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Abstract. The r-Stirling numbers of the first and second kind count restricted permutations
and respectively restricted partitions, the restriction being that the first r elements must be
in distinct cycles and respectively distinct subsets. The combinatorial and algebraic properties
of these numbers, which in most cases generalize similar properties of the regular Stirling
numbers, are explored starting from the above definition.
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§1 Introduction

The r-Stirling numbers represent a certain generalization of the regular Stirling numbers,
which, according to Tweedie [261, were so named by Nielsen [181 in honor of James Stirling,
who computed them in his "Methodus Differentiali8," [24] in 1730. In fact the Stirling numbers
of the first kind were known to Thomas Hcrriot [151; in the British Museum archive, there is a
manuscript 171 or his, dating from around 1600, which contains the expansion of the polynomials
(k) ror k < 7. Good expositions of the properties of Stirling numbers are found for example
in 14, chap. 51, [9, chap. 41, and [221.

In this paper the (signless) Stirling numbers of the first kind are denoted (]; they are
defined combinatorially as the number of permutations or the set (1,...,n}, having m cycles.
The Stirling numbers of the second kind, denoted {,}, are equal to the number of partitions
or the set {1,...,n} into m non-empty disjoint sets. The notation [] and {} seems to be
well suited to formula manipulations. It was introduced by Knuth in [10, §1.2.61, improving
a similar notational idea proposed by 1. Marx [201. The r-Stirling numbers count certain
restricted permutations and respectively restricted partitions and are defined, for all positive
r, as follows:

[ ] The number of permutations of the set (,...,n)

= - having m cycles, such that the numbers 1, 2,..., r are (1)
Lm ~ in distinct cycles,

and

SIn, The number of partitions of the set {1,...,n} into
=n m non-empty disjoint subsets, such that the numbers (2)

1,2,..., r are in distinct subsets.

There exists a one-to-one correspondence between permutations of n numbers with m cycles,
and permutations of n numbers with m left-to-right minima. (This corespondence is implied in
[22, chap. 81 and formalized and generalized in [6].) To obtain the image of a given permutation
with m cycles put the minimum number within each cycle (called the cycle leader) as the
first element of the cycle, and list all cycles (including singletons) in decreasing order of their
minimum clement. After removing parentheses, the result is a permutation with m left-to-right
minima. If the numbers I,...,r are in distinct cycles in the given permutation, then they
are all cycle leaders and the last r left-to-right minima in the image permutation are exactly
r,r- 1,..., 1. Therefore we have the alternative definition

The number of permutations of the numbers 1,...n[i] having m left-to-right minima such that the numbers
7n 1,2,...,r arc all left-to-right minima (or such that (3)

the numbers 1,2,..., r occur in decreasing order).

Each non-empty subset in a permutation of an ordered set has a minimal element; a partition
of the set {l,...,n} into m non-eimipty subsets has m associated minimal elenents. This
terminology allows the alternative definition

The number of ways to partition the set(L1""n
j -=into m non-empty disjoint subsets, such that the num- (4)

mk , bers 1,2,..., r are all minimal elements.



Note that the regular Stirling numbers can be expressed as

[it- [-[:1 In -I= (5)

and also as

[--] I- [] { = n > 0. (6)
M] 1 m I

Another construction that turns out to be equivalent to the r-Stirling numbers was recently
discovered by Carlitz [2],[3], who began from an entirely different type of generalization,
weighted Stirling numbers. Also equivalent are the non-central Stirling numbers studied by
Koutras [17] starting from operator calculus definitions (see section 12). The simple approach to
be developed here leads to further intsights about these numbers that appear to be of importance
because of their remarkable properties.

§2 Basic recurrences

The r-Stirling numbers satisfy the same recurrence relation as the regular Stirling numbers,
except for the initial conditions.

Theorem 1. The r-Stirling numbers of the first kind obey the "triangular" recurrence

I[n] ,, n = r, (7)

( - i [ o ] ] [ n , i > r .

Proof: A permutation or the numbers I,..., n with m left-to-right minima can be formed from
a permutation of the numbers I,... ,n - 1 with m left-to-right minima by inserting the number
n after any number, or from a permutation of the numbers I,..., n- I with m- I left-to-right
minima by inserting the number n berore all the other numbers. For n > r this process does
not change the last r left-to-right minima. U

Theorem 2. The r-Stirling numbers of the second kind obey the "triangular" recurrence

In) =, 
n < r,

n. = r, (8)

{n}mm-, = rn 11} + In~ - r I n> r.



Proof: A partition of the set {1,...,n) into m non-empty subsets can be formed from a
partition of the st (1,... ,n- 1) into m non-empty subsets, by adding the number n to any
of the m. subsets, or from a partition of the set n, - I) into m - I non-empty subsets,
by adding the subset (n). Obviously, for n > r this process does not influence the distribution
of the numbers I,...,r into different subsets. |

The following special values can be easily computed:

n > 9)

--]{ -} m> n; (10)

= =(n - )(n- 2)...r r >r; (11)

{ r - I n >r. (12)

The r-Stirling numbers form a natural basis for all sets of numbers {a,,,k) that satisfy the
Stirling recurrence except ror a,,,. That is, the solution of' the Stirling recurrence or the first
kind

a, , n < 0, (13)
a , (n - l)a,-1,k + a.-I,k-, : k n,n > 0,

is

a,k = [] (a,, - ar,) . (14)

Similarly, the solution of

bn,; 0 , n < O,
b,,k kb..-,k + b.- ,A.I, k 3 n,n > ,

is

bn,k In (brr -br_1, 7 i). (18)

For concreteness, the rollowing tables were computed using the recurrences (7) and (8).
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[] k=1k=2 =3 k=4k=5 k6 { k=1 k=2 k=3 k=4 k=5k=

n ----- 1 n ---- I

n=2 1 1 n 2 1 1

n=3 2 3 1 n 3 1 3 1

n 4 6 11 6 1 n-4 1 7 6 1

n =5 24 50 35 10 1 n =5 1 15 25 10 1

n =6 120 274 225 85 15 1 n =6 1 31 90 65 15

Table 1. r 1

f[1 k=2 k=3 k=4 k=5 k=6 k=7 {n} k=2 k=3 k=4 k=5 k=6 k=7L k 2l k 2

n 2 1 n=2 1

n=3 2 1 n=3 2 1

n-4 6 5 1 n=4 4 5 1

n = 5 24 26 9 1 n = 5 8 19 9 1

n = 6 120 154 71 14 1 n = 6 16 65 55 14 1

n = 7 720 1044 580 155 20 1 n = 7 32 211 285 125 20

Table 2. r = 2

[n] k=3 k=4 k=5 k 6 k=7 k=8 {n k=3 k=4 k=5 k=6 k=7 k=8ks k 3

n 3 1 n=3 

n-4 3 1 n=4 3 1

n=5 12 7 1 n=5 9 7 1

n =6 60 47 12 I n =6 27 37 12 1

* n =7 360 342 119 18 1 n =7 81 175 97 18 I

n =8 2520 2754 1175 245 25 1 n =8 243 781 660 205 25

Table S. r-- 3
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§3 "Cross" recurrences

The "cross" recurrences relate r-Stirling numbers with different r.

Theorem 3. The r-Stirling numbers of the first kind satisfy

[ -([mn _inn- r > 1. (17)

Proof: An alternative formulation is

The right side counts the number of permutations having m- 1 cycles such that 1,... - 1
are cycle leaders but r is not. This is equal to (r - 1)(,], since such permutations can be
obtained in r - t ways from permutations having m cycles, with 1,...,r being cycle leaders,
by appending the cycle led by r at the end of a cycle having a smaller cycle leader. I

Theorem 4. The r-Stirling numbers of the second kind satisfy

) } > r> 1. (18)

Proof: The above equation can be written as

(r - {{ -{

The right side of the equation counts the number of partitions of {1,... ,n) into m non-empty
subsets such that l,...,r - 1 are minimal elements but r is not. But this number is equal
to (r - 1){f, 1},_t because such partitions can be obtained in r - I ways from partitions of

I,... ,n - {r) into m non-empty su'bsets, such that I,... ,r - I are minimal, by including r
in any or the r - I subsets containing a smaller element. I

§4 Orthogonality

The orthogonality relation between Stirling numbers generalizes to similar relations for
r-Stirling numbers.

-6



Theorem 5. The r-Stirling numbers eatisfy [2, eq. 6.1]

[' n fk n~ > 1 ~ m i , i r; ( 9

':'[kJ mJ 1 , otherwise.

Proof: By induction on n. For n < r the equality is obvious. For n - r

k m - (1) -? (m)'6,,.

For n > r, using Theorem 1 and the induction hypothesis

[n]1) -- (n - 1)n. - ., m
- 1)' - + [1)k

and (assuming m > r) by Theorem 2 applied to the right sum, and the induction hypothesis

Z k m[n] {k} (')k =(n - l)6n-t,,,(-)" -- m6n-,,(-l)n-
k k m

-= 6,m,(-1)".

Hence for each r, the r-Stirling numbers form two infinite lower triangular matrices satis-
fying

~ = ~>~ t~i(1YU,(20)
× I1'( 1 { }II I '1,,bfbi'j-)i

where
• fl, i>_j;

0 = , i < j.

and we also have

Theorem 6.

(-I)"bn,. n r;
{ 0, otherwise.

h'I'lese orthogonality relaLions generalize as shown in seclioi t 1.

§5 Relations with symmetric functions

The Stirling numbers of the first kind, ("], for ixed n, are the elementary symmetric
functions or the numbers 1,...,n (see, e.g., [4 or [5J). The r-Stirling numbers of the Iirst kind
are the elementary symmetric runctions or the numbers r,... ,n.

---

-4i: ? - , , .i - , , . . . ..



Theorem 7. The r-Stirling numbers of the first kind satisfy

= 1 12..m, nm>0. (22)
n-m], <i2...<i. I

Proof: Consider a permutation of the numbers 1,...,n having n - m left-to-right minima.
How many such permutations are there that have a given set of minima? Denote the numbers
that are not minima by ilyi2 1...,i, where i! < i2 < ... < in :5 n. A permutation with
the prescribed set of left-to-right minima can be constructed as follows: write all the minima
in decreasing order; insert il after any of the i1 - I minima less than i1 ; insert i2 after any
of the i2 - 2 minima less than i2, or after ij; etc. Clearly there are ii - I ways of inserting
il, i2 - 1 ways of inserting i 2, and so on. Hence the total number of permutations with the
given minima is (il - 1)(i 2 - 1)...(i m - 1). If the numbers 1,...,r are minima, then ii > r.
Summing over all possible sets of left-to-right minima we get

~~n --- E(iit)(4, ) ...i-1

ni m] r< il < i2... < i -< " n,m , > 0 .
i <i2 ...... in.

The above theorem can also be proved by induction, but it is more interesting to see the
combinatorial meaning of each term in the sim. Its counterpart for r-Stirling numbers of the
second kind is

Theorem 8. The r-Stirling numbers of the second kind satisfyj

{n+m} =iti2...im, n,m > O. (23)
n r r<it<..<in<n

Proof: Count the number of partitions or the set {1,...,n + m) into n non-empty subsets, whenthe n minimal elements are fixed. J)Dcote the elements that are not minimal by x, .... t ,,

where z < ... < x.. i1 we let ii i)e the number or minimal eleients less than zj, then
il i5 _ . in < n. Clearly zj can belong only to subsets having a minimal element
less than it, so that there are ij ways to place it. Ilence the total number or partitions with a
given set of minimal elements is i 1 i 2 ... i,. If the nmbers 1,...,r are all minimal elements,
then ii > r. Sunmming tip over all possible sets of minimal elements completes the proof. n

Therefore the r-Stirling numbers of the second kind, + are the Monomial symmetrictn )raeteonmasy eri

functions of degree m of the integers r,... ,n.

8



§6 Ordinary generating functions

Corollary 9. The r-Stirling numbers of the first kind have the "horizontal" generating
function

[:]z -{ z'(z+r)(z+r+ ) "(z+n-1)' n>rLO; (24)
rkO otherwise,

Corollary 10. The r-Stirling numbers of the second kind have the "vertical" generating
function [2, eq. 3.101

zk (I - rz)(1 - (r + l)z) ... (t - 'rz)' n >r > 0; (25)

k. im 0,, otherwise.

The above identities follow immediately from equations (22) and (23).

§7 Combinatorial identities

Lemma 11.

=nrk M- r > p 0 . (26)
mr k k-p-- -

Proof: To forin a permutation with m cycles such that 1,..., r are cycle leaders first choose
k numbers to be in the cycles led by 1,...,p and construct these cycles; this can be done in

(n-.)p~ Jways. 'he remaining n-p-k numbers must rorm m-p cycles such that p+ I,-, r

are cycle leaders, which can be done in [n-- l_ ways. Using equation (11) and summing for

all k completes the proor. I

In particular ror p = r we obtain a definition or r-Stirling numbers of Lhe first kind in terms
or regiflar Stirling Iumnlbers or the first kind [2, eq. 5.31,

* [n], n ( - r)[n- r - k Z(n-r)[knk(7

This shows that l+r1, for in,n > 0 is a polynomial or degree n - in in r with leading
coerncient () and lemma II can be generalized to a polynomial identitity in p and r:

-9-



Theorem 12.

"+1 = + 1 (r-,, '. (28)i • m + rJ £kL M +P jP

For p r - 1 we get another "cross" recurrence

[n] = ?(-,)[n-. 1 k] kl. (29)

Recall that [J] = ["1o for n > 0, so that[Mn] (n 1~)[n I._ Mr. n >o 0,(30
an identity that appears in Comtet [4, eq. 5.6e], and also in Knuth (10, eq. 1.2.6(52a)].

Lemma 13.

{n z(n - r){n _ I r > p> 0. (31)

Proof: By combinatorial arguments analogous to the proof of Lemma 11. U

The counterpart of equation (27) is [2, eq. 3.21

11, = (n- ?){m- (32)
I' r% k - rVI r

which shows that { }, for m, n D> 0is also a polynomial of degree n- m in r, whose leading
coefficient is (Z). As beforc this implies a generalization or Lemma 13:

Theorem 14.

{m+r} = P h. (33)

The counterparts of equations (29) and (30) are

( = - I - k _'- (n - r)r-1+k} (34)

and

{n}ZE(n - ){mk}1, u>0, (35)

which is a well known expansion.

- 10 -



§8 Expc.-Aential generating functions

Theorem 15. The r-Stirling numbers of the first kind have the following "vertical" exponen-
tial generating function

[k+r]zk { M (. 1 )z()) > o; (36)

10, otherwise.

Proof: The above exponential generating function can be decomposed into the product of two
exponential generating functions, namely

l 1 "Z k mzW

and

k>O

Their product is

z n (n)[ k ]rn_ ["rn + r l,

n nCf

by equation (27). 1

The above theorem implies the double generating function [2, eq. 5.3]

Theorem 16. The r-Stirling numbers of the second kind have the following exponential
generating function [2, eq. 3.9]

~~fk ~ k zC- jer2(ez lIyn, r ;(8

0 0, otherwise.

Proof: Similar to the the proor of Theorem 11, using the expansions

rz k 
z kKcrz =ZErk- ,

k k

and

M! k rnk!z

together with equation (32). |

-it -



The double generating function for r-Stirling numbers of the second kind is

{ +r } g = ep(t(e -1) + rz) (3g)

k m+ Ir 7 k pt

§9 Identities from ordinary generating functions

Theorem 17. The r-Stirling numbers of the first kind satisfy

n,- p k (m+k r< p5n. (40)

Proof: From equation (24)

,'-,(z + r) ... (z + p - E -
k L ir

Express the product

z'-P(z + ')... (z + p-t)zP-"(z +p) ... (z + n-1n-- [ n

as the convolution of the two generating functions and equate the coefficient of z' m- on both
sides. I

Theorem 18. The r-Stirling numbers of the second kind satisfy

= { n < P < n. (41)

Proof: From (25)

0! - rz) ... ( 0 Pz)(l (P + INz .. ( -- ;) k ,

Expressing this product as a convolution we obtain

{ + m p+k {n+rn- k}

and the theorem follows by suitable changes of variable.

- 12 -
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Theorem 19. The r-Stirling numbers of the first kind satisfy

(~-1i,[n] n ] k-11 _,.
m + k]p n > r > p> 0. (42)ii- !~ ~ - Ir m-~p---

Proof: From equation (24)

Z [ z'n = -zr(z + r)...(z + n - 1) -- z (z + -p)...(z +n - l)[. ](z + P) .. (z + r - ) ' n > r > p >_O .

Let t - -l/z. Then

.. (z +P) .. (z + r-) (1p). (r'lt - ( - ) -  Ir-

by equation (25). Hence

[m I

In particular for p = 0 we have an alternative expression for the r-Stirling numbers of the
first kind in ternis of regular Stirling numbers of both kinds,

[n], [m -r + k (i) , n > r > 1. (43)

This, combined with (27), gives an identity involving only regular Stirling numbers

•~I \l J r + r- I (-) n>O, r > . (44)

The last equation is a polynomial identity iti r. For r = 1, we obtain equation (30) again.

Theorem 20. The r-Stirling numbers of the second kind satisfy

Or I l}J E [r] r+ k n r > p 0. (45)

in ~ 1.k k n -



Proof: The ordinary generating function or the r-Stirling numbers of the second kind can be
rewritten as

z_ z-(1 -pz)...(l- (r - )Z)

=rz)...( mz) Pz)...(-mz)

Putting t = -1/z

so that

and the result follows by equating the coefficient or z" on both sides. n

The counterpart of equations (43) and (44) is obtained by making p - 0 in (45). We get

0 = [r]n - r+}(.)* n r (46)In k I

the alternate expression for r-Stirling numbers or the second kind in terms of regular Stirling
numbers of both kinds. This formula combined with (32), gives an identity in regular Stirling
numbers only:

(n r n + r r - I.),k, n, r > 0, (47)

rkkImJ k ?JL~n

which is a polynomial identity in r. For r 1 I, this is equation (35).

Theorem 21. The r-Stirling numbera of the first kind have the 'horizontal" generating

function (2, eq. 5.81

(z + r)W +=[ jz , F n> 0. (48)

Proof: Replacing in equation (24) n by n + r and z by z, we obtain

~~ 11 t+ '(z + )

and the result follows. I

Note the equivalent formulation or Theorem 48

(z - ) I ) + (-,) -z, n > 0. (49)
k •

- 14 -
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Theorem 22. The r-Stirling numbers of the second kind have the "horizontal" generating
function [2, eq. 3.41

(x + r)" = { k, n > 0. (50)kk +r

Proof: Use the identity

e(=+ T)
- ert(1 + (et - 1)) = ert (et

k!
k>O

and Theorem 12, to obtain

n>0 I

I

The equivalent form of Theorem 50 is

(X° - o -)-x > 0. (1(k - l)k = - +r. k

§10 Identities from exponential generating functions

The following two theorems are an immediate consequence of the generating functions (36)
and (38).

Theorem 23. The r-Stirling numbers of the first -kind satisfy

I + M n+r-+s _1 +n k+r rn-k+sl . (52)
m I+ B+r+ S r L k l+r]• m+S

Theorem 24. The r-Stirling numbers of the second kind satisfy [2, eq. 3.11]

(l+m n+r+ = n)\k +r r +fn- k+ " (53)
m)l+m+r +s J+ , ,k +rJr m+8

- 15 -



These theorems have also a combinatorial interpretation. For Theorem 23 consider per-
mutations of the set {1,..., n + r + a) such that 1,..., r + a arc in distinct cycles, each cycle is
colored either red or green, the cycles containing 1,..., r are all green, and the cycles containing
r + 1,..., r + arc all red. The total number of such permutations with 1+ r green cycles and
m + s red cycles; is because each permutation with I + m + r + s cycles can

be colored in (nt",) ways. On the other hand, we can first decide which k elements, besides
1,... ,v, should be in the I + 7 green cycles; the remaining n - k + a elements must form the
m + s red cycles. Theorem 24 has a similar interpretation.

§11 Generalized orthogonality

Theorem 25. The r-Stirling numbers satisfyJ [2, eq. 6.31

S[k : ] { k -;} ( - ) -- (- )t - , (54)

z[I+ p] {n +r (_)A (I)MQ)n - " M . (55)[k+pl ,tk+r )rP

k|

Proof: By (48) and (51)

(z-p+r)w= El +r] (X k k+r • . .- p P
kI

Equation (54) is obtained by comparing the coefficient of x' on both sides. Similarly, consider
the identity (fron (50) and (49))

and equate the coefficient or x, on both sides to obtain (55). I

*l §12 The r-Stirling polynomials

We have seen that the r-Stirling numbers are polynomials in r. The r-Stirling polynomials
are defined for arbitrary z as

lt(n, m, z) (n-- km-
k ()[n-k integer m,n > 0, (50)

- 16 -



and

R2(n, m, x) (n n- (:X kk integer m, n > 0. (57)

In particular, by equations (27) and (32), when? r i a positive integer, R, (n, m, r) =and

R2 Kg m, r) = +V

The r-Stirling polynomials have a combinatorial significance given by the following two
theorems.

* Theorem 26. The polynomial R1 (n, m, z) enumerates the permutations of the set
(1 n..,t + 1)} having m + I left-to-right minima by the number of right-to-left minima different

from 1.

Proof: Expanding raising powers, we get

Ri~~mz)= (n)[n ~ k~ (n)[n k~[k]i

4r 1: - i (n)n -I]

All the left-to-right minima except 1 must occur at the left of 1, while all right-to-left minima
except I must occur at the right of 1. HIence the number of -permutations having m + 1 left-
to-right nminima, i + 1 right-to-left mninima, and k elements at the right of 1 is V

Note that by Theorem 23 used in the above expansion we obtain

Rt(n, M, x) X ~ ~ i[~ (58)

Theorem 27. The polynomial R2(n, m, x) enumerates the partitions of the set {1,..., n + 1)
into m non-empty subsets, by the number of element. different from t, in the set containing 1.

Proof: Obvious, from dlefinition (57).

The r-Stirling polynomials have remarkably simple expressions in operator notation, which
* generalize the well known formulae for regular Stirling numbers.

Theorem 28.

It(n, m, x) 0mx.(59)

Proof: From (48)

m!Rj (n, m, ) 5;W= ~-(+v Y ___i

-17 -
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- .Theorem 29.

1R2(n,m, ) M A z". (0)

Proof: Similar to the proof of Theorem 28. A direct proof is based on combining (8) and (18)
to obtain

f 2+r rn+r-l f n+r-11
lm +f (+ m+, r__ M++-- I+ 1

which implies

AR 2(n, m - 1, z) = mR2(n, m, z)

and therefore

A' = AmR 2 (n, 0, x) - m!R2(n, m, x).

Corollary 30. [2, eq. 3.81

R2-(n, m, x) (z +

Proof: Use the formal expansion

AM =(E - 1)"'- Ek

where E is the shift operator, EI(x) = f(z + 1). I

Because of these properties the r-Stirling polynomials, especially the r-Stirling polynomials
or the second kind, were studied in the framework of the calculus of finite differences. Nielsen
[19, chap. 121 developped a large number or formulae relating R2(n,m,z) to the Bernoulli
and Euler polynomials. (Nielsen's notation is A,(z) = m!12(n,m,z).) Carlitz [31 showed
by different means that the r-Stirling polynomials are related to the Bernoulli polynomials of
higher order and also studied the representation of li (n, n - k, z) and of I12(n, n - k, x) as
polynomials in n. Thle asymptolics or the numbers {[+r}r were derived in [8]. llroder It]
obtained several formulas relating r-SIirling polynomials ol' the second kind Lo Abelian sums
[23, §1.5], for example

is-(n( + k)k+p(p + n2 - k) "-k + v + n)f-R2 (k + p, k, x) p 0. (62)

- 18 -



§13 r-Stirling numbers of the second kind and Q-series

Knuth defined the Q-series as

Q(ia 2 .... = )klna. (63)

For a certain sequence a,, a2,..., this function depends only on n. In particular, Q"(1, 1, 1,...)
is denoted Q(n).

Q-series are relevant to many problems in the analysis or algorithms [131, for instance
representation of equivalence relations [161, hashing [12, §6.41, interleaved memory [151, labelled
trees counting [211, optimal cacheing [131, permutations in situ [25], and random mappings [11,
§3.11.

It can be shown that the Q-series satisfy the recurrence

Qal, 2a2,3a 3 ,... )=nQ(a,a2 - a,, a3 - a2 ,...). (64)

Theorem 31.

Q ({h}{jh+ 1} nh!! (65)1 '  2 r'" nr

Proof: Note that from (8)

{k+h}{_k+h-1}, kk+h-1}kk - 1 k 1r

for all k > 0 if h > 0. Applying this together with (64) h - 1 times, we obtain

', { {h + 1} ) = - 'Q({},{,},...)

= nh-1Q,n(6,>,, 262>,...)

One more application of (64) for r > 0 results in

nhQ,,(61,r, 62o,,,... ) =n ,
nr

and for r = 0 results in

n Qn(l, 0, 0.... n
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Coroliary 32. Let

f(k) - +h 1}

where a, depends only on r. Then

Q,,(f(1), 2f(2), 3f(3) ... ) = nh(Qn(at, a2, a3, ... ) + Go). (66)

1

In [131 Knuth introduced the hair integer Stirling numbers + These numbers satisfy
the recurrence

{n } 1/2 , n < 0,

{n +} n, n>0, (67)

fn } 1/ = k{'n 1/2 + In -1/2), k 96 n,tt > 0,

which has the form or (15) and therefore has the solution

Hence, by Corollary 32

Q,(Ih +l1/2),21h + 3/2 - nQ,(l, 1,...) nNQ(n), (69)

which is in fact the equation used to define the half-integer Stirling nuimbers in [131.
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