiai - fi+i^h 

£i+i = ^ + ii ^ 

-ui 

Ai+1 = ^(1- n, 2) 

li+1 ■ -ni 

ii + ni li* 

SLi+i = -i+l read in backward order 

(gi+l, i+l gi, i+l * * * '^i+l5 

CL = solution of the equation A c = v. 

------ 
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Appendix - A II 

N 
The complex data (xd)}.,.-, is moüeled by the autoregressive 

representation 

L 
x(k) - £ CH x(k-j) + n(k) 

i-1 1 

The Burg algorithm generates estimates of the PEF coef- 

ficients without explicitly calculating the data ACF beforehand, 

The procedure is analogous to the Levinson algorithm. 

Consider the  equations, with 1 < k < L, 

Y 

v. 

1  * * • Yi 

Yi    YO • • 

YL   YL-1 * * 

/N     A 

lo II 
Yl Yo 

-c 
k,l 

•Ck,2> 

-C k,^ 

A 
k+1 

0 

(A.2.1) 

For k=L, (A.2.1) are the normal equations for the estimation 

of the PEF coefficients.  The ACF estimates Y(i)i i"0f . . . L 

are presently unknown. 

Let P 
i   N 

i=l 

Partition vector (1, -C, ., -C, ,. 

(Pk+l' 0' 0' • • •) into 

. -Ck/k)T and 

(equation on next pg.) 
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-c 
k,l 

i 

-C k-1,1 

-c 

-c k,k 

k-1,2 

■ 

"Ck-l,k-l 

V.  0 J 
and 
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r 

-C k,k 

-c * 
k-^k-l 

I   -C* 
1   k-l,k-2 

(A.2.2) 

k+1 

0 

'^ 

0 
f   -c 

*t ] 

k,k 

J V\ 
^\ 

(A.2.3) 

from these, 

Ak = Ckfk 
Pk (A.2.4) 

k+1 V1"!^1 > (A.2.5) 

k-1 A 
Y(k) ' A J+ ^ Y(i) CJ.l,k.i (A.2.6) 

Ck,i = ck-l' 
i -  ck,k 

Cic-l,k-i ^r 1 < i < k-1 (A.2.7) 

If Y{k) were precomputed, Ck k can be determined from 

(A.2.4) and (A.2,6).  This gives one version of Levinson's algorithm 

■'■ - 
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for the computation of AR coefficients, as can be verified by 

comparison with the algorithm given in Appendix - I. 

In the Burg algorithm, C. , is determined by minimizing 

r 

lfk 

N-k 

1=1 
x 

(i) - z 
Z=l 

C*      v 
^k,l   ii+i) 

x (i+k) - E 
1=1 

x(i+k+.tL)Ck, 

(A.2.8) 

This is equivalent to running the k-th order1» PEF over the 

data in forward and backward directions and computing the sum 

of squares of residuals. 

Define 

k-1 
i/k - X(i) - lEc*.^ x(i^) 

bi,k = x(i+k) " |^Ck-l,]c-Ä X(i+£) 

Then using (A.2.7) and (A.2.9), (A.2.8) can be written as 

(A.2.9) 

N-k 

,k "  ^   lai,k " ck,k bi,kl     +   lbi,k " Ck,k ai,k 

The value of C. , that minimizes this expression is 
K , K 

N-k 

i=l i,k  i,k 

kfk  N-k 

i=l 

(A.2.10) 

•i,xl2+ ibi,kl2 

MMart^A 
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Equations (A.2.5), (A.2.7) and (A.2.10), together with the 

2 
"" |x(i) | , give the Burg algorithm.  The initial value P, ■ sr 1   N 

i=. 

iterations are performed for k=l, 2, . . . L and it is assumed 

that any variable with a zero subscript has the value of zero. 

^» 
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Appendix - III 

Instantaneous Frequency estimation of wideband frequency modulated 

waveforms using AR modeling. I 

If the frequency of a noisy sinusoidal input is time 

invariant and an adequate number ot samples is available, the 

usual Fourier Transform methods offer a combination of near 

optimality in a decision theoretic sense, good resolution and 

efficient computational algorithms.  If the frequency varies 

in a narrow band around a known carrier frequency, phase locked 

loop techniques should be considered [22,45].  AR frequency 

estimation techniques appear to be effective when the input 

frequency varies in a wideband over the Nyquist frequency range. 

If the input frequency varies slowly with time, the effective 

time interval over which the frequency is nearly constant is 

limited.  In such situations, the ability of the AR spectral        '• 

estimator to produce good frequency estimates with short data 

lengths is advantageous. 

Griffiths [21] has noted that the ability of the LMS al- 

gorithm to track slow time variations in regression coefficient 

estimates can be put to use to estimate short term spectra. 

However, this scheme does not produce estimates of the instan- 

taneous frequencies themselves.  The task of recovering the 

instantaneous frequency from the PEF coefficients still remains. 

This is usually done by computing the AR PSD using a DFT or its 

equivalent and selecting the frequency at which it attains a 

maximum.  Even though the AR LMS algorithm is, in principle, 

capable of updating the input frequency estimate at every sam- 

pling instant, in practice it is feasible to do so only at 

widely spaced time instants. 
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An alternative approach is to collect a small block of 

samples at a periodic rate determined by the rate of variation 

of the input frequency, and, assuming that the frequency does 

not change within each block, determine the frequency at the 

block sampling instants using Burg's algorithm and a DFT.  That 

is, input samples (x(kT + n)},k = 0, 1, 2, . . . and 

n = (1, 2, . . .N) with T>>N, are analyzed with Burg's Algorithm 

of order L, L<<N, and the resulting frequency estimate is held 

to be the input frequency at time kT.  By suitable interpolation, 

the value of f(t) for other values of time t can be determined. 

Two simulations were run to compare the computational 

times required for the Burg and LMS approaches.  In the first 

example, a frequency modulated waveform was generated by the 

formula 

x(t) = cos   (^ (l+uljy)) for 0 < t < 5000 

■ COS '^ ,3-Iökr' - i2!^'- =000 < t < 10032. 

White noise of variance 0.01 (corresponding to a carrier 

to noise ratio of 17db) was added to x(t), and the sampling rate 

was 1 Hz. 

The instantaneous freuqency of x(t) is 

f(t) = 7S   (1+t/5000) f 0 1 t < 5000 

= "jj (3 - t/5000) , 5001  < t £ 10032 
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The input samples were processed with a 4th order AR-LMS 

algorithm with ct = 0.04 (eq. (3.3)).  After every 500 iterations, 

the instantaneous frequency was updated from the 256 point DFT 

of the PEF coefficients, as discussed above.  The times required 

for the computations on an Interdata 7/32 machine were 13+1 

seconds for the LMS algorithm and 9 seconds for the DFT calcula- 

tions. 

Th« same data were processed with a 4th order Burg's 

algorithm after sampling blocks of 32 points each, every 200 

seconds. (T=200, N=32, L=4).  The total times required on the 

same machine were: 4+1 sec. for the Burg algorithm and 9 

seconds for the DFT.  The actual instantaneous frequencies of the 

input, as well as the estimates derived from the LMS and Burg 

algorithms, are plotted in Fig. 2(F). 

In the second example, the input waveform is described 

by 

x(t) = cos (250 sin (2Trt/2000)) + n(t),  0 < t < 10032 9 ' 

with variance of n(t) being 0.01 and the sampling interval, 

1 sec.  The instantaneous frequency function in this case is 

f(t) = | cos (2Tt/2000). 

This data was processed with the AR-LiMS algorihtm (L-4, 

= 0.04) and Burg's algorithm (L-4, N=32, T=200).  In either 

case, updating of the instantaneous frequency estimates was 

performed every 200 seconds.  The LMS algorithm required 

13+1 seconds for the AR coefficient computations and the 



1 • • 

(3.100) 

Burg algorithm took 5+1 seconds on the same Interdata machine. 

The time required for the DFT and peak selection procedures 

was 22+1 sec. in either case.  The results are plotted in 

Fig. 4(F) . 

Discussion 

Both methods give reasonable good estimates of the input 

frequency.  The LMS estimates have a somewhat lower error than 

the Burg estimates, though the Burg algoritrm is more than twice 

as fast as the LMS algorithm for these two examples. 

We do not claim that the Burg algorithm approach is neces- 

sarily superior to the LiMS approach.  At lower SNRs it is 

likely that the LMS algorithm performs much better.  If the 

input frequency estimates have to be updated more frequently, 

the LMS algorithm will become computationally superior.  On 

the other hand, the LMS algorithm could become unstable for 

bad choices of a [21], while the Burg algorithm is guaranteed 

to be stable.  At high SNR and with slow variations in the 

input frequency, the Burg algorithm is an attractive alternative 

to the LMS algorithm. 

 - i   _ . 
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FIG.   2(F) 
INSTflNTflNEOUS  FREQUENCY  ESTIMPTION  WITH  BURG  4  LMS 
RLGORITHMS,    (   SEE  TEXT  FOR  DfiTfl   ). 
SOLID  LINE   :   flCTUPL  VfiLUES;   ASTERISKS   i   BURG; 
SQUARES   :   LMS. 
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FIG.   IKF) 
INSTfiNTPNEOUS  FREQUENCY  ESTIMPTION  WITH  BURG  4  LMS 
PLGORITHMS.   (   SEE  TEXT  FOR  DPTP.   ) 
SOLID  LINE   :   PCTUPL  VPLUES;   RSTERISKS   :   BURG; 
SQUPRE3   :   LMS. 
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Notation 

The following symbols, conventions and abbreviations will 

be used through this chapter. 

ALMS :  Approximate Least Mean Square algorithm. 

Unknown time varying parameters to be estimated. 

Expectation operator. 

c —n 

E{ } 

eP, n 

EWLS 

f 

I 

j 

L 

LMS 

N 

N 
-U 

P 
—n 

-1 

q 

Q 

R 
-ss 

R 
—sx 

Prediction error at time n = x  - s T c 
n  -n -n-1 

Exponentially weighted Least Squares Algorithm 

frequency variable 

Identity matrix 

•=T 

dimension  of  cn   (numbers  of  unknown  parameters) 

Widrow's  Least Mean  Square Algorithm   [51]. 

-1 T M        =  M- diagonalizing matrix  of  R 
^ss 

i.e.  M  A M-1 = p 
— — — —ss 

Time varying  component  of  P   . 

Z (I-Q)   2n"     s*  s  T =  estimated  signal 
k=l _    ^ K 

autocorrelation matrix. 

exponential weight. 

weighting matrix; all the eigenvalues of Q are 

between 0 and 1. 

input autocorrelation matrix. 
1 A      T 

" A*B n   ^   -k -k "  -ss is assumed to be positive 
k"1     '   - ' definite and Hermitian. 

cross correlation between input vector and 

observations. 
1 r 

4  W 
k-l 

= lim — >  s* x 



  ■1-1 '\ —1 

tSk' 

(xk} 

(wk} 

a 

A 

2 

(4.2) 

set of known input signal vectors, 

continuous time variable, 

set of scalar observations. 

set of additive noise samples; assumed to 

2 white with variance a . 

i.e.  E{wk w*} = 5kil a2. 

gain constant in ALMS algorithm. 

matrix of eignevalues of R ' —ss 

additive noise variance 

doppler scale vector. 

Double underlining denotes a matrix. 

Single underlining denotes a vector. 

th [X_. ] denotes a diagonal matrix whose (i,i)   element is X. 

Superscripts 

* •  denotes complex conjugate 

denotes transpose 

estimate 

Fourier Transform 

-1 

{Qk} 

Matrix inverse 

'X    T e.g.  c(f)* would mean the complex conjugate 

transpose of the Fourier transform of the estimate 

of c(f) . 

k  power of Q. 

a matrix valued low pass filter whose impulse 
2 

response is (!_, Q/ Q / • • •) 

_. _. J 
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Subscripts and parentheses 

subscript n  :  value of indicated function at time n 

e.g. £n means the input signal vector at 

time n. 

parentheses i,l  :  (i,l) component of the indicated matrix 

e.g. sn(i) = the i  component of s_ . 

parentheses t  :  value of the continuous function at time t. 

e.g. s(l)(P(l)-t) means value of the first 

component of s_(t) at time P(l).t. 

H   :  Euclidean norm e.g. |s |  = T* |s(k)|2. 
n    k=l 

Differentiation with respect to vector: 

if = , J_f     3f     3f if T 
3C   ^c(l)' 30(2)' 3c(3)f * * * ä^lL) ) 
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I.        Introduction 

We resume  the  study of  identifying  underwater  acoustic 

channel models  of  the  form 

x(t)   =   V   C{i)    (t)   s(P(i)    (t-T(i)))   + w(t) (l.l) 

i=l 

Knowing x(t), s(t) and (x.}, the problem is to identify the 

time varying coefficients c(i) (t). The doppler scales 

{?(!)} are unknown, and it is desirable that the estimates of 

c(i) (t) are insensitive to the values of {P(i)}. 

As in the previous chapter, we assume that all waveforms 

are sampled with a period of 1 sec, and that the samples 

will be digitally processed.  All aliasing errors are assumed 

to be negligible.  With these assumptions, we get the discrete 

model 

x
n = £n

T H^ + V    where (1-2) 

c = (c(l) (t) , c(2) (t) . . . c(L) (t) )T 

t=n 

vn = {s(P(l) (t- (1) )) , . . . s(P(L) (t-T (L) ))} L 
{w } is assumed to be a white noise sequence with variance a 

i.e. E^wnw*J= 6nA a2. 

At first, we shall set v, = s, i.e. no doppler shift will 

be assumed to be present.  This restriction will be later removed, 
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Technically, the assumption that (T(i)) are known 

is not necessary.  The channel can be modeled as a tapped delay 

line, the number of taps being equal to twice the time band- 

width product, 2TB, of the channel [17J.  Then equation (1.1) 

can be replaced by 

2TB 
(t) = £ c(i) (t) s(P(i) (t-i))) + w(t) 

i=l 
(1.1a) 

If approximate a priori estaimtes of {i.lare available, the 

number of unknown parameters can be considerably reduced. 

The Widrow-Hoff LxMS algorithm has been used successfully 

in many instances to estimate time varying regression parameters 

[40,52,53, 54  ].  in most of thase Cases, the input signals 

are assumed to be uncorrelated pseudorandom noise.  Indeed, it 

has proved difficult to analyze the operation of the LMS algorithm 

with other kinds of input signals.  Daniell [ 9 ] has shown that 

with stochastic input signals with strong mixing property 

(i.e. whose autocorrelation function tend to zero at increasing 

values of lag in a prescribed manner), the variance of the 

parameter estimates using the LMS algorithm remains bounded 

for slow adaption rates.  Glover [ 22 ] has studied the operation 

of the LMS algorithm with sinusoidal inputs. 

Widrow and his coworkers have done extensive simulation 

and experimental studies with the LMS algorithm and suggested 

some useful heuristic analytic models to describe its properties. 

Much of the difficulty in analyzing the performance of the 

LMS algorithm stems from viewing it as a variant of the Stochastic 

. 
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approximation (S.A.) algorithms [46].  This point of view, 

while undoubtedly valid, is severely restrictive.  Most of the 

work on S.A. has focused on formal proofs of asymptotic conver- 

gence of certain iterative schemes for solving nonlinear regres- 

sion equations with conditionally independent observations. 

These proofs are not generalized easily by relaxing some of 

the assumptions made there in.  As far as linear channel models 

are concerned, the S.A. formulation is needlessly general in 

one sense (in that the linearity of the model is ignored) and 

restrictive in another (because of the assumption of conditionally 

independent observations).  Farden [|5 ] has recently proved 

that linear regression equations can be solved by stochastic 

approximation methods even if the observations ere correlated, 

provided some mild constraints are imposed on their fourth 

moments.  Even this result is incomplete, since little is known 

about the convergence rate of the algorithm. 

Since we are considering linear channel models, it seems 

reasonable to try to extend classical linear least squares 

estimation methods to time varying problems.  We shall take this 

approach in the succeeding sections. 

The organization of this chapter is as follows.  In section 

II, we discuss some well known methods of time invariant para- 

meter estimation, such as Gauss least squares, Kaiman sequential 

identification and stochastic approximation.  Section III con- 

tains the development of an exponentially weighted least squares 

algorithm.  Section IV is devoted to an analysis of the 

algorithm.  The "misadjustment" noise, the error in tracking 

M 
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t:.me varying r^rameters, errors due to additive noise and 

the choice of input signals for application is doppler distorted 

acoustic communications channel are discussed.  Section IV.5. 

develops an approximation to the proposed algorithm, which we 

call the "Approximate Least Mean Squares" algorithm (ALMS). 

We conclude with a summary of our work, some possibilities for 

future research and a list of references. 

The assumptions on the input signal are that 

1 A      T 1.   lim — V s* s,  ^ R n-^oo n ^ 2.^ _k   a 

The limit may be in quadratic mean or an almost sure sense 

for stochastic inputs. 

n 
2-   iiS k   Z  |sk(1) I2 Isk(n0 |2 < «, l,m = 1,2,...L, 

This is to ensure that the result of low pa^ss filtering 
rn 

the matrix (s* sk } will have bounded average power. 

3*   -ss is Positive definite and Hermiltian.  In this case, there 

is a matrix M such that M*T = M-1 and MAM-1 = R  ;  A is diagonal, 

We define the Fourier transform of a matrix F as the term by 

term Fourier transform of each element of F. 

i.e. the (k,l) • element of the Fourier transform of F is 

the Fourier transform of the (k,l)th element of F. 

—' 7 ^-^_V —-■_--    -  .._     _  ._  »     ^-....-^     .     ^     _       ._   ._1_^--.J.-_».JJ,,JJ._  .    ■ -  » - *—»--■-»  -- A I - - fc - 
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Section II.1. 

Time invariant least squares algorithms. 

1.  Classical Least squares algorithms. 

If the parameters c in eqn. (1.2) are time invariant, 

the least squares estimate of c at time n is well known [57] 

and is given by 

n n 

£n- (ZS^V^EUV {2.1.!) 

This can be expressed equivalently as 

i   = (-E s*s,T)"1(^v s.*x.) -n   n *-' -k-k    n ^-' -K k 

1 T   — 1     /N 

Defining  P    =   (—Vs*s.    )      ,   c    can be  expressed  in  the  form 
^  —n n t~i —k—k '   —n 

of  an  iterative algorithm   [        ] : 

m Ä 

P     S*^- (x   ^T-S   .,   c   ) 
/v —n —n+1     n+1 -n+1 —n 

c   , ,   =  c     + — 
n  +  s  ^,   P     s* L1 —n+1 —n -n+1 

T 
P     s*^1   s  ^,   P 

, —n —n+1 --n+l -n 
Pn+1   =  ^H-1   fpn T  ] (2.1.2) 
- =n       n  +  1*7.   P     s*   , —n+1 -n -n+1 

IT 1 Since  lim —    s. s*     ->■ R       and   lim —    s*x,    ->• R  „   almost  surely nio0 n    —k—k —ss n-"-00 n    —k k       —sx 2 

and   in quadratic mean,   it   is  easy  to  show  that  c     -»■  c  almost 

surely  and  in quadratic  mean   [|0X5"S] .     It  is  not  quite  clear what 

advantages,   if  any,   the  recursive  formulation   (2.1.2)   has  over 

(2.1.1) 
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Excellent discussions of linear least squares estimates of 

time invariant parameters can be found in most texts on statistical 

inference, e.g. [57]. 

« 

T 

i 

> 
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Section II.2 

A.   Relationship of MMSE estimation with Kaiman Filtering. 

Assuming the same model as in the previous subsection, 

xk = ^-k ^ + wk (2.2.1) 

We wish to find the linear lease squares estimate of c, I.e. the 

value of c that minimizes 

E^x]C^k!  ^)T (xk"skT ^ } (2.2.2) 

This problem can be cast in a form to which the seauential 

state estimation algorithms due to Kaiman and Bucy [30,31] can be 

applied.  An extensive discussion of Kaiman Filtering methods 

can be found, among other sources, in [3], [8], [17], [281, [30], 

[31], [38], [39], [43].  The following discussion is based on 

the work of Brown [6], Chien and Fu [7], de Figureido [12] and 

Jones [27] . 

The "state equation" for c can be written as 

ck+1 = ck (2.2.3) 

xk = s/ £k 
+ Wk (2-2-4) 

The trivial equation (2.2.3) simply expresses the fact the c 

is time invariant. 

The algorithm for the sequential updating of the estimate 

■ 

^ä*M ■-— ^ - ■ ■> -.-.^ -«-....      _    __    _._    _    ^    _    ^    .     ^ .    _    _    _■_ . .   — . --  - .. . ■  J mu -     ■ m m. ■ A__ .     -'   -^   - - 
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of cn can be easily derived (see the cited references) and is 

known to be 

^n+l 
= ^n + 4 WVl ^n ^n+l 

+ *   ^ 
2,-1 

(xn+l " Sn+1 ^n5 (2.2.5) 

|n+l 
= *n " in ^n+l [^n+l ^n ^n+l 

+ "^ 
2,-1    T _ 

s j,  P —n+1 —n 

(c  and P arbitrary) 
P 
=n 
„2 If we replace Pn by   *$    $   this algorithm is identical to 

the adaptive sequential least squares algorithm of the previous 

subsection (equations (2.1.2.)). 

B«   Extension to Nonlinear Regression Problems. 

If the relation between the observations {x,} and the unknown 

parameters {sk} is nonlinear, the method of quasilinearization 

can be used to derive a sequential adaptive algorithm.  In this 

case, the Kaiman estimator model is 

^n+1  -n (2.2.3) 

n   n —n'—n    n (2.2.6) 

where (fn(s .c )} are known functions of s and c .  It is assumed ii ii ii _n    _n 

that fn(-/ cn) is continuously differentiable with respect to c . 

Expanding (2.2.6) in a Taylor series about the latest (and 

presumably, the best) available estaimte of c, viz. c  ,, and re- 
-      -n-1 
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taining only the first two terms 

T 
Sf 

x  ~ f (s »c  .) + -^—     (s ,c     ,) • (c-c  ,) + W   (2.2.7) • n — n Mi -n-i    dc    —n —n-1     n-l    n t 

Define 
3f 

H  = ^—^ (s ,c  .) —n   3c  —r -n-l —n 

Equation (2.2.6) can be written approximately as 

x     -f      (r.   C     1)+HTc     1=HTc+w (2.2.3) n n     —n    —n-l —n     —n-l       —n — n 

Equations (2.2.3) and (2.2.8) are in a form to which the 

results of Sec. II.2.A can be applied.  The equations for the 

sequential estimation of c, similar to equations (2.2.5), turn 

out to be « 

c _., = c  + P H  . (H ^  P  H ^T + a2)"1 (xm., - f ., (■ ., ,C )) —n+1  —n  —n —n+1 -n+1 —u —n+1 n+1   n+lv-n+l'—n 

P ^T = P  - P  H a_1 (H ^1
T P  H ^T + a2)"1 H ^^ Pn    (2.2.9) -n+1  —n  —n —n+1 -n+1 —n n+1        -n+1 -" 

Convergence of this algorithm is hard to prove.  Follcwing 

Brown [6], it appears that the algorithm will convergence if 

f. ( • , • ) is well behaved in the sense that it satisfies certain 

Lipshitz conditions. 

C.   Extension tc time varying regression analysis. 

The state equations that describe the "evolution" of c in 

the liust two subsections assume that c is time invariant.  A 

■i 
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possible  extension  of  equation   (2.2.3)   is 

' 
^n+l n —n    In (2.2.10) 

t8 

r 

where wln is a sequence of stochastic forcing functions whose 

covariance is known.  It is assumed that w  is uncorrelated with 

wn in eq. (2.2.4).  {gn( • )} is a known sequence of functions. 

Kaiman filtering equations can be applied to this model to update 

ic^}   sequentially.  Since the assumption that the exact functional 

form of the evolution of (c^} is known appears to be very restric- 

tive, we shall not give details of the derivation here. 

Section II.3. 

Stochastic Approximation. 

One version of the stochastic approximation algorithms for 

the estimation of the time invariant parameters c in eq. (2.2.1) 

is of the recursive form 

'n+1 = c  + a  (x -s  c )s n n  n —n —n —n (2.3.1) 

-, 

« 

00 

where an is a time varying gain sequence such thatTJ
1  " mi 

niS an^
0*  A Popular choice of a  is a  = 1/n. 

Under some weak conditions on the fourth cumulants of x 
k 

and sk/ Farden [15] has shown that l^m c -^c almost surely.  A 

considerable body of literature exists on the theory and applica- 

tions of stochastic approximation methods for the solution of 

nonlinear regression equations [1,3,11,13,15,17,21,29,32,44,50, to 

list a few]. 
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The main advantages of equation (2.3.1) are that it requires 

relatively few storage locations and multiplications per iteration, 

Its limitations are that its convergence rate is usually slow, it 

cannot track time variations in c and its error propagation 

behavior is unknown.  Moreoever, for linear channel models, other 

efficient, well understood algorithms for the estimation of c 

exist (eq.(2.1.1)).  in view of these objections, we omit more 

detailed discussion of stochastic approximation algorithms. 

M^>ü*aaBaM*B«a 
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Section. III. 

Sequential least squares algorithms for approximate estimation 

of slowly time varyincr regression parameters. 

III-l.  Introduction 

In the previous section, it was assumed that the linear 

channel to be identified was time invariant.  This assumption is 

not very realistic when modeling underwater acoustic communica- 

tion channels. 

In this section, we permit c to be time varying, while still 

retaining the assumption that the channel is linear. We consider 

models of the form 

T 
n  —n —n   n I J • 1 • 1 j 

and the problem is to identify the time varying oarameters  c 
—n 

given {xn} and {sn} .  All the variables in eq. (3.1.1) are assumed 

to be complex. 

If an ensemble (■ "}   of inputs and (x 1}   of outputs is 
i=l n iml 

available at each time instant n, {cn} can be estimated, at least 

in principle, by formulating, the classical regression problem 

^ = s^ cn + w^,  i = 1,2,...I. (3.1.2) 

It may be feasible to transmit only one input at every in- 

stant of time, i.e. 1=1 in equation (3.1.2).  In this case, 

only one equation is available to solve for the L components of 

■ 
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c  for each n.  Unless some structure is imposed on the nature —n 

of the functions c , the problem is unsolvable. —n     r 

One possibility is to represent c  over a finite interval 

of time n, <_ n <_ n_ as a linear combination of sma. 1 number of 

known basis functions.  c  is modeled as —n 

I 
c  = y c(i) 4 (i) (3.1.3) —n   / *   —    n 

i=l 

Now the problem of estimating c over the time interval —n 

n, £ n <_ n reduces to that of estimating the (IL) time invariant 

parameters cd), i = 1, ...I. 

The simplest choice of {<£ (i)} in eq. (3.1.3) is to take 

(j) (0) = 1, 4) (i) = 0 for all other i, i.e., c is assumed to be 

stepwise constant.  More general basis functions, such as poly- 

nomials and trigonometric functions, have been familiar to time . 

series analysts for a long time.  Models of the form (3.1.3) 

have proved to be useful in many engineering applications, such 

as linear predictive analysis of speech [36], system identifica- 

tion [34] and adaptive antenna arrays [41]. 

Markov modeling of c and the associated sequential "state" 

estimation algorithm have been discussed in the previous section. 

Quite often, nothing is known about the structure of c 

except that it is slowly time varying.  In the rest of this 

section, we shall consider sequential least squares algorithms 

that give approxiamte estimates of c . 

• ■ 

. 
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Section III.2. 

C 

An Exponentially weighted Least squares Algorithm. 

The model (3.1.1) is assumed.  If cn = c, a time invariant 

vector, the linear minimum mean squares estimate of c given {x } 
—        n 

and (s }is n 

n 
2« = (f T^ii 

k=l 
:T) 1 (?^xk V) (3.2.1) 

The derivation leading to this estimate treats all the inputs, 
n 

{Sj,}    and observations, (x }, with the same importance.  If 
k=l K 

c were slowly time varying, however, it seems more reasonable 

to attach decreasing importance to past inputs and observations. 

The idea is not new; Jones [27] and Harris [25] have used a similar 

technique for the updating of autoregressive model parameter 

estimates. 

IT I 
We  replace   (- sk*sk  }   and   ^- sk*xk}   in equation   (3.2.1)   by 

m 

^n/k £k*sk > and Cj^ k xk sk*} respectively. {Wn k} is a sequence 

of weight matrices such that 

n 
\^ W 

k=l _ 

^n,k = 0 for n>k 

Wnk-
,-0asn-k->-«'. 

- 

i 
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The only sequence {W . } that we have found useful for the n / K 

purpose of sequential least squares algorithms is of the form 

W . = (I-Q11)"1 {I-Q)-Qn"k (3.2.2) —n, K   — —     _ _ _ 

where the matrix Q has all its eigenvalues in the open interval 

(0,1) . 

With this modification, equation (3.2.1) is replaced by 

((I-Qn)"1(I-Q) i;Qn"kxws,*) (3.2.3) 
--        -z   k=i=   * -k 

Let 

ji.-l „ Ä. A „n-k  *  T -1 
£n = ((I-Qn)"  (I-Q) EQ   S

>* 
s> )'  "'       (3.2.4) 

-n    - -      k=l-    K  K 

and 
n 

dn = (I-Q")"1 (I-Q) V Qn'K xv s,* (3.2.5) 

Then 

En+l " Ul-Q^V1 (i-Q)-Q- i;Qn"k sk*sk
T + 

(I-Q^1)"1 (I-Q) sn+1* sn+1
T} -1 

= {(i-an+1)"1 (i-Qn)Q p^1 + 

(I-Q^1)'1 (I-Q) sn+1* sn+1
T} "1        (3.2.6) 

We now make use of the matrix inversion lemma [43] 

■ 

j—*—*—* ■—---- >.■-....       . _ . -  _, . . , i_ 
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(I+a b7)"1  =   I  - 
bT     (4.19) 

1  + b  a 
(3.2.7) 

Applying  this  result to   (3.2.6) 

I      ^ a"1 (I-Q")"1 (i-Q) ^i* sn+1
T 

p"+i=   = =—r^—^  1      i + =n+1
T En e'1 (i-aB)'1(i-a)sn+i 

Pn 2'
1 (i-Q")"1 (i-fi""1"1) (3.3.8) 

ä„+i ■ (i-s^1)-1 (i-flVaa,, + (i-a""1)-1 (i-a) ^^ ^t 
(3.2.9) 

Then cn+1 = 'Pn+1 dn+1 can be calculated to be 

c   = c 
n+1  cn 

, (P, Q"1a-gn)'1(i-Q)(^+1-£n+1
rcn)>^1 

{1 + in+i
T 2« Q'1 (i-QV^i-Q)^*} 

(3.2.10) 

Equations (3.2.8) and (3.2.10) constitute the exponentially weighted 

least squares (EWLS) algorithm.  The term (x ...-■ in
T c ) is the 

n+i —n+1 —n 

prediction error at time n+1.  Since all the eigenvalues of Q 

are in (0,1), Q -»-0 as n-*-« in norm.  Using this fact, the asymptotic 

FWLS algorithm can be written as 

c ^. = c + -n+1  -n 

pn Q"1 U-Q)  (X U.T-S ^-T c )s* IIn Z   Z _  n+1 -n+x -n sn+i 

1 + 1 ^■,T P Q"1 (I-Q) s  * -n+1 -n -   - -' -n+1 

MM ' 



ln  &  (!-g)sn+1*sn+1 

P +1 = P  a"  -   T ^T T- (3.2.11) 
—n+1—n—  — — —n+i 

n = 0,1,2,...; P  arbitrary 

As 0. ^ :L ' this algorithm becomes identical to the time 

invariant iea^t squares algorithm. 

■ 
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Section IV. 

Analysis of the EWLS ^Igorithra. 

This section is devoted to the study of the EWLS algorithms 

tor two Q matrices: 

Q:sQ(1)=c5l/  0<q<l  , and 

2  = Q(2) = (I + a B-gg)'1 M [ (l+aAi)"1]M"1 

-(l) is the s^Piest choice of Q.  The utility of Q,2. 

is in deriving a computationally simpler Approximate Least 

Mean Squares (ALMS) algorithm (Section IV.5). 

Since the eigenvalues of Q must lie between 0 and 1, 

it is clear that 

0 < a < j  , where X   is the largest eigenvalue of 
max 

Rgg.  This is a necessary, but not sufficient condition for the 

stability of the EWLS algorithm. 

Section .'V.l. 

Properties of P 

-n 
n as 

P   was defined in Sec. Ill (eq. 3.2.4) .^Tor large values of 

in"1 = d-Q) E ^ It  £vT (4.1.1) 
- _ ]<=! _   ^ ^ 

The key to the analysis of P ~  is to recognize that P ~1 —n ' —n 
is the output of a matrix valued low pass filter {Qk} whose 

T — 1 
input is (s* s  } .  Therefore the mean value of P ~  is R 

is. —K. _n        —<3 Q ' —n     —s s 

u 

wM im* ■-■-■- _ 
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regardless of the choice of Q and the nature of the signal. 

The variable component of P is harder to determine and 

is strongly dependent on the exact structure of the signal and 

the choice of Q. We shall consider the following cases. 

T 
1.   Q = Qz-iw and^s* s, } has a line spectrum at frequencies 

fd), f(2) . . f (m) .  This will be the case, for example, if 

{s_, } is a periodic pulse train or a sum of sinusoids.  In this 

tv -1 
case, the (i,l) " element of P   is the form 

— n 

and 

P^"1 (i,l) - P^1 (1,1)  - 

(1"q)- ? r*rT7=T-gU,l)(m). 
m i - a e"j7rf(my 

similarly, for Q - Q-, 

[P,,'1 (k,l) - P "1 (k,l)] has the form —n —n 

E zM.aJ^M ^■1' (E(m" 

whore g'(k,l)(f(m)) is a bounced linear combination of the 

T 
elements of s* s, . 

These expressions will be uniformly small if each f(m) 

is not within the passbands of the low filters {Q }.  If a periodic 

» 

im 
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pulse train is used as input signal, it is n-^essary that it« 

pulse repetition period be much smaller than the time constants 

of the averaging filter, Q. 

rn 

^  Q, = ft(i); ^lj \   J has a continuous bounded spectrum.  An 

|       example of this is the pseudorandom noise sequence.  In this 

case, the average power (or variance) of the variable component 

of each element of P   is 
—n 

i 
var {(£n"

1 - ln  
1) (i,l)} = 

: 1/2 2 

/ -. n?Wr2 '^k (i) £k
fl)(f)|2 (4.1.3) 

-1/2 I "^ e     I 

where f indicates that the integral is evaluated after omitting 

*        the spectral line at f ^ 0. 

If g"(i,l) - max |s*(i) sk(l) (f) |2 < oo , 

then 

Var {(Pn"
1 - Pn"

1)}(i,l) < (1-q) . g"(i,l) 

so that for small (1-q), the time varying component of P ~1 
—n 

has small power. 

Similarly, for Q = Q9, 

Var {{Zn~l  -l^Xi,!)) < a b (i,l), where b(i.l) is some 

bounded constant. 

[ 
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Stability of P 
•    35 

rar {P "1(k,l)} = A
2
 i^Hl- for k ^ 1 

. 2X2  1^1 for k = 1 
1-q 

In order to obtain adequate stability, we set 

ZVar {PTi"
1(k,l)}   X*.     = X2 

Y 1 mm ITl T r\ 
k,l 

n  ■ ' -  _ mm 

i.e. (L+L ) (1-q) < 1 + q  or 

d-q) < 4-^ -2      -   2 L+L      L^ + L 

r 

Since P ~  is a time varying matrix, there is little 

guarantee that it is invertible at all.  We can reasonably hope 

that if the sum of the mean power of the variable components 

of all the elements of P ~  is much smaller than the smallest —n 

eigenvalue of its mean, viz. R   , then P ~ would be invertible. —ss       —n 

Due to the complexity and signal dependence of the expressions 

for the time varying components of P   , it is hard to make any 

general statements about the conditions for the stability of the p-* 

EWLS algorithm. 

As an illustration, assume that the input signals are inde- 

pendent gaussian random variables such that R = X I.  In this           r 

case, with Q = Jtni ' 

P -1 = X I ^- ' H —n      — 

—n i-q 
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; 

(4.25) 

with Q - Q,-., a < (2) ' u - —5  • 
-   -     ' (L2+L)X 

Anticipating the results of Section IV.5., this is our con- 

dition on a so that the LMS algorithm is stable, with independent 

gaussian inputs.  A more accurate analysis by Merriam [39] indicates 

that the LMS algorithm will be stable if 

2 a 1 L +  2   '     Therefore, our criterion for stability is 

rather pessimistic. 

We shall denote Pn"  by P ~1  + N , where N  lumps togetehr 

all the time varying components of P   .  Hopefully, each element 
—n 

of Nu has small variance, and therefore we are justified in making 

the approximation 

X ^ '•      P = rp -V1 „ R -1 - R "I M p "I Pn =  (Pr,   )    ■   *L o    - R      N  R —n   —n     — —ss    —ss  —u —ss 

mmmm ■ ■ i ■ f -       -  - . - 
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Section IV.2. 

Tracking Behavior of the EWLS algorithm 

fi. The asymptotic expression for the estimate of c at time n 

(eq.(3.2.3)) can be written as 

w c  = ((I-Q)f;Qn"k s* s,1)"1 (I-Q) i;Qn"ks* (s.V+v/J (4.2.1) 
■A ~n       = - k=i=     "k "k        = - k=i=    "k   "k "*   J- 

If c„ = c, a constant, c is an unbiased estimate of c. —n  — ' -n - 

Since c  is linear in c and w , the effect of additive noise will —n —n     n 

be considered separately from that of time variation of c .  In 

the rest of this subsection, w will be assumed to be zero. '  n 

A step variation in c  is easily analyzable.  Let c  = c/1N —n        ^     ^ —n  —il) 

for n<n-, and c = £,_, for n>n, .  Then at time n,+n, 

Wl+n     n.+n-k _ * 
c_^_    = P„,„   {(l-Q     E    Q s*  s-    c,.,   + --n+n,       -n+n,     — ^    £?1 ~ -k —k    — (k) 

(I-Q)Qn   Z   Qn"ksJ  sk
T}   (c(1)-c(2)) (4.2.2) 

The first term of (4.2.2) is recognized as c _..  The second 

term, which represents the error in the e.stiamte of c 
~nl n 

approximatelv equal to Q (c^.-c,-.) and approaches zero at an 

exponential rate. 

Next we consider the case 

^n = £(1) e   0 

Now 

- - - - 
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j2Trf0      (4.2.3) 

C 

1 

T^ 

c„ = P (1-0) T  (Q e"j27TfO)n-ks* s T c _n  -n--'^^       >       sk sk  u(i; 8" 

The weights [ (Q e":,27rfo)k} represents the impulse response 

to a first order bandpass filter whose       freuqency is at 

"fo*  This bandPass filter operates on the sequence {s*s. T} and the 

means value of the output of the filter Z   (i-c e~:'27rfo) "1R 

The variable component of the output, denoted by N ', is highly 

dependent on the detailed signal structures and can be treated 

in exactly the same manner as in the analysis of P "1.  (Sec,IV.1). 

£n 
Z   (^s"1 * ^s"1 ^ R^"1) (l-Q) (i-Q e-^^fo)"! 

(^s +NU
,) £(i) e-j27Tfo 

—ss   — —   — - —ss 

■ - ^s"1 ^u ^ss"1(i-^ fi-fi e-^^O)"1 Rss 

+ R s"1 (I-Q) (I-Q e~i2irfO)-1  Nu'}, c 
-1 

For Q = ql, 

1-4 e i-g e D^^^o       -  - 

and for Q = (1+ oR  )~1, 

■■MlHi 



(4.28) 

c  = M [ i. —-T-]M  L  c 
— l+A.a-eJ   0 

i 

1 ^ •a _T 
- R  "■L N   M [ * —-—IM"1 c -ss   —u  — , L »     -i2TTf0 —  -n —    —  — l+A.a-eJ   0— 

i 

+ :1 I T^T-l*1"1 N.,' c^ (4.2.5) 
l+A.a-eJ   o—  —  — 

We showed that each term of N  (and similarly N ') is a time 
—u Zu 

varying function whose variance (or power, in the case of deter- 

ministic signals) is proporational to (1-q) or a, according as 

Q = q I or Q = (!•• aR e,)"
1. —    —   —   —  —ss 

Since (1-qi and a are assuemd to be small, the effects of 

N ' on c are second order effects compound to the first terms of 

(4.2.4) and (4.2.5).  Further, in order to ensure chat 

c  ~ c , it is essential that -n  —n 

, X .a 
 " q_i2Trf   ~ i    and rrnri   :: 1- 
!  _  q e  321TrO 1  +  X.ct   -  e   ^^^ 

Under  this  condition,   N   '   and N   '   will be  highly correlated,   since ' -u     -u ^  ^ 

they are the results of filtering the same sequeir-e ^sj^s, } with 

two linear filters with highly overlapping passbands.  Therefore 

each element of N'- N will be negligible in comparison with the —u    ^u 

first  from  of   (4,2.4)   and   (4.2.5). 

c     :   1   "   g?rf       cn for Q  =  q   I (4.2.6) 
-n       1-q  e   D2Trfo    "n - - 

- 
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c = M —n  — 
ha 

,-1 

l+X.a-eJ   o 
tl~  £n 

for 9.  = (I^Rgs)"1 (4.2.7) 

Since cn is linear in c^,   the equations (-1.2.6) and (4.2.7) 

can be generalized to the case where c consists of sums of 

sinusoids, and in the limit, has an arbitrary spectrum c(f). 

U2 

C  =  /    1 - ^  5(f)  eJ2TTf 
-n  /,. 1 - q e-^f - 

df  for 0=0,  (4.2.8) 
-1/2 '        lJ ^ 

1/2 

c  = /  M 

-1/2 

X.a 

Ll + X.. -e-^^J z'
1 eJ2'f i(f) dt ^ ? " ^ 

(4.2.9) 

These expressions for cn show that it is highly dependent 

•^ v ■#-  on the spectrum of cn.  In addition, for 0 = Q2, cn also depends 

on the data correlation, via M,  If special forms are assumed 

for c(f) and M, it may be possible to evaluate these integrals 

M explicitly.  For example, if M is taken to be the identity matrix 

and cn is assumed to have a uniform lowpass spectrum, a rational 

spectrum or a harmo.iic spectrum (4.2.8) and (4.2.9) may be evalua- 

ted explicitly.  We shall not carry out the details, but simply 

point out that if the bandwidth of each component of c(f) is 

much smaller than the bandwidth of the matrix low pass filter whose 

[5        transfer function is U-Q) (l-Q e~:'2T;f)~1, c : c . 

An important point should be noted if periodic pulse trains 

are used as input signals.  If the input signal has a period T, 

the spectrum of (sj sk
T} will have h .rnonic components at fre- 

quencies of integral multiples of 1/T.  It is essential to ensure 

that 1/T is much larger than the sum of the bandwidths of the low- 

 —b   ■ i ■ i . ^. ■ A - ■ . *- - -' - - ■ ^ -       _■    - • - ■___ 
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pass filter {Q } and the largest significant frequency component of 

8(f), f .  Otherwise the bandpass filter {(Q e"3^ 0) }in eq. (4.2.3) 

will introduce significant time varying components in c . 

H 

*mt* ■ 
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Section IV.3. 

Effect of additive noise. 

Let {xk} = {wk} i.e. cn = 0 for all n.  Ideally c 

should be zero for all n.  In this section we shall examine how 

closely cn approximates this ideal. 

£n " £n (I-ft) ^Q^ sk* wk (4.3.1) 

EM  (c } = 0    and wn -n 

w 
E   (c  c *T}  = P (1-0)    (Y   nn-k .* ^2 <= T/n*T,n-K 5W ^n £n*

T}  = Pn (I-Q) (Z Qn"k 
n -11 k=i - 

I£ c~  ik (ft* )   ) 

(i-Q*T)Pn*
T (4.3.2) —n 

^ % r»w      If we take ft ■ q I, 

E  c c *'1'  - n-r-r^2 D  /V „2(n-k)  *   T 2» „ E
w £n £n   - d-q) Pn ( L q     sJ sk a ) Pn 

: d-q)2 ^Z1  iwj,    a2 R^-1 

-Sb    (l-q
2)      Zss 

2     -ss 

This is the mean value of the expectation of E {c c*T}. 
w —n—n 

In addition, this covariance matrix has time varying components 

with power on the order of (l-q)2, arising from the fact that 
^> 2 (n—k)     T 

£n and 2^ q    L s* sk have time varying components. 

—" ■ ■ M ■ ■ m   --■-■--■••---■    .-J-,..^_   _-. >^_- .■_■.-■._..._. > _ ■ _ » _ . . . . a . I- , ... 
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(4.32) 

We have not been able to obtain any simplification of 

(4.3.2) when Q = (I + a R j"1. —   —    —ss 

- * - 
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Section IV.4. 

Choice of input signal for adaptive estimation in doppler corrupted 

communication channels. 

Until now, we have ignored all doppler shift effects and 

assumed that the observations {xk} can be modeled as a noisy 

linear combination of the undistorted input signals.  In this 

subsection we consider a more general model of the form 

x
k ■ IkT £k + \ (4.4.1) 

where 

v, is defined by 

vk(l) 

K t=k 

v(i)(t) = s(i) (P(l)-t) , i = 1,2,...L; P(i) = doppler scale 

associated w^th the i  component of s(t). 

In order to focus on the influence of the wideband ambiguitv 

j       function of s(t) on cn, we simplify matters by assuming that 

£n 
= £ = constant and wk = 0.  We have shown in Sections IV.2. and 

IV. 3. how these restrictions can be removed.  With these assumptions 

S« = ln   (I-ft) (^ 2n"k sk* vk
T)c (4.4.1a) 

Define 

,n-k . A .. T 

' «       and 

» 

MiM*ariM*M*aikai^MM^n^a^H^^^^ 
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n 
D 
—n Z  2 

k=l " 

Q   s* s, 
—k —k 

(4.4.3) 

T 
D" is the output of passing the sequence (s* v, } through a 

lowpass filter with coefficients (Q ) so that the mean value of 

T — 

D1 is the time average of is* v. }. 
—n —k —k 

The (hopefully small) variable component of D' will depend 

T 
on the spectral characteristics of (s* v, }. 

Therefore, the mean value of the (i,l)   element of D' is 

n 

D' (i,l) = lim - y]s(i) Mt) 
n-»-00 n k=l t=k v(l) (t) t=k 

= lim - Z^s*i) (t 
n^-00 n 

) t.k ' s(l) (P(l)-t t=k 

In  the absence  of  doppler  scaling, 

(4.4.4) 

'"   r 

^i'D   "  && S |51
S*(i)(t) 

t=k 
•   s(l) (t) t=k 

(4.4.5) 

Define the cross  ambiguity  function between  s(i) (t)   and 

s (1) (t)   as: 

Xs(i),s(l)    (T'P) =     lim ^    /   s*(i)(t)   s(l) (P(t-T))dt, 

Assuming that  aliasing  errors due to  sampling  are  negligible, 

eq.    (4.4.4)   is  the  cross  ambiguity  function between  s(i)(t)   and 

s(l)(t)   at  zero  lag,   i.e. 

.     _      .      . 
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S"'1'1' =Xs(i),s(l) <0'p<1' 

Similarly, 

|a':i) =Xs(.i)/s(l)
(0'1) 

Since cn is equal to (from (4.4.1a) and (4.4.2)) 

£n - £n ilrQ)   '   D^ £/  it is clear that the estimation 

algorithm will be insensitive to doppler scaling if and only if 

S^-Sn' i-e- xs(i) ,s (1) (0'P(1) ) is  independent of P(l).  In 

other words, for doppler insensitive adaptive estaimtion, s(i) 

and s(l) should be chosen such that 

t 

i 

*k(i),*a)i0'*ll)) =^sa)fsii){0'1) (4.4.6 

conversely, if ^ (i)/S (1) (o,P(1)) : 0 for P(l) ^ 1, i.e. if s(i) 

and s(l) are doppler sensitive signals, c ^0 irrespective of the 

value of c. 

A class of wideband doppler insensitive frequency modulated 

signals has been developed by Altes and Titlebaum [ E ].  They 

have the general form u(t) = a(t) ejblnt where a(t) and b control 

the time width, bandwidth and rate of variation of instant, aneous 

frequency of u(t).  This class of signals has the property 

*u,u(t,P) :e^p^u(T,i,. 

M^^^-M^^^^ - ■ - -    -    -  .  - — ■— 



......   , . „. v. . ..  mm 

(4.36) 

If the input signals {s_, } are chosen from this class of 

signals as 

{s   } = {a(l)(t) e^b(1)lnt, a(2)(t) e^(2)lnt, . . . 

a(L)(t) ejb(t)lnt}T ' 

the estimate of c in the presence of doppler scaling will be 

c     =   (c(l) eJb(l)lnP(lt(2)jb(2)lnPi2)    (L) .jb (1) InP (L) ,1^ 
—n J ' 

While this estaimte is not independent of the doppler seal- 
m Ä 

ing factors (P(l), ... P(L)) , these appear in c  in a relatively 

tractable fashion as a simple phase shift of each component of 

c. 

Another class of noise like signals with desirable doppler 

insensitity properties was suggested to the author by Prof. 

E. Titlebaum.  They are of the form 

r 
u(t) = y   a(i) f (P(i) (t)) 

i=l 

where  f (t)   is generated  by  suitably modulating  a  pseudo random 

sequence.     We have not undertaken any  intensive  study  of  the 

ambiguity  functions  of  such  signals. 

^■~-----------        -        ■ - ■ ■ - -        - -..  ,      .     . - l_J . ^. ■ , . , . , . . .    . -^   __ - -      - - 
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Section IV.5. 

A simplification of the EWLS algorithm. 
— . .—■  

The EWLS algorithm has been shown to be able to track slow 

time variations of cn and with a choice of doppler tolerant 

input signals, to be insensitive to doppler scaling effects.  The 

main practical difficulty in the application of this algorithm 

is that it is computationally cumbersome.  It is worthwhile to 

look for possible simplification that will make the EWLS 

algorithm more attractive for real time applications. 

consider eq.(3.2.10) for updating c : 3 —n 

c  1=c+-
n-   ZZ -n+1   n+1 -n+1 -n 

—n+1   —n   

1 + «nJi ln  Q"
1 (i-Q) s*+1 

rr  Let Q = (i + a.Rc)~1  and P "1 = R  + N 
_   _   —ss       —n    —ss  —u 

where ^ is the time varying component of P "^  For small a, 

we have argued in Section IV.1. that the power (or variance) 

of each component of N  is "small". 
-HI 

Let 

p  r R  "1 - R  "1 N  R  "1 
-n  -ss    ^ss  -^u  -ss 

epn+l " 
xn+l " ^n+1 k' 

Using these definitions and approxiamtions, the second term 

on the right hand side of eq.(3.2.10) can be replaced by 



axn+l* 
ePn+l " 

(a^: 
-1 

(4.38) 

—11   ^ n 4- I  —n • - I ss   —u  ^n+1 —n-M 

r- 

^ ^n+l I' £ Pn+l^-S.i'^^Vl^ 

d+ccsJ^i-R^-1 NJ^^) 

Define the "misadjustment" vector 

aep J.. (R ^■:L N + a [S ^T |2(I-R e"
1 N.,) )■*«., ^n+1 —ss  -u    '—n+11  — —ss  —u — n+1 

n -ma 
(1 + al^n+l 

1 m 
- a s ^  R   N  s* ^. —n+- —ss —u — n+1 

(4.5.1) u 

Due to the fact that a is "small" ani each element of N —u 

is "small", each element of n , is "small" compared to aep ., —ma n+i 

s  *.  For special cases of (s. }, such as pseudo random noise and n' x K 

sums of sinusoids, the expression for n  may be evaluated 

explicitly.  For more general classes of input signals, it appears 

hopeless to study the properties of n  analytically. 

With the reasonable assumption that n  is "small", we may —ma 

ignore it altogether and write c  - (eq. 3.   ) as 

c _,_! = c + ct s  *(.:.,- s ., c ) —n+1  —n    —n+1 —n+1  —n+1 —n 
(4.5.2) 

As before, c is arbitrary. 

Eq. (4.5.2) will be called the "Approximate Least mean 

Squares" (ALMS) algorithm.  We have derived this algorithm from 

the EWLS algorithm with Q = U +aR  )   simply by omitting a 

. 
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small "misadjustment" term.  Except for this additional source of 

error, our analysis of the EWLS algorithm carries over to the 

ALMS algorithm also.  Specifically, our discussions of the track- 

ing behavior and the doppler sensitivity of the EWLS algorithm 

apply to the ALMS algorithm also. 

The ALMS algorithm is similar to the so called "Least Mean 

Square" (MS) algorithm developed by Widrow [51].  Widrow's 

version of the LMS algorithm reads 

—n+1  —n s * U- s  c ) —n  -n  —n —n (4.5.3) 

The discrepancy between (4.5,2) and (4,5.3) is probably due 

to Widrow's use of some dubious "approximations" such as "estimate 

the mean of the stochastic gradient by its instantaneous value" 

etc. (sic!) [51,54 ]. 

Several interesting signal processing applications of the LMS 

algorithm, such as prediction, antenna array design, noiM cancel- 

lation and network modeling have been discussed by McCool [ 37 ] 

and Widrow and his coworkers [52,53 ]. Some other interesting 

applications of the LMS algorithm are in the areas of equalization 

in communication channels [20,40], echo cancellation [48] and, 

signal to noise ratio maximization [47,55], and instantaneous 

frequency estimation [23].  Analog equivalents of the LMS algorithms 

have also been considered by researchers [49]. 

. 
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Section VI. 

Topics for irurther reaearch. 

1. The adaptive algorithms considered in this report have 

assumed that the observations are linear functions of the unknown 

parameters j^.  The possibility of extending these results to 

nonlinear regression problems can be investigated.  Section T1.2. 

on Kaiman filtering indicates how this problem can be approached for 

time invariant c.  The question is whether and how the nonlinear 

Kaiman identification algorithms can be modified to apply to 

time varying situations.  Possible applications include phase 

tracking in coherent communcation systems and simultaneous 

estimation of doppler seales and dispersion amplitudes in communica- 

tions channels. 

2. The estimation errors in adaptive filtering with the approxi- 

mate least mean squares algorithm are highly dependent on a, the 

gain constant.  The "misadjustment" noise and additive noise 

components of the error decrease, and the tracking error increases, 

with decreasing a.  Presumably, there is an optimum choice of a 

for which the total error is minimized.  In view of the com- 

plexity of the expressions for the three sources of error, it 

seems that a well chosen variable gain sequence is the only 

feasible way to find the optimum a. 

3. We have shown that the "misadjustment" noise in the ALMS 

algorithm is related to the spectral density function of each 

term of {sk* sk }.  The misadjustment noise will be reduced if 

the sequences (sk*(i) ^(D) for each i and 1 have relatively 

 ■-.-.-_-■- 
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small frequency components in the low frequency region.  It is 

useful to find signal sequences t^-it have this property. 

♦ 

-:■- 

  - -  . _ - . - - «_ - • - - ■ ^^_j - - _ ^ . __.  



.■;:- - 

■■ ■■ 

(4.41) 

Section VI. 

Topics for further research. .  _ 

^J       1.  The adaptive algorithms considered in this report have 

assumed that the observations are linear functions of the unknown 

parameters a.     The possibility of extending these results to 

M nonlinear regression problems can be investigated.  Section II.2. 

on Kaiman filtering indicates how this problem can be approached for 

time invariant c.  The question is whether and how the nonlinear 

!       Kaiman identification algorithms can be modified to apply to 

time varying situations.  Possible applications include phase 

tracking in coherent communcation systems and simultaneous 

estimation of doppler seales and dispersion amplitudes in communica- 

tions channels. 

2. The estimation errors in adaptive filtering with the approxi- 

♦ (•   mate least mean squares algorithm are highly dependent on a, the 

gain constant.  The "misadjustment" noise and additive noise 

components of the error decrease, and the tracking error increases, 

with decreasing a.  Presumably, there is an optimum choice of a 

for which the total error is minimized.  In view of the com- 

plexity of the expressions for the three sources of error, it 

seems that a well chosen variable gain sequence is the only 

feasible way to find the optimum a. 

3. We have shown that the "misadjustment" noise in the ALMS 

algorithm is related to the spectral density function of each 

term of (i^* £k }.  The misadjustment noise v.ill be reduced if 

the sequences (sk*(i) sk(l)) for each i and 1 have relatively 

.-■■■ 
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