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L INTRODUCTION

This report demonstrates a method for implementing a wide-band constrained amy proces-

sor using filters possessing both poles and zeros. In section i1, the ides of constrained array pro-

cessing is introduced and an optimal array weighting formula is derived. This optimal weighting

is meant to cancel m-I wideband interference sources incident on an m-element army with a con-

strained look direction. From the optimal weighting formula, it becomes evident that the use of

flters possessing both poles and zeros to perform the frequency-dependent weighting has the

potential for improving the wideband nulling capability of the array. A novel method for adapt-

ing the pole-zero array flters in tap-delay-line form using the LMS or RLS algorithm is presented.

In the remaining put of this section, the issues of look-direction signal bias and stability of the

inverse filter are addressed.

In subsequent sections, a method for adaptively implementing the pole-zero arrqs Alters in

lattice form is detailed. It is shown that the use of an adaptive lattice filter offers a considerable

improvement in the algorithm's speed of convergence. Convergence rate is an important charac-

teristic of an adaptive algorithm. A rapidly converging algorithm eliminates its dependence on

initial conditions and improves its ability to track time-varying scenarios. In adaptive array pro-

cessing, gradient-descent algorithms are widely used because of their simplicity of implementa-

tion. When the input signal autocorrelation matrix R is "elos' to identity, the convergence rate

of a gradient-descent algorithm is as fast as a Newton-deseent algorithm. The convergence rate of

a gradient-descent algorithm is, however, dependent upon the eigenvalue disparity of the R

matrix. On the other hand, lattice algorithms are known to be relatively insensitive to eigenvalue

spread. This insensitivity, along with an otherwise fast convergence capability, should reduce any

concern about the computational complexity of the lattice.

In section M, we present the scalar lattice predictor in the context of speech processing

where it was first introduced. We show that the inverse of a lattice predictor can be implemented

in lattice form and that its stability can be easily checked. We also present the joint-process int-

tice used for estimating one signal based on observations of another signal. Simulations of the

- . *._, . .



algorithm are presented to show its performance under a variety of different input eigenvalue

spreads.

We continue in section IV by presenting the 2-channel lattice predictor and show how it can

be used for equation error pole-zero Altering by embedding the primary and auxiliary inputs into

a multi-channel input. Simulations showing the 2-C lattice predictor performance when there is

an eigenvalue spread are presented.

- In section V, we apply the lattice predictor to a two-element pole-zero army processing

problem. The question of forming an inverse Alter to restore the true output error is solvel via

the computation of an equivalent scalar lattice predictor. To complete this section, antenna pro-

cessing simulations using the pole-zero generalized sidelobe canceler are presented.

In section VI we present an extension of the pole-zero lattice predictor to multi-element

antenna processing. We point out that the computational complexity of such a multivariable

Alter grows as the cube of the dimension of the input vector and directly with the Alter order.

And last, in section VII we present our conclusions and suggestions for future research.
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IL WIDE-BAND ADAPTIVE ARRAY PROCESSING USING POLES AND ZEROS

.I Introduction

Conventional adaptive arrW processing is accomplished by linearly combining the outputs

of tap delay lines attached to each sensor of an array. This type of processing can be interpreted

as using an 'all-sero" filter at each sensor to generate a frequency-dependent magnitude and

phase shift (weighting) over the desired army bandwidth. In this section of the report we present

a new method for performing the frequency-dependent arrfy weighting using filters possessing

both poles and zeros. Adaptation of these Alters is based on 'equation error" rather than on the

usual 'output error'. The method is shown to substantially improve the wideband interference
-

nulling capabilities of the array, providing sharper and deeper nulls. It is expected to be useful in

many seismic, acoustic, and electromagnetic array processing applications.

The sequence of this section is as follows. First we introduce the concept of linearly con-

strained array processing. Then we derive the optimal array weighting required to eliminate m-i

interference sources incident on an m-element array with a constrained look direction. The form

of this optimal weighting is used as motivation for developing an array processor based on pole-

zero Alters. Next, through simulations we show how a combination of both poles and zeros can

substantially improve the approximation of the optimal weighting compared to that obtained

using the conventional all-zero method. Finally, the last part of this section addresses the issues

of look-direction signal bias and inverse filter stability which arise because the true output error is

not being minimized.

2.2 Constrained Array Processing

A constrained array processor such as the one proposed by Frost [1, operates in an environ-

ment where a single desired signal is incident upon an array from a known direction and several

interferonce signals are incident from unknown directions. The objective of a Frost array proces-

sor is to minimize the response of the array in the direction of the interference signals while leav-

ing the response in the look direction unaltered. A block diagram of the Frost array is shown in
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Figure 2.1. Throughout this paper Z-transform notation is used to indicate a fixed linear digital

filter. To convert from the Z-domain into a function of frequency, the substitution z=e i" is

made. The look-direction signal is assumed to be perpendicular to the aay axis while interfer-

ence signals are incident from other unknown directions. If the look direction is not perpendicular

to the array axis, alignment filters usually in the form of steering delays can be added to cause

the look-direction signal to appear in time coincidence at the output of each delay. Such a sys-

tem is referred to as a signal-aligned array [21. After alignment, the signals are passed through

linear filters and then summed to form the array output. Because the look-direction signal

appears identically at the input to each array filter, it will experience a response through the

array determined by the sum of all the array filters. In order to maintain an undistorted response

in the look-direction, this sum is constrained to be unity. Subject to the constraint, the linear

filters are adjusted to minimize the output power of the array. In this manner, interference sig-

nab are eliminated without distorting the look-direction signal. We now determine the optimal

frequency-dependent weighting required to cancel m-I broadband directional interference sources

incident upon an m-element array. The analysis assumes ideal propagation conditions and negli-

gible thermal noise. Let the Z-transform of the look-direction signal be S(z) and the transform of

the to interference signal be R(z). The look-direction signal appears identically at all sensors of

the array and is desired to appear undistorted at the array output. Maintaining zero distortion in

the look-direction requires that

-
S(Z) W V(z) n S(Z) (2.1)

h-i

Cancelling S(z) from both sides of this equation leaves,

W'(Z)- 1, (2.2)

the look-direction constraint. For simplicity we assume a uniformly spaced linear array. Then

each interference signal will experience a propagation delay, A,, between adjacent sensors that is

determined by the inter-sensor spacing, the speed of propagation, and the arrival angle. Com-

U, opo
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plete cancellation of all interference signals requires that

R,(z) E W,,(z) i-(-I,. 0 for 1 -,2,...,m-1 (2.3)
h-I

Equations (2.1) and (2.3) can be combined and written in matrix form as,

s(s) 1 ... (z)S(z)
1 (,) 0 1 z-A, -(m-I)A1  w(,) o

01z 0 . . . 0• . 2_4y

R.. (z) X -A_-, . . . ,z _ . WOW, 0

By induction, it can be shown that the solution to this set of linear equations is,

W.I -E aft single delaysw.I rl - - L

* I 1 1  Ii(2.5)

Use of this frequency-dependent weighting in a linear uniformly spaced array wm cause all of the

jammers to be completely hulled regardless of bandwidth. However, since the delays are usually

fractional and the frequency resonances caused by the pokls are infinite, an exact rational realiza-

tion of this weighting is not possible. Instead, one must be content with a rational approximation

that is made over a selected bandwidth. Array performance using tapped delay lines operating

over a wide bandwidth has received some attention in the literature. Two key papers are those

by Compton [31 and more recently by Mayhan and Simmons [41.

To gain insight into the frequency response of the optimal weighting, consider the 2-element

single jammer case. When m-2, the optimal weight transfer functions are,

_Z 
-A

W1(s) - z- A  (2.6a)

and

w1 - A (2.6b)
1 - z-
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7igure 2.2 shows the frequency response of the optimal weights. The relevant frequency range

occurs with w between 0 and x and typical values of A range between + 2 and -2 depending upon

the difference in angle between the interference direction and the look direction. The infinite

resonance at zero frequency indicates that it is physically impossible to maintain both unity d.c.

gain in the look direction and a d.c. null in the interference direction. Also as the interference

direction approaches the look direction, A becomes small and the frequency scale of the plot

expands. This causes the zero frequency resonance to dominate the 0 to ; frequency range and

makes approximation of the optimal weights more difficult.

It is informative to compare the set of optimal weight equations given, in (2.4) with the

well-known Wiener equations. When considering the effect of thermal noise on the array output,

it turns out that under certain circumstances, the solution to eqs. (2.4) will perfectly null out the

directional interference sources but at the expense of blowing up the thermal noise. Thus, while

the signal-to-interference ratio is improved, there may be a substantial degradation in the signal-

to-thermal noise ratio. For this reason, it is important to consider the effect of thermal noise in

order to find a compromise between interference nulling and thermal noise suppression. This is

essentially what Wiener theory does in minimizing the overall array output power subject t- a

constraint. It can easily be shown using Lagrange multipliers that the weights which minimize

the mean square output of the array subject to a unity-gain look-direction constraint satisfy the

following equations [Il,

1 I
R-(z)W(Z) = ii1. R (2.7)

1 1

The mzm matrix R,,(z) is the spectral covariance matrix of the array signals after alignment and

W(z) is the vector of the optimal frequency-dependent weights.
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Figure 2.1 block diagram of a Frost array with unity gain look-direction constraint.

I~e.too

NORMALIZED FREQUENCY -rNORMALIZED FREQUENCY A1

Figure 2.2 Frequency response of optimal array weights for a two-element Frost array with a
single interference source incident on the array. The jammer arrival angle and
sampling rite determine the intersensor delay A. (a) Sensor 1 (b) Sensor 2.



To connect this set of equations to the set given in (2.4), let (2.4) be more concisely written as,

A(s).W(s) -(2.8)

00

-*~ ~ ~ ~ Te By ltp tin si(z) o2 and by R(z)s the goer pcr fsainr tcatcsgas h

A~jz'A~z)- Riz) .(2.0)

0, 1

Therore eqi .9 can sl be wrinttena,1

R,(z-)Wz 15(Z) 12. .(.2

Since eqs. (2.4) were assumed to be satisfied, it now follows that

- IS(z)12 (.3
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Thus with no thermal noise, eq. (2.4) i equivalent to the Wiever solution given in eq. (2.7).

- 2.3 Alternate Implementatlon of a Frost array procesr

- To simplify the adaptivity issue, we introduce an alternate constrained army processing

structure first discussed by Applebaum and Chapman IJ and more recently shown to be

equivalent to a Frost array by Griffiths and Jim 161. A block diagram of this structure is shown

in Fig. 2.3. The basic ides is to remove the look-direction signal from the adaptive process x-

input. This makes it impossible for the adaptive process to cancel signal components from the

array output by subtraction. Interference signals appear in both the x and d inputs and can

" therefore be canceled from the output. Transformation between the two arrsy processors i

-' . readily seen to be,

W1(z) HA S II(:)
W,48) 1 1 1 0 (z)

(2.14)

0 .1
F...Wi(z) ,1 -1, .m-(z)

For the m--2 case, this set of equations becomes,

W0) - 1/t - H()
W,) - i/s + 11(z) .(2.16)

Solving for H(z) gives,

H(S) - 1/2 lW2()- w(z)I , (2.16)

and the optimal filter formulas of Eq (2.6) reduce to,

1 + zA_ .) (2.17)

2.4 Slmulatlon of a two-element Frost array processor

Figure 2.4 compares the frequency response of the converged Frost array flters with the fre-

quency response of the optimal weighting. The interference signal had a 100% relative bandwidth
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and an arrival angle of 45 degrees. The array consisted of two elements and the array Alters each

had 4 zeros. The cross-hatched dark lines indicate the optimal frequency response plotted over

the bandwidth of the interference. The continuous curve represents the frequency response of the

4-zero Frost array filter. If the relative bandwidth were small enough, the optimal frequency

response would need to be matched in magnitude and phase at only a single frequency. Such a

response could easily be realized using one complex weight as is the case in most narrowband

adaptive arry systems. In this paper, however, we are concerned with performance over a wide

bandwidth. Figure 2.6 shows the broadband antenna pattern formed by averaging narrowband

patterns over the frequency range of the interference signal. The average gain in the direction of

the interference is 20 dB below the signal. As more weights are added to the array filters, approx-

imation of the optimal weight frequency response will become more accurate and the null depths

will become deeper.

2.5 A pole-swo Frost array proeesor

Aside from adding more taps to the array filters, another way to improve the array perfor-

mance is to use filters possessing both poles and zeros. In Fig. 2.2, we see that the optimal weight

frequency response contains infinite resonances at the frequencies n 'v/A. Such resonances are

better approximated with filters having both poles and zeros than with zeros alone. In the next

section, we introduce a method for adapting an array processor which has arry filters possessing

both poles and zeros.

Development of an adaptive algorithm to adjust combined pole-zero filters has been the sub.

ject of much research, but has met with only limited success. The reason for this is that the

mean square error function associated with the pole-zero filter is nonlinear and possesses local

minima. This complicates the problem of finding the global minimum of the mean square error.

This problem does not arise in an all-zero adaptive filter since the mean square error function is

quadratic in the weights and the unique minimum can be found by solving a set of linear equa-

tions.
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(a) (b)

Figure 2.4 Frequency response of optimal array weights (cross-hatched marks)
compared to 5 weight approximation from a Frost array.
(a) Sensor 1 (b) Sensor 2.
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Figure 2.5 Nulling performance
* of a converged Frost hrray.

(a) Broadband antenna pattern,
(b) frequency response in signal

_______________________________ direction, (c) frequency response
in interference direction.
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Our approach bypasses many of the problems usually associated with pole-zero adaptive

filters. It involves a reformulation of the error function in a manner which allows the polynomial

associated with the poles of the adaptive filter to be adapted in an all-zero form. This restores

the quadratic nature of the minimization problem to that encountered in the aU-zero case and

allows easy adaptation using Least Mean Square Algorithm (LMS), the Recursive Least Squares

". Algorithm (RLS), the sample matrix inversion algorithm (SMI), or any other least-squares algo.

*--: rithm. Refer to Fig. 2.6 and assume for the moment that the linear filters are time invariant.

Then the transfer function from point d to the output is unity since the all-pole and all-zero filters

cancel. This combined with the fact that the look-direction signal does not appear in the Zs

inputs allows the look-direction signal to pass through the array undistorted. The transfer func-

tion~ ~ ~ ~~~~i frmpit3 oteotuw B(z)
in from point to the output is + s(z) ad contains both poles and zeros. Instead of

minimizing the overall array output, we minimize the signal appearing at the input to the all-pole

filter. In the control literature this signal is often referred to as the equation error. By minimiz-

ing the equation error, we are able to adapt only all-zero filters, yet effectively realize a pole-zero

filter response.

To convert the system of Fig. 2.6 into a system which uses constrained adaptation, observe

that the transfer function from sensor k to the output is given by,

. [1+ z-A(z)l - B(z) + Bi.,(z)

1+ z-'A(z) (2.18)

where Bo(z) - B,(z) - 0. It turns out that eq. (2.18) can be equivalently written as,

Wk - +Z (Z) (2.19)

where "k I and the Nb' (z) are unconstrained. This leads to the alternate structural
il

implementation shown in Fig. 2.7. The similarity between this system and the Frost system

shown in Fig. 2.1 is apparent. Instead of constraining the sum of all the filters to be unity, only

the sum of the first coefficients has been constrained. A look-direction signal will experience a
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U.,

SENSORS

figure 2.7 Alternate realiaion of a pole-zero array processor

with unity gain look-direction constraint.
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transfer function from input to the adaptation error point of

1 + Z-1 Nh'(z) (2.20)
k=1|

This response is inverted by the all-pole output filter to generate the array output and restore the

look-direction constraint.

2.6 Slmulatlon of the pole-nwo Frost array processor

Figure 2.8 compares the frequency response of the optimal weight at each sensor with the

"" frequency response of the converged 2 pole - 2 zero filter obtained using the proposed pole-zero

adaptive array processor. As in the previous simulation, the interference source had a 100% rela-

tive bandwidth and an arrival angle 45 degrees off the look direction. Notice the improvement of

this response over the all-zero response plotted in Fig. 2.4. For further comparison, Fig. 2.9

shows the broadband antenna pattern and the frequency response of the array in the signal and

interference directions. The interference null is about 40 dB below the look-direction gain. This

represents a 20 dB improvement over a conventional Frost system having the same number of

degrees of freedom. Fig. 2.10 compares the nulling capabilities of the conventional Frost and the

pole-zero Frost as a function of jammer arrival angle. Notice that as the jammer arrival angle

approaches the look direction, the null depth goes to 0dB because of the unity gain look-direction

constraint.

2.7 StabIlity of the Inverse filter

One issue yet to be addressed is that of stability of the inverse filter. In some situations, it

is possible that the roots of the polynomial associated with the inverse filter can move outside the

unit circle. When this occurs, the inverse filter will become unstable and its output will begin to

grow unboundedly. A solution with poles outside the unit circle represents a stable but noncausal

filter and can only be realized by noncausally processing the input data. Since noncausal process-

ing is not an available option when operating in realtime, pole polynomials with roots outside the

unit circle must be avoided.

The method we propose for keeping all the pole polynomial roots inside the unit circle

..---------.------------ M
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Figure 2.8 Comparison of frequency response of optimal array weights (cross-hatched marks)
with a 2 pole -2 zero approximation. (a) Sensor I (b) Sensor 2.
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- Figure 2.9 Nulling performance of ajc pole-zero Frost array. (a) Broadband
(b) zantenna pattern, (b) frequency response
(b) Z in signal direction, Wc frequency
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involves the addition of a bulk delay in the desired response path of Fig. 2.6. Increasing the bulk

delay causes the roots of the converged solution to lie closer to the origin. Choosing a delay too

large will cause the resulting solution to lose quality and is not desirable. Choosing a delay too

small will result in a noncausal solution and an unstable inverse filter. The idea is thus to choose

the smallest delay which causes all the roots to lie within the unit circle.

In the example shown in Fig. 2.9, the converged solution was stable and bulk delay was not

required. In fact, all of the two-element, single-jammer experiments we simulated turned out not

to require any bulk delay. However, the three-element, two-jammer cases tried required one unit

of bulk delay in order to keep the poles within the unit circle.

Currently, we are experimenting with several on-line methods for adaptively choosing the

bulk delay. A brute force technique is to have a series of systems all operating on the same input

data but each using a different delay. A simple criterion is used to choose the stable system hav-

ing the smallest delay. Another technique is to use a single system with a variable delay which is

incremented or decremented depending on the stability of the pole polynomial.

2.8 Look-dIrectlon signal blas

The Wiener solution of the conventional Frost array is not affected by the presence of a

look-direction signal. This is readily apparent by referring to Fig. 2.3 and noting that the x-input

does not contain look-direction signal. Therefore the look-direction signal cannot contribute to

either the cross-correlation between the desired-response input d and the x-input or the autocorre-

lation of the x-input. The Wiener solution of the pole-zero Frost array is, however, affected by a

look-direction signal. In this section, we demonstrate the extent of this effect and describe a

modification of the pole-zero array which eliminates the dependence of the Wiener solution on the

look-direction signal.

First, it should be noted that in situations where adaptation can be controlled so that it

occurs only when the look-direction signal is not present, the problem of the look-direction signal

disturbing the Wiener solution will not exist. This is the case in many radar or spread-spectrum
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applications where the desired signal is pulsed or sequenced in a manner which is known to the

receiver. In many continuous communication systems or seismic systems, the desired signal is

continuous and an alternate solution must be found.

To demonstrate the effect of the look-direction signal on the Wiener solution of the pole-

zero Frost array, refer to Fig. 2.6 and assume that the only source of signal comes from the look

direction. In this condition, the x-input will be zero and the d-input will contain only signal. The

1+ z-'A(z) filter will act as a linear predictor and try to reduce the look-direction signal power.

If the signal were narrowband, the predictor would form a notch filter at the signal frequency.

This transfer function would theoretically be inverted by the inverse output filter to restore the

look-direction signal at the array output so signal distortion is not the issue. The main concern is

that degrees of freedom will be used in attempting to internally null the look-direction signal and

thus cause a reduction of the interference nulling capabilities of the array. This effect is referred

to as look-direction signal bias.

One method for alleviating the look-direction signal bias problem is shown in Fig. 2.11. The

method is based on an idea proposed by Duvall for curing signal cancellation in adaptive arrays

[7,8J. For simplicity, we have shown only a three-element example. The basic idea is to process

the set of signals from the sensors in a manner which eliminates the look-direction signal but

which keeps the phase relationships among the new set of signals the same as that prior to pro-

cessing. The processed set of signals is fed into an adaptive "master" array where the Wiener

solution will not be affected by the look-direction signal. The weights of the master array can be

copied into the "slave" array which operates on the original signal set. Because of the preserva-

tion of phase, nulls formed using the slaved array will be in the same directions as those formed

in the master.

To analyze the effect of preprocessing on the Wiener solution, we define an effective interfer-

ence environment that ivcorporates the preprocessor into the interference sources. Each interfer-

ence source will experience an angle-dependent frequency transformation when passed through the

preprocessor. The frequency response of this transformation is determined by the subtraction of

~.
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Figure 2.11 Method or eliminating bias in Wiener solutionI

* due to look-direction signal.
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signals appearing at adjacent sensors.

Again we assume that the array of sensors is linear and uniformly spaced. A directional

interference source will experience a delay, A, between two adjacent sensors that is determined by

the arrival angle. The frequency response of the top subtractor in the preprocessor is given by

H(w&A) 1 - ej
.

A  (2.21)

Proceeding down the array, each subtractor will give this same response aloug with an additional

delay. The idea is to use the H(w) transformation to modify the interference source and concep-

tually eliminate the preprocessor from the array. As the interference angle approaches the look

direction, the magnitude of the transfer function goes to zero. Thus, the look-direction signal will

be removed and an interference source appearing off the look direction will be somewhat

attenuated and high-pass filtered. In this manner, the preprocessor affects the Wiener solution by

modifying the weighting applied to the interference source.

~1
Iw
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1.3 THE SCALAR LEAST-SQUARES LATTICE FUTER

3.1 Introduction

Lattice filters were first introduced as a means of predicting speech signals. Work on linear

prediction of speech using partial correlation techniques to whiten or decorrelate the input ori-

ginated in 1969 191. Since then the range of applications for lattice filters has broadened to

include joint-process estimation 1101, signal enhancement [111 and equalization 112). The least-

squares lattice filter that we are now presenting was first used by Satorius and Pack 1121 in the

equalization context. The most interesting properties of the filter are presented here.

We begin by presenting the orthogonality principle of linear least-squares estimation and its

application to the lattice predictor. Next, we present the lattice predictor first used for analyzing

speech by decomposing it into a set of orthogonal components. We continue with the structure of

the inverse of the analysis lattice, also known as the synthesis lattice in speech processing. We

also give the necessary and sufficient conditions for the stability of that inverse filter. Next, we

present the joint-process lattice for estimating a desired signal given an auxiliary one. Last, we

present simulations of the parallel modeling of an unknown all-zero filter using the joint-process

lattice.

3.2 Prediction and the orthogonality principle

As illustrated in Fig. 3.1, the forward prediction problem is that of estimating the next sig-

nal value z(n) given Ml of its past values, from z(n-M) to x(n-1). Likewise, backward predic-

tion involves estimating the past value z(n-M-1) of the signal given M of its more immediate

past values 1131.

In the case of least-squares estimation, the orthogonality principle [141 states that by view-

ing the signal samples as elements of a vector space, the least-squares estimate of a sample is

found by projecting it onto the subspace formed by the observed past M samples. As a result,F. not only is the current estimation error (also known as the residual or innovation) orthogonal to

the past tl samples but it is also orthogonal to all past M estimation errors. Fig. 3.2 illustrates



that orthogonality principle.

3.3 The Lattice Predictor

As shown in Fig. 3.3, the forward residuals f.'s are recursively formed by subtracting a

linear combination of the past M samples of the input from the current sample z(n). Likewise

the backward residuals b.,'s are formed by subtracting a linear combination of the same M sam-

ples from the oldest sample :(n-M). The values of the linear combination are determined by the

reflection coefficients h.'s and gi's to minimize the weighted sum of f.2 and the weighted sum of

b..

Two properties are worth mentioning at this point. First, from the orthogonality principle,

each innovation f is orthogonal to any other innovationf. Likewise the backward innovations

b's are orthogonal to each other.

The second property concerns the roots of the transfer functions from x to f and from z

to bt. We can consider those forward and backward prediction errors i..(n) and b.(n) to be the

output of two filters F.(z) and B.(z) fed with the same input z(n). Providing that h. - p.,

(that occurs with stationary inputs) the polynomials F. and B. have roots that are inverse of

each other 1131 namely,

F.(z)-O <-> BI.4Lj O

Equivalently, we can conclude that F.(z) has the same coefficients as B.(z) but in reverse

order.

3.4 Inverse of a lattice predictor

Thus far it seems that we have not really estimated the current sample z(n) of a signal

since we have assumed its availability to construct the lattice predictor. The answer to that argu-

ment has some historical aspects.

Part of the natural process of speech generation is often found to be adequately modeled by

an all-pole filter 1/A(z) fed with white noise [131. If we use that speech as the input to a lattice
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Backward Prediction
x(n-M-1) ?

X (n-AI)
Forward Prediction

zk (n-1)

M A samples observed +

Fig. 3.1. Forward and backward predictions [after Markel and
Gray].

z (n)

0 -,-- (n-i) N. r

r I

- --- (n--M) If-

Fig. 3.2.
t(n)J..xz(n -1). x (n -2), => e(fl)..L (li..
c(n) is the current estimation error or residual error. It is also

*known as the innovation as it represents the part of x(n) that
does not belong to the subspace spanned by its past values, i.e.
the part that really Is new.
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predictor, the forward innovation fj, will be white noise providing that the order M is sufficient.

Thus, the lattice transfer function from x to fm is A (s), an estimate of the true filter denomina-

tor. The process of estimating A(z) is known as speech analysis 1131. Eventually, we can syn-

thesize part of the speech by feeding white noise into an inverse filter 1/A(z) which is an esti-

mate of the vocal tract transfer function as shown in Fig. 3.4.

Thus the complete prediction process involves taking the inverse of an all-zero filter. We

now show that the inverse can be implemented in a structure that is very similar to that of a lat-

tice.

We recall that the lattice recursions are

f.(n) - f._,(n) + to b...-1) (3.1)
.() - h. f.-I () + b._ (n-1) (3.2)

Since we are interested only in having f.,- s in terms of f., let us rewrite (3.1) leaving (3.2)

unchanged

l-I(f) - .O.( )- . b._(n-l) (3.3)

b.(n) - fm ,- 1(") + b._.(n-1) (3.2)

These recursions can be implemented as shown in Fig. 3.5 resulting in a structure having an

interesting similarity with the analysis filter.

3.5 Necessary and sufficient etabllty condltow for the Inverse

Although the experiment described in Fig. 3.4 clearly involves a stable I1/A(z) filter, there

are applications in which it is important to check the invertibility of the lattice predictor. For

example in pole-zero filtering using the equation error, it is necessary to invert the filter in order

to restore the true output error.

Neceuesry conditions

We recall that the lattice recursion can be written in terms of the polynomials F(z) and

B(:) corresponding to the forward and backward time innovations, namely the forward

! •
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Fig.3.3. Lattice predictor. The .fms are the forward prediction
errors and the bm 's are the backward prediction errors. The
reflection coefficients h,,'s and gm.'s are updated to minimize both
the weighted sum of f 2 and the weighted sum of b 2

Vocal Tract Model Lattice Predictor

iii Analysis

whitenois A seech Synthesis

Fig. 3.4. Speech synthesis process. The speech generation model is
first identified by an analysis lattice predictor. An inverse is then
formed which yields the speech when fed with white noise.
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innovation is updated Fas .. (: *SBn.iZ 34

Writing F.(z) in terms of its roots p., gives

1(I - p*j z-1) - P.-4(s) + p. z-1 B.-4 (z) (3.5)

The initial conditions for the recursion are Fo(z) -Bo(z) -1. Thus for mn>

order [F..z(z)]5 < r-1

and

order [B.-i.(z)J m r-1 order 1z1 B.-..(zj < M

Thus the highest degree polynomial on the right-hand side of (3.4) is x1 B..(z). Furthermore,

the coefficient of the highest power of z-1 in a 1 B.-..(z) is 1. Equating the coefficients of the

highest degree terms of both (3.4) and (3.5) gives

H (-..~)~9.(3.6)

Evaluating the magnitude of both sides of (3.6) givesP

* Thus if the roots p.j have magnitude less than 1, the product of those magnitudes is less than 1

implying that the magnitude of the reflection coefficientg,. be less than 1 too. A necessary condi-

tion for the roots of the end-polynomial FM(S) to be within the unit circle is therefore

10

L.stable- I'M <1I
7. (z)JKSufficient conditions

Using a more complete analysis, Markel and Gray 1131 were able to show that for equal

reflection coefficient* a necessary and sufficient condition for the stability of I/lFM(S) is that the
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relection coercients for all stages be of magnitude less than 1, namely

Fz stable <- 1, 1,2,...,M

where

~~ks -- g. - r

That requirement of equal reflection coefficients is not necessarily stringent since in practice

an equivalent lattice predictor meeting that condition is computed before stability can be checked

(see section V).

3.6 Jolut-proem lattice

The situation often arises in signal processing when we want to filter one signal to identify

another signal or to remove any correlation of it with the former one. The fAltering of z to get an

estimate of d can be done by the joint-process lattice of Fig. 3.8. The backward innovations b.

are used as a basis on which the desired signal d is decomposed. The gains s's are determined

so as to minimize the sum of the 4. Also because of the orthogonality, it is possible to first esti-

mate d with v0 b0 yielding an error e0 which is then estimated by iP1 b, yielding an error c, etc.

Last, because of the whitening that is taking place, we expect the joint-process lattice to

exhibit a convergence rate that is independent of the :-input eigenvalues.

3.7 Simulations

The simulation context is the parallel modeling of an unknown all-zero filter,

B(z) 1 + 2z-i + 4z' + 2z 4 + x". The joint-process lattice is fed with the same input as

the unknown filter and the output of the lattice is the desired signal of the lattice.

To minimize any initial conditions elect, we do not look at the convergence of the lattice

from its start-up. Rather, we wait for the weights to converge then inject an impulse as a distur-

bance at the output of the unknown filter. Our criterion is therefore the time it takes to reject

that disturbance.

Furthermore, to truly evaluate the convergence time, the simulations are noise-free, yielding

-L- - . - , _ - -• . ; i - . , i . . . .. . ... .
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Inut fu luf ao z output

AM hA 1

I 2.1
Fig.3.S Implementation of an inverse filter given the reflection
coefficients hm, and g,,n of the analysis filter. Note that only the
upper path of the analysis filter is reversed. Also, note the sign
inversion on the gm,'s.

SM1

d 1 CO 1 M-1 E

Fig. 3.6
Joint process lattice to estimate one signal given another.
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a minimum mean-square error of the order of -100 dB. It is understood that in actual applica-

tions the noise level is much higher. For evaluation purposes however, only a noise-free environ-

ment makes the algorithm exhibit its full convergence potential.

Fig. 3.7(a) and 3.7(b) show the mean-square error of the joint-process lattice for an input

eigenvalue ratio of I (white noise) and 10 respectively. As expected, the convergence time

remains essentially constant.
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IV. POLE-ZERO FILTERING USING A TWO-CHANNEL LATTICE PREDICTOR

4.1 Introduction

In this section, we present a novel approach to adaptive pole-zero Oltering. We show that

the equation-error method can be implemented using a two-channel (2-C) lattice predictor. We

begin by presenting the 2-C lattice predictor as an extension of the scalar predictor discussed in

section III. Next, we reformulate the equation-error approach introduced in previous reports in

terms of linear prediction and then present the equation-error lattice predictor used for pole-zero

filtering. Last, a simulation involving the identification of an unknown pole-zero filter is

presented demonstrating the relative insensitivity of the 2-C lattice predictor to an eigenvalue

disparity.

4.2 The 2-C lattice predictor

The scalar lattice predictor presented in section II can be generalized to a multi-

dimensional lattice predictor when the process to be whitened is itself multi-dimensional. The

algorithm is detailed in [151. For the moment, we restrict ourselves to considering only the 2-C

case. The multi-dimensional case is donsidered in section V for multi-element antenna array pro-

cessing.

Given a vector

*X
the lattice predictor constructs a sequence of forward and backward innovation vectors

* I"~ (~:Iand b_

In particular, f') (see Fig. 4.1) is the forward prediction error of x, gi the past M values of z,

and z2, namely,

S zl(n) - ...z.(n-1),..., zl(n-M), 2 -1.. z 2(n-M)

Recognizing the forward prediction error as such will allow us to use the 2-C lattice predictor in

PU
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pole-zero array processing.

4.3 Reformulation of the equation error approach

The equation error method has been discussed in detail in reference [161. The objective is to

filter the auxiliary input x with an autoregressive and moving average (ARMA) filter,

B(z) /(1 + z- A (z)), i.e. using poles and zeros so that the output error is minimized (see Fig.

4.2(a)). As shown in the previous reports, the A(z) and B(z) filters can equivalently estimated by

minimizing the equation error between d filtered through (1 + z-A(z)) and x filtered throu , r

B(z) (see Fig. 4.2(b)).

As shown in Fig. 4.2(c), the equation error method can be thought of as the minimization of

the forward prediction error of-d given the past values of d, the current value of z and the past

values of z. This is essentially what a 2-C lattice predictor does.

4.4 Equation-error lattice predictor

We are changing the seemingly scalar problem of pole-zero filtering into a multivariable

problem by embedding the primary and auxiliary signals into a vector.

We recall that in the 2-C lattice predictor, the prediction of any element of the input vector

[:I Z2] is based upon past values of both elements -- or Z2 of that vector. The equation error

approach requires that we also base the prediction of d on the current value of z. Therefore the

d-input needs to be delayed by one in order to obtain a correct prediction as shown in Fig. 4.3.

As in the scalar case, we expect this novel adaptive scheme to be relatively insensitive to

any disparity in the eigenvalues of the input vector. Such a property might be very useful in

some instances. In actual system identification for example, the auxiliary signal z (the input to

the unknown plant) is seldom white thus has an eigenvalue spread. But even if it is, the primary

signal d is nothing but colored since it is the plant output.

.1

~1
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Fig. 4.1- The 2-C lattice predictor, a straightforward extension of
the scalar predictor. The filter whitens a vectorial process X.
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Fig.4.Z
^41 (a) Pole-zero filtering to minimize the output error r.

(b) A(z) and B(z) can be identified by minimizing the equivalent
equation error e'.
(c) Identification of A(z) and B(z) by minimizing the prediction
error which is the same as e'.
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Fig.4.5 Equation error approach using a 2-C lattice predictor of
order M.
The output of the predictor is

.i(n) = d(,)-d(n) d(n-).:.., d(n-M), x(n), .... z(n-M+l)

The transfer function from 1 to 4 and from 3 to 4 identify the poly-
nomials A(z) and B(z) namely,

H14(z) =z-(l + z-A(z)) and H24(z) =z-IB(z).

09

U.

U



-41 -

4.5 Simulations

The simulation context is the modeling of an unknown 4th order Butterworth filter, a filter

with both poles and zeros. The predictor z-input is the input to the Butterworth filter. The

predictor d-input is the output of the Butterworth filter.

As in section 1I, we only look at the time to reject an impulse disturbance at the output of

the unknown filter. By doing this, we minimize the effect of initial conditions. Also, the simula-

tion is noise-free in order to evaluate the fuil convergence potential of the algorithm.

Fig. 4.4(a) and 4.4(b) show the mean square prediction error of the 2-C lattice for an z-

input eigenvalue ratio of 1 (white noise) and 10 respectively.

The convergence time is slightly longer for a ratio of 10 than for pure white noise (650 itera-

tions vs. 550) but it remains very rapid.



-42-

-23

-46

U

C, -06

-L2# p

RCJCCTION TI1MC

(a)

-49I

- 3l I I '

-29

i -f

(a
(b 0

if -63

U

*1 211 6li G3l gl Llll
ACJlCCT ION ?TNC'

(b)

* Fig. 4.4. Disturbance rejection curve of 2-C pole-zero Lattice predic-
..- :tor for an z-input eigenvalue ratio ot
-. ?(a)1 c(b) 10

*, . - . . . - ° -. - . .



- 43-

V. TWO-ELEMENT ANTENNA PROCESSING USING A POLE-ZERO LATTICE

5.1 Introduction

The equation error approach as applied to antenna array processing, requires the formation
of the inverse filter I/I + z 1'A(z)j in addition to the estimation of A(z) and B(z). In this sec-

tion, we first present a way of forming that inverse and checking its stability. Next, we show an

implementation of the pole-zero lattice predictor in the adaptive array configuration presented in

section H of this annual report. By removing the constraints in the antenna adaptive filters, the

equation error array processing structure is suitable for implementation using the rapidly converg-

ing lattice predictor we are considering. Last, we present the simulation results for a wideband

jammer cancellation experiment.

5.2 Inverse of 1 + zs-A(z)

To restore the true output error, we need to be able to invert the 1 + z-'A(z) polynomial,

i.e. the transfer function from 2 to 4 in Fig. 4.1. This requires that H2 4(z) - I + z-A(z) has a

stable inverse. But we need to invert only that transfer function unlike in section II where we

inverted the complete upper path of the forward innovations. Doing this also inverts H34(z) and

thus requires the latter to be minimum-phase. Such a double constraint is certainly sufficient to

ensure the stability of 1/(1 + z-'A(z)) but is not necessary.

A computationally more complex method for checking the stability of the polynomial H24(z)

is to convert it to a scalar lattice form using what is known as the "step-down" procedure 1131.

Then we need only recall that the necessary and sufficient conditions for H24(z) to have roots

within the unit circle is that all reflection coefficients of its lattice implementation be of magni-

tude less than one.

5.3 Pole-swo adaptive lattice for array processing

The array processor shown in Fig. 5.1 is a pole-zero extension of the Griffiths and Jim gen-

eralized sidelobe canceller 161. It is presented in detail in section 2.3 of this report. Any signal
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coming from the look direction is constrained to pass through the array undistorted. The prepro-

cessing of the sensor outputs allows the constraints to be removed from the adaptive algorithm

* - and allows us to use the same lattice predictor as we used in the system identification experiment.

_As suggested previously, a scalar lattice predictor equivalent to 1 + z1 A(z) needs to be

computed and the magnitude of the reflection coefficients checked before an inverse is actually

implemented.

5.4 Simulations

Fig. 5.2 shows the simulation results of the pole-zero adaptive lattice used for a 2-element

antenna. Those results are to be compared with the simulations presented in section 2.6 of this

report.

0.

. . .
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array___ 2- atc

Fig s. I Array processing using a pole-zero adaptive lattice.
Note that the output is delayed by one time unit due to the delay
in the primary input path.
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*1 Fig.S.2. 2-C lattice antenna array.
(a) Broadband antenna sensitivity pattern.
(b) Frequency response in the jammer direction.
(c) Frequency response in the signal direction.
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VI. MULTI-ELEMENT ARRAY PROCESSING USING A POLE-ZERO LATTICE

6.1 Introduction

The use of the equation error approach in multi-element array processing was addressed in

section II of this report. It is summarized here for convenience and in order to demonstrate the

connection to dimensional lattice prediction.

As shown in Fig. 6.1(a), the pole-zero filters B,(z)/(l + x-A,(z)) need to be adjusted to

minimize the output error which is similar to minimizing the equation error shown in Fig..1(b).

Equation error minimization is equivalent to minimizing the prediction error of d given past

values of d, the current values of zr's and the past values of :,'s (see Fig. 6.1(c)).

6.2 Implementatlon of the multi-chamnel pole-swo lattice

Similarly to what was done in the 2-C case, multi-channel pe-zero fltering can be embed-

ded into multi-channel prediction. The implementation of such a predictor in lattice form is

shown in Fig. 6.2. Again, we require that the primary input path have a unit-delay in order to

base the estimation of the primary signal in the current values of the auxiliary signals as well.

6.3 Limitations of the multi-channel pole-zero lattie

Although theoretically appealing, the multi-dimensional pole-zero lattice requires a large

number of computations. In particular, there are 2 [(P + 1) X (P + 1)] matrix inversions each

time a stage is updated where P + I is the total number of lattice inputs.

The forward and backward innovations are updated from order m-1 to order m as follows

[151

I.(n) - f._,(n) + G;.(n-1)b..(n-1)

b.(n) - H.(n-1)f. 1(n) + b._,(n-1)

where the crossover gain matrices G. and H. are computed by

G.(n-l) - 4(n-1)E21 (n-2)
H.(n-1) - K (n-l) ni
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(C)

Fig G.1 Equation error in terms of prediction error
(a) Multi-element array filtering with poles and zeros to minimize
the output error e.
(b) Processing using only zeros to equivalently minimize the equa-
tion error c'.
(c) e 'is in tact the prediction error ot d given past d's, the
current x. s and the past X,'s. The filter A (z) is defined as

A (z) = 1+ f(1+ Z1()

The filters B (z) are defined as

B,,(z) = B(Z) t91 (' +z-'A(z))
q pp
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where the [(P + 1) X (P + 1)] matrices E;,-b and E;!, are the inverses of the minimized sums

of the backward and forward prediction errors respectively. Those inversions take on the order of

PI operations which make the crossover gain computations on the order of p3 operations. The

overall lattice recursion is then dominated by a count on the order of M X p 3 operations where

M is the number of stages. If P is small with respect to M that computational disadvantage may

not be too crucial but if P is large or simply close to M, any improvement in convergence speed

brought by the lattice would be heavily paid in algorithmic complexity.

S4



VII. CONCLUSIONS

In this report, we have presented a new wideband adaptive array processing structure r

Using a derivation of the optimal wideband array weighting function, we conjectured that filters

possessing both poles and zeros should be capable of improving the performance of the adaptive

array. Using the "equation-error" approach, we developed an adaptive method for adjusting the F

poles and zeros of the array filters. Through simulations, we showed that the equation error

approach indeed does improve the nulling capabilities of the array.

Also in this report, we discussed scalar and multi-channel lattice filters. Applications of the

lattice to linear prediction, joint-process estimation, general equation-error pole-zero filtering, and

pole-zero array processing were discussed. The major motivation for the use of lattice filters is

their fast convergence properties. Simulations were presented which confirmed this fact.

The information presented in this report is by no means the final word on equation-error

array processing. Several issues need further consideration a few of which w, are listed below.

Maintaining stability of the inverse output filter is a major issue. Techniques to easily check this

filter possibly using the lattice approach need further investigation. A technique for adaptively

choosing the minimum bulk delay which stabilizes the pole polynomial needs to be further

developed and 3nalyzed. Additional experiments should be conducted with the method presented

for elimination of look-direction signal bias. The algorithm for implementing a multi-channel lat-

4 tice filter should be modified in order to reduce the computational complexity from being propor-

tional to the cube of the number of channels down to the square of the number of channels.

4V

4 P
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