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b The r-Stirling numbers

ANDREI 7. BRODER
Department of Computer Sctence
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\

Abstract. The 7-Stirling numbers of the first and second kind count restricted permutations
and respectively restricted partitions, the restriction being that the first r elcments must be
in distinct cycles and respectively distinct subsets. The combinatorial and algebraic properties
of these numbers, which in most cases generalize similar properties of the regular Stirling
numbers, are explored starting [rom the above definition.
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§1 Introduction

The r-Stirling numbers represent a certain generalization of the regular Stirling numbers,
which, according to Tweedie [26], were so named by Nielsen [18] in honor of James Stirling,
who computed them in his “Methodus Differentialis,” [24) in 1730. In fact the Stirling numbers
of the first kind were known to Thomas Herriot [15); in the British Muscum archive, there is a
manuscript [7] of his, dating from around 1600, which contains the expansion of the polynomials
(:) for k < 7. Good expositions of the properties of Stirling numbers arc found for example
in [4, chap. 5], [9, chap. 4], and [22].

In this paper the (signless) Stirling numbers of the first kind are denoted [,’;], they are
defined combinatorially as the number of permutations of the set {1,...,n}, having m cycles.
The Stirling numbers of the second kind, denoted {1}, are equal to the number of partitions
of the set {1,...,n} into m non-empty disjoint sets. The notation {| and {} seems to be
well suited to formula manipulations. It was introduced by Knuth in [10, §1.2.6], improving
a similar notational idea proposed by I. Marx [20). The r-Stirling numbers count certain
restricted permutations and respectively restricted partitions’ and are defined, for all positive
r, as lollows:

n The number of permutations of the set {1,...,n}
[ = having m cycles, such that the numbers 1,2,...,r are (1)
r  in distinct cycles, '

and

= m non-cmpty disjoint subsects, such that the numbers (2)

1,2,...,r are in distinct subsets.

{n} The number of partitions of the set {1,...,n} into
m r

There exists a onc-to-one correspondence between permutations of n numbers with m cycles,
and permutations of n numbers with m lefl-to-right minima. (This corespondence is imnplicd in
[22, chap. 8] and formalized and generalized in [6]).) To obtain the image of a given permutation
with m cycles put the minimum number within each cycle (called the cycle leader) as the
first element of the cycle, and list all cycles (including singletons) in decreasing order of their
minimum cleinent. Afler removing parentheses, the resull is a permutation with m lell-to-right
minima. If the aumbers L,...,r are in dislinct eycles in the given permutation, then they
are all cycle leaders and the last r left-Lo-right minima in the image permutation are exactly
r,r—1,...,1. Therefore we have the alternative definition

The number of permutations of the numbers 1,...,n

havmg m lelt-to-right minima such that the numbors 3
m], = .,r arc all left-to-right minima (or such that (3)

tlu‘ numbcrs 1,2,...,7 occur in decreasing order).

Each non-emply subsct in a perinutation of an ordered set has a minimal clement; a partition
of the set {I,...,n} into m non-cinpty subscts has m associaled minimal clements. This
terminology allows the alternative definition

= into m non-empty disjoint subscts, such that the num- (4)

{n} The number of ways lo partition the sct {1,...,n}
r  bers 1,2,...,r are all minimal clements.

-9 .
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Note that the regular Stirling numbers can be expressed as

B = g
R A R P

Another construction that turns out to be equivalent to the r-Stirling numbers was recently
discovered by Carlitz [2],[3], who began from an entirely different type of generalizalion,
weighted Stirling numbers. Also equivalent are the non-central Stirling numbers studied by
Koutras [17) starting from operator calculus definitions (sec section 12). The simple approach to
be developed here leads to further insights about these numbers that appear to be of importance
because of their remarkable properties.

and also as

§2 Basic recurrences

The r-Stirling numbers satisfy the same recurrence rclation as the regular Stirling numbers,
exeept for the initial conditions.

Theorem 1. The r-Stirling numbers of the first kind obey the “triangular” recurrence

A
n] =0, n<r,

.mr

[n

Lm], = 6""7’ =D (@
('n] =(n_1)[n—l] +[n—l]' ">

\mj, . m |, m—lr

Proof: A permutalion of the numbers 1,...,n with m left-to-right minima can be formed from
a permutation of the numbers 1,...,n— 1 with m left-to-right, minima by inscrling the number
n aller any number, or from a permutation of the numbers 1,...,n—1 with m — 1 left-to-right
minima by inserting the number n before all the other numbers. For n > r this process docs
not change the last 7 left-to-right minima, §

Theorem 2. The r-Stirling numbers of the second kind obey the “triangular” recurrence

{n} =0, n<r,
m'

{n}' = pm,r) n=r, (8)

m

{n} {n-—l} {n—ll
=m + , n>r.
mj m J, m—1",

- 8-
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Proof: A partition of the sct {1,...,n} into m non-empty subsets can be formed from a
partition of the sct {1,...,n — 1} into m non-emply subscts, by adding the number n to any
of the m: subsets, or from a partition of the set {1,...,n — 1} into m — 1 non-empty subsets,
by adding the subset {n}. Obviously, for n > r this process does not influence the distribution
‘of the numbers 1,...,r into dilferent subsets. §

The following special values can be casily computed:

- e

HEREREE

' [’r']= (n—l)(n—2)...r=r;'—',- i‘azr; (11)

{n}' =", n > r.- | (12)

The r-Stirling numbers form a natural basis for all sets of numbers {a, i} that salisfy the
Stirling recurrence except for an n. That is, the solution of the Stirling recurrence of the first
kind

W 0, n <0, (13)
Gn k = (" - l)an—l,k +an—1,k-1, k ?é nn _>. 0,

is
n
Qn,k = z [k] (ar,r - ar—l,r—l)° (14)
r r
Similarly, the solution of

b,.,k = (0, : n<0,
bn,k = kbw—l,k + bn—l,k—ly k 75 n,n 2. 0,

L | bk = Z{:}'(br,r = b,_1,p-1)- (18)

r

For concreteness, the lollowing tables were compuled using the recurrences (7) and (8).

~ & -
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k=1k=2 k=3 k=4 k=5 k=6

n=1 1 n=1 1

n= 1 1 n= 1 1

n= 2 3 1 n= 1 3 1

n= 6 11 6 1 =4 1 7 6 1

n= 24 5 35 10 1 n= 1 15 25 10 1

n=6| 120 274 225 8 15 1 n==6 1 31 9 6 15 1
Table 1. r =1

[:z k=2 k=3 k=14 k=5 k=6 k=7 {;:}2 k=2 k=3 k=4 k=5 k=6 k=17

n=2 1 n=2 1

n= 2 1 n= 2 1

n=4 8 5 1 n= 4 5 1

n= 24 26 9 1 n= 8 19 9 1

n= 120 154 11 14 1 n= 16 65 55 14 t

n=7| 720 1044 580 155 20 1 n=7| 32 211 28 125 - 20 1
Table 2. r =2

[;:].1 k=3 k=4 k=5 k=6 k=17 k=8 {(}}, |[k=8 k=4 k=5 k=6 k=7 k=38

n=3 1 n=3 1

n= 3 1 n=4 3 1

n= 12 7 1 n=>5 9 7 1

n=6| 60 4T 12 1 n=6| 271 31 12 1

n= 360 342 119 18 1 n=7| 81 175 97 18 1

n=28| 2520 2754 1175 245 25 1 n=8| 243 781 660 205 25 1
Table 8. r=3
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- §3 “Cross” recurrences

The “cross” recurrences relate r-Stirling numbers with different r.

Theorem 3. The r-Stirling numbers of the first kind ac;tiafy
n 1 n n
[m]' Tr— 1([m - 1],_1 - [’m - l_]r)’ nzr>1l an

Proof’: An alternative formulation is -

(r - 1)[,';] = [mt 1],_1 - [,,,': 1],'

The right side counts the number of permutations having m — 1 cycles such that 1,...,r — 1
are cycle leaders but r is not. This is equal to (r — l)[,’;]' since such permutations can be
obtained in r — | ways from permutations having m cycles, with 1,...,r being cycle lcaders,
by appending the cycle led by r at the end of a cycle having a smaller cyclc leader. §

Theorem 4. The r-Stirling numbers of the second kind satisfy
’ n n ' n-—-1
| e S RS )

Proof: The above cquation can be written as

-2 ={n) -

IR
L

v
B ,‘:1':'
1

ST e
o aes
-

The right side of the equation counts the number of partitions of {1,...,n} into m non-empty
- subsets such that 1,...,r — 1 are minimal clements but 7 is not. Bul this number is cqual
E4 to (r — l){",';'}',__l because such partitions can be obtained in r — 1 ways from partitions of
= {1,...,n} — {r} into m non-cmply subscts, such that 1,...,r ~ L arc minimal, by including r
:- : in any of the r — | subscts containing a smaller clement. @
e
5
b

§4 Orthogonality

T

The orthogonality relalion between Stirling numbers gencralizes to similar relations for
r-Stirling numbers.

-6 -




Theorem 5. The r-Stirling numbers satisfy [2, eq. 6.1]

Sl - g

otherwise.

Proof: By induction on n. For n < r the cquality is obvious. For n =1

Sl {8} =l -

For n > 7, using Theorem 1 and the induction hypothesis

n| [k p n—1] [k
_1k= _ _m_ln—l _ k,
3] {0t = o mcr e DR ) 0
and (assuming m > r) by Theorem 2 applied to the right sum, and the induction hypothesis

2 [:],{:.},‘*"* = (1= Dbnot,m (1) = bt ()" = g (1)

= 6p m(—1)".
|
Hence for each 7, the r-Stirling numbers form two infinite lower triangular matrices satis-
fying
) il oS P
AP xS Lt I = 0i>r 6 5(—1), (20)
Jl, J),
where

’ ls ] Z j;
bi>; = .
0, 1 < 7.

and we also have

Theorem 6.

* , otherwise.

These orthogonality relalions generalize as shown in scclion 1.

§5 Relations with symmetric functions
The Stirling numbers of the first kind, [;], for fixed n, are the clemeniary symmetric

functions of the numbers 1,...,n (sce, e.g., [1] or [5]). The #-Stirling numbers of the first kind
are the clementary symmetric functions of the numbers 7,...,n.

-1 -
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Theorem 7. The r-Stirling numbers of the first kind satisfy

n
= itig...imy  mym 2 0. (22)
[ﬂ - m]f 'S“l < Z

l.g"‘<l'm <n

Proof: Consider a permutation of the numbers 1,...,n having n — m left-to-right minima.
How many such permutations are there that have a given set of minima? Denote the numbers
that are not minima by ¢y,¢3,...,%,, where {; < iz < -+ < t,n < n. A permutation with
the prescribed sel of left-to-right minima can be construcled as follows: write all the minima
in decreasing order; insert #; after any of the 4, — 1 minima less than 1,; insert 45 after any
of the 13 — 2 minima less than g, or after #;; etc. Clearly there are 1; — 1 ways of inserting
11, t2 — 1 ways of inserting 12, and so on. Hence the total number of permutations with the
given minima is (¢; — 1)(s2 — 1)...(¢m — 1). If the numbers 1,...,r are minima, then 1, > r.
Sumiming over all possible sets of left-to-right minima we get

n . . .
[n_m] Y =1 (im—1)
T r<ii<iz<im<n n,m20
= Yo diiz.im
r<n<u-<in<n

The above theorem can also be proved by induction, but it is more interesting to secc the
combinatorial meaning of each term in the sum. Its counterpart for r-Stirling numbers of the
second kind is '

Theorem 8. The r-Stirling numbers of the second kind satisfy

{n +m} = Z 1112, .. Ty, n,m 2 0. (23)

n r<ii < <im<n

Proofl': Count the number of partitions of the set {1,...,n + m} into n non-cmpty subscts, when
the n minimal clements are fixed. Denote the elements Lthat are not minimal by z(,...,Zm,
where 2 <+« < 2. If we let 25 be the number of minimal clements less than zj, then
1) i £+ £ 9y < 7. Clearly z; can belong only Lo subsels having a minimal clement
less than it, so that there are 7; ways to place it. Ilence the total number of partitions with a
given sct of minimal elements is 2,%3...4,,. I the numbers 1,...,7r arc all minimal elements,
then 4; > 7. Summing up over all possible sets of minimal clements completes the proof. §

Therefore the r-Stirling numbers of the second kind, {"t"‘}', arc the monomial symmetric
functions of degree m of the integers r,...,n.

-8 -
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§6 Ordinary generating functions

Corollary 9. The r-Stirling numbers of the first kind have the “horizontal” generating
function .

Z[n] zk={z’(z+r)(z+r+l)...(z+n—1), n>r>0; 24)

0, ‘ otherwise,

Corollary 10. The r-Stirling nymbers of the second kind have the “vertical” gemerating
function (2, eq. 3.10]

zm

m2>2r2>0

S{E}# = U=t D= ™22 (25)

k. 0, otherwise.

The above identitics follow immediately from equations (22) and (22).

§7 Combinatorial identities

Lemma 11.

M Iy IREIES *

Proof: To form a permulation with m cycles such that 1,...,r are cycle leaders first choose
k numbers to be in the cycles led by 1,...,p and construct Lhese cyeles; this can be done in
n—r

X )[”:"]P ways. The remaining n—p—k numbers must lorm m—p cycles such that p+1,...,r

n—p—k

are cycle leaders, which can be done in [ mep
r—

p Ways. Using equation (11) and summing for

all k completes the proof. 1§

In particular for p = r we obtain a definition of r-Stirling numbers of Lhe first kind in terms
of regular Stirling numbers of the first kind (2, eq. 5.3),

IS ] (g L ol (o I

This shows that [,’:.’:_',]', for m,n > 0 is a polynomial of degree n — m in 7 with leading

cocflicient (:‘) and Lemma 11 can be generalized to a polynomial identitity in p and 7:

-9 -
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Theorem 12.

For p = r — 1 we get another “cross” recurrence
[n] =E(n—r)[n—l—k] Bl
m| - k m-1 | _,
Recall that [2], =[], for n > 0, s0 that

-CE e

an identily that appears in Comtet [4, eq. 5.6¢], and also in Knuth (10, eq. 1.2.6(52a)].

Lemma 13, :
n n—r\fn—p—k &
= > 0.
{m}r zk:( k ){ m-—p }r—pp’ rzp_o

Proof: By combinatorial arguments analogous to the proof of Lemma 11. [ ]

The counterpart of cquation (27) is [2, cq. 3.2]

D) Ml e

(28)

(29)

(30)

(31)

(32)

which shows that {**"}  for m,n > 0'is also a polynomial of degrec n—m in r, whose leadin
’ g

m+r

cocflicient is (,',") As beflore this implics a generalization of Lemma 13:

n+r]| n\fn—k+p k
{m+r}, - ;(k){ m+p }p(r P)"
8
The counterparts of cquations (29) and (30) are

RIS i bl TIED ol Chug Tty N8
G200t e

which is a well known cxpansion.

Theorem 14.

and

- 10 -
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§8 Expcaential generating functions

Theorem 15. The r-Stirling numbers of the first kind have the following “vertical” ezxponen-
tial generating function

Z[k-&-r] #_ ;li(ri—;)r(‘“(liz))m' m > 0; (36)
k

m+r| k!

0, otherwise.

Proofl: The above exponential .genérating function can be decomposed into the product of two
exponential generating functlions, namely

and

Their product is

by equation (27). 1
The above theorem implics the double generating function (2, eq. 5.3]

k+r] 2* 1 T+
E — " = - . 37
[m+r,k!t (l—z) (37)

k,m

Theorem 16. The r-Stirling numbers of the second kind have the following ezponential
generating function (2, eq. 3.9]

I' rz z e

E{k-ﬂ}i: e =07, m 20
+ k!

R AT 0, otherwise.

(38)

Proof: Similar to the the proofl of Theorem 11, using the expansions

kzk
rz __. c

and

2k

%(e‘ - )" = ;{:,}H’

together with cquation (32). 8

SRR
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The double generating function for »-Stirling numbers of the second kind is

> { £+ f} -z:t"‘ = exp(t(e* - 1) + rz). (39)

1
e m+r) k!

§9 Identities from ordinary generating functions

Theorem 17. The r-Stirling numbers of the first kind satisfy

[:.], =2 [,,f k],[m:‘» kL’ r<p<nm. (10)

Proof: From equation (24)

Pz r). (24D —1) = ;Lfk],’—k'

Express the product

ZPz4r) . (z+p— )P M2 4+D)...(z4+n-1)= z[n':k]z_k
k

as the convolution of the two generating functions and equate the coefficient of 2™~ on both
sides. @ '

Theorem 18. The r-Stirling numbers of the second kind satisfy
—k
{n} =E{p+k} {n } , r<p<hn. (41)
m, k P ), U™ Jpt

Proof: From (25)

1. n+ k k
(1 =r2).. (t=p2)(t = (p+ 1)2)...(1 =nz) ;{ k }'z )
Expressing this product as a convolulion we obtain
{n+m} _ E{p-&- k} {n+m—k}
- ]
n r k p r n p+1

and Lhe theorem follows by suitable changes of variable.

- 12 -
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Theorem 19. The r-Stirling numbers of the first kind satisfy

Bl e e @

Proof: From equation (24)

nlm s gr N =z'(z+p)...(z+n—l) n>r
;[m]z =Z(z+1)..(z4n-1) (z+p)...(z4+r-1)" 2r>p20

Let t = —1/z. Then

2P

1 r—1 i __z—l'
(z+p)...(z+7—1) = (1—pt)...(1—(r—1)2) =(-2) ‘E{r—l}p( )

by equation (25). Hence '

sbi--pl Joratl

?

== 1)'_122 E{r——l}[ r+l+k]( 1"

In particular for p = 0 we have an alternative expression for the r-Stirling numbers of the
first kind in terms of regular Stirling numbers of both kinds,

(- 1)'[m] = [ r+k]{" ;}(—1)", n>r>1. (43)

This, combined with (27), gives an identity involving only regular Stirling numbers

SO =St T e wzerze

The last equalion is a polynomial identity in . IFor r = 1, we obtain cquation (30) again.

Theorem 20. The r-Stirling numbers of the second kind satisfy

coint =Zh{ '*"}’(—n*.- n2r2p20 5

- 13 -
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Proof: The ordinary gencrating function of the r-Stirling numbers of the second kind can be
rewritten as :
_ P _ 2™t =p2)...(1 = (r—1)2)
(1-r2)...(1-m2) (1—p2)...(1-m2)

T
. ’a.‘ T,
s e
P PRI
. r

Putting ¢t = —1/z

(t-=p2)...0=(r=1)2)=¢t"""(t+p)...t+7r—-1)= E[:] (=2,

£} -Sllers s

and the result follows by equating the coefficient of 2™ on both sides, §

so that

The counterpart of equations (43) and (44) is obtained by making p = 0 in (45). We get

B o RN

the alternate expression for r-Stirling numbers of the second kind in terms of regular Stirling
numbers of both kinds. This formula combined with (32), gives an identity in regular Stirling

numbers only:
) S e A SO

k k
which is a polynomial identity in r. For r = 1, this is cquation (35).

Theorem 21. The r-Stirling numbers of the first kind have the “"horizontal” generating
Junction (2, eq. 5.8)

(z+r)" = Z[““] n20. (48)

k+r
Proof: Recplacing in cquation (24) n by n + r and z by z, we obtain
Z[n + V] zh — I'(Z + ')l"
k k],

and the result follows. §

Note the cquivalent formulation of Theorem 48

(z—r)r= Z [n + '] (—t)~kzk, n>0. (49)
3

k+r),

- 14 -
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Theorem 22. The r-Stirling numbers of the second kind have the “horizontal” generating
Junction [2, eq. 3.4]

(z+7)" = zk: {: I :}"zh, 'n > 0. (50)

! Proof: Use the identity
) ¢ 1\kok
S e(z+r)t = e"(l + (et _ 1)): = "t Z (e k}) T
o k>0 :
’- and Theorem 12, to obtain
A n+r

L (z+r)t — s
; = ;{Hr}
r =
3
A ]
1 The equivalent form of .Theorem_ 50 is
;~' n + r —k F
. (z=7)"= Z{ } (=) "F=z~, n > 0. (51)

—~ k+7),

§10 Identities from exponentié,l generating functions

The following two Lhcorems are an immediate consequence of the generating functions (36)

O and (38).

Theorem 23. The r-Stirling numbers of the first kind satisfy

4

: l+m\[ n+r+s _Z n\k+rl[n—k+s (52)
m JU+mtr+sl, , \kJll4r]| m+s ),

_. ﬁ i

-q

Theorem 24. The r-Stirling numbers of the second kind satisfy (2, cq. 3.11]

@5 DaSOsi SIES 3((41 8 X s 3 o
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These theorems have also a combinatorial interprctation. For Theorem 23 consider per-
mutations of the set {1,...,n + 7 + 8} such that 1,...,r + 8 are in distinct cycles, each cycle is
colored cither red or green, the eycles containing 1,...,r arc all green, and the cycles containing
r+1,...,7+ 8 are all red. The total number of such permutations with [+ r green cycles and
m+ s red cycles is (1™)] Boaasil +s Decause each permutation with [+ m +r + 5 cycles can

be colored in (‘fn"‘) wﬁys. On the other hand, we can first decide which & clemcents, besides
1,...,r, should be in the ! 4 r green cycles; the remaining n — k + s elements must form the
m + s red cycles, Theorem 24 has a similar interpretation.

§11 Generalized orthogonality

Theorem 25. The r-Stirling numbers satisfy (2, cq. 6.3]

Sl {m e =e(R)e - 2

Gl e T A ) VR
Proof: By (48) and (51)
vt =Sl oS S

Equalion (54) is obtained by comparing the coefflicient of ™ on both sides. Similarly, consider
the identity (from (50) and (49))

_ n__ n+r _ _p,__ n+r k+p) ki
e-rer =S et =l S e
and cquate the coeflicienl of ™ on both sides to obtain (55). §

§12 The r-Stirling polynomials

We have seen that the r-Stirling numbers are polynomials in . The r-Stirling polynomials
are defined for arbitrary z as

Ry(n,m,z) = Z (:)[" - k]zr integer m,n > 0, (56)
C i

- 16 -
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and

| Ry(n,m,z) = Z (:){n - k}z" integer m,ﬁ >0. (57)

- m
In particular, by equations (27) and (32), when 7 is a positive integer, Ry(n,m,r) = [21"] and
Ry(n,m,7) = {317}.

The r-Stirling polynomials have a combinatorial significance given by the following two
theorems.

Theorem 26. The polynomial Ry(n,m, T) enumerates the permutations of the set
{1,...,n + 1} having m+ 1 left-to-right minima by the number of right-to-left minima different
from 1.

Proofl: Lxpanding raising powers, we get

minm =2 ()% = S G 1

e

All the left-to-right minima except 1 must occur at the left of 1, while all right-to-left minima
except 1 must occur at the right of 1. Hence the number of permutations having m + 1 lelt-
to-right minima, 1 + 1 right-to-left minima, and k elcments at the right of 1 is (2)[“;"] [':]

Note that by Theorem 23 used in the above expansion we obtain

Rl m2) = Z("‘; ")[m’l '_]z‘. | (58)

s

Theorem 27. The polynomial Ry(n, m,z) enumerates the partitions of the set {1,...,n + 1}
into m non-empty subsets, by the number of elements different from |, in the set containing 1.

Proof: Obvious, from definition (57). @

The r-Stirling polynomials have remarkably simple expressions in operator notation, which
generalize the well known formulae for regular Stirling numbers.

Theorem 28.

Proof: From (48)




Theorem 29.

1
m!

Ra(n,m,z) = —A™z". (60)

Proof: Similar to the proof of Theorem 28. A direct proof is based on combining (8) and (18)

to obtain
n+r n+r—1 n+r—1
= 1 .
{m+r}' (m+ ){ m+r }r—l * {m+r - l}r—l’

ARg(n,n.z —1,z) = mRy(n,m, z)

which implies

and thercfore

A™z" = A™Ry(n,0,z) = m!Rz(n, m, z).

Corollary 30. [2, cq. 3.8]

1
m!

n,m,z =;— N =1)™*(z + k)™
R, 2) = 25 3 ()i He + 4 (61)

Proof": Use the formal expansion

Am=(E-1)" =) (':)(-l)"'"‘E",

k

aaicd

where E is the shift operator, Ef(z) = f(z +1).

Because of thesc properties the 7-Stirling polynomials, especially the r-Stirling polynomials
of the sccond kind, were studied in the framework of the calculus of finite differences. Nielsen
[19, chap. 12] devclopped a large number of formulac relaling Rg(r,m,z) to the Bernoulli
and Euler polynomials. (Nielsen’s notation is A}, (z) = m!Ra(n,m,z).) Carlitz 3} showed
by different mecans that the »-Stirling polynomials are related Lo the Bernoulli polynomials of
higher order and also studied the representation of Ry(n,n — k,z) and of RR(n,n — k,z) as -
polynomials in n. The asymplotics of the numbers {,',“':_',}r were derived in [8]. Broder [1]
obtained several formulas relating r-Stirling polynomials of Lhe sccond kind Lo Abelian sums
(23, §1.5], for example

4'.‘":‘_"1‘., .

2": (:)(z + k) Py b n— k)= ; (:)k!(z +y+n)""*Ra(k +p k), p>0. (62)
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§13 r-Stirling numbers of the second kind and @-series

Knuth defined the Q-series as

Qun{a1,a3,...) = Z (:)Ic!n"‘a;..
k>1

(83)

For a certain sequence ay, ag,. .., this function depends only on n. In particular, Qa(1,1,1,...)

is denoted Q(n).

Q-series arc relevant to many problems in the analysis of algorithms [13], for instance
representation of equivalence relations 18], hashing [12, §6.4], interlcaved memory [15], labelled
trees counting [21], optimal cacheing [13], permutations ¢n situ [25], and random mappings (11,

§3.1).

It can be shown that the @-series satisly the recurrence

Q,.(a;,2a2,3a3,. . .) = nQ,.(al,ag —a1,83 —Qg,.. .).

Theorem 31.
h h + 1 hnL
Q"({l}r’2{ 2 }r’...) - ;'—.

Proof: Note that from (8)
{k+h} _{k+h—1} _k{k+h—1}
E J,. k-1 J, k v
for all K > 0if A > 0. Applying this together with (84) A — 1 times, we obtain

(i), 2'7 ), ) =), o), )

= n"'lQﬂ(Glzn 2025¢)..-)

One more application of (64) for r > 0 results in
h —
n Q"(&l.'r&ﬂ,n .. ) =nt—

and for r = 0 results in

nhQ.(1,0,0,...) = n*

- 19 -

(64)

(85)
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Corollary 32. Let

CED 3 i ¢

r

where a, depends only on r. Then
Qn(/(1),21(2),3/(3),...) = n*(Qn(a1,03,a3,...) + ap). (66)
|

In [13] Knuth introduced the half fnteger Stirling numbers {"*!/%}. These numbers satisfy
the recurrence

{n +k1/2} —o, n<0,

{" + 1/2} =n, n>0, (67)

n
n+1/2) _  [n-1/2 n—1/2
P e
which has the form of (15) and therefore has the solution
n+1/2 n
)= b» () 8

Hence, by Corollary 32

Q,.({h +11/ 2}, 2{" +23/ 2}, . ) = nhQ.(1,1,...) = n*Q(n), (69)

which is in fact the cquation used Lo define the hall-integer Stirling numbers in [13].
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