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Estimating Distributed Lag Coefficients when there I
are Errors in the Observed Time Series .:

Melvin J. Iinich*

Abstract

Suppose that two stationary time series satisfy the linear
relationship y(n'r) m..oh(mr )x((n-mh).') Estimating the distributed lag

coefficients {h(mr)} from a sample of the two processes when [x{nT and

{y(nTl} are measured with error is a statistical problem that is

frequently encountered in physical science, engineering, and social

science applications. In the engineering and science literature the

distributed lags are called the impulse response weights of a causal

*linear filter. A least squares fit of the model gives biased estimates

-of the coefficients for this time series version of the errors-in-

variables problem. This paper presents approximately unbiased estimators

of a scalar multiple of the coefficients. The large sample variances of

these estimators are identical, and are of the order O(N-1 ) where N is

the sample size. The accuracy and practicality of the estimating

procedure is illustrated by some simulation results.

S•C This work was supported by the Office of Naval Research (Statistics and

Probability Program) under contract. I have benefitted from many useful
8A-i discussions of this subject with Warren Weber, and I am grateful to James

-'--- McGlone for his computational assistance. . . .(
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Estimating Distributed Lag Coefficiente when there
are Errors in the Observed Time Series

Melvin J. Hinich
Virginia Polytechnic Institute & State University

Blacksburg, Virginia

Introduction

Suppose that two discrete-time stationary random processes satisfy

the linear relationship y(tn) = h(tm)x(tn - tm ) where tn - nr.

Estimating the sequence {h(tm)1 from a sample of the two processes is a

statistical problem that is frequently encountered in physical science,

engineering, and social science applications. Often (x(tn)} and {Y(tn)}

are measured with error, and are of the form x(tn) X X(tn) + u(tn) and

Y(tn) - y(tn) + e(tu) where {E(tn)3 and lu(tn)) are noise processes. 
s

Then a least squares fit of the model yields biased estimates of the

h(tn). These biases are examples of the errors-in-variables biasing

problem for a linear model (Kmenta, Chapter 9, 1971). The bias of the

least squares estimator h(tn) varies with n unless the covariance of

(u(tn)} is identical to that of (x(tn)} . The pattern of {h(tn)} will be

completely different from the pattern of the true h(tn) if the errors are

sizable as compared with the true series (Clay and Hinich, 1981).

Assuming some mild restrictions on {h(tn)} and the additive errors,

Clay and Hinich and Hinich (1982) develop consistent estimators of a

scalar multiple of the coefficients uiing a Hilbert transform

relationship.

ft• .<1
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This paper considers the discrete-time linear relationship rather

than the continuous-time model used in the cited previous work. A

Hilbert transform relationship for sequences is used to derive consistent

estimators of the h(tn) from a consistent estimator of the cross spectrum

between {x(tn)) and {y(tn)} . The approach uses the frequency domain

interpretation of a linear filter (Brillinger, Section 2.7, 1975). The

basic terminology necessary to understand the method is reviewed in the

next section.

1. The Discrete Hilbert Transform

In filter theory terminology, (x(t)} is the input to a linear filter

whose impulse response is (h(tn)} . The filter is called causal if h(tn)

- 0 for tn < 0, and thus Y(tn) depends only on x(sn) for sn 4 tn. In

economics, a causal linear model is called a distributed lag with lag

parameters fh(tn)}.

A filter is stable if JnuOIh(tn)I<CD. The frequency response of a

stable filter is characterized by its transfer function

H(f) .h(tn)exp(-i2fn)1)

n=0

The inverse relationship is

I/T
h(tn) - T f B(f)exp(i2iftn)df. (1.2)

0

Since tn = nr, H(f + I/T) - H(f) for all f. For real (h(tn)}, H(-f) =

*(f) where the star denotes complex conjugate, and thus the phase

response #(f) - tan-I[ImH(f)/ReH(f)] is an odd function with (O) - 0 for

the range -w < 4 w. The filter's gain IH(f)I is an even function.



3

The Hilbert transform relates lnIH(f)I to *(f) if the causal filter

is minimum phase-lag, i.e. if H(z) - n.0 h(tn)zn has no zeros on or

inside the unit circle Izi I on the complex plane. The phase-lag -*(f)

of a finite minimum phase-lag filter is less than any other filter with

the same gain function (Zadeh and Desoer, Section 9.7, 1963). Normalize

the time unit so that T -1. The log gain is related to its phase by the

Hilbert transform

logIH~f) I f *(g)cot r (f-g)Idg + c, (1.3)
0

where c is a scaling constant (Gold and Rader, p. 248, 1969). Note that

the integrand has a singularity only at g - f where the principal value

of the integral exists.

Suppose that the gain of a minimum phase-lag filter is normalized by

setting c = 0. Then it is proven in the Appendix that h(0) - ±1.

It is clear from (1.3) that accurate estimates of the phases at a

dense frequency grid on the unit interval yield accurate estimates of a

scalar multiple of the gain at these frequencies using a finite sum

approximation to the integral. The estimated gain combined with the

estimated phases gives an estimate of the transfer function which can be

inverted to yield an estimate of the impulse response (distributed lag)

coefficients. If the estimated impulse response is minimum phase, then

it follows from the theorem in the Appendix that the estimate of h(0) is

nearly one when h(0) - I for the normalization c - 0, provided the errors

are sufficiently small due to the use of a large sample or because the

signal-to-noise ratio in the data signals are large.
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2. Estimating the Phase of the Transfer Function

Accurate estimates of the phases can easily be derived from a

consistent estimator of the cross spectrum. Assume that the

autocovariance of {x(tn)} is absolutely summable. Then the spectrum

Sx(f) of (x(tn)} exists, and more importantly, the cross spectrum is of

the form

Sxy(f) = 1 (f)sx(f) (2.1)

(Jenkins and Watts, Sect. 8.4.2, 1968). If Sx(f ) > 0, it follows from

(2.1) that

*(f) - arctan[ImSxy(f)/ReSxy(f)]. (2.2)

Thus a consistent estimator of Sxy(f) yields a consistent estimator of

*(f) using (2.2).

Recall that the sample consists of simultaneous observations of the

noisy processes {X(tn) - X(tn) + u(tn)} and {Y(tn) = Y(tn) + c(tn)}. The

following assumptions are crucial for the method: 1) {u(tn)} and {c(tn)}

are uncorrelated, and 2) they are uncorrelated with the true processes

{X(tn)} and {Y(tn)} . Given these assumptions, the cross covariance

functions of the observed and true processes are identical, i.e. c--(t) =
• xy

cxy(t) for all t. Thus the cross spectrum of the observed processes is

Sxy(f).

There are several related approaches to estimating the cross

spectrum of the observed processes. Consistent estimators and their

asymptotic properties are presented by Anderson (Chapter 9, 1971),

Brillinger (Chapter 5, 1975), and Fuller (Chapter 7, 1976).



One~ simple method uses the discrete Fourier transforms of a sample

(x(tu), 9y(tn) In 09 1i,..*N-i1 For f requencies fk k/N, these

transforms are:

- N-i-

X(fk) - x(tn)exp(-ir uk/N)
n-O

*and (2.3)

~(k N-1-

n-O

The cross spectrum estimator at frequency 0 < fo < 1/2 is the averagel

M (1-1)/2
S--(f) Wo-X~~ + fk)y*(fo + fk), (2.4)

where M<(N. From Theorems 7.3.1 and 7.3.2 in Brillinger (1975), the

expected value of S--(f0 ) is S--(f 0 ) + 0(14/N) and its variance is 0(14-1).
,cy

Thus, the mean square error is small if and only if M is large and M/ N

is small. To parameterize the tradeoff between bias and variance, let

M4 NX where 0 <~ a( 1. Good results results for the mean square error of

the phase of S--(f 0 ) have been obtained in a variety of simulated
zy

distributed lag models that have tried using WieNI/ 2 and N-500.

The estimate of phase is given by

-(o arctan[Im S..;(f0)/Re S'..(f0)]. (2.5)

XY XS
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Expanding (2.5) in a Taylor series about S.-(f 0 ), it follows that
A X3

f)- f(f0 ) + e where the expected value of the error e is of order KIN.

For 1/2 < f0 < 1, *(fo,) --(l-f0 ). The variance of the phase error is

2
yf - (21)- (y-2(f0 ) - + O(M-2), (2.6)

where

Y(f0 ) -Is--(f 0)I/IS-(f 0)S-(f 0)i1 2  (2.7)
xy x y

denotes the coherence between the observed sgas

Since M4 NP, it follows from (2.6) and the above that *(fo) is a

consistent estimator of *(f0 ) as N*-~c if y(f0 ) > 0.2 Also, *(fj) and

ff)are approximately uncorrelated if li-ki > M because the discrete

Fourier coefficients have cross correlations of order N-1 if the two time

series have well behaved cumulants (Brillinger, Theorem 4.4.2, 1975).

If so, W(k(N)) is asymptotically Gaussian if k(N)/NWfo as W-m, eg. k(N)

[ff0N where the brackets denote the integer part of the number.

Expression (2.6) can be rewritten in terms of the noise-to-signal

ratios for the observed processes. These ratios are denoted rx(f)-

Su(f)/Sx(f) and ry(f) - ScCf )/Sy(f), where Su(f) and 5c(f) are the

spectra of the respective additive noises. Then from (2.7), y2(f)

[(1+rx(f))(1+1ry(f))1'I. Thus

2

Vaf~(f) -rx(f) + ry(f) + rx(f)ry(f) + O(M-1), (2.8)W
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2
which implies that a is approximately linear in the noise-to-signal

2
ratios when they are small. The coherence becomes small, and O large,

when rx and ry are big (low signal-to-noise ratios).

3. Estimating the Gain

A finite sum approximation to the integral in (1.3) for f - k/N yields

N-I
logIH(f)[ - N-I (gj)cot[w(fk - gj) + O(N- 1 ) + c, (3.1)

J-0
J*k

where the sum omits J-k to avoid the singularity at J-k. Substituting the

estimates *(gj) for phases in (3.1) yields a simple estimate of

logIH(fk) + c which will be denoted est[logjH(fk)I1. Since the *(gj) are

Gaussian and consistent, it follows from (3.1) that est[logjH(fk(N))I ] is

a consistent Gaussian estimator of logjH(fo)j as N*-. The large sample

variance of this estimator will now be derived.

Theorem 1. The large sample variance of est[logIH(fk(N))Il is

b 2
a2(fk(N)) -r 2  m-2,(fk(N) + graM), (3.2)

m--a+1
ue0

where a - [foN/M] and b - [(l-fo)N/M], and gmM = mM/N. Thus the

large sample standard deviation is of order N-1 /4 if a-1/2 (a resolution

bandwidth of N-1/2).

1-f
Proof: The integral in (1.3) can be rewritten as -f 0(f+y)cot(ry)dy.

-f
A finite sum approximation of this integral that converges as MN-Nm-4O

when W- is
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b
-(M/N) k(fk + gmg)cot(wgmM) . (3.3)

m-n-a+l

mo 0

A

Thus the large sample variance of (3.3) with replacing * is

asymptotically equal to the large sample variance of est[loglH(fk)l]. The
AA

correlation between 0(mM/N) and O(nM/N) is O(N-1 ) for mon, and thus it

follows from (2.6) that the variance of (3.3) for large N is

b 2
(H/N)2  a¢(fk + gmb)cot 2 (wgm.M) . (3.4)

m=-a+1
u0

Since cot2x - sin-2x - 1 and N-2 sin-2(jrmK/N) - (wmM)- 2 + O(N- 2), for
b 2

large N expression (3.4) becomes w-2  m-2c(fk + grM), the desired
m--a+1
no 0

large sample variance a 2(fk).

For example, suppose that the coherence is constant over frequencies.

Since m-2 -wr2/6, then the large sample variance is (y-2  1 1)/6M.
m-i

When y(f) is slowly varying, a useful approximation of a2(fk) is

[Y- 2 (fk) - 11/6M.

It will now be shown that the estimates are asymptotically

uncorrelated.

Theorem 2. The large sample covariance between est(logIH(fj(N))IJ and

est[loglH(fk(N))Il for J(N) - (flNj and k(N) - [f2N
] is O(l/Nlf 2-fl).I

Proof: Once again the asymptotic independence of the phase estimators

will be used. From (3M3) and (3.4), the large sample covariance is

approximated by
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2
(M/N) 2  a o,(fI + gmM)Cot(WgmM) cot 1(gmM - 2 + f1)] (3.5)

m

if fl < f2. The sum excludes the singularities at m - 0, and m -

(f2-fI)N/M if it is an integer in the set {- [fjN/MI < m 4 [(1-f 2)N/MI.

The largest values of the summand are at m - 1± and m - [(f2-fl)N/M]±I,

where they are approximately (M/N)2M-1(N/M)/w 2(f2-fl) - i 2N(f2-f)]-'.

4. Comparison with Other Methods

The numerical approximations of the Hilbert transform described in

Clay and Hinich and Hinich can yield very biased estimates in some cases

when the sample size is moderate and the bandwidth is large. The method

presented here usually gives less finite sample bias than these other

methods, especially for discrete-time filters.

As is to be expected however, the large sample variance of

est[logjH(fk)IJ is somewhat larger than that of the other estimators. To

compare with the older methods, suppose that the cross spectrum is

estimated from P successive samples of size N (observation time Nt) of

{X(tn), Y(tn)} . The sample cross spectrum at f is the average

(p-1,...,P) of the unsmoothed terms Xp(f)Yp(f). If the samples are

approximately uncorrelated, the large sample variance of the phase

2
computed from this block smoothed cross spectrum is P-100(f) (Hinich and

Clay, 1968). Reworking the proof of the theorem using the estimator

[(-fo)NI -

-N-1  *((k+j)/N)cot(7rj/N), its large sample variance is O(P-i).
J--[foNj+1

The large sample variance of the other methods is of order o(P-1 ) as N*.,

* P
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but the computational simplicity and robustness of the discrete-time

method makes it much more applicable than the older approaches.

5. Estimating the Transfer Function and Impulse Response

Recall that the log gain is estimated up to an additive scale

constant. Thus exp(est1log1lH(fk)I]} is a consistent estimator of cIH(fk)I.

Using the linear approximation of the exponential, the variance of this

estimator is approximately I!i(fk) 1262(fk) for large H. The covariance
A 2

between this estimator and (k) is approximately w-o(fk) from (3.3).

The transfer function is estimated by

A A

H(fk) = exp{ est log H(f k)l + i (f (5.1)

Since the error in the phase estimate is additive, the error in

est loglH(fk)I is additive and thus the error in H(fk) is multiplicative.

The complex variance of the exponent in (5.1) is defined to be the

sum of the variances of the real and imaginary parts, which is

2
2(fk) + 00 2 (2/3H)[y-2(fk)-lI using the simplifying approximation for

a2(fk) previously presented. Using the linear approximation of the

exponential function, for large M the complex variance of the estimator is

A

EIH(fk) - H(fk)I2  (2/3M)Il(fk)1 2 1-2(fk)-1j- (5.2)

AA

From Theorem 2 and the properties of the * (fk), the complex covariance

between H(fj) and H(fk) is O(I/Nlj-kl).

The estimator of the impulse response coefficient h(tn) is

I"I
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a N-1i
h(tn) =N-1 H(f k)exp(i~rrkn/N). (5.3)

k=O

If the estimated impulse response is minimum phase, then h(0)-±1-+O(N-l).

The error is only due to the errors from approximating the integrals.

For large M, the variance of h(tn) is approximated by the variance of
[N/MI a

(M/N) H(fmM)exp(i~rmM/N), with an error of O(M/N). This variance,
m-0 a

with an error of O(1/NM) due to the covariances of the H(fmM), is

[N/MI a [N/M]
(M/N)2  I EIH(fM) - H(fmM)12  (2M/3N2) I IH(fmM)12.-2(fmM)-l]

m-0 miO

(5.4)
2 1

-N f IH(f)1 2 [y- 2 (f)-lldf.0

The largest errors in these approximations are O(1-2) or 0((M/N)-), and

thus are O(N'6) where 8 - 2min(a,l-a). Note that this variance is

independent of n, so all parameter estimates have equal variance for large

N.

As an example, suppose that coherence is constant across frequencies.

Since f IH(f)1 2 df -In=0 h2(tn) by Parceval's formula, assuming
0 a

existence, then from (2.8) and (5.4) the large sample variance of h(tn)

is

* 2
Var h(tn) - (rx + ry + rxry) n-O (5.5)3N n 2tn.(55

Thus h(tn) is a precise estimator when N is large and the phase error

is small. Expression (5.5) overstates the error in the estimates when the



12

right hand side is small since it is derived without incorporating the

N-I
constraint given by h(O) - N-k-0 H(fk) -±1 + O(N-1 ).

6. Data Analysis

The method was tested using artificially created data for the causal

minimum phase-lag filter {h(0) - I, h(1) - 3/2, h(2) - 1, h(3) - 1/2,

h(4) - 1/4, h(m) - 0 for m > 5. For each trial a sequence of N - 500
4values of y(n) - Em.oh(m)x(n-m) were computed using these five lag

parameters and an input sequence generated by the recursion

x(n) - 0.5 x(n-1) + z(n), (6.1)

where the z(n) values were generated by the IMSL subroutine GGNML to

simulate a sequence of independent normal N(0,1) variates. In other

words, the input to the filter was a pseudo- AR(I) process with parameter

1/2 and variance 4/3. Two independent white noise sequences were

generated to produce noisy "observations" x(n) - x(n) + au(n) and

y(n) - y(n) + ae(n) where the positive parameter a controls the standard

deviation of the errors. The pseudo-random variates u(n) and e(n) were

also N(0,1) as generated by the GGNML subroutine using different seed

values. A variety of seed values were used to test the method for each

set of parameter values that were tried.

Table 1 presents typical results for a - 0.71, 1.00, 1.22, 1.41, and

1.58 (a2 - 0.5, 1, 1.5, 2, 2.5) using H - 39 as the smoothing number. The

resolution bandwidth is then M/N - 0.078. The same artificial data was

used in each run. Table I presents h(t) for t - 0,...,6; the root mean

square error (RMSE) of h(t) for t - 0,...,499; the square root of the
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large sample variance (5.4) with the estimated gain and squared coherence

in place of their true values (Est SD h(t)); and the average squared

coherence for 0 < f < 1/2. The coherence is large-t for low frequencies

since (x(t)) is red noise whereas the additive errors are white.

The method produced estimates of the distributed lags that track the

impulse response even for the largest value of o that was used. The

estimates of the zero tail of the impulse response are very accurate,

especially for the far right tail. For example, the maximum error for

t > 450 is 0.0004 for a2 4 1.5, 0.003 for a 2 - 2, and 0.01 for o2 - 2.5.

This accuracy is greater than that predicted by the asymptotic

calculations. When the phase error is small, the length of the estimated

impulse response is slightly larger than the true length.

The estimated standard deviation has an upward bias due to biases in

the estimated phase and gain. The large sample variance appears to only

serve as an upper bound for the sample size N - 500. The largest errors

are in the estimates of h(l) - 1.5. These estimates are downward biased

by the convolution of the true lags with the transform of the errors in

the estimated gain. The bias is a function of M.

Table 2 presents results for a - 1.22 using H 9, 19, 29, 39, 49,

and 59. The results show how important it is to use different values of M

when using this method to estimate the lags. More research is needed to

determine practical ways for setting M as a function of prior beliefs

about the lag pattern, the signal-to-noise ratios, and the shape of the

signal spectra.
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Table 3 presents ordinary least squares estimates of the h(t) for

2 1.5 using fifteen lags and an intercept constrained to be zero. The

estimates are downward biased as expected. Although the number of

non-zero lags is correctly determined by inspection of the t ratios, the I

lag pattern is distorted in the OLS estimates.

7. Conclusion

The artificial data results indicate that the Hilbert transform

method can become a powerful tool for estimating distributed lags when the

signals are observed with additive noise. This estimation procedure can

give accurate estimates of the distributed lag coefficients when there is

considerable additive noise in the observed time series, provided that the

sample size is sufficiently large to yield accurate phase estimates. If

the phase of the transfer function can be estimated sufficiently closely,

then the impulse response function is determined by the Hilbert transform

up to a scalar multiple. The statistical computational aspect of the

procedure is simple.

W1
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Footnotes

1. if 0 < fo < M/2N, then average the X*(f0 + fk)y(fo + fk) for

0 < fk < fo + M/2N. A similar constriction of bandwidth holds when

1/2-M/2N < fo < 1/2.

A A A

2. A consistent estimator of y(fo) is IS--(fo)I/(S-(fo)S-(fo)]I/ 2 ,
A A xY x y

where S-(fo) and S-(fo) are consistent estimators of the two spectra.
x y

A prudent policy is to not estimate the phase at fr - r/N if its

associated estimated coherence is below a preset threshold. The

frequencies where the coherence is too low are skipped in the finite

sum approximation of the integral in (1.2).
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Table 1

Hlbert Transform Estimates for H -39

020.05 1.00 1.50 2.00 2.50

h(0) 1.00 1.00 1.00 1.00 0.99

h(1) 1.33 1.26 1.17 1.14 1.12

h(2) 0.95 1.01 1.08 1.13 1.17

h(3) 0.54 0.58 0.57 0.58 0.60

h(4) 0.28 0.31 0.37 0.41 0.45

h(5) 0.11 0.16 0.17 0.18 0.19

*h(6) 0.04 0.05 0.05 0.06 0.08

RMSE h(t) 0.013 0.017 0.021 0.025 0.029

Est SD h(t) 0.145 0.168 0.185 0.199 0.212

7F2 0.41 0.31 0.26 0.22 0.20
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Table 2

Results with Different Smoothing Values

-2 1.5

H 9 19 29 39 49 59

h(0) 1.00 0.96 1.01 1.00 1.00 1.00

h(l) 1.12 1.24 1.17 1.17 1.19 1.20

h(2) 1.14 1.07 1.08 1.08 1.06 1.03

h(3) 0.66 0.61 0.62 0.57 0.55 0.50

h(4) 0.38 0.43 '0.37 0.37 0.34 0.32

h(5) 0.11 0.13 0.21 0.17 0.17 0.15

h(6) -0.04 0.07 0.01 0.05 0.06 0.10

R145E h(t) 0.058 0.046 0.033 0.021 0.023 0.025

Est SD h(t) 0.192 0.183 0.182 0.185 0.191 0.197

y0.32 0.28 0.27 0.26 0.26 0.25

'711
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Table 3

OLS Estimates for Fifteen Lags and a
Zero Intercept

02 1.5

Variable Estiuate Standard Error t to

h(O) 0.53 0.07 7.90

h(l) 0.69 9.95

h(2) 0.64 9.25

h(3) 0.46 6.65

h(4) 0.30 4.24

h(5) 0.12 1.78

h(6) 0.04 0.62

h(7) 0.04 0.54

h(8) 0.07 0.94

h(9) 0.03 0.40

h(10) -0.05 -0.68

h(11) 0.01 0.15

h(12) -0.05 -0.67

h(13) -0.06 -0.92

h(14) -0.03 -0.44

h(15) 0.00 0.04

R2 0.54 with and without intercept

4-.
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APPENDIX
mI

If Jt.O0h(t) <, the analytic continuation of the transfer

function H(f) inside the unit circle .IzI I in the complex z-plane is

U .(a) - f-t.Oh(t)zt. On the unit circle z exp(-i2ff), HL(z) - H(f).

For z - 0, Hc(O) - h(O).

If H(f) is minimum phase, Hc(z) has no zeros in Izi 4 1 and the

Hilbert transforms of phase and gain sre:

(f) -f logI H(S)Icot v (&-f)dg (Al)0

and

log R(f)l - c + f (g)cot w (f-g)dg, (A2)
0

where c is an arbitrary constant. Set c = 0.

The following leumas are used in the proof of the main result.

Lnna 1. f cot w (y-x)dy - 0 for every x.
0

Proof: Consider the minimum phase filter defined by (h(O) 2, h(t) - 0

for t * 0). This filter's transfer function is the constant 2, and thus

its phase is zero for all f. From (Al),

0 fu5 log121cot w (y-x)dy,.
0

and the result then follows.

*P
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Lema . logH(f)jdf - 0 for a minimum phase filter.
0

Proof: Reversing the order of integration when integrating both sides of

(A2),

11 1f 1og-H(f)jdf -f cot r(f-g)df]f (g)dg -0
0 0 0

from Lemma 1.

Theorem. h(O) -:t 1.

Proof: Since H(z) has no zeros or poles in Iz 4 1, by Jensen's theorem

(p. 125, Titchmarsh, 1952)

logjH(O)j f Ilog H(f)jdf.
0

From Le-A 2, Iog(H(O)I - 0 and thus logjh(O)j - 0.

Fs
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