AD-A123 419

UNCLASSIFIED

RESEARCH ON ALGORITHMS FOR ADAPTIYE ARRAY ANTENNAS(U3
STANFORD UNIY CA DEPT OF ELECTRICAL ENGINEERING
B WIDRGW ET AL. NOV 82 RADC-TR-82-297 FBBSBZEgg-g;gB46

1/1




»

f

-

.

) .

) [N Lt

» N M .r
. ety . K K
. f} s ’ 4
. L K )
’ R, '

N » !

‘ ;! ‘.
¥ ‘ N .

. : \ :
' v N
!’ o v r
i ) N B -
i

v
]

L4
)
1
I
.

.

f

* i

[
4-
L .

EE
B EE]

EEE] J3aasai

2 =

[l

flL

B2 s b

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

Q{

o

—

_.
i

-

C e et ey

Py

PR T

RN . 3







RO P o of
HORRTR TS
el .

S

.”‘i{f,fa

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dece Entered)
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
wow TG0VT ACCTINON NG| T RECIPIENT'S CATAL06 NUNREA
|_RADC-TR-82-297 AD -AI23 41
& TITLE (and Subtitte) §. TYPE OF REPORT & PEMOD COVERED
. Interim Report
RESEARCH ON ALGORITHMS FOR ADAPTIVE Feb 81 - Feb 82
ARRAY ANTENNAS 6. PERFORMING ONG. REPORT NUMBER
N/A
BTTE?EEEB 1?45=1::zv1ﬂra:z=r=a==mwo
2 oidrow F30602-80-C-0046
T. AuTruon

10. PROGRAM ELEMENT. PROJECT, TASK

N AND L] "
$. PERFORMING ORGANIZATION NAME AND ADORESS AREA & Womk aN NneE s

Stanford University

Dept of Electrical Engineering 61102F
Stanford CA 94305 23053805

11. CONTROLLING OFFICE NAME AND ADOARESS 12. REPORT OATE
Rome Air Development Center (DCCD) %172%%
Griffiss AFB NY 13441 33

TL MONITORING AGENCY NAME & Asblul(u dilferent from Contrelling Otfiee) 8. SECUYRITY CLASS. (of this repert)

Same UNCLASSIFI
1m:1§§E§Egﬁﬁgﬁmvaﬁmsanﬁmr-

N/A
76. OISTRIBUTION STATEMENT (of (ie Nepers)

Approved for public release; distribution unlimited.

17. OISTRIBUTION STATEMENT (of the sbetract entered in Bleek 30, i diffesent trom Report)

Same

R N————
18. SUPPLEMENTARY NOTES

RADC Project Engineer: John A. Graniero (DCCD)

Yt
19. KEY WORDS (Continue on roverse side if neseesery and identify by bleck number)

Adaptive Systems - Adaptive Arrays
Adaptive Filters . Null Steering
Adaptive Antennas IIR Filters
Lattice Filters
K ABSTRACT (Continue en ¢ o0 side if ary and identify by bleek rumber)

7This report demonstrates a method for implementing a wide-band constrained
array processor using filters possessing both poles and zeros. The idea
of constrained array processing is introduced and an optimal array
weighting formula is derived. This optimal weighting is meant to cancel
m-1 wide-band interference sources incident on an m-element array with a
constrained look direction. From the optimal weighting formula, it

becomes evident that the use of filters possessing both poles and zeros

00 , 35" 1473  oimow or 1 nov 68 1s cesoLETE UNCLASSIFIED
SECTRTTY CUATRFICATION 07 Tt FAGT (hen Dore Enterew

>

bl et ol A os taoam o .

TR D THVSTIA I AIA] e PR

i

s nbomd ol




[

B e o R BB it et et e ‘o e e s o g I et o et " e 1 a0 s S S D gt~ el dren 4 W Ae ot Do e 2on 2
PR -

ssssss

UN IF

SECUMTY CLASSIFICATION OF THIS PAGEThen Deva Entered)
e —

> to perform the frequency-dependent weighting has the potential for
improving the wide-band nulling capability of the array. A novel method
for adapting the pole-zero array filters in tap-delay~line form using
the IMS or RLS algorithm is presented. The issues of look-~direction
signal bias and stability of the inverse filter are addressed.
::ijathod for adaptively 1mplementing the pole-zero array filters in
lattice form is detailed. It is shown that the use of an adaptive
lattice filter offers a considerable improvement in the algorithm's
speed of convergence._

-

e — v —

" An -extension of the pole-zero lattice predictor to multi-element antenna
processing is presented. It is shown that the computational complexity
of such a multivariable filter grows as the cube of the dimension of
the input vector and directly with the filter order.

UNCLASSIFIED

SECURITY CLASSIFICATION OF Tv'® BAGEhen Daca Entered)

A ik L ARANNES v L

ool

it




. . - -, - » - - AL R S N AL R

TABLE OF CONTENTS

- I. INTRODUCTION"

II. WIDEBAND ARRAY PROCESSING USING POLES AND ZEROS

2.1 Introduction

. 2.2 Constrained array processing
2.3 Alternate implementation of a Frost array processor
2.4 Simulation of a two-element Frost array processor
2.5 A pole-zero Frost array processor

2.6 Simulation of the pole-zero Frost array processor

2.7 Stability of the inverse Slter | Assession For ﬂ
: IIIS GRAAI

28 Look-direction signal bias DG IAD e o

Justification
M. THE SCALAR LEAST-SQUARES LATTICE

By

3.1 Introduction | Bistribution/

#v%allability Codes
3.2 Prediction and the orthogonality principle lAvail and/or
Dist Special
3.3 The lattice predictor ﬁ l
3.4 Inverse of a lattice predictor |

3.5 Necessary and sufficient stability conditions for the inverse

3.6 Joint-process lattice

3.7 Simulations
IV. POLE-ZERO FILTERING USING A TWO-CHANNEL LATTICE PREDICTOR
4.1 Introduction

4.2 The two-channel lattice predictor

i
1
:
]

......
........




‘ _3.

43 Reformulation of the equation-error approach J

i - 4.4 Equation-error lattice predictor r
o 3
' 45  Simulations

V. TWO-ELEMENT ANTENNA ARRAY PROCESSING USING A POLE-ZERO LATTICE

5.1 Introduction
L 52 Inverseof \ + s'A(s)

5.3 Pole-zero lattice for array processing

54 Simulations g
VL. MULTEELEMENT ARRAY PROCESSING USING A POLE-ZERO LATTICF

6.1 Introduction

” ¥
DA e AN

6.2 Implementation of the multi-channel pole-zero lattice

6.3 Limitations of the mnlti-chainel pole-zero lattice
VII. CONCLUSIONS

VIII. REFERENCES

s> oy
s LY

..

-

'y L

e - ol

- R
MK

. o

. "‘i

P
N P .
I e

SR AT v e e ol e .
- ., . . . ooy

L S A R D U P " . " e
PR R GRS KV WOl S S YR Y S Y Lol MW N P NPTy Wy WS P S ) - - - al




Lt A T B T Sl S T Ak Tl ol Sl Rl Sadh N Anl flad gl S et BN e e T it Tatar e ian anen e

.4.

L INTRODUCTION

This report demonstrates a3 method for implementing a wide-band constrained array proces-
sor using filters possessing both poles and zeros. In section II, the idea of constrained array pro-
cessing is introduced and an optimal array weighting formula is derived. This optimal weighting
is meant to cancel m-1 wideband interference sources incident on an m-element array with a con-
strained look direction. From the optimal weighting formula, it becomes evident that the use of
filters possessing both poles and zeros to perform the frequency-dependent weighting has the
potential for improving the wideband nulling capability of the array. A novel method for adapt-
ing the pole-zero array filters in tap-delay-line form using the LMS or RLS algorithm is presented.
In the remaining part of this section, the issues of look-:lirection signal bias and stability 61 the

inverse filter are addressed.

In subsequent sections, a method for adaptively implementing the pole-acro array filters in
lattice form is detailed. It is shown that the use of an adaptive lattice filter offers a considerable
improvement in the algorithm’s speed of convergence. Convergence rate is an important charac-
teristic of an adaptive algorithm. A rapidly converging algorithm eliminates its dependence on
initial conditions and improves its ability to track time-varying scenarios. In adaptive array pro-
cessing, gradient-descent algorithms are widely used because of their simplicity of implementa-
tion. When the input signal autocorrelation matrix R is "close” to identity, the convergence rate
of a gradient-descent algorithm is as fast as a3 Newton-descent algorithm. The convergence rate of
a gradient-descent algorithm is, however, dependent upon the eigenvalue disparity of the R
matrix. On the other hand, lattice algorithms are known to be nhﬁ;ely insensitive to eigenvalue
spread. This insensitivity, along with an otherwise fast convergence capability, should reduce any

concern about the computational complexity of the lattice.

In section III, we present the scalar lattice predictor in the context of speech processing
where it was first introduced. We show that the inverse of a lattice predictor can be implemented
in lattice form and that its stability can be easily checked. We also present the joint-process lat-

tice used for estimating one signal based on observations of another signal. Simulations of the
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.5.

algorithm are presented to show its performance under a variety of different input eigenvalue
spreads.

We continue in section IV by presenting the 2-channel lattice predictor and show how it can
be used for equation error pole-zero filtering by embedding the primary and auxiliary inpuﬁ into
a multi-channe] input. Simulations showing the 2-C lattice predictor performance when there is
an eigenvalue spread are presented.

In section V, we apply the lattice predictor to a two-element pole-sero array processing
problem. The question of forming am inverse filter to restore the true output error is solved via
the computation of an equivalent scalar lattice predictor. To complete this section, antenna pro-
cessing simulations using the pole-zero generalized sidelobe cqnceler are presented.

In section VI we present an extension of the pole-zero lattice predictor to multi-element
antenna processing. We point out that the eompilmit;n.al‘éomplexity of such a multivariable
Blter grows s the cube of the dimension of the inpat vector and directly with the fiter order.

And last, in section VII we preseat our conclusions sad sujestiou for future research.
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I1. WIDE-BAND ADAPTIVE ARRAY PROCESSING USING POLES AND ZEROS

2.1 Introduction

Conventional adaptive array processing is accomplished by linearly combining the outputs
of tap delay lines attached to each sensor of an array. This type of processing can be interp:eted
as using an "all-zero” filter at each semsor to gemerate a frequency-dependent magnitude aad
phase shift (weighting) over the desired array bandwidth. In this section of the report we present
a new method for performing the frequency-dependent array weighting using filters possessing
both poles and zeros. Adaptation of these filters is based on "equation error” rather than on the
usual "output error”. The method is shown to substantially improve the wideband interference

nulling capabilities of the array, providing sharper and deeper nulls. It is expected to be useful in

many seismic, acoustic, and electromagnetic array processing applications.

The sequence of this section is as follows. First we introduce the concept of linearly coﬁ-
strained array processing. Then we derive the optimal array weighting required to eliminate m-1
interference sources incident on an m-element array with a constrained look direction. The form
of this optimal weighting is used as motivation for developing an array processor based on pole-
zero fiters. Next, through simulations we show how a combination of both poles and zeros can
substaatially improve the approximation of the optimal weighting compared to that obtained
using the conventional all-zero method. Finally, the last part of this section addresses the issues
of look-direction signal bias and inverse filter stability which arise because the true output error is

not being minimized.

2.2 Constrained Array Processing

A constrained array processor such as the one proposed by Frost [1], operates in an environ-
ment where a single desired signal is incident upon an array from a known direction and several
interfernnce signals are incident from unknown directions. The objective of a Frost array proces-
sor is to minimize the response of the array in the direction of the interference signals while leav-

ing the response in the look direction unaltered. A block diagram of the Frost array is shown in
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Figure 2.1. Throughout this paper Z-transform notation is used to indicate a fixed linear digital
filter. To convert from the Z-domain into a function of frequency, the substitution z==c/* is
made. The look-direction signal is assumed to be perpendicular to the array axis while interfer-
ence signals are incident from other unknown directions. If the look diréction is not perpendicular
to the array axis, alignment filters usually in the form of steering delays can be added to cause
the look-direction signal to appear in time coincidence at the output of each delay. Such a sys-
tem is referred to as a signal-aligned array [2]. After alignment, the signals are passed through
linear €iters and then summed to form the array output. Because the look-direction signal
appears identically at the input to each array filter, it will experience a response through the
array determined by the sum of all the array filters. In order to maintain an undistorted response
in the look-direction, this sum is constrained to be unity. Subject to the constraint, the linear
filters are adjusted to minimize the output power of the array. In this manner, interference sig-
nals are eliminated without distorting the look-direction signal. We now determine the optimal
frequency-dependent weighting required to cancel m-1 broadband directional interference sources
incident upon an m-element array. The analysis assumes ideal propagation conditions and negli-
gible thermal noise. Let the Z-transform of the look-direction signal be S(z) and the transform of
the {® interference signal be R,(z). The look-direction signal appears identically at all sensors of
the array and is desired to appear undistorted at the array output. Maintaining zero distortion in

the look-direction requires that
sts) 5 Wile) = S(s) (2.1)

Cancelling S(z) from both sides of this equation leaves,

El Wi(z) = 1, (2.2)

the look-direction constraint. For simplicity we assume a uniformly spaced linear array. Then
each interference signal will experience a propagation delay, A, between adjacent sensors that is

determined by the inter-sensor spacing, the speed of propagation, and the arrival angle. Com-
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plete cancellation of all interference signals requires that

Ry(2) f: Wi(2) Y w0 for (=12,..,m-1 (2.3) :
Sl .
Equations (2.1) and (2.3) can be combined and written in matrix form as,
.S(z) ] {l -1 1 11 Wi(2) ] PS(Z) t
Ry(2) o 1 78 74 W(z) 0 ;
1 . ..1

o . : . . N

R.-l(z ) 1 z"n-l L. z'(.'l)én-l W~ (l ) ) )

By induction, it can be shown that the solution to this set of linear equations is,

wata) | ]
Wai(2) -3, all single delays
- ‘- m-1 1 i
‘F: [E: (-5 (25)
Wi ] gt e + )

Use of this freqnency-depend-ent weighting in a linear uniformly spaced array will cause all of the
jammers to be completely nulled regardiess of bandwidth. However, since the delays are usually
fractional and the frequency resonances caused by the poles are infinite, an exact rational realiza-
tion of this weighting is not possible. Instead, one must be content with a rational approximation
that is made over a selected bandwidth. Array performance using tapped delay lines operating
over a wide bandwidth has received some attention in the literature. Two key papers are those

by Compton (3] and more recently by Mayhan and Simmons [4].

To gain insight into the frequency response of the optimal weighting, consider the 2-element

single jammer case. When m==2, the optimal weight transfer functions are,

Wyz) = _ g8 (2-6a)
and
Wils) = = _“_A (2.6b)
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Tigure 2.2 shows the frequency response of the optimal weights. The relevant frequency range
occurs with w between 0 and 7 and typical values of A range between + 2 and -2 depending upon
the difference in angle between the interference direction and the look direction. The inBnite
resonance at zero frequency indicates that it is phy.sically impossible to maintain both unity d.c.

gain in the look direction and a d.c. null in the interference direction. Also as the interference

direction approaches the look direction, & becomes small and the frequency scale of the plot
expands. This causes the zero frequency resonance to dominate the 0 to 7 frequency range and

makes approximation of the optimal weights more difficult.

It is informative to compare the set of optimal weight equations given,in (2.4) with the
well-known Wiener equations. When considering the effect of thermal noise on the array output,

it turns out that under certain circumstances, the solution to egs. (2.4) will perfectly null out the

i KIRTOAPI

directional interference sources but at the expeﬁse of blowing up the thermal noise. Thus, while

—dnd

the signal-to-interference ratio is improved, there may be a substantial degradation in the signal-
to-thermal noise ratio. For this reason, it is important to consider the effect of thermal noise in b
order to find a compromise between interference nulling and thermal noise suppression. This is i
essentially what Wiener theory does in minimizing the overall array output power subject t. a
constraint. It can easily be shown using Lagrange multipliers that the weights which minimize 3
the mean square output of the array subject to a unity-gain look-direction constraint satisfy the

following equations [1],

R} W(z) = | L/[l 1R 2.7) 7._:.
R 3

The mzm matrix R,,(z) is the spectral covariance matrix of the array signals after alignment and E

‘W(z) is the vector of the optimal frequency-dependent weights.
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Figure 2.1 Block diagram of a Frost array with unity gain look-direction constraint.
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Then multiply both sides of (8) by AT(z™?) to give,

AT(AG)W(z) = ATz

By interpreting | S(z)|® and | R/(2z)]|? as the power spectra of staiionary stochastic signals, the

matrix AT(z"!)-A(z) can be interpreted as the spectral covariance matrix,

5(z)
0!
o |
-Sizj-

T AT AG) = Ra() .

Also, it can easily be seen that,

[5(2)]
0 i

AT 'T-Js(z)l" j
o

Therefore eq. (2.9) can be written as

Ra(:)W(s) = [S()|%|

IlI

Since eqs. (2.4) were assumed to be satisfied, it now follows that

1

1
[11...1]RI()] | =

| 1

1
15(2)I?

(2.8)

[]
iy ROV By R

(2.9)

(2.10)

(2.11)

(2.12) p
%
;

(2.13)
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Thus with no thermal noise, eq. (2.4) is equivalent to the Wiener solution given in eq. (2.7).

2.3 Alternate implementation of a Frost array processor

To simplify the adaptivity issue, we introduce an alternate constrained array processing
structure first discussed by Applebaum and Chapman [5| and more receatly shown to be
equivalent to a Frost array by Grifliths and Jim [6]. A block diagram of this structure is shown
in Fig. 2.3. The basic idea is to remove the look-direction signal from the adaptive process x-
input. This makes it impossible for the adaptive process to cancel signal components from the
array output by subtraction. Interference signals appear in both the x and d inputs and can
therefore be canceled from the output. Transformation between the two array processors is

readily seen to be,

Wi(s)] 1] N 1] 2t |
W2) - h 11 0 Hy(s)
. 1 1 -1. .
=l N | (2.14)
X ) o .1 )
qu(z ). (1] X -1, !’n-l(‘ )

For the m==2 case, this set of equations becomes,

Wis) = 12 - H(s)
Wys) = y2 + H(z) . (2.15)

Solving for H(z) gives,
H(z) = 12 [Wy(z) - Wy(2)] , (2.16)
and the optimal filter formulas of Eq (—26«) reduce to,

14 24
1-3%

H(z) = 12 (2.17)

2.4 Simulation of a two-element Frost array processor

Figure 2.4 compares the frequency response of the converged Frost array filters with the fre-

quency response of the optimal weighting. The interference signal had a 100% relative bandwidth
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and an arrival angle of 45 degrees. The array consisted of two elements and the array filters each
bad 4 zeros. The cross-hatched dark lines indicate the optimal frequency response plotted over
the bandwidth of the interference. The continuous curve represents the frequency response of the
4-zero Frost array filter. If the relative bandwidth were small enough, the optimal frequency
response would need to be matched in magnitude and phase at only a single frequency. Such a
response could easily be realized using one complex weight as is the case in most narrowband
adaptive array systems. In this paper, however, we are concerned with performance over a wide
bandwidth. Figure 2.5 shows the broadband antenna pattern formed by averaging narrowbaad
patterns over the frequency range of the interference signal. The average gain in the direction of
the interference is 20 dB below the signal. As more weights are added to the array filters, approx-
imation of the optimal weight frequency response will become more accurate and the null depths

will become deeper.

2.8 A pole-zero Frost array processor

Aside from adding more taps to the array filters, another way to improve the array perfor-
mance is to use filters possessing both poles and zeros. In Fig. 2.2, we see that the optimal weight
frequency response contains infinite resonances at the frequencies nx/A. Such resonance: are
better approximated with filters baving both poles and zeros than with zeros alone. In the next

section, we introduce a method for adapting an array processor which has array fllters possessing
both poles and zeros.

Development of an adaptive algorithm to adjust combined pole-zero filters has been the sub-
ject of much research, but has met with only limited success. The reason for this is that the
mean square error function associated with the pole-zero filter is nonlinear and possesses local
minima. This complicates the problem of finding the global minimum of the mean square error.
This problem does not arise in an all-zero adaptive filter since the mean square error function is
quadratic in the weights and the unique minimum can be found by solving a set of linear equa-

tions.
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E Our approach bypasses many of the problems usually associated with pole-zero adaptive
.

h filters. It involves a reformulation of the error function in a manner which allows the polynomial
- associated with the poles of the adaptive flter to be adapted in an all-zero form. This restores

the quadratic nature of the minimization problem to that encountered in the all-zero case and

allows easy adaptation using Least Mean Square Algorithm (LMS), the Recursive Least Squares
Algorithm (RLS), the sample matrix inversion algorithm (SMI), or any other least-squares algo-
rithm. Refer to Fig. 2.6 and assume for the moment that the linear filters are time invariant.
Then the transfer function from point 4 to the output is unity since the all-pole and all-zero filters
cancel. This combined with the fact that the look-direction signal does not appear in the z,

inputs allows the look-direction signal to pass through the array undistorted. The transfer func-

By(z) i
1+ z7A(z)

tion from point z, to the output is and contains both poles and zeros. Instead of

minimizing the overall array output, we minimize the signal appearing at the input to the all-pole

filter. In the control literature this signal is often referred to as the equation error. By minimiz-
ing the equation error, we are able to adapt only all-zero filters, yet effectively realize a pole-zero

filter response.

To convert the system of Fig. 2.6 into a system which uses constrained adaptation, observe

that the transfer function from sensor k to the output is given by,

Tln. {1+ 272A(2)] - Bi(2) + By_y(2)

W, 2.18
ie) = 1+ z71A(2) (218)
where By(z) == B,(z) == 0. [t turns out that eq. (2.18) can be equivalently written as,
.- mo + Ny (2)
. . W, - 2.19
e (2) 1+ 27'A(z) (2.19)
- ™
where Y nyo == 1 and the N,'(z) are unconstraived. This leads to the alternate structural
.‘_'.": km)
L 2
- implementation shown in Fig. 2.7. The similarity between this system and the Frost system

shown in Fig. 2.1 is apparent. Instead of constraining the sum of all the filters to be unity, only

e the sum of the first coeflicients has been constrained. A look-direction signal will experience a
7. -
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transfer function from input to the adaptation error point of

14 21 fj N (2) (2.20)
b=l

This response is inverted by the all-pole output filter to generate the array output and restore the

look-direction constraint.

.2.0 Simulation of the pole-sero Frost array processor

Figure 2.8 compares the frequency response of the optimal weight at each sensor with the
frequency response of the converged 2 pole - 2 zero filter obtained using the proposed pole-zero
adaptive array processor. As in the previous simulation, the interference source had a 100% rela-
tive bandwidth and an arrival angle 45 degrees off the look direction. Notice the improvement of
this response over the all-zero response plotted in Fig. 2.4. For further comparison, Fig. 2.9
shows the broadband antenna patiern and the frequency response of the array in the signal and
interference directions. The interference null is about 40 dB below the look-direction gain. This
represents a 20 dB improvement over a conventional Frost system having the same number of
degrees of freedom. Fig. 2.10 compares the nulling capabilities of the conventional Frost and the
pole-zero Frost as a function of jammer arrival angle. Notice that as the jammer arrival angle
approaches the look direction, the null depth goes to 0dB because of the unity gain look-direction

constraint.

2.7 Stablilty of the inverse filter

One issue yet to be addressed is that of stability of the inverse filter. In some situations, it
is possible that the roots of the polynomial associated with the inverse filter can move outside the
unit circle. When this occurs, the inverse fiiter will become unstable and its output will begin to
grow unboundedly. A solution with poles outside the unit circle represents a stable but noncausal
filter and can only be realized by noncausally processing the input data. Since nomcausal process-
ing is not an available option when operating in realtime, pole polynomials with roots outside the

unit circle must be avoided.

The method we propose for keeping all the pole polynomial roots inside the unit circle
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Figure 2.8 Comparison of frequency response of optimal array weights (cross-hatched marks)

with a 2 pole - 2 zero approximation.
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involves the addition of a bulk delay in the desired response path of Fig. 2.6. Increasing the bulk
delay causes the roots of the converged solution to lie closer to the origin. Choosing a delay too
large will cause the resulting solution to lose quality and is not desirable. Choosing a delay too
small will result in a noncausal solution and an unstable inverse filter. The idea is thus to choose

the smallest delay which causes all the roots to lie within the uait circle.

In the example shown in Fig. 2.9, the converged solution was stable and bulk delay was not
required. In fact, all of the two-element, single-jammer experiments we simulated turned out not
to require any bulk delay. However, the three-element, two-jammer cases tried required one unit

of bulk delay in order to keep the poles within the unit circle.

Currently, we are experimenting with several on-line methods for adaptively choosing the
bulk delay. A brute force technique is to have a series of systems all operating on the same input
data but each using a different delay. A simple criterion is used to choose the stable system hav-
ing the smallest delay. Another technique is to use a single system with a variable delay which is

incremented or decremented depending on the stability of the pole polynomial.

2.8 Look-direction signal blas

The Wiener solution of the conventional Frost array is not affected by the presence of a
look-direction signal. This is readily apparent by referring to Fig. 2.3 and noting that the x-input
does not contain look-direction signal. Therefore the look-direction signal cannot contribute to
either the cross-correlation between the desired-response input d and the x-input or the autocorre-
lation of the x-input. The Wiener solution of the pole-zero Frost array is, however, affected by a
look-direction signal. In this section, we demonstrate the extent of this eflect and describe a
modification of the pole-zero array which eliminates the dependence of the Wiener solution on the
look-direction signal.

First, it should be noted that in situations where adaptation can be controlled so that it
occurs only when the look-direction signal is not present, the problem of the look-direction signal

disturbing the Wiener solution will not exist. This is the case in many radar or spread-spectrum
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applications where the desired signal is pulsed or sequenced in a manner which is known to the

B TN

receiver. In many continuous communication systems or seismic systems, the desired signal is

continuous and an alternate solution must be found. 7
To demonstrate the eflect of the look-direction signal on the Wiener solution of the pole- ;

zero Frost array, refer to Fig. 2.6 and assume that the only source of signal comes from the look J

direction. In this condition, the x-input will be zero and the d-input will contain only signal. The j

1+ z71A(z) filter will act as a linear predictor and try to reduce the look-direction signal power.

If the signal were narrowband, the predictor would form a notch filter at the signal frequency. ,-4

This transfer function would theoretically be inverted by the inverse output filter to restore the

look-direction signal at the array output so signal distortion is not the issue. The main concern is

that degrees of freedom will be used in attempting to internally null the look-direction signal and
thus cause a reduction of the interference nulling capabilities of the array. This effect is referred

to as look-direction signal bias.

’ .
!;-A..- Aol

One method for alleviating the look-direction signal bias problem is shown in Fig. 2.11. The

method is based on an idea proposed by Duvall for curing signal cancellation in adaptive arrays

[7.8]. For simplicity, we have shown only a three-element example. The basic idea is to process

the set of signals from the sensors in a manner which eliminates the look-direction signal but d

which keeps the phase relationships among the new set of signals the same as that prior to pro-

S it A

cessing. The processed set of signals is fed into an adaptive "master” array where the Wiener

't -
ok s

solution will not be affected by the look-direction signal. The weights of the master array can be

b

copied into the "slave™ array which operates on the original signal set. Because of the preserva-

tion of phase, nulls formed using the slaved array will be in the same directions as those formed

in the master.

!

To analyze the effect of preprocessing on the Wiener solution, we define an effective interfer-
ence environment that ipcorporates the breprocessor into the interference sources. Each interfer-
ence source will experience an angle-dependent frequency transformation when passed through the

preprocessor. The frequency response of this transformation is determined by the subtraction of

"
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signals appearing at adjacent sensors.
Again we assume that the array of sensors is linear and uniformly spaced. A directional 4
A,
interference source will experience a delay, A, between two adjacent sensors that is determined by
the arrival angle. The frequency response of the top subtractor in the preprocessor is given by :
4

HwA) = 1-¢/va | (2.21)

e eenbenndl

Proceeding down the array, each subtractor will give this same response aloug with an additional

delay. The idea is to use the H(w) transformation to modify the interference source and concep-

tually eliminate the preprocessor from the array. As the interference angle approaches the look 1
direction, the magnitude of the transfer function goes to zero. Thus, the look-direction signal will *
be removed and an interference source appearing off the look direction will be somewhat -‘

s
attenuated and high-pass filtered. In this manner, the preprocessor affects the Wiener solution by 3
modifying the weighting applied to the interference source.
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III. THE SCALAR LEAST-SQUARES LATTICE FILTER

3.1 Introduction -

Lattice filters were first introduced as a means of predicting speech signals. Work on linear
prediction of speech using partial correlation techniques to whiten or decorrelate the input ori-
ginated in 1969 [9]. Since then the range of applications for lattice filters has broadened to
include joint-process estimation {10}, signal enhancement [11] and equalization [12]. The least-
squares lattice filter that we are now presenting was first used by Satorius and Pack [12] in the

equalization context. The most interesting properties of the filter are presented here.

We begin by presenting the orthogonality principle of linear least-squares estimation and its
application to the lattice predictor. Next, we present the lattice predictor first used for analyzing
speech by decomposing it into a set of orthogonal components. We continue with the structure of
the inverse of the analysis lattice, also known as the synthesis lattice in speech processing. We
also give the necessary and sufficient conditions for the stability of that inverse filter. Next, we
present the joint-process lattice for estimating a desired signal given an auxiliary one. Last, we
present simulations of the parallel modeling of an unknown all-zero filter using the joint-process

lattice.

3.2 Prediction and the orthogonality prineiple

As illustrated in Fig. 3.1, the forward prediction problem is that of estimating the next sig-
nal value z(n) given M of its past values, from z(n-M) to z(n-1). Likewise, backward predic-
tion involves estimating the past value z(n-AM-1) of the signal given M of its more immediate

past values [13].

In the case of least-squares estimation, the orthogonality principle [14] states that by view-
ing the signal samples as elements of a vector space, the least-squares estimate of a sample is
found by projecting it onto the subspace formed by the observed past M samples. As a result,
not only is the current estimation error (also known as the residual or innovation) orthogonal to

the past M samples but it is also orthogonal to all past M estimation errors. Fig. 3.2 illustrates




that orthogonality principle.

3.3 The Lattice Predictor

As shown in Fig. 3.3, the forward residuals f,'s are recursively formed by subtracting a
linear combination of the past M samples of the input from the current sample z(n). Likewise
the backward residuals 8,,'s are formed by subtracting a linear combination of the same M sam-
ples from the oldest sample z(n-M). The values of the linear combination are determined by the
reflection coeflicients A, ’s and g,’s to minimize the weighted sum of /2 and the weighted sum of
b2.

Two properties are worth mentioning at this point. First, from the orthogonality principle,
each innovation f is orthogonal to any other innovation f. Likewise the backward innovations
b's are orthogonal to each other.

The second property concerns the roots of the transfer functions from z to fy and from z
to by. We can consider those forward and backward prediction errors f,(n) and b,(n) to be the
output of two filters F(z) and B,(z) fed with the same input z(n). Providing that A, == g,
(that occurs with stationary inputs) the polynomials F, and B, have roots that are inverse of

each other [13] namely,

Fulzr) =0 <=> B. [ﬁ] -0

Equivalently, we can conclude that F,(z) has the same coefficients as B,,(z) but in reverse

order.

3.4 Inverse of a lattice predictor

Thus far it seems that we have not really estimated the current sample z{n) of a signal
since we have assumed its availability to construct the lattice predictor. The answer to that argu-

ment has some historical aspects.

Part of the natural process of speech generation is often found to be adequately modeled by

an all-pole filter 1/A(z) fed with white noise [13]. If we use that speech as the input to a lattice
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Fig. 3.1. Forward and backward predictions [after Markel and -

Gray].

Fig. 3.2

tn)Lz(n~1).z(n-R), -+ => g(n)L e(n-1),.-.

g(n) is the current estimation error or residual error. It is also
known as the innovation as it represents the part of z{n) that
does not belong to the subspace spanned by its past values, i.e.
the part that really is new.
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predictor, the forward innovation f,, will be white noise préviding that the order M is sufficient.
Thus, the lattice transfer function from z to [y is A (z), an estimate of the true filter denomina-
tor. The process of estimating A(z) is known as speech analysis [13]. Eventually, we can syn-
thesize part of the speech by feeding white noise into an inverse filter 1 /A‘(z) which is an esti-

mate of the vocal tract transfer function as shown in Fig. 3.4.

Thus the complete prediction process involves taking the inverse of an all-zero filter. We
now show that the inverse can be implemented in a structure that is very similar to that of a lat-
tice.

We recall that the lattice recursions are

Im(n) = fui(r) + gum bu-r(n-1) (3.1)
bu(n) = hy fmi(n) + buy(n-1) (3.2)

Since we are interested only in having f,_, in terms of f,, let us rewrite (3.1) leaving (3.2)

unchanged

Im-1(n) = [u(n) - g bm-1(n-1) (33)
bu(n) = Ay fm.a(n) + bm-i(n-1) (3-2)

These recursions can be implemented as shown in Fig. 3.5 resulting in a structure having an

interesting similarity with the analysis filter.

3.5 Necessary and sufficlent stabllity conditions for the inverse

Although the experiment described in Fig. 3.4 clearly involves a stable 1/A(z) filter, there
are applications in which it is important to check the invertibility of the lattice predictor. For
example in pole-zero filtering using the equation error, it is necessary to invert the filter in order

to restore the true output error.

Necessary conditions

We recall that the lattice recursion can be written in terms of the polynomials F(z) and

B(z) corresponding to the forward and backward time innovations, namely the forward
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Fig.2.3. Lattice predictor. The fm's are the forward prediction
errors and the b,’'s are the backward prediction errors. The
reflection coeflicients h,,'s and gn's are updated to minimize both
the weighted sum of f.2 and the weighted sum of b.
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!:'_ o Fig. 3.4 Speech synthesis process. The speech generation model is
NS first identifiled by an analysis lattice predictor. An inverse is then
L-..' formed which yields the speech when fed with white noise.
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innovation is updated as
Ful(s) = Fa(2) + gm 2 Bay(2) (3.4)
Writing Foa(z) in terms of its roots pp ; gives
T1 (1= pms 57) = Fus(s) + g 27 Bus(2) (3.5)

im0

The initial conditions for the recursion are Fo(z) == Bo(z) = 1. Thusfor m > 1,
order [F,,-,(:)] < m-1
and
order [B.,_,(z)] < m-1 => order [z" B.._,(z)] <m

Thus the highest degree polynomial on the right-hand side of (3.4) is z* B,,_;(z). Furthermore,
the coeﬂicie;lt of the highest power of z7! in !B, _,;(z) is 1. Equating the coeflicients of the
highest degree terms of both (3.4) and (3.5) gives

m

Hl(- pm.i) = Om . (3.6)

i =

Evaluating the magnitude of both sides of (3.6) gives

ﬁ (. Pn.l’)

iml

m
< H |Pn,i|

=]

o=

Thus if the roots p,, ; have magnitude less thaa 1, the product of those magnitudes is less than 1
implying that the magnitude of the reflection coeflicient g, be less than 1 too. A necessary condi-

tion for the roots of the end-polynomial Fy(z) to be within the unit circle is therefore

1
Fal?) stable => |g...| <1

Sufficient conditions

Using a more complete analysis, Markel and Gray [13] were able to show that for equal

reflection coefficients a necessary and sufficient condition for the stability of 1/Fy(z) is that the
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reflection coeflicients for all stages be of magnitude less than 1, namely

1
——— gtable < => | I <l, m=12_M
Ful?) t

where
by = Ry = g
That requirement of equal reflection coeflicients is not necessarily stringent since in practice

an equivalent lattice predictor meeting that condition is computed before stability can be checked

(see section V).

3.8 Jolnt-process lattice

The situation often arises in signal processing when we want to filter one signal to identify
another signal or to remove any correlation of it with the former one. The filtering of z to get an
estimate of d can be done by the joint-process lattice of Fig. 3.6. The backward innovations b,
are used as a basis on which the desired signal d is decomposed. The gains v, 's are determined
so as to minimize the sum of the €. Also because of the ortho;on_ality, it is possible to first esti-

mate d with v, b, yielding an error ¢, which is then estimated by v, b, yielding an error ¢, etc.

Last, because of the whitening that is taking place, we expect the joint-process lattice to

exhibit a convergence rate that is independent of the z-input eigenvalues.

3.7 Simulations

The simulation context is the parallll modeling of an unknown all-zero filter,
B(z) = 14 227+ 4272+ 22% 4+ 774 The joint-process lattice is fed with the same input as
the unknown filter and the output of the lattice is the desired signal of the lattice.

To minimize any initial conditions effect, we do not look at the convergence of the lattice
from its start-up. Rather, we wait for the weights to converge then inject an impulse as a distur-
bance at the output of the unknown filter. Our criterion is therefore the time it takes to reject

that disturbance.

Furthermore, to truly evaluate the convergence time, the simulations are noise-free, yielding
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a minimum mean-square error of the order of -100 dB. It is understood that in actual applica-

tions the noise level is much higher. For evaluation purposes however, only a noise-free environ-

-

ment makes the algorithm exhibit its full convergence potential.

Fig. 3.7(a) and 3.7(b) show the mean-square error of the joint-process lattice for an input

eigenvalue ratio of 1 (white noise) and 10 respectively. As expected, the convergence time

remains essentially constant.
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IV. POLE-ZERO FILTERING USING A TWO-CHANNEL LATTICE PREDICTOR

4.1 Introduction

In this section, we present a novel approach to adaptive pole-zero filtering. We show that
the equation-error method can be implemented using a two-channpel (2-C) lattice predictor. We
begin by presenting the 2-C lattice predictor as an extension of the scalar predictor discussed in
section IIl. Next, we reformulate the equation-error approach introduced in previous reports in
terms of linear prediction and then present the equation-error lattice predictor used for pole-zero
filtering. Last, a simulation involving the identification of an unknown pole-zero filter is

presented demonstrating the relative insensitivity of the 2-C lattice predictor to an eigenvalue

disparity.

4.2 The 23-C lattice predictor

The scalar lattice predictor presented in section IIl can be generalized to a multi-
dimensional lattice predictor when the process to be whitened is itself multi-dimensional. The
algorithm is detailed in [15]. For the moment, we restrict ourselves to considering only the 2-C
case. The multi-dimensional case is considered in section V for multi-element antenna array pro-
cessing.

Given a vector

x=f]

the lattice predictor constructs a sequence of forward and backward innovation vectors

:.I b:'l
Sm = I and b, = b2
In particular, f :,' (see Fig. 4.1) is the forward prediction error of z; g the past M values of z,

and z,, namely,

11 = z,(n) - 3,(n) | 2)(n-1),..., 2(n=-M), 2(n-1),..., 25(n-M)

Recogpizing the forward prediction error as such will allow us to use the 2-C lattice predictor in
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pole-zero array processing.

4.3 Reformulation of the equation error approach

The equation error method has been discussed in detail in reference [16]. The objective is to
filter the auxiliary input z with an autoregressive and moving average (ARMA) filter,
B(z)/(1 + z'A(z)), i.e. using poles and zeros so that the output error is minimized (see Fig.
4.2(a)). As shown in the previous reports, the A(z) and B(z) filters can equivalently estimated by
minimizing the equation error between d filtered through (1 + z'A(z)) and z filtered throur™
B(z) (see Fig. 4.2(b)).

As shown in Fig. 4.2(c), the equation error method can be thought of as the minimization of
the forward prediction error of d given the past values of d, the current value of z and the past

values of z. This is essentially what a 2-C lattice predictor does.

4.4 Equatlon-error lattice predictor

We are changing the seemingly scalar problem of pole-zero filtering into a multivariable
problem by embedding the primary and auxiliary signals into a vector.

We recall that in the 2-C lattice predictor, the prediction of any element of the input vector
[z, zz] T is based upon past values of both elements z; or z; of that vector. The equation error
approach requires that we also base the prediction of d on the current value of z. Therefore the
d-input needs to be delayed by one in order to obtain a correct prediction as shown in Fig. 4.3.

As in the scalar case, we expect this novel adaptive scheme to be relatively inscnsitive to
any disparity in the eigenvalues of the input vector. Such a property might be very useful in
some instances. In actual system identification for example, the auxiliary signal z (the input to
the unknown plant) is seldom white thus has an eigenvalue spread. But even if it is, the primary

signal d is nothing but colored since it is the plant output.
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LY

L3
by = lb"

Fig.4.1. The 2-C lattice predictor, a straightforward extension of
the scalar predictor. The filter whitens a vectorial process X.
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(®)

27— A(2)

B(z)

(c)

]

Fig.4.2

(a) Pole-zero flitering to minimize the output error &.

(b) 4{z) and B(z) can be identified by minimizing the equivalent
equation error ¢'.

(c) ldentification of A(z) and B(z) by minimizing the prediction
error which is the same as ¢'.
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input

? B o L) ?
5

Fig.4.3 Equation error approach using a 2-C lattice predictor of
order M,
The output of the predictor is

I8(n) = d(n)=d(n) |2(n-1).... d(n-H), z(n), .. ., zZ(n=H+1)

The transfer function from 1 to 4 and from 3 to 4 identify the poly-
nomials A(z) and B(z) namely,

Hu(z) =271 (1 + z71A(2)) and Hy(z) =271 B(2).
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4.5 Simulations

The simulation context is the modeling of an unknown 4th order Butterworth filter, a SGlter
with both poles and zeros. The predictor z-input is the input to the Butterworth filter. The

predictor d-input is the output of the Butterworth filter.

As in section ITI, we only look at the time to reject an impulse disturbance at the output of
the unknown filter. By doing this, we minimize the effect of initial conditions. Also, the simula-

tion is noise-free in order to evaluate the full convergence potential of the algorithm.

Fig. 4.4(a) and 4.4(b) show the mean square prediction error of the 2-C lattice for an z-

input eigenvalue ratio of 1 (white noise) and 10 respectively.

The convergence time is slightly longer for a ratio of 10 than for pure white noise (650 itera-

tions vs. 550) but it remains very rapid.
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V. TWO-ELEMENT ANTENNA PROCESSING USING A POLE-ZERO LATTICE

§.1 Introduction

The equation error approach as applied to antenna array processing, requires the formation

of the inverse filter 1/[1 + 27! A(z)] in addition to the estimation of A(z) and B(z). In this sec-

tion, we first present a way of forming that inverse and checking its stability. Next, we show aa

implementation of the pole-zero lattice predictor in the adaptive array configuration presented in J
section II of this annual report. By removing the constraints in the antenna adaptive filters, the ‘
equation error array processing structure is suitable for implementation using the rapidly converg-

ing lattice predictor we are considering. Last, we present the simulation results for a wideband

=
L-._ .

jammer cancellation experiment. !4

Y

8.2 Inverseof 1 + 371 A(z)

To restore the true output error, we need to be able to invert the 1 + z"! A(z) polynomial,

i.e. the transfer function from 2 to 4 in Fig. 4.1. This requires that Hy((z) = 1 + z7A(z) has a
stable inverse. But we need to invert only that transfer function unlike in section II where we
inverted the complete upper path of the forward innovations. Doing this also inverts Hj((z) and . :
thus requires the latter to be minimum-phase. Such a double constraint is certainly sufficient to -'-:
ensure the stability of 1 /(1 + z™! A(z)) but is not necessary. ii
g
A computationally more complex method for checking the stability of the polynomial H,(2) 'j
is to convert it to a scalar lattice form using what is known as the "step-down” procedure [13]. g
Then we need only recall that the necessary and sufficient conditions for H,(z) to have roots 1
within the unit ckcle is that all reflection coeflicients of its lattice implementation be of magni- .i
tude less than one. 7
3
§.3 Pole-sero adaptive lattice for array processing :;E
The array processor shown in Fig. 5.1 is a pole-zero extension of the Griffiths and Jim gen- "

1

eralized sidelobe canceller [6]. It is presented in detail in section 2.3 of this report. Any signal
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coming from the look direction is constrained to pass through the array undistorted. The prepro-

cessing of the sensor outputs allows the constraints to be removed from the adaptive algorithm

"'.'-.Yd_.'i"r'; l'r"'d.‘.".‘. v

and allows us to use the same lattice predictor as we used in the system identification experiment.

As suggested previously, a scalar lattice predictor equivalent to 1 + 271 A(z) needs to be

computed and the magnitude of the reflection coeflicients checked before an inverse is actually

implemented.

£2 0 g e\ $. s Ml ABasm

5.4 Simulations

Fig. 5.2 shows the simulation resuits of the pole-zero adaptive lattice used for a 2-element

antenna. Those results are to be compared with the simulations presented in section 2.6 of this

L'. report. |
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N
O %
antenna V +
array -
o- >

2-C lattjce

1+2704(2) ; output
271 B(2) 1+ 2714(2)

Fig 5.1 Array processing using a pole-zero adaptive lattice.
Note that the output is delayed by one time unit due to the delay

in the primary input path.
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Fig.5.2 2-C lattice antenna array.

{a) Broadband antenna sensitivity pattern.

(b) Frequency response in the jammer direction.
(c) Frequency response in the signal direction.
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V1. MULTI-EELEMENT ARRAY PROCESSING USING A POLE-ZERO LATTICE

6.1 Introduction

The use of the equation error approach in multi-element array processing was addressed in
section II of this report. It is summarized here for convenience and in order to demonstrate the
connection to dimensional lattice prediction.

As shown in Fig. 6.1(a), the pole-zero filters B,(z)/(1 + 37'A,(z)) need to be adjusted to
minimize the output error which is similar to minimizing the equation error shown in Fig.6.1(b).
Equation error minimization is equivalent to minimizing the prediction error of d given past

values of d, the current values of z,’s and the past values of z,'s (see Fig. 6.1(c)).

6.2 Implementation of the multl-channel pole-sero lattice

Similarly to what was done in the 2-C case, multi-channel pcle-zero filtering can be embed-
ded into multi-channel prediction. The implementation of such a predictor in lattice form is
shown in Fig. 6.2. Again, we require that the primary input path have a unit-delay in order to

base the estimation of the primary signal in the current values of the auxiliary signals as well.

6.3 Limitations of the multi-channel pole-sero lattice

Although theoretically appealing, the multi-dimensional pole-zero lattice requires a large
number of computations. In particular, there are 2 [(P + 1) X (P + 1)] matrix inversions each

time 2 stage is updated where P + 1 is the total number of lattice inputs.
The forward and backward innovations are updated from order m-1 to order m as follows

[18]

Jm(n) = fui(n) + Gu(n-1)bm.i(n-1)
bm(n) = Hu(n-1)fm-r(n) + bum-i(n-1)

where the crossover gain matrices G,, and H,, are computed by

Gn(n-1) = KI(n-1)Ez} (n-2)
Hy(n-1) == Ky(n-1)E5’i (n-1)
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+ £ 2 ‘ ﬁ (1+z"4p(z)) - £
WH P=1 -
z Bl(z) E X E
1+ 8'1Al(z) — 1(3)
zp Bp(z) Zp ~
1+ 271 4p(2) Bp(z)
(a) ' (6)

z"! X(:)
z, ~
B](z)
- Bp(2)
(c)

Fig.¢.! Equation error in terms of prediction error
(a) Multi-element array filtering with poles and zeros to minimize

the output error ¢.
(b) Processing using only zeros to equivalently minimize the equa-

tion error ¢'.
(¢) &' is in fact the prediction error of d given past d's, the
current z,'s and the past z;'s. The filter A (z) is defined as

A(2)=-1+ [0 +274(2)
. p=1
The filters B,{z) are defined as
By(z)= Bz) [1(+27"4(2)
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where the [(P + 1) X (P + 1) matrices E;!, and E;/, are the inverses of the minimized sums
of the backward and forward prediction errors respectively. Those inversions take on the order of
P? operations which make the crossover gain computations on the order of P?® operations. The
overall lattice recursion is then dominated by a count on the order of M X P2 operations where
M is the number of stages. If P is small with respect to M that computational disadvantage may
not be too crucial but if P is large or simply close to M, any improvement in convergence speed

brought by the lattice would be heavily paid in algorithmic complexity.
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VII. CONCLUSIONS

In this report, we have presented a new wideband adaptive array processing structure
Using a derivation of the optimal wideband array weighting function, we conjectured that filters
possessing both poles and zeros should be capable of improving the performance of the adaptive
array. Using the "equation-error™ approach, we developed an adaptive method for adjusting the
poles and zeros of the array filters. Through simulations, we showed that the equation error

approach indeed does improve the nulling capabilities of the array.

Also in this report, we discussed scalar and multi-channel lattice filters. Applications of the
lattice to linear prediction, joint-process estimation, general equation-error pole-zero filtering, and
pole-zero array processing were discussed. The major motivation for the use of lattice filters is

their fast convergence properties. Simulations were presented which confirmed this fact.

The information presented in this report is by no means the final word on equation-error
array processing. Several issues need further consideration a few of which w= are listed below.
Maintaining stability of the inverse output filter is a major issue. Techniques to easily check this
filter possibly using the lattice approach need further investigation. A technique for adaptively
choosing the minimum bulk delay which stabilizes the pole polynomial needs to be further
developed and snalyzed. Additional experiments should be conducted with the method presented
for elimination of look-direction signal bias. The algorithm for implementing a multi-channel lat-
tice filter should be modified in order to reduce the computational complexity from being propor-

tional to the cube of the number of channels down to the square of the number of channels.
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