
A123-470 MICROBIOLOGICAL WATER QUALITY OF IMPOUNDMENTS:A i/i
LITERATURE REYIEU(U) TEXAS UNJY AT DALLAS RICHRDSON
G BURTON DEC 82 NES/MP/E-82-6 DACH39-82-N-2B75

UNCLSSIFIED F/0 03/2 U

END]



-. . -~

w11111_. =  =

IgoI

MICROCO 'Y RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

4""

. • . . '.



Li I
ELE%,TE
JAN 18 Im



3-



Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

Miscellaneous Paper E-82-6 / ')
4. TITLE (mid SubHile) S. TYPE OF REPORT G PERIOD COVERED .

MICROBIOLOGICAL WATER QUALITY OF IMPOUNDMENTS: Final report
A LITERATURE REVIEW

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(a) S. CONTRACT OR GRANT NUMBER(s)

G. Allen Burton, Jr. Purchase Order No. -
DACW39-82-M-2075

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

Environmental Science Program AREA8 wORK UNIT NUMBERS
University of Texas at Dallas EWQOS Work Unit IIF
Richardson, Tex. 75080 _ _ _ _ _ _

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office, Chief of Engineers, U. S. Army December 1982
Washington, D. C. 20314 IS. NUMBER OF PAGES

14. MONITORING AGENCY NAME & ADDRESSeIf different from Controlling Olfice) IS. SECURITY CLASS. (of this report)

U. S. Army Engineer Waterways Experiment Station
Environmental Laboratory Unc lA ION/ :OW-'-AD-_
P. 0. Box 631, Vicksburg, Miss. 39180 ,sA. DULEAICATION/DOWNGRADING

Is. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, It different from Report)

IS. SUPPLEMENTARY NOTES 5 *.

Available from National Technical Information Service, 5285 Part Royal Road,
Springfield, Va. 22151.

IS. KEY WORDS (Continue an reverse side It necessary mid Identify by black numnber)

Bacteria Water quality S
Impoundments Water sampling
Microbiology

2Z& ABTRACT Riontaue so renr sed N nerereaty an identify by block numiber)

--~Assessing the microbiological water quality of impoundments and the
potential for waterborne disease outbreaks is a difficult task when using
traditional sampling programs. Problems associated with using fecal coliform----
bacteria as indicators of human pathogen presence complicates assessments of
future water quality in prelmpoundment areas.-

(Continued)

JAW 43 DT0OFNVSS0SLT Unclassified

SECURITY CLASSFICATION OF IMIS PAGE (11111ve Date Snetered)

' " ." " "1 W



Unclassified
[CURiTY .CLASSIFICATION OF THIS PAGE(Whw D08 Ratwre.

20. ABSTRACT (CONCLUDED)

Reliable determination of future and present microbiological water
quality requires knowledge of how the chemical, physical, and biological char- --:.
acteristics of the watershed and impoundment interrelate to influence
microbial indicator and pathogen densities. Accurate estimates of microbial
indicator and pathogen densities, obtainable by using the enumeration methods
and their modifications suggested in this report, will allow monitoring of the
proper indicator organisms and estimation of potential sites of pathogen oc-
currence, density, and survival. -Sampling programs must be geared toward
critical time periods and areas; i.e., summer months, storm flows, feeder
streams, agricultural and urban runoff, and swimming areas, including water
and sediments. Frequency of sampling should be dictated by variability of
water conditions, confidence level of data, and extent of human contact. . .

---- ! Choice of proper indicator organisms and enumeration methods and appro-
priate sampling strategies will allow sound preimpoundment assessment and
reservoir management to greatly reduce the risk of waterborne diseaseoutbreaks. .

Li•

Unclassified
SSCUMITY CLASSIFICATION Of THIS PAGE(Monf Data Entaee)

Hip 1 III. 1 I 1



PREFACE

7 .
This report was prepared by G. Allen Burton, Jr., Environmental Science

Program, University of Texas at Dallas, Richardson, Texas, for the U. S. Army

Engineer Waterways Experiment Station (WES) under Purchase Order No.

DACW-39-82-M-2075 dated 30 March 1982. This study forms part of the Environ-

mental and Water Quality Operational Studies (EWQOS) Program, Work Unit IIF,

Reservoir Site Preparation. The EWQOS Program is sponsored by the Office,

Chief of Engineers, and is assigned to the WES under the purview of the En-

vironmental Laboratory (EL).
The study was conducted under the direct WES supervision of Dr. Douglas

Gunnison, and the general supervision of Mr. Donald R. Robey, Chief, Eco-

system Research and Simulation Division, EL, and Dr. John Harrison, Chief, EL.

Dr. Jerome L. Mahloch was the EWQOS Program ranager.

The Commander and Directors of WES during the preparation of this report

were COL Nelson P. Conover, CE, and COL Tilford C. Creel, CE. Technical

Director was Mr. Fred R. Brown.

This report should be cited as follows:

Burton, G. A. Jr. 1982. "Microbiological Water
Quality of Impoundments: A Literature Review,"
Miscellaneous Paper E-82-6, prepared by the En-
vironmental Science Program, University of Texas
at Dallas for the U. S. Army Engineer Waterways
Experiment Station, CE, Vicksburg, Miss.
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MICROBIOLOGICAL WATER QUALITY OF IMPOUNDMENTS:

A LITERATURE REVIEW

PART I: INTRODUCTION

1. The United States has a large number of impoundments which provide

flood control and serve as water supplies and recreational sites for mil-

lions of individuals. Each of these impoundments possesses unique and

complex hydrologic and water quality characteristics. Impoundments are

subject to contamination from multiple cources including: industrial and-Pd

municipal discharges; agricultural, rural, and urban runoff; septic tanks;

recreational user discharges; and natural processes. These sources introduce

chemicals, fertilizers, and fecal wastes which add microorganisms and alter

the physicochemistry of impoundments, thereby altering the natural microbial

makeup of aquatic systems.

2. Many microorganisms found in runoff, discharges, and impoundments

are pathogenic to humans, fish, and wildlife. During the period from 1971

to 1978, 224 waterborne disease outbreaks were reported in the United States,

resulting in two deaths and 48,193 illnesses. Of the illnesses reported,

11,435 occurred in 1978 (Craun 1980 and Haley et al. 1980). In most of

the outbreaks the waters were contaminated with chemicals or pathogenic

microorganisms, with drinking water being epidemiologically implicated as

the source of illness. Table 1 lists the etiologic agents identified in

outbreaks from 1946 through 1978. All reported waterborne illnesses are

not linked to ingestion of contaminated water, and many cases are not re-

ported at all; thus the true number of illnesses due to waterborne pathogens .

is probably underestimated. Most reported outbreaks occurred during the

summer months (Craun 1978). F 1

3. A summary of waterborne infectious diseases which may occur in

North American impoundments is given in Table 2. The list includes agents

* which produce disease from water contact activities (e.g., swimming, boat-
P

ing, fishing) as well as drinking water; it serves as a general guide to

potential waterborne disease transmission in reservoirs.

4. The constant potential for outbreaks of waterborne disease from

4
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TABLE 2

Agents of Waterborne Disease ---
(from Pipes 1978)

Disease Agent

Bacterial

Shigellosis Shigella spp.
Diarrhea Enterotoxigenic E. coli

Campylobacter fetusspp. jejuni
Salmonelliosis Salmonella spp.
Yersiniosis Versinia enterocolitica
Leptospirosis Leptospira spp.
Typhoid fever S yh
Tularemia Francisella tularensis
Mel ioidosis Pseudomonas pseludomal lei
Otitis externa P. aeruginosa
Pustular dermatitis P. aeruginosa
Folliculitis (dermatitis) P. foliculitis
Wound infections Aeromonas hydrophila
Legionelliosis* Leioel peopia

Viral

Gastroentc-ritis Parvovirus-like agents (e.g. Norwalk)
Enteroviruses (e.g. Coxsackie A and B,

Polio, Echo)
Unknown

Hepatitis Hepatitis A
Pol iomyl eti s Poliovirus

Parasi tic

Amebic dysentery Entamoeba hystolytica

Gi ard ias is Giardia lamblia

Primary Amebic Meningoencephalitis Naegleria fowleri & Acanthamoeba

Ascariosis Ascaris lumbricoides

Trichuriosis Trichuris trichura

Balantidial dysentery Balantidium coli

*Coccidiosis Isopora spp.

Swimmuer's itch Schistosomes

*no reported cases of waterborne infection.

6

W 4P 0 IU IU 4P W W V 4F W



'. rv ~ 'r.- - ' - - . - L- .. , - - - -- . - i ,- • • . . . . . .

water supplies makes routine monitoring for contamination necessary. How-

ever, attempting to assess the occurrence of microbial pathogens in aquatic .

systems is very difficult due to a multitude of factors. Because low

levels of pathogens may be present, it is necessary to monitor water sup-

plies using "indicator" organisms. Indicator organisms are easier to

identify than pathogens because they occur in higher numbers. The basic

assumption of this approach is that the presence of indicator organisms is

associated with the presence of pathogens. Criteria (McFeters et al. 1978)

for an ideal indicator are as follows:

a. An indicator should be applicable to all types of waters subject
to investigation. U .

b. Microorganisms used as indicators should be present in greater
numbers than the pathogen in all cases where the latter is found.

c. Numbers of any indicator microorganism should not increase signifi-
cantly in the absence of a health hazard.

d. Indicator microorganisms should be more resistant to the physio-
logical stress within aquatic environments, hence exhibit greater
survival, than pathogens.

e. Indicator reaction or test data should be unique and characteristic
of that microorganism or determination.

f. Indicator methodology should be of minimal complexity, rapid, and s"
inexpensive.

g. Indicator microorganisms should be harmless to man under usual
conditions.

h. The indicator or test should be proportional to the health
hazard that is present.

5. The traditional indicator group for microbial pathogens has been

the coliform bacteria. As a result of the incorporation of coliform stand-

ards into Federal criteria and state water quality standards, continued use

of coliform tests is required, despite the numerous shortcomings of these

tests as indicators of microbial pathogens.

6. Not only are coliform bacteria inadequate as indicators, there are

problems monitoring their presence in aquatic systems. Isolated "grab"

samples from impoundments frequently result in data on coliform numbers

which are essentially meaningless. In recent years many of the problems ,

and shortcomings associated with using coliform bacteria as indicators

for microbial pathogens in aquatic systems have been identified and alterna-

tives suggested. These problems, alternate indicators, and appropriate

sampling methods for impoundments will be discussed in the following sections.

7
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PART II: FECAL COLIFORMS VERSUS OTHER PATHOGEN INDICATORS

Fecal Coliforms: Advantages and Disadvantages

7. As a result of the widespread presence of "total coliform" bacteria
in nature, the use of the coliform group as an indicator is generally dis-

couraged, except in finished drinking water Presence of coliform bacteria .

in drinking water has greater meaning since it indicates inadequate treatment.

Fecal coliforms are those bacteria which are gram negative, asporogenous rods

and produce gas from lactose at an incubation temperature of 44.50C (Dufour

1978). The presence of fecal coliforms in water suggests either animal -

or human wastes have contaminated the system and their associated pathogens

may also be present (McKee and Wolf 1963, Moore 1959). Estimates of the

percentages of microbial flora in human feces are listed in Table 3 and the

percentages of warmblooded animals excreting enteric pathogens in Table 4.

8. Development of indicator standards, prediction of risk of water-

borne disease, and assessment of pathogen levels requires knowledge of an

Sindicator-pathogen relationship. For a given concentration of indicator

organisms, there should be a related concentration of pathogens under a known

set of conditions. This hypothesis is based on the assumption that there

are relatively constant levels of pathogens present in sewage which usually

seems to be the case in large municipal sewage systems; but as the number

of individuals who contribute to fecal wastes becomes smaller, the indicator-

to-pathogen ratio variance increases. So a waste discharge into a lake p

from a healthy recreational user may be completely free of pathogens, or

it may contain a high density of virulent pathogens if the user is in-

fected (Cabelli 1979). Nearly 40 years ago it was suggested that a ratio

of 3 to 120 of Salmonella typhi per million coliforms existed for a typhoid

rate of 0.01/1000 to 30/1000 population per year (Kehr & Butterfield 1943).

If one assumes one person per 100,000 individuals excretes Salmonella

typhi, there would be roughly one pathogen per litre of sewage (Pipes 1978).

Correlation between fecal coliform (FC) densities and the presence of

Salmonella in recreational waters has been reported (Geldreich 1970, Bonde

1977, Smith et al. 1973, Smith and Twedt 1971, Dutka 1973). Geldreich

(1970) reported isolating Salmonella in approximately 30% of samples with

less than 200 FC/l00 mL but in more than 98% when the density was greater0i '
8
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TABLE 3

Estimated Percentages of Microbial Flora in Human Feces -

(from Geidreich et al. 1978 and Gabelli 1979)

Agent Occurrence (% individuals) L2g10oensity/gram*

Streptococcus faecalis 26 4-5

Enterococcus 74-76 5-6

Fecal Streptococcus 100 5-6

Mycobacteriurn 43 0-2

Total coliforms 87-T00 7-9

E. coli 87-100 7-9 .7
Intermediate coliform types 0-72 (1-6

Enterobacter/Klebsiella 0-98 (1-9

K. pneumoniae 26-30 6-8

Fecal coliforms 96-100 7-9

Pseudomonas aeruginosa 3-15 3-5

Aeromonas hydrophila 0.2-0.7

Clostridium perfringens 13-35 6-7

C. tetani 1-35

Coliphage

Po1lovirus 0-70 0-7 (PFU)

Coxsackie virus 0-88

Echovi rus 0-43 0-8 (PFU)I
Adenovi rus 0-77

Candida albicans - 0-4

Giardia lamblia 3-15

*Entamoeba coli 3-32

Endolimax nana 9-16

Dientamoeba fragilis 0.2-6

Iodamoeba butschlii 1.4-5

Trichomonas hominis 0.3-4

Chilomastix mesnili 0.4-6
Enteromonas hominis 0.1-3

Retortomonas intestinalis 0.1-1.3 -

*The number of organisms, in logarithms, per gram of feces.
**Data unavailable.
tPlaque-Forming Units.
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TABLE 4

Percentages of Warmblooded North American Animals Excreting Ptoens

(from Geidreich et al. 1978)

Pathogen Animal % Excreters in N. America

Salmonella Human 1.0

Cattle 13.0

Sheep 3.7

Shigella Human .46

Enterotoxigenic E. coli Human 1.2-15.5

Pig 9'
Enterovirus Human 0-88

Giardia lamblia Human 1.5-20

Leptospira Human cl1-3

Cattle 2.3

Mice 33.0

Dogs 26.6

Entamoeba histolytica Human 10

10
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than 2000 FC/100 mL. Bonde (1977) reported Salmonella usually occurred at

concentrations of E. coli greater than 1000/100 mL. Many times, however,

when the actual density of Salmonella is examined, no correlation exists

(Cabelli 1976). Several studies have discounted the coliform-pathogen

relationship (Smith et al. 1973, Smith and Twedt 1971, Dutka 1973, Gallagher

and Spino 1968). Enteric pathogens have been found when low levels of in-

dicator bacteria were present (Dutka 1973, Muller 1964, Colberg et al. 1974,

Kraus 1977). Moreover, no studies have shown FC to indicate the presence

of fecal pathogens such as Yersinia enterocolitica and Campylobacter fetus

spp. jejuni. Y. enterocolitica and other species have been implicated in : 2
waterborne disease from waters which have been found to be relatively

free from FC (Schieman 1978, Ghirelli and Marker 1977). Small mammals,

snails, poultry, and migratory waterfowl have been shown to be reser-

voirs of Yersinia and Campylobacter and are partially responsible

for contaminating water (Botzler et al. 1976, Hacking and Sileo 1974,

Kapperud 1975, Luechtefeld et al. 1980, Center for Disease Control 1979a).

9. Fecal coliforms do not serve as indicators of bacterial pathogens

which are ubiquitous in aquatic environments. Pseudomonas aeruginosa,

Aeromonas hydrophila, and Klebsiella spp. are naturally occurring aquatic

bacteria which have been implicated in disease. These organisms usually

do not pose a health threat unless present in high numbers, yet they are

frequently present in conjunction with fecal pollution (Cabelli 1980b).

Protozoa and Viruses

10. Fecal coliform indicator validity is especially tenuous in pre-

dicting health hazards resulting from presence of pathogenic protozoa and

viruses. Recent studies have demonstrated the existence of enteric viruses

in waters containing low levels of fecal coliforms (Gerba 1980). No normal

viral flora exists in humans, and any relationship between indicators and

virus density is hampered by the following: (a) only a small percentage

of the population may harbor and excrete enteric viruses, (b) intestinal

infection and excretion of viruses is transient, (c) most cases are sub-

clinical, (d) excretion of viruses is subject to seasonal variation, (e)

no methods are available for the in vitro cultivation and quantitation of

many viral pathogens, and (f) techniques for isolation and quantitation

of the hundreds of viruses are primitive with poor recovery rates (Pipes

1978). Virus-to-coliform ratios have been established in one study (U.S.

W W ' W



Environmental Protection Agency 1975) as follows:

feces 1:65,000

polluted water 1:50,000

sewage 1:92,000

Bonde (1977) reported higher ratios of E. coli:virus when E. coli densities

were greater than 1000 organisms per 100 mL. Large variations in the " .

numbers of coliphage in sewage and in the coliphage:coliform bacteria ratio

have been reported (Pretorius 1962). These ratios obviously change with en-

vironments and time; furthermore, improved isolation techniques for viruses

in recent years have raised doubt about previously reported ratios (Mechalas

et al. 1972). Several studies have demonstrated that no consistent virus:

coliform ratio exists (Gerba 1980, Goyal et al. 1977, 1979, Berg 1976a, Duma

1980); for example enteroviruses were detected 44% of the time in recreational

waters considered acceptable as judged by FC criteria (Gerba 1980).

11. In the South, Naegleria and Acanthamoeba have been found to be

ubiquitous in aquatic systems. Relatively high densities have been reported

in warm water such as thermal discharges from power plants and hot springs

(Duma 1980, Stevens et al. 1977, Wellings 1977, O'Dell 1979). These patho-

gens have not been associated with fecal pollution; therefore, use of the .

FC as an indicator of their presence is inaccurate.

12. Another protozoal pathogen, Giardia lamblia, has been reported-. .

with increasing frequency as an etiologic agent in waterborne disease

(Jakubowski and Hoff 1979). It is found in waters which are relatively

free of FC (Craun 1979); moreover, its ability to encyst allows extended

survival, thus preventing the use of FC as an indicator (Craun and McCabe

1973, Craun 1976, Rendtorff and Holt 1954, Rendtorff 1954).

Presence of Sediments

13. The relationship of FC densities in the water column to pathogen

densities in the sediments is also unclear. Sediment has been shown to

harbor much higher numbers of bacteria, viruses, and protozoa, both path-

ogenic and nonpathogenic (Goyal et al. 1977, Grimes 1975 & 1980, Hendricks

1971, LaBelle et al. 1980, Rittenberg et al. 1958, Van Donsel & Geldreich .

1971, Gerba & Goya] 1978, Smith et al. 1978, U.S. Public Health Service 1965,

Goyal et al. 1978, Metcalf & Stiles 1968, Slanetz et al. 1965, DeFlora et al.

1975, Matson et al. 1978, LaBelle & Gerba 1979, Farmer 1980, Gerba et al. 1977,

Winslow 1976). When large numbers of enteric organisms are present in the sediment,

12
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a relationship exists between their numbers and the degree of contamination

of the overlying water (Allen et al. 1953). Nearshore sediments at reser-

voir swimming areas have shown FC concentrations as high as 48,000/100 cc

(Winslow 1976). Van Donsel and Geldreich (1971) reported that a minimum of

150 FC/l00 mL in the water was required for Salmonella to be present in the

sediment. In their studies, they sampled various streams and lakes and found

100-to 1000-fold more FC in the sediments than in overlying waters. They

recovered Salmonella spp. from 46% of their sediment samples, whereas only

8% of the overlying waters contained this pathogen (Van Donsel and Geldreich

1971). Similar ratios of FC in sediment and water were found in the

Mississippi River (Grimes 1980). Goyal et al. (1977) reported 47% of the •

sediment samples compared to 3% of the overlying water samples to be

positive for Salmonella spp. Hendricks (1971) recovered 90% more Salmonella

spp. from sediments, than from overlying waters. As a consequence of the

great variability of sediments, it usually is not possible to establish a

correlation between FC levels in the sediment and overlying waters (Winslow

1976).

14. There is no doubt that the present indicator system works to some

degree. Fecal coliforms do indicate fecal pollution, and the present ac-

ceptable levels are so low that infection by fecal bacterial pathogens is

unlikely. However, there are still insufficient data to support a direct,

consistent relationship between indicator bacteria, pathogen concentration,

and infection. It may be concluded that as indicator density increases

there is a deterioration of water quality, but not necessarily an increase

in health hazards (Pipes 1978).

Die-Off Rates

15. Because of the tenuous relationship between indicator organisms

and pathogens, it may be feasible to develop an indicator index based on

survival as a function of exposure time in water. Such an index could

relate a numerical survival ratio for a pathogen to an indicator survival

value once pathogen survival data for different aquatic environments were
known. If infective dose levels were known for each pathogen, then quanti-

tative risk could be assigned to recreational activities. At the present,

the data for such a system are inadequate (Mechalas et al. 1972, Andre

et al. 1967, Geldreich et al. 1968, Klock 1971, Gordon 1972, Moore 1971,

Rudolphs et al. 1950, Gyllenberg et al. 1960).

13
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16. Numerous studies have measured the survival rates of fecal coli-

form and pathogenic bacteria in water (Carter et al. 1967). Enteric or-

ganisms are pnysiologically adapted to the nutrient-rich environment of warm-

blooded animal intestines. When placed in dilute, nutrient-poor, aquatic

systems they become stressed and die (Bissonnette 1975). Factors affect-

ing their rates of survival are many; with sunlight, nutrient availability,

pH, and temperature, presence of protozoa, phage, and toxins, and other

physicochemical factors predominating (Faust et al. 1975, Gameson and Saxon

1967, Van Donsel et al. 1967, Mitchell 1967). Since such a multitude of

environmental variables influences survival, die-off varies as much between

aquatic systems as do the variables. In general enteric bacteria die in

fresh water within three days (Rudolphs 1950). Attempts at determining

whether certain types of bacteria such as F. coli survive as long as patho-

gens such as Salmonella have produced conflicting results. The majority of

studies have shown E. coli to be a good indicator because it survives as long

or longer than Salmonella spp. (Geldreich 1970, Geldreich et al. 1968,
Rudolphs et al. 1950, Mitchell and Starzyk 1975, Orlob 1956), while others
have reported the opposite (Gudding and Krogstad 1975, McFeters et al. 1974,

Ru•pse l 90 iceladSazk17,Olb15) hl others-

Vasconcelos and Swartz 1976). The inconsistency of these findings can be

attributed to varied strain characteristics and different methodologies and,

more importantly, to unknown environmental variables. One study (McFeters

et al. 1974) comparing die-offs of fecal indicator bacteria and enteric path-

ogens reported that 50% reductions in initial population required an average

of 17 hours for coliforms and from 2.4 to 19.2 hours for Salmonella spp. These .

survival rates are somewhat lower than die-off in marine waters (Chamberlin and

Mitchell 1978). Chamberlin and Mitchell (1978) compared numerous freshwater

and seawater investigations of coliform survival and calculated average die- ;,.

off rates, assuming that first order decay followed the relationship known as

Chick's law; i.e., dB/dt = -KB, where B is the bacterial density at time t,

K is the die-off rate, and d is the difference from beginning to end. In fresh

water, rates of decrease averaged 0.015 to 0.02/hr, while a rate of 1/hr was found

in seawater. Their studies indicated sunlight was the most important factor con-

tributing to die-off. Thornton et al. (1970) measured coliform densities associ-

ated with turbidity when storm flows were tracked into a reservoir. The authors

attributed die-off to be most closely associated with water temperature. The

14
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model developed predicted relatively well disappearance of coliforms associated
with storm flow. F

17. Die-off of other pathogens varies considerably from the FC survival.

Survival of FC may not be representative of other pathogens because FC and

Salmonella have the most rapid die-off of all microorganisms of health signifi-

cance tested (McFeters and Stuart 1972). Y. enterocolitica, a pathogenic 5 ..
bacterium, survives for long periods in cold waters which are low in nutrients

(Shillinger and McFeters 1978). High densities of heterotrophic and coliform

bacteria are inhibitory to Yersinia spp. survival, as they are also to sur-

vival of Shigella, Leptospira, and enteric viruses (Schieman 1978, Highsmith

et al. 1977, Geldreich 1972). Aeromonas hydrophila, P. aeruginosa, L.

pneumophila, and N. fowleri are not only pathogens, but are also naturally oc-

curring aquatic organisms with indefinite survival. Giardia, parasitic ova,

and enteric viruses survive adverse conditions such as water treatment much

better than the coliform indicators (Craun and McCabe 1973, Craun 1976,

Rendtorff and Holt 1954, Rendtorff 1954, Berg 1973, Malina 1976, Lin et al.

1971, Mack et al. 1972, Petrilli et al. 1974, Nestor and Coston 1976, Berg ..

1973). This characteristic of greater persistence and the fact that, in

contrast to bacterial pathogens, very low numbers of organisms may cause in- W .

fection when ingested makes the occurrence of these organisms critical (Pipes

1978, Mechalas et al. 1972, Rendtorff 1979, Center for Disease Control 1979b,

Melnick 1976). Viruses may persist for several weeks to months in cold-

water environments (Hill et al. 1971, Katzenelson 1978). One study showed

survival of viruses was closely related to temperature: fewer than 5 days

' at 37°C, 2.5 to 9 days at 22-25°C, and 40 to 90 days at 3-5°C (Bitton 1978).

These survival periods are much longer than the periods for coliform in-

dicators. Kott (1981) reported that enteroviruses survive twice as long

as FC in secondary wastewater; however, E. coli B die-off was similar to that

of the viruses. Viruses, like bacteria, vary in their ability to survive

in waters, therefore adding another complicating factor in determining

water quality (Colwell and Foster 1980, Metcalf 1971).

18. Sediments greatly extend the survival of most microbial organisms U

of health significance, as indicated by the much higher organism numbers

reported (Winslow 1976, Horak 1974). Studies of survival in sediments are

few (Van Donsel and Geldreich 1971, Gerba and McLeod 1976, LaBelle and Gerba

1982, LaLiberte and Grimes 1982, Schaub et al. 1974, Roper and Marshall
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1978). Van Donsel and Geldreich (1971) reported a 90% die-off in seven days

of both FC and Salmonella spp. in various sediments. Studies by the authors "

comparing survival of S. newport, E. coli, P. aeruginosa, and K. pneumoniae

in five different sediments showed E. coli and Salmonella to have comparable

die-off rates of 2 to 5 logarithms in 2 weeks, whereas P. aeruginosa and K.

pneumoniae decreased only I to 2 orders of magnitude. At initial concen- IFF

trations of 108 colony-forming units per milliliter (CFU/mL) such as are

found in sewage, these pathogens could survive in the sediments for months.

This increased survival partially accounts for the high numbers of indicators

and pathogens in sediments.

Other Indicator Organisms

19. Several other bacteria have been proposed as indicator organisms

for microbial pathogens. These include E. coli, fecal streptococci,

enterococci, total bacteria, C. perfringens, K. pneumoniae, Aeromonas, and

Pseudomonas (McFeters et al. 1978, Cabelli 1979).

20. E. coli has been used in many European countries as the primary

fecal indicator organism. It has the advantage of being specific for

warmblooded animals and is not found in nature as are some fecal coliforms

such as Klebsiella, Enterobacter, and Citrobacter. For this reason it

serves as a better indicator of recent fecal pollution. In a 3-year epidem-

iological study, the occurrence of E. coli was shown to correlate better

to incidences of waterborne illness than FC, fecal streptococci, total coli-

forms, Aeromonas, P. aeruginosa, Klebsiella, and Enterobacter-Arthrobacter

(Geldreich et al. 1978, Ktsanes et al. 1981, Cabelli et al. 1976).

21. There was originally no scientific justification for using

fecal coliforms rather than E. coli as indicators other than that facile

(easily accomplished) methods for enumerating E. coli were not available.

However, now accurate, facile methods do exist which are specific for E.

coli (Cabelli 1979, Dufour et al. 1981).

22. Another widely used indicator has been the fecal streptococci

(FS). This includes S. faecalis, S. faecium, S. bovis, S. equinus, and S.
* avium (Bordner and Winter 1978). However, some species of Streptococcus are

capable of reproducing outside of warmblooded animals and are widespread

in nature (Mundt 1962a, 1962b), which violates one essential requirement

of indicators. When FS information is combined with FC data to provide a

p
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factor known as the FC/FS ratio, sources of contaminants are more clearly

identified (Galvani 1974, Geldreich and Kenner 1969). FC/FS ratios of 4

or greater indicate human feces, whereas ratios of less than 0.7 are in-

dicative of animal wastes (Geldreich and Kenner 1969, Geldreich et al. 1980).

However, due to differing die-off rates, dilution, and the occurrence of

background coliforms levels, these ratios are often useless in determining

animal or human origin unless derived from the immediate source within a

few hours of pollution (Cabelli 1980b, Geldreich and Kenner 1969). Some

studies have shown FC to survive longer than FS, but most report longer

survival of FS (Pipes 1978, McFeters et al. 1974, Geldreich et al. 1980).

This would cause the FC/FS ratio to decrease with time, thus attributing r .

the pollution to animals. Some lower animals have an intestinal flora with

high FC/FS ratios similar to humans, which adds to the problems of using

such a ratio (Wheater et al. 1979, Thomas and Levin 1978).

23. Enterococci are a subgroup of the FS and are more specific for

human wastes (Bordner and Winter k978). Enterococci have been observed

to survive longer than fecal streptococci (McFeters et al. 1974, Geldreich

et al. 1980). They have been reported to be an adequate indicator for

organisms that have a longer survival, such as viruses. Studies by Cabelli

(1979, 1980b) and Cabelli et al. (1974) of lake beaches have shown numbers of A

enterococci to correlate highly with waterborne illness and be better in-

dicators than E. coli, FC, or others. Their use as an indicator does not

account for possible input of pathogens from animals.

24. Clostridium perfringens has been proposed by some as an indicator dr

organism (Bonde 1963). The occurrence has correlated well with other in-

dicators. Due to its ability to form spores under stressful conditions,

it is a good indicator when disinfectants (water treatment) are present

and when water samples cannot be analyzed quickly. Its presence in water ..- ,.

or sediments does not necessarily indicate recent pollution, due to this same

spore-forming characteristic; however, information concerning the occurrence

of past pollution is often desireable. On the other hand, for water quality

maintenance and enforcement information, it is essential to know if pol-

lution was recent. Two additional factors which limit the usefulness of

this organism as an indicator are its requirement of anaerobic conditions

for growth and its widespread occurrence in nature (McFeters et al. 1978,

Bonde 1963).

25. In recent years, the use of K. pneumoniae as an indicator of sanitary "
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significance has frequently been challenged. Although it is associated

with E. coli in fecal material and is an opportunistic pathogen, it has

been isolated in many natural sources and is capable of proliferating in

water (McFeters et al 1978, Menon and Bedford 1973, Seidler et al. 1975,

Dufour and Cabelli 1976). Its presence as a constituent of the FC popula-

tion contributes to the shortcomings of FC as an indicator (Cabelli 1980b).

It is, however, a good indicator of organic pollution, being found in high

numbers in textile, paper, and pulp mills, beet processing, and other wastes

(Bordner and Winter 1978).

26. Two other bacteria have recently been proposed as indicators,

Aeromonas and P. aeruginosa (McFeters et al. 1978). There has, however, r

been much controversy concerning their significance as indicator organisms

(Colwell and Foster 1980). Both organisms are widespread in nature and are . . .

capable of reproducing in water, thus maintaining relatively stable popula-

tions (Carson et al. 1973, Fliermans et al. 1977, Nemedi and Layni 1971).

A. hydrophila is often a good indicator of nutrient loading (including

sewage), thus its densities are associated with water quality and serve as an

index of the trophic state of a water body (Cabelli 1980b, Cabelli et al. 1974,

Rippey and Cabelli 1980). Other studies have shown good correlations with .

conductivity, redox potentials, and temperature but question use of this

organism as a trophic-level indicator (Colwell and Foster 1980). It has

a seasonal distribution, being present in high numbers only during warmer

months unless thermal discharges are present (Colwell and Foster 1980,

Straskrabova 1974). As with many bacteria, densities in the sediment are

elevated and remain relatively stable throughout the year. P. aeruginosa

is also frequently present in high numbers in sewage (Wheater et al. 1979,

Miescier 1977, Dutka 1979). Cabelli et al. (1976) suggest P. aeruginosa-

to-FC ratios greater than 20 indicate the source is not of fecal origin. 4
27. The use of the yeast, Candida albicans, as an indicator has

been gaining acceptance in recent years (Dutka 1979, Buck 1977). It is

a known pathogen, and its occurrence is apparently directly related to man's

activities. It can be isolated from the mouth, throat, skin, and feces of

normal individuals; but it is not a good fecal indicator because only about . I

18% of the population has C. albicans present in their feces (Cabelli et al.

1976). Survival in fresh waters is relatively longer than most enteric

bacteria, often lasting several weeks (Cabelli et al. 1976). Its presence
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in uncontaminated water is rare. Beaches with high FC counts produced F .

samples containing C. albicans counts of 20-25/litre, while low FC areas

had counts of 0-2/litre (Buck 1977).

28. Two absolute indicators of fecal pollution which have potential

for use are numbers of bifidobacteria and the fecal sterol, coprostanol.

Bifidobacteria are anaerobic organisms found only at high densities in 5

feces of humans and higher animals and have survival characteristics similar

to E. coli. Their use as water quality indicators has been suggested by a

few authors, but further verification of enumeration procedures and natural

sources is needed (Evison and James 1975, Levin 1977). Coprostanol is a

fecal component that has several traits which make it an ideal chemical in-

dicator of fecal pollution; however, it's identhfication requires complex

laboratory methods which prevent its use at present (Colwell and Foster 1980,

Smith and Gouron 1969, Dutka et al. 1974, Dutka and El-Shaarawi 1975,

Murtaugh and Bunch 1967).

29. Perhaps the most important organisms of sanitary significance are

the viruses, yet they are the most difficult to detect. No facile method

has been developed for identifying virus indicators, and much disagreement

and uncertainty exists regarding proper indicators for viruses of fecal

origin (Carson et al. 1973). There is agreement, however, that a significant

number of waterborne cases of gastroenteritis are probably caused by

enteroviruses (Pipes 1978). Relatively involved isolation methods have

implicated viruses directly and indirectly in waterborne outbreaks of lo 4

illness (Pipes 1978). There has been much discussion on the use of coli-

phage as a virus indicator (Kott 1981, Colwell and Foster 1980, Leahy et al.

1980). It has been suggested by Kott et al. (1976) that the f2 coliphage

was a good indicator for human enteroviruses and this was supported by

studies on the frequency of these viruses in sewage treatment. There are

several characteristics of coliphage which qualify its use as an indicator:

(a) it is prevalent in sewage at ratios to enterovirusus of 103:l, (b) it can

be enumerated within 24 hrs , (c) it is more resistant to chlorine than the4e
enteroviruses tested, (d) it survives as long or longer than enteroviruses

in water, and (e) reliable isolation methods exist which are less expensive

than most virus isolation methods (Colwell and Foster 1980). However,

coliphage does have the following shortcomings as a fecal indicator:
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(a) it is not present at consistent densities in fecal material, (b) it is

not associated exclusively with fecal wastes of warmblooded animals, (c)

its survival rates compared to many viruses of sanitary significance are not

known, and (d) its survival rates vary (Cabelli 1980b, Cabelli et al. 1976).

P P
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PART III: STANDARD AND RECOMMENDED METHODS FOR ENUMERATING INDICATORS

30. Numerous methods and materials exist which allow easy enumeration

of most microbial indicators and pathogenic organisms. Care must be taken,

however, in choosing which methods and materials to use because reco.very

rates vary substantially depending on the methods and materials and may

prevent comparison of data.

Standard Methods

31. The majority of marketed methods and materials dealing with in-

dicators concern FC. Presently, there are two standard methods which pre-

dominate: the membrane filtration (MF) and the most-probable-number (MPN)

methods (Bordner and Winter 1978).

Problems

32. There are, however, many problems associated with these methods or

for FC, and these must be recognized. Among the major problems are: (a)

occurrence of false positive and false negative results, (b) varying rates

of recovery among different brands and batches of membrane filters, (c)

effects of turbidity on enumeration by MF, (d) varying recovery rates be-

tween MF and MPN, and (e) inability to recover stressed FC.

32. False positives. Some bacteria fit the definition of FC when,

in fact, they are not of fecal origin. Some which have been reported to

give these false positive results are Aeromonas, Klebsiella, Enterobacter,

Citrobacter, and Serratia species. This problem is the result of both the

crude definition of the FC and the inability of the popular FC isolation

media to inhibit nonfecal bacteria. False positives have been noted fre-

quently by investigators attempting to isolate FC from sewage wastewaters,

soilsand groundwaters (Bordner and Winter 1978, Neilson 1978, Leahy et al. S

1980, Hussong et al. 1981).

33. False negatives. False negatives are normally a greater problem

in analyses and may be attributed to numerous factors. Many waters will

contain such a high number of bacteria capable of growth on FC isolation

media that they inhibit the growth of coliforms (Mundt 1962b). This is

especially true in very turbid samples. Bacteria tend to adsorb to suspended

particulate matter as a result of charge interactions (Weiss 1951). This

causes three problems. First, noncoliform organisms will be associated 1
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with the suspended particulate matter in high numbers and through competition

and antagonism will prevent growth of some of the coliforms (Geldreich et

al. 1978, Herson 1980). Second, the turbid sample will tend to clog pores

of membranes used in the MF procedure, preventing nutrients from the media

from reaching the FC and allowing only small quantities of water to be

filtered (Bordner and Winter 1978, Sladek et al. 1975). If samples are pre-

filtered to remove turbidity, significant numbers of FC may be lost (Geldreich

et al. 1978). Finally, when counting plates from MF samples, one must assume

each colony arose from one FC; however, in turbid samples several FC may

adsorb to a particle and grow into one colony, resulting in an underestimation p

of the true FC density (Bordner and Winter 1978). Use of MPN instead of MF

when turbidity is greater than 5 nephlometer turbidity units (NTU) is recom-

mended (Geldreich et al. 1978, LeChevallier et al. 1981) but will not totally

alleviate the problems. Since heavy growth of heterotrophic bacteria

frequently accompanies turbidity, growth of FC may be suppressed (Center for

Disease Control 1980, Geldreich et al. 1978, Herson 1980). The numerous

problems associated with estimating FC densities in turbid samples with high

noncoliform densities have been described in numerous studies (Bordner and

Winter 1978, Herson 1980, LeChevallier 1981).

35. Another significant factor contributing to false negatives is the

inability of standard methods to recover stressed or injured FC cells

(Bissonnette et al. 1975, Bordner 1977). Since these organisms are physio-

logically adapted to the warm, nutrient-rich guts of animals, dilute aquatic

environments cause FC to be stressed, injured, and eventually killed. In-

jured cells are of sanitary significance because, if they are ingested, the

favorable environment will allow resuscitation and possible pathogenesis.

Since standard FC isolation media contain ingredients which are inhibitory

to many bacteria and incubation is at 44.5 0C, stressed FC cells are frequently

unable to grow. Incubation at this high temperature may grossly underestimate

levels of E. coli (Dutka et al. 1979); many studies have shown high percent-

ages of FC to be injured and not recoverable by standard methods (Bissonnette

et al. 1975, Bordner et al. 1977, Stuart et al. 1977). Preliminary incuba- U

tion at lower temperatures or in nutrient-rich media allows injured cells

to recover and multiply with subsequent incubation in the routine manner.

Unstressed freshly isolated FC grow very well at 44.5°C.

*p
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36. Effects of different filters and selective media. Another compli-

cating problem is the variability associated with different lots and brands -"

of membrane filters and selective media. A review of these problems was

presented in the Environmental Protection Agency's Symposium on the Recovery

of Indicator Organisms Employing Membrane Filters (See Bordner et al. 1977).

There is a disagreement on whether some of these problems are significant,

but the following points should be noted:

a. Dyes used in media to distinguish indicator organisms vary in

their content from lot to lot. Some background bacteria which may

be present can cause the dyes to fade. A

b. Membrane filters vary in their ability to trap and allow subse-

quent growth of indicator organisms. Many studies have observed that

on polycarbonate filters recovery of water quality indicator bacteria

is less efficient than on other major brands.

c. Turbid samples clog membrane pores, preventing filtration of ade-

quate quantities of water and preventing growth media from soaking
through to achieve contact with the bacteria. Particles on the filter

serve as sites of attachment for numerous bacteria which prevent
estimation of true densities; these particles also allow background

bacteria to overgrow indicator colonies with less intense color
development.

d. Use of standard selective media, such as M-FC which contains
inhibitory0agents, in combination with a high temperature of incuba-
tion (44.5 C) will prevent growth of some sublethally stressed in-

dicators. Prior incubation at lower temperatures and/or with non-

selective nutrient-rich media produces higher rates of recovery, thus
a better picture of the true bacterial density in the water system
(Bordner et al. 1977).

Advantages of using the standard methods

37. Numerous studies (Evans et al. 1981, Tobin et al. 1981, Strathman

1979) have compared the two basic techniques used to quantify bacterial/

pathogen densities in water, the MPN and MF procedures. Both methods have W

advantages and shortcomings.

38. Most-probable-number method. The MPN method is more precise when

greater numbers of replicate tubes are used. However, the number of tubes

in this multistep procedure can quickly become resource-limiting if many

water samples are tesLed. The probability tables used in the tabulation of

the bacterial densities are designed to include a positive bias, thus possibly

overestimate the true density. The MPN method produces imprecise measurements

which in a given test may range from 30 to 289 percent of the absolute value V
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(Pipes 1978). There are several advantages of the MPN test. It is relatively

facile and has been used extensively for many years, which allows comparison

with historical data. This method is recommended over the MF procedure when

turbidity greater than an NTU of 5 exists (Geldreich et al. 1978, LeChevallier

et al. 1981, Evans et al. 1981). A greater recovery rate of bacterial in-

dicators is possible in turbid samples because the lack of prefiltration and

clogging of membranes allows all indicators present in the test aliquot to be

in direct contact with the isolation media. This is also thought to provide

a less stressful environment than the MF (Hufham 1974).

39. Membrane filtration method. Many of the shortcomings of the MF V.

procedure have been previously pointed out (Bordner et al. 1977). However,

it does have some characteristics which make it very popular. It is

quicker and less resource-intensive than the MPN method. Larger quantities

of water may be sampled, provided suspended particulate matter is low. This

permits better estimates of indicator/pathogen densities. Bacterial counts

obtained from filters are more accurate than MPN estimates, providAd that:

(a) proper dilution is used, (b) uniform distribution in the sarple and on

the filter is obtained, (c) the sample does not contain nonrecoverable

stressed organisms, and (d) there are no inhibitory substances and micro-

flora present.

New methods of identification

40. Many new methods have been developed in recent years to quantify

fecal indicators (Dufour 1981, Bordner and Winter 1978, Mundt 1962b, Stuart

et al. 1977). Those dealing with FC which have the greatest potential for

being adopted on a widespread basis are simple modifications of the MF and MPN

procedures. These recent developments are significant because in many cases

they provide adequate solutions to the procedural problems which have been

identified. These modifications can be divided into four areas: (a) new

selective media, (b) preincubation at lower temperatures, (c) preincubation

in nonselective media, (d) subsequent analyses on false-negative samples.

41. Any of the modifications, when used properly, should alleviate

some traditional problems encountered with the standard methods. It is

desirable to use a method which is simple and consistant on a regular basis

so that comparisons between present and historical data can continually be

made. The goal of any modification should be to obtain a more accurate

•P
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picture of water quality; therefore, successful modifications should be im-

plemented as soon as possible.

Recommended Methods

42. The following methods are modified versions of the standard MF and

MPN procedures. These modifications are slightly more involved but allow

the investigator to better assess the potential for waterborne disease:

a. MF and MPN tests for fecal coliforms will give increased recoveries
of stressed organisms if preincubated at 350C for 4 hours. When testing
chlorinated waters or effluents, preincubated test results should be
initially compared to one-step results for possible toxic effects of
preincubation. When turbidity and background growth are problems, use of
the MPN method with preincubation is recommended. In the presumptive
test of the MPN method, when tubes become turbid due to bacterial
growth but do not produce gas, transfer a loopful of bacterial suspension
to M-FC plates without rosolic acid and streak. Pick some bacterial
growth from the M-FC plates after 24 hours at 44.50C and reinoculate pre-
sumptive media. If gas is subsequently produced, transfer a loopful of
bacteria from the presumptive tubes to EC confirmatory tubes. This
method follows that of Evans et al. (1981), except that it is modified ..
to identify FC rather than total coliforms by streaking M-FC plates,
inoculating EC media, and incubating the tubes at 44.5uC.

b. Streamlined MF methods exist for enumerating E. coli, enterococci,
P. aeruginosa, and A. hydrophila. They involve filtering known quanti-
ties of water and placing the membranes on organism-specific selective
media for a few hours with subsequent transfer of the membrane to a
medium which confirms the organisms of interest by color reactions.
These are explained in detail in the Dufour et al. (1981), Rippey and
Cabelli (1979), and Brodsky and Ciebin (1978) references.

43. Methods for collecting water samples are well known (Bordner and

Winter 1978). Thorough rinsing of the sampler with sampling-site water is :

usually adequate for these tests. Cross-contamination is only a problem when 4

sampling of contaminated waters is followed by subsequent sampling of rela-

tively "clean" waters (Kittrell 1969).

44. When sampling sediments in swimming areas, the sample can often be

collected by hand by scooping the upper few centimeters into a sterile wide-

mouth bottle or plastic bag. Deeper samples may be obtained using a Van

Donsel-Geldreich sampler or an Eckman or Ponar dredge (Bordner and Winter 1978).

The sediment sample should be kept near 40C and analyzed within a few hours.

Thoroughly mix the sample to ensure homogeneity. Remove one gram or one mil-

liliter of mixed sediment and suspend in 99 mL of sterile phosphate buffer.

From this, tenfold dilutions may be made by mixing the sediment-buffer suspen-

sion, removing one milliliter, and transferring it to a tube of sterile 9-mL
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buffer solution. Three or four dilutions may then be analyzed by the ap-

propriate MF or MPN test to obtain accurate organism counts. Dilution and

mixing of sediment samples for analyses is explained in many references,

along with other laboratory techniques and quality assurance methods (Bordner

and Winter 1978, American Public Health Association 1981).

45. As previously discussed, all present indicators of potential water-

borne disease have their own characteristic shortcomings. In order to

adequately assess water quality, a combination of several indicators should

be used. Choosing which indicators to monitor will require knowledge of

several factors: the indicator's growth characteristics; the pathogens it

represents; when and where the indicator is likely to occur; its sources; and

the physical, biological and chemical characteristics of the water body and

its watershed. Simple methods exist for quantification of many indicators

and pathogens and should be used when conditions exist for their potential

occurrence. These are summarized in Table 5.

2 U
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TABLE 5r
Suggested Indicator and Pathogen Enumeration Methods,

by Reference

Agent Method (Reference)

E. coli Dufour et al. 1981
Enterococci Cabelli 1979

Fecal coliform This reference

Fecal streptococci Bordner and Winter 1978

Aeromonas hydrophila Rippey and Cabelli 1979

Pseudomonas aeruginosa Brodsky and Ciebin 1978

Salmonella spp. American Public Health
Association 1981 or Spino 1966

Kiebsiella pneumoniae Bagley and Seidler 1978

Clostridium perfringens Cabelli 1979

Candida albicans Buck 1977

Yersinia enterocolitica H-ighsmith et al. 1977

Shigella spp. American Public Health
Association 1981

Giardia lamblia Jakubowski and Ericksen 1979

Coliphage Goyal et al. 1980

Naegleria spp. Wellings et al. 1979

Legionella Rneumophila Orrison et al. 1981

81 fidobacteria Evison and James 1975

*Coprostanol Dutka et al. 1974

* Leptospira American Public Health
Association 1981
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PART IV: DETERMINATION AND DETECTION OF CONTAMINATION

Exposure

46. The actual risk of contracting a waterborne illness from con-

aminated waters is uncertain. About all that can be said with certainty is

that the risk is very low (Pipes 1978, Cabelli 1979, Moore 1975). The cur-

rent microbiological criteria and standards for waters are derived from weak

epidemiological studies (Cabelli 1980b). No studies have been conducted which

can substantiate the current standards. Only recently were epidemiological

studies completed which did show significant relationships between rates of

waterborne illness and levels of E. coli and enterococci in lake swimming

areas (Cabelli 1979, 1980a, Cabelli et al. 1979). An attack rate for gastro-

enteritis of about 1% was associated with E. coli or enterococci densities

of approximately 10/100 mL. This indicates that very low densities of path-

ogens can cause infection, contradicting other studies which have reported

infective dose requirements to be as high as 1011 cells (Bonde 1981, Hornick

et al. 1970). However infective doses range over several orders of magnitude

for enteric bacteria. This is not surprising, since virulence in an organism

can change easily and be lost quickly outside an ideal environment, particu-

larly in a stressful aquatic environment. Some studies have suggested that

one virion may cause infection; however, these studies did not simulate normal

waterborne pathogen ingestion (Mechalas et al. 1972). A standard of 1 virus

per 10 gallons of recreational water has been proposed, but this standard

lacks epidemiologic foundation (Melnick 1976). Due to the greater resistance

and survival of viruses relative to FC, the probability of a viral infection

increases more rapidly than does the risk from Salmonella (Mechalas et al.

1972).

47. Eye, ear, nose, and throat ailments represent more than half of

all the illnesses recorded among swimmers, gastrointestinal disturbances up

to 20 percent, and skin irritation the remainder (Stevenson 1953, Hendry and

Toth 1982). The following list gives the more significant waterborne

diseases with a brief description of when they may occur. -

a. The incidence and cause of gastroenteritis is largely unknown.
Rany cases in recent years have been attributed to viruses. The
source of the contaminant is probably human; however, FC levels
quite often are low. The incidence of gastroenteritis peaks in the
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summer as do most other waterborne outbreaks (Craun et al. 1978). F

b. Infections of the skin and eyes may be caused by Aeromonas "-.
hydrophila, P. aeruginosa, and schistosome species. As mentioned
previously, these organisms are not always present in conjunction . .
with high FC levels. Aeromonas may be present at high densities
in warm waters which are relatively nutrient-rich (Craun 1978,
Rippey and Cabelli 1979). Temperature appears to be the most im-
portant factor in mesotrophic waters (Colwell and Foster 1980,
Straskrabova 1974). Particularly high densities have been noted
in thermal discharge waters (Fliermans et al. 1977). P. aeruginosa
has been associated with high nutrient levels; however this or-
ganism is also found in oligotrophic waters (Carson et al. 1973,
Nemedi and Layni 1971). Various species of snail-transmitted P' .
bird schistosomes produce dermatitis, including human "swimmer's
itch," in recreational waters. Infections due to A. hydrophila
and P. aeruginosa have been increasing in occurrence in recent
years, and detection of these organisms should be part of any
monitoring program in recreational waters (Cabelli et al. 1976).

c. Diarrhea associated with waterborne infections may be caused
by several organisms including: Salmonella, Shigella, Yersinia,
Campylobacter, viruses, and Giardia. Viruses probably predominate
as etiologic agents, with several types being implicated. As
noted, their detection is relatively complicated and their inci-
dence of occurrence uncertain. Yersinia, Campylobacter and Giardia
are the dominating causes of enteric infections in some areas tCenter |"
for Disease Control 1979a, Pai et al. 1979, Sands et al. 1981).
Yersinia enterocolitica is particularly common in Europe and Canada,
with increasing isolations across the United States (Bottone 1977).
Small animals, rodents, and pigs have been shown to be possible
reservoirs of Yersinia (Kapperud 1975, Toma and Diedrick 1975,
Kaneko and Hashimoto 1981). Infections have occurred from waters * *"

containing low FC levels. The extended time required for the more
successful Yersinia enumeration methods precludes most laboratories
from including it in routine isolations, so the incidence of this
organism may be underestimated. Likewise, Campylobacter fetus
is on the increase, with cattle, pigs, poultry and migratory water-
fowl known as possible reservoirs of this organism (Luechtefeld
et al. 1980, Center for Disease Control 1979a). The true in- P
cidence is probably also underestimated because of the failure to
include it in routine methods. Giardia has received widespread at-
tention in recent years as an etiologic agent: infection rates
as high as 16% have been observed in some states (Center for Disease
Control 1976b). Most backpackers are aware that the "clean, pure"
mountain water is often contaminated with Giardia due to infesta-
tion from beavers and other animals. Giardia's ability to encyst
enables it to survive long periods and disinfection treatments
(Craun and McCabe 1973, Craun 1976, Rendtorff and Holt 1954,
Rendtorff 1954, Berg 1973a, Malina 1976, Lin et al. 1971, Mack
et al. 1972, Petrilli et al. 1974, Nestor and Coston 1976, Berg
1973b). Prolonged diarrhea typical of Giardia is often mistaken
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as being caused by Campylobacter or rotavirus.

d. Two protozoa, Naegleria and Acanthamoeba, which may produce death
upon infection have been recently found to be widespread in natural
waters (Wellings et al. 1977, 1979, O'Dell 1977). Fortunately, the
incidence of infection is extremely low. Cases of Primary Amoebic
Meningoencephalitis (PAME) due to Naegleria have been higher in
recent years, but this may have been due to warmer weather which
increased both water temperatures and swimming (Duma 1980). The
organism thrives in warmer waters, overwintering in the sediments
(Duma 1980, Wellings et al. 1977, Stevens et al. 1977). Isolation
methods are presently too complex for Naeqleria and Acanthamoeba
to be included in routine monitoring programs TDuma 1980, Wellings
et al. 1979, O'Dell 1977).

e. Concern over Legionella pneumophila has increased in recent
years with the realization that it is widespread and a cause of
numerous illnesses and deaths (Fraser and McDade 1979, Fliermans
et al. 1981). It has been shown to be ubiquitous, occurring in
waters of many types (Fliermans et al. 1979, 1981). Since it has 3 " -'

not been implicated in waterborne disease outbreaks and requires
involved isolation techniques, routine monitoring is impractical.

Sampling Problems

48. Problems associated with attempting to assess water quality, in ,. -

particular the microbiological quality, of an impoundment reservoir or

lake are many and complicated. Stream monitoring is somewhat easier be-

cause at times flows are stable and areas are well mixed. However, the

hydrology of an impoundment is very complex, with varying components such

as currents, mixing, and retention time. s
49. In order to get a clearer picture of the microbiological status

of impoundments, thus the potential for waterborne disease, a strategic

sampling program must be established. Data collected by this program,

when combined with knowledge of watershed, water quality, and hydrologic S

characteristics of the impoundment, will allow for well-informed manage-

ment of recreational areas and decreased transmission of waterborne disease.

50. The hydrology of an impoundment is perhaps the most critical factor

in the determination of microbiological quality. Generally, impoundment *
of streams results in improved bacteriological quality because more self-

purification occurs through increased hydraulic retention time of the waters

(Geldreich and Kenner 1969). Since the microbes of concern are planktonic,

they move with the currents and settle with sediments. When human and
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animal wastes are discharged, they remain near shore at high densities unless

mixed by wind, water turbulence, stream inflows, or destratification

(Geldreich and Kenner 1969, Thornton et al. 1980, McFeters and Stuart 1972,

Schillinger and McFeters 1978). Stratification dynamics play a key role

in bacterial distribution (Asthana and Burdick 1972, Lighthart 1975, Menon p-

et al. 1971, Drury and Gearheart 1975). In nearshore shallow areas, verti-

cal distribution is fairly uniform due to mixing and a uniform temperature

(Geldreich and Kenner 1969). But during the summer, the remaining reser-

voir usually undergoes thermal stratification into three layers, which

results in current restriction and inhibits nutrient transfer and bacterial

distribution (Asthana and Burdick 1972, Menon et al. 1971, Drury and

Gearheart 1975, Wetzel 1975). Bacteria in the water column will predominate

in the layers above the thermocline where biological productivity pre-

dominates (Geldreich and Kenner 1969, Drury and Gearheart 1975, Wetzel 1975, ."

Weiss and Oglesby 1960, Collins 1963). Sedimentation of clay, silt, and

organic matter results in higher levels of bacteria and viruses at the

sediment-water interface. This is a result of the tendency of the or-

ganisms to attach to particles with densities approximating 3,000 to 15,000

organisms per mL (Tsernoglou and Anthony 1971). As noted earlier, the

sediments provide protection, nutrients, and extended survival to high

concentrations of microorganisms. In fall and winter, cold water flows

into the reservoir causing destratification (overturn) which results

in relatively complete mixing, therefore a more uniform dispersion of

bacteria, until warmer weather returns. When this mixing occurs, nutrients

and microbes trapped in the hypolimnion circulate and a temporary deteriora-

tion in water quality may occur, including increased bacterial levels

(Geldreich et al. 1980).

51. During stratification most mixing is horizontal, with slight

vertical currents existing. Naturally the currents are greater in the

old river channel and in open waters and less in coves and isolated

portions of the impoundments (Wetzel 1975). Knowledge of these currents

aids in determining the ability of areas to dilute contamination.

52. Water quality in reservoirs directly interacts with hydrologic

and watershed characteristics to affect the microbiological status of the

system. During summer stratification, runoff from the watershed and feeder
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streams tends to remain in the upper layers of the reservoir. These inflows

may contain organic matter, nutrients, animal and human wastes, and other

contaminants, so increased densities of microorganisms may occur above

the thermocline (Geldreich et al. 1980, Wetzel 1975, Weiss and Oglesby

1960, Collins 1963).

53. Survival of indicator pathogen organisms has been observed to de-

crease near the surface due to the detrimental effects of ultraviolet light.

Geldreich et al. (1980) showed greatest survival was at 0.9 m below the

surface. Less penetration of ultraviolet light and cooler temperatures at

this level probably account for this occurrence (Geldreich et al. 1980, " !

McCambridge and McMeekin 1981). Extracellular products which are excreted

by algae also promote growth and survival of bacteria. Therefore, algal

blooms may allow bacterial densities to reach high levels in the absence

of significant fecal pollution (McFeters et al. 1978).

54. Low dissolved oxygen levels in the hypolimnion have not been shown

to affect survival of enteric organisms (Geldreich et al. 1980). Anoxic

conditions will allow increased transfer from the sediment of inorganic

species which cause numerous water quality problems at overturn periods.

These problems include hydrogen sulfide release, high concentrations of

reduced iron and manganese, fish kills, and increased bacterial levels

(Wetzel 1975).

55. Storm events have been shown to play a major role in the water

quality of impoundments (Nix et al. 1975). Increased flows from feeder

streams carry the majority of the annual supply of nutrients during storm
events (Nix et al. 1975). Also associated with increased flow and turbidity

are high levels of indicator organisms. Indicator densities in swimming

areas have been shown to increase dramatically to unsafe levels following

rainfall as a result of high concentrations in runoff (Horak 1974, Hendry

and Toth 1982). Sources of these fecal wastes and pathogens can be farm

animals, wildlife, pets in urban and recreational areas, inadequate waste

treatment systems, and septic tanks. Increased densities of enteric '

organisms in feeder streams and storm runoff have been observed in many --

studies (Thornton et al. 1980, Geldreich et al. 1980, Hendry and Toth 1982).

Their dramatic increase during a storm is a function of many factors such

as watershed area, land use, and duration and intensity of the rainfall.

32

* ~ ~~ -.. -. - - - - - - - - - -- 99



The FC generally exhibit the "first-flush" phenomenon (Davis et al. 1977);

i.e., like many nutrients and chemical species they are "flushed" through

the stream during the initial increased storm flow. In large reservoirs,

high FC densities in the streams are diluted out once the flow reaches

the impoundment, with sedimentation, dispersion, and die-off predominating.

(Thornton et al. 1980, Geldreich et al. 1980, Coutant and Shapple 1966,

Churchill 1958, Powell and Berthouex 1967). Storm flows enter reservoirs

in turbid plumes, proceeding through reservoirs as overflows, interflows,

or underflows, depending on relative densities of the river water and the

reservoir water. Good correlations for decreasing bacterial densities

versus time have been shown from models which utilize water temperature,

level of turbidity, the speed at which a turbid storm plume proceeds through

the reservoir, and the distance it covers (Thornton et al. 1980).

56. Sediments are perhaps the most important yet most underutilized

source of information on microbiological quality of impoundments. As

previously pointed out, densities of indicator organisms and pathogens in

sediments are often several orders of magnitude higher than in overlying

waters and remain relatively stable over time, unlike microbial water

densities. Microbial sediment densities are dependent on a multitude

of variables; nearby sources of contamination are undoubtedly the most

important. Clays and silts of smaller grain sizes usually have more

organic matter associated with them as well as increased surface area p

and physical protectionwhich allow microorganisms much longer survival

in clays and silts than in sandy bottoms (Gerba and McLeod 1976, Weiss

1951). Hydrology and recreational use determine the health significance

of contaminated sediments. In areas where sediments are resuspended due

to runoff, boats, swimming, wading, and water turbulence, high densities

of organisms can be recirculated into the water column (Grimes 1975, 1980,

Matson et al. 1978, LaLiberte & Grimes 1982). Sediments in areas where

there are currents, or which are away from shore or free from the in-

fluence of contaminated runoff or discharges, seldom support high densities •

of organisms in overlying waters.

Detection of Contamination

57. Well-informed management strategies with respect to microbio-
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logical water quality are possible with a well-planned monitoring system. F

Water densities of enteric organisms will fluctuate with the seasons. As

pointed out earlier, stratification, agriculture, recreational uses, and

rainfall patterns change with the seasons and should determine sampling

frequencies and stations.

58. Sampling must be geared toward potential problem areas, from

both contamination and human contact aspects. Taking one "grab" sample

from an area of concern usually is insufficient and provides relatively

meaningless results (Pipes 1978) because the distribution of enteric

organisms through the water varies significantly, both horizontally and r 1

vertically (Pipes 1978, Thornton et al. 1980, Wetzel 1975, Palmer et al.

1976). Variations in densities as high as three orders of magnitude over

a few centimeters have been demonstrated (Thornton et al. 1980). When

sample collection is not being conducted in shallow areas, vertical samples r .

should be collected down to the thermocline. In shallow areas, emphasis

should be placed on increased numbers of horizontal samples and sediment

samples. In the initial phase of a monitoring system, potential contami-

nation and use areas should be sampled through one year to identify sites

of importance as they relate to seasonal changes.

59. Sample sites should include the mouths of feeder streams; point

source discharges; areas subject to agricultural, urban, and recreational

runoff; drinking water supply intakes; and swimming areas. Also during

initial phases of monitoring, storm events should be monitored and tracked

with storm-flow plume samples taken through the reservoir to determine the

degree of contamination and the areas affected by feeder streams. Swim-

ming areas must also be sampled during and immediately after periods of

rain to assess runoff effects.

60. Once a thorough survey is complete and significant sources are

pinpointed, a reduced sampling program is practical. Unless the reservoir

is also a drinking water supply, concentrated microbiological sampling

is only necessary during periods when there is primary contact by users,

usually from late spring to early fall.

61. The confidence one can place on monitoring data depends on the

degree of known variability associated with the results. Typical bacterio-

logical data are Eratic, fluctuating several orders of magnitude over
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small areas, between replicates, and over short time periods (Pipes 1978,

Horak 1974). Patchiness of organism distribution and fluctuating environ-

mental variables in many areas means that confidence in data values will

require replicate samples at high frequencies. Limited resources, however,

often preclude this. Nonetheless, confidence intervals should be determined

for the data. If the interval is unacceptably large, increased replicate

numbers or sampling frequencies can be initiated to increase data confidence.

For a 90% confidence coefficient, a confidence interval is calculated as:

l ± (164 5)

nI

where X is the mean of the data, (Y is the standard deviation, and n is

the number of samples (Ward and Nielsen 1978). To get equal precision at

all stations, sample numbers at each station can be increased or decreased

accordi ngly: .2

n = ni 2(N)

where n.i is the sample number to be taken at the station i of interest,

a2 is the variance at station i , and N is the total number of samples

to be allocated (Ward and Nielsen 1978).

62. After an adequate data base of microbiological levels has been

collected for an impoundment, it may be possible to assess the extent of

spatial and temporal fluctuations at fewer sampling stations and at less

frequent sampling intervals. This would 'rmit more replicates to be taken

at each sampling, allowing increased data confidence.

S

w

]
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PART V: CONCLUSIONS AND GENERAL RECOMMENDATIONS |

63. Water quality conditions can be predicted for future impoundments

by preimpoundment studies. Potential problems involving microbial pathogens

may be detected by surveying the preimpoundment watershed area for manmade

and natural factors which might promote problems in an impoundment.

64. Factors which should be assessed relating to man include surveys

of population distribution; location of septic tanks; amount of urban run-

off; municipal and industrial discharges; and agricultural runoff including

fertilizers, pesticides, herbicides, and animal wastes. Since many of these

factors and activities will affect streams in the preimpoundment area,

streams should be monitored for FC, E. coli, and enterococci. If high

densities of these indicators are encountered, further surveys for the in- p 4

c"dence of pathogens should be conducted. If human wastes are the pre-

dominant source of contamination, monitoring of Salmonella, coliphage,

Campylobacter fetus, and Giardia should be considered. Where agricultural

wastes predominate, there will be a possibility of Salmonella, Leptospira, *
Campylobacter fetus, and parasitic ova occurring.

65. Interrelated with and in addition to manmade factors of contami-

nation are the natural characteristics of the preimpoundment watershed. A

survey of physical, chemical, and biological characteristics should include

the following: soil types; drainage; amount and extent of vegetation; yearly

rainfall; water demand of area; predicted retention time of impoundment;

air temperature averages; and animal population including types, numbers,

pathogen and parasite potential, and occurrence of parasite vectors. Stream

flow will dramatically affect microbial densities and should be a factor

in determining sample frequencies.

66. When impoundment studies of streams implicate wildlife as being a

significant source of fecal contamination, microbial monitoring in streams

should be suitably adjusted. Pathogens which possibly could occur are w

Salmonella, Yersinia, Campylobacter fetus, Francisella tularensis, Giardia

lamblia, schistosomes and parasitic ova.

67. The physical and chemical characteristics of the preimpoundment

area will determine if the presence of microbial pathogens will be a
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significant problem. Watersheds in which erosion is a problem will likely F

lead to waters of high turbidity, thus high bacterial numbers. Soils of

large clay and silt fractions will promote pathogen survival, but in early

impoundment stages they could potentially cause numerous adverse water

quality conditions such as high biological oxygen demand, excessive nutrient

release, and hydrogen sulfide production. If the impoundment will be of

significant depth, stratification may occur which decreases mixing of the

water column, thus limiting natural purification. All of the significant

natural and manmade factors which relate to the future water quality of

the impoundment must be determined ti accurately predict microbial problems.

68. A key factor in the potential for waterborne disease transmission

from enteric organisms is the siting of swimming areas. Beaches which are

established in areas where water currents are prevalent will allow fecal

pollution to be flushed out of the swimming area and diluted to safe levels.

Areas with active currents can be located by tracer dye studies. Coves

and sheltere& areas tend to lack adequa.e circulation, and enteric organ-

isms may reach dangerous levels in the water and sediments. Boat ramps

should be located well away from swimming areas because the water turbu- P

lence from boats can resuspend sediments and pathogens into the water

column (Horak 1974). Swimming areas should have predominantly sandy bottoms.

Enteric bacteria and viruses do not survive nearly so long in sand and,

therefore, do not concentrate as they may do in sediments of silt and clay. .

Bacterial counts from sands can be several orders of magnitude less than

equal volumes of fine-grained sediments.

69. Preliminary studies should reveal the level of contamination from

feeder streams and point and nonpoint source discharges. Beaches should be . ,

placed an adequate distance from critical runoff areas and feeder streams

so that even during storm events the storm plumes do not carry contaminated

water into the beach areas. If studies reveal elevated indicator levels in

swimming areas following periods of rain, the beaches should be temporarily

closed to allow for die-off dilution of the organisms. Because of the known .

relationship between artificially warmed water (e.g. power plants' dis-

charge plumes) and the frequency of certain pathogens (e.g. Naegleria and

Aeromonas), swimming areas and boat ramps should not be permitted near thermal

discharges. Water criteria for standards do not exist for indicator w -
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bacteria in sediments as they do for bacteria in water. This shortcoming, -.

however, does not negate the need for sediment monitoring, for the

reasons previously mentioned. High levels of indicator bacteria in the

sediment should be regarded as indicators that their resuspension into

the water column could violate water quality standards or increase the

possibility of waterborne disease outbreaks. .

70. Knowing which organisms to monitor is a difficult problem to solve

without thorough studies of each impoundment. Each water system has unique

water quality and watershed characteristics which permit varying growth

and survival rates for different microorganisms. Testing should include U..

regular monitoring during high-use periods, employing simple, consistent,

and reproducible enumeration methods for FC, E. coli, and enterococci.

During the summer, P. aeruginosa and A. hydrophila should also be monitored

as often as resources allow. Densities of these organisms are relatively

constant, hence require less sampling. Sampling in swimming areas should

always include sediment in addition to water.

71. Establishment of a monitoring system which is geared toward critical

areas and critical periods, such as those of intense recreational use and

storm events, can prevent unnecessary sampling. Using suggested sampling U

methods, frequencies, indicators, and isolation procedures will provide data

which are meaningful and useful. This will permit sound reservoir manage-

ment which will greatly reduce any risks of waterborne disease outbreaks.

..
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