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(Abstract con't.)

The second part is concerned with signal detection in bounded
noise. Both the known signal case and the unknown signal case
are studied. An algorithm of a sequential nature is devised.

Chapters 2 and 3 are devoted to the first part of the work.
To begin, an approximate locally optimal scheme, which can be
considered as a modified linear detector, is discussed. This
scheme evolves from a use of the Edgeworth series as a repre-
sentation for the noise density function. Convergence of the
approximate locally optimal statistic to the parent statistic
is also discussed. Furthermore, the Cornish-Fisher inverse
expansion is employed to investigate the effect of noise
skewness on the sample mean detector and the sign detector. An
asymptotic relation between the performance and the skewness
measure is given. The sign detector is shown to be less
sensitive than the sample mean detector to the noise skewness.
A modified sample mean detector is devised.

Chapters 4 and 5 address signal detection in bounded noise.
When both the signal and the bound on the noise magnitude are
known constants, the sequential procedure will lead to a
singular solution, if it terminates. A more practical way to
consider this problem is to assume a random bound. Then a test
which involves randomness in its performance measures (the
false-alarm rate, the power and the error probability) will be

encountered. When the signal is unknown, the problem is cast
as an estimation problem. The estimate of the signal strength
is used to decide whether the signal is present. A generaliza-
tion of the problem is considered in Chapter 5 where a set-
theoretic formulation is used.
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ABSTRACT

In this report, signal detection in non-Gaussian noise is
considered. This work can be divided roughly into two parts.
The essential purpose of the first part is to investigate the
existence and design of some sub-optimal detectors which are
modifications of the sample mean detector. The method used
here is based on orthogonal series expansions in termsof the
Gaussian distribution and the moments of the noise distribution.
The second part is concerned with signal detection in bounded
noise. Both the known signal case and the unknown signal case
are studied. An algorithm of a sequential nature is devised.

Chapters 2 and 3 are devoted to the first part of the work.
To begin, an approximate locally optimal scheme, which can be
considered as a modified linear detector, is discussed. This
scheme evolves from a use of the Edgeworth series as a represent-
ation for the noise density function. Convergence of the approx-
imate locally optimal statistic to the parent statistic is also
discussed. Furthermore, the Cornish-Fisher inverse expansion
is employed to investigate the effect of noise skewness on the
sample mean detector and the sign detector. An asymptotic re-
lation between the performance and the skewness measure is given.
The sign detector is shown to be less sensitive than the sample
mean detector to the noise skewness. A modified sample mean
detector is devised.

Chapter 4 and 5 address signal detection in bounded noise.
When both the signal and the bound on the noise magnitude are
known constants, the sequential procedure will lead to a singu-
lar solution, if it terminates. A more practical way to consider this
problem is to assume a random bound. Then a test which involves
randomness in its performance measures (the false-alarm rate,
the power and the error probability) will be encountered. When
the signal is unknown, the problem is cast as an estimation prob-
lem. The estimate of the signal strength is used to decide
whether the signal is present. A generalization of this problemis considered in Chapt&A 5 where a set-theoretic formulation is

used.
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CHAPTER 1 ON-

INTRODUCTION

1.1 Motivation

Extraction of signals from a noisy environment has been an impor-

tant and much studied problem in statistical communication theory. In

particular, the detection problem of deciding whether or not a signal is

present by taking a sequence of noise contaminated observations has

been of much interest to communication scientists and engineers. Vari-

ous detection schemes have been discussed in a broad body of literaLure.

In classical detection theory, parametric detection was of much concern

" due to the well developed theory of parametric statistical inference [1].

The Neyman-Pearson optimal detector and the locally optimal detector

are two canonical examples. However, implementation of these

(parametric) optimal schemes usually requires a fairly complete

knowledge of the input model. In practice, this knowledge may not be

available. Also, the performance may be sensitive to the inaccuracy of

the presumed knowledge. Some attention thus has to be diverted to

other alternatives.

Data from a number of natural environments show that noise is often

non-Gaussian [2]. Nevertheless, due to the Central Limit Theorem. Gaus-

sian noise is of much interest and, in fact, is the one for which the sim-

plest solution can be obtained. In this case, it is well known that the

sample mean detector is the Neyman-Pearson optimal detector [3).

Thus, in most practical situations, modifications of the sample mean

-4-1
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detector may yield a more satisfactory detector performance. In other

words, these modifications could have "reasonably good" (or nearly

optimal in some sense) performance for the presumed input model and

could be less sensitive to model deviations. This motivates the first part

of the report.

Motivation for the second part is due to the fact that a precise sta-

tistical model of the noise is difficult to obtain in many practical situa-

tions. Bounds on the magnitude of the noise, in contrast, may be more

easily obtained. One may even argue that, in the real world, there exist

no distributions with infinite support. Hence considerations of bounded

noise should lead to more practical solutions. As a matter of fact, in con-

trol theory, bounded noise has been exploited in the literature for consid-

ering estimation problems [4], [5], [6].

1.2 Report Outline

Throughout this report the noise processes are assumed to be

discrete-time processes which may be obtained, for example, from the

sampling of continuous-time processes. In addition, the detection prob-

lems considered here are detection of constant signals in additive noise.

It should also be noted that all the chapters are complete by themselves

and can be read in any order. The report is organized as follows:

Chapter 2 considers series expansions for the test statistics of two

optimal detection schemes, the locally optimal statistic and the sample-

mean statistic which is Neyman-Pearson optimal for the Gaussian case.

For the former, the Edgeworth series is employed to obtain a general

. .- ," -•. . . -
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representation of the noise density function. The locally optimal statistic

is then evaluated via this representation. Since only a few lower order

moments of the noise are required, the solutions are applicable to a wider

class of noise distributions. The second part of this chapter utilizes the

Cormish-Fisher inverse expansion for a sequence of i.i.d. random vari-

ables. The sensitivity of the sample mean detector to the underlying

noise skewness can then be studied. An asymptotic relation between the

performance (false-alarm, power, and probability of error) and the noise

skewness measure is obtained.

The Cornish-Fisher expansion is used again in Chapter 3 for further

investigation of the effect of noise skewness on detector performance. A

modified sample mean detector is proposed whose performance is asymp-

totically indifferent to noise skewness. Simulation results are provided to

verify the analysis. A preliminary case study of a natural noise environ-

ment is also given here.

The latter part of this report discusses the detection problem

from a rather different point of view. Instead of noise statistics, bounds

for the noise magnitude are assumed to be known in Chapter 4. To make

the problem more practical, the bound is assumed to be a random vari-F able with some known distribution. Then a sequential procedure is dis-
cussed. Detection of an unknown signal in bounded noise is also

addressed in this chapter. The problem is cast as an estimation problem I

for the signal.

Chapter 5 is essentially concerned with a generalized version of the

problem discussed in the second part of Chapter 4. A set-theoretic for-
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mulation of the problem is used here to consider a "multi-channel" detec-

tion problem. The results presented in this chapter are somewhat prel-

iminary due to the difficulty involved in performance evaluation. Chapter

6 concludes this report and discusses some possibilities for future

research.

..-
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CHAITER 2

ON THE APPLICATION OF SERIES EXPANSIONS TO DETECTION PROBLEMS

Z 1 Introduction:4

The problem of using series expansions to represent an unknown

function in terms of a known function has been of much interest to scien-

tists and engineers. In the literature of statistics, seeking for a general

representation of probability distribution functions or density functions

has been an extensively studied problem, [1] - [4]. A representation

based on series expansions in terms of the moments is particularly

relevant when sequences of independent and identically distributed

(i.i.d.) random variables are considered. One of the most common series

expansions used to represent an unknown probability density function by

a known density function is the Grarn-Charlier series. The Gram-Charlier

series is an expansion in a series of orthogonal polynomials, i.e., the

Tchebycheff-Hermite polynomials, which are derived from the normal

density function. Unfortunately, straightforward applications of the

Gram-Charlier series do not usually lead to satisfactory'solutions. It is

well known in the literature that regrouping of the Gram-Charlier series,

e.g. the Edgeworth series [5],[6], will yield better results; although gen-

eralization of the Gram-Charlier series is also a possible way for irprov-

ing the result [7].

In the context of statistical communications, the method of series

expansions has also been used to evaluate approximately the probability

of errors in radar detection [8], and to estimate error probabilities in

-6-
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digital communication systems [9] - [12]. This method is employed in

this chapter to consider detection problems, although for somewhat

different usages. To begin with, it is used here to obtain a general

representation for the noise density function. Then the locally optimum

detection scheme is devised based on this representation. The essential

purpose of this approach is to reduce the effect of small model devilations

on the locally optimal detectors. This is because series representation

only requires a knowledge of the moments of the noise distribution. Thus

when a finite number of terms of the series are used, the result can be

expected to hold approximately for a certain family of noise distribu-

tions.

The other utility of the series expansions in this chapter is the appli-

cation of the Cornish-Fisher inverse expansion [13] for a random variable

in terms of its moments. This expansion is used to obtain a representa-

tion for a test statistic, the sample mean of a sequence of i.i.d. random

variables. In this way, a study relating the performance of the sample

mean detector to the underlying noise skewness can be facilitated.

This chapter is organized as follows : the next section discusses

derivations of the Tchebycheff-Hermite polynomials and the Gram-

Charlier series. Section 2.3 addresses some difficulties associated with

the Gram-Charlier series and presents a regrouped version of the Gram-

Charlier series, namely, the Edgeworth series. Section 2.4 considers a

detection scheme using an approximate locally optimal statistic which is

obtained by using the Edgeworth series representation for the noise den-

sity function. Section 2.5 utilizes the Cornish-Fisher inversion series for

• . •
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the sample mean of a sequet:e of i.i.d. random variables to study the

effect of noise skewness on the sample mean detector. Section 2.6 con-

cludes this chapter.

Z2 Tchebycheff-Hermite Polynomials and Gram-Charlies Series

Derivations of the Gram-Charlier series can be found in many stan-

dard statistics texts (see e.g. [5],[6]). For completeness of discussion,

one which follows mostly from [6] is given here. The derivation will start

with the definition of the Tchebycheff-Hermite polynomials. Consider a

Gaussian density function f o(z) given by

1 o(Z) = V-o -,, (1)

Taking successive derivatives of f o(z) with respect to z yields

f'o (M) = - oW
:2Po (z) = (7- 1) fo(Z)

3x

fo(() = ( -- + -0fo(z)

f oC4)(Z) E(--- 6M2-+ 3)f O(z)

-+10-- 15-

etc. The Tchebycheff-Hermite polynomial is defined by the following

equation

fo()()= (-z1)-' n 1(=)f oW

Thus

4 Ho()l .
H1 (z) = I
4o=



- -- . - -• - -

03

4 2
H4(Z) 60E-

11I 
s  s

5(z) T - IO-+ 15-

and so on. Now, from Eq. (1),

£3 to

f o(z-t) f o(Z)
then, by Taylor's series expansion, we have

f o(z - )
in0

= ~, ~qi()fo(Z)

Thus, a general formula for the Tchebycheff-Hermite polynomials is

n ( ,) = n[S] :,,- ,4 3n-4 n[s] (2)
=o 2.1! c -2 + 22.2 o,--4 2.3, f- l + (2)

where

n[?l n, 'n('n-1)('n -2) ....-". (n -r -+-1) r"<: n

Apparently, the polynomials are of degree n in z with the coefficient of

zn being unity. Also, they are orthogonal over the interval (--a, a) with

respect to the weighting function f o(z), namely 2

ffo(z)H (z)Hn(z)dz 6, ! (3)

where
.

r 0 if m n
1 ff m=nt+

is the Kronecker delta function. Furthermore, successive Tchebycheff-

Hermite polynomials satisfy the following relations:

o2
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t414(x) = H._() (4)

Ho(z) - + (n-1)H,..(x) 0 (5)

Now, the probability density function f (z) of a random variable (with

zero mean and known variance o,2) can be represented in terms of the

Tchebycheff-Hermite polynomials, i. e.

tm

f (Z) , A ct(Z)f() (6)t 0

This is the so-called Gram-Charlier series. Due to the orthogonal pro-

perty of the polynomials, Eq. (3), the coefficients c, in Eq. (6) can be

determined by multiplying both sides of Eq. (6) by H,(z) and integrating

the products from - to -. Hence

c, = -irff(x)H,(z)dz (7)

Thus-

Co= 1

C= 0

6a3
cI:O4

24 o'

120 o5 V3

etc., where the ,N's are the i -th central moments of f (z). In some

situations, the coefficients c7 may be better represented in terms of the

cumulants. Thus,

C3= K3'

'C4 C4= (8)



pmom - LI -

C= 2ol2Oic'

etc.. Then the series expansion for f (z) is given by

1 13FTMf (z) =f 0(z)[ I + -+ - -3)H 4 (z. ......
a 03-3 24 V4

:tivo(e)[1g-nt 494 .3 +.

120o 2 , ,, (X ) . ..... (9()z.

It is known that a sufficient condition for this series to be convergent (at-":

every continuity point of f (z)) is [5] i i

f ex/l.V (z)d.z < -(10) "

Obviously, an infinite series is somewhat impractical. It has to be trun-

cated at some point. However, truncation of the series will result in some

difficulties. The series may not converge fast enough so that the trun- 14

cated series will be a satisfactory representation of f (z). Furthermore,

the order of magnitude of successive terms of the series is not neces-

sarily monotone decreasing. These problems will be discussed in more

detail in the next section.

Z3 The Edgeworth Series

As discussed in the previous section, the Gram-Charlier series, Eq.

(9), does not necessarily provide a good approximation to the probability

density function. Generally speaking, a truncated version of the Gram-

Charlier series can be a good approximation only when the parent proba-

bility density function is nearly Gaussian. A well known problem is that

Lhe order of magnitude of the terms in the Gram-Charlier series is not

2
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steadily decreasing. To be more specific, suppose, for example, that one
wants to represent the probability density function of the sample mean of

a sequence of i.i.d. random variables X I in terms of the Gaussian den-

sity function. Without loss of generality, it is assumed here that the dis-

tribution of X, I has zero mean and unity variance. Now, let

From Eq. (9), the p. d. f. of S can be represented as follows

fs(s) =fo(s) [I + .-,sH3(s) + -, H4(s) + 1 -x5H 5 (s)

624 120

+ -("e + lO'32)He(s) ..... ()

where

K3,. 3 .. 'K3=

K'4 -

MK G 5 m312,

/KeS= 2 
"

-' M2

and the ',' are the cumulants of Sm while the r are the cumulants of X.

In fact, if Eq. (11) is to be written as follows

fIS$(s) = , o(s) c, H,(s) (12)
ro

then a general formula for c, is [5]

C. ,M + ., 2 M 2 + + O,.[]r/ s].Crr! ,Mr/2 (13),

where [r/3] denotes the greatest integer !S r/3, and the at are polyno-

:4 mials in .. The a,. are independent of M. Also, as M tends to infinity,

[-.
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c = 0 (Mfr/ 3 ] '2 ) (14)

Thus, the order of magnitude of the terms of the Gram-Charlier

series is clearly not steadily decreasing as r increases. The following

table illustrates the order of magnitude in terms of powers of M that the

coefficients c. involve.

Order of c, r

M - 1/ 2 3 "

M -1  4,6
M -3 /2  5,7,9

M -  8,10,12
M -  11,13,15

Now, suppose that a partial sum of the series, Eq. (12), is to be calculated

such that all terms of magnitude order less than M -1 are truncated.

Then, it can be seen from the table that all terms up to r =6 should be

considered. Thus, the moments up to sixth order will be needed. How-

ever, a careful examination of Eqs. (12) and (13) reveals that the

moments of order higher than the fourth really do not involve terms of

magnitude order greater than M - . Therefore, the requirement of the

moments up to sixth order is unnecessary if all terms of brder less than

M -1 are to be neglected. Similarly, if one proceeds further to include

terms containing the factors M-412, M- 2, etc., the same redundancy will

be encountered.

From the above discussion, it is clear that a regrouping of terms in

the Gram-Charlier series will Improve the efficiency of the approximation.

The Edgeworth series, which is a regrouped version of the Gram-Charlier

series, actually provides more satisfactory solutions. A general form of
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the Edgeworth series expansion for an unknown density function in terms

of its moments and the normal density function is given in the following

f(Z) fO(Z) (1 C c3Ji3(Z) + C4114(z) + C6H 6 (z) +

c5H5 (z) + c7 H7 (x) + c9Hg(z) +. (1..)

where the c's are given in Eq.(8). As can be seen from Eq. (15), the

6rder of terms in the Edgeworth series follows directly those given in the

table of the last page. One can see that this series gives a stralghtfor-

ward expansion in powers of M - 1 . Also, calculation of the terms in the

Edgeworth series up to a certain order of magnitude does not require a

knowledge of any moments or cumulants that are not really necessary.

Thus the redundancy involved in the Gram-Charlier series discussed pre-

viously is eliminated. Furthermore, terms of the Edgeworth series should

be taken by groups of the same magnitude order; thus any partial sum of

this series is an asymptotic expansion of the parent density function in

powers of M-11 2 , with a remainder term of the same order as the first

term neglected. More complete discussions on the derivation of the

Edgeworth series can be found in [5],[6].

2.4 Edgeworth Series Expansion for Locally Optimum Statstics

In detection problems, optimal detection schemes usually require a

large amount of knowledge concerning the noise environment. Also, it is

not unusual that these optimal schemes are complicated, and not easy to

implement. Furthermore, the performance may be sensitive to the accu-

racy of the presumed noise statistics. Thus alternatives that involve less

complexity and less sensitivity are always desirable. The locally optimal
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detectors are known to have maximum rate of increase in the probability

of detection when the signal strength is equal to zero. Hence, they are

useful schemes when the signal strength is small. However, their imple-

mentation require a complete knowledge of the underlying noise density

function and the test statistics become complicated or even intractable

very easily. In applications where the noise density function is only

known to be nearly Gaussian (or, specifically, it satisfies Eq. (10)), the

Edgeworth series expansion discussed in the previous section may be

used as a general representation of the noise density function. Then the

locally optimum Lest statistics can be obtained based on this representa-

tion of the density function. The result thus obtained is expected to be

less sensitive to the deviations of noise statistics *as only the lower-order

moments of the noise distribution are required to obtain this representa-

tion.

Suppose that the noise distribution has zero mean and unity variance

(a generalization of the following discussion with assumption of an arbi-

trary variance is trivial). Now consider a series representation, g(z), up

to a second order approximation of the noise density function f (z) such

that

Cg () < for almost all z(- , )

where C is a constant. Then, from Eq. (15), the noise density function can

be represented by

g(Z) = o(-)[ 1 + C€H3(X) + C414(Z) + cH(z) (16)

where

I' J'o() .-.,/3

I4
hf 

OW



- 16-

is the standard normal density function. Now the derivative of g (z) is

equal to

''(Z) f 'o(z) [1 + c3H3(z) + c4H 4(z) + C6Hs(z) ] + .(17)

fo(z) [3cH 2 (z) + 4c4H3(z) + 6csH5(z)]
If it is further assumed that the noise density function is symmetric with

respect to the origin, therl c = 0 and Eqs. (16) and (17) become

g(z) = o(Z) (1 + C4114(Z) + c 6H6(z)] (18)

and

'(--) =f '0(Z) [I + C 4H4(X) + C 6H6(X) + (19)

fo(z) [4c.%H(z) + 6c SH(x)

Now the locally optimal statistic can be approximated by

T(z) = - a-(_= z - 4C4 H3(z) + 6cOH5 (z) (20)

g() 1 c4H4(Z) + cGiH()-

The second term in Eq. (20) can be regarded as a correction term due to

the deviation from the Gaussian model. The performance of this non-

linear detection scheme is evaluated here via the asymptotic relative

efficiency ( ARE ) with respect to the linear detector. The ARE of this

approximated locally optimal detector comparing to the linear detector

is, [14],

[f (f-T(z))f (z)dz]
ARE.bG,' w-(x)] (21)

Since T(z) is an odd function in z, Eq. (20), and it is assumed that f'(z) is

symmetric with respect to the origin, thus E[T(z)] = 0. Furthermore, if

one assumes that

lim z J (z)= 0 for any integer n, (22)

then
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AR ,,, = Vr[T(X)]

On the other hand, it can be shown easily that the ARE of the locally

optimal detector as compared to the linear detector is given by

ARE,,= f 2(X) d

~f (z)
if Eq. (22) holds.

From Eq. (20), it is trivial to see that

T2  hVar[T(X)] = 1- 2E[Xh(X)] + E[h2 (X)]

where

4CO1 3(X) + ScSHS(z)
h(X) = 1 + cAH4(z) + cGH(Z)

By the Central Limit Theorem, it can be shown that (Appendix 2.A)

AREWO, = (23)

therefore,

ARE > 1 4 17T 1 E[h,2 (X)] < 2E[Xh(X)]

Note that

E .h 2(X) = f Os(z).0 (z)dz 2 hj(z)().z)dz
and

El~h(X)=f zh(z)f(x)dz=2fzh(z)f(z)dz '
-m 0

also, f(z) is a p.d.f. and is thus non-negative for z c (--.m). Hence a

sufficient condition for the AREW.d to be greater than uity is

2h(z) > h2(z) V 'zc(o,-) (24)
However, it is not necessarily true that Eq. (24) holds. Detailed discus-*i
sions on Eq. (24) are given in Appendix 2.B. It can be expected ,neverthe-

less, that when the noise model is nearly Gaussian, the ARE.,W is

a ~24
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greater than unity.

Finally, it should be noted that, in general, it is not necessarily true

that g'(z), Eq. (17), will converge to f '(z) even if g(x) converges to f (z).

A sufficient condition to be satisfied is the Tauberian condition [15] which 7.1

requires that f '(z) be monotone nondecreasing. Unfortunately, for some

density functions, this condition may not be satisfied. However, practi-

cally speaking, convergence is an asymptotic property which does not

usually provide enough information as to how well the series expansion

approximates the parent function, especially when only a finite number

(or even a small number) of terms are used. In other words, an essential

issue is whether or not the expansion yields a good approximation to the

parent function. Moreover, in detection problems, it is of more concern

that the resulting detection scheme leads to a good performance meas-

ure, e.g. an ARE greater than unity. Figs. 2.A and 2.B show curves

describing the T(z) given in Eq. (19), together with the test statistics of

the locally optimum and the linear detectors using mixture noise models.

These models are Gaussian slightly contaminated with Laplace noise. The

AREbd.0 for these two examples are greater than one; although the T(z)

is a good approximation to the locally optimal statistic only in the neigh-

borhood of the origin. This result provides some positive illustration of

applications of the method discussed here.

2.5 Cornish-FIsher Expansion for Test Statistics

'In this section, the Cornish-Fisher expansion of a random variable in

terms of its moments, [13], will be employed for the sample mean of a
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sequence of i.i.d. random variables. In detection problems, this sample

mean is known to be the test statistic of the sample mean detector which

is the Neyman-Pearson optimal detector when the underlying noise is

Gaussian. However, when the noise density is not Gaussian due to skew-

ness, the performance of the linear detector may deteriorate. Little

work has been done on relating performance of the sample mean detec-

tor to noise skewness, partly because the conventional skewness measure

[6] does not appear explicitly in the likelihood ratio or the test statistics.

The objective here is to use a series expansion for the test statistic in

4 terms of its moments such that an explicit relation between the noise

skewness and the performance of the detector can be obtained. In order

to facilitate the study, the underlying noise will be assumed to be only

slightly skewed and nearly Gaussian. This assumption enables us to use

the first few terms of the Cornish- Fisher expansion and obtain a good

approximation to the test statistic.

Now the following canonical binary hypothesis testing problem will be

considered:

H0o = N
H,: X = N + s. s>O t=1,2.

It is assumed here that, under H0 , the p. d. f. of X is f (z;) with zero

4 mean, known variance a2 and known third-order central moment g3,

where g is assumed to be small. Furthermore, the observation sequence

JX J is supposed to be independent and identically distributed. Now, con-

sider the following test statistic

T(X) = L X,
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This T(X) can be written in terms of the Cornish-Fisher expansion,

namely,

under Ho: T(X) z Z 1) O(.-Z/2)
7T 6a2M

and (25)

under H: T(X) = Z + s + -3--IZ2 - 1) + O(M - / )-
V'TA 602M

where Z is a standard normal random variable and O(M-31) stands for

the terms which converge to zero as fast as M -3/2 when M tends to

infinity.

It is clear that, in order to make the problem tractable, the series in

Eq. (25) has to be truncated. Since it has been assumed that 3 is small,

the truncated series will be a good approximation to T(X). Now, define

two random sequences JY0(M) and [Y1(M) by

t7 Z + A3 Z2 - )

YO o =- +o 2M

and (26)

Y 1(M) = z + s -

Then, it can be shown that IYo(M) and |YI(M)I converge to T(X) almost

surely under Ho and H, respectively. Hence the performance of the

detector which uses T(X) as the test statistic can be evaluated approxi-

mately via the statistics of Yo(M)j and IYI(M)J, provided that M is

sufficiently large.

Let A=pA/6a 2 M and B=o/v'4, then Eq. (26) becomes

Yo(M) =AZ 2 + BZ-A and YI(M)=AZ 2+BZ-A +s. Note that Z is a

standard normal random variable. Thus the probability density functions

of YO and Y' are given by
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2A 2AB)e [ -( 2] B 2

fY.(Y) O(A-)exp[- if y>-A (2?)

= 0 otherwise

where

(V) VB + 4A+ 4A4j (28)

and

I Y, (Y) = fY. (y-s)

The false-alarm rate a is given by

a= f". ,yo(y)d (29)

where To is the threshold. From Eq. (28). it follows that

dQ(y) = 2A Q-(y) dy (30)

Substituting Eqs. (27) and (30) into Eq. (29) yields

~,.. $ B-- 1 ___qd

Qt (Tg) 2A 2A-/ x[-~-( 2
,,2- *(. ex' 2 2A

Q'2 0  A 2'1T 2A

Thus TI
B T +BTe

a: I + (1
2A 2A2 (1

where

Tq Q(To)

Similarly, the power # is given by

B = (_(O-s)-B)() -

2A4 2A
If the skewness is defined as

then, it is obvious that both a and P are dependent upon the noise

!.A
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skewness, , via the variables .kand Q(TO-S) In particular,
2A' 2A 2A

* T,9± B /TWr7o.
2A+ +

Fig. 2.C gives a set of curves which depicts the normalized rate of change

in false-alarm rate, power, and probability of error as functions of the

noise skewness. It is assumed that the underlying noise density, which is

described by Eq. (27), is positively skewed. One can see that both the

false-alarm rate and the probability of error are monotone increasing

functions of the noise skewness t. On the other hand, the power stays

nearly unchanged. This illustrates the performance deterioration of the

sample mean detector when the underlying noise is skewed. A density

function, Eq. (27), with a skewness measure t = 0.6 is shown in Fig. 2.D

together with the corresponding Gaussian density function. For the ini-

tial false-alarm rate a = 10- 5, this noise density function corresponds to

a 100% increase in false-alarm rate. Although these two density functions

are hardly distinguishable, from Fig. 2.D, the difference between their

associated false-alarm rates is rather significant. Fig. 2.E plots the

Neyman-Pearson optimal statistics associated with these two noise

models given in Fig. 2.D.

In Eq. (27), by use of the L'Hospital's rule, it can be shown that

,limf Y() g(y)

where

g(1) =exp[--(B) ]  for -o<y<oc

and thus
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lim a To) and lim P=6(-I .-

which can also be derived easily from Eqs. (31) and (32) by L'Hospital's

rule.

Furthermore, it is interesting to note that the false-alarm rate and

the power are bounded. By observing that

$(z)-4(y) < (z-z) <€(x+y) < (z) + $(y), L o

and

O(Z+Y) <§(z-i), y < 0
one can show that

TQ+B.: B

2A 2A
and

Q(To-s)+B Q(To-s)-B

In fact, if T0 > s-A = s - - the power P is upper bounded by 0.5. Note,

6M'

however, when the sample size M is large and the skewness measure is -4

small, the case To > s-A is unlikely to happen.

2.6 Conclusions

Two applications of series expansions for detection problems are dis-

cussed in this chapter, the Edgeworth series and the Cornish-Fisher

inverse expansion. For the former, an approximation to the locally

optimum test statistic is evaluated by using the Edgeworth expansion to

represent the noise density function. This approximation is not

guaranteed to converge to the locally optimum statistic, unless the Tau-

berian condition is satisfied. Nevertheless, it is applicable to a certain
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family of noise distributions since only the first few moments are

required to obtain this approximation. Moreover, the scheme thus dev-

ised may still yield good detector performance. More sophisticated

series expansions may be introduced to achieve better solutions. In the

latter part of this chapter, an application of the Cornish-Fisher expansion

is demonstrated in the study of the effect of noise skewness on the sam-

pie mean detector. The sample mean detector is shown to be sensitive to

the noise skewness.

A
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Appendix 2.A

Derivation of Equation (23)

The notations used in the following discussion are defined in Section

4. Suppose that the observation sequence is a sequence of i.i.d. random

variables, and that the sample size M is sufficiently large so that the Cen-

tral Limit Theorem can be applied here. Now, define

T (x) hE r(-T)
ill

Then the distribution of T(x), by the Central Limit Theorem, is approm-

mately a normal distribution with zero mean and variance MaF, where

af = Vr [T(X)] .

The threshold. To, and the power, 8, of this detection scheme can

thus be determined with a prescribed false-alarm rate a as follows:

1 U exp [- "/'2MVF1 dz = I - lb[ ]a 7 I2TM a o dx V [ a

Hence the threshold for the given false-alarm rate a is equal to

To= V T j- (t-a)

Also, the power is

P 41[ %fM-- 0'-1(1-a)]
aT

On the other hand, the power P, of the linear detecLor using the same

threshold and false-alarm rate is given by

PI = 04[ N(N-s -@4-1(1-a)]

Thus the ARE of the nonlinear scheme compared to the linear detector is

AREd.= Urm M
MN.- N oUlf

withs -0, and P=P,

4
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Appendix P.B

Discussion of Equation (24)

Let us examine (2z -h (z)) first.

I H/'3(T) + 6O 5(z)
2x-h(z) = 2x 1-)

1 + =--- 4 H,4 () +

12
I +HH(z) I+ - -. cH(z)

24 720

- 0z.Z + 0.3z3 + 0.5x5 + .7X7

a0 + a2z2 + 04 4 + 0a6X

where

3 1a, 2 + jTK4 -K

a2 = - 4 + ji6

3 = - Y N +  6

a.4= 24" 48 6

15 1

a 6 17j0-K

Consider the following lines located on the ( ce) plane:

LO: SK4 - x + 48O
L, : K4-26 + 240= 0
L 2 : -4K 4 +KS=0

L3 : -16t4 + 5K 04.,, , + =
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L4 : 24- SO

L 5 : 5K1 -3K 8 =0

L6 : ,.6=0

Now, consider, for example, the following noise model:

f(z) - (I-)f1() + Cf,2(X)

where

--r2 -'r2

f 2(X) = 2

Then clearly,

i4 U i = 30c

and

4j-8 with 0 <ic4 < 3 (since 0< 1)

The lines L0 to L6 and their corresponding signed-half spaces are shown

on Fig. 2.F. From analytic geometry, one can see that

ao a1, - 2 a3.a6, Z 7 0

and

a4. a5 1!9 0
According to Descartes' law of signs [16], we conclude' that both the

denominator and numerator will have either no positive real roots (p.r.r.)

or two p.r.r.'s. If either the numerator or the denominator has two p.r.r.,

then (2z-h(z)) < 0 holds in some subinLerval of (0,-=a. In this case,

h(z) > 0, thus we have

2xh(z) < h2 (X)

On the other hand, if neither the denominator nor the numerator has

p.r.r., then (2z-h(z)) > 0, for all z r [0,oc] Nevertheless, h(z) may be
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L.
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L5 L

L: K8 = 10 K4

Fig. 2.F A Region on Which (2x h h(X) )> 0 Holds

(An Example)
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negative for some z, so (2z-h(z))h(z) is not always nonnegative even if

zh (z) < h2 (z)"

The above discussion actually illustrates one way of investigating the

performance of the approximate locally optimum detector using the

knowledge on the moments. Further study would be required if a neces-

sary and sufficient condition for ARE.,W > 1 is desired.

IJ

I

- . .

" 4

. 4



CHAPTER 3

SIGNAL DETECTION IN NEARLY GAUSSIAN SKEWED NOISE

I Introduction

Much, if not most, of the large literature on signal detection has been

based on the assumption that the underlying noise is symmetrically dis-

tributed with respect to the mean. Typical examples include the sample

mean detector and most robust detectors [1] - [3]. This assumption,

although generally making problems more tractable and providing

simpler solutions, may not be exactly true in practice. In such applica-

tions as sonar, asymmetrically distributed noise which might result, for

example, from underwater reverberation or sea clutter, has been encoun-

tered [4]. Furthermore, data from a number of natural environments,

e.g. under-ice ambient noise [5], have actually shown asymmetrical sta-

tistical properties. In such situations, optimal detectors could still be

found, but there are some additional difficulties in the implementation of

such detection schemes. The test statistics are usually complicated or

intractable and to implement them precisely requires, of course, a com-

plete knowledge of the underlying noise density functions. Furthermore,

the performance of these detection schemes may be sensitive to the

inaccuracy of the presumed statistics, and Ji particular, to the exact

amount of skewness.

In a recent paper, Kassam et. al. [6] discussed a robust detection

problem using a noise model which allows a symmetric contaiinated-

nominal central part and an arbitrary tail behavior. Except for this

-37-
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example, the problem of detection with skewed noise does not seem to -

have been discussed extensively in the signal detection literature. How- .

ever, in the context of other statistical applications, there has been some

work on investigating the effect of population skewness on hypothesis -

testings or estimation problems. Johnson [7] discussed the effect of

population skewness on the t-variable and proposed a procedure to

modify the t-variable so that this effect can be reduced. Carrol [8] exam-

ined the effects of asymmetry on estimates of variance of robust esti-

mates in location and regression problems and showed that heavy skew-

ness of errors can seriously bias the commonly used estimates for loca-4

Lion and intercept. The purpose of this chapter is to study the effect of

noise skewness on the performance of the sample mean detector and the

sign detector and, then, to examine a modification of the sample mean

detector which is less affected by the noise skewness. Evaluation of the

detectors will be based on the false-alarm rate, the power, and the proba-

bility of error.

There are many ways to define the skewness measure. Throughout

this chapter, this measure is taken to be the third-order central moment

divided by the cube of the standard deviation. This definition is one of- .

the most commonly used. By introducing an asymptotic expansion for

the test statistics, the detector performance can be related explicitly to

this measure. In order to facilitate analysis, the test statistics will be

normalized by the sample size M. This normalization procedure will not

affect the performance of the detectors so long as the thresholds are

adjusted correspondingly. Then the relation between the performance
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and the noise skewness is obtained. This relation will give a clear qualita-

tive insight into detector performance, although, for any finite M, it will

be an approximation. It will turn out that the sample mean detector is

more sensitive to noise skewness than the sign detector, when the under-

lying noise is only sightly non-Gaussian due to skewness. This result is

reasonable since the sign detector only assumes a zero median, a milder

assumption than symmetry, for the noise distribution. The second part

of this chapter then proposes a modified scheme for the sample mean

detector, which, by the introduction of a correction term, reduces the

effect of noise skewness.

Curves which describe the performance change with respect to noise

skewness measure for both the sample mean detector and the sign detec-

tor are given in Figs. 3.A - 3.C. Specifically, Fig. 3.A shows rates of change

in the false-alarm rate for both detectors, Fig. 3.B depicts those in the

power, and Fig. 3.C is for the probability of error. Note that, in these

figures, the thresholds are kept constant as the skewness mcasurc varies.

Fig. 3.D illustrates the structure of the modified sample mean detector.

In the last part of this chapter, some numerical examples based on

Monte-Carlo simulations and on some data from under-ice ambient noise

are given.

&2 Preliminary Results

One of the major difficulties in examining conventional detectors with

asymmetrically distributed noise has been that the skewness measure

does not usually appear explicitly in the test statistics and thus perfor-

a ,
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mance of the detector can hardly be expressed in terms of this measure.

Although several different skewness measures are available in the litera-

ture [9],[10], this difficulty remains unchanged. The reason appears to

be that, in general, skewness measures are evaluated as a function of the A

third-order moment, a function of the mean and the mode or the median,

or even as a function of the kurtosis and the third-order moment. On the

other hand, the test statistics usually evolve from the probability density

functions (p.d.f.) or from other functions of the distribution which may

not be related explicitly to those skewness mensures mentioned above.

Hence, even though it is intuitively clear that the statistical properties of

the test statistics are affected by the noise skewness, the explicit func-

tional relations are hard to acquire. One reasonable way to get around

this problem is to obtain an asymptotic expansion for the test statistic in

terms of the moments which are more clearly related to the usual skew-

ness measures.

The main purpose of this section is to develop some prcliminary

results on which the procedure of expanding the test statistics will be

based. There are several general ways to obtain an asymptotic expansion

for a random variable. The one to which attention here will be restricted

is the use of the Cornish-Fisher expansion [I I]. A general form of such an

expansion for a random variable X is given by

CF (X)=o Z+ A -I) +. aI Z + 14

where g0 =EfXj, o2=Ej(X-fo)2 ', Ii=E(X-o)3 j, and Z is a standard nor-

mal random variable. In this chapter, our interest is to employ this sort

of expansion for the sample mean of a sequence of independent and
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identically distributed (i.i.d.) random variables so that some asymptotic

properties can be achieved. To begin with, the asymptotic expansion for

the sample mean should be defined. Let , I be a sequence of i.i.d. ran-

I M A
dom variables with sample mean SM - = zX2, where M denotes the sam-

M j whr Mdnte hesm

ple size. We will call a series of random variables, ao+ E5F- a

"asymptotic expansion valid to r terms" for Su if

ISM o & -- --Z,. (M,,12 ) W.p. 1. (2)

This definition evolves from Wallace [12] who defined an asymptotic

expansion valid to r terms for a distribution function while requiring the

remainder to be O(M-r/S). However, it will be seen later that requiring

the remainder to be o (M" 2 ) as in Eq.(2) is more convenient and furth-

ermore, is in accordance with Erdelyi [13]. It is clear that, when r 1, if

ao is taken to be the mean of X and Z, is the standard normal random

variable, then Eq.(2) is compatible with the ordinary Central Limit

Theorem. Furthermore, one can argue that the Central Limit Theorem

suggests that, under some general conditions, the distribution of S,

tends to be symmetric. However, it will be shown here that, by introduc- 4

ing the series expansion for the test statistics, one can obtain a solution

with faster convergence rate. Now, let o2 and A3 be the variance and the

third-order central moment of X respectively, and let -the skewness

measure be defined by

hs m(3)

Then, it is easy to see that the skewness measure tM of the distribution of
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Sj is given by

0 as M -

These arguments lead to the following lemma:

Lemma. Let JX, be a sequence of i.i.d. random variables with common

distribution F. Assume that all moments of X, exist and that the skew-

ness measure of F is defined by Eq.(3). Then the skewness measure i of

the distribution of S satisfies the following relation

= 0CM

However, the interest here is to consider an asymptotic expansion

valid to higher order terms such that the expansion will contain the skew-

ness measure. In fact, these higher order terms are important since tak-

ing one or two more terms usually improves the approximation

significantly and, typically, may correct the skewness. Further investiga-

tion reveals that Eq.(2) determines an equivalence relation between

sequences of i.i.d. random variables. We can say that two sequences of

i.i.d. random variables are asymptotically equivalent if their asymptotic

expansions valid to r terms, for the sample mean, differ by o (M'1 2 ) for

each r. Thus an equivalence class based on this relation may be defined.

And therefore, a valid asymptotic expansion defined in Eq.(2). may

represent a class of sequences of i.i.d. random variables.

We now proceed to present a Cornish-Fisher type expansion for the

sample mean of a sequence of i.i.d. random variables [Xdj. The following

proposition is a straightforward result:
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Proposition 1: Let JX be a sequence of i.i.d. random variables and SM

be its size-M sample mean. Assume that all moments of Y. exist and that

I << 1; then an expansion for SM given by

VAE(SM) = :Af+ + + 'z 1) (4)

is an asymptotic expansion valid to two terms for Si, where

,o= z= e=Ej(X-po)2 j, j 3 =Ej(X2-o)', and Z is a standard normal

random variable.

If the skewness measure is defined by Eq. (3), then Eq. (4) obviously

contains this measure. Now, by the use of some weak convergence

theorems on pages 287 and 288 in [14] and the observation that VAE(S)

is a continuous function of Z, Proposition 2 follows immediately from Pro-

position 1.

Proposition 2. Let Yu = go + r + Let .,y and Fs, be

-I +u 2M Lt ,anFs b

the distribution functions of YM and SM respectively. Then, under the

assumptions in Proposition 1, Y converges in law to SM ; namely,

* ~linFa =Fs,l-im FrmFA

at each continuity point of Fs2 .

Proposition 2 enables us to evaluate the asymptotic statistics .of SM

via those of Y1. As a matter of fact, the p.d.f. of Y exists and can be

evaluated as follows:

Substituting Eq. (3) into Eq. (4) yields

Y VAE(Sm) = + Z+ HZ2-1) (5)

6M
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Then, it can be shown that

(i)If 2! 0, the p.d.f of Y is given by

=2 +
tUj

1 0 exp[- A
1 dysIif ;/o 2f- 6M ()

0 otherwise o
, ~where :

v(y) ule+a+2(y-ato)/3" and a, no V a

(i) If <0, the p.d.f, of Y is given by i c o h

V 2

1 1 Q(V)+ 1% 11 if Ye o#. .( ,6,(--)exp[--!-)] :o-- E  ~ (7) -

0 " otherwise '

The preceding discussions have been focused on continuous random

variables. It should be noted that these expansions may not be valid for

some discrete random variables. However, in the context of thi chapter, "

only binomially distributed random variables will be discussed and these

will be seen to have valid asymptotic expansions. Thus the discussion for

the discrete case will be omitted here.

&3 The Sample Mean Detector

The sample mean detector is known to be the Neyman-Pearson

optimal detector when the underlying noise density is Gaussian. This sec-

tion considers sample mean detector performance deterioration under

model deviation due to skewness. The asymptotic expansion introduced

in the previous section will be employed here for the test statistic, and
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relations betweeh the performance and the noise skewness measure will

then be obtained. It will be shown that the performance of the sample

mean detector does deteriorate, as expected.

The following binary hypothesis testing problem is considered:

Ho: X = N2

It is assumed here that JX is a sequence of i.i.d. random variables.

Under H o, the p.d.f. of Xj is f ( ), which is nearly Gaussian, and has zero

mean, known variance e and known third-order moment A3, where g3 is

small. Now, the test statistic of the sample mean detector is given by

T(X)-

As discussed in Section 3.2, there exists an asymptotic expansion valid to

two terms for T(X). For notational convenience, the subscript M will be

omitted in the sequel and the asymptotic expansion for T(X) will be

denoted by Y. Thus, in accordance with Eq. (5),

under Ho: Y = Yy a + aZ-I) (8)

under Ko: Y=YK s + a + AZ-1) (9)

Let FH(i,) and FK(y) denote the distribution functions of Yy and YK,

respectively. Now, define am and Pm by

am f dFV( ) (10)

and

Pm f dFx(Y) (11)

where To is the given threshold. Then, by Propor~ions I and 2, it can be

concluded that am and Bu converge respectively to the false-alarm rate
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a, and the power of the sample mean detector. Now, I
(i) if 2 0, substituting Eq. (6) with /o = 0 and o = s into Eqs. (10)

and (11) respectively yields

= $~(~~~QO(T )+1) + ( @(Qo(7o)-I) (12)

and

=U 5 ( s(TO)+l) + Qs I___ ( (To)-) (13)

where

Qo(To) = /1+o 1 7+2fTo/3o and Qs"(TO) = Vr1+oz+2(T 0-s)/3o.

When M is sufficiently large and t is small, am and Pj can be

approximated by

S(14)

and
" m  Q(0)-1) (15)

Oj4

(ii) if [ < 0, substituting Eq. (7) with go = 0 and Mo = s into Eqs. (10)

and (11) respectively yields

01 01TO- I1

QoC T)+i - ,ZL~](12a)

and

-1= Q (TO)1- +
171 at 01

.[ (Qto)+1," - ,(Z- -)] (13a)
at at01

Similarly, when M is sufficiently large and t is small, am and Pm can

be approximated by Eqs. (14) and (15) respectively. Since am and PhM

converge to a, and #I respectively, the qualitative behavior of a, and P1



7 7

-47-

can be studied approximately by am1 and PM respectively, provided that

M is sufficiently large. Now the probability of error P., is given by

Q ((TO)-I (Qo(To)-IPat 4)( +-- (6

It can be seen from Eqs. (14)-(16) that the dependence of the detector

performance on the noise skewness measure comes from the variables

Qo(To), Q,(To), and a,. Figs. 3.A - 3.C provide clearer quantitative

insights as to sensitivity of the sample mean detector to the underlying

noise skewness. One can see that both the false-alarm rate and the pro-

bability of error increase as the skewness measure increases, while the

power stays nearly the same, an indication of the performance deteriora-

tion of the sample mean detector when the noise skewness comes into

play.

Before concluding this section, it may be worth mentioning that,

throughout the above discussion , we have assumed implicitly that the

threshold To lies inside the region where the corresponding p.d.f. for Y,..

is nonzero. The case when To lies outside that region will result in a

singular detection problem which is of little interest here.

.1

3.4 The Sign Detector

It is well known that the sign detector is the Neyman-Pearson optimal

detector for the nonparametric test (H1 ,K1)

H1 :p = 1/2

K, :p > 1/2

where p = Prob. I X, 2 0 1. Also, it is the locally optimal detector when A

the underlying noise has a Laplace distribution [15],[16]. The

- - -
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4

a/ co"

7

6-

4-

2

Sign Detector

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.83 0.9 1
skewness measure

Fig. 3.A Rate of Change in False-alarm Rate

ao is the false-alarm rate when the underlying noise is Gaussian

a0 = 1.0xIO10

The threshold is set by ac0 and is kept fixed wheni the

noise skewness measure varies.

Sample size =400

.0 ,

4!
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P/ PO

4.5

4

3.6

3

2.5-

2
1.5

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0,7 0. 9.9 1
skewness measure

Fig. 3.B Rate of Change in Power

S Po is the pover -w'hen the noise is Gaussian{ 0.99999 for the linear detector
S0 0.99998 for the sign detector

Signal Strength = 2 x ( threshold of the linear detector )

Sample size = 400
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3

2.5-

2 s
1.5V

Sign Detector

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
skew6ness measure

Fig. 3-C Rate of Change in Probability of Error

P., is the probability of error when the noise is Gaussian

j2. Ox 1010 for the linear detector
pe % 2.0 30IO0 for the sign detector

Sample size =400
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performance of the sign detector when the underlying noise is skewed will

now be studied. It is easy to see that, when the underlying noise is

skewed, the binary test (H ,Kl) really becomes

H 2 :p = 1/2 +c()
K2:• p > 1/ 2 + ()

where r(t) denotes the deviation depending on the skewness measure .

In order to be compatible with the previous discussion, the following nor-

nealized test statistic is considered:

MT(X) =--E sg(x,) (17)

where

1 if XL>O

sgn (X)0 otherwise

Again, an asymptotic expansion for T(X) will be needed in order to facili-

tate analysis. In a survey paper, Bickel [17] discussed the Edgeworth

expansion in nonparametric statistics with emphasis on higher-order

approximations to the distribution of those statistics. However, the test

statistic of the sign detector does not seem to have been discussed. In

this section, the previously considered Cornish-Fisher type asymptotic

expansion will be utilized again for T(X). The first three central moments

of T(X) under H 2 and K2 are given in the following:

under H2 : o= 1/2 + e()

a2= 1/4 - e( ) (18)

and j3 = -2r(f)a 2

under K2 : po = p = 1/2 + .(Q)
2 p -p 2 = 1/4 - r,2 (f) (19)

and A3 =p -3p2+ 2p3= -2(Q)a
where, for convenience, p is taken to be I/ 2+r. (t) under K2 , and c. (Q) is
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a variable depending on both the signal strength and the skewness meas-

ure. Now, following the discussion in the previous sections, there exist

asymptotic expansions valid to two terms for T(X) under both

hypotheses, namely,

under H2 : Y=j 1/ 2 + (C)+ 3M4z2 - 1)

under K2 : YKI = 1/2 + c,() + 1 ( Z 1

Then, by going through the same procedures as of Section 3.3, we can

obtain the false-alarm rate a, and the power #, for the sign detector.

a, 1 - (20)
as

and
Is -R'(To)..(1

t(2

where
a= -2e(t') -e,,(,=a7s  = a x'

3VM(1/4- 2 (t)) 3 /M(1/4-ez())

and

R(To) = I,#A_!3(1/ 4-0(f))

-- /i3(1/ 4-C2(f))

Thus the probability of error P. is

,, R(To) ) (1-R(To)) (22)

as  as
Eqs. (20)-(22) reveal how the performance of the sign detector changes as

the underlying noise skewness changes. The dependence on the skewness

is embedded in the variables a., a.', R(T 0) and R'(T0 ). Figs. 3.A - 3.C also
depict the quantitative relation between the performance of the sign

detector and the noise skewness. The noise model used here is the same
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as that for the sample mean detector. The noise p.d.f. is given in Eq, (6)

with jAo = 0. For this particular model, which is nearly Gaussian, the sign

detector appears to be less sensitive to the noise skewness. This result

is reasonable since the sign detector only assumes a zero median of the

noise distribution, which is a milder assumption than zero skewness. On

the other hand, the sample mean detector assumes the Neyman-Pearson

optimality for a Gaussian noise model, which has zero skewness measure.

&5 A Modified Sample Mean Detector

In Section 3.3, the sample mean detector was examined with skewed

noise. rhe noise model used there is a Gaussian model perturbed with a

small amount of skewness. It has been shown that the performance of

the sample mean detector deteriorates when the underlying noise

becomes skewed, although the significance of this performance deteriora-

tion depends on the particular application. It is then interesting to con-

sider reducing this effect by modifications of the detector structure. In

this section, a modified scheme is proposed based on the asymptotic

expansion for the sample mean of an i.i.d. random sequence discussed in

Section 3.2. A mean-squared term is added to the sample mean so that,

in the asymptotic expansion, the terms involving the lowest power of the

skewness measure can be eliminated. Now, with the assumption that the

skewness measure is small and that the sample size M is sufficiently

large, one can expect that the effect of the noise skewness is essentially

eliminated. Again, the following hypothesis testing problem is con-

sidered:
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Ho: X = N=
Ko:X = N+s 

As in Section 3.3, it is assumed here that, under Ho, EJXJ=0, EjXj22
= o2 ,

and EjXY, 3 =/t, where A3 is small. Then, consider a test with the following

test statistic:

Tm (X) X + p(X2 - (23)

* where

X = . . :-

The parameter p will be determined as follows:

* By Proposition 1, an asymptotic expansion valid to two terms for X

exists, namely

- - .+ -4 Z2-1)+ a (M-1), under HO (24)
f, M 6o2M T

Substituting Eq. (24) into Eq. (23) yields

orX) = + - Z2-) + p Z21) + o(M-1)
V 6c,2M Ml'

Thus, if p=-A1/ 60, the term -involving /A3 will be eliminated and other

terms involving higher powers of the skewness measure will be contained

in o (M- 1 ), i.e.

TM (X) = ..-. Z + 0 (M - )

Therefore, when the skewness measure. f=g/ is small and the sample

size M is sufficiently large, T"(X) can be well approximated by a normal

random variable which is independent of the skewness measure of the

noise. Hence the false-alarm rate an and the power #,n are given by

a,,, I -¢t(-'./Tol o)
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and

P4 1 - bM(Os1a

where To is the prescribed threshold. Thus it can be seen here that the

p erformance of the modified sample mean detector is asymptotically

independent of the noise skewness. From Eq. (23) and the above discus-

sion, the modified sample mean detector should be implemented by the

* following test statistic

TVmn(X) = -. L(y)(25)
6a

The structure of this modified scheme is shown in Fig. 3.1). In prac-

tice, the skewness measure f may not be known exactly. Then a learning

procedure or adaptive scheme will be needed to obtain an estimate.

3.6 Simulation Examples

To investigate the modified sample mean detector proposed in the

last section in more detail, some numerical examples based on Monte-

Carlo simulations are given here. For simplicity, the noise model which

has a probability density function given by Eq. (6) is used. This is a model

resulting from a Gaussian distribution perturbed by a non-zero skewness

measure. According to the results discussed in the previous sections, the

modified scheme is expected to be less sensitive to noise skewness, com-

pared to the sample mean detector. As a matter of fact, it should be

indifferent asymptotically to noise skewness. The following examples2

verified this conclusion. Fig. 3.E shows a result of one million runs with a

sample size of 100 and the ao , the initial false-alarm rate when the skew-

ness measure is zero, set equal to 10-3. Curves are plotted f or the rate-
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of change in false-alarm rate as the skewness measure varies. It can be

seen that the false-alarm rate of the modified scheme stays nearly

unchanged, compared to that of the sample mean detector, as changes.

In Fig. I.F, a similar set of curves is shown, except that ao 10-4. IL.

should be noted here that the smoothness of the curves depends on the

number of runs. This is one of the typical properties of the Monte-Carlo

simulations. However, we do see a positive verification of the analytical

results obtained previously.

&7 A Case Study Using Under-Ice Ambient Noise

The detection scheme discussed in Section 3.5 will be further exam-

ined here with some real data taken from under ice in the Arctic. The

data were preliminarily analyzed and presented in [5]. The mechanism

* for the noise under stationary shore ice is possibly due to tensile stresses

* caused by rapid reduction in air temperatures. Noise from the pack ice,

on the other hand, is due to the friction between interacting and colliding

ice floes in addition to tensile silxesses. For completeness of discussion,

the first three statistical moments of the data are shown here in Figs. 3.G

-3.1 [5] in the time domain. These moments were estimated in 1024 sam-

ple blocks, which were identified as a record on the horizontal axes in

these figures. The samples were taken at a sampling rate of 10kHz, thus

each record represents approximately 0.1 second of time. It is seen that

the data has a non-zero mean which is due to the carrier frequency of the

tape recorder being slightly misaligned. Fig. 3-H shows a large variability

of the variance over time. This illustrates the non-stationarity of the -
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A Result of Monte Carlo Simulation

a/ ao

1.4 -j

1.3

1.1 Modified Sample Mean Detector

0.9

0 0.1 0.2 0.3 0.4 0.5 0.0 0.7 0.6 0.9 1
skewness measure

4Fig. 3.E Number of Runs 10

ao= 10-3
4

Sample Size M =100
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noise. Fig. 3.1 depicts the skewness measure which is defined in Eq. (3).

It can be seen that, for some records, the noise exhibits a pronounced

asymmetrical property.

The purpose of this study is to investigate two detectors (the sample

mean detector and the modified one) with data from some natural

environment. There are some disadvantages associated with the use of

these data, however. As has been seen from Fig. 3.H, the data represent

a nonstationary process and, furthermore, they may well represent a

dependent process. These two characteristics seriously violate the

assumptions discussed in this chapter. Hence the results thus obtained

should not be used to justify the analytical results of the previous sec-

tions. In an attempt to eliminate the dependency structure in the noise,

the data sequence was re-arranged such that every other eight consecu-

tive samples is used. The estimates of the statistical moments are then

evaluated based on the re-arranged data sequence. Thus, each record

now only consists of 128 sample blocks. Figs. 3.J and 3.K plot the false-

alarm rate and the probability of error versus the threshold for the two

detectors using this re-arranged data sequence and for the sample mean

detector in Gaussian noise. It is shown here, based on these data, that

the discrimination between these two detectors does not appear to be

significant. It should be noted here that the estimates of the moments

obtained from this data sequence does not seem to be different from

those shown in Figs. 3.G - 3.1.
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&B8 Conclusions

The problem of detection with skewed noise is discussed. The sensi-

tivity of the sample mean detector and the sign detector to the noise

skewness is examined. When the underlying noise is Gaussian, perturbed

with a small amount of skewness, the sign detector is shown to be less

sensitive than the sample mean detector. A modified sample mean detec-

q tor is then proposed whose test statistic is constructed by adding a

correction term to that of the sample mean detector. This correction

term eliminates the lowest power of the skewness measure in the asymp-

totic expansion of the test statistic. Thus, when the skewness measure is

small, this test statistic is virtually unaffected by noise skewness.

Although the analysis here is based on the assumption of large sample

size and small skewness measure, it does provide some general qualita-

tive insight as to the skewness effect on detector performance. The

simulation results in Section 3.6 provide a support to the analysis.
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CHAPTER 4 -

DETECTION OF SURE SIGNALS IN NOISE OF BOUNDED MAGNITUDE

4.1 Introduction

In the past few decades, a great amount of literature has been

devoted to the-theory of detection of signals in a noise environment [I]-

[8]. To solve a detection problem, one usually has to impose some statist-

ical assumptions on the noise and then employ methods of statistical

inference. Needless to say, these statistical assumptions ought to be

introduced with the consideration either of providing analytical tractabil-

ity to the problem or of being compatible with practical applications.

Unfortunately, these two factors are often contradictory to each other.

For example, in many practical situations, the assumption that the noise

sequence is a sequence of statistically well-defined random variables is

not well justified. Hence the assumptions on the noise statistics will be

just an approximation or simply a consequence of the desire for analyti-

cal tractability.

In most of the literature, the noise process considered usually has a

probability density function with infinite support and the tail probabili-4

ties are extremely small. e.g. the Gaussian density function or the

Laplace density function. Practically speaking, the tail area, considered

sufficiently far out, is almost negligible. In fact, due to some environmen-4

tal limitations, the noise may actually be bounded in magnitude. Furth-

ermore, the availability of a well justified bound on noise magnitude is

usually more realistic than that of the well justified statistical knowledge

-69-
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of the noise. Thus the assumption of bounded noise may lead to more

practical applicability of the solutions. As a matter of fact, bounded

noise assumption has been employed in considering state estimaticn [9]-

[10] and system identification problems [11]

This chapter considers a detection problem using a bounded noise

assumption and proposes a rather different solution to this detection

problem. To begin with, in Section 4.2, the signal is assumed to be a

known positive constant and no statistical assumptions on the noise are

employed. Then a sequential test procedure is devised based only on the

knowledge of the noise bound. In contrast to the conventional hypothesis

testing procedure, this procedure yields a singular solution. Specifically,

it involves no possibility of making wrong decisions provided that the test

procedure terminates. Now, one may argue that the presumed bound on

the noise magnitude may not be precise; thus the resulting singular solu-

tion will not be realistic. One way to circumvent this problem is to intro-

duce some randomness to the bound; namely, to suppose that the bound -

is a random variable with a known bounded distribution. Then the

sequential procedure becomes a random test in the sense* that the thres-

hold and the associated performance are functions of a random variable.

In Section 4.3, examples of some particular distributions of the noise

sequence for a given realization of the presumed bound are us~ed to

r demonstrate this example. Section 4.4 addresses the duality of
hypothesis testing and estimation. Section 4.5 then discusses the prob-Klem of detecting an unknown signal in bounded noise where the detection

problem will be formulated as a problem of estimating the signal.
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4.2 Problem Formulation

Suppose that we consider the problem of deciding whether or not a

constant signal is present by observing a noisy data sequence fr J. This

problem can always be formulated as the following canonical hypothesis

testing problem:

H: z&=
i=1.2 .... ()

K: Tj = + s

The essential assumption to be discussed in this chapter is that the noise

sequence 1741 is bounded in magnitude, namely

n . B2 for any i, where B>0 (2)

Now, if it is assumed here that the signal is a known positive constant,

then

under H: n1 B2  * -B <z<B (3)

under K: n !g B2 4 s-B!z2!s +B (4)

From Fig. 4.A, it can be seen that 2; <s-B only if H is true and ; >B only

if K is true. Thus, to solve the detection problem, one can proceed as fol-

lows:

1. Obtain the data sequence Jz; sequentially.

2. For any i, if z;>B, stop and decide K. On the other hand, if

zi <s-B, stop and decide H.

3. If s-B <z: <B, obtain another observation zi+1 and repeat step 2.

It is clear now that if the bound B is known exactly, and if the test pro-

cedure terminates, one can expect no possibility of making wrong deci-

sions. In contrast to conventional detection problems, this is a singular
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problem in the sense that this test procedure leads to a solution of zero -

false-alarm rate and unity power. This result is inherent from the

assumption imposed here, namely, that the noise sequence is bounded in

magnitude.

The sequential procedure discussed here involves some similarities

to the standard sequential probability ratio test (SPRT) [12]: In the

SPRT, one assumes that the noise sequence is a sequence of random

variables with a known probability distribution. Then the likelihood ratio

L is computed and is usually a function of time. Two thresholds T, and

T2, with 0< T, 1 I <T 2, are chosen based on the desired values of the false-

alarm rate and the power. The likelihood ratio L is then compared to the

thresholds T, and T2. If it exceeds T'2 at one of the comparison instants,

the test terminates with the decision for K (signal present). 1f the likeli-

hood ratio decreases below TI, the test terminates with the decision for

H (signal absent). If L remains between T, and T2, another observation

is made. On the other hand, instead of computing the likelihood ratio

each time after making an observation, the sequential procedure dis-

cussed in this chapter simply compares the observed data x, to the two

thresholds B and s -B to make decisions. Thus the test considered here

requires less information about the noise and involves less computational

complexity. However, another important criterion for evaluating perf or-

4 mance of a sequential procedure is the number of samples, or the aver-

age sample number (ASN), required for termination. To consider the

ASN, let us start by showing that the sequential procedure described

here will terminate with probab4.1ity one, under some general conditions.
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Suppose that the probability that the observed data z lies in the

interval [s-B,B] is pi, and that O<pi<l for all i. Furthermore, if the

observation sequence frj is an independent sequence, then at the k-th

observation, the probability that this test procedure has not terminated

k
is rlpj. However,

0O u fl Pj~r- lim, P k =0A

where

Pr - maxpA

The above argument leads to the following lemma.

Lemma Let x, be an independent sequence. Let

pi = Prob. ziE [s-B,B]?. Then, if 0<pi<1 for all i, the sequential test

procedure discussed in this chapter terminates with probability 1.

Knowing that the test procedure will terminate with probability 1,

one can then consider the ASN. Now, if it is assumed that the observa-

tion sequence is independent and identically distributed, then, according

to the strong law of large numbers [13], one may evaluate the ASN as fol-

lows:

(a). Suppose that the noise sequence INJ is uniformly distributed

between [-BB]; then, under H:

Prob. (:--_z gs-B)J= =

Thus the expected value of the sample number M, or the ASN, is

given by

El(M) = .ASN

S



- 75-

Similarly, under K:

EK(M) = sB -. ASNS

One can easily see that the two ASN' s may not be equivalent

under both hypothesis if one allows some asymmetry assump-

tion. Furthermore, it should be noted that, if B>>s, then the

probability that the observation will lie in [-B,s -B] will be very

small and thus the ASN will be very large. On the other hand, if

B and s are comparable, one can expect a rapid termination of

the test.

(b). If the noise sequence fN A has a truncated Gaussian distribution,

i.e. if it has a density function given by

j 2ira2(1-24P(-B/ a))
f -() 0 otherwise

Then it can be shown similarly that

ASN= (1 - 2( -B/ ))
,s B ( -B/a)]

under either H or K.

4.3 Constant Known Signals in Noise of Random Bounds

In the previous section, the problem of detecting a known signal in a

magnitude bounded noise has been discussed. A sequential test pro-

cedure was proposed which leads to a singular solution. However, there

are some obvious problems associated with this result. The presumed

bound may not be tight, and thus the number of samples required to ter-
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minate the test procedure may be unnecessarily large. Furthermore, in

practice, the bound may not be known exactly, and could even be

assumed smaller than it actually is. Therefore, to make the problem

more realistic, one may assume that the presumed bound is a random

variable with a known distribution function. Then, clearly, the two thres-

holds will also be random variables and the solution thus obtained will

involve non-zero probabilities of false-alarm and miss.

Now, for simplicity of discussion, one may suppose that the

presumed bound B is a random variable uniformly distributed between

[r-r,r+v], where r is the actual bound of the noise sequence 174?. A

realization of B will be denoted by b. Then, assuming that the signal is a

known positive constant, the two thresholds s -B and B will be random

variables uniformly distributed between [s-r-c,s -r +c] and [r-c,r+],

respectively. It can be seen, Fig. 4.B, that a false-alarm (type I error)

occurs when b >r and z >r. Hence the probability of false-alarm (false-

alarm rate) is given by

a(6) = Prob. Ib >r,xj>r

= Prob. Z>7 I6>rI Prob. Ib>r1 (7)

0 Moreover, a miss (type II error) occurs when b >r and xz <s -r. Hence the

probability of miss is

1-19(b) = Prob. jb >r,<s -r

= Prob. ai<s-r Ib>r Prob. b>r (8)

Thus the power p(b) is given by

P(b) = I -Prob. ; <s-r 6 >r j Prob. b >r j (9)

It is seen in Eq. (7) and Eq. (8) that both the false-alarm rate a and
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Fig. 4.B A Sequential Test Procedure with Random

Bounds On Noise Magnitude
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the power are functions of a random variable B and thus are also ran-

dom variables. Thus this test procedure can be regarded as a random

sequential procedure as its thresholds are random and also its perfor-

mance. Properties of this test procedure will clearly depend on the sta-

tistical distributions of the false-alarm rate and the power. The following

sections employ some statistical assumptions on the noise sequence and

provide clearer insights.

4.3.1 Uniformty Distributed Random Noise

Suppose that for any presumed bound b, the noise sequence irkj is

uniformly distributed between [-6,6 ]. Thus, from Eq. (1), under H, f; .

is uniformly distributed on [-6,b] and, under K, Jx j is uniformly distri-

buted on [s-b,s+b]. It may be interesting to see that the probability

density function of X under H is given by

I lnr+v
7( if r +r z > r-.

if r- ! x > -r+c

PA)= - _-Z'c if-r+t a! x > -r-c 10

= 0 otherwise

Also the probability density function of X under K is simply a shift

to the right of Eq. (10). As discussed previously, false-alarms occur when

6 >r and x; >r, while misses occur when 6 >r and , <s -r. The false-

alarm rate and the power can then be evaluated via Eqs. (7) and (9),

respectively. From Eq. (7).

a(b) = Prob. jzt>r Ib>r Prob. Jb>i (11) --

6b-r 2 4 r
- b 2 4 4b
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Similarly, from Eq. (9),

=~b Prob. Ib < r 6>r I Prob. f 6>rl .

_3 + r (12)
4 4b

Now that both the false-alarm rate and the power are functions of a

random variable [Eqs. (11) and (12)] it is essential to consider their sta-

tistical properties; e.g. the probability distributions and the statistical

moments. The probability density function of a(b) is given by

= 2r if -r ':"
if

r(1-4a)2  4(r-e) 4(r +e)
fA(a) 0 otherwise (13)

and that of P(b) by

= 2r 3__+ 5 3 + r
c(lp)2if 4 4(r+e) 4 4(r-r)

f B(P) 0 otherwise (14)

Moreover, the first two statistical moments of the false-alarm rate and

the power are given by

E[a(b)] = 8 8-L (+t) (15)

where

7"

E[p(b)] -+ t ln(l+t) (16)

and

var[a(b)] va[=)

= 1 + 1 1 (i+t) - [(l+t)] (17)
64 32(1+t) 32T1 64t2

Eqs. (13) and (14) show that both a and P have bounded distributions with

an algebraic tail behavior. In practice, one may be interested in cases -
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where t << 1, then

n(1+t) = t-)y2+ 1-t3
3

Thus

E[a(b)] ~

and

Vr[a(b)] = V [p(b)] ft r- t2

32
Hence if t <<I, the first-order moments of both a and P are monotone

linear functions of t while the variance is a quadratic function of t. This

result suggests a reasonable conclusion that, the smaller i is, the smaller

is the probability of error involved in this test procedure. Figs. 4.C-4.E

depict the first two moments of a and P as functions of t as t ranges

from 0.001 to 0.1.

4.3.2 Random Noise With TriAgular Distribution

An example of a unirnodal and bounded distribution is the triangular

distribution whose density function is given by

b 6

X(z) = 0 otherwise

Again, 'y assuming that the presumed bound B is uniformly distributed

betwee.i [r-r,r+e], one may evaluate the false-alarm rate and the power

via Eqs. (7) and (9), respectively.

a(b) Prob. zf r >Ib>r I Prob. b >r
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Now, the probability density functions of a(b ) and p(b ) are given by -

fA(a) 0 otherwise

and '

t=1_r + r if 1 1"C2

4v 4c1+(1-22 ,r) T-) 4(r_-)2 4(r+)
fB(P) = 0 otherwise

The first two statistical moments of a and P are given by

E[a(b)]= L+ 8(1 t"

if t << 1 (18)
8

and

E[1(b)] + =1(+t)
r 8(1+t) 4t&

t2
Owl- - <1 (19)

Var[a(b)] = VWr[p(b)]
= 1 5 1 1 (5+t)]2. 5-L (1+t) - 4i i~)

64 96t 76t 16t2  32(1+t)
+ 1 1n(1t) 1 1 1 1+1 t(l+t) 64 (1+t)2 16t(I+t)2  96t(1+t) 3

16 t~it) ' 6 (1+t) + - _______

4 .3-t2 if t << 1 (20)
96

A similar set of curves to those in Figs. 4.C-4.E describing the first two

moments of a and P as functions of t are given in Figs. 4.F-4.H. Here,

instead of an approximately linear relation, an approximately quadratic

relation between the mean and t is shown. This relation can also be seen
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from Eqs. (18) and (19). The difference certainly results from the

different assumptions on the noise distributions employed. However, as

can be seen from Figs. 4.F-4.H, the effect of inaccuracy of the presumed

bound on the noise on the probability of error is less than that in the pre- A

vious case. This is due to a smaller tail probability of the noise distribu-

tion used here.

4.3.3 Random Noise uith Truncated Gaussian Distribution

In the last two sections, the noise sequence was assumed to have a

bounded distribution, i.e. uniform distribution and triangular distribu-

tion, with a random bound which has a uniform distribution. However.

these distributions may not be. of sufficient practical interest. In applica-

tions such as radar or sonar, the noise density function often exhibits a

Gaussian-shaped central part, although the magnitude of the noise may

be bounded by some equipment limitations. The probability density func-

tion of a random -ariable with a truncated Gaussian distribution is given

by

C(b) ifex 1!

0 otherwise (21)

where C(b) is a normalization constant and is given by

As in the previous sections, the bound b is assumed to be a random vari-

able uniformly distributed between [r-t,r+e]. Then, by Eqs. (7) and (9),

the false-alarm rate and power are given by
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a(b) = P ob. fx1>r,6>r

2 L or O

and

= -v[ S S-6
Pb 1-2 L 2-- a

Because of the functional forms involved in the density function, Eq. (21),

the statistical moments of a and P are hardly expressible in a simple

form. However, curves depicting them as functions of t can be obtained

by using numerical methods as shown in Figs. 4.1-4.K. Again, these curves

are obtained for t varying from 0.001 to 0.1 . Also, the value of r is set at

4a, as the tail probability of a Caussian distribution beyond this point is A

sufficiently small. A smooth monotone nondecreasing relation between t

and the first two moments of the probability of error can be seen from

these curves. This is compatible with the intuition that the more accu-

rate the presumed bL .nd is, the less probability of error will result from

this test procedure.

To investigate in more detail the sequential test procedure here, one

may be interested in comparing its performance to that of the standard

SPRT. It is obvious that both error probabilities converge to zero as the

bound on the noise distribution goes to infinity, namely

lima(b) 0 almost surely

and

lim P(b) = 1 almost surely

Unfortunately, the ASN will be infinite in the limit. A similar result can

be expected from the standard SPRT. Thus, to compare these two test
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procedures, one has to consider rate of convergence of the error proba-

bilities. In [12], it is shown that the ASN of the SPRT under H and under

K are given respectively by

EH( (1 -a) log7T + a logT 2EM(z)

and

E( logTI + (1 - ) logT2E(z)

where z is the test statistic and T, and T2 are two thresholds given by "

T /(-a) and T 2 =(1-)/a

Thus one can see that for the sp.ne a and the same P, the ASN of the

SPRT is less than that of the sequential procedure here. On the other

hand, a complete knowledge on the noise density function required by the

SPRT and the computational simplicity involved in the proposed sequen-

tial procedure should also be taken into account in making comparisons.

4.3.4 Rondom Noise udih Trucated Loplae DibL tion

Another distribution which could be of practical interest is the

Laplace distribution. As in the previous section. the truncated version of

the Laplace distribution will be considered here with probability density

function given by

h -- exp-*Iui if IzIsb

fx(z) 0 otherwise

where C()=(1--) - is a normalization constant. Again, by assuming

that the bound 6 is a uniformly distributed random variable on

[r-c,r+c, one may evaluate the false-alarm rate and the power via Eqs.
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(7) and (9).

a(b) = Pob. ">r'b>

and -L

P(6) 1- [) assuming that s>.

Again. in order to achieve some insights as to the statistical properties of

a and P. one has to employ numerical techniques. Figs. 4.K-4.N. shows

the first two moments of a and P as functions of t. A smooth monotone

nondecreasing relation between t and the probability is also shown here.

However, comparing to the results in the previous section, greater proba-

!" bility of error is obtained here due to the heavier tail probability in the

Laplace distribution.

4.4 Duality Between Hypothesis Teutinp and Confidence Regims

In the previous section, detection of a known signal in noise has been

formulated as a canonical hypothesis testing problem, namely,

H:; z4 7
i=1,2,...

K: =74+s, s>O

This is equivalent to testing H: -O=ft vs K: "O=Io+s, where O =EjX1t and

p0=EjNaj. However, if the signal strength is unknown, this is equivalent

to testing H: O=Ao vs K: ,OOo; i.e. any value of '0 other then pa is a possi-

ble alternative. One can then consider this problem as one of estimating

the mean of the observation data sequence. 's a matter of fact, there
NJ

exists a complete duality between families of level a tests and level (1 -a)

. -. , . .s%- - "- . -
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confidence regions. To explain this concept in more detail, let us con-

sider the following example [14]: Suppose that, on the basis of m obser-

vations, zz 2 .... ,m, one wants to decide, with the assumption that the

;'s are ii.d., whether or not the population mean of jX is po. Then a

size-a test can be based on a level (1 - a) confidence interval as follows:

Accept H, if and only if, the postulated value po is a member of the level

(i-a) confidence interval [ t - a, + a] where a is a function of (1 - a)

and po. Thus, if a likelihood ratio test is considered, by properly choowing

the threshold To, one can associate the test with the confidence interval.

However, since the same intervai is used for every po there actually is

generated a family of level a tests with parameter O. Conversely, fami-

lies of tests can generate confidence bounds and intervals. Let |6(X,'O)j

be a family of tests such that 6(X,po) is a test of level of significance a for

testing H: 0 = 1o for each uoeG where 9cR and where 6(X,O) denotes

the critical function of a test. For fixed z, define the subset C(z) of 0 by

C(z) = '0:6(z,-) =o

This is just the set of all O that would be accepted if X=z is observed and

the given family of tests is used. Suppose that C(z) is of the form

<a(z),oo) n 0 for each z, where < indicates that the point a(z) may or

may not be in the indicated ray. Then, a(z) is a lower confidence bound

of level (1 - a) for . This is true since

Prob. {a(X) .,= 2! Pro6. 10 E C(2)1 = Prob. J6(X.'G) -0
1- Prob.6(zi ) 1 1 - a

Similarly, if C(z) is of the form <a(z),6(z)> n 0 for each z, then

[(z),b(z)] is a level (1 - a) confidence interval for I. Also, if C(z) is of
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the form (-.e,b (x)> n 0 for each x. then b (z) Is an upper confidence

bound of level (1 - ax) for,#i. In fact, both confidence bounds and intervals

can be considered as random subsets of the parameter space. The true

parameter value is included in these subsets with probability at least

Thea) above discussion demonstrated a complete duality between

confidence intervals and hypothesis testings and also provides the

motivation for casting the hypothesis testing problem as an estimation
problem.

4.5 Detection of Unknown Constant Signals in Bounded Noise

The problem of detecting known constant signals in bounded noise

has been discussed in the previous parts of this chapter. When the bound

on the noise quantity is a known constant, a sequential procedure which

leads to a trival solution to the detection problem was considered. On

the other hand, when the bound is a random variable, this sequential pro-

cedure becomes a random test. By imposing some statistical assump-

tion, e.g. known distribution, on the bound and also on the noise, one can

then describe some statistical properties of this random test. In particu.-

lar, the first two moments, or even the probability density functions, of

the false-alarm rate and the power can be obtained.

In this section, a similar problem will be considered. However, the

signal strength will be assumed to be ulnknown. To solve this detection

problem, one may consider either of the following two approaches: (1)

Formulate performance of the test procedure as a function of the signal
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strength and then optimize, in some sense, the performance with respect

to the signal strength. (2) Cast the detection problem as an estimation

problem. In the last section, duality between hypothesis testings and

confidence regions has been discussed. It was shown that the detection

'- of an unknown constant signal can be considered as an estimation of the

mean of the observation data.

Now the hypothesis testing problem given in Eq. (1) is considered,

where s is unknown and 2-02, for any i. As discussed in Section 4.4,

this problem can be formulated as follows:

Il:, 3= 0
K 1 : i 0

where "O=EXj I and, of course, we have assumed that E NBI=0 for any i.

One of the easiest ways to estimate the mean of the observation data is to

consider the sample mean, S=-- M X. However, we now proceed

rather differently as follows:

- Let =s: aq-Bszxz 1 +B and take intersections of

" G's for i =1,2,..., and define

M. i-.-

It is clear that the true value of the mean of the i 's should lie inside IM,

for each M. In this section, we consider the estimate of thd mean to be a

set rather than a single point. Thus every point in IM is an estimate here.

If a set function IM is defined for the measure of I as follows:

m =(IM) = length of I,

then, obviously, m is a monotone nonincreasing function of M. Now, if
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we assume that q.-GjiEo for any tij, then

JimJ

and thus the true value of the mean evolves in the limit. Therefore,

based on these arguments, one can solve the detection problem as fol-

lows:

1. If j!B, stop and decide K

2. If xjkAB , obtain G andIi.

3. When 14ec stop. If X D OI, decide H, otherwise decide K. Here c

is a small constant which is properly chosen so that the sequen-

tial procedure can be truncated at some finite number of sam-

ples.

The only possibility of making wrong decisions in this procedure is to

decide H while K is true, i.e., the false-alarm. The signal strength and

the choice of c clearly affect this possibility. Again, the assumption of

constant bound on the noise quantity leads to a singular solution.

Another reason for this result is that the sequential procedure discussed

here does not utilize any statistical information, which in. some practical

situations may not be easy to obtain, and thus does not involve any sta-

tistical procedure. One disadvantage associated with this sequential pro-

cedure is that the number of samples required to terminate the test may

be too large. However, an obvious advantage here is the computational

simplicity involved in implementing this procedure.

|. . ~ ~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - ~ --- ~ - -- ~ - - " ---
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4.6 Conclusions

In this chapter, detection of a constant signal in bounded noise has

- been considered. Both the known signal and unknown signal cases are

addressed. In the former, if the bound is a known constant, the solution

is singular, namely, both the false-alarm rate and the probability of miss

are zero. To make the problem more realistic, we considered noise with a

random bound; then a random test is obtained. Some statistical proper-

ties of the performance parameters, e.g. the false-alarm rate and the

power, are obtained for several examples with presumed assumptions on

the distributions of the noise and the bound. As can be expected, the

probability of error of the test is dependent on the tail property of the

noise distribution and, of course, the accuracy of the presumed bound on

the noise magnitude. In contrast to the SPRT, the test procedure dis-

cussed in this chapter requires very little statistical information on the

noise and involves less computational complexity, although it may be ter-

minated with a larger sample size. Finally, detection of an unknown sig-

nal in bounded noise is considered as an estimation problem. The test

_ procedure discussed in Section 4.5 is rather different from the usual

approaches in the sense that, at each time, a set of estimates instead of a

single estimate is obtained. Unfortunately, performance evaluation of

this procedure is not clear. More complete results may be obtained in

the future.
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CHAP=E 5

A SET-THEOR~l1C APPROACH TO DETECTION PROBIZMS

5. 1 IntroducUan

In the literature, detection problems have almost always been dis-

cussed by the formulations of statistical inference. Statistical models

are used to describe the noise or the noise and the signal. These formula-

tions usually require some presumed statistical information which may

not be available precisely. This chapter considers the detection problem

from a rather different point of view. Set-theoretic formulations, instead

of statistical formulations, are employed to describe the input model.

This approach may be useful in detecting the failure of dynamical sys-

tems, where problems usually occur when the components of the system

deviate from the nominal ones [i1] - [3].

The problem addressed here can be considered as a generalization of

the one discussed in Section 4.5 of the last chapter, where detection of an

unknown signal in bounded noise is considered. It is assumed here that

the signal -is an unknown constant vector. The noise sequence is con-

strained by a compact set in Rb . The detection problem is solved by

estimating the signal first. Then, based on the estimate of the signal,

decisions are made as to whether or not the signal is present. The pro-

cedure. can be explained briefly as follows: at each observation, a set

which is compatible with the constraint and 'the observation data is

obtained. The estimate of the signal based on each single observation is

thus a set rather than a single element in the ic-dimensional vector

space. When multiple observations are taken, intersection of these sets

-105-
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is considered as the set of estimates. Then, under some conditions, this

set will eventually converge to a point which is the signal to be estimated.

The decision of whether a signal is absent clearly depends on whether this

point is located at the origin.

5.2 A Detection Problem

Given an observation sequence Jzd, one is required to decide, subject

to some constraint, whether or not an unknown constant vector-signal is

present. This problem can be formulated as the usual hypothesis testing

problem as follows:

H:x, =n j
K:xtL :ufl t=123(1

where x, x and n are k -vectors. Also n is a random sequence constrained

by the following relation

N est (2)

where Si is a compact set in R'. In accordance with the discussion in

Sections 4.4 and 4.5 of the previous chapter, this detection problem will

be cast as an estimation problem here. The estimates of the signal dis-

cussed here will be a set rather than a single vector In the k-dimensional

vector space. Thus the solution of the detection problem of Eq.(1) is

equivalent to finding a set O in Rh with Ch being compatible with ]qs.(1)

and (2). Note that every element in (2 is an estimate of the signal a

To find the set O1 is conceptually straightforward. From each obser-

*vation, a set compatible with Eqs.(1) and (2) is obtained. Every element

in this set is thus an estimate based on this observation. After i
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observations are made, the set of estimates is simply the intersection of

these sets obtained at each observation. Hence the set 14 can be

expressed as

( o sj (3)

Obviously, the sequence of sets |ll] is a monotone non-increasing

sequence, namely

Under some specific assumptions, this sequence will converge to a point.

The decision of whether or not the signal is present then depends on

where this point is located in the Rh. Similar to the results obtained in

the previous chapter, the solution to this detection problem is singular

due to the set-theoretic assumptions used here.

Unfortunately, in general, formulations of the sets Ch are not compu-

tationally simple. Suppose that, for example, the constraint set St is an

intersection of two half spaces. Then at each time instant, the set O6

defined in Eq.(3) Is a polytope. Formulation of a polytope is usually a

numerically complicated task. One possibility to avoid this difficulty is to

define a set which can be more easily formulated and which bounds (k

"tightly" (of course, the word "tightly" has to be precisely defined). A

good candidate for the bounding set in this case will be a k-dimensional

ellipsoid which can be formulated in terms of quadratic equations. Note,

t owevr, that wien the boundin vet t used to proceed with the eutima-

tion procedure, there may exit a non-empty subset of this bounding set

that contains elements which are not compatible with the constraints and

the observed data. Thus It is no longer true that every element of the set
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Is an estimate. Furthermore, when only a finite number of observations

is used, decisions based on this set of estimate may not be correct.

Hence false-alarms and misses will occur.

.3 Detection of Constant Signals in Bounded k-Variate Nimse

The detection problem given in Eq.(1) is considered here again. Now,

the noise sequence is subject to the following constraint

Under H, Eq. (4) implies that

!' AC 1 (5)

Under K. it becomes

~(14 - s)r (N. -) S I 6

After some algebraic manipulations, Eq. (6) becomes

(s _ 90)" Pi-I (8 _ 36) T . (7)

where

= Pi A = 1k

The Eq. (7) stands for a k-dimensional ellipsoid centered at s. In

fact, it is a k-dimensional spheroid since Pt is an identity matrix. If one

takes multiple observations, each observation would result in a k-

dimensional ellipsoid as given by Eq. (7). Thus, after taking M observa-

tions, the set of estimates of the signal is the intersection of all these

:.-. ellipsoids, and th6 geometric center should be a good estimate of a, when

a single estimate is required. However, the intersection of ellipsoids is

very difficult to formulate; hence its geometric center becomes a fuzzy

concept. A possible way to get around this problem is to consider an

4 /

.4
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ellipsoid which "tightly" bounds the Intersection. A "tightly bounding I
ellipsoid" is defined as follows [4]

Definition : An ellipsoid E which bounds a set S is said to be tight if

E a E' aS implies that E' = E, for any subset E' of E.

Nevertheless, this definition only defines a "tightly" bounding ellipsoid in

a certain direction. There are infinitely many "tightly" bounding ellip-

soids. In order to obtain an efficient procedure, these ellipsoids should

be chosen in some optimal way.

Let ei I be a sequence of optimal bounding ellipsoids and S be the

sets specified by Eq. (6). then,

E_, - is (a- s, (i-1))" Pj_ (s - s6-) (8)
and

s,= Is: (x _=)T (; _.)! I
An ellipsoid which "tightly" bounds the intersection of E and Sj is formu-

lated as follows

E= z: (9 - c)r '_ (s - se) + p (zi - z)" (ri - s)! 1 + A

where 0 pi < . After some algebraic manipulations, one can show that

E a : (9"- (z ) -, (=s6,: ()

where

QPuP21 + P,J4x

16 = i2 10 u(-i) + P, z3]

and

= 1 + Pt - (a. (-) - F) Pt_-1 1 Q1 (i-I) - ;)

Clearly, the parameter pi determines the orientation (and even the

-"............'.../ ... ;" ..-.-- '.- -i ." ' . -.--. ... . . . _. .o• .. . . .
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size) of the bounding ellipsoid. Finding a sequence of optimal bounding

ellipsoids JA is equivalent to finding a sequence of optimal JA . One

can, for example, consider an ellipsoid with minimum volume as an

optimal one. It is known that the volume of an ellipsoid formulated by Eq.

(9) is linearly proportional to the determinant of the matrix Q-/ 6. Thus

minimizing the determinant with respect to p will result in an optimal

bounding ellipsoid. The problem of finding optimal bounding ellipsoids

with minimum volumes has been examined in the literature [5] and thus

will not be repeated here. It should be noted here that both E,.-1 and St

contain the true signal vector. Therefore the intersection of them is not

an empty set. Furthermore, it can be shown that 6 is a positive real

number; thus the ellipsoid described by Eq. (9) is non-degenerate. Fig.
7..

5.A shows the bounding ellipsoid which contains the intersection of the

observation set and the previous ellipsoid.

Now, a sequential algorithm for solving the detection problem of Eq.

(1) can be developed in the following:

(i) Start with a very large spheroid centered at the origin, namely

Eo= s:8 T Pj aS 1

where

PV a1i

and a is a very large real number.

(ii) Successively take observations, compute ztz for every 1. if one

ever obtains

4' z. > I for anyi



Il-
Fig. 5A An llustration of The Boundinga Ellipsoid A

and The Observation Set Si
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decide K. Otherwise, calculate an optimal bounding ellipsoid
'.q

based on the current observation and the previous ellipsoid.

(iii) As the number of observation increases, s. (i) should become

closer and closer to a. Therefore, decide H if s0 (i) -. 0, other-

* .wise, decide K.

However, use of the decision criteria, Step (iii), may require an infinite

number of samples. In reality, the procedure has to be stopped at some

.. finite number of samples. To make the algorithm more practical, one

may choose a neighborhood of the origin 0 such that if s (i) E 0 and if

Ch 10 H will be accepted.

&.4 Performance Evaluation

Since the sequential estimation-detection algorithm discussed in this

chapter is significantly different from the conventional ones, its perfor-

mance will also be evaluated from a rather different point of view. Notice

that the set Ej defined in Eq. (8) is different from the set of estimates fl

as specified in Eq. (3). As a matter of fact, it is usually true that the

difference set of Ej and OI is a non-empty set. Let Di _F -Ch, then the

elements of Di are not estimates that are compatible with the constraint

set and the observation data. To evaluate the performance of this detec-

tion algorithm, we proceed as follows:

Let AD(i) and s(i) be the set functions for the measures of Dt and

£, respectively. Obviously,

lim &D( ) 0  and lim &(i) 0
[-.!.4
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Based on the sequential algorithm here, the false-alarm occurs when

A 0 1 0 but s6(i) E 0 at the stop. Also, the miss occurs when F 10.

and n.(i) E 0 at the stop. To be more specific, one should define a dis-

tance measure d(z 1.qz) (which may be the Euclidean norm) of two vectors

k and ua on the space R k.Then a neighborhood of the origin 0 is defined

by properly choosing a small positive real number c such that

0 = is: d(,O) < .

The decision criteria now is re-stated below

(a) If z 7 z4 > I for some i, decide K.

(b) If A 101, decideK.

(c) If E 0 O while d(1 (,),O) > c, decide K. On the other hand, if

Ej 10O and d(sc (i),O) < c, decide H.

5.5 Concludifg Remrks

A detection problem using no statistical assumptions on the input

model has been discussed in this chapter. The only assumption imposed

here is that the noise is constrained by a compact set in Rk. Due to this

set-theoretic assumption, the solution thus obtained is rather different.

The detection scheme devised here is essentially a combination of esti-

mation and detection with a sequential nature. However, since, it is

required to estimate the signal, the discrimination between H, the

hypothesis, and K, the alternative, may be insignificant when a weak Sig-

nal is encountered.

As for evaluating the performance of this scheme, set functions are

2.2
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Introduced. Unfortunately, due to the computational difficulties involved

in formulating intersections of compact sets. the result presented here is

somewhat preliminary. Finally, it should be stressed here that finding a

sequence of optimal bounding ellipsoids, Section 5.3, yields a facility for

evaluating Lhe information, contained in each observation set, which is

pertinent to the updating of the estimates. This reduces the computa-

Lional complexity involved in the estimation procedure.
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CHLAPTER 8

CONCLUSIONS

6.1 Summary of! Results

The method of series expansions is employed in this report to

obtain approximations to the test statistics of some optimal detectors.

The Edgeworth series is used to devise an approximate locally optimalI

detection scheme. Convergence properties are addressed here. Under a

certain condition, the Tauberian condition, this approximation converges

to the locally optimal statistic. However, it is shown that, even if this

condition is not satisfied, the approximate scheme may still provide "rea-

sonably good" performance, e.g. the ARE being greater than unity as

compared to the linear detector. The other achievement of this study

in the application of series expansions is an investigation of the

effect of the noise skewness on the detector performance. Asymptotic

relations between the performance and the noise skewness are obtained

for both the sample mean detector and the sign detector. The sign

detector is shown to be less sensitive than the sample mean detector to

the noise skewness, an intuitively reasonable result. Furthermore, a

modification of the sample mean detector is proposed. Performance of

this modified scheme in skewed noise is asymptotically equivalent to that

* of the sample mean detector in Gaussian noise.

K Te second part of this report is concerned with signal detec-

tion in bounded noise. When the signal is assumed to be a known con-

stant, a sequential solution is obtained. By assuming that the bound is a

random variable, a random test results. Evaluation of this test thus



requires the statistical moments of Lhe false-alarm rate and power. On

the other hand, if the signal is an unknown constant, an estimation-

detection procedure is proposed. Unfortunately, performance evaluation

of the procedure is still an unresolved question. Finally, a set-theoretic

formulation of a vector-signal detection problem is discussed. Again,

estimates of the signal are obtained to make decisions as to whether or

not the signal is present. Since no statistical assumptions are imposed

here, performance can not be evaluated conventionally.

6.2 Future Research

The problem of modifying the sample mean detector (or the linear

detector) using methods of series expansions has been addressed here.

More sophisticated series expansions may be considered to achieve

better approximations and convergence results. As for examining the

noise skewness on detector performance, the analysis here is based on

large sample size and small skewness assumptions. Other methods may

be used to remove these two assumptions.

The performance evaluation for signal detection in bbunded noise is

not yet well-resolved. Furthermore, the number of samples required to

termnate the sequential procedure may be large. Some revision of this

scheme will be an interesting problem. Finally, it is the author'sbelief

that the set-theoretic formulations discussed in Chapter .5 deserves more

consideration. Failure detection of dynamical systems may be one of the

applications.
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