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1. Introduction

In practice gravity parameters, such as geoid heights, or deflections

of the vertical are derived either by numerical integration of one of the
well-known integral formulas of physical geodesy, or by an optimal estima-

tion technique such as least-squares collocation. In the frame of the
present days state-of-art--10 6  o 0 relative precision, i.e. e.g.

geocentric distances to about 0.5 to 5 meters--both strategies yield reliable
results of sufficient accuracy. But in view of both, improving measurement

technology, and the availability of a rapidly increasing number of obser-
vations, one aims, mainly in the context of geodynamics, for 10-1 . This

high goal requires however not only improved functional models but at the

same time computation techniques that make adequate use of the physical -

information contained in the large set of observations. And at this point

the individual limitations of these methods become visible.

So does the numerical integration approach not represent an estimation

technique. As a consequence there is no direct way to associate an error

measure to it. Further on, not the original (point) observations are used

for the integration process, but block mean values of a certain block size,

derived from them. But there exist many ways to compute mean values and

their standard deviations from the point observations. In addition, one

can hardly ever be sure that all mean values entering the numerical integra-

tion are derived by the same processing procedure.

Least squares collocation, on the other hand, does work with the original

point observations and is an optimal estimator. The well-known problem I
is, however, that a system of linear equations has to be solved of a size

equal to the number of observations. Thus, as an inherent contradiction,

the more data are collected, or the smaller the sample intervals between

them, the more unstable the solution becomes, although a meaningful global

limit (for a globally continuous data coverage) exists. As a consequence,

one is restricted to comparably smell data sets.

Strategies to overcome these deficiencies reach from (1) the arrange- 0

ment of the sample points in a regular pattern so as to produce certain



favorable matrix patterns, cf. (Colombo, 1979), via (2) sequential estimation

combining potential coefficients, mean, and point values, cf. (Tscherning,

1975), to (3) e.g. a combined integral formula and collocation approach,

as presented in (Lachapelle, (1977).

~The method-presented here tries to combine the strong points of the nu-

merical integration and the least-squares collocation method, while avoiding

their individual deficiences. It is based on the global limit of least-

squares collocation--where an analytical inversion of the in-the-global

limit infinite dimensional system of linear equations becomes possible--

and maintains therefore its character as an optimal estimator with an error

measure associated to it. This global limit estimator can be expressed

as a stabilized integral formula. A numerical integration applied to it

allows to process arbitrarily large data sets. In deriving representative
"area weights" it becomes possible to base the Integration on the original

point values.

The two essential features of the new method, the derivation of a

global, stabilized estimator and the numerical integration based upon the

original point observations, which complement each other in an ideal manner,

are in principle independent. So could one apply any other numerical inte-

gration to the stabilized integral formula, too, e.g. the classical one

using mean block values. On the other hand, there are many more applications

of the numerical integration based on point values, than the one discussed

in this context.

2. Stabilized Global Estimator

In (Neyman, 1974) and along a different line in (Moritz, 1975) a so-

called "modified Stokes function" is derived:

SK(+pQ) R 2x+1 Cd P (COSpQ) (1)SKI~p) - 2 1_ Cg+dP.

It differs from the Stokes kernel because of the filter factor

S(+d2)

..



In equation (1) it is

Pl(cos%,Q)...Legendre polynomial of degree Z.

PQ ...spherical distance between P and Q
ct"  ...gravity anomaly model degree variance, and
dZ ...a priori error degree variance.

We shall derive in the sequel this equation in detail for an arbitrary

gravity estimation problem. Let us assume a set of n observed ("~')
gravity parameters, gi a given. As unknown the global disturbing potential

function, t , is chosen. Once an approximation of t is derived, any other

functional of it can be computed straightforwardly. The character of t as

a function shall be indicated by expressing it as a vector t of dimension

(-x 1). To be more precise, we assume t e H , a Hilbert space with reproducing

A- kernel K(P,Q)- Ctt(P,Q) . The spectral components or coefficients, ttm

of t form an infinite but countable sequence, or vector of coefficients,
C1.2 isomorphic to H , see e.g. (Meissl, 1976). It is

t(P) = ( ( + )  (3)
L22 mU-9. r t2.m I(3

where 7tm is a short-hand notation for the fully-normalized surface spherical

harmonics ofdegree Z and order m

) Pm(sinp) cosmXp for m > Z71~m(p ) =(4)
Lm = mP(sin p) sinimfXp for m < .,
ijmj

R is the radius of a convergence (Bierhammar) sphere, and rp the geocentric

radius of P . For K(P,Q) we choose, cf. (Moritz, 1980) the convergent

series

j (~-- )~K(P,Q) Ctt(PQ) 0rpQ C, P.,(cos~pQ) ,(5)

Z=0 P Q

with c the disturbing potential degree variances. The functional relation-

ship between the observable g and t may be described by the operator equation

g = S"1 t . (6)

nxl nx- wxl
-3-



The corresponding relation between the spectral components may be written as

with X, only dependent on t in case the operator S-1 is isotropic, cf.

(Neyman, 1974). For a detailed derivation in terms of an eigenvalue decompo-

sition, see (Rummel et. al., 1979).

Example: In case ) is a vector of gravity anomalies, the functional is

2g- - + -- ) t

the so-called fundamental boundary condition of physical geodesy. Together

with eq. (3) one obtains an expression of the type of eq. (6)

g(P) = 1 (R)+r rp t.m ( P )

The spectral components or eigenvalues of S-1 are in this case

C11
We assume E{l} = and E{(j-9)(Q-9)T}= T . The least-squares collocation

estimate, t , (" " estimated) is derived from the solution of the variational

problem

minQin _- S t l
2D- 1 +allt(t112_) a > 1 (8)

cf. (Rummel et. al., 1979) or (Moritz, 1980, ch. 28). We obtain.

S- (STD-1S- + aC:.) -' STD-1-

S -tt-T S-Ctt§-T + cD)" i  (9)

-x- -xn nx- ooxoo **xn nxn nxl

-4-
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The terms CS-T and S'CST in (9) express the application of the operator

Ss. to Ctt , the well-known "propagation law of covariances". We write
in short

= , and (10)

We - tt-
C -S1 Ctt-T (11)

We now consider the global limit of equation (9) where becomes a random

function covering the entire surface of the earth or a sphere, e.g. in satellite

altitude. A detailed derivation is given in the Appendix. If we denote the

global limit of the linear estimator Ctts-T(sicttsT + aD)-l by LT(PQ)

and the dimensionless filter or smoothing factor in eq. (A-14) by

R ,2(Z+I).2ft 2 1 c i I (12)

R)2 z zI(_)2(+ao 1+ (.2!
rQ z2 ..

We obtain from equation (A-14)

L(rprQpQ) = z f(rp ' - (P) v (Q)
Zmz

. L +r 2 + i (cosIpQ) (13)

For our example, with gravity anomalies, expression (13) becomes the mod-

ified Stokes function of equation (1). It would be identical to the classical

Stokes function for fz--1. The global limit of the optimal estimator, equation

(9), may now be written as

t(P) = lim {Ctg(Cgg + ciD) -1 D}
Qidense

-LT

-- 2 p a(cospQ)] .QPdaQ

1 f L(rp)rQ,1pQ) 9 (Q) daQ (14)

.
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In (Rummel, 1982) it is shown that equation (14) may also be interpreted as

an optimal solution of the stochastic variant of the global geodetic boundary

value problem, with only one realization of b given on the boundary surface.

The product X cZ is the propagation of the disturbing potential degree

variances to the degree variance of the observed gravity quantity. As to
be seen from equation (12) and as discussed in (Gerstl & Rummel, 1981) the

filter factors f, depend on

-the a priori error variance a20

-the regularization factor a (usually chosen equal to 1),

-the choice of the radius, R of the Bjerhammar sphere, and

-the chosen degree variance model of t

The stabilized integral kernel L(rpqrQApQ) can be cr -tructed very easily

for any problem at hand, as long as g is a linear ft :ion of t and exists

even for cases where the non-stochastic counterpart do 7ot. It is e.g.

possible to construct a global "downward continuation" .imator. Since,

because of cad , no closed formula can be found for c i. on (13), it is

in practice approximated by the Legendre polynomial truncated at a very high

degree Imax

The next step shall be to prepare for a finite approximation of the stabil-

ized global estimator from the discrete point observations. If one prefers

to work instead with mean values of a certain block size, the traditional

numerical integration techniques may be directly applied to equation (14).

3. Area Weights for Points Irregularly Distributed on a Sphere

The difficulty of performing a numerical integration directly based on

point observations irregularly distributed on a sphere stems from the problem

that area weights have to be assigned to the observations, that reflect the

local data density. Area weight is thereby defined as a unique and represen-

tative surface area element (on the earth's surface, on a sphere, e.g. in

satellite altitude, or simply on a unit sphere) assigned to an observed or

derived gravity quantity value. When working with mean block values, they

-6-



are e.g. cosptAX . Since the area weights have to reflect the local data

density, i.e. small area weights for denser point samples, one has first to

establish a quantitative relation between the points. One way to achieve

this, is to connect the points by a triangular net with minimal side lengths

and no side crossing another one, as displayed in Figure 1. Then one could

compute the area of each triangle, e.g. MPQ, and associate to it the average

of the observations gi at the three nodes. We shall follow another line:

The areas of all triangles adjacent to one point, e.q. P , compare again

Figure 1, are summed up and divided by three, because each triangle is shared

by three points. It is the area weight wp , assigned tc the discrete observa-

tion p at P . The weights derived this way are unique, reflect the local

data density, and their sum represents exactly the total area covered by the

measurements. The result is a step function on the sphere (or the surface

of the earth) with step area equal to wp and step size (height) equal to
9Pr

/I

* igure 1

-7-
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One could think of many sophistications of this principle. Instead of

this discontinuous step configuration, continuous or continuously differentiable

representations could be designed involving more and more of the neighboring

observations for their definition. A consequence is a more complicated integra-

tion procedure.

The problem is now to find, first, the unique, minimum side lengths trian-

gular net and, second, a fast algorithm for the computation of the area weights.

3.1 Closest Point Triangulation in a Plane

The problem of finding a unique, non-overlapping triangulation to irreg-

ularly distributed points , is well-covered in the literature, cf. (McCullagh

& Ross, 1980) or (Peucker et. al., 1978). We shall base our computations

on a computer algorithm developed by M. Gerstl, see (Gerstl et. al., 1979),

that works in a plane. Its theoretical background is given in (Shamos & Hoey,

1975). The concept is as follows: Given is a list of Cartesian coordinates

xi and Yi of the points Qi . In a first step they have to be sorted such

that xi < xi+1 and yi < Yi+1 , if xi = xi+ 1 . Standard procedures per-

forming the sorting are available at any computer installation. The first

three points, Q1  Q2 , and Q3 of the sorted list form a triangle and

the first stage of a convex hull that shall step by step be extended. Q4 is

connected with those vertices of the convex hull, it sees (two or three).

Any side facing Q4 has to be dropped if it can be intersected by a shorter

one originating from Q4 . The up-dated convex hull contains Q4 . The same

principle is now applied to every subsequent point of the sorted list. This

way a triangulation is spread over all points, with no intersecting sides

(except at the nodes Qi) and with minimum side lengths. As a final product

one obtains, first, a list counter-clockwise ordered of all points connected

to each point and, second, an ordered list of all points of the final convex

hull.

Modifications for the Work on a Sphere: The same principle could be

directly employed to data given on a sphere, too. But in order to maintain

-8-



the efficiency of the fast computer algorithm in this case one has to avoid
the time-consuming trigonometric manipulations on the sphere as much as possible.
Therefore we compute beforehand from the given latitude, longitude, and radial
distance (or constant radius) 3-dimensional Cartesian coordinates of all points.
Side-length compariso:is can then be based on chords instead of spherical dis-
tances. Azimuth comparisons, necessary for the decision which sides on the
convex hullare facing a new point, are carried out using cb and X as if
they were x and y because this approximation does not influence the compar-

ison.

3.2 Data Management Aspect

In principle the triangulation algorithm could be applied to data sets

of any size. But the program has to use an integer field LC(LMAX,NMAX) which

contains the ordered list of nodes joint to each point, with LMAX the total
number of points and NMAX the maximum number of joint points. Since the number

of joint points can run up to 50 very easily at an intermediate step of the

processing of a large point set, one arrives with point sets larger than

10,000 points easily at the storage limits of even very large computers. The
field dimension has to be kept so large because it is at least in theory pos-

sible that during the processing changes may occur even in the innermost zone

of the convex hull. We considered up to now three possibilities to circumvent

this problem:

1. One can store this field on external storage and work with direct access.

Then the computer program, which takes in its present form almost no c.p.u.-

time would loose much of its efficiency.

2. Another possibility is to process overlapping point sets independently and

afterwards merge them. Although this is not a very elegant method, it works

rather efficiently and has been applied for the numerical example following

below. 1

3. One could work with the maximum available storage and first build up a convex

hull in this limit. During the processing of subsequent points there exists

theoretically a chance that sides are changed in the inner zone of the convex

-9-



hull. But the chances are rather slim. Thus, one could simply freeze the inner

zone, i.e. not allow any changes, without hardly any lossin the criterion of

minimum side length. The frozen part could be stored externally and the cor-

responding core storage space recycled for further use. This possibility is

investigated at the moment.

3.3 Area Weight Computation

The area, F , of the sum of m spherical triangles adjacent to a point

P , compare Figure 2, is:

m m
Fp= Fi  1To°  i (15)

with Fi area of the i-th spherical triangle and E i -i +t$i +Yi .1800

the corresponding spherical excess. It is then

FpjL4 ai + + y) -m n
1 1800

or with i 3i yi- 1  and Iai 3600

m1

FmZ 1  "(m-2). (16)

The angles Ki are obtained from the spherical azimuths of the outside

edges. It is

S -(Ai,i+- Ai,i 1  ) if Xi+ 1 'i > Xi-I

(A - A ) otherwise.

From tanA ii+1 and tanA i,i-1 one computes tar.ii by standard trigonometric

formulas. In order to avoid the evaluation of "arctan", one can use the recursion
m-1

m tan(i=1~ Ki ) + tan Km
tan( Z Ki) =M1 (17)

i 1- (tan Zn Ki) tanK m

.T -10-



_17 1. '. 1. .-m

for the computation of i.=1 Nevertheless, all spherical azimuths would

have to be computed.

Again an approximation is introduced to avoid time-consuming spherical

computations. Since dense data coverage is the underlying motivation for the

whole method the type of approximation used here is justified. We use the Elling-

*formula, well-known from land surveying, and find, compare Figure 3:

m
F - cosp i (Oi-Oi+I)(Ai + ki+l) , (18)

i180

where coscp takes care of the convergence of the meridians. For a block en-

closed by two latitude circles and two meridians, eq. (18) yields the usual

area element coso&p&X. No trigonometric function have to be computed when

using eq. (18). Since each triangle is shared by three points, we finally find

for the area weight

m
w F u rcos ,i~)X+l~)i) (19)

Q3'

;;2 Q O

Figure 2 Figure 3
4.Q4

-11-
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3.4 Final Data Base

After having carried out these computations the data base contains besides

the original entities, e.g. point number, coordinates, measurement value, the

computed area weight Wp . In addition, one can add a pointer to a separate

data file, that contains a list of the adjacent nodes to each point, if needed

for other applications. The points on the convex hull and their (distorted)

area weights are not elements of the data base. They as well as their adjacent

pointsshould be stored in a separate data file. This way it is possible to

restart at a later time the triangulation of a new area leaving the old data

base unchanged.

New discrete points inside the original point set, e.g. new measurements

can be incorporated in such a way that only that triangle is affected in

which the new point is contained, (compare Figure 4). This way only four area

weights, that of the incoming point and those of the three vertices of the tri-

angle, have to be up-dated, on the expense that locally the minimum side length

criterion is probably violated.

II

Figure 4

-12-



The here proposed philosophy of working with the point observations which

are related through a "triangulation" with the points in their proximity is

supported by a general trend. The availability of very powerful data manage-

ment systems stimulates to work with the large sets of original observations
and could make mean block averages more and more superfluous.

Many applications in geodesy, geophysics, surveying and civil engineering

can be envisioned, such as

- the computation of gravity parameters, such as height anomalies, deflections

of the vertical etc. from large sets of observations,

- the estimation of surface gravity parameters from satellite gravity sensors

(gradiometry or satellite-to-satellite tracking),

- topographic or topographic-isostatic reduction and inverse geophysical modell-

ing from digital terrain models, or

- height interpolation, mass-volume estimation, profile computation etc. from

photogrammetric or tachymetric digital terrain models.

4. Error Estimate

As important as the estimate t itself is, we must have a reliable error

measure for it. For a moment, we still remain with the global limit case, where

is assumed to be a random function. The posteriori variance-covariance matrix

of t eq. (9), resulting from least-squares collocation is, cf. (Moritz,1980):

t t t gttT (- 1 Ctt§ T + 01)-i S-I Ctt (20)

a* Xo xa axn mnxaowxwxn nxn nxooxo

-13-
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or with the defined linear estimator, eq. (13),

Ett = Ctt - L Ctt• (21)
-XAD cxo -xn nx= ox.

From a simple manipulation we obtain

Ett - qtt - LT {(S-, Ctt S "T + a) (S Ctt  T + aD)'}•

S- Ctt

"Ctt -T (S Ct t ST + MD) L (22)

Furtheron with a similar manipulation one derives from equation (20):

Ett =tt - -tt §ST L - L.T .S'ICtt + LT (s'1tt- T + aD) L

= (LTsi I)ct t (LTS.I)T + (TDL

SBTcttB + aLT D L (23)

Sx axc" oxn nxn nxco

with the unit matrix I and the bias expression

BT = I - LT S.  (24)

(Ox- WxC -xn nx-

Equations (21), (22), and (23) are three alternative forms to equation (20).

Equation (22) is convenient from the numerical evaluation point of view, because
the inversion of the full matrix (S-Ctts'T+ OD) is avoided, once L is known.
Equation (23) is interesting from the interpretation point of view. Equations

(20) to (24) are still infinite dimensional. For the evaluation of the a poster-

iori variance mp at P , (or analogously, the covariance between two arbitrary
Tpoints P and Q) it is convenient to introduce the evaluation functional ep

We define e.g.

T defe T LT (25)
lxn 1x" coxn

-14-



Then equations (22) and (23) become

LP - ( tt + aD) Lp

=ttP - .L (qgg + 01D) !p (26)

and

m .=T Ctt BP + cL D L (27)

With equations (A-3) and (A-14) of the appendix we find for the spectral form

of equation (26):

2n 2 ()2( + 1)

P rp c1-

-
[ (_LR)2( +1)j

)- (-)2( +1) c,

2. P" )2(0+1)
"* c (2.1c(1-f2 ) , (28)

where we used that ? Z2m(P) 71m(P) = (21.+1) P2,(1) 22.+1 . From equaticn (12)

one obtains for

*1 .fa (29), ,Z+)X ,, +

Together with eq. (28) it yields the limits

lim mo =0
o 0

and

Lim m2 - (R )2(t+1) c c

i.e. the a posteri variance becomes equal to the a priori one. All these error

estimates hold for the case where a global random function § is assumed to

be given. In reality we assume densely spaced point observations g i ,...n

Equation (14) is approximated by a numerical integration procedure. Equation (14)

-15-7



tp - - L(rp,rQO'IQ) (Q) dO

is replaced with very little loss by
n

t L'(rp'rQ!PQ) i w " (30)

In equation (30) the wi are the area weights as obtained from eq. (19), and

L' is the discrete approximation of the operator L , eq. (13). Important

is thereby that for the computation of L' , oa has to be replaced by

as .s aj (A-10)
n

with As - _ wi , the average area weight. Thus, the a posterlori variance,n

equation (27), hcomes

SB1 Ctt B + aLi 0 LI (31)

def
i.e. in all expressions L is replaced by L' (a is usually chosen d a 1).

The second term on the right-hand side of equation (31) becomes for uncorrelated

observations with homogeneous a priori variance

o0 L T L'... the pure error propagation. This is the only part usually

considered in geodetic numerical integration procedures. It is also well-known

from the least-squares adjustment of overdetermined problems. As important

is the first term

TB Ctt  p... the discretisation error. From the definition of B

equation (24), one sees that this part becomes zero for global and continuous
data, free of errors. For a large amount of observations, its evaluation is
rather tedious, because of the size of Ctt

-16-

L. . T . . ' .
... . . . . . . . ... * - . . .. . .- - - -"."t i ., - .t-: _," - -!-



5. Numerical Example

In a first and still preliminary test the method was tested through a com- r

putation of some 1Ox10 mean gravity anomalies from adjusted GEOS-3 altimeter

data in the North Atlantic. This example was chosen for several reasons:

- The GEOS-3 altimeter data fulfills very well the requirement of being at least r

locally dense and homogeneous.

The computation of gravity anomalies from the "quasi" geoid undulations as

obtained from altimetry, poses a very unstable problem. Thus, it is a good

test for the stability behavior of this numerical integration approach.

- In the same geographical area 1°x1I anomalies are available as obtained from

shipborne gravity measurements, as well as those estimated from GEOS-3 altimetry

by least-squares collocation, compare (Rapp, 1977). With collocation typically

around 400 observations could be processed per gravity anomaly estimate out

of the total number of 500,000, whereas with the new method we could easily

work with 7000 without even taking into account the data management aspects

mentioned in Chapter 3.2.

In this test computation approximately 7000 adjusted sea surface heights

as derived from GEOS-3 altimetry were included. At the accuracy level of

GEOS-3 (±0.5 to 0.8 m) they can be considered synonymous to geoid undulations.

The adjustment of the altimeter data is described in (ibid.). The processing

steps of the new method are displayed in a flow chart in Figure 5. First,

for all points the area weights were computed according to eq. (19) and included

in the data file. Prerequirement was the determination of a triangulation

connecting all points, as described in Chapter 3.1 The triangle net is shown

in Figure 6, where one can still recognize the original pattern of the satellite

ground tracks. In an enlarged sub-area the principle of the area weight

computation is illustrated, Figure 7. Independent thereof, a table with

the function values of the stabilitzed integral kernel, equation (13), was computed

at small intervals A = 1', i.e. at {'k 100 (1') 150 } . During the numerical

integration process it is linearily interpolated between 
the tabulated values.

The computation of the table values, theoretically a 
summation up to infinity,

has been truncated at Zmax = 10,000. The degree variance model by Tscherning
~and Rapp (1974) was chosen for the definition of the c compare again eq. (13). :

-17- 1
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For the a priori error variance, al we chose 0.64 m(std. dev. ±0.8 in).
According to equation (A-10) al was multiplied by r~r, with A~s the average
area weight. The obtained d' is used instead of aci in eq. (12). The tab-
ulated kernel values together with the area weights and the altimeter derived
geoid undulations allow to perform the numerical integration, equation (30),
completely along the line of e.g. the numerical integration of the Stokes' inte-
gral in the context of geoid computations. The long-wavelength part of the

undulations and of the mean gravity anomalies to be estimated has been treated
* separately by subtracting from the altimeter derived undulations the contri-

butions coming from a set of potential coefficients and adding back the cor-
responding contribution to the mean anomalies. For the long-wavelength part

the Goddard Earth Model 9 set of potential coefficients up to degree 20 has been

used. Consequently the summation of the stabilized integral kernel, eq. (13),
has been started at degree 21. Table 1 shows the results for a set of arbitarily

* selected 1*x 10 blocks. Column three gives the mean anomaly values as obtained
from the GEM-9 model, column four the terrestrial (shipborne gravimetry) mean

anomalies, column five the values obtained with the new method, column six the
* collocation results provided by Dr. Rapp. The estimates derived with the new

approach show a good agreement with the terrestrial and collocation data with
an overall tendency to be closer to the terrestrial anomalies. It would be
unreasonable to draw any further reaching conclusions from this limited test.
This application can be considered an alternative to the techniques described

in (Rummiel et. al., 1977).
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1.S.

X GEM-9 terr. Ag new method collocation

1 2 3 4 5 6

39 292 -16.6 -35 -34.7 -37.7

39 293 -16.4 -27 -38.7 -37.6

38 292 -18.0 -33 -32.4 -32.7

38 293 -17.7 -23 -26.6 -25.6

37 294 -18.8 -16 -18.8 -9.9

37 295 -17.9 -20 -22.4 -13.8

37 296 -17.0 -20 -21.7 -14.5

37 297 -16.1 -27 -26.3 -17.3

Table 1: A comparison of 10x10 mean gravity anomalies estimated from geoid

undulations (derived from GEOS-3 altimetry) by least squares collocation (column

6) and by the new technique (5) with the corresponding terrestrial values (4).

The mean anomalies as obtained from the GEM-9 set of potential coefficients

up to =20 is contained in column 3. The coordinates 0 and X of the north-

west corner of each block are given in columns I and 2. (Dimension Ag: mgal =

1O-1 ms- 2 )

6. Further Sophistications

One of the most important features of least-squares collocation is, that

*I it allows to combine in an optimal way heterogeneous data, i.e. different gravity

quantities distributed in an arbitrary rhanner over various points. Since the

present method is derived from a global limit process, this feature is lost

in this generality. With other words, thereis no simple way to combine a gravity

anomaly at one point with a deflection of the vertical component at another

one, and a potential difference at a third point. Sjdberg (1979) has shown,

however, that it is possible to combine heterogeneous data in the global limit,
i.e. it is again possible to derive a global limit estimator analogous to chapter

-19-
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4 40

Figure 6: Triangle net with minimum side lengths connecting approximately

7000 observation points of the GEOS-3 altimeter in the North Atlantic.

-21-



/ )< J

i f

Figure 7: A portion of Figure 6 illustrating the computaiion of the area

weights, which are defined as one third of the sum of areas over

the triangles adjacent to each observation point.
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2, that combines global random functions of different type. In its most gen-
eral form the optimal estimator may be written, analogous to eq. (14), as:

n(1)(Q)
A9

j(P) = f Z.r-O Q (32)

I(m)(Q)

with m different gravity quantities g(J) , j=1, ...m. The expression for
the vector estimator becomes, analogous to eq. (13):

rpsrpQ) = f ,A (r)p *+(21+1) Pt(cospQ) (33)

lxm mxm

In eq. (33) A9  is the diagonal matrix

S,(34)

0 1

AI

where the XJ) j=1,... m are the spectral coefficients relating the ob-
servable quantities g(J)(Q) to t(P), compare eq. (7). The dimensionless
filter vector b becomes, analogous to eq. (12): 0

'T 2

+(1)2 -~X1 X2 )XM
X( (2) (1 22 . . . (2 (m)

where s = R)2 and all regularization factors aa(1),...(m) were chosen equal
to one. For~the case of only two different observed gravity quantiites, gI1

and 2) , the inversion contained in eq. (35) can be performed explicitly.
We find after inversion (A ...determinant of the matrix):
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(2)T A2 1) X( 1

1+ ;- (3

A~Lr )22

bination of gravity quantities is available in all of the densely spaced but

discrete sampling points. Again the same numerical integration procedure can

be employed. A typical example would be a satellite gradiometer mission, where

in an ideal case in each sampling point five linearily independent second-order

derivative components of the gravitational potential are observable. The bene-

fit of having per point five components instead of only one can easily be inves-

tigated with the formula apparatus presented here.

The new method should permit a better exploitation of the information content

of large and densely spaced sets of observed gravity quantities, prerequirement
for a step towards a 10"8 relative accuracy. We did not at all go into the

question what model improvements are required at the same time to achieve this

goal. But since the new method is set up the same way as the classical numerical

integration techniques in physical geodesy, all model sophistications developed

for them can be applied here, too. This includes especially ellipsoidal cor-

rection, and tidal, topographic and ellipsoidal reduction, as discussed in the

literature, cf. (Mather, 1973), (Moritz, 1974), (Rummel & Rapp, 1976), (Rapp,

1981), (Groten, 1982), although on the other hand the reduction concept is not

very attractive from the theoretical point of view, and should eventually be

replaced by more sophisticated models. Also the numerical side can be improved,

e.g. by minimizing the truncation error, when working with data limited to a

certain cap, compare (Jekeli, 1980), or by optimizing the combination with sets
of potential coefficients, as proposed by Wenzel (1981).
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7. Conclusions

From the application point of view, the classical numerical integration
procedures in physical geodesy have two disadvantages. They arenot estimators
and are therefore not linked to a stochastic model and they work with mean block
values, which come from some subjectively chosen pre-processing. Linear estima-
tion techniques, such as least-squares collocation, on the other hand, who do

- not have these drawbacks, require usually the solution of a large system of
linear equations, which limits their applicability. The technique presented V
here tries to avoid these problems. It represents a "global limit" estimator.
Especially when treating unstable problems this offers considerable advantages
against the classical integral procedures. In addition, the error measure does

* not contain only the pure error propagation, but also the discretisation error.
Independent of these features the numerical integration is based on discrete point
values. We hope to initiate a trend in this direction, which seems to us timely,

* considering the fantastic prospects of modern data management capabilities. The

efficient processing of even very large sets of original observations should be
no problem in the near future. The numerical integration method itself, and

the underlying triangulation of "digital terrain model" type of data sets offers
*many more applications than the one presented in our example, in geodesy, as well

as in surveying, photogranmetry, civil engineering, and geophysics. Examples

and envisioned improvements to be implemented in the numerical procedure are
lined out in Chapter 3.

The also described capability of optimal data combination based on the
* ideas of L. Sjdberg, could be especially useful for the study of future dedicated

satellite gravity missions, to get an insight into the improvements coming from

* simultaneously sensing the gravity field in different spatial directions.

Necessary model improvements, on the one hand, and optimal data processing,
on the other hand, seem to us the major obstacles on the way to a "10-8-precise

gravimetric geodesy". This study is supposed to be a contribution to the latter.7
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Appendix

The stabilized global estimator is obtained by considering the limit case

of equation (9), where the observation points become globally dense, i.e. where

one approaches a continuous coverage with observations all over the earth. This

type of limit is explained in (Moritz, 1975, ch.2). The derivation of the limits

is especially convenient, if one expresses all quantities in their spectral

form. For then, as pointed out in chapter 2, the functions--or global limits--

can be represented as infinite dimensional vectors. The inner product

in H for example defined as

{f ' gH =2f " f(P) g(P) dopI

becomes, when using the spectral forms,

{f g}H=" I f tin P  (  g.m. V.m(P)) dopa Im Z m'

= f ftm gtm 'Im

where the orthogonality relationships 3f spherical harmonics were used. In a

first step, we shall now apply this principle to equations (10) and (11), where

the outcome is known from the literature. The (isotropic) operator S-1 can

be written as

" L= (r l X (2X+1) P (Cos*

! ixn rci  'Qi

= (L--f+x m(Q') (Q.) i=i,...n, (A-I)
Qm r Q i I L

where the addition theorem was used:

P (cosnQq) 0 2 m m Vm(Q) (A-2)

m

Applying the principle shown above we find with eq. (4) for eq. (10):

Ctg a Ctt ST -

ooxn wx- -xn R ( 2  Z+1

a m p Q-rp-'--p - vm' ( P) t'm Q' ) ] "

• {m(r.','+ X11, Y mQ)Vmi] duq,

a Z ( R2  -+ T Vm(P) Yjm(Qi) and i=1,.. .n. (A-3)
Em prQ i -29-



Furtheron, for equation (11) one obtains:

-gg Ctt §-T

nxn nxoo .xum =xn

f [ (- ')'+l  , 7 10m,(P)] "to 'I;- r I'm'

* [ I (R )+l xj, .?t,(p) ~(Q) dc~p_G m~ pr Q

".i:" - m (rRzj ) + l Xi' Y(Qj) Yjmli and i,j-l,...n (A-4)

-:T."Now to the global limit, which we denote lim(Qi globally dense on aQ) or
urn

short Qidense .In case random, uncorrelated measurement noise with variance
oi is assumed the global limit of the a priori variance-covariance matrix D

2m

can be expressed as

1rn Dan .(Q) , (A-4)
Qidense "*Lu tin

compare (Heiskanen & Moritz, 1967, ch. 7-7). It is in principle a critical.

point, because several severe statistiqal assumptions enter this derivation.

We try a short derivation. Let us assume the a priori model of the uncorrelated

noise is expressable by the random function I(P) . Its covariance function is

D(PQ) a cl 6(PQ) (A-6)

with the delta function

for P • Q

6(P,Q) * and P,Q C 0

0 for P Q

The spectral components of D(P,Q) (power spectrum components, in the time-
series terminology) are obtained from:

dit" = 1 f f D(P,Q) V (PQ) Vm(Q) dop d'Q

or , f 6(P,P) V (P) dop (A-7)
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The mathematical distribution, 5(PQ) , is defined in such a way that

17 I (PP) ?7 (P) 1 (A-8)

Thus, one obtains from equation (A-7)

d d (A-9)

For the finite case with one sample point per AS= sin OAOAX on the unit sphere

..o , Jekeli and Rapp (1980) derived the approximation to equation (A-9):

d' at (A-10)

With equations (A-4) and (A-9) the global limit of (S'Ctts'T4aD), compare equation

equation (9), becomes

liin (S-1C t s-T
Qtdense - D 

-

t R + I  + o an(Q) ? m(Q' )  (A-Il)

where

E1 d(A-12)

The inverse is

lim (S'CIt t S-T + oLD) " =
Qidense - t-

[ V (r x2 c + Im(Q) ?m(QI) (A-13)
Lin Q + ~ 7 ~" ~

Finally, we obtain for the global limit of the complete estimator with equation

(A-3):

lim Ctt S T  (S'C . T + XD) "  U]
Qidense .-

1 fC; ( R2 V +1

* C M I(7) V m, V, , ) V(Q (Q')] "

i" , R 2  L+1 m()

R2  t+1
- X c+

..... .. . -r g ( ) 7 Q



+i ac r p Z(P) ?%t(Q) (-4
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