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Introduction

In the past few years the description of the earth's gravity potential

in terms of spherical harmonic coefficients has been extended to degree

180 and in special cases to higher degrees (Rapp, 1978, 1981), and Lerch

et al.(1981). These high degree expansions can be used to evaluate quantities
such as geoid undulations, height anomalies, gravity anomalies, gravity

disturbances, deflections of the vertical, etc. To do this efficient com-
puter programs are needed. The purpose of this report is to describe one

Fortran computer program that can be used for these calculations.

Theory--Basic Equations

The gravitational potential, V , in spherical harmonics can be written

as:
)0n

V - kM [1+ Z (a" Z (n cosmX)n=2 m=O

+ Snm sinmX) Pnm (sin)] (1)

where: kM is the geocentric gravitational constant;

*-. r is the geocentric radius;

Sis the geocentric latitude;

X is the "geocentric" longitude;

. nmare the fully normalized potential coefficients;nm'snm
a is the scaling factor associated with the coefficients.

The disturbing potential, T , is the difference between the actual potential

(V) at a point and the "normal" potential at the corresponding point. For

our purpose the normal potential will be that associated with an equipoten-

tial reference ellipsoid of defined parameters. We have:

T(r, px) = V(r, p,) - U(r,tpX) (2)
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The potential associated with U can be described by an even degree zonal

harmonic expansion. We can write:
*n

T(r,,,X) - (kM-kM) + kM (a n n

r rr
n-2 m-O

(Cm cosmX + nm slnmx) Pnm(sinp) (3)

where kME is the mass of the reference ellipsoid and Cm are the dif-
nm

ferences between the actual coefficients and those implied by the reference

equlpotential ellipsoid. We have:

.C*Z 0 C C2,0 (ref)

* , - C ,o(ref) (4)

90 6, 0C (ref)

In most cases we assume kM is equal to kME so that (3) becomes:

km n
T(r,O,X) - k n (1 2 )n m (Cnm cosm X + Snm sinm ) Pnm(sin*) (5)r n=2 m=O

In classical gravimetric geodesy we discuss geoid undulations, N

and geop-spherop separations, Nr . If Wo is the potential of the geoid

and Uo is the potential on the surface of the reference ellipsoid the

geop-spherop separation is (Heiskanen and Moritz, 1967, Section 2-19):

N(r,,X) y IW°" U0 (6)

where y is normal gravity. In most cases we take Wo = Uo so that (5)

becomes:

N(r,,,) = T(r ,.L) (7)• y(r,£ }

The non-classical procedure uses the concept of the disturbance ooten-

tial at some surface points and introduces the term height anomaly; C

-2-
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Let W(r,O,,) define the gravity potential and U(r,,X) the normal gravity

potential at the same point. Then:

T(r,,pX) --W(r,ip,) - U(r,~p,,) (8)

We can introduce the geopotential number, Cp with respect to a reference

potential, Wo , such thatp
C= W(r,,,X) - Wo (9)

The normal height of P , H* , can be comouted from C, (Heiskanen and

Moritz, 1967, section 4.5). Letting h be the geometric height of P

above the reference ellipsoid the height anomaly is:

= h - H* (10)

In terms of the disturbing potential we can write:

Trr.,'),
=yr,i()

This equation is the same as (7) but there will be a conceptual (but small)

difference when comparing normal heights, height anomalies, geoid undulations
(N) and orthometric heights H Specifically we have (ibid. section 8-12):

h H + N sH* + (12)

For our purposes we consider the disturbing potential to be given by

equation (5) with the calculation of the height anomaly by (11). For the

calculation of geoid undulations we would also use equation (11) but with

the evaluation of T on the geoid by the appropriate choice of r . Although

the convergence of the infinite series for T is a formal concern the cal-

culations of Jekeli (1981) with high degree finite series show that there

is no practical concern.

-3-
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The gravity anomaly is a vector that can be expressed in the classical

and pon-classical forms. In eithr- case the general relationship is the

same between the disturbing potent I and the anomaly although there is

a conceptual difference. For the anomaly component in the vertical direction

(h) we have (Heiskanen and Moritz, p. 967, p. 84, and 298):

4hr =. T + - IV , (13)

For the classical anomaly at the geoid, T is evaluated there, while for
the surface anomaly T is evaluated at the surface point. We can obtain

the radial component of the anomaly by writing (13) in the form:

:(r,,A) = + - T(r,P,X) (14)

With a spherical approximation we have:

1 3Y 2
- r (15)

so that (14) becomes

a T 2
Tgr, ) - r(16)

If we now take equation (5) for T we have:

co n
Agr(r,,A) =- I (n-i) (2-)n (C cosmXSr 2 n2 r m=O nm

+ Snm sinm A) Pnm (sinip) (17)

The deflection of the vertical represents the angular difference between

the normals to the actual gravity equipotential surface and the normal equi-

potential surface. For a deflection in an arbitrary direction (s) we can

write (Pick et al., 1973, p. 257):

- I1 3T (18)

-4-



where s lies in the plane tangent to the normal equipotential surface.

Normally the total deflections is expressed in a meridian ( ) component

and a prime vertical (ni) component. In the meridian we have, with sufficient

accuracy ds = rdP , and in the prime vertical, ds = rcospdX . Thus the

deflections of the vertical are:

a - T 1 3T (19)
gr 5W , grcos. IX

As pointed out in Pick et als (1973, p. 307) the derivatives - and
3T i"are the derivatives of the disturbing potential with respect to the

appropriate direction assuming that H and X , and H and P , respectively,

are constant". (H corresponds to height and 0 latitude.) Thus it is

possible to use (5) for T to obtain the deflections. We then have, letting

gp =

""kM a,)n Cos m(20) pu~s- a (Cn cosmX + nm sinmX) d (20)

yr2  n=2

n - -kM (a)n "Z m( m (-sinmA) + nm cosmX) Pnm(siniP) (21)

Yr cos'Pn=2 m=n

To obtain the deflections in seconds multiply the above equations by the

radian conversion factor.

The gravity disturbance vector is defined as the difference between

gravity at a point and normal gravity at the same point. We have (Heis-

kanen and Moritz, 1967, p. 84):

= - yp grad T (22)

The radial component of the gravity disturbance can be defined as (ibid,

p. 85)

" T(23)

In some cases (ibid, p. 233) the minus sign is not used but we retain (23)

as our defining equation. Nnting that (23) appears in (16) we can avoid

-5-



a direct evaluation of 6r by computing it from (16) after Ag and T

(or N()) have been computed. We have:

6r = r + 2_ T (24)

The other two components of the gravity disturbance vector are defined as

(ibid, p. 285)

_1 T 1 L 61 (25)

t r 3p A r cos (2

Comparing these quantities to (19) we see

- 1 (26)

where we have let g = y . Thus once and n are computed it is a simple

matter to calculate the two disturbance components 6p , 6

In summary we are given a set of fully normalized potential coefficients.

From these coefficients we remove the values implied by an equipotential

reference ellipsoid. This leaves us with the expression for the disturbing

potential T (equation 5). We then can compute height anomalies from equation

(11) gravity anomalies from equation (17), the deflections of the vertical

from (20) and (21), and the radial gravity disturbance from equation (24).

Theory--Auxilary Relationships

To implement the equations discussed in the previous section a number

of additional quantities are needed. These are now discussed.

The Reference Potential Coefficients

Given four parameters defining an equipotential reference ellipsoid

all the even degree zonal harmonics are explicitly defined. For our program

it is sufficient to use only the zonal terms to degree six as taken from

Cook (1959). We have given:

-6-



a = equatorial radius

kM = geocentric gravitational constant

w = angular velocity

f = flattening.

Then compute m

W a, (1-f) (27)

The zonal coefficients in the dn form are:

J2= 2-[f(1- f) - m(1- -f + 11 f 2 )] (28)

J 4 f(1-1f) (7f(1-if) - 5m(1- Tf)) (29)

J6 f2(6f- 5m) (30)

These coefficients are related to the fully normalized C coefficients

through the following:

Jn (31)nO - /-

Calculation of , , and r

Generally the latitude point will be specified as a geodetic latitude.

Formally this latitude should be with respect to an ellipsoid whose center

is at the center of mass of the earth. The geodetic latitude must be converted

to a geocentric latitude and the geocentric radius must be computed. Given

0, X, and h the rectangular coordinates of the point are (Rapp, 1981 equation

60).

X = (N+h) cos cosX

Y = (N+h) cos sinX (32)

Z= (N(1-e 2)+h) sine

-7-



where N is the prime vertical radius of curvature:

N a (33)(1e2 sin 2 )

The geocentric radius is then:

r = (X2 + y 2 + Z2) (34)

The geocentric latitude is then

tan-1 Z (35)

Calculation of Y

*i Normal gravity is needed in the evaluation of the height anomaly and

deflections of the vertical. A high degree of accuracy is not needed for

this calculation as the number of digits in the final quantities is usually

only two to four. In our case we choose to evaluate normal gravity for

the point on the ellipsoid and then modify this value in a linear tashion

for the height of the point above the ellipsoid. The normal gravity on

the ellipsoid is:

I 1 + k'si (36)
/ 1- e2 sin2 ¢

The value of y at the height h above the ellipsoid is:

Yh - 0.3086 x 10-5 h (37)

where y is in meters/s 2 and h is in meters.

Calculation of Pnm and Its Derivative

The generation of the fully normalized dssociated Legendre functions

and its first derivative is critical to any calculation involving spherical
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harmonic expansions. In choosing an algorithm one must consider the speed

and the stability and accuracy of the procedure. In the pastfewyears a

number of different equation sets have been described in the literature.

For this program we have chosen subroutine LEGFDN that is described

by Colombo (1981, p. 131). Colombo has carried out a number of tests to

investigate the stability of the equations.

The subroutine is written such that the needed functions for a given

order m and all degrees to the highest maximum degree are computed in

one call to the subroutine. The subroutine is repeatedly called for

0 m , N where N is the maximum degree being used in the expansion.

For discussion purposes visualize the associated Legendre functions

in a lower triangular matrix where the rows correspond to degree n and

the columns correspond to order m

For a given m , the subroutine first calculates for 0 S n . m the

diagonal elements corresponding to the diagonal passing through the n= m

location. We have:

Pn1 (cose) = V21 sine - (cose)Pnm(O) rn v sn n-1,n-I

Po00 (cose) = 1.0 (38)

P11(cose) v 7 sine

Then the following element is computed:

P n+l,n (cose) = /2n3-cose Pn,n (cose) (39)

with n=m . Then the following recursive relationship is used to calculate

the remaining values of P for m+2 i n N

-9-



Pnm (cose) = , m1 f+m cose n-1,m (coso.

.(':" nm(CsO(n-m-2n-P (Cosa)
(2n-3 (n+m)(n-m) n-2,m

n z 2, (n-2) > m > 0 (40)

Note that a is the polar angle given by

C = 90° - p (41)

Singh (1982) has pointed out ways to improve the calculation of the
associated Legnedre functions by applying a scaling factor, such as lx 1072

in the recursive procedure. This procedure was tested in actual calcula-

tions of , Ag etc. No difference in numberical values was seen when

the scale factor was and was not applied. Consequently we did not implement

the scaling operation. Doing so might avoid some underflow messages, but

would not changes results when using expansions to degree 180.

For the , component calculations we need the derivative of P . Colombo

(1981) implemented the following procedure:

dOn (cosa) = [2n+1] (sinodfd-ln-l.1 + cose Pn(cose)) (42)
do7- sie de n-1,n-1 Cs)

After these values are computed for a given m up to a given N , then

we have:

! = (sine)-(n Pnm (cose) cose

(n2- e)'n-wm (cosa)) (43)
[ (2n-1)~ l  Pn-1 m

The starting value is

dP (44)

-10-



Due to the occurrence of (sine) this subroutine can not calculate the

derivatives at the poles.

Since we want the derivative of P with respect to ip we note that:

" dP 0P
• ..- (45)

The calculation of sinmx and cosmx

The generation of sinmN and cosmX is done through the following

recursion relationships:

sinmX = 2cosXsin(m-1)X-sin(m-2)X

cosmX = 2cosXcos(m-1)X-cos(m-2)X (46)

These relationships are useful for point calculations but are inefficient

for use if a set of points at a uniform longitude interval are being used.

Geodetic Constants

For the evaluation of the reference potential coefficients, the geocen-

tric radius vector etc, we need to adopt a set of constants. We used the

valuesof the Geodetic Reference System 1980. We have:

a = 6378137 meters

kM = 3986005 x 108 m3 s-2

w = 7292115 x 10- 11 rad s"1

e2 = 0.006 694 380 022 90

f = 0.003 352 810 681 18

" 9.780 326 7715 ms" 2

k 0.001 931 851 353

These constants are used in the calculation of the reference potential coef-

ficients (for a flattening that is read into the program), the geocentric

-11-
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radius, and normal gravity. These constants can easily be changed in the

program.

It is critical to note that the use of the above constants does not

mean that the geoid undulation (for example) refers to the GRS80 reference

ellipsoid. This is because the zero order term in T has been set to zero.

The real reference ellipsoid is that one which best fits the geoid and this

may or may not be GRS80.

The Program

The program written to implement the equations previously described

is given in Appendix A. This Fortran program was run on an Amdahl 470 V-8

machine using double precision computations.

The program is currently designed for point by point calculation. In

this case the input information is as follows:

1. NMAX, F (13,F10.4)

NMAX is the highest degree to be used in the expansion, F is 1/f which

is the inverse flattening of the reference ellipsoid to which the computed

quantities are to be referred.

2. The fully normalized potential coefficients are read from tape or disk
file in the form of (n,mCnm,9nm). The arrangement of the input is in order

of degree, i.e. from lowest to highest degree. However the storage location

for the coefficients is computed from the given n and m values. In
this program all coefficiecns are stored in double precision. Space can

be sa, .. )y storing in single precision.

3. The coordinates of the points at which r andthe other quantities are

to be computed. Specificially (O,, h) where 0 is the geodetic latitude,
A is the longitude and h is the height above the reference ellipsoid.

The current fornmt is (3FI0.1). The last point is signaled by an end of

-12-



file (/*) card. Points having the same latitude should be grouped together

as in this case the associated Legendre functions and their derivatives

are not re-computed.

The output is printed across the page under column headings: LAT,

LON, HEIGHT, UNDU, ANOM, DIST, XI, ETA. Although the output is given two

decimal digits, actual accuracy is considerably poorer than this because

of the errors in the potential coefficients.

The values computed by this program have been checked against another

program written by Tscherning and Goad (1982, private communication). All

values checked agreed to two decimal digits.

The computer time needed for a single point calculation (after the

* .. potential coefficients are input) is 0.46 seconds with an expansion complete

to degree 180 on an Amdahl 470 V/8. A calculation of points on a 12°x 120

grid at 10 intersection took 21.9 seconds. If a limited grid of undulations

or anomalies are to be generated the program described by Rizos is the most

efficient procedure to date. If a global grid is being generated the program

SSYNTH described in Colombo (1981) is the most efficient.

For checking the results of the program the values of C , Ag , 6

n have been computed at five test points using three different sets

of potential coefficients to degree 180. These values have been computed

with respect to an ellipsoid which has the flattening of GRS8O and are

given in Table 1.

-13-
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Table 1

Sample Computed Values

(reference flattening = 1/298.257222)

,:::€° x hlm) (m) Ag(mgals) 6(mgals) " n

%1"0 210 10 0 Rappl8 34.46 20.07 30.65 0.68 -0.25
Rapp8l 30.56 7.73 17.11 0.60 0.40

GEM1OC 28.37 4.12 12.83 -0.10 0.21

2V 450 0 Rapp78 -11.19 -4.75 -8.19 -5.41 11.12

Rapp81 -9.58 -5.55 -8.49 -4.24 10.63

GEM1OC -9.68 -8.46 -11.43 -2.23 8.98

50 790 0 Rapp78 -104.42 -84.60 -116.62 -1.43 0.64

Rapp8l -107.48 -91.84 -124.81 0.02 0.65

GEMIOC -106.20 -87.66 -120.23 -1.13 -1.04

50 790 10000 Rapp78 -103.58 -78.90 -110.52 -1.63 0.35

Rapp81 -106.58 -85.49 -118.02 -0.22 0.50

GEMIOC -105.35 -80.51 -112.66 -1.12 -0.93

870 210 0 Rapp78 15.43 -1.46 3.32 1.32 2.37

Rapp81 20.23 8.86 15.12 0.81 1.86

GEMIOC 18.38 3.58 9.26 2.59 4.05

-14-



Summary

This report describes a Fortran computer program that can be used

for the calculation of C , Ag , 6, , n which are dependent on

a set of fully normalized potential coefficients. The program has been

set to work to degree 180 and it can be extended higher.

The equations used for the calculations are to some extent spherical

approximations. However literal interpretation of certain quantities would

be formally correct (e.g. the radial component of the gravity disturbance).

Correction terms for spherical harmonic expansions evaluated considering

the ellipticity of the earth are described to some extent, in Jekeli (1981,

section 4).

The input quantities to the program are geodetic latitude, longitude

and height above the ellipsoid. In theory these quantities should be given

with respect to a geocentric ellipsoid. In practice the use of non-geocentric

coordinates would cause small but systematic errors in the results.

The computed quantities refer to a geocentric ellipsoid whose flattening

is an input parameter. The size of this ellipsoid is not specifically

defined because the zero degree term in the disturbing potential expans'on

has been set to zero. In most applications the equatorial radius of the

ellipsoid is the current best estimate.

The computer program of this report has been checked against other

programs with excellent agreement. The stability of the algorithms for

the associated Legendre functions has been checked by Colombo (1981) and

by Singh (1982). For some applications at high latitude underflows may

occur in the computations. These are machine dependent quantities and

can be turned off if desired.

Other procedures have been developed that extend the derivatives

of the potential to the second derivative (Tscherning and Poder, 1981).

In addition, problems at the pole that exist with our current program (for

the derivative of Pnm) are avoided with the Tscherning/Poder application

of the Clenshaw summation.

-15-
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IIJOB 'XXX(XXXXXXXXXX','RAPPvR.11.v,
IITIME=(0#40)REGIGjN=1024

/*JOB3PARM LINIES=3v0C ,OLSK.PJ=2400,V=R
I/Si EXEC FORTQCG
I/FORT.SYSIN DO
C THIS PROGRAM PUTS Iu N ITS PRESENT FjA14 6Y R.H. A1,1%' INJ AU3 1162
C THE PROGRAM4 IS A ACD[FICATIUN OF PROGRAM F379
C PUINT C0OiPUTATIUil~ F-ROM HARM1ONIC CO)EFFICIENTS
C DIM4ENSION'S CF P Q 4 MUST 63E Ar LEAST ((4lAX+1*(JAA'))/2,
C DIM~ENSIONS OF 3SI.JfVLt, OSML.,SC.RAP MUST Li AT LEAST i'AXI.4,

WH~ERE MAXA4 IS MAXIMUM DRI2ER OF LOMPijTATluN
C THE cURRENr OIMEKSIU!4S ARE SET FUR A MAXI.AUM DEGkL- OJF tcJ

IMPLICIT RZ.AL*8 (A-H,0-Z)
REAL*B P(1b471lSCRAP(131lRLEG(1BL),LEG(131fllLNdt(1dfl.

*PDER(16471)SINML(181),CCSML(181)
REAL*d HC(16471) ,HS( 16471)U - FDATA RAO/57.2'9577951308232DO/

L IS THt REFEREECE V..VERSE FLArfENING,NMAX 1S THE :*,AXIIU\ '-E L'CEE
010 READ(5,99O) NMAXF
900 FORMAT(139FIU.4)

vRITE(b,910) NiIAXtF
910 FORMAT(IHI,//l MAXIMU4 UEGREE =lt4t30Xtol/F='F.///)

F=1. aDO/F
* LALL L)HCS IN~iiAXF ,RJ2,RJ4,ikJ6tHCHS)

L. SETTING [FLAG=3 FLRCES LEGEiaDRE FJNCrlION DbIVATIV:S (C 2 TAKEN
IFLAGSO
IR=O
K =N.AX +. 1
F LA TLi: U. UO

978 FMA Ht/ LAT 191 L GN ',* HLIGHT 611N
*1 ANOM 0 7 ' DIST I0' Xf I t ETA' )

i; READ GEDETiL LAT[TUDE ILL3NGITUDEvAND HEIGHT Abf2'vE )HE ELLII'SLMJ
030 REAO(5 I93,.\U=GjJ) FLAT ,FLuiNvHT

930 FORMAT(I3F.0. 1)
C COMPUTE THE GEOCENTRIC LATITU0)EvG~CEN%"JTkl(C RAuIUSv%P.?'1M1. v"''AVITv

CALL RADOGRA(FLATFLUNHTRLATG~,REI
IF(FLATL.E~o.rLAT) GU Tu 040
RI AT 1=RLAT
RIAT-i * 7u?79632679489660O-RLAT
FLATL-FLAT
00 25 J-19K
.4=J- 1
CALL LEGFDN(MRLATIRL'G)LEGN4AXII~RL'j4,lFLAG)
DO 26 I=J,K
N[l-I
LC(N*(N*1) )/24'4
POER (LOCC) OL EG( I)

26 P(L0Cl=RLEC,(Il
25 CONTINUE

04U KLUN-FLLN/.AL
CALLOSCMIL AL%;NtNMlXSlAML#COSML)
CALL HUNDUtU,0GDISXI ,FTA,HTNMAXtPPLERHCHS, -IN4L,.C >;'L,

*GRiREiRLATI.)
wRITE6,') FLArFLON,l4TtUDGDlSvXI ,ETA

940 F0RMATI 2F9.4,1FJ9o2#5F13.2)
GO TO 30

90 ST UP
END
SUBROUTINE HUJNDUIUNOUANOMDISTXI ,ETAHTNMAX,PPULRHC ,HSt

*SI N#14L 6C 0 S ML A kR tk E ANG)
IMPLICIT kE L*8 (A-t1,rJ
J I.EN S I CN S I NML ( I ,CCS ML 1)P I tPD0E R L
ikEAL*S HC 1) HS (1)



4C CONSTANTS FOR G"RS8O
DATA GM/.39d6OUJ5Dii/tAE/637&137.00/,RHO/2O6264.8360O/
Ak=AE/RE
ARN=AR
A=0.0
3=G.0
x1=0.0
2 TA=C. 0

DO 030 N=2,0MAX
AR.NARN*AR
K=K+ I
SUM=P(K)*HC( K)
SUM1=P!OERIK)*HC( K)
SUMZ=O.O
0U 020 M=1,'J
K=K+l
TFMP=HC (K) *C(;SML (!1) HS(K) *S[:,,'ML(MN)
SUM1=SujMI4PDER( K) *TEMP
SU.,4e=SU424PIK )*M*(-HCIK)*SINML (M)+HSfKJ*CDSML(M))

020 SUM=SUM+ P(K) *TEMP
B=B+SUM*ARN* (N-1)
X 1X I+SUMI*AkN
E TA=ETA+SUM2*AR,%

30 A=A+SUM*ARN
INU=A*GM/(GP*REJ
A.NCMB*GM/R[**2* 1.05
GIST=AN04+2. sUNUU*beK/RE* 1.05

C THE SIGN OF + I . X1 CCCURS DUE TO THE DERIVATIVE t3EIN%;
C WTH ESPCTTO 'L'A~DISTANJCE NCT LATITUDE
XI =+RHO*G,4/ tGA*'E**2 *XI
ETA=-RHO*.:4/((;i*kE**2*DCOS(ANG) )*ETA

C THE UNI IS OF THE UNJULAT IUN ARE POETERS
C THE UNITS JF THL ANOMALY AND D[STURBANCE ARE NIGALS
C THE UNITS I;F THt 9E$LECTIWNS ARE SECOiNUS

RETURN

SUBROUTINE OSCML (RLUiN NMAXt~N~CSL
IMPLICIT R[ALJ'e (A-HID. ,IMLCSZL
DJIMENSION SIl;4L(L)vCUSMLtI)
A=USIN( RLU.N)
6=DCOS RLON)
S[NML( 1)=A
C.JSML( i)=8
SINML(2J=Z?.3*6*A
COSML(2) =2.u*.3*f9-j.0
D0 010 M=39,N4A X
SINML(M)=2.O*i*SINML(M-I)-SIN~ML(M-2)

1)10 C 0S 14L ( M J= 2 . C 0S ML (M-1)-COSML(4 -ZJ
RE TUR
SENRDU [N HCS IN (NMAXvFJ2,.j4,J6,HC ,HS)
IMPLILIT RLAL*8 (A-H#O-Z)
REAL*8 JZJ4#jb

C THIS VERSIGN USES IMPRCVED J2tJ4,Jb F.AUM t Uu( PAPER(Lc 51)
L CONSTANTS FROM 6JS 30

ICATA FKI4,LMA/3.'od6OO5Dl',,7.1 92I 15D-5t637dl37.uDj/
FM~uM**2*A**3*( 1.00-F)/FKM
M=((NMAX#ii*(NIAX,2) )/2
DO 001 N=L,M
HC( N)=U.0

*001 HSIN)=U.0
-i 0 l(EA0( 12,EN0=3)NtMCS

IFI.'.GT.NMAX) GO TO) OU3
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%Z(N*(NtL) )/2iM..1
HC(NJ-C
HS(N)=S
Gu hI 002

3 J2=2-OO/3.CD0*(F*(1.0D0-F/2.OOO)-FM/2.JDO*il1.OOU-2.OUO/1.U3U*-
*e+11.00O*F*F/?t9.0DO))
J4-.D/5OOF(.D-/.03*700F(.,,OF2j )

*-5.ODO*FM*I iA00-2 .ODO)*F/ ?.ODOJ)
J6=4.*F**2*( b.*F-5F4) /21.
HC(4)=HC(4)+J2/USQRT(5.)
HC(11)=HC(LL)4J4/3.00ci
tC(22)=hC(t-2)4J6/DS.JRT(13.DO)
RETURN
END
SUBaOUTINE L~EGFDN(M,THETARLEG,D)LEGNMXtIN,.ILNNl,[FLAG)

C
C TlHiS SUSROUTINE COMPUjTES ALL A.JRMALIZE::) LECE-NCRE FUNCTIONS
L IN "RLEt;S AND THEIR~ DERIVATIVES IN "ULEi(,". CADER iS 'LWAYS
C M t AND COLATITUUE IS ALWAYS THETA (RAVIAN',S). 9A',XI'4U-m L6Gp.
C IS NMX . ALL CALCULATIONS IN jOUB3LE PRECISICON.
IC IR MUST 61 SET TO ZERO BEFORE THE FIAST CALL 10 THIS Sua.
C THE DIMENSICNS OF ARRAYS RLEG, JLEG,, ANL) RLNN :4uST BE
C Al LEAST EQUAL TO I'4;X+ I
C

* CTHIS PROGRAM DUES NOT CUMPUTE DERIVATIVES Ar Ti PLLES
C

CI f IFLAG = 1. , NLY THE LEGtNJURE t:urCTILA4S AF

c ORIGINAL PRGAMR:OSCAR L. COL3MBC, DEPT. 1,F GEY)LTIC SC-IEN.4C!7

C, THE OHIO STATE UNdVERSITY, AUGUST' 198U
C

IMPLICIT REAL*8 (A-H O-Z)
DIMENSION RLEG(I i DL G( 1hRLNN(I)

29 DRTS(1300),DIRT(1300)
ANMX1 = NMX+l
NMX2P =2*NMX+.
MI = m+1
M= M+2
M3= M+3

IF(IR.ENo.1) GL TO 10
IR = 1
DL; 5 N = 1,NMX2P
DRTS(N) = OSCRT(N*1.DU)

5 DIRT(N) = .DO/DRTS(N)
10 CCTH-ET =DCCSITHETA)

SITHET DSIN(THETA)
IF( IFLAG.iNE. 1.AND.THETA.NE.).D)SITHI l .C'3/SI1l4E

C COMPUTE THE LEGENDRE FUNCTICNIS
* C

RLNN(l) = 1.00O
RLNN(2) = SITH-ET*0RTS(3)
DU 15 NI = 3,MI
N = NI-i
N2 = *

15 RLNNN II = UK TS iN 2 -1) *f I kT (N2)*S ITHET RL-NN (NI- I
IF(M*GT.1) GO TG 20
IF(M.EQ.O) GC TO 16
RLEG(21 RLNN(2.)
RLEG(3) -DRTS(5)*COTHET*RLEG(2)
GO Tc 20

16 RLEG(l) = 1.00
RLEG(2) aCOTHET*DRTS(3)



20 CON~fNU
MLEG MI = RLNN(ML)
RLEG(MZ) = 'RTS(ML*2+L)*k.JTHCT*RLEG(!MIJ
DO 30 NI = '43ttoMX1
N =NI-i
IF(4.EQ.O.A..N'.LT.2..M.EQ).l.ANU.1i.LT.3) ;U TO 30
NZ = 2*N
RLEG(Nl) = )RTS(N2)*DR(N+4)DRTN-M)*t)aTS(1,12-u)*CrCHET*

2 rLEG(Nl-l)-ORTS(N+M~-)*DRTS(4-M-11*0IRT(N'2-3)*PLEG(NI-2))
GO TO 30

30 CONTINUE (,9

99 FOR:IAT(//' *** LEGFON DOES NOT COMPUTE- OERIVATIV.S AT THE PULE'S
2 ******$**'/
IF(SITHET.EQ.O.DO) RETURN

C
C COMPUTE ALL THE UERIVATIVES OF THE LEGENDKE FUNCTICNS.

RLNN(Ij = 0.00
RLN = RLNN(2)
RLNN(2) = DkTS(3,)*CLOTHET
DO 40 N1 = 3, MI

N Nl-i

KLNI =RLNN(NI)
RLNN(Ni) = kTS( N2+1)*OIRT(2)*(STHET*RLN(N)+CTHFT~tLN)
RLN = RLN1

*40 LJNTINUE
DLEG(MI) =RLNN( MI)
00 60 N1 = 1M2tNMXI
N Ni-I

nLFG(NI) STI(
2 DkTS(N2+I)*DIRT(N~2-1)*RLEG(N))

b&) CON4TINUE
KTURN

END
SUBiAUUTINE KAOGRA( FLATvFL0NtHTtkLATvGR,RE)
IMPLICIT REAL*8(A-H,C-Zj

C THIS SUBROUTIINE COMPUTES GE5CE:q~kIC L)ISTANCE TO THE P51'qr,
C THE %'EGCENTR[C LATITUDE,ANV
C AN APPROXIMATE VALUE OF NORMAL GRAVITY AT THE POINT 0A.)E0
C CN CCNSTANTS CF THE GEODETIC REFEAENCE SYSTEM 1980

OATA AL/o3791373.O/E2/.O669438OU2290IRAD/57.2997795lmaS232DO/
tREAL*8 N
FLATR=FLA TIPAD
iFLONR=FLON/RAD
TI=OSIN( FLA Tid**2
-N=AE/0SQRTI .-E2*TlJ
T2=( N+HT) *iCOS( FLATR)
X=T2*2JCOS( FLUNR)
Y=TZ*OSIN(FLCMU)
L=(Ni*(1.-E2)+4T)*0SIN(FLATR)
NJAE/DSQRT(LI.-E2*Tl)

.4 C CJMPUTE THE GEOCENTRIC kADIUS
RE=OSI.K[X**2+Y**2+L**2)

C COMPUTE THE GEUCENTRIC LATITUDE
aLAT=DATAk.(/iSRT(X**2+Y**J))

C COMPUTE NORMAL VRAVITY:LJNI1TS ARtE ;74/SEC**2
GR=9.7803267715DO*(i...0019318513530*Tl)/SQRTCl.-E2*TlI

C 4JRRECT FOR tLEVATION IN AN APPRCZXIMATE wAY
Gk=GR-H* .3036D-54 RETURN

END
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//GO.FT12FOO. DO IJNIT=USEOALISP=(JLDKEEP)p
IIDSN=TS0453.Dl978.PCT.CCEF.TCldO

//GO*SYSIN 00
180298 .25722
2L.0 1.3
21.0 45.0
5.0 79.0
5.0 79.0 10000.0

87.0 21.0.

WJO.-OON

"n-4 rjr

4A .0CO%

ooo000.

40 NtcN -.4

0OfCOv

00f~~0000

*000000',

0000

4-0000o
P - 4tt 0 -
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