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—T>The second part is concerned with signal detection in bounded
noise. Both the known signal case and the unknown signal case
are studied. An algorithm of a sequential nature is devised.
Chapters 2 and 3 are devoted to the first part of the worﬁ?
To begin, an approximate locally optimal scheme, which can be
considered as a modified linear detector, is discussed. This
scheme evolves from a use of the Edgeworth series as a repre-
sentation for the noise density function. Convergence of the
approximate locally optimal statistic to the parent statistic
is also discussed. Furthermore, the Cornish-Fisher inverse
expansion is employed to investigate the effect of noise
skewness on the sample mean detector and the sign detector. An
asymptotic relation between the performance and the skewness
measure is given.. The sign detector is shown to be less ol
sensitive than the sample mean detector to the noise skewness. LA
A modified sample mean detector is devised. ™
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Chapters 4 and 5 address signal detection in bounded noise.
When both the signal and the bound on the noise magnitude are
known constants, the sequential procedure will lead to a '
singular solution, if it terminates. A more practical way to gq

|

consider this problem is to assume a random bound. Then a test e

which involves randomness in its performance measures (the ﬁj
false-alarm rate, the power and the error probability) will be : g
encountered. When the signal is unknown, the problem is cast Ei

as an estimation problem. The estimate of the signal strength
is used to decide whether the signal is present. A generaliza-
tion of the problem is considered in Chapter 5 where a set-
theoretic formulation is used.
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ABSTRACT

In this report, signal detection in non-Gaussian noise is
considered. This work can be divided roughly into two parts.
The essential purpose of the first part is to investigate the
existence and design of some sub-optimal detectors which are
modifications of the sample mean detector. The method used
here is based on orthogonal series expansions in termsof the
Gaussian distribution and the moments of the noise distribution.
The second part is concerned with signal detection in bounded
noise. Both the known signal case and the unknown signal case
are studied. An algorithm of a sequential nature is devised.

Chapters 2 and 3 are devoted to the first part of the work.
To begin, an approximate locally optimal scheme, which can be
considered as a modified linear detector, is discussed. This
scheme evolves from a use of the Edgeworth series as a represent-
ation for the noise density function. Convergence of the approx-
imate locally optimal statistic to the parent statistic is also
discussed. Furthermore, the Cornish-Fisher inverse expansion
is employed to investigate the effect of noise skewness on the
sample mean detector and the sign detector. An asymptotic re-
lation between the performance and the skewness measure is given.
The sign detector is shown to be less sensitive than the sample
mean detector to the noise skewness. A modified sample mean
detector is devised.

Chapter 4 and 5 address signal detection in bounded noise.
When both the signal and the bound on the noise magnitude are
known constants, the sequential procedure will lead to a singu-
lar solution, if it terminates. A more practical way to consider this
problem is to assume a random bound. Then a test which involves
randomness in its performance measures (the false-alarm rate,
W the power and the error probability) will be encountered. When e
o the signal is unknown, the problem is cast as an estimation prob-
! lem. The estimate of the signal strength is used to decide
' whether the signal is present. A generalization of this problem
ti is considered in Chapte. 5 where a set-theoretic formulation is
X
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CHAPTER 1
INTRODUCTION

R, EEa

1.1 Motivation
Extraction of signals from a noisy environment has been an impor-

. tant and much studied problem in statistical communication theory. In
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particular, the detection problem of deciding whether or not a signal is

present by taking a sequence of noise contaminated observations has

PORIE NI\ S

been of much interest to cc;mmunication scientists and engineers. Vari-
ous detection schemes have been discussed in a broad body of literature.

In classical detection theory, parametric detection was of much concern W

due to the well developed theory of parametric statistical inference [1].

2 B LA T

The Neyman-Pearson optimal detector and the locally optimal detector
are two canonical examples. However, implementation of these

(parametric) optimal schemes usually requires a fairly complete

1

knowledge of the input model. In practice, this knowledge may not be

k.

available. Also, the performance may be sensitive to the inaccuracy of

the presumed knowledge. Some attention thus has to be diverted to
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other alternatives. P

Data from a number of natural environments show that noise is often

non-Ga_ussian [2]. Nevertheless, due to the Central Limit Theorem, Gaus- ___!

: sian noise is of much interest and, in fact, is the one fo'r which the sim-

v : plest solution can be obtained. In this case, it is well known that the |

E sample mean detector is the Neyman-Pearson optimal detector [3]. :-“

Thus, in most practical situations, modifications of the sample mean
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detector may yield a more satisfactory detector performance. In other
words, these modifications could have 'reasonably good” (or nearly
optimal in some sense) performance for the presumed input model and
could be less sensitive to model deviations. This motivates the first part

of the report.

Motivation for the second part is due to the fact that a precise sta-
tistical model of the noise is difficult to obtain in many practical situa-
tions. Bounds on the magnitude of the noise, in contrast, may be more
easily obtained. One may even argue that, in the real world, there exist
no distributions with infinite support. Hence considerations of bounded
noise should lead to more practical solutions. As a matter of fact, in con-

trol theory, bounded noise has been exploited in the literature for consid-

ering estimation problems [4], [5], [6].

; *
1.2 Report Outline ﬁ
Throughout this report the noise processes are assumed to be ",19

discrete-time processes which may be obtained, for example, from the
sampling of continuous-time processes. In addition, the detection prob-

lems considered here are detection of constant signals in additive noise.

&I
.
ey
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- It should also be noted that all the chapters are complete by themselves
L‘ and can be read in any order. The report is organized as follows:

h Chaﬁter 2 considers series expansions for the test statistics of two
optimal detection schemes, the locally optimal statistic and the sample-
». mean statistic which is Neyman-Pearson optimal for the Gaussian case.

For the former, the Edgeworth series is employed to obtain a general
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representation of the noise density function. The locally optimal statistic
is then evaluated via this representation. Since only a few lower order
moments of the noise are required, the solutions are applicable to a wider
class of noise distributions. The second part of this chepter utilizes the
Cornish-Fisher inverse expansion for a sequence of i.i.d. random vari-
ables. The sensiti'vity of the sample mean detector to the underlying
noise skewness can then be studied. An asymptotic relation between the
performance (false-alarm, power, and probability of error) and the noise

skewness measure is obtained.

The Cornish-Fisher expansion is used again in Chapter 3 for further
investigation of the effect of noise skewness on detector performance. A
modified sample mean detector is proposed whose performance is asymp-
totically indifferent to noise skewness. Simulation results are provided to
verify the analysis. A preliminary case study of a natural noise environ-

ment is also given here.

The latter part of this report discusses the detection problem
from a rather different point of view. Instead of noise statistics, bounds
for the noise magnitude are assumed to be known in Chapter 4. To make
the problem more practical, the bound is assumed to be a random vari-
able with some known distribution. Then a sequential procedure is dis-
cussed. Detection of an unknown signal in bounded .noise is also
addressed in this chapter. The problem is cast as an estimation problem

for the signal.

Chapter 5 is essentially concerned with a generalized version of the

problem discussed in the second part of Chapter 4. A set-theoretic for-
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mulation of the problem is used here to consider a “multi-channel"” detec-
tion problem. The results presented in this chapter are somewhat prel-
iminary due to the difficulty involved in performance evaluation. Chapter

8 concludes this report and discusses some possibilities for future

research. o
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CHAPTER 2
ON THE APPLICATION OF SERIES EXPANSIONS TO DETECTION PROBLEMS

-

| 2.1 Introduction

The problem of using series expansions to represent an unknown
function in terms of a known function has been of much interest to scien-

tists and engineers. In the literature of statistics, seeking for a general

LRt un e 4 B dhd B A pos e
““,. i AR R

representation of probability distribution functions or density functions

has been an extensively studied problem, [1] - [4]. A representation

AP

based on series expansions in terms of the moments is particularly
relevant when sequences of independent and identically distributed
(i.i.d.) random variables are considered. One of the most common series
expansions used to represent an unknown probability density function by ..
a known density function is the Gram-Charlier series. The Gram-Charlier :
series is an expansion in a series of orthogonal polynomials, i.e., the
Tchebycheff-Hermite polynomials, which are derived from the normal , |
density function. Unfortunately, straightforward applications of the

Gram-Charlier series do not usually lead to satisfactory solutions. It is

well known in the literature that regrouping of the Gram-Charlier series, - '
e.g. the Edgeworth series [5],[6], will yield better results; although gen-

eralization of the Gram-Charlier series is also a possible way for irprov-

Y SRE

ing the result [7].
In the context of statistical communications, the method of series

expansions has also been used to evaluate approximately the probability

of errors in radar detection [8], and to estimate error probabilities in

.
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digital communication systems [8) - [12]. This method is employed in
this chapter to consider detection problems, although for somewhat
different usages. To begin with, it is used here to obtain a general
representation for the noise density function. Then the locally optimum
detection scheme is devised based on this representation. The essential
purpose of this approach is to reduce the effect of small mode] deviations
on the locally optimal detectors. This is because series representation
only requires a knowledge of the moments of the noise distribution. Thus
when a finite number of terms of the series are used, the result can be
expected to hold approximately for a certain family of noise distribu-

tions.

The other utility of the series expansions in this chapter is the appli-
cation of the Cornish-Fisher inverse expansion [13] for a random variable
in terms of its moments. This expansion is used to obtain a representa-
tion for a test statistic, the sé.mple mean of a sequence of i.i.d. random
variables. In this way, a study relating the performance of the sample

mean detector to the underlying noise skewness can be facilitated.

This chapter is organized as follows : the nexi section discusses
derivations of the Tchebychefl-Hermite polynomials and the Gram-
Charlier series. Section 2.3 addresses some difficulties associated with
the Gram-Charlier series and presents a regrouped version of the Gram-
Charlier series, namely, the Edgeworth series. Section'2.4 considers a
detection scheme using an approximate locally optimal statistic which is
obtained by using the Edgeworth series representation for the noise den-

sity function. Section 2.5 utilizes the Cornish-Fisher inversion series for

S Y
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1
the sample mean of a sequence of i.i.d. random variables to study the ,
eflect of noise skewness on the sample mean detector. Section 2.6 con-

cludes this chapter.

2.2 Tchebycheff-Hermite Polynomials and Gram-Charlies Series

Derivations of the Gram-Charlier series can be found in many stan-
dard statistics texts (see e.g. [5].[8]). For completeness of discussion,
one which follows mostly from [6] is given here. The derivation will start
with the definition of the Tchebychefl-Hermite polynomials. Consider a

Gaussian density function f o(z) given by

Jolz) = «zim,- g =% 2 (1)

Taking successive derivatives of f(z) with respect to z yields

f'o (2)=-— :Tfo(z)

£ (2) = (5= 1) fofa) }‘?5;

3 vt

1689 = (~Z5+ g a) 5

4 2

164(=z) = (55— 855+ 9)f of=) 5

1 80z) = (- Z+ 105 15531 o(z)

etc. The Tchebychefl-Hermite polynomial is defined by the following li'j:-:‘

' equation ‘
N —__‘1
3 £d™(z) = (=)0 Hn (@) ole) "
E-, Thus
9 Holz) = 1 4
_ - ] =
{ Hl(z) - 0_ N "“
t~ o
i __!
r_' R
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Hg(z) = :2—2'— i *

S 3
Hs(z) = %— 102+ 15;—

o

and so on. Now, from Eq. (1),

& _
Jolz—t) = folz)e®” %

then, by Taylor's series expansion, we have
soe-t) = £ e P@)
i= :

- g
=2 t.—‘H,-(z)fo(z)
i=0 2! .
Thus, a general formula for the Tchebychefl-Hermite polynomials is

_ nl2] gn-2 nl4] zn-4 _ nl6] gn-8

-zt
H’l(z) - an 2.1! a'l_a 22‘2! on_4 23.3! on_o + ..... (2)
where '
nlrl dn(n-1)(n-2)...(n—r+1) r<n

Apparently, the polynomials are of degree n in z with the coefficient of
z™ being unity. Also, they are orthogonal over the interval (= , =) with
respect to the weighting function fo(z), namely

J_1 (=) Hn (z) Hp (2)dz = épmn 1! (3)
where :
=0 if m#n
Smn =1 ifm=n
is the Kronecker delta function. Furthermore, successive Tchebycheft-

Hermite polynomials satisly the following relations :

A




j %Hn(z) = Rtipy(z) (4)
‘ Ha(2) = ZHoy(z) + (n=1)Haa(z) = 0 (5)

Now, the probability density function f (z) of a random variable (with

zero mean and known variance 0%) can be represented in terms of the
Tchebychefl-Hermite polynomials, i. e.

I (z)= i)Zlo ciHi(z)f olz) (6)
This is the so-called Gram-Charlier series. Due to the orthogonal pro-
perty of the polynomials, Eq. (3), the coefficients ¢, in Eq. (6) can be

determined by multiplying both sides of Eq. (8) by H,(z) and integrating

the products from —« to «=. Hence

o = A [ 1 @H () ) |
g Thus N
:

C°=l
c;=0

02=0 -.4
°5= 5>

m
C‘= 514-(—0: -3)
Ca = lJm5 ma\
S

T 120" o° PR

etc., where the m;’'s are the i -th central moments of f(z). In._some

-10

situations, the coefficients ¢, may be better represented in terms of the

cumulants. Thus,

Ca= —2_
37 82

Ce= 2:; (8)

etk mad: re e e J - alcmihcndh, e et ol . el ccnleeall. i
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X etc.. Then the series expansion for f (z) is given by

7@ =folz)[ 1+ %ﬂn,(z) + By H(z)+...... ]

& 24" oA
=fo(z)[ 1+ %—x;—zﬁs(z) + é:—éfh(z) +
——Hléo x;z s(z) + ..... ] (9)

It is known that a sufficient condition for this series to be convergent (at

every continuity point of f(z)) is [5]

[}vau<~ (10) fﬂ

Obviously, an infinite series is somewhat impractical. It has to be trun-

cated at some point. However, truncation of the series will result in some

difficulties. The series may not converge fast enough so that the trun-
cated series will be a satisfactory representation of f (z). Furthermore,
the order of magnitude of successive terms of the series is not neces-
sarily monotone decreasing. These problems will be discussed in more

detail in the next section.

2.3 The Edgeworth Series

As discussed in the previous section, the Gram-Charlier series, Eq.
(8), does not necessarily provide a good approximation to the probability
density function. Generally speaking, a truncated versic_m of the Gram-
Charlier series can be a good approximation only when the parent proba-

bility density function is nearly Gaussian. A well known problem is that

the order of magnitude of the terms in the Gram-Charlier series is not




...............
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steadily decreasing. To be more specific, suppose, for example, that one "‘i
wants to represent the probability density function of the sample mean of fé'.;:

a sequence of i.i.d. random variables {X;{ in terms of the Gaussian den-
sity function. Without loss of generality, it is assumed here that the dis- "»‘i

tribution of {X;{ has zero mean and unity variance. Now, let
1 M
Sy =+ ;
M Mi§1 &
From Eq. (9), the p. d. 1. of Sy can be represented as follows

Is(s) = fols) [ 1+ 1wy Hyls) + Lox'g Hy(s) + —L—x's He(s)

6 24 120
+ ;—év(x‘. + 10c'3%) He(s) + ..... ] (11)
where
K's= %
K'y = %
K's = ans/z
K'g = %—

and the «'; are the cumulants of Sy while the x; are the cumulants of X;.

In fact, if Eq. (11) is to be written as follows

Is(s) = 'i-'}ofo(S) Cp Hy(s) (12)

then a general formula for ¢, is [5]

_ G M +a, M2+ - 4oy, M/
- T
where [r/3] denotes the greatest integer < /3, and the a,; are polyno-

cy (13)

mials in k. The a,; are independent of }. Also, as M tends to infinity,

SRR - POt
!
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c, = O ( MlIr/31r/2) (14)

Thus, the order of magnitude of the terms of the Gram-Charlier
series is clearly not steadily decreasing as r increases. The following
table illustrates the order of magnitude in terms of powers of M that the

coeflicients ¢, involve.

Order of c, r
M-l/ 2 3
M7 46
M-V? 5,79
M-* 8,10,12
M2 11,13,15

Now, suppose that a partial sum of the series, Eq. (12), is to be calculated
such that all terms of magnitude order less than M~! are truncated.
Then, it can be seen from the table that all terms up to r =8 should be
considered. Thus, the moments up to sixth order will be needed. How-
ever. a careful examination of Eqs. (12) and (13) reveals that the
moments of order higher than the fourth really do not involve terms of
magnitude order greater than AM~!. Therefore, the requirement of the
moments up to sixth order is unnecessary if all terms of order less than
M~? are to be neglected. Similarly, if one proceeds further to include
terms containing the factors M~%2, M~2, etc., the same redundancy will

be encountered.

From the above discussion, it is clear that a regrouping of terms in
the Gram-Charlier series will improve the efficiency of the approximation.

TP T
e TR
Y SR

The Edgeworth series, which is a regrouped version of the Gram-Charlier

series, actually provides more satisfactory solutions. A general form of
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the Edgeworth series expansion for an unknown density function in terms
of its moments and the normal density function is given in the following
J(x)=folz) [ 1 + cyHy(z) + c Hy(z) + ceHg(z) +

coHs(z) + CoHa(z) + coHg(Z) + ..... ] (15)
where the c,'s are given in Eq.(8). As can be seen from Eq. (15), the

order of terms in the Edgeworth series follows directly those given in the
table of the last page. One can see that this series gives a straightfor-
ward expansion in powers of M~*/2 . Also, calculation of the term§ in the
Edgeworth series up to a certain order of magx;itude does not require a
knowledge of any moments or cumulants that are not really necessary.
Thus the redundancy involved in the Gram-Charlier series discussed pre-
viously is eliminated. Furthermore, terms of the Edgeworih series should
be taken by groups of the same magnitude order; thus any partial sum of
this series is an asymptotic expansion of the parent density function in
powers of M~/2 with a remainder term of the same order as the first
term neglected. More complete discussions on the derivation of the

Edgeworth series can be found in [5],[8].

2.4 Edgeworth Series Expansion for Locally Optimum Statistics

In detection problems, optimal detection schemes usually require a
large amount of knowledge concerning the noise environment. Alse, it is
not unusual that these optimal schemes are complicated and not easy to
implement. Furthermore, the performance may be sensitive to the accu-
racy of the presumed noise statistics. Thus alternatives that involve less

complexity and less sensitivity are always desirable. The locally optimal

{
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detectors are known to have maximum rate of increase in the probability
of detection when the signal strength is equal to zero. Hence, they are
useful schemes when the signal strength is small. However, their imple-
mentation require a complete knowledge of the underlying noise density
function and the test statistics become complicated or even intractable
very easily. In applications where the noise density function is only
known to be nearly Gaussian (or, specifically, it satisfies Eq. (10)), the
Edgeworth series expansion discussed in the previous section may be
used as a general representation of the noise density function. Then the
locally optimum test statistics can be obtained based on this representa-
tion of the density function. The result thus obtained is expected to be
less sensitive to the deviations of noise statistics as only the lower-order
moments of the noise distribution are required to obtain this representa-
tion.

Suppose that the noise distribution has zero mean and unity variance
(a generalization of the [ollowing discussion with assumption of an arbi-
trary variance is trivial). Now consider a series representation, g(z), up

to a second order approximation of the noise density function f (z) such

that
| f(z)=-g(z) ]| < -g— for almost all £ € (—co,00) ,
where C is a constant. Then, from Eq. (15), the noise density function can
be représent.ed by
g(z) = folz)[ 1+ calig(z) + cH(x) + coHg(z) ] (16)
where

1oz) = et
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is the standard normal density function. Now the derivative of g(z) is
equal to
9'(z) =S 'o(z) [ 1 + caHs(z) + c(H(z) + cele(z) ] + 17)
Jo(z) [ 3csHz(z) + 4cHs(z) + BceHs(z) ]

If it is further assumed that the noise density function is symmetric with

B ‘7‘ i ‘.".-‘.*-'H.‘f-':'"".-.",“ti v’f“.' R

AL S A T . PR
f
.
'1
o
v
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respect to the origin, then c3 = 0 and Eqgs. (16) and (17) become

g(z) =So(z) [ 1 + c H(z) + coHe(z) ] (18)
and

g'(z) =S'0(z) [ 1+ cHylz) + ceHe(z) ] + (19)
Jo(z) [4c4Hs(z) + BceHy(z) ]
Now the locally optimal statistic can be approximated by

4c,Hs(z) + 6cgHs(x)

T(z) = - g_'E.)_-_- z - . 20
=)=-9@ 1+ C4Hq(z) + CoHolT) (20) %
The second term in Eq. (20) can be regarded as a correction term due to .,

the deviation from the Gaussian model. The performance of this non-

linear detection scheme is evaluated here via the asymptotic relative ;l-j-:
efficiency ( ARE ) with respect to the linear detector. The ARE of this
approximated locally optimal detector comparing to the linear detector

is, [14],

U (ETENs @]
Var [TCX)] (21)
Since T(z) is an odd function in z, Eq. (20), and it is assumed that f(z) is

AREqq4,44' =

= symmetric with respect to the origin, thus £[7(z)] = 0. Furthermore, if
N one assumes that
4 nyg- z® f(x)=0 for any integern, (22)

then

. N
[P PP Y - rmbiand a
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U T @)l
AREatodta = == T )]

On the other hand, it can be shown easily that the ARE of the locally

optimal detector as compared to the linear detector is given by

L AREM.M = j: %E))—i‘t R
k if Eq. (22) holds.

From Eq. (20), it is trivial to see that

M g

or? # Yar[T(X)] = 1 — 2E[Xn(X)] + E[h¥(X)]

where

4c ,Ha(z) + BcgHy(z)
1+ cH(z) + coHg(x)

h(X)=

By the Central Limit Theorem, it can be shown that (Appendix 2.A)

_ 1

AREqioq 1d - ,02'2 ' (23)

therefore,

ARE >1 e op <1 & E[R¥X)] <2E[Xh(X)] L

Note that

% . E X3 = [ h3a)f (=)dz =2 [ h3()f (2)dz )
& and Ty
3 E R0} = [ ah(a)f (2)dz =2 [ sh(a)f (2)as R
b also, f(z) is a p.d.f. and is thus non-negative for z € (=o0,). Hence a
;7 sufficient condition for the ARE 4 14 to be greater than unity is -
o 2zh(z) > h¥(z) V' z€(0, ) (24) -
L‘ However, it is not necessarily true that Eq. (24) holds. Detailed discus- L
. |
E';' sions on Eq. (24) are given in Appendix 2.B. It can be expected ,neverthe- —
less, that when the noise model is nearly Gaussian, the AREgq,u4 is
4 ~ !
™ —
F 1
[ i U T
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greater than unity.

Finally, it should be noted that, in general, it is not necessarily true
that g'(z), Eq. (17), will converge to f'(z) even if g(z) converges to f (z).
A sufficient condition to be satisfied is the Tauberian condition [15] which
requires that f'(z) be monotone nondecreasing. Unfortunately, for some
density functions, this condition may not be satisfied. However, practi-
cally speaking, convergence is an asymptotic property which does not
usually provide enough information as to how well the series expansion
approximates the parent function, especially when only a finite number
(or even a small number) of terms are used. In other words, an essential
issue is whether or not the expansion yields a good approximation to the
parent function. Moreover, in detection problems, it is of more concern
that the resulting detection scheme leads to a good performance meas-
ure, e.g. an ARE greater than unity. Figs. 2.A and 2.B show curves
describing the T(z) given in Eq. (19), together with the test statistics of
the locally optimum and the linear detectors using mixture noise models.
These models are Gaussian slightly contaminated with Laplace noise. The
ARE g4 14 for these two examples are greater than one; although the T'(z)
is a good approximation to the locally optimal statistic only in the neigh-
borhood of the origin. This result provides some positive illustration of

applications of the method discussed here.

2.5 Cornish-Fisher Expansion for Test Statistics

In this section, the Cornish-Fisher expansion of a random variable in

terms of its moments, [13], will be employed for the sample mean of a
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T(z)

=
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Fig. 2.A Locally Optimal Statistics For Mixture Model
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T(z) . .
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Fig. 2B Locally Optimal Statistics For Mixture Model
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sequence of i.i.d. random variables. In detection problems, this sample
mean is known to be the test statistic of the sample mean detector which
is the Neyman-Pearson optimal detector when the underlying noise is
Gaussian. However, when the noise density is not Gaussian due to skew-
ness, the performance of the linear detector may deteriorate. Little
work has been done on relating performance of the sample mean detec-
tor to noise skewness, partly because the conventional skewness measure
[6] does not appear explicitly in the likelihood ratic or the test statistics.
The objective here is to use a series expansion for the test statistic in
terms of its moments such that an explicit relation between the noise
skewness and the performance of the detector can be obtained. In order
to facilitate the study, the underlying noise will be assumed to be only
slightly skewed and nearly Gaussian. This assumption enables us to use
the first few terms of the Cornish- Fisher expansion and obtain a good

approximation to the test statistic.

Now the following canonical binary hypothesis testing problem will be

considered:

Ho: X = N; ._

Hl . X; = Nt + s, s5>0 1.—1,2......M
It is assumed here that, under Hy, the p. d. f. of X; is f(z;) with zero
mean, known variance ¢ and known third-order central moment Ma,
where ug is assumed to be small. Furthermore, the observation sequence
{X;} is supposed to be independent and identically distributed. Now, con-

sider the following test statistic

M
T(X) =X £ 373 %

R WY R
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This T(X) can be written in terms of the Cornish-Fisher expansion,

namely,
: =2 74+ M3 2 + -y
under Hp: T(X) i Z =In (Z2 - 1) + O(M~V?)
and (25)
d TX) = Z-Z+s + L2 (22-1)+ O(HY
unaer H, (X) \/ﬁ Z+s WZ 1) O(M 2)

where Z is a standard normal random variable and O(M~%2) stands for
the terms which converge to zero as fast as M~¥? when M tends to
infinity.

It is clear that, in order to make the problem tractable, the series in
Eq. (25) has to be truncated. Since it has been assumed that ug; is small,
the truncated series will be a good approximation to T(X). Now, define

two random sequences {Yo(M)} and {Y (M)} by

Yo(M) = ~Z—27 + L2 (22 -1)

vH 60°M _
and (26)
Yy (M) = _\/%TZ +s + -6%(22— 1)

Then, it can be shown that {Yo(¥M)} and {Y,(#){ converge to T'(X) almost

surely under Hgy and H, respectively. Hence the performance of the
detector which uses T(X) as the test statistic can be evaluated approxi-
mately via the statistics of {Yo(#){ and {Y,(M){, provided that M is
sufliciently large. '

Let A=uy/60°M and B=o/VH, then Eq. '(26) becomes
Yo(M)=AZ?+BZ ~A and Y,(M)=A2°+ BZ ~A+s. Note that Z is a
standard normal random variable. Thus the probability density functions

of Yy and Y, are given by
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= A= W)R(= Zexpl- L(LWEEy) o
I r(v) 0(——)exp[ —<ﬂﬂi)=u if y= A-fA (27

=0 otherwise )
where
Q) = VB + 4% + aky (28) .
and o
Ty, W) =ty (y-s)

The false-alarm rate a is given by

a= f I vy)dy (29)
where T, is the threshold. From Eq (28), it follows that ~

dQ(y) = 24 Q") (y) dy (30)
Substituting Egs. (27) and (30) into Eq. (29) yields

-

o-£ 243,_ expl -1 B y1a0 +

a1y -
2 -
Sy ¥ 2D mivEreeel-{ G740 ;o
Thus B/ ‘.,;;{
a=o(-Ze- 107 + o Zoe- 127, (31) =Y
Pf; where
: Te 2 QT

Sumlarly. the power B is given by

Q(TO-S)-B\
ZA ’

d
- | 8= ¥(- )8~ (32)

If the skewness is defined as

E ¢=

then, it is obvious that both a and § are dependent upon the noise

UE
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. : B T Q(To-s) . -
E! skewness, £, via the variables >4 24 and YR In particular, 1
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3 o4 1+€z+ pr +3 ¢

Fig. 2.C gives a set of curves which depicts the normalized rate of change

in false-alarm rate, power, and probability of error as functions of the
noise skewness. It is assumed that the underlying noise density, which is
p described by Eq. (27), is positively skewed. One can see that both the
! false-alarm rate and the probability of error are monotone increasing
L functions of the noise skewness £ On the other hand, the power stays
p4 nearly unchanged. This illustrates the performance deterioration of the

sample mean detector when the underlying noise is skewed. A density

function, Eq. (27), with a skewness measure ¢ = 0.8 is shown in Fig. 2.D
together with the corresponding Gaussian density function. For the ini-
tial false-alarm rate a = 10~5, this noise density function corresponds to
a 100% increase in false-alarm rate. Although these two density functions
are hardly distinguishable, from Fig. 2.D, the difference between their
associated false-alarm rates is rather significant. Fig. 2.E plots the
Neyman-Pearson optimal statistics associated with these two noise

models given in Fig. 2.D.
In Eq. (27), by use of the L'Hospital's rule, it can be shown that
lim Ir(w) =g(y)
where

I | -1 —o <y <oo
g(y) = WBXP[ 5 (g_)z] for <y<

and thus
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. - _To . - _To-s
Bo=Cg) end fgh=-=p)

which can also be derived easily from Egs. (31) and (32) by L'Hospital's
rule.

Furthermore, it is interesting to note that the false-alarm rate and

the power are bounded. By observing that

o(z)-d(y) < ¥(z—y) <¥(z+y) < ¥(z) +¥(y), y=0
and

d(z+y) <¥(z~y), ¥y <O
one can show that

Tot+B To-B
W <=5

and
Q(To—-s)+B _Q(To=s)-B
e T

Infact,if To>s-4=s- %‘EI—' the power B8 is upper bounded by 0.5. Note,

however, when the sample size ¥ is large and the skewness measure ¢ is

small, the case T > s—4 is unlikely to happen.

2.6 Conclusions

Two applications of series expansions for detection problems are dis-
cussed in this chapter, the Edgeworth series and the Cornish-Fisher
inverse expansion. For the former, an approximation to the locally
optimum test statistic is evaluated by using the Edgeworth expansion to
represent the noise density function. This approximation is not
guaranteed to converge to the locally optimum statistic, unless the Tau-

berian condition is satisfied. Nevertheless, it is applicable to a certain
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family of noise distributions since only the first lew moments are
required to obtain this approximation. Moreover, the scheme thus dev-
ised may still yield good detector performance. More sophisticated
series expansions may be introduced to achieve better solutions. In the
latter part of this chapter, an application of the Cornish-Fisher expansion
is demonstrated in the study of the effect of noise skewness on the sam-
ple mean detector. The sample mean detector is shown to be sensitive to

the noise skewness.
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Appendix 2.A
Derivation of Equation (23)
The notations used in the following discussion are defined in Section
4. Suppose that the observation sequence is a sequence of i.i.d. random
variables, and that the sample size M is sufficiently large so that the Cen-

tral Limit Theorem can be applied here. Now, define

T(x) £ f) T(z;)

i=]

Then the distribution of T'(x), by the Central Limit Theorem, is approxi-
mately a normal distribution with zero mean and variance M 0%, where
of = Var [T(X;)] .

The threshold, Ty and the power, 8, of this detection scheme can

thus be determined with a prescribed false-alarm rate a as follows :

1 = [-z%/2Mof) =1 = To
" Tmier kP T g

Hence the threshold for the given false-alarm rate a is equal to
To= v or 7! (1-a)
Also, the power 8 is
g =9 VM =—-¢"1(1-a)]
or
On the other hand, the power §; of the linear deteclor using the same
threshold and false-alarm rate is given by

B = ¢[ VNs - ¢ (1-a)]
Thus the ARE of the nonlinear scheme compared to the linear detector is
M 1

withs - 0,and 8=§;
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Appendix 2.B q

Discussion of Equation (24)

Let us examine (2zx-h(z)) first.

1 1
22 —h(z) = 22 - ‘6*14H3(-"-') + %‘:‘sﬂs(z)
1+ 5'54”4(3) + r-"7'§'°"CoHe(= )

22[ 1 + g Ho() + =EoraHe() ] = §xaHa(z) = ThsweHs(2)

1 1
1+ Eﬁfh(z) + Wuﬁc(z)

ez + a3z + aszd + a,z’
ag + axz? + a,zt + aez®

where

ao—

|
—
+
Ol
3
|

a; =2+ %’u‘g'ce

_ 1 1
az = ——%, + 166

4
az = ""§"‘4 + 25_4"6
a4 = %4"‘4 - ‘4%"8 E
‘ as = '115*4 - %"s - !
1= 55 .
Consider the following lines located on the (»  «g) plane' : _._;{

Lo: 6xq—xg+48=0
Ly: 94—-2xkg+24=0 .
Ly: -4 +Kxg=0 , q
Ly: =—16k,+56¢=0
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Ly: 2¢4—xg=0
Ls: 5x4—-3xg=0
Lg: xg=0

Now, consider, for example, the following noise model :

1 (@) = (1=€)f4(z) + ef o(a)

where
=1 _-z/2

J(z) Jon e

faz) = —é—é—e'ﬁ"l
Then clearly,

Ky = 3¢ : xg = 30¢
and
K, = I%fca withO=x, <3 , (since O0<e<1).

The lines Lg to Lg and their corresponding signed-hali spaces are shown
on Fig. 2.F. From analytic geometry, one can see that

{ag @y, a3 a3 ag ay{20
and

fa,a51<0
According to Descartes’ law of signs [168], we conclude that both the
denominator and numerator will have either no positive real roots (p.r.r.)
or two p.r.r.’s. If either the' numerator or the denominator has two p.r.r.,
then (2z-h(z)) < 0 holds in some subinterval of (0, ~). In this case,
h(z) > 0, thus we have

2zh(z) < h3(z)
On the other hand, if neither the denominator nor the rumerator has

p.r.r., then (2z-h(z)) > O, for all z € [0,] . Nevertheless, h(z) may be
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negative for some z, so (2z-h(z))h(z) is not always nonnegative even if
2zh(z) < h¥(x).

The above discussion actually illustrates one way of investigating the
performance of the approximate locally optimum detector using the
knowledge on the moments. Further study would be required if a neces-

sary and sufficient condition for ARE .44 > 1 is desired.
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CHAPTER 3
SIGNAL DETECTION IN NEARLY GAUSSIAN SKEWED NOISE

3.1 Introduction

Much, if not most, of the large literature on signal detection has been
based on the assumption that the underlying noise is symmetrically dis-
tributed with respect to the mean. Typical examples include the sample
mean detector and most robust detectors [1] - [3]. This assumption,
although generally making problems more tractable and providing
simpler solutions, may not be exactly true in practice. [n such applica-
tions as sonar, asymmetrically distributed noise which might result, for
example, from underwater reverberation or sea clutter, has beén encoun-
tered {4]. Furthermore, data from a number of natural environments,
e.g. under-ice ambient noise [5], have actually shown asymmetrical sta-
tistical properties. In such situations, optimal detectors could still be
found, but there are some additional difficulties in the implementation of
such detection schemes. The test statistics are usually complicated or
intractable and to implement them precisely requires, of course, a com-
plete knowledge of the underlying noise density functions. Furthermore,
the performance of these detection schemes may be sensitive to the
inaccuracy of the presumed statistics, and in particular, to thé‘ exact

amount of skewness.

In a recent paper, Kassam et. al. [8] discussed a robust detection
problem using a noise model which allows a symmetric contaminated-

nominal central part and an arbitrary tail behavior. Except for this

-37-
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example, the problem of detection with skewed noise does not seem to
have been discussed extensively in the signal detection literature. How-
ever, in the context of other statistical applications, there has been some
work on investigating the effect of population skewness on hypothesis
testings or estimation problems. Johnson [7] discussed the effect of
population skewness on the t-variable and proposed a procedure to
modify the t-variable so that this effect can be reduced. Carrol [8] exam-
ined the effects of asymmetry on estimates of variance of robust esti-
mates in location and regression problems and showed that heavy skew-
ness of errors can seriously bias the commonly used estimates for loca-
lion and intercept. The purpose of this chapter is to study the eflect of
noise skewness on the performance of the sample mean detector and the
sign detector and, then, to examine a modification of the sample mean
detector which is less affected by the noise skewness. Evaluation of the
detectors will be based on the false-alarm rate, the power, and the proba-

bility of error.

There are many ways to define the skewness measure. Throughout
this chapter, this measure is taken to be the third-order central moment
divided by the cube of the standard deviation. This definition is one of
the most commonly used. By introducing an asymptotic expansion for
the test statistics, the detector performance can be related explicitly to
this measure. In order to facilitate analysis, the test statistics will be
normalized by the sample size M. This normalization procedure will not
affect the performance of the detectors so long as the thresholds are

adjusted correspondingly. Then the relation between the performance

I
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and the noise skewness is obtained. This relation will give a clear qualita-
tive insight into detector performance, although, for any finite M, it will
be an approximation. It will turn out that the sample mean detector is
more sensitive to noise skewness than the sign detector, when the under-
lying noise is only sightly non-Gaussian due to skewness. This result is
reasonable since the sign detector only assumes a zero median. a milder
assumption than symmetry, for the noise distribution. The second part
of this chapter then proposes a modified scheme for the sample mean
detector, which, by the introduction of a correction term, reduces the

effect of noise skewness.

Curves which describe the performance change with respect to noise
skewness measure for both the sample mean detector and the sign detec-
tor are given in Figs. 3.A - 3.C. Specifically, Fig. 3.A shows rates of change
in the false-alarm rate for both detectors, Fig. 3.B depicts those in the

power, and Fig. 3.C is for the probability of error. Note that, in these

Fig. 3.D illustrates the structure of the modified sample mean detector.
In the last part of this chapter, some numerical examples based on
Monte-Carlo simulations and on some data from under-ice ambient noise

are given.

3.2 Preliminary Results

One of the major difficulties in examining conventional detectors with
asymmetrically distributed noise has been that the skewness measure

does not usually appear explicitly in the test statistics and thus perfor-
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in mance of the detector can hardly be expressed in terms of this measure. ‘fj
t’ Although several different skewness measures are available in the litera-
o ture [9],[10], this difficulty remains unchanged. The reason appears to
be that, in general, skewness measures are evaluated as a function of the '%
third-order moment, a function of the mean and the mode or the median,
or even as a function of the kurtosis and the third-order moment. On the

other hand, the test statistics usually evolve from the probability density

functions (p.d.f.) or from other functions of the distribution which may
not be related explicitly to those skewness me~sures mentioned above.

Hence, even though it is intuitively clear that the statistical properties of

the test statistics are affected by the noise skewness, the expiicit func-
tional relations are hard to acquire. One reasonable way to get around

this problem is to obtain an asymptotic expansion for the test statistic in

terms of the moments which are more clearly related to the usual skew-

Ness measures.

The main purpose of this section is to develop some precliminary

"'rrv"
- e s S,

results on which the procedure of expanding the test statistics will be

based. There are several general ways to obtain an asymptotic expansion

Y e
T L

for a random variable. The one to which attention here will be restricted - -

L is the use of the Cornish-Fisher expansion [11]. A general form of such an
expansion for a random variable X is given by Do
L . q
[: wwh@+ﬂ+%whn+u-' (1) o

| where wuo=E{X}, 0?=E{(X—u0)3, ua=E {(X—u0)}, and Z is a standard nor-
fr'! mal random variable. In this chapter, our interest is to employ this sort _ J

| of expansion for the sample mean of a sequence of independent and _1
i
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identically distributed (i.i.d.) random variables so that some asymptotic
properties can be achieved. To begin with, the asymptotic expansion for

the sample mean should be defined. Let {X;] be a sequence of i.i.d. ran-

M
X;, where M denotes the sam-

dom variables with sample mean S;F%-
i=]

T
ple size. We will call a series of random variables, ao+ ),
is]

a;
M‘—./z—Zi. an

"asymptotic expansion valid to 7 terms" for Sy if

< a, -/
ISy - Qg — 2 WZ,I =O(M 2) w.p. 1. (2)

t=]

This definition evolves from Wallace [12] who defined an asymptotic
expansion valid to 7 terms for a distribution function while requiring the
remainder to be O(M~"/2). However, it will be seen later that requiring
the remainder to be o (M~"/2) as in Eq.(2) is more convenient and furth-
ermore, is in accordance with Erdelyi [13]. It is clear that, when r =1, if
aq is taken to be the mean of X; and Z, is the standard normal random

variable, then Eq.(2) is compatible with the ordinary Central Limit

Theorem. Furthermore, one can argue that the Central Limit Theorem
suggests that, under some general conditions, the distribution of Sy

fﬂ tends to be symmetric. However, it will be shown here that, by introduc-

g ing the series expansion for the test statistics, one can obtain a solution

with faster convergence rate. Now, let 0® and ug be the variance and the

Aa Sl o) con un o ot

{ third-order central moment of X; respectively, and let the skewness _j

measure ¢ be defined by

¢=5 ® 4

Then, it is easy to see that the skewness measure ¢y of the distribution of

TY]
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Sy is given by

These arguments lead to the following lemma:

Lemma.: Let {X;| be a sequence of i.i.d. random variables with common
distribution 7. Assume that all moments of X; exist and that the skew-
ness measure of F is defined by Eq.(3). Then the skewness measure ¢y of

the distribution of Sy satisfies the following relation
¢y = O(M™V2)

However, the interest here is to consider an asymptotic expansion
valid to higher order terms such that the expansion will contain the skew-
ness measure. In fact, these higher order terms are important since tak-

ing one or two more terms usually improves the approximation

‘significantly and, typically, may correct the skewness. Further investiga-

tion reveals that Eq.(2) determines an equivalence relation between
sequences of i.i.d. random variables. We can say that two sequences of
ii.d. random variables are asymptotically equivalent if their asymptotic
expansions valid to r terms, for the sample mean, differ by o (M~"/%) for
each r. Thus an equivalence class based on this relation may be defined.
And therefore, a valid asymptotic expansion defined in Eq.(2). may

represent a class of sequences of i.i.d. random variables.

We now proceed to present a Cornish-Fisher type expansion for the
sample mean of a sequence of i.i.d. random variables {X;}. The following

proposition is a straightiorward result :
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Proposition 1. Let {X;{ be a sequence of i.i.d. random variables and Sy

be its size-M sample mean. Assume that all moments of X; exist and that

| & | «< 1; then an expansion for Sy given by

o3

VAE(Sy) = py + —2 \/Tu + ——-(22-1) 4)
is an asymptotic expansion valid to two terms for Sy, where
Mo=E X3, o*=E{(X;—po)¥. ua=E{(X;—p0)3), and Z is a standard normal
random variable.

If the skewness measure is defined by Eq. (3), then Eq. (4) obviously
contains this measure. Now, by the use of some weak cenvergence
theorems on pages 287 and 288 in [14] and the observation that VAE(Sg)

is a continuous function of Z, Proposition 2 follows immediately from Pro-

positionl.

Proposition 2: Let Yy = uo + 22 m + —ﬁ"—(z -1). Let Fy, and Fs, be
the distribution functions of Yy and Sy respectively. Then, under the
assumptions in Proposition1, Yy converges in law to Sy ; namely,
’lll_r'n_ Fy, = Fs,

at each continuity point of Fg,.

Proposition 2 enables us to evaluate the asymptotic statistics of Sy
via those of Yy. As a matter of fact, the p.d.f. of Yy e:.dst.s and can be
evaluated as follows:

Substituting Eq. (3) into Eq. (4) yields

Yu = VAE(Sy) = u, + 22 \/_ +§,7<z=-1) (5)

TR TSI T T e Y TR W W L w =t oyt m—w e — - —
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Then, it can be shown that

(i)If ¢ 2 0, the p.df of Yy is given by

= Voo @ W) (T expl - L 2htLyz)

2n ]
dFy,(y) 1 1 =12y, 30_ ot
2| s el ALy styape- T (o)
=0 otherwise
where

QW) = V1+0.2+2E(y—0)/ 30 and o = ¢/3VH

(ii) If £¢<0, the p.d.f. of Yy is given by

=\ ‘79"(31)!1’(;—‘1%@[-%(2‘%31)2] +

2m
dFy,(v) 1 1 +1.%) . S0 of
v @(-&‘—)exp[—f(g'(%z——) B tysuwo-gi—ggr ()
=0 ’ otherwise

The preceding discussions have been focused on continuous random
variables. It should be noted that these expansions may not be valid for
some discrete random variables. However, in the context of this chapter,
only binomially distributed random variables will be discussed and these
will be seen to have valid asymptotic expansions. Thus the discussion for

the discrete case will be omitted here.

3.3 The Sample Mean Detector

The sampie mean detector is known to be the Neyman-Pearson
optimal detector when the underlying noise density is Gaussian. This sec-
tion considers sample mean detector performance deterioration under
model] deviation due to skewness. The asymptotic expansion introduced

in the previous section will be employed here for the test statistic, and
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relations betweeh the performance and the noise skewness measure will
then be obtained. It will be shown that the performance of the sample

mean detector does deteriorate, as expected.
The [ollowing binary hypothesis testing problem is considered:

Ho: X‘ = N; a
Ko: X; = M +s =12, .. .M
It is assumed here that {X;} is a sequence of i.i.d. random variables.

Under H,, the p.d.1. of X; is f (z;), which is nearly Gaussian, and has zero
mean, known variance o2 and known third-order moment us, where ujs is
small. Now, the test statistic of the sample mean detector is given by
T =18,
M5

As discussed in Section 3.2, there exists an asymptotic expansion valid to
two terms for T(X). For notational convenience, the subscript M will be
omitted in the sequel and the asymptotic expansion for T(X) will be
denoted by Y. Thus, in accordance with Eq. (5),

under Ho: ¥ = Yy = i + 6%,‘,-(22-1) (8)
Y=V = o o€ (r2_
underKo.Y-Yx-si-WZ‘r-s-‘%-(Z 1) i (9)

Let Fy(y) and Fx(y) denote the distribution functions of Yy and Yy,

respectively. Now, define ay and fy by

au = J dFy(y) ' (10)
and . .
Bu = dFetw) (11)
where Tj is the given threshold. Then, by Propositions1 and 2, it can be

concluded that ay and By converge respectively to the false-alarm rate
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a; and the power §; of the sample mean detector. Now,
(i) if ¢=0, substituting Eq. (6) with ug = 0 and ug = s into Egs. (10)

and (11) respectively yields

ay = @(_olﬂé(_ Qo(To)+1 ) + $(¢(~ Qo(To)-I) (12)
t oy o oy
and
bu = 8- Lya- BUIITLy 4 g Lyg QDL gy
[4 (] o g
where '

Qo(To) = V1+0,242¢(To/30 and @ (To) = V1+0,°+2£(To—s)/ 30

When M is sufficiently large and ¢ is small, ay and By can be

approximated by

au » #(- 20, (14)

and
To)—1
Bu = ‘I’(--Qs—(of)ﬂ (15)
(ii) if ¢ <O, substituting Eq. (7) with uo = 0 and ug = s into Egs. (10)

and (11) respectively yields

ay = #(Shpac- BT _ g Lyy

1 QO(TO)"'I\ - -1 4 .
Q(?[‘I’(- oL ) — &( % I] (12a)
and
ou = o(hia- 2O g Ly
1 QS(TO)+1\ - "'1\ '
Q(;)[Q(" o, 7 Q( o I] (135)

Similarly, when M is sufficiently large and £ is small, ay and 8y can
be approximated by Eqs. (14) and (15) respectively. Since ay and Sy

converge to a; and 8; respectively, the qualitative behavior of a; and §;
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can be studied approximately by ay and Sy respectively, provided that

M is sufficiently large. Now the probability of error P is given by

Puma(2IOTL o Iy g

It can be seen from Eqs. (14)-(16) that the dependence of the detector
performance on the noise skewness measure comes from the variables
Qo(To), @(To), and o0;. Figs. 3.A - 3.C provide clearer quantitative
insights as to sensitivity of the sample mean detector to the underlying
noise skewness. One can see that both the false-alarm rate and the pro-
bability of error increase as the skewness measure increases, while the
power stays nearly the same, an indication of the performance deteriora-
tion of the sample mean detector when the noise skewness comes into
play.

Before concluding this section, it may be worth mentioning that,
throughout the above discussion , we have assumed implicitly that the
threshold Ty lies inside the region where the corresponding p.d.f. for Yy
is nonzero. The case when Ty lies outside that region will result in a

singular detection problem which is of little interest here.

3.4 The Sign Detector

It is well known that the sign detector is the Neyman-Pearson optimal

- detector for the nonparametric test (H, K;)

H‘ p= 1/2
K] p > 172
where p = Prob. { X; 2 0 }. Also, it is the locally optimal detector when

the underlying noise has a Laplace distribution [15],[16]. The

i
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1 Sign Detector : ’
o | : 2 2 - 2 2 2 ' — 1
0 0.4 0.2 0.3 0.4 0.8 0.6 0.7 0.8 0.9 1 i
skewness measure § 1
Fig. 3.A Rate of Change in False-alarm Rate
e :
1 ap is the false-alarm rate when the underlying noise is Gaussian ,ﬂ
ag = 1.0x10710
The threshold is set by ap and is kept fixed whern the

i noise skewness measure ¢ varies.

Sample size = 400
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o [ A i - ) B . A 'l i '] 8

0 0.4 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.9  §
skewness measure §

Fig. 3.B Rate of Change in Power

° Bo is the power when the noise is Gaussian

p =~ 0.99999 {for the linear detector
01=0.99998 for the sign detector

;_. Signal Strength = 2 x ( threshold of the linear detector )
E Sample size = 400
.
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Fig. 3.C Rate of Change in Probability of Error
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performance of the sign detector when the underlying noise is skewed will
now be studied. It is easy to see that, when the underlying noise is
skewed, the binary test (H,.K;) really becomes

Hy:p=1/2 + €(8)

Ky:p>1/2 + ()
where £(¢) denotes the deviation depending on the skewness measure ¢.

In order to be compatible with the previous discussion, the following nor-

malized test statistic is considered:

1 ”
T = 7Y som (%) (a”

where
1 i X;=20
sgn(X;) = [0 otherwise
Again, an asymptotic expansion for T(X) will be needed in order to facili-

tate analysis. In a survey paper, Bickel [17] discussed the Edgeworth
expansion in nonparametric statistics with emphasis on higher-order
approximations tc the distribution of those statistics. However, the test
statistic of the sign detector does not seem to have been discussed. In
this section, the previously considered Cornish-Fisher type asymptotic
expansion will be utilized again for T(X). The first three central moments
of T(X) under H; and K, are given in the following:
under Hp: o= 1/2 + ¢(¢) .
02 = 1/4 — e%(¢) (18)
and ug = —2¢(8)o? '
under Kp: po=p = 1/2 + £,(¢)
o®=p -p?=1/4-¢%¢) (19)

and wa=p - 32+ 2p3= -2¢,(8)0?
where, for convenience, p is taken to be 1/2+¢,(¢) under K, and &,(¢) is

S W e L e A
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a variable depending on both the signal strength and the skewness meas-
ure. Now, following the discussion in the previous sections, there exist
asymptolic expansions valid to two terms for T(X) under both

hypotheses, namely,

[ undeer:YHg=1/2+c(e)+\/@Ez—ﬂﬁ{zz-l)
F‘ under Kp: Yx, = 1/2 + &,(€) + \/ 1/4;'(93 - c;g;)j’ -1)
ke

Then, by going through the same procedures as of Section 3.3, we can

obtain the false-alarm rate a; and the power g, for the sign detector.

o ¢(M) (20)
and
8, ~ o(1=ETo)y (21)
where
O. = -2515) - g. = -28' (E)
IVM(174-e%)) | 3VH(1/4-¢X(p)
and

o2+ 4e(E)(To+e(6)-172
3(1/ 4-¢%(¢))

_ 12, 45 (E)(TotE, (£)—172)
RUTY = \/ 14024 3(1/ 4-£%(¢))

R(To)= 1+

Thus the probability of error P, is

Fos ® &(

o'y o, . (22)

Egs. (20)-(22) reveal how the performance of the sign detector changes as

the underlying noise skewness changes. The dependence on the skewness
is embedded in the variables o,, o'y, R(Tp) and R'(T,). Figs. 3.A-3.C also

(] depict the quantitative relation between the performance of the sign

detector and the noise skewness. The noise model used here is the same
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as that for the sample mean detector. The noise p.d.1. is given in Eq. (8)
with uo = 0. For this particular model, which is nearly Gaussian, the sign
detector appears to be less sensitive to the noise skewness. This result
is reasonable since the sign detector only assumes a zero median of the
noise distribution, which is a milder assumption than zero skewness. On
the other hand, the sample mean detector assumes ithe Neyman-Pearson

optimality for a Gaussian noise model, which has zero skewness measure.

3.5 A Modified Sample Mean Detector

In Section 3.3, the sample mean detector was examined with skewed
noise. The noise model used there is a Gaussian model perturbed with a
small amount of skewness. It has been shown that the performance of
the sample mean detector deteriorates when the underlying noise
becomes skewed, although the significance of this performance deteriora-
tion depends on the particular application. It is then interesting to con-
sider reducing this effect by modifications of the detector structure. In
this section, a modified scheme is proposed based on the asymptotic
expansion for the sample mean of an i.i.d. random sequence discussed in
Section 3.2. A mean-squared term is added to the sample mean so that,
in the asymptotic expansion, the terms involving the lowest power of the
skewness measure can be eliminated. Now, with the assumption that the
skewness measure is small and that the sample size M is sufficiently
large, one can expect that the effect of the noise skewness is essentially
eliminated. Again, the following hypothesis testing problem is con-

sidered:




— T e S
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Ho: X, = N -—~

(v Ko:X, = N,+s =12 A
As in Section 3.3, it is assumed here that, under H,, E{X;{=0, E{X;%=0° .

and E{X;%=ps, where uj is small. Then, consider a test with the following

test statistic: '1
- Tm(X) = X + (X2 - 23 (29) ;
F‘ where y
P M

X = _1- Xt
E M ;Z:l

The parameter p will be determined as follows:

t’ By Proposifion1, an asymptotic expansion valid to two terms for X

exists, namely

-0 K3 r2_ -1
X —\/-i-z + m—(z 1) + o(M~1), under Hq (24)

Substituting Eq. (24) into Eq. (23) yields

-0 M3 _ 0?2 -
Tm(X) = —Jﬁz+az—ﬁ(zz 1)+p7<zz 1) + o(M™Y)

Thus, if p=—us/ 60, the term .involving us will be eliminated and other

terms involving higher powers of the skewness measure will be contained

in o (M7Y), i.e.

- _0 -1
Tm(X) = 7__M—Z+ o(M™Y)
Therefore, when the skewness measure, §=us/ o>, is small and the sample
F e size M is sufficiently large, T, (X) can be well approximated by a normal e
random variable which is independent of the skewness measure of the

noise. Hence the false-alarm rate a,, and the power f,, are given by

- am 1 — $(VHTy/ 0)

—




.....

and

Bm R 1 — (VM (Ty—s)/0)
where T is the prescribed threshold. Thus it can be seen here that the

performance of the modified sample mean detector is asymptotically
independent of the noise skewness. From Eq. (23) and the above discus-
sion, the modified sample mean delector should be implemented by the

following test statistic

Tm(X) = X = £(X%) (25)
The structure of this modified scheme is shown in Fig. 3.D. In prac-
tice, the skewness measure ¢ may not be known exactly. Then a learning

procedure or adaptive scheme will be needed to obtain an estimate.

3.6 Simulation Examples

To investigate the modified sample mean detector proposed in the

last section in more detail, some numerical examples based on Monte-

Carlo simulations are given here. For simplicity, the noise model which
has a probability density function given by Eq. (8) is used. This is a model

resulting from a Gaussian distribution perturbed by a non-zero skewness

T Ty vy

‘ measure. According to the results discussed in the previous sections, the

modified scheme is expected to be less sensitive to noise skewness, com-
L pared to the sample mean detector. As a matter of fact, it should be
k‘ indifferent asymptotically to noise skewness. The following examples

verified this conclusion. Fig. 3.E shows a result of one million runs with a
sample size of 100 and the ag, the initial false-alarm rate when the skew-

- ness measure ¢ is zero, set equal to 1073, Curves are plotted for the rate




Fig. 3.0 A Modified Sample Mean Detector
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of change in false-alarm rate as the skewness measure varies. It can be
seen that the false-alarm rate of the modified scheme stays nearly
unchanged, compared to that of the sample mean detector, as ¢ changes.
In Fig. 3F, a similar set of curves is shown, except that ag= 10"% It
should be noted here that the smoothness of the curves depends on the
number of runs. This is one of the typical properties of the Monte-Carlo
simulations. However, we do see a positive verification of the analytical

results obtained previously.

3.7 A Case Study Using Underdce Ambient Noise

The detection scheme discussed in Section 3.5 will be further exam-
ined here with some real data taken from under ice in the Arctic. The
deta were preliminarily analyzed and presented in [5]. The mechanism
for the noise under stationary shore ice is possibly due to tensile stresses
caused by rapid reduction in air temperatures. Noise from the pack ice,
on the other hand, is due to the friction between interacting and colliding
ice floes in addition to tensile siresses. For completeness of discussion,
the first three statistical moments of the data are shown here in Figs. 3.G
- 3.1[5] in the time domain. These moments were estimated in 1024 sam-
ple blocks, which were identified as a record on the horizontal axes in
these figures. The samples were taken at a sampling rate of 10kHz, thus
each record represents approximately 0.1 second of time. It is seen that
the data has a non-zero mean which is due to the carrier frequency of the
tape recorder being slightly misaligned. Fig. 3.H shows a large variability

of the variance over time. This illustrates the non-stationarity of the
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noise. Fig 3.l depicts the skewness measure which is defined in Eq. (3).
It can be seen that, for some records, the noise exhibits a pronounced
asymmetrical property.

The purpose of this study is to investigate two detectors (the sample
mean detector and the modified one) with data from some natural
environment. There are some disadvantages associated with the use of
these data, however. As has been seen from Fig. 3.H, the data represent
a nonstationary process and, furthermore, they may well represent a
dependent process. These two characteristics seriously violate the
assumptions discussed in this chapter. Hence the results thus obtained
should not be used to justify the analytical results of the previous sec-
tions. In an attempt to eliminate the dependency structure in the noise,
the data sequence was re-arranged such that every other eight consecu-
tive samples is used. The estimatles of the statistical momenis are then
evaluated based on the re-arranged data sequence. Thus, each record
now only consists of 128 sample blocks. Figs. 3.J and 3.K plot the false-
alarm rate and the probability of error versus the threshold for the two
detectors using this re-arranged data sequence and for the sample mean
detector in Gaussian noise. It is shown here, based on these data, that
the discrimination between these two detectors does not appear to be
significant. It should be noted here that the estimates of the moments
obtained from this data sequence does not seem to be different from

those shown in Figs. 3.G - 3.1.
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3.8 Conclusions

The problem of detection with skewed noise is discussed. The sensi-
tivity of the sample mean detector and the sign detector to the noise
skewness is examined. When the underlying noise is Gaussian, perturbed
with a small amount of skewness, the sign detector is shown to be less
sensitive than the sample mean detector. A modified sample mean detec-
tor is then proposed whose test statistic is constructed by adding a
correction term to that of the sample mean detector. This correction
term eliminates the lowest power of the skewness measure in the asymp-
totic expansion of the test statistic. Thus, when the skewness measure is
small, this test statistic is virtually unaffected by noise skewness.
Although the analysis here is based on the assumption of large sample
size and small skewness measure, it does provide some general qualita-
tive insight as to the skewness effect on detector performance. The

simulation results in Section 3.6 provide a support to the analysis.
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CHAPTER 4
DETECTION OF SURE SIGNALS IN NOISE OF BOUNDED MAGNITUDE

4.1 Introduction

In the past few decades, a great amount of literature has been
devoted to the theory of detection of signals in a noise environment [1]-
[8]. To solve a detection problem, one usually has to impose some statist-
ical assumptions on the noise and then employ methods of statistical
inference. Needless to say, these statistical assumptions ought to be
introduced with the consideration either of providing analytical tractabil-
ity to the problem or of being compatible with practical applications.
Unfortunately, these two factors are often contradictory to each other.
For example, in many practical situations, the assumption that the noise
sequence is a sequence of statistically well-defined random variables is
not well justified. Hence the assumptions on the noise statistics will be
just an approximation or simply a consequence of the desire for analyti-

cal tractability.

In most of the literature, the noise process considered usually has a
probability density function with infinite support and the tail probabili-
ties are extremely small, e.g. the Gaussian density function or the
Laplace density function. Practically speaking, the tail area, considered
sufficiently far out, is almost negligible. In fact, due to some environmen-.
tal limitations, the noise may actually be bounded in magnitude. Furth-
ermore, the availability of a well justified bound on noise magnitude is

usually more realistic than that of the well justified statistical knowledge
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of the noise. Thus the assumption of bounded noise may lead to more
practical applicability of the solutions. As a matter of fact, bounded
noise assumption has been employed in considering state estimaticn [9]-

[10] and system identification problems [11].

This chapter considers a detection problem using a bounded noise
assumption and proposes a rather different solution to this detection
problem. To begin with, in Section 4.2, the signal is assumed to be a
known positive constant and no statistical assumptions on the noise are
employed. Then a sequential test procedure is devised based only on the
knowledge of the noise bound. In contrast to the conventional hypothesis
testing procedure, this procedure yields a singular solution. Specifically,
it involves no possibility of making wrong decisions provided that the test
procedure terminates. Now, one may argue that the presumed bound on
the noise magnitude may not be precise; thus the resulting singular solu-
tion will not be realistic. One way to circumvent this problem is to intro-
duce some randomness to the bound; namely, to suppose that the bound
is a random variable with a known bounded distribution. Then the
sequential procedure becomes a random test in the sense that the thres-
hold and the associated performance are functions of a random variable.
In Section 4.3, examples of some particular distributions of the noise
sequence for a given realization of the presumed bound are used to
demonstrate this example. Section 4.4 addresses the duality of
hypothesis testing and estimation. Section 4.5 then discusses the prob-
lem of detecting an unknown signal in bounded noise where the detection

problem will be formulated as a problem of estimating the signal.
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4.2 Problem Formulation
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Suppose that we consider the problem of deciding whether or not a

PTe—
et

constant signal is present by observing a noisy data sequence {z;{. This

problem can always be formulated as the following canonical hypothesis S 1
testing problem: 1
H: z;=n

i=1,2,... (1) -

K z;=m +s
- The essential assumption to be discussed in this chapter is that the noise
Lk sequence {n;} is bounded in magnitude, namely LR
et
1
n?< B? for any i, where B>0 (2)

Now, if it is assumed here that the signal is a known positive constant,

then
under H: n?<B? e  -B<z,<B (3)
under K: nf<B? &  s-B<z;<s+B (4) -
From Fig. 4.A, it can be seen that z;<s~5 only if H is true and z;>B only v i
if XK is true. Thus, to solve the detection problem, one can proceed as fol- s 1
lows:
1. Obtain the data sequence {z;{ sequentially. i ‘
R

2. For any i, if z;>8, stop and decide K. On the other hand, if

z;<s—~B, stop and decide H.

L
)
b
»

3. lf s~B<z;<B, obtain another observation z;,; and repeat step 2.

T -
R | L .,
DY CARSRLRRY

It is clear now that if the bound B is known exactly, and if the test pro-

cedure terminates, one can expect no possibility of making wrong deci-

sions. In contrast to conventional detection problems, this is a singular

4

R
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problem in the sense that this test procedure leads to a solution of zero
false-alarm rate and unity power. This result is inherent from the
assumption imposed here, namely, that the noise sequence is bounded in
magnitude.

The sequential procedure discussed here involves some similarities
to the standard sequential probability ratio test (SPRT) [12]. In the
SPRT, one assumes that the noise sequence is a sequence of random
variables with a known probability distribution. Then the likelihood ratio
L is computed and is usually a function of time. Two thresholds Ty and
T,, with 0<T<1<T,, are chosen pased on the desired values of Lhe false-
alarm rate and the power. The likelihood ratio L is then compared to the
thresholds Ty and T,. If it exceeds T, at one of the comparison instants,
the test terminates with the decision for X (signal present). I the likeli-
hood ratio decreases below T,, the test terminates with the decision for
H (signal absent). If L rerﬁains between T, and T, another observation
is made. On the other hand, instead of computing the likelihood ratio
each time after making an observation, the sequential procedure dis-
cussed in this chapter simply combares the observed data z; Lo the Lwo
thresholds B and s —B to make decisions. Thus the test considered here
requires less information about the noise and involves less computational
complexity. However, another important criterion for evaluating ﬁeﬂor—
mance of a sequential procedure is the number of samples, or the aver-
age sample number (ASN), required for termination. To consider the
ASN, let us start by showing that the sequential procedure described

here will terminate with probab‘lity one, under some general conditions.

«
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Suppose that the probability that the observed data z; lies in the
interval [s-B,B] is p;, and that 0<p;<1 for all i. Furthermore, if the

observation sequence {z;] is an independent sequence, then at the k-th

observation, the probability that this test procedure has not terminated

k
is []pi;- However,
i=]

k
0< lim [T 7  lim Py = 0

ko ja)
where
Prmax = X Ps .

The above argument leads to the following lemma.
Lemma : Let f{z;y be an independent sequence. Let
pi = Prob. {z;e[s-F ,B]]. Then, if 0<p;<1 for all i, the sequential test
procedure discussed in this chapter terminates with probability 1.

Knowing that the test procedure will terminate with probability 1,
one can then consider the ASN. Now, if it is assumed that the observa-
tion sequence is independent and identically distributed, then, according

to the strong law of large numbers [13], one may evaluate the ASN as fol-

lows:

(a). Suppose that the noise sequence {N;} is uniformly distributed

between [-B,B]; then, under H:

Prob. {(z:-B<sz<s-B)|= %

Thus the expected value of the sample number M, or the ASN, is

]
g given by

Ey)=22 . asN
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Similarly, under KX:

Ex() =22 o asn
One can easily see that the two ASN's may not be equivalent
under both hypothesis if one allows some asymmetry assumnp-
tion. Furthermore, it should be noted that, if B>>s, then the
probability that the observation will lie in [-5,s —B] will be very
small and thus the ASN will be very large. On the other hand, it
B and s are comparable, one can expect a rapid termination of

the test.

(b). If the noise sequence {N,;{ has a truncated Gaussian distribution,

i.e. if it has a density function given by

- 1 ovn-nt/ 20t :
= exp ifin|<B
V2no?(1-2&(-B/ 0))
3 In(n) = o otherwise
Then it can be shown similarly that

[o( £=£) -~ ¢(-B/0)]

under either H or X.

T .

4.3 Constant Known Signals in Noise of Random Bounds

o

In the previous section, the problem of detecting a known sigﬁ‘al in a ;
magnit;xde bounded noise has been discussed. A sequential test pro- | 1
cedure was proposed which leads to a singular solution. However, there s
are some obvious problems associated with this result. The presumed p

bound may not be tight, and thus the number of samples required to ter-
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minate the test procedure may be unnecessarily large. Furthermore, in
practice, the bound may not be known exactly, and could even be
assumed smaller than it actually is. Therefore, to make the problem
more realistic, one may assume that the presumed bound is a random
variable with a known distribution function. Then, clearly, the two thres-
holds will also be random variables and the solution thus obtained will

involve non-zero probabilities of false-alarm and miss.

Now, for simplicity of discussion, one may suppose that the
presumed bound B is a random variable uniformly distributed between
[r—&,r+¢], where r is the actual bound of the noise sequence {n;j. A
realization of B will be denoted by b. Then, assuming that the signal is a
known positive constant, the two thresholds s—F and B will be random
variables uniformly distributed between [s—r~-¢,s~r +¢] and [r—e,r+¢],
respectively. It can be seen, Fig. 4.B, that a false-alarm (type I error)
occurs when b>r and z;>r. Hence the probability of false-alarm (false-
alarm rate) is given by

a(b) = Prob. {b>r ,z,>7}
= Prob. {z;>7 |b>7] Prob. {b>7) . (7)

Moreover, a miss (type Il error) occurs when b>r and z;<s-r. Hence the
probability of miss is
1-B(b) = Prob. {b>r,z,<s —r|

= Prob. {z;<s —r |b>r{ Prob. {6 >7} (8)
Thus the power B(b) is given by

B(b) =1 — Prob.{z;<s~r |b>7r{ Prob. {b>r} (8)
It is seen in Eq. (?) and Eq. (8) that both the false-alarm rate a and
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Fig. 4B A Sequential Test Procedure with Random

Bounds On Noise Magnitude
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the power B are functions of a random variable B and thus are also ran-
dom variables. Thus this test procedure can be regarded as a random
sequential procedure as its thresholds are random and also its perfor-
mance. Properties of this test procedure will clearly depend on the sta-
tistical distributions of the false-alarm rate and the power. The following
sections employ some statistical assumptions on the noise sequence and

provide clearer insights.
4.3.1 Uniformly Disiributed Random Noise

Suppose that for any presumed bound b, the noise sequence {n;{ is
uniformly distributed between [--6,b]. Thus, from Eq. (1), under &, {z;}
is uniformly distributed on [-b,b] and, under K, {z;} is uniformly distri-
buted on [s—b,s+b]. It may be interesting to see that the probability

density function of X; under H is given by

(
= ‘:e—Ln(r:He ifr+e=2z >r—¢
=41€—1n(:_:—i) fr—e=zz>-r+e
Px(z) (10)
=41€—‘;n(%€% if~r+e2z > —r—¢
=0 otherwise

Also the probability density function of X; under X is simply a shift
to the right of Eq. (1C). As discussed previously, false-alarms occur when
6>r and z,>r, while misses occur when b>r and xi<s;r. The false-
alarm rate and the power can then be evaluated via Equ. (7) and (9),

respectively. From Eq. (7).

a(b) = Prob. {z;>7 |b>7{ Prob. {b>7} (11)
=bor L_1_ 7
6 "2 4 4
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Similarly, from Eq. (9),

B(b) = Prob. fz;<s —r |b>r{ Prob. {b>7}

=3,
'4+4b (12)

Now that both the false-alarm rate and the power are functions of a
random variable [Eqs. (11) and (12)] it is essential to consider their sta-

tistical properties; e.g. the probability distributions and the statistical

moments. The probability density function of a(b) is given by

- _r : - . [
= fi—ta Ao - O 1)
fal@|= o otherwise (13)
and that of g(b) by
- 2r ¢ 3 T 3 T
T e(1-48)2 i 4 + 4(r+¢) =f= 4 * 4(r —¢)
I8 |= o otherwise (14)

Moreover, the first two statistical moments cf the false-alarm rate and

the power are given by

Ela(b)] = ;—- al—tln(l-!»t) (15)
where
t=%
r .
E[B(b)] = ;—+ Elym(ut) (18)
and
var [a(b)] = var[B(b)]

- —1— _1__ _1;. - 1 . ‘ 2
= st Bmarn - Fan () - gElin () (7)

Egs. (13) and (14) show that both a and g have bounded distributions with

an algebraic tail behavior. In practice, one may be interested in cases
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where t «1, then

In(1+t) = ¢t -%t?+ é—ts

R E—WeR
Thus
¢
E[a(b)] » 6
1
E[p(b)] ~ 1-75t
and

Var[a(b)] = Var [(5)] ™ Z=-¢2
Hence if £«1, the first-order moments of both a and g are monotone
linear functions of £ while the variance is a quadratic function of ¢. This
result suggests a reasonable conclusion that, the smaller ¢ is, the smaller
is the probability of error involved in this test procedure. Figs. 4.C-4.E
depict the first two moments of a and 8 as functions of ¢ as ¢ ranges

from 0.001 to 0.1 .
4.3.2 Random Noise With Triangular Distribution

An example of a unimodal and bounded distribution is the triangular

distribution whose density function is given by

i-(l—J{Ja if |z| < b

0 otherwise

S x(z)

Again, >y assuming that the presumed bound B is uniformly distributed
betweena [r—¢,7 +£], one may evaluate the false-alarm rate and the power

via Eqgs. (7) and (9), respectively.

a(b) = Prob. {z;>r |b>7] Prob. [b>r]

' - ’ . . .
e e i .
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_{rt 1
_[[ b—(l--l%hdx]xé-

=b—1'2
2b

Now, the probability density functions of a(b) and 8(b) are given by

= —1-'—__.___7‘____{. _l_ T if Cz Sa> _Ci_
4c Va(1-2Va)?® 4 Va(1+2Va)? 4(r —¢)? 4(r+¢)?
Jal) | = 0 otherwise
and
1 r 1 r . e? £?
= — T f1-—f _>p8>1-
4 V1i-g(1-2V1-8) 4¢ V1-g(1+2V1-p) 4(r—¢)? A 4(r +¢)
I5(B) |- 0 otherwise
The first two statistical moments of a and g8 are given by
Ela(b)] = = L, 1 ___ —in (1+¢)
8 8(1+t) 4t
t— ift «<1 (18)
and
_ S
2
| ~1-‘8— it 1 (18)
Var [a(b)] = Var[g(b)]
= 1_.— _5__ - 2
84 _ 96t 16t n(1+t) - plin(1+¢)] +J.2(1+t)
1 1 1 1 1
+ —l +2) - + -
16 t(1+f) n(1+t) - &3 (142)2 16t (1+4¢)2 96t (14t)3
) | ndd g2 if ¢ <« 1 (20)

96
A similar set of curves to those in Figs. 4.C-4.E describing the first two

moments of @ and B as functions of ¢ are given in Figs. 4 F-4.H. Here,
instead of an approximately linear relation, an approximately quadratic

relation between the mean and ¢ is shown. This relation can also be seen
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from Eqgs. (18) and (19). The difference certainly results from the
different assumptions on the noise distributions employed. However, as
can be seen from Figs. 4.F-4.H, the effect of inaccuracy of the presumed

bound on the noise on the probability of error is less than that in the pre-

vious case. This is due to a smaller tail probability of the noise distribu-

tion used here.

4.3.3 Randorn Noise with Truncated Gaussian Distribution

In the last two sections, the noise sequence was assumed to have a
bounded distribution, i.e. uniform distribution and triangular distribu-
tion, with a random bound which has a uniform distribution. However,
these distributions may not be of sufficient practical interest. In applica-
tions such as radar or sonar, the noise density function often exhibits a
Gaussian-shaped central part, although the magnitude of the noisz may
be bounded by some equipment limitations. The probability density func-
tion of a random variable with a truncated Gaussian distribution is given
by

S L) ot |
Voo exp if |z|<b

0 otherwise

Ix(z) 21)

where C(b) is a normalization constant and is given by

=fér 9 — &1 =b\1-1
C(6)=[#() - #(=) |
As in the previous sections, the bound b is assumed to be a random vari-
able uniformly distributed between [ —¢,7 +&]. Then, by Egs. (7) and (9),

the false-alarm rate and power are given by
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a(b) = Prob. {z,>7.,6>7]
= E0)ip(y - (D]

and

as) = 1- &M 92Ty — (222

Because of the functional forms involved in the density function, Eq. (21),
the statistical moments of a and 8 are hardly expressible in a simple
form. However, curves depicting them as functions of £ can be obtained
by using numerical methods as shown in Figs. 4.I-4.K. Again, these curves
are obtained for ¢ varying from 0.001 to 0.1 . Also, the value of 7 is set at
40 , as the tail probability of a Caussian distribution beyond this point is
sufficiently small. A smooth monotone nondecreasing relation between ¢
and the first two moments of the probability of error can be seen from
these curves. This‘is compatible with the intuition that the more accu-
rate the presumed b. ind is, the less probability of error will result from
this test procedure.

To investigate in more detail the sequential test procedure here, one
may be interested in comparing ‘its performance to that of the standard
SPRT. 1t is obvious that both error probabilities convergé to zero as the

bound on the noise distribution goes to infinity, namely
lima(b) =0  almost surely
7 >
and
limg(b) =1  almost surely
o
Unfortunately, the ASN will be infinite in the limit. A similar result can

be expected from the standard SPRT. Thus, to compare these two test
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procedures, one has to consider rate of convergence of the error proba-

bilities. In [12], it is shown that the ASN of the SPRT under H and under

K are given respectively by
(1 —a)logT, + alogTs
Ey(M) = —
H( ) EH(Z)
and
logT; + (1 - B) logT.
EK(M) = p g4 ( p) g2

Ex(z)
where 2 is the test statistic and I'; and T are two thresholds given by

Ty=8/(1-a) and Te=(1-8)/a
Thus one can see that for the same a and the same B, the ASN of the
SPRT is less than that of the sequential procedure here. On the other
hand, a complete knowledge on the noise density function required by the
SPRT and the computational simplicity involved in the proposed sequen-
tial procedure should also be taken into account in making comparisons.

4.3.4 Random Noise with Truncated Laplace Distribution

Another distribution which could be of practical interest is the
Laplace distribution. As in the previous section, the truncated version of
the Laplace distribution will be considered here with probability density

function given by

=E2&)-exp“""| it |z|<sb
Ix@)|= o otherwise
where C(b)=(1-¢~™)"! is a normalization constant. Again, by assuming
that the bound & is a uniformly distributed random variable on

[r —e,7+¢], one may evaluate the false-alarm rate and the power via Egs.




Y v p -
Py Cte e e - e e w e e T - - LI R T e e e R YA AR T R

ot Tt e e e Set e e Mttt LI T R I R AR SO I LN S S S T TR Rt S I R N ST TP St

. - L AR I LA U U S T Y

(7) and (8),
a(b) = Prob. {z;>r b>r] X
= 2(42)-[0""—0'“] ‘
and :

B(b) = 1__0.2.’)_[3'#('-')_."("')] assuming that s>r

Again, in order to achieve some insights as to the statistical properties of

a and §, one has to employ numerical techniques. Figs. 4. K-4.N. shows ':‘

the first two moments of a and §# as functions of {. A smooth monotone “

i nondecreasing relation between { and the probability is also shown here. _i
tf;ff However, comparing to the results in the previous section, greater proba- :'1

bility of error is obtained here due to the heavier tail probability in the

p Laplace distribution.

4.4 Duality Between Hypothesis Testings and Confidence Regions

In the previous section, detection of a known signal in noise has been

formulated as a canonical hypothesis testing problem, namely, k

H oz, =n J

1=12,... “

K z=n+s, s> p

This is equivalent to testing H: ¥=ug vs K: 9=ugts, where ¥9=E{X;{ and :j:

uo=E{N;}. However, if the signal strength is unknown, this is equivalent P

to testing H: 9=ug vs K: 9#u,; i.e. any value of ¥ other then Mo is a possi- ﬂ

ble alternative. One can then consider this problem as one of estimating J
the mean of the observation data sequence. ‘s a matter of fact, there

exists a complete duality between families of level a tests and level (1-a)
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' confidence regions. To explain this concept in more detail, let us con-
sider the following example [14): Suppose that, on the basis of m obser-
vations, z,,Z2....Zm, one wants to decide, with the assumption that the
z;'s are i.i.d., whether or not the population mean of {X;} is uo. Then a
size-a test can be based on a level (1 — a) confidence interval as foliows:
Accept H, if and only if, the postulated value yg is a member of the level
. A (1—a) confidence interval [X — a,X + a] where a is a function of (1 - a)
and uo. Thus, if a likelihood ratio test is considered, by properly choosing
the threshold Ty, one can associate the test with the confidence interval.
: However, since the same interval is used for every uo, there actually is
generated a family of level a tests with parameter 9. Conversely, fami-
lies of tests can generate confidence bounds and intervals. Let {6(X,9)}
be a family of tests such that 6(X,u) is a test of level of significance a for
"- testing H: ¥ = ug for each uo€® where 8cR and where 6(X,9) denotes
4 the critical function of a test. For fixed z, define the subset C(z) of 8 by
- C(=z) = (8:6(z 9) = 0}
This is just the set of all ¥ that wguld be accepted if X=z is observed and
,, the given family of tests is used. Suppose that C(z) is of the form
ﬂ ' <a(z),») N 8 for each z, where < indicates that the point a(z) may or
; may not be in the indicated ray. Then, a(z) is a lower confidence bound
of level (1 — a) for ¥ . This is Lrue since ‘
Prob. {a(X) <9} 2 Prob. {9 € C(z)} = Prob. {6(X.9) = 0}
=1-Prob.{é(z¥9)=1{21-a
Similarly, it C(z) is of the form <a(z),b(z)> Nn©® for each z, then

[a(z).b(z)] is a level (1 = a) confidence interval for ¥. Also, if C(z) is of




(1-a).

The above discussion demonstrated a complete duality between

£ ‘.E:
2 -98- |
' the form (—,b(z)> N O for each z, .t.hen b(z) is an upper confidence j':"
L bound of level (1 — a) for ¥. In fact, both confidence bounds and intervals iy
\ can be considered as random subsets of the parameter space. The true
i parameter value is included in these subsets with probability at least

confidence intervals and hypothesis testings and also provides the B
motivation for casting the hypothesis testing problem as an estimation -

problem.

4.5 Detection of Unknown Constant Signals in Bounded Noise

The problem of detecting known constant signals in bounded noise

has been discussed in the previous parts of this chapter. When the bound ~s1
on the noise quantity is a known constant, a sequential procedure which j]
leads to a trivial solution to the detection problem was considered. On _‘;
the other hand, when the bound is a random variable, this sequential pro- u‘
cedure becomes a random test. By imposing some statistical assump- ;
tion, e.g. known distribution, on the bound and also on thé noise, one can 4

then describe some statistical properties of this random test. In particu-
lar, the first two moments, or even the probability density functions, of

the false-alarm rate and the power can be obtained.

In this section, a similar problem will be considered. However, the
signal strength will be assumed to be unknown. To solve this detection
problem, one may consider either of the following two approaches: (1)

Formulate performance of the test procedure as a function of the signal

. .- B S -
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strength and then optimize, in some sense, the performance with respect =

to the signal strength. (2) Cast the detection problem as an estimation
problem. In the last section, duality between hypothesis testings and

confidence regions has been discussed. It was shown that the detection -

of an unknown constant signal can be considered as an estimation of the
mean of the observation data.

B _ Now the hypothesis testing problem given in Eq. (1) is considered,
“ where s is unknown and n%<B?, for any i. As discussed in Section 4.4,

this problem can be formulated as follows:

Hy:89=0
Kli'l,#o

t
-

M)

(]

T

&

Y]

i

i

.

where 9=E{X;} and, of course, we have assumed that E{N;{=0 for any i.

_ One of the easiest ways to estimate the mean of the observation data is to

M
consider the sample mean, Sy=—1- Y, X;. However, we now proceed

} M
r rather differently as follows:
_ Let G={z:z;-Fsz2<z;+B{ and take intersections of
- G's for i=1,2,..., and define
-
u.
™ Iy=nNG
o in]
L It is clear that the true value of the mean of the z;'s should lie inside 7y,
t_—. for each M. In this section, we consider the estimate of thé mean to be a
E".E

set rather than a single point. Thus every point in /y is an estimate here.

T

If a set function uy is defined for the measure of [y as follows:

bu = U(Iy) = length of Iy,
then, obviously, sy is a monotone nonincreasing function of M. Now, if

‘.
o
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! we assume that G;—G;#¢ for any i #j, Lhen
> g =
and thus the true value of the mean evolves in the limit. Therefore,
i based on these arguments, one can solve the detection problem as fol-

lows:
1. H z2>B? stop and decide X
2. If z2<B? obtain Gandj;.
3. VWhen yu;<¢ stop. If /;0{04, decide H, otherwise decide K. Here ¢
is a small constant which is properly chosen so that the sequen-

tial procedure can be truncated at some finite number of sam-

ples.

The only possibility of making wrong decisions in this procedure is to
decide H while K is true, i.e., the false-alarm. The signal strength and
the choice of ¢ clearly affect this possibility. Again, the assumption of
constant bound on the noise quantity leads to a singular solution.
Another reason for this result is that the sequential procedure discussed
here does not utilize any statistical information, which in some practical
situations may not be easy to obtain, and thus does not involve any sta-
tistical procedure. One disadvantage associated with this sequential pro-
cedure is that the number of samples required to terminate the test may
be too Jarge. However, an obvious advantage here is the computational

simplicity involved in implementing this procedure.
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4.6 Conclusions

In this chapter, detection of a constant signal in bounded noise has
been considered. Both the known signal and unknown signal cases are
addressed. In the former, if the bound is a known constant, the solution
is singular, namely, both the false-alarm rate and the probability of miss
are zero. To make the problem more realistic, we considered noise with a
random bound; then a random test is obtained. Some statistical proper-
ties of the performance parameters, e.g. the false-alarm rate and the
power, are obtained for several examples with presumed assumptions on
the distributions of the noise and the bound. As can be expected, the
probability of error of the test is dependent on the tail property of the
noise distribution and, of course, the accﬁracy of the presumed bound on
the noise magnitude. In contrast to the SPRT, the test procedure dis-
cussed in this chapter requires very little statistical information on the
noise and involves less computational complexity, although it may be ter-
minated with a larger sample size. Finally, detection of an unknown sig-
nal in bounded noise is considered as an estimation problem. The test
procedure discussed in Section ‘4.5 is rather different frbrn the usual
approaches in the sense that, at each time, a set of estimates ir_lstead of a
single estimate is obtained. Unfortunately, performance evaluation of

this procedure is not clear. More complete results may be obtained in

the future.

el G

St Sl

T

R Y CARR N

fod

N S W

s
A e g o o0

ataasne d o o




..................................................................

- 103 -

Relerences =

2" DR

[1). J. Marcum, "Statistical Theory of Target Detection by Pulsed Radar
IRE Trans. on Information Theory, Vol. IT-8, pp. 59-267, 1960.

[2]. J. Capon, "Locally Optimum Nonparameters Methods for the Detec-
tion of Signals in Noise,"” Proc. of the 1963 IEEE Symposium on Adap-
tive Processes, pp. 64-77, 1963.

"It'.: [3]. M. Kanefsky and J.B. Thomas, "On Adaptive Nonparametric Detection
Systems Using Dependent Samples”, JEEE Trans. Inform. Theory,
Vol. IT-11, pp. 521-526, 1865. : A

ar we s R e e - a o ea. e T
- . PR . Lt
| POV TSR L L

[4]. J.W. Carlyle and J.B. Thomas, "On Nonparametric Signal Detectors"”,
IEEE Trans. Inform. Theory, Vol. IT-10, pp. 148-152, 1964.

e L e eve aey
. v e r vos oy
- A AT T

[5]. H.L. Van Trees, Detection, Estimation and Modulation Theory, Part I,
New York:John Wiley, 1968.

- [6]. C.W. Helstrom, Statistical Theory of Signal Detection, New
. York:Pergamon Press, 1968.

[7]. R.D. Martin and S.C. Schwartz, "Robust Detection of a Known Signal in ~3
Nearly Gaussian Noise,” IEEE Trans. Inform. Theory, Vol. IT-17, pp.
50-56,1971.

[8]. A.H. El-Saway and V.D. Vandelinde, "Robust Sequential Detection of
Signals in Noise,” IEEE Trans. Inform. Theory, Vol. IT-25, pp. 346-
353, 1979.

[9]. F.C. Schweppe, "Recursive State Estimation: Unknown but Bounded
Errors and System Inputs,” IEEE Trans. Automat. Control. Vol. AC- ;
13, pp. 22-28, 1968. By

[10].F.M Schlaepfer and F.C. Schweppe, "Continuous-Time State Estima-
tion Under Disturbances Bonded by Convex Sets,"” IEEE Trans. on
Automat. Contr., Vol. AC-17, pp 197-205, 1970. “

[11].E. Fogel and Y.F. Huang, "On The Value of Information in System
Identification- Bounded Noise Case,” Automatica Vol. 18. pp 2298-238, =
1882. o

RAOAE B S

[1R2].A. Wald, Sequential Analysis, New York:Dover, 1973.

N St VEREVE




[13].W. Feller, An Introduction to Probability Theory and Its Applications,
Vol. I, Third Edition, New York:John Wiley & So: , 1968.

[14).PJ. Bickel and KA. Doksum, Mathematical Statistics, San
Francisco:Holden Day, 1977. '




o B Tty e

T v. ¥

...........................................................

CHAPTER 5
A SET-THEORETIC APPROACH TO DETECTION PROBLEMS

5.1 Introduction

In the literature, detection problems have almost always been dis-
cussed by the formulations of statistical inference. Statistical models
are used to describe the noise or the noise and the signal. These formula-
tions usually require some presumed statistical information which may
not be available precisely. This chapter considers the detection problem
from a rather different point of view. Set-theoretic formulations, instead
of statistical formulations, are employed to describe the input model.
This approach may be useful in detecting the failux_;e of dynamical sys-
tems, where problems usually occu.r when the components of the system

deviate from the nominal ones [1] - [3].

The problem addressed here can be considered as a generalization of
the one discussed in Section 4.5 of the last chapter, where detection of an
unknown signal in bounded noise is considered. It is assumed here that
the signal is an unknown constant vector. The noise sequence is con-
strained by a compact set in R¥. The detection problem is solved by
estimating the signal first. Then, based on the estimate of the signal,
decisions are made as to whether or not the signal is present. The pro-
cedure can be explained briefly as follows: at each observation, a set
which is compatible with the constraint and the obs;arvation data is
obtained. The estimate of the signal based on each single observation is
thus a set rather than a single element in the k-dimensional vector

space. When multiple observations are taken, intersection of these sets
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is considered as the set of estimates. Then, under some conditions, this
set will eventually converge to a point which is the signal to be estimated.
The decision of whether a signal is absent clearly depends on whether this

point is located at the origin.

5.2 A Detection Problem

Given an observation sequence {x;}, one is required to decide, subject
to some constraint, whether or not an unknown constant vector-signal is
present. This problem can be formulated as the usual hypothesis testing
problem as follows:

H:x=n

K:x,=s+n;
where x, 8, and n are k-veciors. Also m is a random sequence constrained

t=1223,... (1)

by the following relation
n;€S; ()
where S; is a compact set in R*. In accordance with the discussion in
Sections 4.4 and 4.5 of the previous chapter, this detection problem will
be cast as an estimation problem here. The estimates of the signal dis-
cussed here will be a set rather than a single vector in the £-dimensional
vector space. Thus the solution of the detection problem of Eq.(1) is
equivalent to finding a set 0; in R* with {); being compatible with Eqgs.(1)
and (2). Note that every element in (), is an estimate of the signal s.
To find the set () is conceptually straightforward. From each obser-
vation, a set compatible with Eqs.(1) and (2) is obtained. Every element
in this set is thus an estimate based on this observation. Alter ¢
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observations are made, the set of estimates is simply the intersection of
these sets obtained at each observation. Hence the set (); can be
expressed as

i
=n
Q=0

Obviously, the sequence of sets {{};} is a monotone non-increasing

5 (3)
sequence, namely

Under some specific assumptions, this sequence will converge to a point.
The decision of whether or not the signal is present then depends on
where this point is located in the R*. Similar to the results obtained in
the previous chapter, the solution to this detection problem is singular

due to the set-theoretic assumptions used here.

Unfortunately, in general, formulations of the sets {); are not compu-
tationally simple. Suppose that, for example, the constraint set S; is an
intersection of two half spaces. Then at each time instant, the set 0
defined in Eq.(a) is a polytope. Formulation of a polytope is usually a
numerically complicated task. One possibility to avoid this difficulty is to
define a set which can be more easily formulated and which bounds ()
“tightly” (of course, the word "tightly” has to be precisely defined). A
good candidate for the bounding set in this case will be a k-dimensional
ellipsoid which can be formulated in terms of quadratic eq{xations. Note,
however, tirst when the bourding et is uved to proceed with the estima-
tion procedure, there may exit a non-empty subset of this bounding set
that contains elements which are not compatible with the Eonstraints and
the observed data. Thus it is no longer true that every element of the set
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is an estimate. Furthermore, when only a finite number of observations Z
is used, decisions based on this set of estimate may not be correct.

Hence false-alarms and misses will occur.

8.3 Detection of Constant Signals in Bounded k-Variate Noise

The detection problem given in Eq.(1) is considered here again. Now,
the noise sequence is subject to the {following constraint

nfn;s1 Vi (4) :

Under H, Eq. (4) implies that :
xx <1 (5) d

Under KX, it becomes 3
(% ~9)7 (x-s)s1 ® g

After some algebraic manipulations, Eq. (8) becomes w

(s-s) Pi(s-=)s1 (7)

where

& =Fx PF=ha
The Eq. (7) stands for a k-dimensional ellipsoid centered at s.. In

A
b
-
:
3

.
T
‘o
<
T
-

fact, it is a k-dimensional spheroid since P, is an identity matrix. If one

§
4

takes multiple observations, each observation would result in & k-
dimensional ellipsoid as given by Eq. (7). Thus, after taking M observa-
tions, the set of estimates of the signal is the intersection of all these

X ellipsoids, and thé geometric center should be a good estimate of s when
a single estimate is required. However, the intersection of ellipsoids is
‘ very difficult to formulate; hence its geometric center becomes a fuzzy
". concept. A possible way to get around this problem is to consider an
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ellipsoid which "tightly” bounds the intersection. A "tightly bounding
ellipsoid” is defined as follows [4]

Definition : An ellipsoid £ which bounds a set S is said to be tight if
E 2 E’' 2S implies that E' = E, for any subset E' of E.

Nevertheless, this definition only defines a "tightly"” bounding ellipsoid in
a certain direction. There are infinitely many "tightly” bounding ellip-
soids. In order to obtain an efficient procedure, these ellipsoids should

be chosen in some optimal way.
Let {£;{ be a sequence of optimal bounding ellipsoids and S; be the
sets specified by Eq. (8), then,

E ={s:(8-8G(-1))T P} (s-n(i-1) =1} (8)
and

Si=is: (-0 (g -8)=<1]
An ellipsoid which "tightly” bounds the intersection of E; and S; is formu-
lated as follows

E=zis:(s=-s) Pl (s-s)+p(x -)T (x; —8)<1+p;}
where 0 < p; < . After some algebraic manipulations, one can show that

E={s:(s-8 )T Q' (s-x )sd} (9)
where
Q=P +pi
& =Q[P a(i-1)+p x]
and

6=1+p; —(8(1-1) =) P! Q (8 (i-1) - x)
Clearly, the parameter p; determines the orientation (and even the
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size) of the bounding ellipsoid. Finding a sequence of optimal bounding
ellipsoids {E;} is equivalent to ﬁndi.ﬁg a sequence of optimal {p;{. One
can, for example, consider an ellipsoid with minimum volume as an
optimal one. It is known that the volume of an ellipsoid formulated by Eq.
(9) is linearly proportional to the determinant of the matrix Q~!/4. Thus 4
minimizing the determinant with respect to p; will result in an optimal
bounding ellipsoid. The problem of finding optimal bounding ellipsoids
with minimum volumes has been examined in the literature [5] and thus
will not be repeated here. It should be noted here that both E;_; and S;
contain the true signal vector. Therefore the intersection of them is not )
an empty set. Furthermore, it can be shown that é is a positive real
number; thus the ellipsoid described by Eq. (9) is non-degenerate. Fig.

5.A shows the bounding ellipsoid which contains the intersection of the )

observation set and the previous ellipsoid.

Now, a sequential algorithm for solving the detection problem of Eq.
(1) can be developed in the following:

(i) Start with a very large spheroid centered at the origin, namely

l.‘ P T e
o i Tt te Wt N
L ood & adn .

Eo={s:sTPgls<1}
where

Pol=0o1,
and o is a very large real number.

(i) Successively take observations, compute z7 z; for every i. If one

ever obtains

zfz > 1 for any i
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Fig. SA An Illustration of The Bounding Ellipsoid E,

4

and The Observation Set S
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decide K. Otherwise, calculate an optimal bounding ellipsoid

based on the current observation and the previous ellipsoid.

(iii) As the number of observation increases, s.(i) should become
closer and closer to s. Therefore, decide H if s (i) » 0, other-
wise, decide X.
However, use of the decision criteria, Step (iii), may require an infinite
number of samples. In reality, the procedure has to be stopped at some
finite number of samples. To make the algorithm more practical, one
may choose a neighborhood of the origin O such that if & (i) € O and if
); > {0}, H will be accepted.

5.4 Performance Evaluation

Since the sequential estimation-detection algorithm discussed in this
chapter is significantly different from the conventional ones, its perfor-
mance will also be evaluated from a rather different point of view. Notice
that the set E; defined in Eq. (8) is different from the set of estimates ();
as specified in Eq. (3). As a matter of fact, it is usually true that the
difference set of E; and () is a non-empty set. Let D; £ E. —();, then the
elements of D; are not estimates that are compatible with the constraint
set and the observation data. To evaluate the performance of this gletec-
tion algorithm, we proceed as follows : .

Let up(i) and ug(i) be the set functions for the me'asures of D, and

E; respectively. Obviously,

lim up(i) = 0 and lim pup(i) = 0
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Based on the sequential algorithm here, the false-alarm occurs when
E; > {0} but & (i) € O at the stop. Also, the miss occurs when E; > {0}
and s.(i) € O at the stop. To be more specific, one should define a dis-
tance measure d(s, 8;) (which may be the Euclidean norm) of two vectors
s, and 32 on the space R*. Then a neighborhood of the origin O is defined
by properly choosing a small positive real number £ such that

O=(s:d(s0)<e}
The decision criteria now is re-stated below

(a) i x7x; > 1for some i, decide K.
(b) If E; $ {0}, decide K.

(¢) It E; > {0} while d(s.(1),0) > ¢ , decide K. On the other hand, if
E; > {0} and d(s(1),0) < ¢, decide H.

5.5 Concluding Remarks

A detection problem using no statistical assumptions on the input
model has been discussed in this chapter. The only assumption imposed
here is that the noise is constrained by a compact set in R*. Due to this
set-theoretic assumption, the solution thus obtained is rather different.
The detection scheme devised here is essentially a combination of esti-
mation and detection with a sequential nature. However, since. it is
required to estimate the signal, the discrimination between H, the
hypothesis, and K, the alternative, may be insignificant v'rhen a weak sig-
nal is encountered.

As for evaluating the performance of this scheme, set functions aré'
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introduced. Unfortunately, due to the computational difficulties involved ...
in formulating intersections of compact sets, the result presented here is 1
somewhat preliminary. Finally, it should be stressed here that finding a :
sequence of optimal bounding ellipsoids, Section 5.3, yields a facility for -_4,
»
evaluating the information, contained in each observation set, which is ]
pertinent to the updating of the estimates. This reduces the computa- "_’
tional complexity involved in the estimation procedure. -
.".:
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CHAPTER 6
CONCLUSIONS

6.1 Summary of Results

The method of series expansions is employed in this report to
obtain approximations to the test statistics of some optimal detectors.
The Edgeworth series is used to devise an approximate locally optimal
detection scheme. Convergence properties are addressed here. Under a
certain condition, the Tauberian condition, this approximation converges
to the locally opt.imai statistic. However, it is shown that, even if this
condition is not satisfied, the approximate scheme may still provide 'rea-
sonably good” performance, e.g. t.he. ARE being greater than unity as
compared to the linear detector. The other achievement of this study

in the application of series expansions is an investigation of the
effect of the noise skewness on the detector performance. Asymptotic
relations between the performance and the noise skewness are obtained
for both the sample mean detector and the sign detector. The sign
detector is shown to be less sensitive than the sample mean detector to
the noise skewness, an intuitively reasonable result. Furthermore, a
modification of the sample mean detector is proposed. Performance of
this modified scheme in skewed noise is asymptotically equivalent _t:o that

of the sample mean detector in Gaussian noise.

The second part of this report  is concerned with signal detec-
tion in bounded noise. When the signal is assumed to be a known con-
stant, a sequential solution is obtained. By assuming that the bound is a

random variable, a random test results. Evaluation of this test thus
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requires the statistical moments of the false-alarm rate and power. On
the other hand, if t:he signal is an unknown constant, an estirnatioﬁ-
detection procedure is proposed. Unfortunately, performance evaluation
of the procedure is still an unresolved question. Finally, a set-theoretic
formulation of a vector-signal detection problem is discussed. Again,
estimates of the signal are obtained to make decisions as to whether or
not the signal is present. Since no statistical assumptions are imposed

here, performance can not be evaluated conventionally.

6.2 Future Research

The problem of modifying the sample mean detector (or the linear
detector) using methods of series expansions has been addressed here.
More sophisticated series expansions may be considered to achieve
better approximations and convergence results. As for examnining the
noise skewness on detector performance, the analysis here is based on
large sample size and small skewness assumptions. Other methods may

be used to remove these two assumptions.

The peftormance evaluation for signal detection in bounded noise is
not yet well-resolved. Furthermore, the number of samples required to
terminate the sequential procedure may be large. Some revision of this
scheme will be an interesting problem. Finally, it is the author’s belief
that the set-theoretic formulations discussed in Chapter 5 deserves more
consideration. Failure detection of dynamical systems may be one of the

applications.
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