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I. INTRODUCTION
A. General

Data gathering in an attempt to gain knowledge about a parti-
cular phenomenon is a key element in scientific work. It is a preliminary
step in the mathematical modeling or simulation of any real world system
under study. Historically, much of the data gathered from existing
processes is characterized as random in nature and quite often can be
identified as belonging to a known theoretical probability distribution.
Identification of an underlying probability distribution is one step
often used by researchers in their attempts to describe correctly the
system they are investigating.

The selection of a possible probability distribution represen-
tative of a set of sample data can be attempted from at least four
different approaches. Often, historical material, or experience of the
researcher with certain phenomena, leads to a decision that a particular
sample of data is known to be from a normal distribution, an exponential
distribution, or some other distinctive distribution. Another technique
used to identify an underlying probability distribution is visual exami-
nation--the data is plotted (often as histograms) and the plot is compared
with shapes of theoretical distributions. A third approach in identifying
a possible distribution for a set of empirical data is through the
comparison of descriptive statistics calculated from the sample data with
known parameter values of the hypothesized distribution. A fourth method
available is the mathematical comparison of the actual number and charac-
teristics of sample observations with the expected number and character-
istics of theoretical observations.

Mathematically comparing a theoretical probability distribution
with an empirical probability distribution is a "goodness of fit" test.
The researcher, in performing a goodness of fit test, makes two prelim-
inary decisions: (1) the theoretical probability distribution against
which he wishes to test his data and (2) the level of significance at
which he is willing to accept the results of the test. Therefore,
goodness of fit testing is simply a mathematical tool to assist the
researcher in deciding whether his sample observations fit a theoretical
probability distribution well enough for him to describe his system in
terms of that distribution.

B. Purpose of Work

In order for a researcher to perform a goodness of fit test
on empirical data, he must complete the following six steps:

statement of the hypothesis to be tested,
selection of a goodness of fit method,
specification of the significance level,
. execution of the mathematical computations for the
selected goodness of fit test,
5. formulation of the decision rule for the test, and
6. acceptance or rejection of the null hypothesis.
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These six steps require time and knowledge. If a computer is
used for sorting, grouping, or calculating, some time may be saved. :
However, if the researcher must write programs to perform these tasks, -
additional time and skills are required. If various programs already L
exist and are available to the researcher, time and effort are saved. )
Of course, the researcher must have the knowledge to run each program. -t
The computer program described in this report provides the researcher -|
with a single package by which to implement all six steps in goodness
of fit testing--saving time and requiring less knowledge than the "
previously discussed alternatives. : “

it oidin.

C. Functions of the Program -

The goodness of fit (GOF) program offers the following four
goodness of fit tests:

PRV RINTY T VP WIS T Y PCTPRCEL

1. chi-square test,

2. Kolmogorov-Smirnov test,
3. Cramer-Yon Mises test, and
4. moments test.
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. These four tests can be applied to all of the following ten -
theoretical probability distributions: -

1. Poisson,
2. exponential,
3. normal, ;
4. log-normal, ]
5. gamma, e
6. Erlang-k, =
7. chi-square, ‘
8. trianguiar,
9. uniform, and o
10. Weibull. -
In addition to performing the goodness of fit calculations, the S
GOF program supplies descriptive sample statistics and a printed histogram =T
of the empirical data. Critical value tables for each goodness of fit
technique are stored as part of the software allowing the GOF program to ry
evaluate the results of each test at the .01 and .05 levels of significance. s
The GOF program operates in either batch or on-line modes. )
Program options and capabilities are selected by the user through simple- - 1
to-use English language statements. These statements are described in S
Section IV of this document. Sample output from the on-line version of ﬂ
GOF program is included in Appendix A of this document. j
{
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11. DESCRIPTION OF GOODNESS OF FIT METHODS
A. General

A goodness of fit test is a statistical technique for comparing

a distribution of observed data with a theoretical probability distribution.

The theoretical distribution to be tested is stated in the null hypothesis.
The purpose of the comparison is to determine how closely the observed
values agree with the theoretical values. If they agree sufficiently,

the differences between the two sets of values can be attributed to
sampling error. If they do not agree sufficiently, the null hypothesis
that the observed data comes from the same probability distribution as

the theoretical distribution cannot be accepted. A basic assumption of
goodness of fit testing is that the observed data must be the result of
random sampling.

Severa] goodness of fit tests exist. The chi-square (also
referred to as x2) test is the best known technique because it is the
oldest and most widely publicized. Almost every text on statistical
analysis mentions the chi-square goodness of fit test. The Kolmogorov-
Sm1rnov (also referred to as D,) and Cramer-Von Mises (also referred to
as nw?) tests are less frequent1y documented than the chi-square test,
but offer strengths not available from the chi-square test. The moments
test is important because it is used as a test for the normal distribution
which is the most frequently used distribution of all defined theoretical
probability distributions.

Each goodness of fit test has its particular advantages and
limitations which are explained later in this report under the
descriptions of each individual test. The first three tests, the chi-
square, the Kolmogorov-Smirnov, and the Cramer-Von Mises, are broad
spectrum tests. They can be used to test null hypotheses for a wide
variety of distributions. The fourth test, the moments test, is included
only to test null hypotheses for the normal distribution. Cox (5:147-149)
gives a synopsis of some of the investigation done into the power of the
three broad spectrum tests. A discussion of power of the various tests
is beyond the scope of this work.

The flowchart in Figure 1 offers a quick and genera] path for
selecting the goodness of fit tests most applicable to a given set of
observations. Decisions not reflected by this flowchart can be used,
but are not recommended by this author.

B. Chi-square Test

The test statistic (x2) for the chi-square test is a cumulative

value computed by
n
2 _ Z(Oi - Ei)z
X" = ’

i=1 Ej
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where:

the number of cells into which the data is grouped,
the observed absolute frequency of the ith cell, and T
the expected absolute frequency of the ith cell. d

n
0.
Ej

Before the chi-square statistic can be computed, the observed
data values must be grouped into cells or classes. The number of entries
in each cell is counted and each count represents the observed absolute
frequency of that cell. The expected frequency values are computed from S
the relative frequency values derived from the hypothesized theoretical - v
distribution for each cell. The difference between these two frequency .
values is squared and divided by the expected (theoretical) frequency
value of that cell. Each of the resulting values is summed to produce
the 2 statistic.

The x? statistic is always nonnegative because of the squaring B
of the differences. Once the x2 statistic is computed, its value must
be compared with the appropriate value in a table of critical x? values.
A x2 value of zero would mean a perfect fit of the observed data to the
h{pothesized theoretical distribution. The larger the difference of
X" computed " X“tabulars the worse the fit,

A x? critical value table is organized by levels of significance
and degrees of freedom. The level of significance is 1-a (a is the
probability of a Type I error).* The level of significance of a test is
selected by the user based on his knowledge of what is acceptable for his
situation. The degrees of freedom value reflects the number of ey
restrictions being imposed on the theoretical distribution. Another way v
of describing the number of degrees of freedom is that it is the "number e
of ways in which two sets of data that are being compared are free to
vary" (Caulcott, 2:113). Usually, the number of degrees of freedom for S
the chi-square test is expressed as n-p-1, where n is the number of cells e
used to compute the x2 statistic and p is the number of distribution Sk
(population) parameters which had to be estimated by sample parameters. -
The constant "1" is always subtracted because the number of cells used
for the observed and the theoretical values is restricted to being
identical. Therefore, one degree of freedom, representing the restriction
that the number of cells be identical, is always lost. The value p varies
with the probability distribution named in the null hypothesis. This T
variation occurs because different distributions have different numbers of v
characteristic parameters. Table 1 gives the appropriate value of p for
each distribution named. If the population parameters are known and,
therefore, not estimated by sample parameters, p is not subtracted.

—_———

e

*A Type I error occurs when the null hypothesis is falsely rejected.
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Table 1

Number of Parameters Per Distribution

D Distribution

1 | Poisson, exponential, chi-square
2 | normal, gamma, Weibull, log-
normal, uniform, Erlang-k

3 | triangular

Prior to performing a chi-square test, the researcher must
decide on the number of cells and the cell size he wishes to use. If his
data comes already grouped, he simply counts the number of cells given.
However, with ungrouped observations, he must select the number of cells
to be used in computing the x? statistic. There are no firmly established
rules for selecting the number of cells. Cochran (4:332) writes, "I
believe that the common practice is to have a moderate number of classes,
say between 10 and 25, and to make the class intervals equal." Cochran
himself and other authors he cites prefer using unequal cell intervals
under certain conditions (4:332-334). Because of the additional complexity
introduced by unequal cell intervals and because of the lack of firm
convictions about this matter, the choice for the GOF program is equal
cell intervals. The choice of the number of equal-interval cells becomes
a game of trade-offs under certain data conditions. Most authors recommend
that each cell have a frequency count of at least 5 and preferably not
more than 50 before performing the chi-square test.

The chi-square test is the only technique implemented in the
GOF program which is recommended for use with grouped data.. The grouping
of data required by the chi-square test is usually referred to as a
drawback of the test. However, if only grouped data is available, that
characteristic of the chi-square test becomes a valuable feature.

How good is the chi-square test? If the null hypotheses is
rejected on the basis of the chi-square statistic, one can feel fairly
confident of the test results. However, if the null hypothesis is not
rejected, one is on unsafe ground. "For instance, for moderate sample
sizes, . . . , the test accepts as normal almost every distribution with
a symmetric, single maximum, density” (Breiman, 1:202). To strengthen
one's position when the chi-square test indicates acceptance, there are
several supplementary tests which can be used in certain situations: a
test based on runs in the individual deviations calculated while
computing the chi-square statistic and a test on the Tow moments of the
distribution (4:339-340).

Several limitations are direct results of the chi-square test
definition.

1. Only actual, not relative, frequency values are acceptable

for the test.
2. The frequency count for each class should be at least 5 (17).
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3. When the frequency count for a class is too large (n>50),
there is a related loss of power* in the test (4).

4. The number of observed values should be at least 40 before
the chi-square test is used.

5. When data is difficult, impossible, or expensive to
acquire, the requirement of at least 40 observations becomes a severe
Timitation.

Other more subtle limitations of the chi-square test are described by
Cochran (4).

C. Kolmogorov-Smirnov Test

The test statistic for the two-sided Kolmogorov-Smirnov
goodness of fit test is a single value computed by

D, = ﬁ?";]“oi) - F(E{)|.,
where:

F(0;) is the value of the cumulative distribution function
for the observed data at point i,

F(E;) is the value of the cumulative distribution function
for the hypothesized (expected) value at point i, and

n is the number of observations in the test.

) The preceding formula defines the test statistic (D,) as the
maximum absolute difference between two cumulative distribution functions

computed at each sample point. Figure 2 displays graphically the
method used by the Kolmogorov-Smirnov test. The maximum D, is the
computed test statistic which is compared to the appropriate critical
value from a table of critical values for the Kolmogorov-Smirnov test.
The appropriate tabular value is located by sample size (n) for the
sample being tested. If the computed B, value is larger than the
tabular critical value, the null hypothesis is rejected.

F(E)

| L] L) L] 1] T L} L] Ll ¥ LI L T
‘0 123456 78811121347/
Figure 2
Kolmogorov-Smirnov Test

*Power is the probability of rejecting the null hypothesis when
the alternative hypothesis is true.
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One of the strengths of the Kolmogorov-Smirnov test lies in its
use of each individual observation; whereas the chi-square test requires
that the data be grouped. The Kolmogorov-Smirnov test can also be applied
to grouped data (12), but is not recommended by this author because the
test is less powerful for grouped data.

The Kolmogorov-Smirnov test has two advantages over the chi-square
test. Sample observations do not need to be grouped as they do for the chi-
square test. Therefore, information is not lost through grouping, which
results in the Kolmogorov-Smirnov test being more powerful. Secondly, the
number of observations required by the two tests can be less for the
Kolmogorov-Smirnov test (15). A range of between 10 and 100 observations is
the recommended range for the Kolmogorov-Smirnov test.

Kolmogorov and Smirnov developed their test to be used when
the population mean and variance are known. However, it can be employed
when the populaticn parameters are estimated by the sample mean and
variance and still performs better than the chi-square test (12,16).
Although Kolmogorov and Smirnov developed their test to be used
mainly in testing continuous distributions, it can be used conser-
vatively with distributions which are not continuous (6).

One final attribute is the simplicity of the critical value
table for the Kolmogorov-Smirnov test. One only needs to know the
sample size (n) to look up tabulated critical values. There is no
worry with degrees of freedom or whether the population parameters
are estimated.

D. Cramer-Von Mises Test

The Cramer-Von Mises test statistic (referred to as the w? or
nw? statistic) is defined as

w? = [(F (x) - F_(x))2aF(x),
where:
F (x) is the cumulative distribution function of the observed
samples, and
Fe(x) is the cumulative theoretical distribution function of
the null hypothesis.
The integral is computed by the approximation

n
w? = 1, lZ 2i-1 _ Y E:
1202 ' g E'S Fx;)| ",

i=1
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{- where n is the size of the observed sample. Multiplying through by n
b yields e
n
2 1 Z 2i-1 2 e
= e— - F(x-) .
¥ = Ton 1-1[ 2n i v

The Cramer-Von Mises and the Kolmogorov-Smirnov tests are R
similar in that they both compare the cumulative theoretical distribution e
mlﬁ function with the distribution function of the observed sample. However, —%
W the Kolmogorov-Smirnov test statistic (D,) is a single value statistic : -1
while the Cramer-Von Mises test statistic (nw?) is a cumulative value. -
. The computed nw? test statistic can be compared with the critical values

S in a Cramer-Von Mises table. The tabular value is selected by the

' appropriate « value, where a is the probability of a Type I error. If L
- the computed nw? value exceeds the tabular value, the null hypothesis - a
v cannot be accepted. C

o The Cramer-Von Mises test, like the Kolmogorov-Smirnov test, o
j considers each observed sample separately. It does not require that S
the data be grouped as does the chi-square test. The major attribute o
of the Cramer-Von Mises test lies in its ability to reliably compute 9
e a test statistic for small samples "and has been applied with as few Lo
L as eight or ten observations" (Phillips, 16:5). The Cramer-Von Mises T
test, like the chi-square and the Kolmogorov-Smirnov tests, is a PR
distribution-free (non-parametric) test; it does not care which o
theoretical distribution is being tested in the null hypothesis. ;;'ﬂ

E. Moments Test for Normality

"A moment is the average deviation of a set of data about a
point" (Harnett, 8:100). Moments are important because they describe
certain characteristics of distributions. The two most often used
moments are the first moment, the mean, and the second moment, the
variance. They describe the location and the variation, respectively,
of a distribution. The moments used in the moments test are the third R
and fourth moments. The third moment is the measure of skewness of a R
distribution function. The fourth moment, the measure of kurtosis, SR
describes the peakedness of a distribution function. Figure 3 s
illustrates the meaning of the first moment, the measure of location. L
The shape of the two distributions is identical, but their first 7
moments differ. Figure 4 demonstrates the effect of differences in :
the second moment, the moment of variation (or dispersion). The _
effects of the moment of skewness (or lack of symmetry) are shown T
in Figure 5. Figure 6 displays the role of the fourth moment, the T
moment of kurtosis (or peakedness). 4
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Figure 5 Figure 6
Measure of Skewness Measure of Kurtosis

When the point about which a moment is calculated is the mean,
the moment is called a central moment. For a continuous distribution,
the nth central moment is defined by

wo= fx - wlEax,
n all x

e 4ol N aan SR A00 S aarae

where u is the mean of the distribution. The third central moment
describes the skewness. With n = 3, all values used in the computation
of the third moment retain their positive or negative signs. Therefore,
the third moment of a symmetrical distribution is close to zero. The

." . !

- third moment of a truly normal distribution is zero. For a distribution
¥ which is skewed to the right, the value of the third moment is positive
'- and when skewed to the left, it is negative. To eliminate the effect
L

10

——————

Oy AP

ac

A TR,

PR

d e talas

VR |



. p—vy -
LT ’
TR, PP

-

A |

Chau SR St baa oot Jeat A A S Hht At Dt M RN

of the size of the units of measurement of the sample observations, a
dimensionless quantity is the most common method of describing the third
moment. It is

U,

where:

u3 is the third moment, and
o3 is the cube of the standard deviation.

If the absolute value of S, is greater than 1, then the distribution
being tested is very skewe% (8). Figures 7 and 8 demonstrate left
(negative value of Si) and right (positive value of Sy) skewness,
respectively.

Figure 7 Figure 8
Negative Skewness Positive Skewness

The fourth moment about the mean measures kurtosis. Kurtosis
is a description of flatness or peakedness of the distribution curve.
To create a dimensionless value, independent of the scale of the
recorded observations, the following formula is used:

Hy

[

Kt=

’
)

where:

uy is the fourth moment, and
o" is the standard deviation raised to the fourth power.

n




Because n = 4 for the fourth moment, all values are raised to the fourth
power and are, therefore, always positive. The smallest value Kt can be is
1. A normal curve has a kurtosis value of 3 and is called a mesokurtic
curve, If a computed is less than 3, the distribution is platykurtic

o and if K¢ is greater than 3, the distribution is described as leptokurtic.
- Figures 8, 10, and 11 illustrate mesokurtic, platykurtic, and leptokurtic
Sﬂ shapes (8)

‘i — —- ——

F'i Figure 9 Figure 10 Figure 11

!!l Mesokurtic Shape Platykurtic Shape Leptokurtic Shape

The population parameters for skewness and kurtosis are
designated by the dimensionless values v;, and v,, respectively, and
are defined as

s
)

@ N

Sy

Vv =
1

2
62

and v, = ’

N w

where &, = the nth moment of the population. The first four moments of
the normal distribution have the values u, 02, 0, and 3¢"“. Substituting
the values of the moments for the normal distribution into the above
equations gives v, =0and v, = 3.

For convenience, we define

. Hence, for a normal distribution %1 = 0 and v, = 0
! (Phillips, 16:13).

. A positive v, denotes a skew to the right; a negative v,, a skew to the
= left. A positive v, denotes a platykurtic shape; a negative 9,, a

@ leptokurtic shape. "Values of zero for V5 and v, describe a symmetrical,
mesokurtic shape.

The kth moment about the mean is defined as

' Mk = [w(x - u)kf(x)dx
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for continuous distributions and
hod k
M = gz(x - M) f(x)

for discrete distributions, where u is the expected value E(x) of the
random variable x. "Given a sample of size n, the kth moment about
the origin can be estimated by

n

1 Xn
'B":E:xi (Phillips, 16:14).
i=1

To compute the moments about the mean for the sample observations using
the above estimating formula, the following equations are used:

¢, - 36,6, + 26}, and

m = 0, m,

m, = ¢, - ¢2, m, = ¢, - 46,6, + 66,02 - 3¢].

Substituting the sample terms into the equations for v; and v, gives the
sample estimators

2
8 - ms and 8 _ m, - 3m2
1 m 3/2 2 = m2 iy
2 2

B, and B, are biased sample estimators of the population parameters

01 and 02 Unbiased estimators of the populatlon skewness ang kurtos1s
measures can be calculated by using &, = r /r2 and &, .

estimator is considered to be unblaseé when its average va’ue (mean),
taken over all possible random samples of the same size, is equal to the
population parameter for which it is an estimate. To compute the r-values
usedtby the unbiased estimators, Phillips (16:14-15) gives the following
equations:

r ns, -
n(n-1) '

2
r,= n 83-3115253"'2&;
} n(n-1) (n-2) » and

= _(n*+n?)S,-4(n2+n =3(n?- + -6st
N n(n-1) (n-2) (n-3)

where

ibx?, and

i=1

n = number of observations.
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. Once the biased estimators, 8; and g,, Or the unbiased
estimators, &,and &,, are computed, they must Ee checked against the
corresponding tabular values stored in the GOF program code. The
critical values for the moments test are stored for sample sizes
10sn<125. For sample sizes larger than 125, the distribution of the
biased estimator of skewness 8, approaches the normal distribution with
a mean of zero and a variance of 6/n. The biased estimator of kurtosis
B, also approaches the normal distribution with a mean of 3 and a variance
of 24/n. B, and B, can be transformed to standard normal deviates by the
following two equations:

B, B, - 3

2
V24/n

Standard normal tables may be used to determine the critical values, at a
selected o value, against which z, and z, are compared.

1 \/m and z2 =

The unbiased estimators may be treated in a similar fashion
as they both approach normal distributions. The means for both distri-
butions are zero. The variance for the &, distribution is 6/n and the
variance of the &, distribution is 24/n. Therefore, the standard normal
deviates are calculated by

= 8, B, - 3
Z, and z, = ——2__ 2
Vé/n 2 Viin (16).
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II1. THEORETICAL PROBABILITY DISTRIBUTIONS
A. General

In simple terms, a theoretical probability distribution is
a model--a means of describing some random, rather than deterministic,
phenomena. There are two basic types of probability distributions:
the discrete distribution and the continuous distribution. A discrete
distribution describes the nature of a random variable that can assume
only a finite or countable number of values. A continuous distribution
describes the nature of a random variable that can take an infinite set
of values. Discrete random variables are often described as those values
that are countable; continuous random variables may be described as those
values that are measurable. Therefore, the number of eggs per chicken
per year would be a discrete variable while the weight of the eggs per
chicken per year would be a continuous variable.

Ten theoretical probability distributions are described in
this section. The only discrete distribution included is the Poisson
distribution. The other nine distributions, which describe continuous
phenomena are the: exponential, normal, loa-normal, gamma, Erlang-k,
chi-square, triangular, uniform, and Weibull.

Before stating the null hypothesis for a goodness of fit test,
one must first elect the theoretical distribution with which he wishes
to compare his observed data. The selection of a theoretical distri-
bution can be aided by answering two simple questions.

1. Does the observed data come from an environment
similar to those historically associated with a particular theoretical
distribution?

2. Does the histogram of the observed data resemble the
characteristic shape of the graph of a theoretical distribution?

An affirmative answer to the first question is the more important
criterion for selection. Affirmative answers to both questions are only
a beginning. They provide a means of selecting a distribution with which
to compare one's observed data.

The flowchart in Figure 12 provides a verbal inquiry path
to help evaluate the correspondence between the environment of one's
observed data and the appropriateness of each theoretical distribution
to that environment. It is a related series of questions similar to
question 1 above. Figure 13 supplies a pictorial pursuit with which to
compare a histogram of one's observed data.

In addition to Figures 12 and 13, the author has tried to
provide three other aids for pinpointing "likely" theoretical distri-
butions to test. Those three aids are the coefficients of variation,
skewness, and kurtosis for each distribution (where possible). Section
IT of this report contains an explanation of the latter two measures.
While the moments of a random variable do not uniquely identify its
theoretical distribution, they do provide salient information about its
nature. The coefficient of variation is the standard deviation divided
by the mean of the distribution. For sample data, it is computed by
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Pictorial Flowchart for Distribution Selection
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where s is the sample standard deviation and x is the sample mean. It
provides a dimensionless measure of dispersion and is sometimes useful
in comparing populations with unlike units of measure. For example,
comparing the variations of weights of blueberries with variations of
pumpkin weights is difficult intuitively to understand unless the units
of measure are removed. Some theoretical distributions have constant
coefficients of variation, skewness, and kurtosis. Therefore, these
values are sometimes useful in selecting plausible distributions against
which to apply goodness of fit tests.

B. Poisson Distribution

The Poisson distribution is a discrete distribution. It is
used to describe events which are countable, rather than measurable.
The Poisson distribution is the distribution of rare events. Mathe-
matically, it is defined as:

e-Xxx
f(x;\) = , where x = 0,1,2,...,*,A>0, and
x!
f(x;A) = 0, otherwise.

The Poisson distribution is characterized by only a single
parameter A which is the mean of the distribution. It represents the
average number of times an event occurs in a given space or time. For
example, » = 2.8 might represent the average number of customers
arriving at a stadium box office every minute or it might possibly
represent the average number of typographical errors on a typed page.
A Poisson variate x can only assume integer values, but the Poisson
parameter A is not restricted to being an integer value. However, A
is restricted to being a value greater than zero. This restriction is

logical because A always represents the number of occurrences--a positive
quantiy.

One interesting feature of the Poisson distribution is that
its variance (0?) also equals its mean, A. In the example above where
A=2.8, the variance of the arrivals (or_the errors) would also be 2.8.
The standard deviation would be A2 or12.8 = 1.67. Harnett (8:125-126)
gives the proof that both the mean and the variance of the Poisson distri-
bution equal .

1

The coefficient of skewness is equal to » 2. Because ) is
always greater than zero, the Poisson distribution always has a positive
coefficient of skewness denoting a skew to the right. However, as 2
increases the skewness coefficient decreases and for 1>9, the normal
distribution with mean and variance equal to ) may be used to approximate
the Poisson distribution (Hastings, 9:112).
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The coefficient of kurtosis is calculated by 3+(1/x). As A
increases, the kurtosis value approaches 3, the standard of the normal
distribution. The coefficient of variation is simply A%, the same as
the coefficient of skewness.

The shape of the graph for the Poisson distribution is
controlled by the value of A. For small values of A, where i<l, the
graph is very skewed to the right. As the value of A increases, the
graph begins to appear more symmetr1ca1 Three graphs are given in
Figure 14 to show the effect of an increase in A on the shape of the
distribution.

x0.5) f(x;1) #(x;10)
4 A A
T~ 4 .14 4
.6+ 12 S
.:- 3 104
4 08
.;~ 2 .06
- l | N H | o] ll L1
A } i | Lo " - 29
01 2 3 456 % N R “l"i 7 25 g
Figure 14

Poisson Distribution (Notice Scale Changes)

The uses for the Poisson distribution are many. Generally,
it describes events in time (number of customers arriving at a bank
teller's window) and events in space (number of flaws on a wood surface).
There are four basic assumptions which must be met before the Poisson
distribution can be assumed to represent empirical data.

First, it must be possible to subdivide the time
interval being used into a large number of small subin-
tervals in such a manner that the probability of an
occurrence in each of these subintervals is very small.
Second, the probability of an occurrence in each of the
subintervals must remain constant throughout the time
period being considered. Third, the probability of two
Oor more occurrences in each subinterval must be small
enough to be ignored. And, finally, an occurrence
(or nonoccurrence) in one interval must not affect the
occurrence (or nonoccurrence) in any other subinterval-
i.e.,)the occurrences must be independent (Harnett,
8:120).

C. Exponential Distribution

The exponential distribution is a continuous distribution.
Its density function is

-x/8
£(x;B) = —— ¢
8
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where:

# 1s the reciprocal of the average number of occurrences
(arrivals, successes) during a time interval and g>C.

The exponential distribution, as the Poisson distribution, has a single
parameter. The Poisson distribution's single parameter A represents the
mean number of arrivals during a selected time interval. The exponential
distribution's single parameter 8 represents the mean arrival rate (or
interarrival rate) per the same time period. For example, if customers . -
arrive at a checkout counter according to a Poisson distribution with

A = 2.8 customers per minute, then the exponential mean arrival rate '

g = 1/x or 1/2.8 which equals about 0.3571 minutes (or one customer about
every 21 seconds).

The exponential distribution has the interesting property that
its mean equals its standard deviation. The coefficients of skewness and
kurtosis for the exponential distribution are both independent of its para-
meter .. The measure of skewness always equals 2 which shows the expo-
nential distribution as skewed to the right. The measure of kurtosis is
always 9, showing that the exponential distribution is considerably more
peaked than the normal distribution whose kurtosis coefficient is 3. The
coefficient of variation is the constant value 1, wnich is logical since
the mean equals the standard deviation for the exponential distribution.

The graph of the exponential distribution follows the same basic
shape for all values of 8 with its y-intercept equal to 1/8. The x-axis
usually represents time while the y-axis represents the number of events.

A representative exponential curve, shown by Figure 15, has a mean inter- o
arrival time of g = 0.05.

f(t: 1) A
/5::0.5
-
——
i —1 A i
0 05 10 15 20’”l

Figure 15 B
Exponential Distribution

The exponential distribution is considered "one of the best known,
most useful, and most thoroughly explored failure distributions . . . appli-
cable to many types of component failures, especially in electrical systems"
(Tsokos, 19:186). In addition to describing failure rates, it is often used
to describe service times and arrival rates. In using the exponential
distribution to describe service times, one major assumption should be
adherred to: the interarrival rate or the service rate should be relatively
short (Harnett, 8:139). For example, the length of telephone conversations
is usually considered to be exponentially distributed and satisfies the
"relatively-shoi't" assumption. Martin (11:67) gives seven specific examples
of occurrences which have been shown to follow exponential distributions.

20




1. Lives of electron tubes.
2. Time intervals between successive breakdowns of
electronic systems.
. Life testing in many life distributions.
4. Purely random failure patterns.
5. Pure death processes (fiber failure).
6. Failure of complex mechanisms.
7. Target noise and receiver noise after square law

w

rectification.
D. Normal Distribution

Many statistical superlatives are used to describe the normal
distribution: most valuable, most popular, best known, most widely used,
most important, and well researched. The normal distribution is a contin-
uous distribution whose equation for its probability density function is

2
-~ —x—-i
f(x;pm,a?) ="-:£—-e ’5( c ) ’
o\ 27T

where

< X <00,
p is the mean of the distribution,

o? is the variance of the distribution, and

o is the standard deviation of the distribution.

The characteristic bell shape of the normal curve is a function
of its two parameters, u and o. The mean u gives the location on the x-axis
of the center of the curve. The standard deviation o describes how dispersed
or varied the random variates are. A large standard deviation means a short,
wide bell-shaped curve while a small standard deviation describes a tall,
narrow bell-shaped curve.

The coefficients of skewness and kurtosis are mentioned in detail
in Section II of this report under the description of the moments test for
normality. Both measures are independent of the values of the parameters
of the normal distribution. The coefficient of skewness for a normal curve
is 0 denoting a symmetrical curve. The coefficient of kurtosis is 3 which
describes a mesokurtic shape. The coefficient of variation, by definition,
is the standard deviation o divided by the mean u.

The shape of the normal curve is always symmetric and always bell-
shaped. However, a change in the location parameter u can change the position
the curve is centered about on the x-axis. A change in the scale parameter
o effects the amount of spread the sides of the curve exhibit in relation
to the curve's center point. The changes in the shape which are a result
of changes in u (o held constant) are shown in Figure 16. Figure 17 shows
the effects of changing o while u is held constant.
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f(x;u,1)
}
#;2 Iu=4
| 1 I -
(] 1 ; 3 ; s > X
Figure 16

Normal Distribution (o = 1)

A 1
0 1 2

3
Figure 17
Mormal Distribution (u = 3)

There are five primary reasons why the normal distribution is
the most popular theoretical distribution in the study of statistics. First,
the normal distribution is easy to use because its probability tables have
been extensively and accurately developed. Secondly, many random variables
do approach normal distributions. For example, "heights of men, lengths of
ears of corn, and, more generally, many linear dimensions . . ." (Snedecor,
18:35). A third reason is that a simple transformation of random variates
(whose distributions are not normal) may approximate a normal distribution.
The logarithm of a random variate is an example of such a transformation.
The Central Limit Theorem is the fourth and probably the most important
use of the normal distribution. The Central Limit Theorem states that the
distribution of sample means is approximately normal as N>30. The original
form of the distribution from which the samples were taken does not matter;
the distribution of the sample means would still approach a normal distri-
bution. Therefore, the importance of this theorem is supported by the
evidence that many researchers are interested in averages for their data--
the average income for a computer systems analyst or the average life of
a particular variety of light bulbs. The fifth reason for the extensive
use of the normal distribution is that it serves adequately well as an
approximation for some non-normal populations (Snedecor, 18:35). Several
of the distributions which are sometimes approximated by the normal distri-
bution "are the binomial, the hypergeometric, the Poisson, and the gamma"
(Tsokos, 19:160).
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Several specific uses of the normal distribution are included
to aid in the identification of characteristic environments of sample
observations. "Such diverse characteristics as sleeve lengths for adult
males, intelligence test scores for school children, errors made by rats
learning a maze, and achievement in statistics courses seem to follow
the 'normal' distribution" (Klugh, 10:49).

Because the normal distribution is so well known and relatively
easy to use, it is often misused to describe phenomena which are not
normally distributed. For this reason, the moments test for normality is
included and described in Section II of this report.

E. Log-normal Distribution

If Y is a random variate that is normally distributed with a
mean u, and a variance o2 and if Y = In X, then X follows a log-normal
distri%ution. The log-normal distribution is a continuous distribution.
If X = ¢, where WWN(%fo§), then the density function of the log-normal
distribution is .

2
-{in x -py)
f(x;uy,o§) =1 e[ - ],
X '1703

where x>0, -=<y<», and °;>0. The density function for Y, the normal variate
is

£(yiny,0) = __.Le"!’—“ga?)
[ 4 V:'ﬂ' ’
y

where -«<y<w, ~<y <, and c§>0.

The two parameters used to describe the log-normal distribution
are actually the mean and variance of its related normal distribution. The
log-normal distribution may be generalized to include a Tocation parameter,
thus becoming a three-parameter distribution. It is treated as a two-
parameter distribution in this work. For the log-normal distribution,

u, and o2 are called the scale and shape parameters, respectively, while
t{ey areythe location and scale parameters of the normal distribution.
The relationship between the parameters of the normal distribution (Y)
and the mean and standard deviation of the log-normal distribution (X)

is
4 2
Hx Hx +0y
=1 ad = 1 M .
Ky n —P“’x | an «{ n ’——r“' (19:174)

The coefficient of skewness for the log-normal distribution can be
calculated by '

2
c, = €9y + 2) (% - 1)N.
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The coefficient of kurtosis can be calculated by the formula

2 P4 2
c, = (e°Y)* + 2(e%Y)?! + 3(e%Y)2 - 3.

2
The coefficient of variation is (e®y - 1),

The log-normal distribution is represented by a family of curves,
all of wh1ch are skewed to the right. The greater the value of the para-
meter o2, the more pronounced the skewness of the graph of the density

funct1o¥ Figure 18 illustrates the effects of changes in o2 while u is
held constant. y y

(x:0,02) |

Figure 18
Log-normal Distribution (uj = 0)

Figure 19 demonstrates the effects of chang1ng u,» the location parameter

for Y, while holding o; constant.

y’

f(xys,0.5) |

Figure 19
Log-normal Distribution (oy = 0.5)

Random variates suspected to follow a log-normal distribution must
always satisfy one requirement--they must be positive values only. This
distribution is not defined for negative values.

F. Gamma Distribution

The gamma distribution is a family of continuous distributions
with two parameters: o, the shape parameter, and 8, the scale parameter.
The probability density function is

a-le-x/p
T8’

f(x;a,8) =&
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where x>0, o>0, and 8>0. Tr(a) is the gamma function r(a) = [:"c le Xax ,
r{a) = (a - 1)!, where a is a positive integer. "The gamma distribution is
the appropriate model for the time required for a total of exactly . . . «
independent events to take place if events occur at a constant rate

8 " (Hahn, 7:83).

The mean of the gamma distribution is a8 and the variance is ap2.
The measures of skewness and kurtosis for the gaﬂma distribution rely on the
a parameter. The coefficient of skewness is 2a™%. The kurtosis coefficient
is computed by 3 + 6/a. The gamma distribution is always skewed to the
right, but the gkewness decreases as a increases. The coefficient of
variation is o -

When the shape parameter equals 1, the exponential member of the
gamma distribution drops out with density function

_x/
£(x;8) =e—-—p-.

B

where x20 and g>0. When o represents only positive integers, the Erlang-k
distribution is described and the a parameter is referred to as k. The third
distinctive member of the gamma family is the chi-square distribution and

it occurs when 8 = 2 and « = r/2, where r is a positive integer. A further
description of the chi-square case is available in Hahn and Shapiro's book
(7) and under the appropriate section of this report. ’

The graph of the gamma distribution takes many shapes, which is
the reason for its versatility. Its curves are often described as unimodal
and reverse J-shaped. A unimodal curve has a single rounded peak. A
J-shaped curve rises to a cusp at one end and falls off rapidly at the
other end. These adjectives become apparent when one studies the various
shapes of the gamma distribution.

The shape parameter o is varied in Figure 20 while 8, the scale
parameter, is held constant at 1. As a approaches 0, f(x;a,8) also
approaches 0 for a,8>0. In fact, for O<a<l, I'(a) = (a - 1)! is negative
and f(x;a,8) becomes infinite as « approaches 0. For cases of «21, the
gamma distribution starts at the origin, has its maximum value at x = aB,
and then falls off. "In all cases, the curve approaches the x-axis
asymptotically for large values of x" (Wadsworth, 20:110). The shape of
the gamma distribution can even resemble that of the normal when 8 = 1,
and o becomes very large (Shannon, 17:366).

cad) | \@=1

Figure 20
Gamma Distributions (8 = 1)
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Figure 21 illustrates the changes which occur in the shape of
the gamma distribution when o is held constant and g is varied.

#(x;1.8) ﬂ

R 5
|

T'{ iw

.
. KRR

the probability that t or less time will be required to obtain a success"
(Clark, 3:253). In other words, it is often used as a model for waiting
times. An example in life testing problems might be the waiting time
until the failure of some component. Shannon goes so far as to say, "If .
the variables from some random phenomenon cannot assume negative values 4
and generally follow a unimodal distribution, then the chances are _ v
excellent that a member of the gamma family can adequately simulate the "
phenomenon” (17:363-364).

_ > X
- Figure 21
Gamma Distributions (a = 1) ]
:! The gamma distribution is used in applications for "determining - !%

Lk

MR RAME

G. Erlang-k Distribution

The Erlang-k distribution is a continuous distribution with the -

same two parameters as the gamma distribution: a, the shape parameter, L
and B, the scale parameter. The shape parameter, however, must be a L
positive integer for the Erlang-k distribution. The probability density ]
function is the same as that of the gamma distribution: 'i
a-1 —x/ﬂ .‘

f(x;a,8) = x ¢ = , o n g

I'(a)8 g

3

where o and g>0 and x20. The gamma function is evaluated for a by 3
F(a) = (a - 1)!, if a is a positive integer. ;j

The mean, variance, coefficients of skewness, kurtosis, and
variation are the same as those of the gamma distribution and can be "
obtained from the portion of this section on the gamma distribution. The 1]
only difference between the two is the requirement that the shape parameter “
of the Erlang-k distribution be a positive integer. When the shape para-
get:r equals 1, the Erlang-k distribution reduces to the exponential distri- -

ution. ‘

) &
Ty vV Y

The coefficient of variation for the exponential, Erlang-k,
and gamma distributions is always 1A, where a is the shape parameter. :
For the special case of the exponential when a is 1, the coefficient of -

e 1
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variation is 1. As the shape parameter increases, the coefficient of
variation decreases which implies that Erlang-k data tends to cluster
more closely toward the mean than does exponential data. In other words,
Erlang-k observations would be less likely to have as many high and Tow
values as would exponential data.

The characteristic shapes of the Erlang-k distribution are
identical to those diagrammed previously in this section for the gamma
distribution.

H. Chi-square Distribution

The chi-square distribution is a continuous, single-parameter
distribution defined only for values of the random variable greater
than or equal to zero. Its single parameter v is the number of degrees
of freedom. The degrees of freedom parameter is usually defined as the
number of sample observations that are independent to vary after certain
limitations on the data have been taken into account. An example of a
limitation is using the sample mean X as an estimate for the unknown
population mean. The X limitation would remove one degree of freedom.

The chi-square distribution is really a special member of the
gamma family of distribution. The chi-square distribution occurs when
the gamma parameter g8 = % and o = k/2, where k is a positive integer.
(The parameter k is the degrees of freedom parameter.) The density function
for the chi-square distribution is

‘x(v/z-l)e-x/z
2741 (v/2)

fix;v) =

where x>0, r(v/2) = (v/2 - 1)!, and v/2 is an integer.

The chi-square distribution has numerous important properties
and relationships to variates of other distributions. Hastings and
Peacock describe the chi-square variate relationships to the gamma, F,
Student's t, Poisson, and normal variates (9:46-50). Two of the more
interesting properties of the chi-square distribution are:

1. if X is a standard normal variate (XW(0,1)), then X2
is a chi-square variate with one degree of freedom (X"x2(1)), and

2. if X, is x%(n) and X, is x%(m) and X and X, are
independent, then X, + *2 is x2(n+m).

The chi-square distribution is actually defined as the sum of the squares
of n independent standard normal variates. Therefore, the first property
stated above is simply the definition of the chi-square distribution.

The mean and variance of the chi-square distribution are very
simple functions of the parameter v. The mean u is equal to v and the
variance o2 is equal to 2v., Therefore, the coefficient of variation
is computed simply by (2/\));5 which gives it a range between 0 and V2.
The coefficient of skewness is computed by 232y=% and the kurtosis coef-
ficient is 3 + 12/v. Since degrees of freedom v is always greater than
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or equal to one, the skewness coefficient is always positive, denoting

skew to the right. The kurtosis coefficient is always greater than three,
denoting leptokurtic shape approaching mesokurtic as v»=, The chi-square
distribution approaches the normal distribution for v>30. For larger
values of v, it is easy to see that the coefficients of skewness and
kur?os:s approach the values which are characterictic of the normal distri-
bution.

Figure 22 illustrates the various shapes of the chi-square
distribution caused by a change in its single parameter v. The
chi-square curve is always skewed to the right, but approaches the
symmetry of the normal curve as v becomes large.

o) 4

v=1

Figure 22
Chi-square Distribution

The chi-square distribution is most valuable in testing
hypotheses on the variances of normal populations. It is also used
as the limiting distribution in the chi-square goodness of fit test
and it is important in conducting tests of independence.

1. Triangular Distribution

The triangular distribution is a three-parameter continuous
distribution. The three parameters are .ne minimum value (Xmin) the
distritution can attain, the maximum value (Xmax) the distribution
reaches, and the most probable value (X mest )| Which occurs over the interval
between Xmin and Xmax. The probability density function for the triangular
distribution has two parts, defined with respect to the X mog pOsition:

2(x-X_. )

min
for xéxm ¢
(X “X . )X =X ) oS

£ (x:X % X ) = most min max min
Xi%min max ' "most $ 2 (X -x)
max for xaX
most
(Xmax xmost: ) (Xmax Xmin )
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The triangular distribution looks like its name indicates it
does--a triangle. Its general form is shown below.

Kx;1,3,6)

X most =3

Figure 23
Triangular Distribution

Xmin is the minimum allowable value for X; Xmax, the maximum allowable

value for x; and, Xmest iS5 the most probable value which can occur over
the defined range.

Three special cases of the triangular distribution exist: a
right triangle is defined when Xmest = Xmax ; @ 1eft triangle is
defined when Xnos = Xmin 3 and a pyramidal triangle is defined when
me" = 1/2(X..¢x - Xmin3.

The triangular distribution is used primarily by the researcher
who knows the minimum value of his distribution, the maximum value of his
distribution, and the most probable value of his distribution.

J. Uniform Distribution

The uniform distribution has two parameters, usually referred to
as a (or A) and b (or B), or sometimes as « and B. The parameters define
the endpoints of the interval over which the distribution is defined and a

is always less than b. The probability density function for the uniform
distribution is

f(x;a,b) = ——l

b~ a ’

where a<xsb and the function is 0 elsewhere. The mean is easily calculated
by

= (a+b)2
and the variance is almost as simple with

o2 = (b - a)2/12,
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The measure of skewness is Q which is obvious from a graph of the uniform
distribution. The measure of kurtosis is constant at 1.8 which implies
flatness--again, obvious from a graph. The coefficient of variation can be
computed by (b - a)/V3(a + b).

The graph of the uniform distribution is simply a straight line
between the endpoints a and b of the interval over which it is defined.
The y-coordinate of the 1ine is 1/(b - a) as can be seen in Figure 24.

{x;1,4)
a '1 bt 4
— 5
, 1 1 ] 1 L.
0 1 2 3 4 5o X

Figure 24
Uniform Distribution

The uniform distribution is used when there is an equa)l
probability of each defined value being selected and that probability is
directly proportional to the length of the interval. In nature, variates
are not usually uniformly distributed. However, whenever completely random
choices can be made from among a set of alternatives, the uniform distri-
bution is often used to describe this situation.

K. Weibull Distribution

The Weibull distribution is a continuous distribution. It is
sometimes described as a two-parameter distribution and sometimes as a
three-parameter distribution. The third parameter, when used, is a
location parameter and permits the introduction of an arbitrary origin.
The two-parameter distribution is described here (location parameter is
equal to zero). In applications language, the location parameter represents
the initial period of time before any failure takes place (7:110-111). The
word "failure" suggests that the Weibull distribution is another model used
extensively in reliability studies.

The two-parameter probabiiity density function for the Weibull
distribution is
B
-1 ~ax
f(x;a,8) = anB 1e *

where x>0, a>0, and g>0. For the Weibull distribution, a is the scale
parameter and 8 is the shape parameter.

The mean of the Weibull distribution can be calculated by
evaluating the integral

* -1 -axP
yoS XalfX e dx.
0
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Miller (14:466) simplifies that integral until the equation for the mean
reduces to

wos G-I/BF

(1 + 1/8).

The variance of the Weibull distribution is defined as

0?2 = a-zls{r(l +2/8) - [r(1 + 1/8)) 2}.

The coefficients of skewness and kurtosis are not readily available from
the referenced literature.

The Weibull distribution takes on many shapes as the values of
its shape parameter 8 change. The Weibull curves are always skewed to the
right. For values of B<l, the Weibull curves are asymptotic to both axes.
When 8 = 1, the exponential curve appears. For g>1, a unimodal family of
curves is generated, but still the curves are skewed to the right. Figure

25 illustrates shapes of the Weibull curves for the conditions of g just
described.

H{x:1,8)
1

1

v
1

—

Figure 25
Weibull Distribution (a = 1)

The Weibull distribution has its primary use in reliability
studies when the failure rate of the component being tested is not constant
for the time frame under consideration. The exponential distribution is

often used when the failure rate of a component is a constant. By contrast,

Weibull probabilities describe the time to "wear-out failure rather than

chance failure" (Miller, 14:465). The Weibull distribution has been used
successfully to represent failure models for "electron tubes, relays, and
ball bearings . . . . . " (Hahn, 7:109).
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IV. SOFTWARE DESCRIPTION
A. General

The goodness of fit (GOF) program, described in this section, {s
designed to be simple enough to be understandable by the non-statistician
and non-programmer. However, it is also designed to be comprehensive
enough to give the analyst a tool that provides a first step in the charac-
terization of his research data. The methodology of the GOF program closely
follows the general steps of statistical hypothesis testing. Table 2 provides
a comparison of the steps in hypothesis testing with the procedures the user
must follow when running the GOF program. Once the user is familiar with
the techniques of hypothesis testing, the flow of the GOF program is logical
and easy to follow.

B. Capabilities

Tk GOF program operates in two modes: batch and on-line. It is
written entirely in FORTRAN IV. Portability is an important design objective
for this program. Machine-dependent characteristics and software functions
are avc.ded in the coding of the GOF program. The program was developed on
a UNIVAC 1108 and was also successfully implemented on a Xerox Sigma 9
computer.

The GOF program performs four major functions:

1. Interprets easy-to-use input instructions,

2. Prints a histogram (optional) and descriptive statistics
calculated from the user's empirical data,

3. Performs selected goodness of fit test(s) to a hypo-
thesized probability distribution, and

4. Notifies the user as to the acceptance or rejection of
his test hypothesis.

The first function is performed by the GOF language translator which accepts
GOF problem oriented commands and translates them into internal code for
use by the computational section cf the pro~ram. The GOF language is easy
to master and its statements are in free forui format making them simple to
input. The second, third, and fourth major functions are performed by

the computational section of the GOF program. That section is responsible
for reading and sorting the input data, calculating observed and theo-
retical distribution frequencies, printing a histogram of the observed
data, performing the goodness of fit mathematics, checking the critical
value tables for the appropriate tests being run, and printing the results
of the run. The output of each goodness of fit test is given in a blocked
format with a sentence-structure synopsis of the results of the test. The
output is, therefore, easy to identify and understand.

C. Options

Delayed Distribution Selection. The user of the GOF program is
provided several options allowing him to tailor the operation of the
program to his-individual needs. If he is unsure of the distribution
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Table 2

B s Nt SR

Methodology of GOF Program

Steps in Hypothesis Testing

GOF Program Procedures

.l.

The null and alternative
hypotheses are stated.

-

The test statistic is
selected.

The level of significance
at which to evaluate the
results of the test is
specified.

The experiment is
performed to obtain the
sample observations.

The test statistic is
computed and the results
are evaluated.

1.

The user selects the
distribution to be
tested. The GOF
program constructs the
hypotheses as:

H,: The observed
data comes from
the selected
distribution,
and

H,: The observed
data does not
come from the
selected distri-~
bution.

Selecting the goodness
of £fit test to be run
determines the test
statistic to be calcu-
lated.

The user specifies an
ALPHA value to the GOF
program. That value
is the probability of
rejecting the null
hypothesis when it is
correct.

The sample values are
input to the GOF
program.

The goodness of fit
test is performed, the
results compared with
the appropriate
critical value, and
the acceptance or
rejection message is
printed.
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against which he wishes to test his data, he can delay the selection of

a distribution until after the program has printed the histogram of his
observed data. The GOF program also calculates and prints mean, variance,
standard deviation, and coefficients of variation, skewness, and kurtosis

for the sample data prior to the specification of the hypothesized distri-
bution. The GOF program then returns control to the language translator

and waits for the user to select the distribution to be tested. If the

user is running in the batch mode, to take advantage of the delayed-
distribution-selection option, he would have to execute the GOF program
twice. The first run prints the histogram and descriptive sample statistics.
The user studies the results of the first run and then executes the GOF
program to perform the goodness of fit tests against the chosen distribution.

If the user knows the distribution against which he wishes to
test the sample data, he may specify that distribution during the initial
input session with the program. In this mode, the program continues
uninterrupted through its computational section calculating sample
statistics, testing the null hypothesis, printing test results, and printing
the histogram of the sampie observations.

Population Parameters. Another optional feature of the GOF
program concerns the specification of theoretical population parameters.
The user may input the parameters of the hypothesized distribution if they
are known. If they are not known, the GOF program estimates them from the
sample data. The null and alternative hypotheses are printed with the
distribution parameters labeled either "theoretical" or "estimated"
according to the method selected by tke user.

Various Input Formats. Many program options allow versatility
for the input of sample observations. The GOF program accepts either
individual sample observations or grouped data. Grouped data is input
by supplying the class Tower and upper boundaries and the absolute class
frequencies. Empirical data values, whether grouped or ungrouped, may
be input under one of three available methods: (1) free field format
of integer, floating, or scientific notation (E-formatted) values; (2)
user supplied format; or (3) program defauit format of 8F10.5. Empirical
data may be read from the same source (logical unit) as the language
commands or it may be read from an alternate device. The number of input
data values may be specified or the GOF program can be instructed to
count the number of data items read before a terminal value is encountered.
The terminal value may be user specified or a program default value of 999.
The terminal value, whether specified or default, must be followed by a
system end-of-file designation. Appendix B of this report illustrates run
streams for the UNIVAC 1108. The job control statements necessary to
implement the alternate device option are included.

Miscellaneous Options. Other program options control the types
of calculations to be performed and the quantity of output. The printing
of the histogram, which may be time consuming on slow speed terminals,
can be omitted at the user's discretion. The user may also specify the
number of cells he wishes the sample data to be grouped into initially,
or he may let the program automatically grouo it into 15 cells. The
user may decide to have the GOF program calculate either biased
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or unbiased coefficients of skewness and kurtosis. Section II of this
report gives the equations used in both methods. During the operation
of the GOF program in the batch mode, numerous intermediate calculation
values are printed. These values are omitted during on-line execution
because of the time and extra width output fields required to print them.
These options and others are explained in more detail under the part of
this section which describes the individual commands.

The GOF program gives the user the results of each goodness of
fit test it is requested to run. These results are evaluated internally
by the program at the 95% and 99% levels of significance for all but one
of the tests. The results of the moments test can only be evaluated by
the GOF program at the 0.05 level of significance. Prior to running a
test, the user selects an alpha value of 0.01 (for 99%) or 0.05 (for 95%).
If neither value is specified, the program defaults to an alpha value of
0.05.* After each selected goodness of fit test is run, the program
checks internally stored critical value tables for the appropriate value
of alpha and prints the results of the test. Critical values, computed
value of the test statistic, value of alpha, and the number of degrees
of freedom (where appropriate) are all printed for both on-line and batch
versions. This internal evaluation feature eliminates the necessity of
the user's bringing extra material to a GOF session. It also spares the
occasional user the additional burden of remembering how to use the various
critical value tables. For values of alpha other than 0.01 and 0.05 and for
tests whose number of observations or degrees of freedom exceed those
available from the GOF internal tables, the user must refer to other
critical value sources to determine the results of his test.

Because the GOF program runs in both batch and on-1ine modes,
the user should specify through the command language if he is running in
the on-line mode. The primary differences between the two modes of operation
are the quantity and spacing of the output from the GOF program. Output
for the on-line mode is restricted to 64 horizontal print poisitions while
batch output extends through 132 print positions. Because of the unpredictable
nature of data related error messages and optional feature messages, no
control is maintained within the program on vertical output spacing.

D. Macro Flowchart

Figure 26 is the macro flowchart of the GOF program. The
narrative which follows is related to the flowchart by the block numbers
which appear to the upper left of each major block in the flowchart. This
description is primarily for the on-line version of the GOF program. Any
significant differences of the batch version are also mentioned.

*The user of the GOF program may always evaluate the results of
a goodness of fit test at any level of significance he wishes by referring
to appropriate critical value tables. The value of the test statistic and
the number of degrees of freedom or sample size are printed for every test
executed. Therefore, the user is not restricted to the 0.01 and 0.05 levels
of significance automatically available from the GOF program.
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Block 1. The GOF language translator is ready to accept the
user's input commands immediately following the printing of the GOF
program’'s title line. The system prompt character notifies the user
to begin inputting his testing and operational statements. These statements
are explained in the next part of this section.

Block 2. At any time the user may input a STOP statement and
terminate execution of the GOF program.

Block 3. Often a researcher constructs a histogram of the
sample observations from his experiment. From the shape of the histogram,
he may obtain a clue as to a possible distribution against which to test
his data. Therefore, the GOF program permits the user to see a histogram
before he must select the hypothesized distribution. At this point in
the program, if the user has seen the histogram and has specified the
distribution to test, the GOF program jumps to Block 23 and begins
executing the selected goodness of fit tests.

Block 4. The sample observations are read under one of three
selectable formats: (1) free-field format, (2) user supplied format, or
(3) program default format. These three options are described in detail
in the next part of this section. After the values are read, they are
echo-printed for the user's verification.

Block 5. At this point, the GOF program handles grouped and
ungrouped data differently. The user has the option of inputting either
form of data to the GOF program.

Block 6. If the input data is ungrouped, the values are
arranged in numerically ascending order using an efficient tree sort
algorithm.

Block 7. The mean, adjusted variance, and standard deviation
are calculated from the sample observations. This step is performed

automatically to provide the user with several descriptive sample
statistics.

Block 8. The program also calculates the coefficient of variation
for the user. This sample statistic is sometimes helpful in the selection
of a distribution to test. Section III of this report contains the formulas
(or constant values, in some cases) for the theoretical quantities being
estimated for most of the ten distributions included in the GOF program.

Block 9. Either biased or unbiased coefficients of skewness
and kurtosis may be calculated. The program defaults to the unbiased
calculations, but the user may override that default by the BIASED
command. (This command is explained in the next part of this section.)
Section II of this report contains the equations used for both methods of
computing these two descriptive sample statistics. For ungrouped data,
the GOF program transfers to Block 12.

) Block 10. For grouped data, the GOF program calculates the mean,
adjusted variance, and standard deviation by using each class mark (midpoint)

times its absolute class frequency in the equations for these three
statistics.
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Block 11. Once the mean and standard deviation for the grouped
data are calculated, the coefficient of variation is computed. The
coefficients of skewness and kurtosis are not computed for grouped data.

Block 12. The descriptive sample statistics are printed.
Examples of these printouts are included in Appendix A of this report.

Block 13. The GOF program checks to see if the user requested
that a moments test for normality be run. If the user does not want the
results of a moments test, the GOF program transfers control to Block 18.

Block 14. The critical value tables for the moments test,
which are stored internally by the GOF program, contain entries for values
of N up through 125. If N is less than or equal to 125, control goes to
Block 16.

Block 15. For values of N greater than 125, the user should
refer to a set of tables for the normal distribution to determine the
appropriate critical values against which to check the test statistic.
This procedure is explained in Section II under the discussion of the
moments test. For values of N greater than 125, the GOF program prints
a message referring the user to tables for the normal distribution.
Control then goes to Block 18.

Block 16. For values of N less than or equal to 125, the GOF
program does a table lookup to the nearest value of N (greater than or
equal to N) for the 95% level of significance and extracts the test
critical values. These values are compared with the calculated values of
the skewness and kurtosis coefficients and the results are printed for

the user. The tables contain entries only for the 0.05 level of significance.

Block 17. The GOF program prints the results of the moments
test. Examples of this type of output are included in Appendix A.

Block 18. If the user inputs ungrouped data, the GOF program
must arrange it into cells (or classes) at this point. The GOF program
checks to see whether the user specified the number of cells into which
he wants his data grouped. If he did, the program transfers to Block 20.

Block 19. If the user does not specify the number of cells for
grouping the sample observations, the GOF program, in most cases, defaults
to 15. The Poisson distribution is handled differently from the other
distributions by the GOF program.

...the minimum and maximum values in the data set are
determined. If the minimum value is not equal to zero, a
change of variables is made to translate all observed data
points to a (0-» ) range. This will not effect the goodness
of fit test, but will reduce the possibilities of an overflow
(underflow) in the calculations of e"X. Once the data have
been scaled to zero, (if appropriate) a cell is established
for each possible value of the random value X on the range of
x=0,1,2,...(xmax). The logic of this approach is that by
creating a cell for each possible (discrete) value, the

maximum degrees of freedom can be obtained for the Chi-square
test (Phillips, 16:17).
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The Cramer-Von Mises test uses each observation individually.
The Kolmogorov-Smirnov test runs with the number of cells less than or
equal to the number of data points. The chi-square test runs with grouped
values and requires that each cell contain at least five expected obser-
vations. Therefore, the chi-square test could be run with less cells
than the user selects (or the program calculates). At this point in the
GOF program, the cell values are only calculated. Prior to performing
the chi-square test the cell values are checked and may be adjusted to
meet the five-observation criterion. The user can find a description of
each goodness of fit test and its relationship to grouped data in Section
I1 of this report.

Block 20. The sample observation distribution is calculated
for ungrouped input data immediately after the cell boundaries are
constructed. If the user is running the batch version of the GOF program,
he receives a printout of the cell bcundaries and the absolute cell
frequencies at this point. The on-line user does not receive this output,
but sees it graphically represented in the histogram.

Block 21. The GOF program now checks to see whether the user
has specified a hypothesized distribution. If the distribution has been
selected, the GOF program continues at Block 23.

Block 22. Because the user has not selected a hypothesized
distribution, the GOF program can only print a histogram of the sample
observations at this point. After the histogram is printed, the user
receives a prompting message asking him to now select a hypothesized
distribution. The GOF program transfers control to Block 1 to accept
the user's command for the selection of a distribution.

Block 23. The values for the theoretical and cumulative
probability distributions are calculated for the hypothesized distri-
bution. If the user inputs the theoretical parameters for the hypo-
thesized distribution, they are used. If the user does not svecify the
theoretical parameters, sample estimates of these parameters are calcu-
lated. Table 3 gives the equations used for each distribution to calcu-
late its parameters from sample estimates. The sample mean is denoted
by Xx; the sample variance by s?; and the sample standard deviation by s.

The GOF program calculates the values of the theoretical and
cumulative probability distributions for the chi-square and Erlang-k
cases by using the same equations it uses for the gamma distribution
values. This method is used because the chi-square and Erlang-k distri-
butions are special cases of the gamma distribution. Therefore, if the
user inputs the theoretical number of degrees of freedom for the chi-
square distribution, that value is divided by two to get the gamma distri-
bution's shape parameter. The gamma scale parameter is set equal to 2
for the calculation of chi-square values. In the Erlang-k case, the
estimated shape parameter is rounded to the nearest integer before the
gamma distribution equations are used. If the user inputs the theoretical
shape parameter for the Erlang-k distribution, he should input an integer
value. Section III of this report contains a description of each distri-
bution and its parameters.
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Table 3

Sample Estimators of Distribution Parameters

Distribution Parameter Estimator
1. Poisson A x
2. Exponential B x
3. Normal u,0? X,s? (unbiased)
4. Log-normal u,o0? X,s? (of transformed
data)
5. Gamma B (scale) s?/x
a (shape) (x/s)?
6. Erlang-k B (scale) s2/x
a (shape) (X/s)? (rounded to
nearest
integer)
7. Chi-square v (degrees [(x/s)2)/2
of
freedom)
8. Triangular X in Minimum sample value
xmost (3**x) - xmax = Xnin
X Maximum sample value
max
9. Uniform A (lower X - s/3
limit)
B (upper X + s/3
limit)
10. Weibull a (scale) See reference 27,
B (shape) pages 465-469 for

explanation of the
techniques used to
estimate Weibull
parameters.
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Block 24. If the user has requested that no histogram of
his empirical data be printed, the GOF program transfers to Block 26.
If the user is running under the delayed distribution selection option,
the GOF program transfers to Block 26 because the user has already seen
2 histogram of his empirical data (Block 22).

Block 25. The GOF program constructs and prints a histogram
of the empirical data. The number of cells in the histogram is either:

1. user selected,

2. a program default value of 15, or

3. the number of possible integer values in the random
variable range (for Poisson tests only).

Block 26. At this point, the GOF program is ready to perform
the required goodness of fit tests. If the Kolmogorov-Smirnov test is
not required, control is transferred to Block 31.

Block 27. The Kolmogorov-Smirnov test compares the cumulative
distribution function of the sample distribution with the cumulative
distribution function of the theoretical distribution. Therefore, at
this point, the cumulative distribution values for the sample distri-
bution are calculated.

Block 28. The Kolmogorov-Smirnov test statistic is calculated.
Section I of this report contains an explanation of how the Kolmogorov-
Smirnov test works.

Block 29. The Kolmogorov-Smirnov calculated test statistic
is compared with the appropriate critical values stored internally in the
GOF program. These critical values are available for values of ALPHA
of 0.01 and 0.05. (ALPHA is the probability of rejecting the null hypo-
thesis when it is true. Its use is explained in the next part of this
section.) The internally-stored tables contain entries for values of N
from 1 through 20 and for the values 25, 30, and 35. For values of N
between 21 and 34 which are not in the tables, the next higher multiple
of 5 is used. For example, if N=23, the critical value for N=25 is used.
For values of N greater than 35, the critical values are calculated by the
following equations:

1.36MM for ALPHA=0.05, and
1.63AN for ALPHA=0.01.

Block 30. The GOF program prints the results of the Kolmogorov-
Smirnov test. An example of this output is contained in Appendix A of
this report.

Block 31. The GOF program, at this point, checks to see if
the Cramer-Von Mises test is desired. If it is not, the program
continues at Block 35.

Block 32. The cumulative Cramer-Von Mises test statistic is
computed.
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Block 33. The calculated Cramer-Von Mises test statistic is
compared with the appropriate critical value by the GOF program. For a
0.01 level of significance, the Cramer-Von Mises critical value is 0.743.
For the 0.05 level of significance, it is 0.461.

Block 34. The results of the Cramer-Von Mises test are printed.
An example of this output is contained in Appendix A of this report.

Block 35. The GOF program checks to see if the user wishes to
have the chi-square goodness of fit test run. If not, the program goes
to Block 1 for the next run or termination of the GOF program.

Block 36. One of the requirements of the chi-square test
is that each cell of the theoretical distribution contain at least five
observations. At this point, the GOF program checks to be sure this
requirement ic satisfied. If it is not, adjacent cells are merged until
each cell contains at least five entries.

Block 37. The number of degrees of freedom is computed. An
explanation of how the number of degrees of freedom is determined for
the crii-square test is included in Section II of this report.

Block 38. The chi-square test statistic is computed. Section
IT contains the equations used for the calculation.

Block 39. The GOF program enters the internally stored
chi-square critical value tables with the computed number of degrees of
freedom and the user selected ALPHA value. The appropriate critical value
is then compared with the computed chi-square test statistic. Internally,
the GOF program contains values for the following numbers of degrees of
freedom: 4-29, 30, 40, 50, 60, 70, 80, 90, and 100. Critical values are
available internally only at the 0.01 and 0.05 levels of significance. For
values between 31 and 99 not contained in the tables, a linear interpolation
is performed to calculate the required critical value. For values over 100,
a message is printed referring the user to the normal distribution tables.

Block 40. The user receives a printout of the results of the
chi-square test. An example of this output is included in Appendix A of
this report.

Block 41. If the number of classes describing data is changed to
meet the requirements of the chi-square goodness of fit test, a second
histogram is printed. This second histogram provides the user insight into
the arrangement of his data for the chi-square test only. If the user is
running with the NO HISTOGRAM option, the GOF program transfers to Block 1.
If the number of classes is not changed for the chi-square test, the GOF
program transfers to Block 1.

Block 42. The components of the histogram are constructed and

the histogram of empirical data as it is grouped for the chi-square test

is printed. The GOF program returns to Block 1 for the next run or for
notification of termination.
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E. Instructions for Use

This section is devoted mainly to a description of the use
of the on-line version of the GOF program. The batch version's operation
is almost identical and the GOF command language is the same in either
mode. Rather than typing in GOF language statements through a terminal,
the batch GOF user punches the identical commands on cards. Any differences
between the two modes are explained as they occur.

Upon execution, the GOF program identifies itself to the on-line
user by printing:

*x%** GOODNESS OF FIT PROGRAM *****

Following its initial identifying message, the system prompt character
appears on the terminal and the GOF language translator is waiting to

accept GOF Tanguage commands. A1l statements have the general format

shown below.

<INSTRUCTION>::=<VAR>:<VALUE>;|<VAR>:<VALUE><VAR>;|
<VAR>; | <VAR> [ : <VALUE>] ;

The entire instruction name and key words are acceptable or a three-
character shorthand is sufficient. The user, for example, can enter
TEST:UNIFORM DISTRIBUTION; or he may type only TES:UNI; and either
instruction is satisfactory to tell the GOF program to test for a uniform
distribution. Several instructions may be entered on a single line or one
instruction may be input across more than one line. Blanks within an
instruction or between instructions are ignored. All instructions must
end with a semicolon. Each instruction is read and its syntax checked by
the GOF language translator. However, instructions are not executed until
the START command is read. The START command is the signal to the GOF
program to begin execution of its calculation section.

The GOF instructions can be divided into two types: testing
instructions and operational instructions. The testing instructions
describe which calculations the GOF program is to make while the operational
instructions govern the non-mathematical flow of the program. Each
instruction is described, its full name is given, its three-character
abbreviation is also given in parentheses, and examples of its use are
included in this section.

F. Testing Instructions
$... ANY COMMENT STRING ...;
This statement is a comment statement and may be included
at anytime in the command session. It is used to identify the particular
job being run. It may be of any length, but must begin with a "$" and
terminate with a ";". An example is:

$TESTING DISTRIBUTION OF WEIGHTS OF GRAIN-FED CALVES;
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DATA POINTS:<VALUE>; (DAT: <VALUE>;)

The VALUE in this command represents the number of data points
which are read during the execution of the GOF program. For ungrouped
data, VALUE represents the actual number of sample observations. For
grouped data, VALUE is the number of input data items which are to be
read. For grouped data, the lower class boundary, the upper class
boundary, and the absolute class frequency must be input in that respective
order for each cell. Therefore, the number of individual data items to
be read as input is actually three times the number of cells into which
the data is grouped. Example 3 of the sample problems (in Appendix A)
illustrates the input of grouped data. The number of data observations
which constitute the original sample prior to grouping is calculated later
by the GOF program. It simply adds the absolute frequency counts of all
cells.

The DATA POINTS instruction is optional. If it is not used,
the GOF program must be told to count the number of data values being
input. In the case of grouped data, counting must produce a value which
is 2 multiple of three or an error message results and program execution
ter..inates.

Examples of the DATA POINTS statement incluce:

DATA POINTS:100; (100 data points are to be read.)
DAT:63; (63 data points are to be read.)
DATA: 461 ; (Blanks have not effect.)

TEST[:<VALUE~}; (TES[:<VALUE>];)

This statement specifies which theoretical probability distri-
bution is to be tested. There may be one to four entries for the VALUE
portion of this statement. The first and only mandatory entry must be
the name of the theoretical probability distribution to be tested. The
valid distributions are:

Poisson,
exponential,
normal,
log-normal*,
gamma,
Erlang-k,
chi-square,
triangular,
uniform, and
Weibull.

OCQUOWONAAH WN —
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*The GOF program transforms all hypothesized log-normal data to normal
random variables by y=1In(x). After the transformation, it applies the
goodness of fit tests against a hypothesized normal distribution. Because
y is not defined at x=0, the GOF program sets y=-10.0 when it encounters
an input value of zero. Hypothesized log-normal data should not contain
zero values, because the log-normal distribution is only defined for values

greater than zero. The program executes with y=-10.0, but the results are
biased by this substitution (16:26).
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The acceptable three-character shorthand is the first three letters of
each distribution name.

If the parameters of the distribution are known, they may be
input as part of this instruction or they may be input separately by using
SCALE, SHAPE, DEGREES OF FREEDOM, LOUWER, UPPER, MEAN, VARIANCE, MAXIMUM,
MOST, and MINIMUM instructions. If the user chooses to input the distri-
bution parameters as part of the TEST statement, Table 4 shows the order
which must be used for distributions having more than one parameter.

Table 4
Input Order of Theoretical Distribution Parameters
Distribution Parameter Input Order
1. Normal, log-normal 1. Mean, variance
2. Erlang-k, gamma, 2. Scale, shape
Weibull
3. Uniform 3. Lower limit, upper
limit
4. Triangular 4., Minimum, most, and
maximum

If one parameter of a multi-parameter distribution is input,
all other parameters for that distribution must also be input. A mixture

of theoretical and estimated parahmeters is not acceptable to the GOF program.

If the user inputs the known values of the parameters for his hypothesized
distribution, the GOF program counts the number of parameters being input.
If an incorrect number of parameters is input for any hypothesized distri-
bution, the user receives an error message and the GOF program terminates.
Appendix C of this report contains all error messages which the user might
receive from the GOF program.

If the user does not want to specify his distribution parameters
with the TEST statement, he may input these values at another time using
the statements which identify the parameters by name. The individual
parameter statements are explained at a later point in this section.

If the user chooses to delay the selection of a hypothesized
distribution until after the printing of the histogram of empirical data,
the program returns a prompting message after the histogram which says:

** SELECTION OF DISTRIBUTION FOR NULL HYPOTHESIS MUST BE MADE NOW **,
After printing the message, control is returned to the GOF language

translator which waits for the user to input a TEST statement. The TEST
statement is the only statement which can be delayed until after the
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histogram is printed. A delayed TEST statement should be followed by a
START statement to continue execution.

Examples of the TEST statement follow.

TEST:POISSON;
TES:POI;
TES:P0I:1.0; (Test for the Poisson distribution with a
mean of 1.0.)
TEST:NORMAL:5.0:1.5; (Test for the normal distribution
with a mean of 5.0 and a variance
of 1.5.)
TES: WE I;
RUN[:<VALUE>JTEST; (RUN[:<VALUE>];)
The VALUE portion of the RUN statement may contain any of five
acceptable character strings:

CHI-SQUARE or CHI,

KAS for the Kolmogorov-Smirnov test,

CVM for the Cramer-Von Mises test,

MOMENTS or MOM, or

ALL if all four goodness of fit tests are desired.

NHBWN —
« o o o =

The user may select from one to four tests to run during a single execution
of the GOF program. The coefficients of skewness and kurtosis are automa-
tically calculated for all ungrouped sample data. However, these coefficients
are not compared with the critical values for the moments test unless the
moments test is requested via the RUN statement.

Examples for this statement take the following forms.

RUN:CHI:KAS;
RUN:ALL TEST;
RUN:MOM TEST;
MEAN OF POPULATION:<VALUE>;  (MEA:<VALUE>;)
If the user decides to input the theoretical mean of his distri-
bution and does not wish to do it through the TEST statement, he may use
the MEAN command. This command is valid only for the Poisson, exponential,

log-normal, and normal distributions because only those four GOF-implemented
distributions have means as a characteristic parameter.

Examples for this statement include the following commands.

MEAN OF POPULATION:12.5;
MEA:0.305;
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VARIANCE OF POPULATION:<VALUE>; (VAR: <VALUE>;)

The theoretical variance of a distribution may be input to the
GOF program via the VARIANCE statement. Only the log-normal and normal
distributions might require the use of the VARIANCE statement. The
theoretical variance can also be input as the second parameter value in
the TEST statement if desired. Examples can be illustrated by the
following statements.

VARIANCE: 4;

VAR: 16;
MINIMUM VALUE:<VALUE>; (MIN:<VALUE>;)
MOST PROBABLE VALUE:<VALUE>; (MOS:<VALUE>;)
MAXIMUM VALUE:<VALUE>; (MAX: <VALUE>;)

The MIN, MOS, and MAX statements are used only if the user is
testing for the triangular distribution and wishes to specify the
theoretical parameters of this distribution. The MIN value represents
the smallest value the distribution can attain. The MOS value is the most
probable value of the distribution. The MAX value is the largest value
possible for the distribution. For certain types of triangular distri-
butions, the MIN value equals the MOS value or the MAX and MOS values are
the same. For those cases, all three parameters must be individually
supplied even though two may be equal. Section IIl of this report
describes the triangular distribution and its parameters. Theoretical
parameter values for the triangular distribution may also be input by the
TEST statement. If the theoretical parameters of the triangular distri-
bution are not known, these three commands are omitted and the sample
estimates of these three parameters are calculated. Several examples are
listed below.

MIN: 4;

MAXIMUM VALUE: 165.23;

MOST: 37;
SCALE PARAMETER:<VALﬁE>; (SCA:<VALUE>;)
SHAPE PARAMETER:<VALUE>; (SHA: <VALUE>;)

The SCALE and SHAPE PARAMETER statements supply a method for
designating the theoretical scale and shape parameters for the Erlang-k,
gamma, and Weibull distributions. The user can refer to Section III of
this report or to the Hastings and Peacock book (9) for a description of

the relationship of the scale and shape parameters to the mean and variance

of these three distributions. The user is cautioned not to input a mean
or a variance as a scale or shape parameter. Both of these statements
must be used if either is used because the GOF program does not accept

a mixture of theoretical and estimated distribution parameters. The
SCALE and SHAPE commands can be used as illustrated in these two examples.

SCA: 1.3;
SHAPE PARAMETER: 2.3;
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DEGREES OF FREEDOM:<VALUE~; (DEG: <VALUE>3;)

The DEGREES Of FREEDOM statement is uniquely applicable to the
chi-square distribution for the GOF program. It is used to input the one
theoretical parameter of that distribution, if it is known. The degrees
of freedom parameter is actually the shape parameter of the chi-square
distribution, but is more commonly known by its degrees of freedom name.
[t is always an integer value. Its use is illustrated by two examples.

DEGREES OF FREEDOM:15;

DEG:26;
LOWER LIMIT:. VALUE>, (LOW:<VALUE>;)
UPPER LIMIT:<VALUE>; (UPP:<VALUE>;)

The two parameters of the uniform (or rectangular) probability
distribution are usually referred to as the lower and upper limits of the
distrib.<ion. If known, they may be input to the GOF program through the
LOWER and UPPER statements or as part of the TEST statement. Occasionally,
an lternative parameter to the upper limit is used to describe the uniform
di<iribution. This alternative parameter may be called the range or scale
parameter. The range parameter is defined to be the upper limit minus the
Tower 1imit. Hastings and Peacock develop the rectangular distribution
using the range parameter (9:116). The user is cautioned not to input a
range parameter in lieu of the expected upper 1limit. The lower limit must
be Tess than the upper limit. These two statements might take the following
forms.

LOWER LIMIT: 10;
UPP: 25;

CELLS:<VALUE>; (CEL:<VALUE>3; )

The CELLS statement is optional for ungrouped input data and
useless for grouped input data. If one inputs ungrouped data, he may
speci”y the number of cells (or classes) to be used for grouping the
data. The integer supplied frr VALUE may be less than or equal to the
number of data values to be input. If the user does not use the CELLS
statement for ungrouped data, the GOF program defaults to 15 cells. If
the chi-square goodness of fit test is selected to be run, the number of
cells, whether user selected or program default, may have to be adjusted
to meet the requirements of that test. (Section II contains a discussion
of the chi-square test.)

For grouped data, the number of cells is implicitly provided
through the DATA POINTS statement. After the class boundaries and absolute
frequencies are read, the GOF program, for grouped data, calculates the
number of cells by dividing the number of input items by three. For grouped
data, three input values are required to define each cell: (1) the lower
class boundary, (2 the upper class boundary, and (3) the absolute class
frequency. Therefcre, should the user inadvertently use the CELLS instruction
for grouped data, the value he inputs is destroyed by the value calculated
by the GOF program. Example 3 of the sample runs which are described in
Appendix A of this report illustrates the use of grouped input data.
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The CELLS statement can be used as the following examples
demonstrate.

CELLS: 20;

CEL:15;
BIASED ESTIMATION; (BIA;)
UNBIASED ESTIMATION; (UNB3;)

One of the options of the GOF program is the selection of
biased or unbiased calculations for the coefficients of skewness and
kurtosis. These calculations are described in Section Il of this report.
The coefficients are calculated automatically from the ungrouped sample
observations and the results printed as part of the descriptive sample
statistics. If the user does not specify them, the program defaults to
calculating the unbiased estimates. These two coefficients are computed
regardless of whether the moments test for normality is run.

For grouped input data, neither the coefficient of skewness
nor kurtosis is computed. Therefore, these two instructions are meaning-
less if the user has only grouped data to input.

Examples of these instructions are simple.

BIA;
UNBIASED;

ALPHA: <VALUE>; (ALP:<VALUE>;)

The ALPHA command selects the level of significance at which
each goodness of fit test is evaluated. ALPHA is the probability of a
Type I error--the error of rejecting the null hypothesis when the null
hypothesis is actually true. For the GOF program, the VALUE for ALPHA
may be either 0.01 or 0.05. This does not mean that a test cannot be run
for another level of significance. It does mean that, for values other
than 0.01 and 0.05, the user is responsible for checking critical value
tables for the goodness of fit test being run to evaluate the results of
the test. The GOF program always prints the value of the test statistic
and the number of degrees of freedom or the sample size for each test it
runs. To evaluate the results of a test for an ALPHA value other than 0.01
or 0.05, the user compares the printed test statistic value to the critical
value for the level of significance he desires. The number of degrees of
freedom or the sample size is necessary to locate the appropriate critical
value for every test except the Cramer-Von Mises test. If the test
statistic value exceeds the critical value, the user has insufficient
evidence to accept the null hypothesis. If the test statistic is less
than or equal. to the critical value, the user has insufficient evidence to
reject the null hypothesis. If the user does not specify the value of
ALPHA, the GOF program defaults to 0.05. The moments test can only be
evaluated at the 0.05 level of significance by the GOF program.
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The ALPHA statement is acceptable in the following ways.

ALPHA: 0.01;
ALP: 0.05;

G. Operational Instructions
COUNT DATA POINTS [:<VALUE>]; (COUL:<VALUE>T;)

I[f the exact number of sample observations is not known, the
COUNT statement initiates counting of the data items upon input. The -
VALUE portion of this command should contain the numeric value of the
trailer number. If a trailer number is not input as part of the COUNT
statement, the GOF program defaults to 999. In addition to the trailer
number, a system end-of-file must be included immediately following the
last data record. The trailer value is not considered part of the data
set. The COUNT statement works for either grouped or ungrouped data.
If the number of sample observations is known, the user should supply -
that information to the GOF program through the DATA POINTS:<VALUE>;
statement. The COUNT command can be used as the following samples
illustrate.

o

COUNT: 7777 ; (The terminal value is 7777.) S

cou; (The terminal value is 999, by default.) 1

FREE FIELD READ; (FRE;) ;

o

The FREE FIELD READ statement allows the user to input sample
observations using a free field format. This command invokes a subroutine
internal to the GOF program and does not rely on system-dependent free
field read capabilities. Data values in integer, floating, or scientific
notation (E-format) are acceptable. The following requirements must be
satisfied for FREE FIELD input.

PRSI S TRV

]
- 1. Data items must be separated by commas except for the 1
!!! last data item in each record--it is not followed by a comma. *
= 2. A data item may not be started on one record and :
- continued to the next.

3. Zeroes may be input by multiple concatenated commas.
4, Blanks are allowable in any location, but cannot be y
used as numeric placeholders (substitutes for zeroes). 1

[ 5. Data values may be input under a single notation, or -
f : a mixture of integer, floating, and scientific notation. The FREE FIELD '
- READ statement examples are followed by examples of data sets which are
F acceptable to the GOF program during a free field read. The numbers in
b - parentheses represent the converted values which are used by the GOF
E'r program.
. FREE FIELD READ; ‘
FRE;
o 0.125,.23,2E-2,-1.0€E-1,1,+1.23E-01,1.9678
'. -0.125,.23,.02,-.10,1,.123,1.9678) ~

05,-2.61754,3,-3,,,+1.24E+1,-.15,0,100E-2

§
! (1.05,-2.61754,3,-3,0,0,12.4,-.15,0,1.00)
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START RUN; (STA;)

After the testing parameters are defined, the START RUN
statement is entered to begin execution of the defined model. The
START RUN command should be the last instruction issued for any parti-
cular testing model.

If the selection of a distribution to be tested is delayed until
after the histogram has been printed, the GOF program prints the following
message:

** SELECTION OF DISTRIBUTION FOR NULL HYPOTHESIS MUST BE MADE NOW **,

After printing that promt message, the GOF language translator waits for

a TEST:<VALUE>; statement. The TEST command must be followed by a START
RUN; command. In this special mode of operation which delays specification
of a hypothesized distribution, two START statements are required--the first
triggers the construction and printing of the histogram and the second
causes the hypothesized model tc be tested.

The START RUN; statement is acceptable in any of the following
forms.

START RUN;
STA;

FORMAT READ:<VALUE>; (FOR: <VALUE>;)

This command allows the user to input his own FORTRAN FORMAT to
be used in reading the input data. The content of VALUE is any valid
FORTRAN FORMAT statement and must include the opening and closing paren-
theses. The GOF program defaults to an (8F10.5) format without the use of
this statement or the FREE FIELD READ command. Integer (I) and alpha (A)
formats are not acceptable. Integer values may be input under an F format.

For example, a four digit integer like 7654 may be input using an F4.0 format.

Examples of this statement follow.

FORMAT READ:(10F6.3);
FOR: (3F11.4);

NEXT PROBLEM; (NEX;)

This statement causes the GOF program to clear all relevant
storage locations in preparation for accepting parameters and data for the
next problem. It may be used as the examples illustrate.

NEXT PROBLEM;
MNEX;
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STOP; (STO3)

The STOP statement causes the GOF program to terminate execution.
Examples of this instruction are trivial.

STOP;
STO;

ALTERNATE DATA DEVICE:<VALUE>; (ALT:<VALUE>;)

This instruction provides the user with the ability to input data
to the GOF program from a device other than the one he is using to supply
testing and operational commands. The VALUE of this command must contain
the integer number which corresponds to the appropriate system linkage
to the alternate input device. The alternate device may physically be a
tape file, disk file, or drum file. Appendix B contains sample Univac
1108 run streams which illustrate the use of an alternate input device.

Two examples of this commarid follow.

ALTERNATE DATA DEVICE: 10;
ALT: 30;

INTERACTIVE MODE; (INT;)

The INTERACTIVE MODE command notifies the GOF program that the
user is running in an on-line mode. The primary effect of this statement
is to limit the intermediate printed output and the width of the print
field. It can be used as the following illustrations demonstrate.

INTERACTIVE;
INT;

NEW DATA; (NEW;)

The NEW DATA instruction allows the user to use the same testing
model uefined for the previous run, but read new data. A1l parameters
which are associated with data input must be redefined. The following
commands are concerned with data input specifications:

DATA POINTS:<VALUE>;

COUNT DATA POINTS:<VALUE>;

FREE FIELD READ;

FORMAT READ:<VALUE>;

ALTERNATE DATA DEVICE:<VALUE>;, and
GROUPED DATA;.

AN HWN -

Examples of the NEW DATA statement follow.

NEW DATA;
N E W;
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DUMP INPUT MODEL; (DUM;)

The DUMP statement provides the on-line user with a tabular
printout of the input parameters of the model currently being run. The

batch user gets this dump automatically.
statement is redundant in the batch mode.
output provided by the DUMP command.

Therefore, the DUMP INPUT MODEL
Figure 27 illustrates the

BEEVNEA S SH AL S ANE RS BBIRRE R SR IR IS 380808588 53858803880803899

s GOODMESS OF FIT PROGRANMN *
s 1
¢ REWRITTEN AND EXPANDED BYs SUE D. GUTHRIE ]
L UNIV SOUTHERN MISS (1979) L]
8  PREVIOUS ENHANCEMENTS BY: RALPH B. BISLAND,JR. L
] UNIV SOUTHERN NISSISSIPPI ]
. LARRY SCHEUERMANN L]
) ! NICHOLS STATE UNIV ]
¢ ORIGINALLY WRITTEN BY: DON T. PHILLIPS s
® ‘ TEXAS ASM UNIV ®
e mmmeessemarec—ccssspsscnaaes - at
s L]
s SUNMNARY O0F INPUT PARNS s
) .
* DISTRIBUTION TO BE TESTED - - - - ~ - = NORMAL L]
* TYPE OF TEST(S) = = =~ = = © = = = = = = 1 CHI-SGRE L
] 2K AND § ]
] TYPE OF ESTIMATION - = = v = =~ = = = = UNBIASED ]
] CLASSIFICATION OF INPUT DATA = = = = UNGROUPED L]
’ NUMBER OF CELLS ~ - = = = v« = = =~ = = UNSPECIFIED s
’ NUNBER OF DATA POINTS - - « = = = = = = 44 ¢
) MEAN OF POPULATION - -~ - ~ = = = = - - 10.000 ]
s VARIANCE OF POPULATION - = - = - - - - 10.24¢- ]
’ ALTERNATE DEVICE NUMBER - - - - - - - - 10 ]
’ HODE OF OPERATION - = = = = = = = = = = BATCH L
’ INPUT FORMAT FOR DATA = = = = = = = = = 8F10.5 .
] HISTOGRAM REQUESTED - - - = - = = = = - YES .
L LEVEL OF SJGMIEJCANCE -~ - - - = - - =~ - -0 *

[ ]

L .
OSSP 0000330000088808400348508830008300808003508090089000RN0E0Y

Figure 27

Output Generated by DUMP INPUT MODEL;

Examples of the DUMP command are obvious.

DUMP INPUT MODEL;

DUM;
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NO HISTOGRAM; (NOH;)

The GOF program omits printing the histogram of the sample
observations if the user inputs the NO HISTOGRAM; command. When this
command is used, the selection of the hypothesized distribution cannot
be delayed. Such a run is meaningless and the GOF program terminates
with an error message. The examples for this statement follow.

MO HISTOGRAM;
NOH;

GROUPED DATA;

The GOF program assumes that all input data represents individual
sample observations. If the user wishes to input grouped data, he must
notify the GOF program by using this GROUPED DATA; command. Grouped data
requires three data values be input for each class: (1) lower class
boundary, (2) upper class boundary, and (3) absolute class frequency.
Grouped data is only acceptable for equal-interval classes. The first
and lest classes should not be open classes. The calculation of the
samplc descriptive statistics is incorrect if open-ended classes are input.
This statement can take the following forms.

GROUPED;
GRO;

There are no more commands which are acceptable to the GOF
language translator. Table 5 provides a three-character synopsis of all
the testing and operational instructions which are described in this
section.

Table 5
Synopsis of GOF Language Statements
—— V-
i
Testing Statements Operational Statements
SCOMMENT LOW: <VALUE>; COU [:<VALUE>];
DAT :<VALUE>; UPP:<VALUE>; FRE;
TES[:<VALUE>]; CEL:<VALUE>; STA; N
RUN: <VALUE>; BIA; FOR: <VALUE>;
MEA:<VALUE>; UNB; NEX;
VAR: <VALUE>; ALP:<VALUE>; STO;
MIN: <VALUE>; ALT:<VALUE>;
MOS: <VALUE>; INT;
MAX:<VALUE>; NEW;
SCA:<VALUE>; DUM;
SHA: <VALUL>; NOH;
DEG: <VALUE>; . GRO; ]
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There are no additional operating instructions for the GOF
program. The GOF language translator monitors input commands and notifies
the user of errors or default conditions. Appendix C of this report
contains a list of all possible error messages the user might receive from
the GOF program. Additional information and suggestions for corrective
actions are included for many of the error messages.

The GOF program does not require the use of any external storage
mediums (tapes, disks, drums) unless their use is imposed on the program
through the ALTERNATE DATA DEVICE command. Internal storage for sample
observations is set at 500. This value can easily be changed by altering
a DIMENSION statement and the value of the variable MAXDAT in the main GOF
program and recompiling the program. No other changes need to be made to
any GOF program component to allow for a change in the maximum number of
data observations which the program accepts.

The GOF program is not coded to run in an overlay structure.
However, Appendix D of this report describes each of the GOF program
components and their interrelationships for the user who wants to construct
an overlay version of the GOF program.
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V.  SUMMARY

A computer program to perform four statistical goodness of fit tests
is described in this work. Statistical goodness of fit testing is a mathe-
matical procedure for evaluating how closely a set of observed sample
values fits a hypothesized theoretical probability distribution. Ten
theoretical probability distributions are available in the computer program
documented by this report.

The scope of the program includes calculations for four goodness of
fit methods:

1. chi-square,

2. Kolmogorov-Smirnov,

3. Cramer-Von Mises, and

4, moments test for normality.

The ten probability distributions available are frequent]y found in
engineering environments and the natural and physical sciences. These
distributions are: (1) Poisson, (2) exponential, (3) normal, (4) log-normal,
(5) gamma, (6) Erlang-k, (7) chi-square, (8) triangular, (9) uniform, and
{10) Weibull. The methodology of the program's operation follows closely
the steps employed in testing any statistical hypothesis. One of the

major goals in developing the GOF software is to make it truly self-contained.

Therefore, the program:

applies the goodness of fit tests,

constructs and prints a histogram,

calculates descriptive sample statistics, and
automatically evaluates the results of the tests at
either the 0 05 or the 0.01 level of significance.

-hwl'\)r—‘
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VI. CONCLUSIONS

The goodness of fit computer program in combination with this report
provides the researcher with a valuable tool to use in the analysis or
summary of empirical observations. The following four paragraphs outline
the primary benefits of the program.

Time-Saving. Section I of this report outlines the steps necessary
for performing a goodness of fit test against a theoretical probability
distribution. Many of the steps are lengthy and require that the user

have a considerable amount of familiarity with the assumptions and
equations of the method. Incorporating many of these steps into a single,
easy-to-use FORTRAN computer program offers a time-saving product to

the scientist who needs to analyze random phenomena. The user of the
program only needs to manually perform one goodness of fit test on empirical
data to a hypothesized distribution to appreciate the services at his
disposal by this program.

Completeness. In addition to the time-saving benefit, the GOF program
is seTf-contained. It requires neither special purpose hardware nor software.
Inclusion of the critical value tables in the software eliminates the need
for additional books or papers to evaluate the goodness of fit test results.
The software is designed to assist the user in all three phases of computing--
input, processing, and output.

Methodology of Operation. The goodness of fit program operates in a
manner similar to that of a reseracher developing and testing a statistical
hypothesis. The program could operate in a less-disciplined manner and
attempt to fit empirical data to a variety of distributions during a single
run. Operating in this manner is not conducive to promoting careful scrutiny
of sample observations by the user. Certain distributions are not applicable
to empirical data by reason of the environment from which the data comes.
Mathematically, data may "fit" a distribution when logically it is impossible.
Therefore, the structure of the goodness of fit program helps the user to
examine the data and the ten distributions which are part of the program for
a logical relationship before attempting to find a mathematical relationship.

Software Capabilities. The goodness of fit program exists in two
versions--batch and on-Tine. Each version is controlled through easy-to-use
English language commands. Modularity is built into the software. Therefore,
the addition of new distributions can be accomplished through a set of
concise well-defined steps. Comprehensive evaluation of input parameters is
included to help circumvent invalid executions. Extensive English language
diagnostic messages are output to describe error and default conditions or
optional operational procedures.
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VII. APPENDIX A - SAMPLE ON-LINE OUTPUT
A. Example 1

The first example uses 100 sample observations taken from a
process believed to be normally distributed with a mean of 10.0 and a
variance of 10.24. The input statements and on-line output from this
sample are reproduced in Figure 28.

Following the identification line which the GOF program prints
as its first function, the GOF language statements are shown. The Univac
1108 system prompt character (>) precedes every on-line statement. The
GOF program echoes each command. The statements for example 1 are
explained as they relate to this particular example. A general explanation
of all GOF statements is included in Section IV of this report. A1l GOF
statements, except for the START and STOP commands, may be entered in any
order.

DAT:100;. The GOF program is notified to expect 100 sample
data values by this command.

ALP:0.01;. The value of ALPHA (the probability of rejecting
the null hypothesis when it is true) is set to 0.01 by this instruction.
The results of all goodness of fit tests are analyzed at the 0.01 Tevel.

TES:NOR:10.0:10.24;. The hypothesized distribution is the
normal distribution with a known mean of 10.0 and a known variance of 10.24.
The variance, not the standard deviation, is the second expected parameter
for this distribution. The mean and the variance, if known, could be

omitted from the TEST command and entered using MEAN and VARIANCE statements.

RUN:KAS:CHI;. Two goodness of fit tests are requested: (1)
the Kolmogorov-Smirnov test (KAS); and (2) the chi-square test (CHI). The
order of input of the tests to be run is not significant. For example,
RUN:KAS:CHI; produces the same results as RUN:CHI:KAS;.

ALT:10;. The 100 sample observations are to be input through an
alternate input device known as logical unit 10.

INT;. The GOF program is being run in the on-line (interactive)
mode. Thereforv, the amount of intermediate output is curtailed and the
width of the print field is reduced to 64 characters or less.

DUM;. A summary of all 1nput variables and options is desired.
This summary is printed automatically in the batch mode, but must be
requested by the on-line version of the GOF program.

STA;. A1l testing and operational commands are entered and

the execution of the computational section of the GOF program begins with
the START instruction.
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The observed data values are read from device 10 and printed.
Because the DUM statement requests a synopsis of input parameters, the boxed
information following the observed data is given. The following entries in
the input summary information are a result of default conditions within the
GOF program for this particular example:

TYPE OF ESTIMATION,
CLASSIFICATION OF INPUT DATA,
NUMBER OF CELLS,

INPUT FORMAT FOR DATA, AND
HISTOGRAM REQUESTED.

T WA -
« v e e e

The 100 sample observations are sorted into ascending order and
the GOF program prints the ordered data. The descriptive sample statistics
automatically follow. The coefficients of skewness and kurtosis are printed,
but are not compared to critical values because the moments test is not
required in this example.

The hypothesis statement follows and reflects the fact that the
theoretical mean and variance are known for this example. Example 2
illustrates hypothesis statements with the mean and variance estimated from
the sample observations.

The histogram of the empirical data is printed with a default
arouping of 15 cells. Because the distribution is hypothesized to be normal,
the first and last cells are modified to be open intervals extending over
the defined range of the random variable X for the normal distribution.

(In the GOF program, +9999.999 is a substitute for * = .)

The Kolmogorov-Smirnov test may be run on either grouped or
ungrouped data. This example illustrates the execution of this test on
grouped data. If the number of cells is specified to be equal to the
number of data points, the GOF program executes the Kolmogorov-Smirnov
test on ungrouped data. The input of a CELL:100; command for the 100 data
points in this problem causes execution of the Kolmogorov-Smirnov test on
ungrouped data. Running the Kolmogorov-Smirnov test on ungrouped data is
recommended by this author. Section Il of this report discusses this
particular goodness of fit test.

The results of the Kolmogorov-Smirnov and chi-square goodness
of fit tests are printed giving the level of significance at which the
tests are evaluated. The number of degrees of freedom (or sample size
for the Kolmogorov-Smirnov test), the computed test statistic, and the
critical value are all printed. Both tests show that there is insufficient

evidence to reject the normality hypothesis at the 0.01 level of significance.

In this example, the Kolmogorov-Smirnov critical value is located by the
value of ALPHA and the number of groups (not individual samples) used in
calculating the test statistic.

When the chi-square test is run, the number of cells into which
the data is grouped is subject to modification. The reason for this
potential adjustment is that the chi-square test requires that each cell
contain at least five expected observations. Therefore, the GOF program
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checks each cell of expected values, regroups the expected cells if
necessary, and also regroups the ubserved cells to maintain an equai
number of expected and observed cells. When this regrouping does occur,
the GOF program prints a second histcgram of the empirical data which
displays the grouping used by the chi-square test. For example 1,

the data is regrouped from 15 to 10 cells before the chi-square test is
performed. In this example, che true mean and variance of the population
are known. Therefore, the chi-square critical value is located for 9
degrees of freedom. If the two population parameters are estimated from
the sample data, the critical value (in this case) is located for 7 degrees
of freedom. The number of degrees of freedom for the chi-squar:s test is
computed by the GOF program as

n-p-1,
where

n=the number of cells, and
p=the number of parameters estimated.

After completing the histogram which reflects the results of
the chi-square regrouping, the GOF program returns to its language
translator and waits for another run to be described or the termination
of execution to be requested. Figure 28 shows the entry of the STOP
statement which causes the final printout by the GOF program and an end
to execution.

Example 1 provides a case in which both goodness of fit tests

show acceptance of the normality hypothesis and both histograms suggest
the shape of the normal curve.
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#a32s  GOODNESS OF FIT PROGRAM
>DAT2100;
DAT1100;

>ALP:0.01
ALP30.01

D>TES:NOR:10.0:10.24;
TES:NOR:10.0:10.24;

DRUN:KAS:CHI;
RUN:KAS:CHI;

24LT:103
ALT:10;

YINT;
INT;

>DUN,"
DuUN;

>STA;
STA;

OBSERVED DATA

7.36042 11.117.8  9.13020 12.74344
15.86326 B.37642 10.64314 156.57776
12.18313 10.38219 5.78083 5.91987
7.90016 B.96447 11.48305 14.86468
10.74629  5.86495 4.02501 11.469335

23352

13.83797 10.06154 15.18804  7.494357
10.36702 14.31983 12.18753  9.79049
10.70023 8.64389 5.13957 8.503520
10.32967 11.18203  9.13243  9.30832
11.25789 7.17938  9.997468 15.64463
6.87402 9.13407 13.48419 8.3383¢
12.31962 10.78885  8.44017 13.49714

10.58027  9.13014  4.90445  8.57410

13.35420 12.52740 8.36794 15.%0941

13.72725 14.04590 14.44035 5.06784

11.91668 12.67990 15.48195 14.67340
9.03732 11.95755 10.58181  9.4544%

Figure 28

Example 1
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10.38620
12.47317
12.38834

§.12733
15.09408

9.12563

4.42008
11.81053
12.03947

6.17127
12.18405
10.26623
13.13434
12,0619
12.20848
12.20061

13.95233
11.607222
11.00144
10.69868
7.68292
9.317229
14,146344
12.03744
10.51481
8.84407
.79262
12.70148
10.21326
9.20603
6.468642
9.51926
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*

SUnNMARY

TYPE OF ESTIMATION
CLASSIFICATION OF INFUT DATA
NUMBER OF CELLS
NUMBER OF DATA FOINTS
MEAN OF POPULATION
VARIANCE OF POPULATION
ALTERNATE DEVICE NUMBER
MODE OF OPERATION
INPUT FORMAT FOR DATA
HISTOGRAN REQUESTED
LEVEL OF SIGNIFICANCE

6O00CDNESS O0F
REURITTEN AND EXPANDED BY:

PREVIOUS ENHANCEMENTS BY:

ORIGINALLY WRITTEN BY:

0F

DISTRIBUTION TO BE TESTED
TYPE OF TEST(S)

SUE D. GUTHRIE
UNIV SOUTHERN MISS (1929)

RALPK B. BISLAND,JR.

UNIV SOUTHERN NISSISSIPPI
LARRY SCHEUERMANN
NICHOLS STATE UNIV
DON V. PHILLIPS
TEXAS ASN UNIV

INPUT

- e w wm m o e = e e = o=
- o w =m wr  we w w -
- e, W e e o e W W W =

- . e - o

- e - - -

- . e e e e e e W -

- e e o -

PRRHS

. Y T S e S Py A e D Y ey Gy D e D e P s W Bt e

NORMAL
t CHI-SARE

2 KAND S

- - e e e = e = -

- e m e e e W -

- - -

- - -

- e e e w wm wm e

- e v e w w m wm e

- e e wm e m e - -

UNBIASED
UNGROUPED
UNSPECIFIED

100

10.000
10.249

10

INTERACTIVE
8F10.5

YES
.01

LR K K B S R B R

»

L K N L R B R JE JEE JEE JNE SR Y S B IR IR

FIEREXEREIXXXLLSLSBURBLLLERLXEEBNRLERBEBABEEARLNLERBRBEUE AR ERER

ORDERED DATA

79262
5.78083
6.90645
3.12733
8.64017
?.13020
9.45649

10.26823
16.38027
10.78885
11.60722
12.05967
12.20868
12.70168
13.72725
14.44035
15.64463

4.02501
5.86495
7.17938
8.33830
8.64389
7.13243
7.51926
10.32967
10.38181
11.00146
11.69353
12.06191
12.31962
12.76546
13.83797
14.67349
15.56326

4.42008
5.91987
7.56042
8.36794
8.84607
9.13407
9.79069
10.36702
10.64314
11.11718
11.81053
12.18313
12,38834
13.13434
13.95235
14,86448
15.90941

Figure 28
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5.03732
6.17127
7.68292
8.37642
8.%6447
9.20603
9.99748
10.38219
10.69868
11.18203
11.91668
12.18405
12.47317
13.35620
14.04390
15.09608
16.57774

3.06784
§.68642
7.69637
8.50520
9.12563
?.30852
10.06154
10.384620
19.70023
11.25789
11.95735
12.18753
12.52760
13.49714
14.146544
15.18804

(continued)

5.13957
6.87402
7.90016
8.57410
?.13014
9.31729
10.21524
10.514681
10.74629
11.48305
12.03744
12.200¢1
12,67990
13.68619
14.31983
13.48195
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----- DESCRIPTIVE SANPLE STATISTICS -----
MEAN = = = = = = = = = = ==« - - 10.53070
VARIANCE - = = = = = = = = = = = - 9.04810
STANDARD DEVIATION = = = = = - - ~ 3.00801
COEFFICIENT OF VAKIATION - - - - - .28564

UNBIASED COEFFICIENT OF SKEWNESS - -.393461
UNBIASED COEFFICIENT OF KURTQSIS - «21009

LE2 AR R LR RS 2L EE R LRSS EAESE LI EES LR LRSS L2222 22 2L 2L 2 20

SXXRXESREIXXLRLRRBRRSARBAXEREBRRRBRBUERRRBASIBRBERERREXSEIRLBAS

H(0): FOPULATION IS NORMAL
WITH THEORETICAL NEAN OF 10.0000
AND THEORETICAL VARIANCE OF 10.2400
H(i): POPULATION IS NOT NORMNAL

WITH THEORETICAL MEAN OF 10.0000
AND THEORETICAL VARIANCE OF 10.2490

LR RS RS RS R L2 LR LR SRS LR R R L LR 2R SRS E 2SR 2R R EE L E]

,Figure 28 (continued) -
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NUMBER 1. 0. 0. 2. 4. 4. 6. 15. 8. 17,
CLASS 1 2 3 4 § 6 7 8 9 10

LOVER LIMIT OF FIRST CLASS = -9999.99%

UPPER LINIT OF LAST CLASS = 9999.999
NUMBER OF OBSERVAYIONS = 100
MINIMUM OBSERVED VALUE = 793
NAXINUM OBSERVED VALUE = 16.378

LR I R R B R IR R R SN B R AR

L R I R I R IR

B % H % & N B8N

SEXSEREXXEBAEBBE XA BRBEREBERIRBCEBER R EBBERERREEESESRER AR B S

AT THE ALPHA = .01 LEVEL OF SIGNIFICANCE
THE KOLMOGOROV-SHIRNOV CRITICAL VALUE = .404
FOR A SAMPLE SIZE OF 13

THE COMPUTED K-S TEST STATISTIC = 113
BECAUSE THE K-S TEST STATISTIC IS LESS THAN

THE K-5 CRITICAL VALUE, THERE IS INSUFFICIENT
EVIDENCE TO REJECT THE NULL HYPOTHESIS.
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Ficure 28 (continued)

66

PO 1

ﬂ

Py

PPN L Ll g

S ]
(Y 7Y

.-4

1

oo b
4

y o

-




s Lan aren S Bann ntura g

21 RERERZERRIEERSS RS RASE RIS AL SRR EAR 2R E2 R R L2 £ 2R 2 R 222 2

AT THE ALPHA =

FOR 9 DEGREES OF FREEDOM, THE CHI-SQUARE

CRITICAL VALUE =

+01 LEVEL OF SIGNIFICANCE

21.7

THE CONPUTED CHI-SQUARE STATISTIC =

10.49

BECAUSE THE TEST STATISTIC IS LESS THAN
THE CRITICAL VALUE, THERE IS INSUFFICIENT
EVIDENCE TO REJECT THE NULL HYPOTHESIS.

LA R R F P R P PR R PR R R SRR R R RS PR R R R R L S22 R ET 2 8 £ 2

¢3¢ THE NUMBER OF CELLS HAD TO BE ADJUSTED T0

THE REQUIREMENTS OF THE CHI-SQUARE TEST. THE HISTOGRAN
BELOW SHOWS HOU THE EMPIRICAL DATA UAS GROUPED TO MEET

THE CHI-SQUARE TEST REQUIREMENTS. »»
#3338  HISTOGRAM  s#ss3

17
16
15
14
13
12
"
10

- NN AN

® % N % N ¥ % N N W

# W N R RN NN NN NS NN

® % B 0 % B 6w

% @ &6 B B B % B B B BN N NN
% % B 6 B B B B S XN BN NN

% % . % % 4 N

% % B 8 % B B &N

MEET

® % & & B & & S

------------------------- L L L L L T P T

NUMBER 3. 10. 4. 15. 8. 17.13. 8. 9. 9.

CLASS t 2 3 4 S5 6 7 8 9

LOVER LIMIT OF FIRST CLASS = -9999.999
UPPER LIMIT OF LAST CLASS = 9999.999

NUMBER OF OBSERVATIONS = 100
NININUM OBSERVED VALUE = 793
HAXINUM OBSERVED VALUE = 14.578
>570;
870,

10

ssas¢ GOODNESS OF FIT PROGRAM FINISHED 3ssss

Figure 28 (continued)
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B. Example 2

The data values in the second example are the same observations
shown in Figure 28 for example 1. However, in example 2, the strategy
in executing the GOF program is changed. The hypothesized distribution of
the 100 sample observations is not specified during the initial phase of
GOF execution. The user wishes to see a histogram of the 100 values before

the null hypothesis is formulated. Therefore, the selection of the hypothesized

distribution is delayed. Figure 29 contains the GOF language statements
and the output for example 2.

Example 2 demonstrates the use of several unabbreviated GOF
commands; example 1 in Figure 28 illustrates the use of GOF three-character
shorthand commands. The following sentences provide an explanation of the
nine GOF commands of example 2.

1. The number of data values is known to be 100.

2. The second GOF statement requests the execution
of the Kolmogorov-Smirnov and chi-square goodness of fit tests.

3. The 100 sample observations are to be input from
logical unit 10.

4. The test statistics are to be evaluated at the 0.01
Tevel of significance.

5. The GOF program is to run in the interactive mode.

6. A dump of the input parameters and program defaults
is desired.

7. Both requested goodness of fit tests are to be executed
using 10 cells for data grouping.

8. Biased estimators are to be calculated for the coeffi-
cients of skewness and kurtosis. Section II gives the equations used for
these calculations.

9. The START command is the signal to begin execution of
the calculation portion of the GOF program.

The 100 observations are printed and are followed by a synopsis
of tho input parameters which are being used for this example. Because the
hypotnesized distribution is not selected at the onset of example 2, it is
listed as "PENDING". A comparison of the SUMMARY OF INPUT PARMS block
in Figure 29 with the one in Figure 28 illustrates several variations.

1. The coefficients of skewness and kurtosis are unbiased
values in example 1 and biased estimators for example 2.

2. In example 1, the number of cells is left to the GOF
program default value of 15 cells. In example 2, the number of cells is
specified to be 10.

3. The population parameters are known in example 1;
example 2 1ists the population parameters as "PENDING". It is illogical
to input theoretical population parameters if the hypothesized probability
distribution is not selected.

The 100 sample observations are printed in ascending order
following the input parameters summary. The sample statistics for example
2 include the biased coefficients for skewness and kurtosis instead of the
unbiased ones printed in Figure 28 for example 1.
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The histogram of empirical data follows the sample statistics.
It is composed of 10 groups as designated by the CELLS:10; command. In
the five summary values following the histogram, the GOF program shows
the Tower 1imit of the first class as .000 and the upper limit of the
last class as 16.578 which is the maximum observed data value. In this
example, at this point in execution, the GOF program does not know a
hypothesized distribution. Therefore, the upper limit of the last class
is not extended over the defined range for the random variable as it is in
example 1. The lower 1limit of the first class is extended, but no farther
than zero. The range of all possible hypothesi.ed random variables in the
GOF program includes zero.*

At this point in the output, the GOF program notifies the user
that the selection of a hypothesized distribution must be made before
program execution can continue. The system prompt character signals the
user to input, via the TEST statement, the distribution to be tested.
Example 2 is a test for the normal distribution. The parameters of the
distribution are not known in this example and must be estimated from
the sample observations. The START command follows the TEST instruction
and the GOF program continues execution.

The GOF program performs the requested goodness of fit tests
using sample estimates for the mean and variance of the hypothesized
normal distribution. The hypothesis statement is phrased with the mean and
variance as estimated parameters. Example 1 in Figure 28 reflects the
hypothesis statement with the populatiorn parameters as known values.

The Kolmogorov-Smirnov and chi-square test results and conclusions
are printed next. A note to the user signals that the number of cells is
adjusted for the chi-square test. The number of cells for example 2 is
specified at 10, but the data is regrouped into 7 cells before the
chi-square test requirements are satisfied. Because of this adjustment,
the GOF program prints an adjusted histogram representative of the chi-
square grouping.

Example 2 terminates after accepting a STOP command. The
delayed distribution selection option which example 2 illustrates provides
the user the opportunity to study the descriptive sample statistics
and histogram of the empirical data before the establishment of the
null hypothesis. Figure 13 in Section III of this report provides
characteristic graphs of the ten GOF probability distributions with which
to compare the shape of the printed histogram. Section IIl also contains
a discussion of the characteristics of the coefficients of skewness, kurtosis,
and variation for most of the ten distributions. Therefore, once the

*The log-normal distribution cannot be handled at zero by the GOF program.

Any zero value encountered in log-normal data is transformed to -10.0. A
discussion of the transformation of Tog-normal data occurs in Section IV of
this report as a footnote to the explanation of the TEST command.
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histogram and sample descriptive statistics are reviewed, the user can
better select the distribution to be tested. In the interactive mode,
most operating systems have a time 1imit in which the user must respond.
Therefore, if the user needs to spend some quantity of time studying

the histogram and sample statistics, he should terminate the GOF program

with a STOP command and reenter the job after he studies the intermediate
results.
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>DATA PCGINTS:100;
DATA POINTS:100;

DRUN:KAS:CHI
RUN3KAS:CHI;

JALTERNATE DATA DEVICE:10;
ALTERNATE DATA DEVICE:10;

>ALPHA20.01;
ALPHA30.01;

>INTERACTIVE;
INTERACTIVE;

>DUNPIT;
DUNPIT;

J>CELLS:10;

CELLS:10;

>BIASED ESTIMATORS;
BIASED ESTINATORS;

>START;
START;

OBSERVED DATA

7.56042
15.86326
12.18313

7.90016
10.74629
13.83797
10.36702
10.70023
10.32%67
11.25789

6.87402
12,31962
10.58027
13.35620
13.72725
11.91668

3.03732

11.11718
8.37642
10.38219
8.96447
35.86495
10.06154
14.31983
8.64389
11.18203
7.17938
7.13407
10.78883
7.13014
12.52760
14.04590
12.487990
11.93755

9.13020
10.44314
3.78083
11.48305
4.02501
15.18804
12.18753
5.13957
9.13243
9.99768
13.48619
8.64017
6.90645
8.36794
14.44033
15.4819%
10.58181

Figure 29

GOODNESS OF FIT PROGRAN ssess

12.76344
16.57776
3.71987
14.86468
11.69355
7.69657
9.79069
8.50520
9.30852
15.64463
8.33830
13.49714
8.57410
15.90941
3.06784
14.67340
9.435469

Zxanple 2
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10.38620
12.47317
12.38834

8.12733
15.09408

9.12563

4.42008
11.81053
12.05%67

6.172127
12.18403
10.26425
13.13434
12.06191
12.20848
12.20061

13.95235
11.60722
11.00146
10.467868
7.68292
9.31729
14.146344
12.03744
10.5148!1
8.84607
«79262
12.70168
10.21524
9.20603
6.68642
7.51926
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:'., G085 85888308330835385838838883338 3830840033000 308408388308%
- . GOODNESS OF FIT PRNGRAM »
[} [
- ¢ REWRITTEN AND EXPANDED BY: SUE D. GUTHRIE .
g s UNIV SOUTHERN MISS (1979) »
’!j s  PREVIOUS ENHANCEMENTS BY: RALPH B. BISLAND,JR. °
3 s UNIV SOUTHERN MISSISSIPPI ]
§ * LARRY SCHEUERMANN s
4 s NICHOLS STATE UNIV »
- ¢ ORIGINALLY WRITTEN BY: DON T. PHILLIPS -
s TEXAS AN UNIV .
$-m e e c e et t e e e rcc e e cr e e r e e e —————— »
]
s SUNMARY OF INPUT PARMS *
] |
s DISTRIBUTION TO BE TESTED - - - - - - - PEND ING *
= . TYPE OF TEST(S) = =~ = = = = = =« = = = = 1 CHI-SGRE *
a!l . 2 K AND S a
e * TYPE OF ESTINATION - -~ = - = = = = = =~ BIASED *
- * CLASSIFICATION OF INPUT DATA - - - - = UNGROUPED =
g . NUMBER OF CELLS - ~ - = = = = = = = = = 10 =
. NUMBER OF DATA POINTS - - - - - = - = = 100 «
¢ PARAMETERS OF POPULATION - - - - - - = PENDING *
3 ALTERNATE DEVICE NUMEKER - - - = - - - = o 10 *
s HODE OF OPERATION - - - - - < - - - - INTERACTIVE *
* INPUT FORMAT FOR DATA - - = ~ =~ = = = = 8F10.5 )
* HISTOGRAM REQUESTED - ~ - = = = = = = = YES *
* LEVEL OF SIGNIFICANCE - ~ - - ~ = - = - .01 *
*

FESEXBSFESETAREBIIXIIIIIRISIIIERRRIERREB SRS AAZSERRERAELIEHFR 4 2%
ORDERED DATA

.79262  4.02501  4,42008 5.03732 5.06786 3.13957
5.78083 5.86495 5.91987 6.17127  6.68642  6.87402
6.90645 7.17938  7.56042  7.68292 7.69657 7.99016
8.12733 8,33830 8.36794 B.37642 8.50520 8.57410
8.64017  B.64389 8.84607 B.96447 9.12543 9.13014
9.13020 9.13243  9.13407 9.20603 9.30852 9.31729
9.45669  9.51926  9.79069 9.99768 10.06154 10.2,32¢
10,26625 10.32967 10,36702 10.38219 10.38620 10.51481
10.58027 10.58181 10.64314 10.69868 10.70023 10.74629
10.78885 11.00146 11,11718 11.18203 11.25789 11.48303
11.60722 11.89355 11.81053 11.91648 11.95735 12.03744
12.05967 12.06191 12,18313 12.18405 12.18753 12.20061
12.20868 12.31962 12.38838 12.47317 12.32760 12.67990
12.70168 12.76546 13.13434 13.35620 13.49714 13.468619
13.72725 13.83797 13.95235 14.04590 14.16544 14.31983
14.44035 14.67340 14.846448 15.09408 15.18804 15.48193
15.64463 15.86326 15.90941 146.57774

Figure 29 (continued)
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MEAN = = = = = = = = = = = = = -
VARIANCE - = - = = = = = = - - -
STANDARD DEVIATION - - - - - - -
COEFFICIENT OF VARIATION - - - -
BIASED COEFFICIENT OF SKEWNESS - -
BIASED COEFFICIENT OF KURTOSIS - -

SEEEREEEEAREBHXRAERREARELAEBAR AR AR RSRBXSEBEIRSB LR ERS XSS $S

sssss HISTOGRAM

- 10.53079
- 9.04810
- 3.00801
- + 28564
-.38748

«14031

L2222

EACH » REPRESENTS 2 POINTS

22
20

18

16

14

12

, 10
8

L R K B R S B R

[
4 *
2

L 2R JNE JEE IR I IR NN SR NN R 2
L R R I Y IR R IR I B

----------------------

NUMBER 1. 0. 3.

CLASS 1 2 3 4 5 6
LOVER LINIT OF FIRST CLASS =
UPPER LIMIT OF LAST CLASS =
NUMBER OF OBSERVATIONS
KINIMUM OBSERVED VALUE
MAXINUM OBSERVED VALUE

- - - -

7. 13, 16 21, 19. 11, 7.

7 8 9 10

.000
16.578
100
793
16.578

s+ SELECTION OF DISTRIRUTION FOR NULL HYPOTHESIS

MUST BE MADE NOU ==
>TEST:NORMAL §
TEST:NORMAL ;

>START;
START;

#» PARANETERS OF TEST DISTRIBUTION NOT SPECIFIED
DEFAULT TO ESTIMATES FROM SAMPLE DATA. »»

Figure 29
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H(0): POPULATION IS NORMAL
WITH ESTINATED WMEAN OF 10.5307
AND ESTIMATED VARIANCE OF 9.0481
H(1): POPULATION IS NOT NORMAL

VITH ESTINATED MEAN OF 10.5307
AND ESTINATED VAKIANCE OF 9.0481

SREESBXEFEEEABBRNERBXEFEEBRIXRBNEBEEEERBREBEEBEEBR AT EBEE BB S
4

122 E R A R R R SRR R R L2 EE AR SRR R RS RS R T O LS EEE S E RIS R 2 )

AT THE ALFHA = .01 LEVEL OF SIGNIFICANCE
THE KOLHMOGOROV-SHIRNOV CRITICAL VALUE = .499
FOR & SAMPLE SIZE OF 10

THE COMPUTED K-S TEST STATISTIC = .045

BECAUSE THE K-S TEST STATISTIC IS LESS THAN
THE K-S CRITICAL VALUE, THERE IS INSUFFICIENT
EVIDENCE TO REJECT THE NULL HYPOTHESIS.

SR8 XAR AL AT RILSASBSE LIS R LRSS BRLERR R ARREEBXESBEXBEERB LR S

*s NOT ENOUGH DATA FOR CELL SPECIFICATION OF 10
CHI SQUARE TEST WILL BE RUN VITH 7 CELLS. 3=

Picure 29 (continued)
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AT THE ALPHA = .01 LEVEL OF SIGNIFICANCE
FOR 4 DEGREES OF FREEDOM, THE CHI-SQUARE
CRITICAL VALUE = 13.3

THE CONPUTED CHI-SQUARE STATISTIC = 1.31

BECAUSE THE TEST STATISTIC IS LESS THAN
THE CRITICAL VALUE, THERE IS INSUFFICIERT
EVIDENCE T0 REJECT THE NULL HYPOTHESIS.

2R R R P B R R R RS L RS PR R R EESEEEEE2 L LS LRI L L2 2 22 4

¢+ THE NUMBER OF CELLS HAD TQO BE ADJUSTED TO MEET
THE REQUIREMENTS OF THE CHI-SQUARE TEST. THE HISTOGRAM
BELOW SHOWS HOV THE EMPIRICAL DATA HAS GROUPED TO MEET
THE CHI-SQUARE TEST KEQUIREMENTS. 4
E R TS HISTOGRAN EEE T 1]

EACH # REPRESENTS 2 POINTS

LR NN R SNE N JNE R
L B IR BE SN B BRI IR
LA I R B R B R R N 2

- " - = - - - -

NUMBER 13, 13. 146, 21, 19. 11. 7.
CLASS t 2 3 4 3 &6 7

LOVER LIMIT OF FIRST CLASS = -9999.999
UPPER LIMIT OF LAST CLASS = 9999.999

NUMBER OF OBSERVATIONS = 100
KININUN OBSERVED VALUE = 793
WAXINUM OBSEKVED VALUE = 16.578
>STOP;

STOP;

ss+22 GOODNESS OF FI17 PROGRAM FINISHED ##4ss

Figure 29 (continued)
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C. Example 3

The sample observations for example 3 are only availahlc in a
grouped format. If data exists in both grouped and u~grouped forms,
the use of ungrouped data is preferable with the GOF program ‘or four
primary reasons.

1. The values calculated for the descriptive sample
statistics are more accurate for ungrouped data.

2. The coefficients of skewness and kurtosis are not
computed by the GOF program for grouped data. Therefore, the moments
test for normality cannot be run for grouped data.

3. The Cramer-Von Mises goodness of fit test is not
valid for grouped data.

4. The Kolmogorov-Smirnov goodness of fit test is
more powerful when run on ungrouped data.

Section Il of this report contains a description of the characteristics
of the four goodness of fit tests available from the GOF program.

In example 3, shown in Figure 30, the GOF program expects to
read 75 input values. For grouped data, the number of input values
equals three times the number of groups (or cells) into which the data
is arranged. Grouped data values are input in a mandatory order of
lower class boundary, upper class boundary, and absoiute class frequency
for the first through the last class. These three values are necessary
for each group in the data set. Grouped data may also be input using

"

PP s

AT NS ST

the COUNT option which/is explained in Section IV of this report. Example
3 specifies that 75 values are to be read. Therefore, 25 cells are implied.
The number of grouped data values to be read miust always be a multiple of 3.

1 The input vatues for example 3 are read from logical unit 14.

L The format of data values is free tield. The GOF program expects grouped
data to be input because of the GRO statement in Figure 30. A1l goodness
of fit tests are to be run at a 0.01 value of ALPHA. Three goodness of

i!g fit tests are to be run: (1) the Koimogorov-Smirnov test, (2) the chi-
square test, and (3) the Cramer-Von Mises test. The data in example 3

are hypothesized to come from a uniferm distribution whose lower limit is

10.0 and whose upper limit is 45.0. The parameters of the uniform distri-

bution in this example could also be input using the following two statements.

&d 1. LOWER LIMIT:  10.0;, and
- 2. UPPER LIMIT:  45.0:.

The effect is the same regardless of the techniyue used to input known
population parameters. For this example, a histogram is not desired.

The GOF program is to run in the interactive mode. After the problem

definition, the START instruction is input and execution of the compu-
3 tation sectior begins.
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Immediately, the GOF program disallows the Cramer-Von Mises
acodness of fit test because it is not valid for grouped data. The
program continues to run to perform the Kolmogorov-Smirnov and chi-
square tests. The input data is printed in a special grouped format.

Following the preliminaries, the descriptive sample statistics
are computed and printed. The coefficient of variation is interesting
in this example. Because the hypothesized uniform population parameters
are given as a=10.0 (lower 1imit§ and b=45.0 (upper limit), the popu-
lation coefficient of variation can be calculated by the formula:

Coefficient of variation=(b-a)/ 3%(a+b).

For example 3, this equation yields a theoretical coefficient of variation
equal to 0.367405. This value is very close to the coefficient of variation
statistic computed from the sample observations.

The null and alternative hypotheses are given for the example
being run. After the hypothesis statements, the results of the Kolmogorov-
Smirnov test is given and evaluated at a probability of 0.01. A sample
size of 25 is appropriate for locating the correct critical value because
the data is grouped into 25 cells.

No additional grouping is required to execute the chi-square
test. Therefore, the chi-square critical value is provided at the 0.01
level and the appropriate degrees of freedom value is 24. The computed
chi-square te<t statistic is compared with the critical value, and
because the computed value is less, the null hypothesis cannot be rejected.
There is insufficient evidence to reject the assumption that the input data
is from a uniform distribution with a known lower limit of 10.0 and a known
upper limit of 45.0. The GOF program is terminated in the usual manner with
a STOP command.
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>DAT:73;
DAT:73;

JALT:14;
ALTz214;

JFRE;
FRE;

>GRO;
GRO;

>A4LP:0.01;
ALP:0.01;

JRUN:KAS:CHI:CUM;
RUN:KAS:CHI:CVM;

DTES:UNI=10.0:45.0
TES:UNI:10.0:45.0

SNOH;
NOH;

JINT;
INT;

>8TA;
STA;

»% THE CRANER-VON NISES TEST CANNOT BE RUN
ON GROUPED DATA - REGUEST DENIED. »#

Figure 30

Example 3
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4

K BROUPED INPUT DATA BJ

FROM 10 ABSOLUTE FREQUENCY

10.54775 11.92441 1. o
B 11.92441 13.30107 10. |
- 13.30107 14.67774 4. ' |

14.67774 16.05440 5. .

16.05440 17.43106 5.

17.43106 18.80772 7.

18.80772 20.18438 7. ]
» 20.18438 21.56104 10. v

21.56104 22.93771 13,

22.93771 24,31437 6o

24.31437 25.69103 12,

25.469103 27.06749 é.

27.06769 28.44435 7. o

28.44435 29.82102 12. R

29.82102 31.19768 5. .
| 31.19768 32.57434 7. C )
| 32.57434 33.95100 6. 2
| 33.95100 35.32766 1. o
{ - 35.32766 36.70432 4. .
| 36.70432 38.08099 7. )
| 38.08099 39.45765 8. .
; 39.45745 40.83431 9.

40.83431 42.21097 11, 5

43.58763 44.96429 6. A o

42.21097 43.58763 7.
SREEBFERTIRABTEIXFTNAFERRFRBERARIBEBRERBABBERRABAXSBEBRIRIRRESD

HEAN = = = = =~ = = = = = = = = = - 27.92810 ]
VARIANCE = = ~ = = = = = = = = = = 99.00627 S
STANDARD DEVIATION - - =~ = - = = - 9.95019 S
COEFFICIENT OF VARIATION - - - - - .35628 o
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Figure 30 (continued)
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----- HYPOTHESIS STATEMENT =----
! H(0): POPULATION IS UNIFORN

WITH THEORETICAL LOWER LIMIT OF 190.0000
AND THEORETICAL UPFERK LIMIT OF 45.0000

. HC1): POPULATION IS NOT UNIFORM
_ WITH THEORETICAL LOUER LINIT OF  10.0000
N AND THEORETICAL UPPER LINIT OF  45.0000

122 R R R R R E PR ERFE RS EE RS REE 22 RS2 R SRS RS LSRR EE RS2 1 2]
(2222 RSERSESRESRS SRR SRR 22 2 EZ LR RS R 22 R AL 22 R 2L LA EE 2 EE 2 22

----- RESULTS OF KOLMOGOROV-SMIRNQOV TEST ===--

AT THE ALPHA = .01 LEVEL OF SIGNIFICANCE
THE KOLNOGOROV-SMIRNOV CRITICAL VALUE = .320
FOR A SAMPLE SIZE OF 23

THE CONPUTED K-S TEST STATISTIC = .046
BECAUSE THE K-5 TEST STATISTIC IS LESS THAN

THE K-8 CRITICAL VALUE, THERE IS INSUFFICIENT
EVIDENCE TO REJECT THE NULL HYPOTHESIS.

EXEXEXEBREABRFEESRLBEERNXIRET R ERERRE XL XL SEXEEBEESIASRXE SRS 45 84
¢ SEESEEBRRERSKSEFRIERESTLBBRAESEBEERBBLEFBESIERIBERRERESINRER XSS

AT THE ALPHA = .01 LEVEL OF SIGNIFICANCE
FOR 24 DEGREES OF FREEDOM, THE THI-SQUARE
CRITICAL VALUE = 43.0

THE COMPUTED CHI-SQUARE STATISTIC = 19.49

BECAUSE THE TEST STATISTIC IS LESS THAN
THE CRITICAL VALUE, THERE 1S INSUFFICIENT
EVIDENCE TO REJECT THE NULL HYPOTRESIS.

| 3838 $8SLS XSRS AR R ESIRLBAEEBESRERAS KA ALSBARLEEELE LB RRRAE
b >870;
" S703
[. #3242 GOODNESS OF FIT PROGRAM FINISHED s#sss
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Figure 30 (continued)
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D. Example 4

This sample run uses all four of the goodness of fit techniques
available from the GOF program and thus provides a sample of each type of
output as shown in Figure 31. In this example, 55 sample observations are
believed to be Poisson distributed with a known mean of 3.4. The data
values are to be read from logical unit 11 and the GOF program is to run
in the interactive mode.

The probability of rejecting the null hypothesis when it is true
(ALPHA) is not specified. The GOF program defaults to an cl.%a value of
0.05 at which to evaluate the results of the goodness of fit tests.

The sample observations are printed in the urder they are read,
followed by a second printing of them in sorted order. The sample
statistics hint that the mean of the sample data is very close to the
known mean of the hypothesized Poisson distribution. The calculation
of the coefficient of variation for the hypothesized distribution yields
0.54233, which is close to the 0.62982 value computed from the sample
observations. The sample coefficient of skewness is positive, suggesting
a skew to the right. A positive coefficient of kurtosis denotes a platy-
kurtic shape. A1l three sample coefficients seem to support the assumption
of a Poisson distribution. Section II of this report contains a discussion
of the meaning of the coefficients of skewness and kurtosis. Section III
provides equations for calculating these three coefficients, using
theoretical population parameters for most of the ten GOF distributions.

The moments test for normality is run in example 4 for illustrative
reasons. Rejection of normality occurs for the skewness part of the test,
but does not hold for the kurtosis evaluation. These results are incon-
clusive and are only included to illustrate the output of the moments test.
These results also support the comments in Section II of this report that
this test is best considered a test of nonnormality. Trying to accept
a null hypothesis with conflicting results, similar to the ones in this
example, leaves the researcher with a questionable premise.

The hypothesis statement is followed by a histogram of the
empirical data in Figure 31. The Poisson distribution is treated
differently from the other nine distributions by the GOF program. This
difference is explained in Section IV of this report under the description
of Block 19 of the macro flowchart. For the Poisson distribution, the
GOF program establishes a cell for each possible discrete data value over
the range of 0 to the maximum data point and the absolute frequencies are
tabulated accordingly. Therefore, there will be as many cells as there
are possible unique integer values in the defined range, unless the user
specifies (via the CELLS statement) that the program is to run with less
cells. In this one case, the number of cells is reduced to meet the
user's request. The histogram in Figure 31 illustrates the establishment
of 11 cells for this test because there are 11 possible integer values
between 0 and 10.0 (the maximum value in this example's data set).
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The Kolmogorov-Smirnov test results are printed for an alpha value
of 0.05 and a sample size of 11--the number of cells into which the data is
grouped. The Kolmogorov-Smirnov statistic is much less than the Kolmogorov-
Smirnov critical value and the user must conclude in this case that there is
insufficient evidence to reject the null hypothesis.

The Cramer-Von Mises and chi-square tests also lead to the
conclusion that the null hypothesis cannot be rejected. Therefore, the
results of example 4 suggest that the 55 sample observations do come from
a Poisson distribution with a known mean of 3.4. Figure 31 has a second
histogram showing the effects of regrouping the data to meet the chi-square
test requirements. The summary values following the histogram give the
possible range of the random variables as O<x<=, which is the allowable
range for the Poisson distribution.

The GOF program concludes with the acceptance of a STOP
instruction. The user could run another test by issuing the appropriate
testing and operational commands instead of the STOP statement.

Example 4 is included to illustrate the output. from each of
the four goodness of fit techniques which are available from the GOF
program. The user should not arbitrarily apply goodness of fit tests to
any distribution. For example, the sample run in example 4 uses the
Cramer-Von Mises test with the Poisson distribution which violates the
restriction that the Cramer-Von Mises test be used only with
continuous distributions. Caution should be exercised in determining
which goodness of fit tests are best suited to individual circumstances.
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#4842 GOODNESS OF FIT PROGRAM

>DAT:35;
DAT:335;

SRUN:CHI :KAS:
RUN:CHI:KAS:

>TES:POI:
TES:POI:

JALT:11;
ALT:11;

>INT;
INT;

>STA;
STa;

*% ALPHA VALUE (PROBABILITY OF TYPE I ERROK) NOT SPECIFIED AS

3.4;
3.4;

HON:CVM;
NOM:CUN;

34838

EITHER 0.01 ORK 0.05 - DEFAULY IS 0.05 »s
OBSERVED DATA

3.00000
1.00000
3.00000
3.00000
1.00000
9.00000
4.00000

+00000
3.00000
3.00000

ORDERED DATA

«00000
1.00000
2.00000
2.00000
3.00000
3.00000
4.00000
4.00000
6.00000

10.00000

10.00000
6.00000
3.00000
2.00000
4.00000
4.00000
1.00000
3.00000
3.00000

+ 00000
1.00000
2.00000
3.00000
3.00000
3.00000
4.00000
4.00000
6.00000

2.00000 3.00000
2,00000  3.00000
4.00000 «00000
1.00000 3.00000
1.00000 4.00000
4.00000 4.00000
2.00000  6.00009
1.00000 4,00000
4.00000 4.00000
1.00000 1.00000
1.00000 1.00000
2.00000 2,00000
3.00000 3.00000
3.00000 3.00000
3.00000 4.00000
4.00000 4,00000
4.00000 5.00000
7.00000  7.00000
Figure 31
Example 4
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2.00000
3.00000
3.00000
6.00000
4.00000
1.00000
2.00000
4.00000
7.00000

1.00000
2.00000
2.00000
3.00000
3.00000
4.00000
4.00000
4.00000
8.00000

3.00000
2,00000
4.00000
2.00000
3.00000
8.00000
7.00000
1.00000
2.00000

1.00000
2.00000
2.90000
3.0Q009¢
3.00000
4.00000
4.00000
6.00090
9.00000
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---- BESCRIPTIVE SAMPLE STATISTICS -----
HEAN = - - = =« = = = = o = ===~ 3.38182
VARIANCE - = - = - = = = =« = - - 4.33670
STANDAKD DEVIATION - - = = = = - - 2.12993
COEFFICIENT OF VARIATION -~ - - - - .62982

UNBIASED COEFFICIENT OF SKEUNESS -  1.05270
UNBIASED COEFFICIENT OF KURTOSIS - 1.31145

EXRBEBXXEB LR R BERBR LSRR RBRLBEIBBEBXEBRE SRR R PEBBB R KR X BAEBSBE NS

EEEBXBXXXXEBREXRRBL LB R LR EXBBRBERRRRBAREBRBESXEB X LAB BB LSS

FOk SKEWNESS, IF -.633 LE 1.0527 LE .433 ONE CANNOT
REJECT NORMALITY AT THE 935 PER CENT SIGNIFICANCE.LEVEL
WITH A SANPLE SIZE OF 35

FOR KURTOSIS, IF ~-.89 LE 1.3117 LE 1.58 ONE CANNOT

REJECT NORMALITY AT THE 95 PER CENT SIGNIFICANCE LEVEL
VITH A SAMPLE SIZE OF 33

BEERBEFRRAREALERRERBRRBERBERER B RRBAR BN A SAR L SEB BB AR DR ARE RS

EEXXXXXXEFLBRBREERERRXLRBRRBRRBUBBETBERRKRBERBREXEBRELDEERARBRER

H{0): POPULATION IS PEISSON
WITH THEORETICAL NEAN OF 3.4¢

H(1): POPULATION IS NOT POISSON
WITH THEORETICAL MEAN OF 3.40

(22222 R R ER L LR E LR R TR EE R R R E AR RS R RS L2222 PR 2R S 2T

Figure 31 (continued)
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s8828s HISTOGRAN ss83s

14 s

13 *

12 s »

11 ] t

10 » L

U 3 % ]

8 L s * s

7 » 2 * 3

é ] * » *

S ] ] 3 *

4 ] ] » » .

3 s s * * $

2 s . L} * * s s
| ] s s % 3 * L E 3 * *

NUMBER 2. 8, 9. 14, 12. 1. 4. 2. 1. 1. L.

CLASS 12 3 4 35 & 7 8 9 101

LOVER LINMIT OF FIRST CLASS = .000
UPPER LINIT OF LAST CLASS = 9999.999
NUMBER OF OBSERVATIONS = 35
NININUM OBSERVED VALUE = .000
HaXINUM CBSERVED VALUE = 10.009

(23RS EE PP LR EEEER D RERSEREESLELERS RS2SR P2 LELE2E LA EE £E 2L £ 04

AT THE ALPHA = .03 LEVEL OF SIGNIFICANCE
THE KOLMOGOROV-SMIRNGY CRITICAL VALUE = .39
FOR A SANPLE SIZE OF 11

THE COMPUTED K-S TEST STATISTIC = 074

BECAUSE THE K-S TEST STATISTIC IS LESS THAN
THE K-S CRITICAL VALUE, THERE IS INSUFFICIENT
EVIDENCE TO REJECT THE NULL HYPOTHESIS.

(222 R RS RS R R RS SR EERE 2 EERE LR REEE LEE LR LA 2L L LSS LS 22 )

Figure 31 (continued)
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AT THE ALPHA = .03 LEVEL OF SIGNIFICANCE
THE CRAMER-VON MISES CRITICAL VALUE = .461

THE COMPUTED CRAMER-VON MISES TEST STATISTIC = .J349

BECAUSE THE TEST STATISTIC IS LESS THAN
THE CRITICAL VALUE, THERE IS INSUFFICIENT
EVIDENCE TO REJECT THE NULL HYPOTHESIS.

SERBXIBBEBRRUBARXREBEEHNEFBEABREBERBEBEBAXEABBRSSEBBEEBEBAERSES

SESEBERXXAEXXBESSERRXLLANBFRBERDBRUBL SRR BERRERRKNBERRRBBERBR DS

AT THE ALPHA = .03 LEVEL OF SIGNIFICANCE \
FOR 5 DEGREES OF FREEDOM, THE CHI-SGUARE

CRITICAL VALUE = 11.1

THE COMPUTED CHI-SGUARE STATISTIC = 6.93

BECAUSE THE TEST STATISTIC IS LESS THAN

THE CRITICAL VALUE, THERE IS INSUFFICIENT
EVIDENCE TD REJECT THE NULL HYPOTHESIS.

[ 22 R R R E PR R R PR FE R PR EER PR LRSS P2 L2 SRR 22 LS 2 SR E L2 224 2 210

Fiqure 31 (continued)
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¢s THE NUMBER OF CELLS HAD 70 BE ADJUSTED TO MEET
THE REQUIREMENTS OF THE CHI-SQUARE TEST. THE HISTOGRAM
BELOUW SHOWS HOW THE EMPIRICAL DATA WAS GROUPED TO MEET

THE CHI-SQUARE TEST REQUIRENENTS. 3

I e
14

13

12

11

10 L]

9 ] *
8 ] 3
7 s *
[y s *
9 s E
4 s s
3 4 %
2 s ]
1 ] s

- en e wapon-—

HISTOGRAM  #u%a»

B W B H WK NN NN NN
L AN B B K B BE B R B X W

[ 2B N K R K N B

- — - -

CLASS t 2 3 4 5 6

LOYER LIMIT OF FIRST CLASS = .00
UPPER LIMIT OF LAST CLASS = 9999.999%
NUMBER OF OBSERVATIONS = 93
NINIMUM OBSERVED VALUE = «000
NAXINUM OBSERVED VALUE = 10.000

>§70;
ST0;

#ss3% GOODNESS OF FIT PROGRAM FINISHED »s%ss

Figqure 31 (continued)
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XITI. Appendix B - Univac 110& Run Streams
A. General

The GOF program described in this report allows the user the
option of inputting his empirical data values from an input device different
from the one through which he enters his GOF language statements. The
option is declared to the GOF Tanguage translator through the ALTERNATE
DATA DEVICE command and is explained in Section IV of this report. The
command requires a numerical value which is the number of the logical unit
from which the GOF program reads the empirical data values. The two run
streams provided in this appendix illustrate the statements necessary to
execute the GOF program with the ALTERNATE DATA DEVICE command. To
eliminate the use of that option, the user omits the commands which have
an asterisk beside them.

B. Input from a File

The Univac 1108 run streams for the batch and on-line versions
are identical with one exception--the GOF input command statements are
foliowed by an EOF card in the batch mode. A1l Univac 1108 operating
system commands begin with a master space symbol (@). File names on the
Univac 1108 should be followed by a period (.) as shown in Figures 32
and 33. Logical unit numbers 0, 1, 5, 6, and 30 should not be used as
an alternate device number because they are reserved for reread, punch,
read, write, and reread units, respectively.

If the empirical data to be input resides in a file or an
element of a file, the user supplies the commands shown in Figure 32.
Basically, these commands cause the computer to copy the empirical data
values into a file whose file name is the same as *he logical unit number
given in the ALTERNATE DATA DEVICE statement. T° -sterisks shown in
Figure 32 are not part of the command, but signa. that the associated
statement is omitted if the user does not desire the alternate device
option.

@RUN XXXXXX,PPFPPEPPPPPP/NNNN
6A56,T 10, » HHHHHN

@eD,I 10,
GADD FILE.ELEAENT
-

B % # BN

EXIT
@XQT FILE.GOF

GOF input commands

@EQF (required for batch mode only)
@FIN

Figure 32
Univac 1108 Run Stream for Input from a File
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The exact format of the RUN command is unique to the host system.
In Figure 32, the parameters of the RUN command have the following meanings:

1. XXXXXX is a six character run identification value,

2. PPPPPPPPPPPP is a twelve character account identification
code,

3. NNNN represents a 1-12 digit user identification number,
and

4, MMMMMM is a project identification entry which must not
exceed twelve characters.

The ASG statement temporarily assigns to the user a fiie whose
name is 10. The file is destroyed when the job terminates. The number
10 is the number which the user inputs with the ALTERNATE DATA DEVICE
command. For example, one of the GOF input commands necessary in Figure
32 is ALT:10; vhich defines the alternate input unit to be 10.

Section IV of this report explains the use of this command.

The ED statement in Figure 32 invokes the on-line editor which
expects to accept informatiorn for file 10. The first command given to the
editor is the ADD command which causes the empirical data values in
FILE.ELEMENT to be copied into file 10. The user must substitute his file
and element names where the letters FILE.ELEMENT appear in the ADD statement.
The curved arrow () represents a carriage return and is necessary to change
the operating mode of the editor. The EXIT commaad is an instruction to
the editor to close file 10 and return control to the Univac 1108 operating
system. At this point, a copy of the empirical data values are in file 10.

The GOF program is executed following the entry of the XQT statement.

Examples of input and output for the program are given in Appendix A of this
report. The GOF input commands are followed by an EQF statement only if the
program is being run in the batch mode. Upon completion of a GOF session,
the user exits from the Univac 1108 system with a FIN command.

C. Input from Magnetic Tape

If the user wants to enter empirical data values which are recorded
on a magnetic tape, he uses the series of Univac 1108 commands illustrated
by Figure 33. The RUN, XQT, EOF, and FIN statements have the same parameter
requirements and functions as those described in the preceding section of
this appendix. Therefore, these four statements are not discussed for this
example. Input from magnetic tape must be composed of 80-character records.
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~ 1

@RUN XXXXXX,PPPPFPPPPPPP/NNNN , NNNNNN
s @ASG,T FILE.,DDD,REELNO

- o
i 3 QUSE ‘2-’FILE| ’
’\

< . A
[ e FETRTCTRON LIRS shwt DUV

)
* “l'. RN

A

@X0T YOURFL.GOF

GOF input connands

) @EOF (required for batch node only) {

L + QFREE FILE. Te

| eFIN “
Figure 33

Univac 1108 Run Stream for Input from Magnetic Tape
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For the ASG statement in Figure 33, the three necessary para-
meters are explained as follows. - T

1. FILE. represents any 1-12 character name the user
wishes to assign to his magnetic tape. He might select meaningful names oo
1ike DATA., SAMPLS., INPUT., or EMPVAL. ;J :
. 2. DDD is a 1-3 character designator for the tape drive i
to be used. For example, U9V specifies the use of a 9-track, very high !
density unit and U selects a 7-track, 800 BPI unit. RO
3, REELNO is a representation for the physical reel e
number of the magnetic tape containing the empirical data.

The USE command associates the user's file name (FILE. in this :3
example) with the logical unit number to be input to the GOF language
translator via the ALTERNATE DATA DEVICE statement. The logical unit .
number in Figure 33 is 12. Therefore, the GOF program is to read from Qj
logical unit 12 the empirical data values which are stored on a magnetic =~
tape. pre
After execution of the GOF program is complete, the user should 251
remember to enter the FREE command which causes the tape to be rewound
and the tape drive to be released. 4
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IX. Appendix C - Explanation of Diagnostic Messages

The GOF program verifies the syntax of GOF language commands,
checks the appropriateness of many input parameters, validates the combi-
nations of options requested, and monitors certain internal testing
procedures. The user is informed of errors or changes in these areas
by messages printed by the GOF program. These messages are always
enclosed by a double asterisk (**). Some messages are simply informative;
some are warning devices; some denote unresolvable (by tha GOF program)
conditions and cause an error termination of the GOF program.

This Appendix contains a listing of all possible GOF messages. The
messages are presented in alphabetical order. Some are followed by addi-
tional information or suggestions for corrective actions. Others are
considered self-explanatory and are not discussed. The name in paren-
theses following each message is the name of the GOF subprogram responsible
for printing that message. In the case of the ERROR subroutine's printing
of a message, a second name is included in the parentheses. The second
name is the name of the subprogram which calls ERROR to print the message.

1. ** ALL GOODNESS OF FIT TESTS WILL USE TRANSFORMED DATA -
DATA IS ASSUMED POISSON WITH TRANSFORMED MEAN OF XXXXX.XXXX AND
ORIGINAL MEAN OF XXXXX.XXXX. ** (GFMAIN)

To prevent possible overflow during Poisson calculations, all hypo-
thesized Poisson data sets are transformed to a minimum base of zero,
This transformation is explained in Section IV of this report under the
description of Block 19 of the GOF macro flowchart.

2. ** ALPHA VALUE (PROBABILITY OF TYPE I ERROR) NOT SPECIFIED
AS EITHER 0.01 or 0.05 - DEFAULT IS 0.05. ** (ERROR,LANG)

Section IV of this report explains the purpose of this message under
the description of the ALPHA statement.

3. ** AS SHAPE PARAMETER GETS LARGER, THE GAMMA DISTRIBUTION
APPROACHES THE NORMAL DISTRIBUTION. SHAPE PARAMETER = XXXXX.XXXX,
TEST IS SWITCHED TO NORMAL. ** (GFMAIN)

When the shape parameter of the gamma distribution exceeds 30.0, the
normal distribution provides an excellent approximation to the gamma distri-
bution. If the user did not input the gamma distribution parameters, the
normal distribution is tested using estimates of the mean and variance
calculated from the sampie observations. If the theoietical shape and
scale parameters are defined to the GOF program, the mean and variance
are calculated using the theoretical gamma parameters. Section III of this
report contains the equations for calculating the mean and variance, given
the shape and scale parameters.
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4, ** CHI SQUARE TEST CANNOT BE RUN - INSUFFICIENT DATA.
** (GFMAIN)

The GOF program does not execute the chi-square goodness of fit
test if the number of cells falls below four. The number of sample obser-
vations is too small to perform meaningful calculations. The Cramer-Von
Mises or Kolmogorov-Smirnov test is recommended. The number of cells
could be reduced below four because of the regrouping which occurs in
some cases to meet the chi-square test restriction of at least five
expected observations per class. Section II of this report contains a
discussion of the chi-square test and an explanation of this particular
restriction.

5. ** CONTRADICTION: FREE FIELD READ AND FORMAT READ NO
DEFAULT. ** (ERROR,LANG) '

The user is requesting the GOF program to read in the sample obser-
vations using both a free field read and a user-supplied format. The
command stream for the current run must be reentered correctly choosing
one input mode or the other.

6. ** CONTRADICTION: NO. OF DATA POINTS SPECIFIED AND
INSTRUCTION TO COUNT DATA POINTS--DEFAULT TO DATA POINTS SPECIFIED.
** (ERROR, LANG)

The user supplies the number of sample observations for the GOF
program to read and also the GOF program to count the number of values
it reads. If the default path is not satisfactory, the user should
issue a NEXT command (explained in Section IV of this report) and redefine
the current run.

7. ** DATA POINT TERMINAL VALUE NOT FOUND--MO DEFAULT. **
(ERROR, INPUT)

The GOF program is reading sample observations under control of
the COUNT command, which is explained in Section IV of this report. The
program encounters an end-of-file in the data stream, but does not
locate the anticipated terminal code. The user must redefine the job
either supplying a correct terminal value or the exact number of data
points to be read.

INPUT?. ** DATA POINTS ARE IN EXCESS OF XXX NO DEFAULT. ** (ERROR,

If the GOF program is running under the COUNT option (explained in
Section IV of this report) and does not read an end-of-file mark before
it reads the maximum number of allowable input values, it terminates
with this printout. The maximum allowable number is 500, but may be
easily changed. To change the number of allowable data points, the user
must change the value of a main program (GOF) variable named MAXDAT.
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He must also change the dimensioned values of these arrays: (1) X,
2) XCELS, (3) PXCELS, (4) YCELS, (5) ZCELS, (6) ZZCELS, (7) FROM,
8) FT, (9) ¥, (10) XT, and (11) T0. No other changes are necessary.

9. ** DATA WILL NOT SUPPORT XXXXX CELLS. XMAX = XXXXX.XXXX,
TEST CONTINUES. ** (GFMAIN)

In testing for the Poisson distribution, the user specifies a desired
number of cells into which he wishes his data to be grouped. In grouping
the hypothesized Poisson data, the GOF program assigns one cell to each
integer value possible over the range of input values (0 to XMAX). There-
fore, this message is printed when there are less possible integer values
than the number of cells the user requested. The program execution
continues; using all available cells unless regrouping occurs for the
chi-square test.

10. ** EITHER NUMBER OF DATA POINTS OR COUNT OF DATA POINTS
MUST BE SPECIFIED--NO DEFAULT. ** (ERROR,LANG)

The user is trying to excecute the GOF program without using a DATA
command or a COUNT command. One statement or the other is mandatory. The
user must reenter his GOF command stream with this deficiency corrected.

11, ** FOR HYPOTHESIZED DISTRIBUTION, BOTH THE SHAPE AND THE
SCALE PARAMETERS MUST BE GREATER THAN ZERO. ** (ERROR,LANG)

The user is testing for the gamma, the Erlang-k, or the Weibull
distribution and has input a scale or shape parameter whose value
is less than or equal to zero. Neither parameter is valid for such
values. The user must reenter his corrected GOF command stream.

12, ** FOR HYPOTHESIZED DISTRIBUTION, MEAN MUST BE GREATER
THAN ZERO - NO DEFAULT. ** (ERROR,LANG)

The hypothesized distribution is either Poisson, exponential,
or log-normal; and the user has input a negative or zero mean. The
mean of these three distributions is always greater than zero. The
user must reenter his corrected GOF command stream.

13. ** FOR HYPOTHESIZED DISTRIBUTION, VARIANCE MUST BE
GREATER THAN ZERO - NO DEFAULT. ** (ERROR,LANG)

The user is testing for either a normal or log-normal distribution
and is supplying an invalid variance value. The user must reenter his
corrected GOF command stream.

14. ** FOR CHI-SQUARE DISTRIBUTION, THE NUMBER OF DEGREES
OF FREEDOM MUST BE GREATER THAN OR EQUAL TO 1 - NO DEFAULT.
** (ERROR,LANG)
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15. ** FOR TRIANGULAR DISTRIBUTION, MINIMUM VALUE MUST BE LESS

DEFAULT. ** (ERROR,LANG)

THAN MAXIMUM VALUE - NO DEFAULT. ** (ERROR,LANG) { :
16. ** FOR TRIANGULAR DISTRIBUTION, MOST PROBABLE VALUE MUST o
LIE IN THE RANGE BETWEEN THE MINIMUM AND MAXIMUM VALUES - NO ~ p

The user is testing for a triangular distribution with known para- S
meters. The value input for the most probable parameter is either less S
than the minimum value or greater than the maximum value. The user must

input a corrected command stream. -

17, ** FOR UNIFORM DISTRIBUTION, LOWER LIMIT MUST BE LESS
THAN UPPER LIMIT - NO DEFAULT. ** (ERROR,LANG)

18, ** FORMAT EXCEEDS 80 CHARACTERS -- HO DEFAULT. **
(ERROR,LANG)

B S RTARRARY

In selecting the FORMAT option (explained in Section IV of this
report), the user is trying to input a FORMAT designation longer than
80 characters. The command stream for the current run must be reentered
with this problem corrected. '

19, ** 'GAMMA' ERROR 1, X WITHIN 1.E-6 OF A NEGATIVE INTEGER
OR ZERO, RETURNED TO EXECUTION, X=XXXXXX.XXXXXXXX. ** (TAMMA)

€5 ’ L . -
% S UKL 3. TOITORTIN

The user is testing for a gamma distribution. To perform the
integrations necessary for solving the gamma density function, numerical xS
approximations are used by the GOF program. Different techniques are used i
depending on the value of the gamma shape parameter. Execution continues

’ after the user is informed of the evaluation of the shape parameter being
used for his run.

20. ** ‘GAMMA' ERROR 2, X GT 34.82, RETURNED TO EXECUTION, L
X=XXXXXX.XXXXXXXX. ** (TAMMA) f“‘

—————-
- v

Error 19 gives an explanation of the reason for this message to the .
user. T

21, ** 'GAMMA' ERROR 3, X LT - 28.5, RETURNED TO EXECUTION,
X=XXXXXX. XXXXXXXX, ** (TAMMA)

Error 19 gives an explanation of the reason for this message to L

the user. 3

22, ** GROUPED INPUT DATA NOT ACCEPTABLE WHEM TESTING THE {i F

LOG-NORMAL DISTRIBUTION - NO DEFAULT. ** (ERROR,LANG) f
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PL The GOF program transforms all hypothesized log-normal data before
N any goodness of fit tests are performed. All tests are then calculated
using the transformed normal data. The GOF program's treatment of log-
- normal data is discussed in Section IV of this report. The necessary
il transformations are not appropriate for grouped data. The log-normal
distribution is the only distribution restricted in this manner by the

, GOF program. If the user has ungrouped version of the unacceptable
g& record.

26. ** LANGUAGE INTERPRETER HAS RUN OUT OF DATA BEFORE
!' ENCOUNTERING A START TEST INSTRUCTION. ** (ERROR,SCAN)

The command stream being compiled lacks a START command. The command
stream must be reentered with a START statement included.

27. ** LOGNORMAL DISTRIBUTION IS NOT DEFINED AT X=0.
HOWEVER, TEST CONTINUES WITH LN(0)=-10.0. ** (LTRSFM)

o A zero value is part of the data set hypothesized to be from a

log-normal distribution. Because the GOF program transforms all log-
i normal sample observations before performing goodness of fit tests, it
b handles this problem by equating the value to -10.0. The program

continues to run and performs the requested tests against the transformed VR
normal data. N

28. ** NO TERMINAL VALUE SPECIFIED FOR COUNTING DATA POINTS --
DEFAULT IS 999. ** (ERROR, INPUT)

The user is running under the COUNT command, which is explained v

in Section IV. He is not furnishing the GOF program a terminal value ?ﬁﬁj
by which to detect the end of the input stream. Therefore, the GOF N
program defaults to an expected terminal value of 999. 3;;}
29. ** NOT ENOUGH DATA FOR CELL SPECIFICATION OF NNNNN CHI el

SQUARE TEST WILL BE RUN WITH NNNNN CELLS. ** (GFMAIN) T

Regrouping of the empirical data is necessary to satisfy the require-
ment of the chi-square goodness of fit test that each cell contain at least o
five expected observations. This message and a restructured histogram ‘“if
reflecting the chi-square grouping are provided to the user for his e
information; not for corrective action. LS

30. ** NUMBER OF CELLS EXCEEDS 15 MAKING HISTOGRAM TOO WIDE

TO PRINT ON-LINE. ON-LINE WIDTH RESTRICTED TO 64 PRINT POSITIONS.
** (ERROR,HIST)

The width of the print field is limited to 64 characters for on-line ol
output. Fifteen is the maximum number of cells that can be represented oS
by a histogram in 64 print positions. Mo histogram is printed. If the o
chi-square test results in a reduction of the number of cells to 15 or e
less, a histogram is printed following the chi-square test calculations.
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31. ** NUMBER OF CELLS EXCEEDS 32 MAKING HISTOGRAM TOO WIDE
TO PRINT IN BATCH MODE. BATCH WIDTH RESTRICTED TO 132 PRINT
POSITIONS. ** (ERROR,HIST)

The width of the print field is 1imited to 132 characters for batch
output. Thirty-two is the maximum number of cells that can be represented
by a histogram in 132 print positions. No histogram is printed. If the
chi-square test results in a reduction of the number of cells to 32 or
less, a histogram is printed following the chi-square test calculations.

32. ** NUMERIC FIELD EXCEEDS 10 SIGNIFICANT DIGITS FIELD STARTS
WITH AAA. ** (ERROR,CONVRT)

The user is attempting to input a numeric value whose significant
digits exceed the number acceptable to the GOF program. The value must be
trimmed.

33. ** NUMERIC FIELD EXCEEDS 12 CHARACTERS. NUMBER STARTS WITH
A. ** (ERROR,LANG)

The GOF language translator accepts blanks anywhere in its defined
statements. When entering numeric parameters, the user should limit the
number of numeric values and blanks to twelve characters or less. No
value is converted and the user should reenter the unacceptable value
in less characters. :

34. ** PARAMETERS OF TEST DISTRIBUTION NOT SPECIFIED.
DEFAULTS TO ESTIMATES FROM SAMPLE DATA. ** (ERROR,LANG)

This message is for information only and occurs any time the parameters

of the hypothesized distribution are not known.

35. ** SEMICOLON OCCURS BEFORE COLON -- INSTRUCTION DELETED.
** (ERROR,LANG)

The acceptable GOF Tanguage statement syntax is described in Section
IV of this report. The statement immediately preceding this error message
violates that syntax and is ignored. The user may continue and correctly
reenter the invalid statement. If operating in the batch mode, the GOF
program attempts execution without the invalid command.

36. ** TEST TYPE TO BE RUN WAS NOT SPECIFIED. NO DEFAULT -
PLEASE SPECIFY NOW. ** (ERROR,LANG)

If the on-line user forgets to specify which goodness of fit tests
he wishes to run he received a second chance from the GOF program.
The batch user's job terminates in error. Once the on-line user selects
(via the RUN command) which tests are to be run, he must issue another
START command to continue processing.
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37. ** THE CRAMER-VON MISES TEST CANNOT BE RUN ON GROUPED
DATA - REQUEST DENIED. ** (ERROR,LANG)

Section II of this report explains that the Cramer-Von Mises goodness
of fit test cannot be run on grouped data. The run continues for any
other tests selected. '

38. ** THE LOGNORMAL TEST IS PERFORMED ON TRANSFORMED DATA
OF THE FORM Y=LN(X). ** (LTRSFM)

This message is for information only. A discussion of the log-normal
distribution is part of Section III of this report and Section IV contains

:n explanation of the GOF program's treatment of hypothesized log-normal
ata.

39. ** THE MOMENTS TEST CANNOT BE RUN ON GROUPED DATA - REQUEST
DENIED. ** (ERROR,LANG)

The GOF program does not compute the coefficients of skewness and
kurtosis for grouped data. Therefore, there are no values available for
the moments test. The user may run the moments test on the individual
sample observations if they are available.

40. ** THE MOMENTS TEST WAS REQUESTED FOR MORE THAN 125 DATA
VALUES. ** (ERROR,GFMAIN)

The preceding message is always accompanied by two additional messages
which inform the user of techniques suitable for evaluating the results of
the moments test. For more than 125 values, the standard normal distri-
bution tables are used. Section II of this work elaborates on the techniques
needed to perform this evaluation.

41. ** THE NUMBER OF CELLS HAD TO BE ADJUSTED TO BE ADJUSTED TO
MEET THE REQUIREMENTS OF THE CHI-SQUARE TEST. THE HISTOGRAM BELOW
SHOWS HOW THE EMPIRICAL DATA WAS GROUPED TO MEET THE CHI-SQUARE TEST
REQUIREMENTS. ** (GFMAIN)

Section II of this report describes the chi-square test and its
requirement that each cell contain at least five expected observations.

42. ** THE NUMBER OF VALUES INPUT FOR GROUPED DATA WAS NOT
THREE TIMES THE NUMBER OF GROUPS - NO DEFAULT. ** (ERROR,GFMAIN)

For grouped data, three values are required to describe each cell:
(1) its Tower class boundary, (2) its upper class boundary, and (3) its
absolute class frequency. Therefore, the GOF program expects to read a
number of values which is a multiple of three. The number of cells for
the data being input is determined by dividing the number of values to
be read by three. The user must reenter his commands with a "DATA" value
which is a multiple of three. If the user is entering data under the
COUNT option, the GOF program must "count" a multiple of three data values.
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43, ** SELECTION OF DISTRIBUTION FOR NULL HYPOTHESIS MUST BE
MADE NOW. ** (GFMAIN)

The user is delaying the selection of a hypothesized distribution
until the histogram of his empirical data is printed. Immediately
after printing the histogram, the GOF program prints the above prompting
message and returns to the language translator. At this time the user
should enter a TEST command with the distribution specified followed by
another START command.

44, ** THEORETICAL DISTRIBUTION TO BE TESTED WAS NOT SPECIFIED.
NO DEFAULT - PLEASE SPECIFY NOW. ** (ERROR,LANG)

The user is requesting that no histogram be printed. Therefore, the
GOF program must be told which theoretical probability distribution is to
be tested. The GOF program waits until the user selects a distribution

via a TEST command and follows that TEST command with another START command.

45. ** UNABLE TO EVALUATE RESULTS OF MOMENTS TEST AT 0.01
LEVEL OF SIGNIFICANCE - DEFAULTS TO 0.05 LEVEL FOR THIS TEST ONLY.
** (ERROR,GFMAIN)

The GOF program only contains the critical values for the 0.05 level
of significance for the moments test. The 0.01 values are not available
from the referenced 1literature.

46. ** UNKNOWN DISTRIBUTION TO BE TESTED STARTING WITH AAA.
** (ERROR,LANG)

A spelling error probably exists in the TEST command just entered.
The GOF program accepts the following shorthand distribution names: (1)
POI, (2) GAM, (3) ERL, (4) CHI, (5) NOR, (6) LOG, (7) WEI, (8) EXP,
(9) UNI, and (10) TRI. The TEST command should be reentered. This type
of error is fatal in the batch mode of operation.

47. ** UNKNOWN INSTRUCTION TYPE STARTING WITH AAA. ** (ERROR,LANG)

The user is attempting to enter an instruction to the GOF language
translator which is not in its repertoire. Section IV of this report
contains a complete list of all acceptable GOF commands.

48. ** UNKNOWN TEST TYPE STARTING WITH AAA. ** (ERROR,LANG)

The user is asking the GOF program to run a goodness of fit test
other than:

KAS (Kolmogorov-Smirnov test),
CHI (chi-square test),

CVM (Cramer-Von Mises test), or
MOM (moments test).

W N -

The corrected RUN statement should be reentered. This error is fatal
in the batch version of the GOF program.
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X. Appendix D - GOF Program Components

The GOF program is composed of a main program and 41 subprograms.
It requires approximately 32,000 storage locations. It does not require
the use of disk or tape storage during its operation. However, the user
may select (by the ALTERNATE DATA DEVICE command) to have his data values
read from disk, tape, or any other storage device acceptable to his
operating environment.

Functionally, the GOF program can be divided into two categories--
the language translator and the computational section. The language
translator requires about 4000 storage locations. Upon execution of the
GOF program, the main routine calls the language translator. The language
translator retains control until all testing and operational commands
are input and interpreted. Once the START command is interpreted, control
is passed to the driver routine of the computational section. Control
remains in this section until all testing is completed or until additional
information is required from the user. The only additional information
which might be required is the selection of the hypothesized distribution.
A brief description of each subprogram is included in this section. The
subprograms are documented in alphabetical order.

Program Component Descriptions

Language Transiator Subprograms

Function CONVRT. The conversion of alphanumeric character codes
into real numbers is handled by this subprogram.

Subroutine ERROR. A1l error messages required by the language
translator section are output by this routine. Errors which are fatal
to the GOF program execution are flagged and this subroutine terminates
execution upon detection of a fatal flag.

Subroutine GC. GC is an acronym for "Get Character" which describes
the only function of this subroutine. It returns non-blank characters to
its calling program.

Function KOS. This service function searches a language command
string until it either identifies a colon or a semicolon and returns the
appropriate identification code.

Subroutine LANG. This subroutine is the main driver of the language
translator. It interprets all GOF language statements and sets the program

parameters necessary for controlling the operational flow of the computational
section.

Function LOOKUP. LOOKUP searches its table of acceptable three-character
command and keyword abbreviations and returns an integer code if the input
characters are identified. It flags invalid three-character sequences.

Subroutine SCAN. This short subroutine reads and immediately prints

each command Tine the user inputs.
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Computational Subprograms

Subroutine CELL. If ungrouped sample observations are input by the
GOF program user, this subroutine groups the data into the number of
cells specified by the user or the program default value of 15. It
computes the absolute observed frequency for each cell.

Subroutine CHICHI. The calculations for the chi-square goodness
of fit test are performed by this subprogram.

Subroutine CHIPAS. Once the chi-square statistic is calculated, this
subroutine checks the critical value tables and notifies the user of the
acceptance or rejection of his null hypothesis.

Subroutine CVMPAS. The computed Cramer-Von Mises test statistic
is compared to the appropriate critical value and the results of the
test are printed by this subroutine.

Subroutine CVMIST. The Cramer-Von Mises test statistic is compute
by CVMTST. If the GOF program is operating in batch mode, this subrout
prints the intermediate calculation values.

Subroutine DUMPIT. Figure 27 contains an example of the output
produced by this subroutine. DUMPIT is executed automatically for
batch operations and on command for on-line executions of the GOF program.

Subroutine ENDRN. If the last class (or cell) of any run has less
than Tive observations, and the chi-square test is to be applied, this
subroutine consolidates the last class with the previous class and adjusts
the necessary class boundaries.

Function ERF. The integration of the normal distribution function is
approximated by the calculations in this subprogram.

Subroutine EST. If the parameters of the Weibull distribution are not
%gg?n, this subroutine estimates them by a technique described in reference

Subroutine EXPON. The theoretical frequency and cumulative theoretical
;re?uency for each cell is calculated by EXPON for the exponential distri-
ution.

Subroutine FIX. If the chi-square test is requested and each cell
does not contain at least five expected observations, this subroutine
assists in grouping adjacent cells until this criterion is met.

Subroutine FREE. This subroutine implements the free field format
option for input values. It accepts numeric characters, blanks, and the
characters "E", "+", "-", ".", and "," necessary. for integer, floating,
or scientific notation.
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Subroutine GAMFAM. This subprogram calculates theoretical frequencies
and theoretical cumulative frequencies for the gamma, Erlang-k, and chi-
square distribution. It calls two related subprograms to assist in the
ii calculations: GAMMA and TAMMA.
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Function GAMMA. The GAMMA function is the driver routine for the
. computation of the gamma distribution integral. This function relies on
e the following four functions to calculate or approximate the gamma integral
- under various data conditions: GSER, GCHEB, GFRAC, and GAMNEG.

ll Subroutine GFMAIN. This subroutine is the driver program for the

3 entire computational section. It is responsible for executing the
procedures defined by the user through the GOF language commands. Most
of the work of the GOF computational section is performed by the individual
subprograms documented in this section. GFMAIN does contain the code which
constructs and prints the appropriate hypothesis statement.

-
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!E Subroutine HIST. The histogram of observed frequencies is printed
- by this subroutine.

Subroutine INPUT. A1l data values, whether grouped or ungrouped, are
read by INPUT. It handles all format and counting options available to the
user through the GOF language commands.

Subroutine KSPAS. Once the Kolmogorov-Smirnov test statistic is
calculated, the KSPAS subroutine checks the computed value against the

appropriate critical values and notifies the user of the results of the
test.

Subroutine KSTEST. The calculations for the Kolmogorov-Smirnov Tf}g
goodness of fit test form the body of this subroutine. It prints A
intermediate computational values in the batch operating mode.

, Subroutine LTRSFM. Any sample observations believed to have come ~ g
n. from a log-normal distribution are transformed to their normal counterparts -
o before any goodness of fit tests are applied. This subroutine handles the R

transformation of the sample observations. .

Subroutine MOMENT. Biased or unbiased coefficients of skewness and

kurtosis are calculated by this subprogram. 1“‘?
4 T
~ Subroutine MOMTES. If the user has requested a moments test for "
’ normality, the coefficients of skewness and kurtosis ar~ compared to the T
correct critical values by this subroutine. It also prints the results Ll
of the moments test for the user. Yo
v
Subroutine NORMAL. The theoretical expected frequencies and theore- oo
= tical cumulative frequencies are calculated by NORMAL. SN
-

-
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Subroutine POISON. POISON is responsible for the calculation of
the theoretical frequencies and theoretical cumulative frequencies for
the Poisson distribution.

Subroutine SAMPLE. For grouped and ungrouped data, SAMPLE computes
the mean, variance, standard deviation, and coefficient of variation from
the sample observations. For ungrouped data, it calls the MOMENT sub-
rogt;ne to compute either the biased or unbiased coefficients of skewness
and kurtosis.

Function TAMMA. This short function is part of the gamma Tamily of
subroutines and functions necessary to calculate the expected theoretical
frequencies and cumulative theoretical frequencies for the gamma distri-
bution.

Subroutine TRESRT. Ungrouped sample observations are arranged into
numerically ascending order by this tree sort routine.

Subroutine TRIANG. The TRIANG subprogram computes the expected
theoretical frequencies and the cumulative theoretical frequencies for
the triangular distribution.

Subroutine UNIFRM. The expected theoretical and cumulative theoretical
frequencies are computed for the uniform distribution by this subroutine.

Subroutine WEIBUL. WEIBUL computes the expected theoretical and
cumulative theoretical frequencies for the Weibull distribution.

Table 6 gives a quick reference of the various subprogram components
of the GOF program. It divides them into those programs necessary for the
language translator and those necessary for the computational portion.
The only routine common to both areas is the ERROR subroutine. The numbers
is parentheses following some subprograms are the numbers of the subprograms
which they call. The main program of the GOF package is called GOF and
calls only the LANG subroutine.
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1
. Table 6 0
?:;- GOF Subprogram Components o
A Language Translator 3 ot
u I "~ Subprograms : Computational Subprograms o
1. CONVRT(2) 1. CELL(12) . 19% GFRAC
2. ERROR 2, CHICHI(3) 20. GSER
o 3. GC(7) 3. CHIPAS 21, HIST
= 4. KOS (3) 4. CVMPAS 22, INPUT(9,13)
. S. LANG(1-4,6,7) 5. CVMTST (4) 23. KSPAS
6. LOOKUP 6. DUMPIT 24 . KSTEST(23)
. 7. SCAN(2) 7. ENDRN 25. LTRSFM
g 8. ERF 26. MOMENT
9. ERROR - 27. MOMTES
10. EsT 28 . NORMAL(8) AN
11. EXPON 29, POISON RS
. 12, FIX 30. SAMPLE(26) .
13. FREE 31. TAMMA -
- 14. GAMFAM(15,31) 32. TRESRT el
. }115. GAMMA(16,17,19,20)33. TRIANG R
, 16. GAMNEG(20) 34, UNIFRM 23
. }17. GCHEB 35. WEIBUL
18. GFMAIN(1,2,5-7,10- o
3 . 12,14,21,22, i
o _ - 24,25,27-30,
32-35) ' -q.d
i
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