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I.  INTRODUCTION 

The aerodynamic characteristics of standard artillery shell from subsonic 
to supersonic speeds is of major concern in the design of new shell or modifi- 
cations to existing ones. The possibility that a given shape may have to 
operate throughout a range of Mach numbers requires a detailed understanding 
of the flow fields associated with each range. Modern computational techni- 
ques are now being applied to projectile shapes and the ability to compute the 
aerodynamics of shell for a wide range of Mach numbers and Reynolds numbers is 
becoming a reality. Significant accomplishments have been made in the super- 
sonic regime1: static and Magnus force coefficients have been computed for 
standard projectile configurations and experimental data is generally avail- 
able which shows good comparisons with theory. Transonic flow, however, 
presents a new complexity for computational analysis. The formation of shock 
waves, imbedded in the flow field near surface discontinuities, produces a 
severe change of the aerodynamic coefficients such as drag and pitching 
moments. For example, the drag of a projectile shape has been found to change 
by as much as 100% through a Mach number range of .95 to .97. A change of 
this magnitude in the aerodynamics makes it essential to understand and 
compute the features of the flow field which contribute to this effect. 

The transonic flow field around a projectile presents a difficult and 
interesting problem; the general features of the flow pattern are illustrated 
in Figure 1, which is a shadowgraph of a typical projectile flying at 
Moo = •946. The two surface shape discontinuities create local expansion zones 
terminated by shock waves through which the boundary layer must pass, thereby 
creating a pair of viscous-inviscid interaction regions. The existance of 
these regions together with the cylindrical geometry of projectiles clearly 
produces a composite inviscid-viscous flow field problem not encountered in 
the design of normal winged aircraft. 

Although some comprehensive transonic flow field investigations have been 
made on transonic wings2*3, comparable efforts have not been made for bodies 
of revolution particularly if spinning. Existing studies have been primarily 
concerned with surface pressure distributions and inviscid flow predictions 
with only sparse consideration of the boundary layer and transonic viscous- 

1. Sturek,   W.  B.,   et at.,   "Computations of Magnus Effects for a Yawed, 
Spinning Body of Revolution i}> AIM Journal,   Vol.  16,   No.   7,  July 
1978,   pp.   687-692. 

2. Rose,   W.  C,   and Segninev,  A.,   "Calculation of Transonic Flow Over 
Supercritical Airfoil Sections," AIAA Journal 15,  August 1978,   pp.  514- 
519. 

3. Sobieczky,  M.,  and Stanewsky,   E.,   "The Design of Transonic Airfoils Under 
Consideration of Shock Wave-Boundary Layer Interaction," 10 ICAS Congress 
Paper,   October 1976   (see also E.  Stanewsky and H.  Zirmer,   Zeit. fur 
Flugwissenschaften 23,   Heft 7/8,   1975). 



inviscid interaction effects throughout the flow field1*'5. Consequently, a 
comprehensive fundamental investigation of the combined inviscid-viscous flow 
field problem on transonic artillery projectiles was undertaken at BRL with 
the objective of developing an appropriate composite theoretical treatment 
including the shock-boundary layer interaction effects, together with validat- 
ing comparisons with experiment. The present report describes the results of 
this study for the case of projectile flight at zero angle of attack, with 
emphasis on a description of the theoretical work involved in treating the 
interaction problem. Since the approach taken has been to extend Inger's 
theory6 of non-separating transonic shock-turbulent boundary layer interac- 
tions to spinning bodies of revolution, we first highlight the 2-D version of 
this theory in Section 2. The desired extension of the theory is then given 
in Section 3, followed in Section 4 by a description of how the local interac- 
tion theory is combined with inviscid transonic and turbulent boundary layer 
prediction methods to form a composite global inviscid-viscous flow field pre- 
diction code for the entire body. Finally, Section 5 presents comparisons of 
this theory with both experimental data and numerical solutions based on the 
thin-layer Navier-Stokes equations. 

II.    OUTLINE OF  THE  LOCAL  INTERACTION THEORY  FOR  TWO-DIMENSIONAL  FLOWS 

A.    Rationale of Non-Asymptotic Triple Deck  Approach 

It is well-known7 that when separation occurs, the disturbance flow pat- 
tern associated with a nearly-normal shock-boundary layer interaction is a 
very complicated one involving a bifurcated shock pattern, whereas the unsepa- 
rated case pertaining to turbulent boundary  layers  up  to roughly Mi « 1.3 has 

instead a much simpler type of interaction pattern which is more amenable to 
analytical treatment (see Figure 2). With some judicious simplifications, it 
is possible  to construct a  fundamentally-based approximate theory of the 

4. Wu,  J. C, Uoulden,  T.H.,  and Uchiyama,  ff.,   "Aevodynamia Performanae of 
Missile Configurations at Transonic Speeds Including the Effects of a Jet 
Flume," U.S. Army Missile Command Technical Report RD-76-23,  Redstone 
Arsenal,  Alabama, March 1976. 

5. Reklis,  R. P.,  Sturek,   W.  B.,  and Bailey,   F. R.,   "Computation of Transonic 
Flob) Past Projectiles at Angle of Attack," AIAA 11th Fluid and Plasma 
Dynamics Conference,  AIAA Paper No.   78-1182,  July 1978. 

6. Inger,   G, R.,   "Upstream Influence and Skin Friction in Non-Separating 
Shock Turbulent Boundary Layer Interactions," AIAA Paper 80-1411, 
Snowmass,   Colorado,  July 1980. 

7. Ackeret,  J.,  Feldman,  F.,  and Rott,  N.,   "Investigations of Compression 
Shocks and Boundary Layers in Gases Moving at High Speed," NACA TM-1113, 
January 1947. 
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problem,  as documented  in  detail   in Reference 6.     For  purposes of orientation 
and completeness,  a brief outline of this theory will   be given here. 

We consider small disturbances of an arbitrary incoming turbulent boundary 
layer due to a weak external shock and examine the detailed perturbation field 
within the layer. We purposely employ a non-asymptotic triple-deck flow model 
patterned in some ways after Lighthill's approach8 because of its essential 
soundness and adaptability to further improvement, because of its similarity 
to related types of multiple-deck approaches that have proven highly success- 
ful in treating turbulent boundary layer response to strong known adverse 
pressure gradients9, and because of the large body of turbulent boundary layer 
interaction data that supports the predicted results in a variety of specific 
problems6. At high Reynolds numbers it has been established10'11'12 that the 
local interaction disturbance field in the neighborhood of the impinging shock 
organizes itself into three basic layered-regions or "decks" (Figure 3): 1) 
an outer region of potential inviscid flow above the boundary layer, which 
contains the incident shock and interactive wave systems; 2) an intermediate 
deck of frozen shear stress-rotational inviscid disturbance flow occupying the 
outer 90% or more of the incoming boundary layer thickness; 3) an inner 
shear-disturbance sublayer adjacent to the wall which accounts for the inter- 
active skin friction perturbations (and hence any possible incipient separa- 
tion) plus most of the upstream influence of the interaction. The "forcing 
function" of the problem here is thus impressed by the outer deck upon the 
boundary layer; the middle deck couples this to the response of the inner deck 
but in so doing can itself modify the disturbance field to some extent, while 
the slow viscous flow in the thin inner deck reacts very strongly to the 
pressure  gradient disturbances  imposed by these  overlying decks.    This triple 

8. Lighthill,  M. J,,   "On Boundary Layers and Upstream Influence;  II. 
Supersonic Flow Without Separation," Vroc,   Royal Son. A 217t  1953j   pp. 
478-507. 

9. Stratford,  B. S.,   "The Prediction of Separation of the Turbulent Boundary 
Layer," Jour.   Fluid Mech.   5,   pp.  1-16,   1959. 

10. Inger,  G.  R.,   and Mason,   W. H.,   "Analytical Theory of Transonic Normal 
Shock-Boundary Layer Interaction," ATAA  Paper 75-831,   June 1975 
(abbreviated version published in AIAA Jour.  14.   pp.  1266-72,  September 
1976). 

11. Melnik,  R. E.,  and Grossman,  B.,   "Analysis of the Interaction of a Weak 
Normal Shock Wave with a Turbulent Boundary Layer," AIAA Paper 74-598. 
June 1974. 

12. Adamson,   T. C,  and Feo,  A.,   "Interaction Between a Shook Wave and a 
Turbulent Layer in Transonic Flow," SIAM Journal. Appl. Math 29. July 
1975,   pp.  121-144. 



deck structure also has been employed in the theoretical studies of Gadd13, 
Lighthill8, Stratford9, Hondall+ and others, and has been verified by a large 
body of experimental evidence and recent numerical studies with the full 
Navier-Stokes equations15. The essential correctness of this model is further 
supported by its success in related boundary layer perturbation problems 
involving viscous-inviscid interactions, turbulent boundary layer response to 
sudden changes in surface roughness or pressure gradient, and flow past 
various kinds of surface distortions including skin friction measuring devices 
(see Reference 6). 

While there is general agreement about the validity of the triple deck 
approach over a wide range of Reynolds number and the well-known qualitative 
differences in interactive response between laminar and turbulent flow (e.g., 
the much smaller upstream influence and larger separation-resistance of the 
later), questions have been raised concerning (a) the relative interactive 
importance of the inner shear-disturbance deck and (b) the accuracy of delib- 
erately using a non-asymptotic treatment of the details within the boundary 
layer.     Regarding  the   first,   we   note   that  while   asymptotic   (Re^ ♦ «) theory 

predicts an exponentially-small thickness and displacement effect contribution 
of the inner deck9'10, this is not apparently true at ordinary Reynolds 
numbers, where many analytic and experimental studies have firmly established 
that this deck, although indeed very thin, still contributes significantly to 
the overlying interaction and its displacement thickness growth6. Bolstered 
by these facts, plus the unanimous conclusion reached in the detailed reviews 
by Green16, Rose, Murphy and Watson17, and Hankey and Hoi den18 that the 
viscous sublayer is an important component of turbulent interaction problems, 
we  take  the  point  of  view here that the  inner  deck   is  in  fact  significant at 

13. Gadd,   G.  E.t   "Interactions Between Wholly Laminar or Wholly Turbulent 
Boundary Layers and Shook. Wave Strong Enough to Cause Separation, " Jour. 
of the Aeronaut.  Sai.  20,  November 1953,   p.   729. 

14. Honda, M., "A Theoretical Investigation of the Interaction Between Shock 
Waves and Boundary Layers," Jour. Aero/Space Sci. 25, November 1958, pp. 
667-677. 

15. Hankey,   W.,  and Shang,  J.,   "Numerical Solution of the Navier-Stokes 
Equations for Supersonic Turbulent Flow over a Compression Ramp," AIAA 
Paper 75-3,  Pasadena,  Jan.  1975. 

16. Green, J. E., "Interactions Between Shock Waves and Boundary Layers," in 
Progress of Aero.  Sci.,   Vol.  11,  Pergamon,   N.Y.,  1965,   pp.  319. 

17. Rose, W. C, Murphy, J. D., and Watson, E. C, "Interaction of an Oblique 
Shock Wave with a Turbulent Boundary Layer," AIAA Jour. 7, December 1969, 
pp.  2211-2221. 

18. Hankey,   W.  L.,   and Holden,  M.  S.,   "Two-Dimensional Shock Wave-Boundary 
Layer Interactions in High Speed Flow,    AGARDograph 203,  June 1974. 

10 



the Reynolds numbers of practical interest. In this regard, we re-emphasize 
that this deck contains all of the skin friction and incipient separation 
effects in the interaction, which alone are suficient reasons to examine it in 
detail. Regarding (b), it is pointed out that application of Re ->■ "asymp- 

totic theory results (no matter how rigorous in this limit) to ordinary 
Reynolds numbers is itself an approximation which may be no more accurate, 
(indeed perhaps less so) than a physically well-constructed non-asymptotic 
theory. Direct extrapolated-asymptotic versus non-asymptotic theory compari- 
son have definitely shown this to be the case for laminar flows (especially as 
regards the skin friction aspect19) and the situation has been shown to be 
possibly even worse in turbulent flow6. For example, the asymptotic first 
order theory formally excludes both the streamwise interactive pressure 
gradient effect on the shear-disturbance deck and both the normal pressure 
gradient and so-called "streamline divergence" effects on the middle deck; 
however, physical considerations plus experimental observations and recent 
comparative numerical studies20'21 suggest that these effects may in fact be 
significant at practical Reynolds numbers and should not be neglected. Of 
course, second order asymptotic corrections can be devised to redress this 
difficulty but, as Neyfeh and Regab22 have shown, run the risk of breaking 
down even worse when extrapolated to ordinary Reynolds numbers. In the 
present work, we avoid these problems by using a deliberately non-asymptotic 
triple-deck model appropriate to realistic Reynolds numbers that includes the 
inner deck pressure gradient terms plus the middle deck ap/3y and streamline 
divergence effects, along with some simplifying approximations that render the 
resulting theory tractible from an engineering standpoint. With this view- 
point in mind, we now examine in more detail the nature of the disturbance 
flow problem in each of the three basic decks. 

B.    Formulation of the Disturbance Problem in Each Deck 

1.    Outer Potential  Flow Region.    Assuming that the incident shock  and its 
reflection system are weak with isentropic non-hypersonic flow, we have here a 

19. Burggraf, 0. R., "Aeymptotia Theory of Separvction and Attachment of a 
Laminar' Boundary Layer on a Compression Ramp/' in AGARD CP-168 - Flow 
Separation,   1975. 

20. Werle, M.t  and Berfke,  S. D.,   "Appliaation of an Interacting Boundary 
Layer Model to the Supersonic Turbulent Separation Problem," University 
of Cincinnati Report AFL  76-4-21,  August 1976. 

21. Le Balleur, J. C, Peyret, R., and Vivand, H., "Numerical Studies in High 
Reynolds Number Aerodynamics," in Computers and Fluids, Vol. 8, Pergamon, 
1980,   pp.  1-30. — 

22. Ragab, S. A., and Nayfeh, A. H., "A Second Order Asymptotic Solution for 
Laminar Separation of Supersonic Flows Past Compression Ramps," AIAA 78- 
1132,  1978.   

11 



small    disturbance    potential    inviscid   motion   imposed   upon   the   undisturbed 
uniform flow Un    outside the boundary layer: 

ue 

M2 

3v79x « 3u73y (2) 

2 U,Mo 2 
iV +  [LM   2 . 2 e    ] ±Pl a 0 (3) 
9y

2 L      0e Uoe 3x2 

where  the  third term within the  square brackets of Eqs.   (1)   and  (3)   is  signif- 
icant   in   the   transonic   regime   1   < M     < 1.1   and   automatically   includes   the 

e 
supersonic-subsonic jump conditions to this order of approximation23. Since a 
variety of efficient analytical or numerical methods are presently available 
to solve this system in either transonic flow or in purely supersonic flow (in 
which case Eqs. 1-3 further reduce to an Ackert-type problem), we assume that 
such a solution may be carried out for all x on the upper region y > ^0 sub- 

ject to the usual far-field conditions as y -> «>. The remaining disturbance 
boundary condition that must be supplied along y = ^ then couples this solu- 

tion to the underlying double-deck: it requires that the outer disturbance 
flow pertain to an effective streamline shape (relative to the wall) defined 
by the total interactive displacement effect of the inner decks. To insure 
physically-smooth matching along this outer-inner interface, then, we require 
both  v7U0    and  p'   to be  continuous with  their  middle  deck  counterparts along 

y = 6 

0e 

2. Middle Rotational-Disturbance Flow Deck. This layer contributes to 
and transmits the displacement effect, contains the boundary layer lateral 
pressure gradient due to the interaction and carries the significant influence 
of the incoming boundary layer profile shape. Our analysis of this layer 
rests on the key simplifying assumption that for non-separating interactions 
the   turbulent  Reynolds   shear   stress   changes   are   small   and  have  a  negligible 

23.    Murrmn,   E.  M.,   and Cole,  J.  D.t   "Calaulation of Flane Steady Tvansonia 
Flow." AIAA Jour.  3,  January 1971,   pp.  114-121. 

12 



back effect on the mean flow properties along the interaction zone; hence this 
stress can be taken to be "frozen" along each streamline at its appropriate 
value in the undisturbed incoming boundary layer. This approximation, like- 
wise adopted by a number of earlier investigators with good results, is sup- 
ported not only by asymptotic analysis21* but especially by the results of 
Rose's several1''25 detailed experimental studies of a non-separating shock- 
turbulent boundary layer interaction which showed that over the short-ranged 
interaction length straddling the shock the pressure gradient and inertial 
forces outside a thin layer near the wall are at least an order of magnitude 
larger than the corresponding changes in Reynolds stress. Furthermore, there 
is a substantial body of related experimental results on turbulent boundary 
layer response to various kinds of sudden perturbations and rapid pressure 
gradients which also strongly support this view (see Ref. 6). These studies 
unanimously confirm that, at least for non-separating flows, significant local 
Reynolds shear stress disturbances are essentially confined to a thin sublayer 
within the Law of the Wall region (see below) where the turbulence rapidly 
adjusts to the local pressure gradient, while outside in the Law of the Wake 
region the turbulent stresses respond very slowly and remain nearly frozen at 
their initial  values far out of local  equilibrium with the wall   stress. 

Confining attention, then, to the short range local shock interaction zone 
where the aforementioned "frozen turbulence" approximation is applicable, the 
disturbance field caused by a weak shock is one of small rotational inviscid 
perturbation of the incoming non-uniform turbulent boundary layer profile 
N0{y),   governed by the equations 

JL    f   V(x,y)   ] _ WM     .    ^VPQ) ... 
^  L nyyr J" " Mo2(y) ax ^ 

3u' 3p79x dUo      v' 
3x    '  "  P0(y)  U0(y)  "  dy    * Uc 

(5) 

24, Yajnik,  A.,   "Asymptotic Theory of Turbulent Wall Boundary Layer Flows," 
JM 42,   1970,   pp.  411-427. 

25, Hose, W. C, and Childs, M. E., "Reynolds Shear Stress Measurements in a 
Compressible Boundary Layer within a Shook. Wave-Induced Adverse Pressure 
Gradient, " JFM 65,   1,   1974,   pp.  177-188. 

13 



iV 
ay2 

2  ^oiEl. 
M0 dy    By 

1-M 
2  u,Mc 

0T~ 
3X2 

= 0 (6) 

where Eq. (4) is a result of the combined particle-isentropic continuity, x- 
momentum and energy equations. It is noted that, consistent with the assumed 
short range character of the interaction, the streamwise variation of the 
undisturbed turbulent boundary layer properties that would occur over this 
range are neglected,  taking U0(y),p (y)  and M0(y)   to be  arbitrary functions of 

y only with 6  ,  6 * and x      as constants.     Now Eq.   (6)   is a  generalization of 
o 

Lighthill's well-known pressure perturbation equation for non-uniform flows8 

which includes a non-linear correction term for possible transonic effects 
within the boundary layer including the diffracted impinging shock above the 
sonic level of the incoming boundary layer profile. Excluding the hypersonic 
regime, Eqs. (4)-{6) therefore apply to a wide range of initially supersonic 
external flow conditions and the complete speed range across the boundary 
layer  except  at  the   singular  point M    ■>• 0 (which we  avoid  by  consideration  of 

the inner deck as shown below). In particular, use of Eq. (6) provides an 
account of any lateral pressure gradient that develops across the interacting 
boundary layer. 

As is the case with the outer deck, a variety of analytical or numerical 
methods may be used to solve this middle deck disturbance problem (see e.g., 
Refs. 8, 10, 17). Whatever the method chosen, we imagine that it provides at 
each streamwise station x an evaluation of the disturbance pressure distribu- 
tion p'(x,y);   then y-integration of Eq.   (4)   gives 

v'(x..y)  =   \lL]   (X y 
u0(y)        L|1 

^0 

v.'+ M ^ ypei 

eff 

1-M0
2(y) 

M0
Z(7) 

dy S (7) 

where y > 0 is the effective wall shift or displacement height associated 
eff 

with the inner deck  defined such that the inviscid v'   (x,yw      1  and hence 
eff 

Bp'/ayU.y   ) both vanish (see below).  Equation (7) provides the disturb- 
eff 

ance streamline slope distribution across the boundary layer at any streamwise 
station, and its value at y = 6 yields the total streamline displacement 

effect of the two inner decks (the lower limit on the integral being the inner 
deck contribution). We then may obtain the corresponding total displacement 
thickness growth along the interaction by streamwise-quadrature of the pertur- 
bation boundary layer continuity equation integral; this yields to first 
perturbation 
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eff 

M|   - 1 

P;(X)     (8) 

3. The Inner Shear-Disturbance Layer. This very thin inner deck contains 
the significant viscous and turbulent shear stress disturbances due to the 
interaction, plus the small upstream influence and an important contribution 
to the viscous displacement effect. In fact it lies well within the Law of 
the Wall region of the incoming turbulent boundary layer profile and also (for 
the high Reynolds numbers of interest here) below the sonic level of the pro- 
file as our resulting theory indeed confirms aposteriori. The original work 
of Lighthill8 and others treated the problem by further neglecting the turbu- 
lent stresses altogether and considering only the laminar sublayer effect; 
while this greatly simplifies the problem and yields an elegant analytical 
solution, the results can be significantly in error at high Reynolds numbers 
and cannot explain (and indeed conflicts with) the ultimate asymptotic 
behavior pertaining to the Re^ > " limit.    The present theory remedies this by 

extending Lighthill's approach to include the entire Law of the Wall region 
turbulent stress-effects; the resulting general shear-disturbance sublayer 
theory provides a non-asymptotic treatment which encompasses the complete 
range of Reynolds numbers. It is noted in this connection that our considera- 
tion of the entire Law of the Wall combined with the use of the effective 
inviscid wall concept to treat the inner deck displacement effect eliminates 
the need for the "blending layer"11 that is otherwise required to match the 
disturbance field in the laminar sublayer region with the middle inviscid 
deck; except for higher order derivative aspects of asymptotic matching, our 
inner solution effectively includes this blending function since it imposes a 
boundary condition of vanishing total shear disturbance at the outer edge of 
the deck. In addition, our retention of the explicit disturbance pressure 
gradient term for the inner deck not only provides the correct physics at 
practical Reynolds numbers but also correctly models the situation near sepa- 
ration (T ■>■ 0) where this term becomes of dominant importance. » w 

To facilitate a tractible theory, we retain only the main physical effects 
by introducing the following simplifying assumptions, (a) The incoming bound- 
ary layer is free from any post-transitional memory or low Reynolds number 
effects and its Law of the Wall region is characterized by a constant total 
(laminar plus turbulent eddy) shear stress and a Van Driest-Cebeci type of 
damped eddy viscosity model26. This model is known to be a good one for a 
wide range of upstream non-separating boundary layer flow histories, (b) For 
the weak incident shock strengths of present interest, the sublayer disturb- 
ance   flow   is   assumed   to   be   a   small   perturbation   upon   the   incoming   boundary 

26.    Ceheci,   T.,  and Bvadshaw,   P.,   "Momentum Transfer in Boundavii Layers, 
McGraw-Hill/Hemisphere," Wash.,   D.  C,   1977,   p.  365. 
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layer; in the resulting linearized disturbance equations, however, al1 the 
physically-important effects of streamwise pressure gradient, streamwise and 
vertical acceleration, and both laminar and turbulent disturbance stresses are 
retained. Although the resulting theory necessarily becomes inaccurate near 
separation, it provides a valuable physical insight to the interactive physics 
close to the wall for non-separating flow and a firm basis for subsequent 
improvement. Moreover, it can be shown that the form of the particular set of 
linear equations used here is in fact unaltered by non-linear effects; hence 
even the quantitative accuracy of the present theory is expected to be good 
until rather close to separation, (c) For adiabatic flows at low-to-moderate 
external Mach numbers, the undisturbed and perturbation flow Mach numbers are 
both quite small within the shear disturbance sublayer; consequently the 
treatment of compressibility effects therein can be greatly simplified without 
any significant error. Thus, the influence of the density perturbations on 
the sublayer disturbance flow may be neglected altogether, while the corre- 
sponding modest compressibility effect on the Law of the Wall portion of the 
undisturbed profile is quite adequately treated by the Eckert reference 
temperature method27 wherein incompressible relations are used based on wall 
recovery temperature properties. Excluding hypersonic flow this is equivalent 
in accuracy to (but easier than) the use of Van Driest's compressible Law of 
the Wall profile28, (d) The turbulent fluctuations and the small interactive 
disturbances are assumed uncorrelated in both the lower and middle decks, (e) 
The thinness of the inner deck allows the boundary layer-type approximation of 
neglecting its lateral pressure gradient; the wall pressure distribution p^(x) 

is taken equal to the overlaying pressure perturbation field along the bottom 
of the middle deck. 

Under these assumptions, the disturbance 
ing continuity and momentum equations: 

field is governed by the follow- 

3u'       8v' 
8x 3y 

(9) 

„    3u' .   dV    ,      -1,   9Pw      9 
uo^r+ v ir+ (pw0  

)^r = iy 
du' Bu' ,  dUol      ,,m vw iy-+ eT w" £JW\   (10) 

_   o   ^ o   ^ J   •* 

3p73y = 0  ;   p'  =  p'(x)   - p;{x) (ID 

27. Buvggvaf,   0. R.,   "The Compressibility Transformation and the Turbulent 
Boundary Layer Equation," Jour,   of the Aerospace Soi.   29,   1962,   pp.  434- 
439. 

28. Van Driest,  E. R.,   "Turbulent Boundary Layers in Compressible Fluid," 
Jour,  of the keronaut.  Sai.  18,  March 1951,   pp.  145-160. 
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where p  and v  are evaluated at the adiabatic wall recovery temperature and 
o     o 

where it should be noted that the kinematic eddy viscosity perturbation Zj'  is 

being taken into account.  The corresponding undisturbed turbulent boundary 
layer Law of the Wall profile U0(y) is governed by 

dU 
To(y) = const. = TW = [,w + pw s (y)] ^° (12) 

0      O     0   U 

where according to the Van Driest-Cebeci  eddy viscosity model  with 
y+ =  (y /T    TP    )/v 

J        w      w„    w^'    w„ 0        0 0 

eT=[.41y(l-e-y+/A)]2^ (13A) 

which yields for non-separating flow disturbances that 

+
/A 9 dU 

eT = [.41y(l-e-y /A)]Z^ (13B) 
o 3 

£T' " (WTI^T (13C) 
0  ^   0 

Here, A is the so-called Van Driest damping "constant"; we used the commonly- 
accepted value A = 26 although it is understood that a larger value may 
improve the experimental agreement in regions of shock-boundary layer interac- 
tion.29 Substituting (13c) into (10) we thus have the disturbance momentum 
equation 

uo-3r+v ur+(pw    )ir = ly C(uw + 2eT ^ir3 (14) J
 o J o o     J 

from   which   we    see   that   inclusion   of   the   eddy   viscosity   perturbation   has 
exactly doubled the turbulent shear  stress disturbance term. 

29.    Johe,   C, E.,  and Harikey,   W.  L.,   "Turbulent Boundary Layer Catoulations in 
Adverse Pressure Gradient Flows," AIAA Paper 80-01S6,  Pasadena,  January 
1980. 
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We  seek  to solve  Eqs.   (9)   and  (14)   subject to the wall   boundary conditions 
Uo(0) = u'U.o) = v^x.o)  = 0 plus an initial  condition u'l-^.y)  = 0 requiring 

that all  interactive disturbances vanish far upstream of the impinging shock. 
Furthermore, at some distance 6^ sufficiently far  from the wall, u'  must pass 

over  to  the  inviscid  solution u!      along  the  bottom  of  the middle  deck,  this 

latter being governed by Eq.  (9)  plus 

8u. dl) ,   3p 
U        TrIv+     . 0+ (      T

1-!" =0 (15) 
o      3x inv dy v w ;      3x J o 

with 6      defined as the height where the total   shear disturbance (proportional 

to Bu'/Sy)  of the inner solution vanishes to a desired accuracy. 

Following    Lighthill8,  it    proves    convenient    to    convert the    foregoing 
problem   into   one   involving   the   normal   disturbance   velocity field   v'^y). 
Differentiating Eq.   (14)  w.r.t.  x,  substituting Eq.   (9)   so as to eliminate u' 
and then differentiating the result w.r.t.y so as to eliminate p'  by virtue of 

Eq.   (11),  one thus obtains the  following fourth-order equation  for  v': 

^ [(v0   + 2ET ) |jl] (16) 
J W 0       J 

This   differential   equation   contains   a   three-fold   influence   of   the   turbulent 
flow:    the profile U0(y),  its curvature d^/dy2 (non-zero outside the laminar 

sublayer)   and a new eddy disturbance stress term 2eT .    Equation  (16)   is to be 
o 

solved together with (11)   and (13b)   subject to the wall  boundary conditions 
v'^o)  =  3v'/3y(x,o)  =0.      A   third   condition   involving   v'    is   obtained   by 
satisfying the x-momentum equation  (14)   at the wall;  when  this is differenti- 
ated w.r.t.  x  and  Eq   (9)   used together with the  fact that eT ■> 0 at y = 0 we 
obtain the non-homogeneous condition 

83V'   (x,o)  =-(0^4 (17) 
3yd   v  ' '       v ow

/    dx' 

The fourth boundary condition is the v' equivalent of the outer inviscid 
matching requirement (15), which yields v'Cx.S-.) = v^ylx^sL^ ^^ t'ie 

inviscid solution governed by 
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3    (,    ^\nv        ,       d2Uo. 

with 6SL pertaining  to d2v'/dy2 « 0 (i.e.,   vanishing  total   disturbance   shear) 

somewhere within the Law of the Wall region12. Once the v'(x,y) field is 
obtained, the attendant streamwise velocity and disturbance shear stress 
fields may be found from 

eT 

f
X     3u' 

co    9X 

dx = f
x   av' 

J_«8y 
dx 

Bu' 
9y 

=  - 

2eT 

0 w 

(19) 

W 0 
0 W 

An important and useful feature of this approach is the definition of an 
"effective inviscid wall" position (or displacement thickness) that emerges 
from the asymptotic behavior of v' far from the wall8; see Figure 4. As 
schematically   illustrated   in   Figure   4a,   this   is   defined  by   the   value  yweff 

where   the   "back   projection"   of  the   v-jnv   solution   vanishes,   this   projection 

being the (generally non-linear) solution curve obtained by inwardly- 
integrating (18) and (12) in the negative y direction starting at &n,. Physi- 

cally,   yweff   thus   represents   the   total   mass   defect   height   due   to   the   shear 

stress perturbation field and hence the effective wall position seen by the 
overlying inviscid middle deck disturbance flow. As indicated in Figure 4b, 
this concept serves to couple the inner and middle deck solutions in a direct 
physically-obvious way by providing the non-singular inner equivalent slip- 
flow boundary conditions 9p73y (yeff) = vinv(yWeff) = 0 at M^weff) > 0 for 

the middle deck solution of Eq. (6). In practice, this approach has proven 
quite useful   for treating a variety of interaction problems. 

C.    Approximate Solution by Operational   Methods 

An analytical solution is further achieved by assuming small linearized 
disturbances ahead of, behind and below the nonlinear shock jump plus an 
approximate   treatment30 of   the   detailed   shock   structure   within   the   boundary 

SO.    Ingev,   G,  R.,   "Shock Wave Penetration and Lateral Pressure Gradient 
Effects on Transonic Normal Shock-Turbulent Boundary Layer Interactions, 

AIAA J.   15,  August 1977,   pp.  1179-1200,   plus 16_,  May 1978,   p.   541. 
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layer, which gives reasonably accurate predictions for all the properties of 
engineering interest when ML > 1.05 (as far as the overall interaction proper- 

ties are concerned, this non-linear shock jump provision plus the various non- 
uniform viscous flow effects within the boundary layer reduce the lower Mach 
number limit otherwise pertaining to the linearized supersonic theory in pure- 
ly inviscid potential uniform flow). As described in detail in References 6 
and 10, the resulting equations can be solved by Fourier transform methods 
yielding the interactive pressure rise and displacement thickness growth 
inputs to the above extended theory of the inner-disturbance sublayer. The 
resulting solution contains all the essential physics of the mixed transonic 
viscous interaction field for non-separating flows including the upstream 
influence, the lateral pressure gradient near the shock and the onset of 
incipient separation; numerous detailed comparisons with experiment31 have 
shown that it gives a good account of all the important engineering features 
of the  interaction over  a wide range of Mach-Reynolds number  conditions. 

The matching of the outer two decks with the inner shear-disturbance deck 
in connection with the Fourier inversion process yields the determination of 
the  upstream  influence  distance,  A     =  K"^n;  typical   numerical   results  for  it 

showing the important typical parametric effects of Reynolds number and shape 
factor can be found in Ref. 6. The solution further yields the inner deck 
displacement thickness 

^eff cf w .677  [-^ Re2
6    (T    /T/*2V173^  V"1/3   •  H(T)  P173 (21) 

O 0 0 

and the  interactive  skin  friction relationship 

T'(X) K   ■     2/3 j-gp- o/o 

-f- -   (-^) '  S(T)       £E    C P-273 (22) 
/Cfo      Pw 

where 

P  = 3  K  .     (/ x    p,3/2  dx)/(2  p,3/2) (23A) mm  VJ   -00 Kw ;/ v     Kw      ' ^       ' 

Cf 
T . (.41)2h^ Re,    (T    /T )1+2(Y/3   (K  .     6 f273 (23B) v       '   L 2        6    v  e      w' J        v mm    o' 

o        o 

31.    Inger,   G. R.t   "Application of a Shoak-Boundavy Layer Intevaation Theory 
to Transonic Airfoil Analysis," AGARD CP-291,   Colorado Springs,   Sep 1980, 
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X6 .744  3 '4(Cf /2)5/4 Re( (T 
0 

urt-1/2 (23C) 

where the functions H(T) and S(T) are given in Figure 5 and represent the wall 
turbulence effect on the interactive displacement effect and skin friction, 
respectively. Figure 5, in fact, is a central result of the general non- 
asymptotic theory, providing a unified account of the entire Reynolds number 
range in terms of the single new turbulent interaction parameter T (Eq. 23B): 
it ranges from the limiting behavior of negligible wall turbulence effect per- 
taining to Lighthill's theory at T -> 0 (lower Reynolds numbers) to the oppo- 
site extreme of wall turbulence-dominated behavior at T >> 1 pertaining to an 
asymptotic-type of theory at vary large Reynolds numbers where the inner deck 
thickness and its disturbance field become vanishingly small. The relation- 
ship between these two heretofore-disparate theories has thus been explained 
and established: they belong at opposite extremes of a general non-asymptotic 
theory that describes the transition between them. Another important result 
emerging from Figure 5 is that the asymptotic trends occurring at very large 
Reynolds numbers cannot be extrapolated down to ordinary values; doing so can 
yield appreciable error in the inner deck properties of practical interaction 
problems. This would appear to explain the success of the Lighthill theory in 
correlating lower Reynolds number turbulent interactions in spite of the 
mathematical rigor of asymptotic theory: the former is simply closer to the 
actual physics and correctly predicts more significant interaction effects and 
scaling under the decidedly non-asymptotic conditions involved. By the same 
token, the extreme approximation involved in the T - 0 limit significantly 
breaks  down  at   larger  Re^'s pertaining  to T»   1,   clearly warranting  the  use 

of  the   present   theory  to   account   for   the   increasing  role  of  the  wall   turbu- 
lence effect on the  interaction. 

An   important   and   useful    final   consequence   of   the   foregoing   analysis   is 
that   it   yields   an   explicit   analytical   criterion   for   the   onset   of   incipient 
separation   due   to   an   interactive   pressure   field;   setting  T 
Eq.   (22)   predicts this to occur when 

w w +    T1 

W 
- 0, 

W 

2    C    ^l<  . p mm Kw 

3    fjC    )3/2 dx 

2/3 

o 

mm 

2/3 
(24) 

where   it   is   re-emphasized   that   Cpw   here   is   the   local   interactive   pressure 

distribution.     Equation  (24)   bears a general  resemblance to a Stratford-type9 

of  incipient   separation   relation   for   turbulent   flow,   except  that  the   present 
formula   contains   the   integrated   history  effect  along  the   interaction  whereas 
Stratford's  result  involves  purely  local   properties  of  Cp  and dCp/dx.     It is 

that the present theory actually breaks down  approach- 
owing   to   the    linearization    assumptions    and   the   Van 

turbulence model   used;   nevertheless,   Eq.   (24)   does  give  at 

understood,   of course, 
ing   such    separation 
Driest/Cebeci wal 1 
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least a roughly-correct indication of where this will occur, and indeed does 
so without containing any adjustable empirical constants. 

A computer program has been constructed to carry out the foregoing solu- 
tion method; it involves the middle-deck disturbance pressure solution coupled 
to the inner deck by means of the effective wall shift (Eq. 21) combined with 
an upstream influence solution subroutine. The corresponding local total 
interactive displacement thickness growth and skin friction are obtained from 
Eqs. (8) and (22), respectively. If desired the attendant boundary layer 
shape factor change along the interaction may also be calculated as 
H = [6* + A6*{x)]/e*(x) with 6* given by an x-wise integration of the overall 

momentum integral equation for the total local boundary layer since p(x), 6* 
and C^ are known.  The incoming turbulent boundary layer is treated by the 

compressible version of a universal composite Law of the Wall - Law of the 
Wake model due to Walz32 that not only has a convenient analytical form (see 
Appendix) but also provides a very general fundamental description of this 
boundary layer in terms of three arbitrary parameters: preshock Mach number, 
boundary layer displacement thickness Reynolds number, and the incompressible 
shape factor H, . This enables us to account for the important influence of 

h 
the upstream flow history (pressure gradient, suction, etc.) on the inter- 
action. 

D. Comparisons of the Theory with Experiment 

Numerous comparisons of the present theory with experimental data from 
both wind tunnel and free flight experiments have been documented; a sample is 
presented in Figure 6 to illustrate the predicted behavior and good agreement 
for the interactive pressure, displacement thickness and skin friction distri- 
butions in a typical non-separating case. Note especially in Figure 6b the 
lateral pressure gradient that occurs in the vicinity of the shock. Regarding 
the skin friction comparison shown in Figure 6d, we note that the "experimen- 
tal" values were actually inferred7 from measured velocity profiles along the 
interaction (hence e* and 6*) by means of the 2-D momentum integral equation; 
considering the well-known uncertainties involved in their experimental set up 
and this method, combined with the present theory's own limitations, the 
agreement is considered good as regards both the magnitude and shape of the C^ 
curve. 

Figure 7 shows a comparison of the predicted local shape factor change 
along an interaction with some ONERA measurements; it is seen that the theory 
nicely captures the characteristic local peaking of H near the shock foot as 
well as the overall behavior. 

32.    Walz,  A.,   "Boundary Layers of Flow and Temperature," M.I.T.  Press, 
Cambridge,  Mass.,   1969,   pp.  113. 
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A particularly interesting comparison with some very recent DFVLR-AVA (G5) 
experiments33 is shown in Figure 8, where we compare with measurements along 
the non-separating interaction zones on two supercritical airfoils. The 
experimental   Cf   values   were   inferred   from  streamwise   boundary   layer   profile 

surveys by means of the Ludwig-Tillman relationship 

Cf =  .246(T*/Te)-796 Re^"'268 e"1*561  Hi (25) 

where H^  is given by 

Hi   « (H -   .273Me2)/(1.0 +   .1145Me2) (26) 

2 
and T*/Te « 1 +   .14 M      for y = 1.40 and P    « .7 on  an  adiabatic wall.     Theo- e r 
retical predictions of the entire airfoil flow field were also made with a 
composite inviscid transonic - turbulent boundary layer - shock interaction 
numerical scheme in which the present theory was used as a local interactive 
module astride the inviscid shock location (see Reference 33 for details). It 
is seen that the theory yields an excellent prediction of the local skin fric- 
tion values upstream and slightly downstream of the shock (including the mini- 
mum value) and a good qualitative account of the overall shape of the stream- 
wise distribution. Well downstream of the shock, the theory slightly over- 
estimates the post-shock C^ recovery inferred by the Ludwig-Tillman relation- 

ship. Nevertheless, in view of the combined limitations of the experimental 
Ludwig-Tillman method and the present small disturbance theory, the overall 
agreement with the data is regarded as good. 

III.     EXTENSION OF THE  LOCAL  INTERACTION THEORY 
TO SPINNING AXISYMMETRIC  BODIES 

A.    Fundamental Assumptions 

For the high Reynolds number non-separating flows at zero angle of attack 
which we are considering here, the extension of the foregoing interaction 
theory to spinning bodies of revolution is based on the following general 
physical assumptions. (1) The three dimensional relief and spin effects, 
while   altering   certain   details   and   quantitative    values   of   the   parameters 

33.    Nandanan,  M,,  Stanewsky,   E.  and Ingev,   G. R,t   "A Computational Froaeduve 
for Tvansonie Airfoil Floio Including a Special Solution for Shock- 
Boundary Layer Interaction," AIAA Journal Vol.  19,   Dec.  81,   pp.  1540-46. 
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involved, do not fundamentally change the triple deck interaction structure 
illustrated in Figure 3. Some detailed analysis has shown that this might not 
be true only for very slender "needle-like" bodies with unrealistically - high 
spin rates. (2) Being a small scale local event dominated by rapid changes 
in a direction normal to the inviscid shock, the physics of the interaction is 
still essentially "two-dimensional" even on a spinning axisymmetric body; the 
significant effects of the three dimensional geometry and spin enter primarily 
from their influence on the surrounding large scale inviscid flow, shock loca- 
tion and incoming boundary layer properties ahead of the interaction. (3) 
Excluding exceedingly slender bodies and/or very low Reynolds number condi- 
tions, both the local turbulent boundary layer thickness 6 and streamwise 

scale of the interaction zone (5-7 6 ) are small enough compared with the 

local transverse and longitudinal body radii of curvature to permit neglect of 
the explicit longitudinal and viscous transverse curvature terms in the 
governing flow equations and to permit retention of the parallel shear flow 
approximation for the incoming boundary layer as far as the interaction solu- 
tion is concerned. (4) The body surface and the overlying boundary layer 
flow are adiabatic. 

We now proceed to examine the basic relations upon which the interaction 
solution rests, to bring out specifically the influence of axisymmetric flow 
geometry and spin effects. 

B. The Inviscid-Disturbance (Middle and Outer Deck) Regions 

1. Some Fundamental Relationships. For the case of bodies at zero angle 
of attaclTi the general equations governing the attendant circumferentially - 
invariant (9/8(|) = 0) flow field are as follows when expressed in the body- 
oriented coordinates shown in Figure 9 (such cordinates have been chosen here 
because of their convenience in treating the viscous-interaction aspects of 
the problem): 

CONTINUITY ^(pur ) + -^(pvr ) = 0 |  = ^ Axisymnietric |       (27) 

STREAMWISE MOMENTUM 

P(3+ ^i^w^+ia-^ (28) 
^ 3x   3y  r 3x  ;  3x   3y K    ' 

NORMAL MOMENTUM P(I4^ +   v^ - ^ ^ w2) + -^ ^ 0 (29) 
ox        ou      r  dy dy 
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CIRCUMFERENTIAL MOMENTUM 

p^ + 3w + £ |r uw + £ |r vw) = l^y {30) v 9x  3y  r 9x    r 8y  '   3y y    ' 

ENERGY CONSERVATION 

^♦^-•^♦^■-e-1) l^+»> 

r I2 ^'Tx      v^y; 

(31) 

where a2 = 3p/8p = yp/p, r = rR(x) + ycos eR an^ where   for  the moment we  have 

included the viscous terms to the boundary layer-order of approximation. 
These equations are of course supplemented by the thermal equation of state. 
Note also that Eq. (30) governs the spin-induced circumferential (cross) flow 
caused by viscous shear in the boundary layer. 

We now proceed to obtain an important gas dynamic relationship involving 
the velocity field components as follows. First we note from continuity (27) 
that 

3P _     r"e 3(pvre)     pr"e   3 ,    e. ,32) 
3x u        3y u      3x K      ' K    ' 

which when substituted into the energy Equation (31) yields the convective 
derivative of pressure 

lx  Ty   pa v3x  3y;   r  kU3x **$' 

-(^)^+w!^ + ^(u|n+4i)Tp] 

(33) 

Now since the normal and circumferential-flow Mach numbers v/a and w/a, 
respectively, are very small in the present problem we can hereafter neglect 
their squares compared with unity with excellent approximation; doing this 
while substituting 3p/3x from Equation (28) plus 3p/3y from Equation (29) into 
the LHS of Equation  (33), we obtain after some algebra the following equation: 

n      u2x   3u .   3v ,   e (ldr ,     3lj,     jm      /U    Txy     w    ^ (u) 
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where c = 3u/9y - 3v/3x is the vorticity. Equation (34) is the generalized 
version of the classical flow equation of compressible inviscid flow which 
here explicitly accounts for axisymmetric flow effects and the possible pres- 
ence of vorticity; it thus pertains to flow inside as well as outside the 
boundary layer. 

A second companion equation, of particular use in interaction problems, is 
the generalized streamline slope relationship obtained by substituting 3u/3x 
from Equation (28) into the RHS of Equation (33) and rearranging the result 
into an equation governing  v/u; again dropping terms of order (v/a)2 and 
(w/a)2, we get 

3(v/u)   V r3p/3y + .£ in + _e _3r 
3y '  u ^ YP   r 3y-1  r 3x 

(35) 
1(I-^)1-UMY-I)^^-(T-I)^-^} 

yp (uz/a2) 

Equation (35) enables one to calculate v/u across the flow by appropriate 
integration of the pressure and viscous stress-gradient effects including the 
3-D  relief effect  from the  last LHS term. 

A third important relationship governs the pressure field in a vortical 
but otherwise negligible shear stress region of flow. This we obtain by drop- 
ping the explicit stress terms in solving Equation (35) for 3p/3x and then 
differentiating the result to obtain, after re-use of Eq. (35), an expression 
for 32p/3x2; this expression is then subtracted from the result of differenti- 
ating Eq. (29) w.r.t.y. After much algebra involving the repeated use of Eqs. 
(28),  (29)  and (35)  plus the neglect of all  v2/a2 terms we ultimately obtain 

M      U2N   32p ,   32p     9 ,vx  u2    32p      3p  r9xv"a2;  .   n      U2x   3p/3x 

_3   (U2-, 
v ,u2 3u      Jr/gyM     IP  r3y ^l2'      /Y-1N  3£    lir 

" u  ^"a2 ly F    ; J "  3y  L uW        Wp ;   3y " r 3y 

-i U^ - i) M5S] . e^ TP^ (i^) - (i^)2 

3 — — 
.   v /2 32r 3x 3yv i 

U   V  3x3y p—; J 

(36) 
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This equation  constitutes a very generalized  form of Lighthiil's famous pres- 
sure field equation extended here to include arbitrary non-parallel 
{v,au/3x * 0)  vortical  shear flows on 2-D or spinning* axisymmetric bodies. 

Equations (34), (35) and (36) comprise a trio of basic relations which 
govern the total interactive flow field in the combined outer-middle deck 
regions. We now specialize them to apply to the interactive disturbance field 
by imagining that the flow consists of an incoming turbulent boundary layer 
plus an overlying inviscid transonic flow (subscript "o") which is slightly 
perturbed by the interaction caused from a weak nearly-normal shock standing 
in the outer  flow;  we thus write u = U    +  u'(x.y).  v=v   +v'. w=w   + w', 

p = P0 + p' and P = P0 + P' where the primed quantities denote these inter- 

active perturbations. Substituting these perturbation expressions into Eq. 
(34), neglecting all shear stress disturbances by virtue of the "frozen turbu- 
lence" approximation, assuming there is negligible correlation between turbu- 
lent fluctuations and these perturbations, and subtracting out the undisturbed 
flow equations and linearizing the resulting small perturbation-flow equations 
except for the appropriate transonic terms, we ultimately get the following 
disturbance flow velocity equation: 

3V ,   n      u o     u' /„ .  ,v  u »,  3u'     e /..^ ar .     . 3r ay   +tl-Mo2-^(T+l)Mo^|L + |(u'£+v'iI) 

-^(i + .)Mo2^ + |2(i^)o.i:[Uo(i^)o (37A) 

+ w    (ll^)  ]  = M    ?    [r + ^2 (^ + 2 ii + il)] o v   3y ;oJ        o so La        a    HT a        to'-* oooo 

where for zero angle of attack w' = 0 since the shock position is independent 
of (j) and hence the resulting interaction field cannot induce any circumferen- 
tial cross flow regardless of spin. Now in a typical transonic flow field 
outside the inner deck, the terms of the last square bracket on the LHS of 
(37A) are very small compared with the remaining ones and hence may be neglec- 
ted; likewise, the terms proportional to v0/a0 are negligiably small compared 

with v'/a0. Consequently to the leading order of approximation, Eq. 37A may 

be simplified to 

*The spin here is implicit, of course, since all the explicit spin terms are 
of negligible order w^/a^ and hence have been dropped. 
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if+[i-M0My)-(^i).vf]|f + |(u-|^v-|i) 
J 0 

(37B) 

WK^hh 
which is seen to be a generalized transonic small disturbance equation for 
either a 2-D or axi-symmetric rotational perturbation field in a parallel 
background flow M0(y).    Proceeding in a similar manner, the application of Eq. 

(35) to the small disturbance field yields the following approximate linear- 
ized expression governing the perturbation streamline slope v'/U0: 

^'IVo) + £ ir  vl .      aFf/3x,   [1 - M 2(y)  -  (Y - 1) ^-] (38) 

while the comparable perturbation version of (36) is found to be 

[1 - Mo2(y) - (y + 1) ^ Mo
2J -^- + ^ - (2 —g—- - -p —) ^7- 

- ^P0M02(y){[f + (Y + 1) M0^][^ (i^) - i^V] (39) 
^0 0 

+ IT ^^l^Sy, ' 3 ^-T~, ^—F~, J' 

where   the   RHS   here   is   evidently   a   kind   of   accoustical    source-disturbance 
associated uniquely with the 3-D geometry in a compressible flow. 

Equations (37B), (38) and (39) are the three basic equations governing the 
transonic interactive-small disturbance field (u', v', p') in both the outer 
and middle decks on either 2-D or spinning axi-symmetric bodies at zero angle 
of attack. They offer the advantage that the three-dimensional effects appear 
explicitly and hence their influence can be assessed directly. 

2. Influence of 3-D Effects. In preparation for examing these interac- 
tion equations, we first evaluate certain terms that appear in the coeffi- 
cients.    Using r = rB(x) + y coseB with rB the body radius and 

tan6B = drg/dx, we obtain 
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de. 
i^- r-i tan6R  [1 - (r - rR)-^1 (40A) 

sineB/rB near body      (40B) 

ii§ taneB far from body      (40C) 

and 

M^ - coseB/r (41) 

Now  consistent  with   our   previous  neglect   of   longitudinal   curvature   terms   in 
the governing equations, we may also neglect such terms here (i.e., those 
~ d8B/dx);  thus r"1  9r/3x has  at most the  "near  body"   value  (40B)  while  being 

considered   negligible   in   the   far   field  according  to  (40C).     Using  Eqs.   (40) 
and (41)  we further obtain the estimates 

^(iCZi*)  _  (inpX)2 . -zr-^ sin2 eB      near body      (42A) 

in far field      (42B) 

and 

T^y-h^^y-' 3rB-2 sineB coseB     near  ^      (43A) 

= 0 in far field      (43B) 

tit 

where we note that for body regions where eB« 1  the values given by Eqs.  (42) 
and (43)  are very small  indeed. 

Now   consider   the   transonic   small   perturbation   Equation   (37B),   which  we 
u'   Su" 

note includes shock jump effects via the non-linear term (y +  1)  M ^ TT--r—. 
O     U_   oX 

0 
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Within the near field region y <  &    pertaining to the middle deck, we have the 

order of magnitude estimates that 

3v73y andM0?0f   ~  f 
o o 

(44) 

which in turn show that for slender bodies the explicit 3-D term in Eq.  37A is 
of order S/rn smaller  than the  remaining terms  and hence can be  neglected in 

the   leading   approximation   for   high  Reynolds   number   turbulent   boundary   layer 
flows   where   typically ^ /rR <  .05 -  .10.     This   implies   that   the   important 

middle  deck   region  is  dominated  by  the  two-dimensional   aspects  of the  short- 
scale interaction.    Turning to the intermediate field region y ~ rR ~ r within 

the  inner portion  of the outer deck,  we  have  the order of magnitude estimates 
that 

3y ~ r. 
{45A) 

(Y+  1)1^ ^M 2~v.rB      ^ {45 ) 
v '   8x   UT   o       Xinter rD 

K      ' o B 

T^'IJ* v'ly'~(sineB+1'^ (45c) 

where Xinter is the streamwise scale of the interaction. Since 
5 < Xinter/6o < 10 is much smaller than rB/6  in practical applications, we 

see that the term (45B) is much larger than the other two, again implying as 
far as Eq. 378 is concerned that the local physics is predominantly two- 
dimensional when we include the local transonic shock jumps (as indeed we do) 
in the treatment of the outer deck. In the far field region y ~ r > Xinter in 
the outer portion of the outer deck, we estimate that 

3v'  v' 
3y   r 

9u' u' ,, ? _.  r  v- 

(46A) 

0 
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7^^+ v^)~(sineB+1)f (46C) 

which for r > Xinter are all of the same magnitude (except for u'9r/3x). 
Consequently, in this region the explicit radial spreading term v'8r/3y in Eq. 
37B now becomes of the same order as the remaining 2-D terms in governing the 
inviscid disturbance field; as is well-known the axisymmetric geometry does 
indeed influence the asymptotic behavior in the far field by increasing the 
disturbance decay rate over the 2-D result. In the present application, how- 
ever, where the finer details of this weak far field behavior are not of 
interest nor of too much consequence as regards the aerodynamic forces and 
moments, we shall still neglect the explicit 3-D term in the outer deck solu- 
tion of Eq. 37B. Indeed, any modest errors involved in this approximation are 
counteracted by the fact that the resulting "locally-2-D" interaction is 
centered about the correct shock position from the axisymmetric body inviscid 
solution. 

A similar examination of the disturbance streamline relationship (38) 
using the order of magnitude estimates (40) - (46) yields the same conclu- 
sions: the explicit 3-D geometry terms are an order of magnitude smaller than 
the remaining interaction-effect terms in both the middle deck and near-field 
portion of the outer deck, and only in the far-field region y ~ r > Xinter of 
the outer deck (where in fact v' is quite weak) is the 3-D spreading term in 
(38) important. An examination of the pressure perturbation Eq. (39) again 
using (40) - (46) shows that the entire RHS is negligibly small for slender 
bodies regardless of the y scale, the only explicit 3-D term of possible 
significance being the radial spreading effect in the coefficient of 9p/9y on 
the LHS. By the aforementioned arguments, this latter effect is important 
only in  the  far-field weak-disturbance region of the  outer deck. 

To summarize, it has been shown that for high Reynolds number transonic 
flows on slender axisymmetric bodies of practical interest the dominant shock- 
boundary layer interaction physics is locally two-dimensional except in the 
weak far-field region of the outer deck where the explicit 3-D spreading- 
effect terms are influential in determining the asymptotic disturbance decay. 
Consequentially, to a good engineering approximation in treating the local 
shock-boundary layer interaction effects on projectile flow fields of prac- 
tical interest, the 2-D form of the interaction equations (as solved already 
in Ref. 6) may be used on slender bodies of revolution as well. Indeed, 
unless the finer details of the far field are of interest (as for example in 
sonitc boom determination) the resulting minor errors are alleviated by the 
fact that both the coefficients in these 2-D equations and the far-field 
inviscid shock location fully include the axi-symmetric geometry effects. In 
a similar vein, it was shown that in practice body spin adds no explicit new 
terms to the governing equations for flight at zero angle of attack; the only 
effects (which we fully account for) are those implicit through the spin 
effect on the boundary layer properties that appear as coefficients in the 
disturbance equations. 
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C.    The  Inner Shear-Disturbance Deck 

The   extreme   thinness   of   this   sublayer   immediately   justifies   the   neglect 
therein   of   transverse   curvature   effects   [i.e.,   r  - rJx)],   lateral   pressure 

gradients and temperature variations above the adiabatic surface. We may also 
use the boundary layer-approximation to the shear stress field. Talcing the 
layer to lie within the Law of the Wall portion of the incoming turbulent 
boundary layer as in the 2-D case, then, the appropriate governing equations 
of the total interactive flow on a spinning axi-symmetric body at zero angle 
of attack  become: 

_i(r
e 

9x^rB ")-B^0 (47) 

dr, 
8u 8u e       B    o   , _i   3p 3   r \   8ul 

" "37 +   v ly " FB-^ w2 +  pw0  ' ^ ^  t\ +  eTj lyl 
(48) 

aw. 3w, dr 3W. 
Uo -H + Vo -3^ (% ^ + Vo -^  WO - 1* ^\ + %,  ) I?"        (49) 

3p 0; P = p w(x) 
(50) 

where  Eq.   (49)   governs  the  distribution  of the  spin-induced cross  flow w0(y) 

in  the  incoming non-interacted boundary  layer.     Here PW    and vw   are the den- 
o o 

sity and kinematic laminar viscosity coefficient, respectively, based on adia- 
batic   wall   conditions, e-r     and e-j-     are   the   streamwise   and   circumferential 

eddy  viscosity  functions,  respectively,  and the known pressure pw(x)   is  given 

by the solution along the bottom of the middle deck. In the light of the 
results from previous boundary layer studies on spinning projectiles1, it will 
be assumed here (excluding abnormally-high spin rates and/or extremely slender 
bodies) that neither the axi-symmetric geometry nor spin fundamentally alters 
the turbulent structure near the wall; accordingly it is sufficient for the 
present purposes to adopt the isotropic VanDriest-Cebeci  eddy viscosity model 

Txx      Tcjxj) 

-y/L, 
= k2y2 (1 - e       ^ 

D 2 A 3w 
(51A) 

with 
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LD = A vo (Tw   ^wo)"172 (51B) u     w  w'T0T W0 

W'T0T   Wx    % 

where TW = ^ (3u/3y)w. TW = ywo (8w/3y)w. k = .41 and A = 26. 
X cp 

Consider first the undisturbed zero pressure gradient flow in the incoming 
turbulent boundary layer close to the wall. Although the presence of cross 
flow w0(y)   due   to   spin  alters  the  usual   constancy  of total   shear  across  the 

Law of the Wall  region (as can be seen from Eqs.  (48)  and (49)  with 
wo = wo^ + wo'(0)y' wo^  ~ " rB in   the   left   hand   sicles)»   further   analysis 
shows this effect to be negligibly small   for the high Reynolds number-spinning 
slender  body  flows  of practical   interest.     Hence  to a good approximation the 
undisturbed   profiles   U0(y),   w0(y)   obey   the   following   relations   obtained   by 

integrating Eqs. 48 and 49 after neglecting their left hand sides: 

[v      +   eT (y)]  *J2 «. t       /p (52) 
i ow        T        VJ/J dy w    'wo v    ' xx J xo 

dw 
fv      +   eT (y) I -r-^ « T      to f53) L ow        T^^     ^^J^T       w,, /Mwo \o:'' 

Hn *o 

where e-p       and ej       are  given  by  Eqs.   (51)   with U(y)   = U0(y)   and where the 
xx0 H0 

wall   stress ratio a =  (TW    /T    )    is presumed a known function of Wg = wo(0)  = 
*       x 

Q rB which vanishes as wR ♦ o. 

We now imagine the shock-boundary layer interaction process to induce 
small perturbations u' = u - U , v' = v, p' = p - p without, however, affect- 

ing the cross flow (w' = o, see above). Then restricting attention to the 
non-separating case by linearizing these disturbances in the first approxima- 
tion and utilizing the parallel shear flow approximation (Vo = 3Uo/3x « 0) for 
the undisturbed flow consistent with Eqs. 52 and 53, Eqs. 47 and 48 yield the 
following disturbance flow relations: 
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TT + lf+T-J"'  sineB+ V'C0SV =0 W 
B 

uo^ + v ST   ^r ~^y u o  + (T+^)eT J IT1 {55) 
J J w 0        J 

eT   = k2y2  [1 -  EXP  (-/U^ y+/A)j2 /I+S2 (56) 

where 

dw0/dy 
(57) 

is a measure of the local spin-induced cross flow angle, which evidently 
influences the streamwise turbulent stress perturbation field near the sur- 
face. Since a for practical spinning projectiles is typically quite small 
(a < .05) ^ however, it is seen that its effect (~ a*) on the inner disturb- 
ance solution is negligible: Eqs. (54) thru (56) thus reduce to their non- 
spinning form. 

We now assess the explicit influence of axisymmetry on the inner solution, 
which as can be seen enters only via the disturbance continuity equation (54). 
That this influence is negligible for slender bodies over the relatively short 
streamwise scale Xinter and very small inner deck height scale 6<,. can be 
established by comparing the following order of magnitude estimates of the 
various terms in Eq.   (54): 

9u' u' en^    -a u' „.  Q    Xinter -~~ ~ Tn—r—     vs.     — U    sin9n ~ Tj-r-r— • sineD  
ax       Xinter rB B     Xinter 8      rB 

9v'      v' e      -        a        V'        &Sl vs.     — v   cose. 

(58) 

3y        6SL rB B      6SL      rB 

Clearly,   when   Xinter/rB and <So/rB are   small,   the   last   terms   in  Eq.   (58)   are 

negligible for slender bodies and Eqs. (54) thru (56) thus reduce to their 
two-dimensional form (with however the coefficients based on spinning axisym- 
metric solution values); like the outer and middle decks, the dominant inter- 
action physics of the inner deck  is locally two-dimensional. 
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D. The Overall Displacement Thickness 

The integrated continuity equation across the boundary layer region on an 
axisymmetric body yields the following general expression for the total dis- 

placement thickness 6* =  /o(l --^j^) dy assuming isentropic inviscid flow 

along the boundary layer edge: 

d6* 
dx ue      v ' uYMe^ '      p B 

(59) 

where ve/ue is the streamline slope at the edge and where the transverse 
curvature   effect   in   the   integrand   has   been   neglected   for 6/rB « 1.     The 

corresponding interactive small perturbation part of Eq. (59), using the 2-D 
version of Eq. (38) integrated across the boundary layer, gives the local 
interactive displacement thickness increase as 

dx TJeT     v o       o;     ^Ref   \      p 

drB/dx 
'+  e- (A6 - A6*) (60A) 

B 

/ 
60 

•^w.eff 
[i^Ml* + «0 - ^ 

,A6  -   A6*N      .   D +  e  ( )   sine. 

Me? - 1 dp^/dx 

(60B) 

Now the first bracket on the right side of Eq. (60B) contains two contribu- 
tions from the interactive pressure field; the first involves a Mach number 
profile integral across the middle deck plus the inner deck contribution from 
the non-zero layer limit yw eff as previously explained, whereas the second is 

a purely inviscid mass  flow effect.    The  last term on the right constitutes a 
small   explicit   contribution   from  the   axisymmetric   spreading  effect  which   is 
negligible   in   our   applications   because   it   involves   the  product  of two  terms 
which are both very small  in the interaction regions on a slender body at high 
Reynolds   numbers;   discarding   it   thus   leaves   the   two-dimensional   form  of  Eq. 
(60B)   in  which   axisymmetry  and   spin  effects  are   implicitly  accounted  for  in 
the coefficient values of 6o,  6o*,  Mei, p' and Mo(y). w 
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IV.     COMPOSITE VISCOUS-INVISCID  FLOW  FIELD  MODEL 

A composite model of the complete flow field around spinning projectiles 
at supercritical flight speeds has been constructed which utilizes the forego- 
ing shock-boundary layer interaction theory as a locally-imbedded interactive 
module astride each body shock location (see Figures 1, 3). We now describe 
the other components of this model and how they are coupled with the interac- 
tion zone solution. 

A.    Inviscid Solution 

The inviscid flow calculations are treated by the method developed by 
Reklis, Sturek, and Bailey5 involving the numerical solution of the transonic 
small disturbance equation for the velocity perturbation potential o which in 
cylindrical  coordinates is 

[(1-M*)  - M^ (Y+l)*x]<txx + \r +  *r/r +  *.J r2 = 0 (61) 

This equation is a second order nonlinear partial differential equation of 
mixed elliptic/hyperbolic type; the type changes to match the physical differ- 
ences between regions of subsonic and supersonic flow. 

Equation (61) generally yields adequate predictions of the inviscid flow 
about a projectile shape such as that studied here. Certain regions of the 
flow require some "modeling", however. The wake is simulated by a necked-down 
extension from the boattail base smoothly-fared into a cylindrical sting over 
a distance of two calibers; the base flow is thus modeled as an extended 
sting. A review of free-flight shadowgraphs for projectile shapes at transon- 
ic speeds does show the wake flow to follow near the boattail angle for a 
distance of one to three calibers before turning parallel to the flow direc- 
tion, but of course the wake vorticity which physically exists is not account- 
ed for. Moreover, this obviously ignores the wake momentum defect and hence 
the base contribution to the overall drag, as well as slightly over-estimating 
the pressure rise and hence the boundary layer thickness growth and skin fric- 
tion drop near the end of the boattail owing to neglect of the base pressure 
upstream influence. However, for the present purposes where drag prediction 
is not of primary interest,  these  shortcomings are  not deemed too  significant. 

In order to develop a "conservative" algorithm to solve this equation 
special care must be taken at transitions between subsonic and supersonic 
flow. Non-conservative forms of the algorithm, however, often give better 
agreement with experiment because the breakdown in conservation approximates 
the effect of the shock obliquity resulting from shock-boundary layer interac- 
tion (see below). The algorithm used here is therefore a non-conservative one 
for purposes of a first order composite flow model. Consistently, first order 
boundary condition relations have been used with 120 streamwise grid points 
along the body length with higher concentration in the corner/shock inter- 
action regions. 
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B. Boundary Layer Theory 

Turbulent boundary layer flow computations were made by an extension of 
the method originated by Dwyer and Sanders1'34. In this technique the bound- 
ary layer equations for the conservation of mass, momentum, and energy are 
solved with an implicit finite difference technique. The solution begins with 
the development of an approximate boundary layer profile at the tip. The 
solution is then marched along the body from nose to tail. At each step along 
the way a two point boundary value system is solved with conditions given at 
the body surface and at the boundary layer edge. The possibility of body spin 
is accounted for and care is taken in setting up the difference equations 
which are solved to maintain differencing in the correct direction to maintain 
stability. The solution is started at the body nose tip with the assumption 
that it is a cone and that the boundary layer solution is self similar along 
rays through the cone tip. This assumption is strictly true only if the flow 
at the tip is supersonic. Errors will damp out as the solution proceeds down 
the body, however, and even when the tip is emersed in subsonic flow the 
starting conditions obtained from this method have been satisfactory. Turbu- 
lence is accounted for by use of a turbulent shear stress model with Van 
Driest damping. This model has proved suitable for use in cases of supersonic 
flow and is carried over directly to the transonic regime. Although this 
method of solving the boundary layer equations has been used for cases of 
supersonic flow over projectiles1 in the past, this was the first use of 
Dwyer's method for problems in transonic flow. 

C. Imbedded Local   Interaction Solutions 

The presence of a local compression shock abruptly terminating the local 
pocket of supersonic flow following both body corners is identified and loca- 
ted by the inviscid solution code and used to call the interaction solution as 
an interuptive subroutine centered about each such shock location, using the 
appropriate local pre-shock Mach number from the code as a driving input to 
the solution. When inserting the interaction we account for the fact that the 
non-conservative inviscid code gives shock strengths slightly less than the 
full Rankine-Hugoniot normal shock jump assumed in the interaction solution by 
correcting   the   pre-shock   Mach   number   M^   used   in   the   latter   solution   to  the 

value pertaining to a slightly oblique attached shock that produces maximum 
post-shock flow deflection; this method, which is strongly supported by a 
correlation of experimental evidence by many investigators (see e.g., Ref. 33 
and Figure 11), yields 

Mi eff » Mi  sin(90 -  37.8 /Mi -  1   ) (62) 

S4.    Dwyev,   H. A.,  and Sand&vs,  B. R.j   "Mapnus Forces on Spinning Supersonic 
Cones.    Part I.    The Boundary Layer*   AIM Journal 14,  April 1976, 
p.  498, 
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The additional required inputs of the incoming boundary layer displacement 
thickness and shape factor are given by the aforementioned turbulent boundary 
layer code that has been simultaneously calculating along the body. The 
interaction subroutine replaces the boundary layer code over the range of the 
interaction with a complete description (if desired) of the local small scale 
interaction wall pressure, displacement thickness and skin friction distribu- 
tion (such as those shown in Figure 6), plus the final post-interaction values 
of 6*, Cf and the (subsonic) inviscid edge conditions needed to restart the 
turbulent boundary layer code downstream. This method of introducing the 
interactive solution allows us to account not only for the rapid displacement 
thickness growth in each interaction but also for the attendant interactive 
distortion of both the skin friction and profile shape. Moreover, the import- 
ant influence of these changes on the subsequent boundary layer development 
downstream is included in appropriate post-interaction reinitialization of the 
turbulent boundary layer calculation. Consistent with the turbulent boundary 
layer model employed within the interaction theory to fit the pre-interaction 
flow conditions, this reinitialization is carried out at the first post- 
interactive streamwise station by means of the compressible version of Walz's 
general composite Law of the Wall - Law of the Wake velocity profile model 
(Appendix A) with the profile parameters chosen to match the post-interactive 
values   of 6*,  C^  and  Me   given   by  the   local   interaction   solution,   leaving  the 

wake function and shape factor to take their consequent highly non-equilibrium 
post-shock values. Given this profile fit, the turbulent boundary layer code 
then marches downstream. 

It should be noted that since the interaction zones on practical artillery 
shell result from the rapid overexpansion-recompression regions following the 
ogive-cylinder and ogive-cylinder-boattai 1 junctions (see Figures 1 and 10) 
the aforementioned general turbulent boundary layer profile model in the 
interaction module is required to account for the important effect of the 
rapid shape factor variation along these regions. This implies that a suffi- 
ciently large number of small boundary layer x-steps be concentrated in such 
regions. On the other hand, these corner-zones simplify the flow problem as 
well: they fix the shock location nearly independently of the viscous dis- 
placement-thickness effects. An illustration of this is shown in Figure 12, 
where typical Navier-Stokes code pressure distribution predictions35 at dif- 
ferent Reynolds numbers are shown to be close to the inviscid result as corro- 
borated by experiment. Thus, in contrast to the case of a supercritical wing 
where the shock location and strength are unknown a priori and significantly 
influenced by boundary layer displacement effects (thereby requiring a global 
viscous-inviscid   interaction   calculation36),  the   present   problem   to   a   very 

35.    Nietubiez,   C. J.,  Pulliam,   T.  H.}  and Stegev,  J.  L.,   "Numerical Solution 
of the Azimuthal-Invaviant Thin-Layer Navier-Stokes Equations ," AHBRL-TE- 
02227,  March 1980.    AIAA Paper 79-0010,  January 1979. 

26. Stanewsky, E., Nanandan, N., and Inger, G. R. firoc. AGARD Symposium on 
"Computation of Viscous-inviscid Interactions* AGARD CP-291, Colorado 
Spring,   September 1980. 
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good  approximation   can   take   the   shock   location   given   by  the  purely  inviscid 
solutions without any global  iteration. 

V.    DISCUSSION OF THEORETICAL RESULTS AND  COMPARISONS WITH  EXPERIMENT 

The present composite viscous-inviscid interaction theory has been devel- 
oped into a global flow field prediction computer code that is fully opera- 
tional at BRL. It has been exercised on a number of supercritical projectile 
cases at zero angle of attack, for which experimental data has also been 
obtained; following a brief description of these experiments, we will present 
comparisons below. We will also compare with predictions based on a thin- 
layer Navier-Stokes numerical code used by BRL. Finally, we will show some 
interaction-effect predictions in the presence of projectile spin. 

A. Experimental  Data. 

To provide a sound validation base for the development of accurate theo- 
retical prediction methods, a concurrent experimental transonic research pro- 
gram on a typical modern projectile shape (Figure 13) was carried out by BRL. 
The primary experimental data consisted of surface pressure and turbulent 
boundary layer profile surveys along the aft portion of a non-spinning model 
obtained during two different types of tests. In the first series, a pres- 
sure-tapped three foot long sting-mounted model was tested by Danberg3' in 
the NASA Langley Research Center's 8 foot transonic tunnel at a Reynolds 
number of 13 x 106/M over a Mach number range .8 < M^ < .97. The boundary 
layer surveys were made along both the boattail region and some upstream 
stations on the cylindrical portion using the sting-mounted total head probe 
shown in Figure 14. In the second test series38, a one foot long model was 
surveyed in the Naval Surface Weapons Center White Oak Supersonic Wind Tunnel 
#2 at ReL = 4.5 x io6 and M^ =  .908 using a Laser-Doppler Velocimeter. 

B. Thin-Layer  Navier-Stokes  Code. 

The Navier-Stokes code with which we have compared in this study is the 
n-invariant or Generalized Axisymmetric version35. This code solves the thin- 
layer Navier-Stokes equations which are cast in strong conservation form. The 
formulation allows for arbitrary body geometries and is solved using an 
implicit approximate factorization finite difference scheme. The "thin-layer" 
approximation used requires Re » 1; all the viscous terms in the coordinate 
direction along the  body  surface are  neglected while  terms  in the near normal 

2>7.    Danhevg,  J.E.,  Reklis,   R.P.,   and Ingev,   G.R.,   "Pressure Distributions and 
Boundary Layer Profiles on a Yawed Projeetile at Transonic Speeds ," 
University of Delaware Teahnioal Report No.  226,   Department of Meahaniaal 
and Aerospace Engineering,  April 1979   (see also AIAA Paper 79-1551,  July 
1979). 

33.    Nietubias,   C.J.,   unpublished wind tunnel data.    To be published as a BRL 
Memorandum Report. 
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direction to the body are retained. This approximation is used because, due 
to computer speed and storage limitations, fine grid spacing can only be pro- 
vided in one coordinate direction (usually taken as the near normal direction) 
and the grid spacing available in the other two directions is usually too 
coarse to resolve the viscous terms. The numerical algorithm used is a fully 
implicit, approximately factored finite difference scheme (more details of the 
numerical method, algorithm and boundary conditions can be found in Reference 
35). The numerical grid used for all the Navier-Stokes computations is shown 
in Figure 15. The computational region has been extended to four model 
lengths in front of and four model lengths behind the projectile. The far 
field boundary has been set at five model lengths. Such an extensive domain 
is used to eliminate the possibility of any wave reflection back on to the 
model. The dark band of lines near the model surface results from a cluster- 
ing of grid lines which are required in order to adequately resolve the bound- 
ary layer region. The minimum spacing at the wall was .0002 model diameters, 
which resulted in at least 3-5 grid points being in the laminar sublayer. The 
total number of points in the normal direction was 40. There were 78 grid 
points in the longitudinal direction with clustering taking place at X/D = 3.2 
and 5.3, near the ogive and boattail junction, respectively. 

C. Comparisons of Theory and Experiment 

1. Pressure Distributions. A typical comparison at M^ = .95 of the 
present composite theory prediction vs. that from the parabolized Navier- 
Stokes code is shown in Figure 16 to illustrate the acceptable accuracy of the 
inviscid transonic small disturbance theory embodied in the former. Further 
comparisons between the two methods and with the experimental data are shown 
in Figures 17 for several other Mach numbers, where is it seen that overall 
both predictions agree well with the data. The two rapid expansion regions 
followed by recompression shocks, associated with the body geometry disconti- 
nuities, are clearly evident in the theoretical curves and are fairly well 
modelled by both theories in view of the rapid streamwise changes involved. 
The slight differences between the two depend somewhat on the mesh sizes used 
and also on the fact that the shock position of the composite solution has not 
been iterated with the global boundary layer displacement effect (as explained 
above) whereas the Navier-Stokes solution automatically includes this effect. 

2. Boundary Layer Velocity Profiles. Figure 18 presents comparisons for 
a typical M^ = .94 flight case of the theoretical and measured boundary layer 
velocity profiles at three stations behind both the ogive-cylinder and the aft 
cylinder-boattail junctions. Overall, it is seen that the composite and thin- 
layer Navier-Stokes solutions are in reasonably good agreement with each other 
and the data as regards the general shape and streamwi se-evolution of the 
boundary layer, although there are some minor detailed differences which, 
viewed in the light of the customary experimental uncertainties involved, 
appear minor. As expected, the greatest discrepancies are found at the most 
aft station near the boattail base where there is very likely some theoretical 
error due to the crude base-effect model plus some possible experimental inac- 
curacy due to probe interference effects in the boattail interaction region37. 
Figure 19 presents analogous comparisons illustrating the same conclusions at 
the slightly higher flight Mach number M^ = .97. 
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3. Displacement Thickness Distributions. Figure 20a illustrates the 2-D 
displacement thickness growth along the projectile at M^ = .94 predicted by 
the composite theory; it indicates a significant interactive thickening effect 
across each shock zone, although this is somewhat mitigated (especially on the 
boattail) by the thinning effect of the preceding sharp expansion regions. 
In Figure 20b we compare with the thin-layer Navier-Stokes code prediction and 
with experimental values in the boattail region calculated from the velocity 
profile data. The two theories are in reasonably good agreement with experi- 
ment bearing in mind the joint analytical - experimental uncertainties in the 
aft part of the boattail. The most notable theoretical difference is that 
while the composite solution shows a rapid rise in displacement thickness 
across the first shock location and then a gradual increase until the expan- 
sion of the second corner is felt, the Navier-Stokes results show a continuous 
increase in displacement thickness over the cylinder portion. This difference 
is attributable to the fact that the displacement thickness Is difficult to 
define In the Navier-Stokes calculation because it does not distinguish the 
boundary layer per se as does the composite method. 

Further comparisons for the lower flight Mach number case M^ = .908 are 
given in Figure 21, showing similar features and good experimental corrobora- 
tion (especially of the composite theory's predicted interactive 6*- rise) on 
the aft part of the cylindrical   section as well  as on the boattail. 

4. Skin Friction Distributions. Although no experimental values are 
available for comparison, it is nevertheless Instructive to examine the theo- 
retical predictions for this Important and sensitive property as a means of 
assessing code performance and the effects of shock-boundary layer interaction 
including regions of likely incipient shock-induced local boundary layer sepa- 
ration. Indeed, the prediction of skin friction behavior is usually the most 
demanding test of any theoretical method; this is particularly true in the 
present application because of the two regions of rapid expansion/compression 
along the body. Typical results are Illustrated in Figure 22 for the M^ = 
.908 case, where It can be seen that both the composite and Navier-Stokes 
solutions   indicate   a   sharp   C^  rise   in   the   expansion   zones   at   both   corners 

followed immediately by rapid Cf decrease in the shock-interaction zone with a 

subsequent downstream recovery. The composite solution predicts noticeably 
larger peak values of these maxima and minima then does the Navier-Stokes 
code; however, part of this difference is seen to be due to the latters' 
underprediction of the upstream turbulent skin friction level along the ogive 
section; when this discrepancy Is corrected for, the two methods are seen to 
be in good quantitative (as well as qualitative) agreement, especially consi- 
dering the severe C^ changes Involved. 

Similar conclusions may be drawn from the predictions illustrated in 
Figures 23 and 24 for M^ = .94 and .97, respectively. In all these results it 
can be observed that the shock-boundary layer interaction zones noticeably 
reduce  Cf well   downstream of the   shock.     Moreover,  this effect Is especially 

strong in the boattail region where shock-induced local separation appears 
imminent. 
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D.    Predicted Interaction Effects in the Presence of Spin 

Although experimental data and Navier-Stokes calculations for spinning 
bodies at transonic speeds are presently not available, it is nevertheless 
interesting to examine the influence of spin on the interactive flow field 
predicted by the composite viscous-inviscid solution. Accordingly, the 
effects of increasing spin rate a were studied for a typical full scale pro- 
jectile flight case; the results are presented in Figures 25a-c for the 
streamwise distributions of boundary layer shape factor, displacement thick- 
ness and skin friction as a function of «. It is seen that spin rates of 10 
to 15 thousand RPM or higher exert a modest but discernible influence that 
enhances the interactive thickening on both the cylinder and boattail regions, 
along with  an  attendant  reduction  in  shape  factor and some  increase  in  Cf in 

the upstream ogive region. It appears questionable, however, whether the 
magnitude of these spin effects on the interaction could be distinguished 
within the typical  uncertainty level  of experimental  measurement. 

VI.    CONCLUDING REMARKS 

This report has presented a detailed triple-deck theory of the transonic 
shock-nonseparating turbulent boundary layer interaction zones on spinning 
axisymmetric bodies at zero angle of attack. The theory allows a rather 
general non-equilibrium turbulent boundary layer history upstream of the 
interaction. We further described the application of this theory as a local 
interactive model imbedded in a global composite viscous-inviscid transonic 
flow field prediction method which can handle two or more such interaction 
zones. Detailed comparisons with both experimental data and thin-layer 
Navier-Stokes code predictions were presented to verify the accuracy and 
reliability of the composite method solutions for pressure, displacement 
thickness, velocity profiles, shape factor and skin friction distributions 
along the body over a wide range of Mach/Reynolds number conditions. 

Desirable improvements in the present work would include extension to the 
case of small (a < 30-40) angles of attack and better treatment of the aft 
region near the base to account for the upstream influence and true flow 
conditions there. 
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LIST OF SYMBOLS 

A Van Driest-Cebeci  wall  turbulence damping parameter 

Cf skin friction coefficient, 2T
W/Pe    Ue 

2 

o  o 

C0 pressure coefficient, 2 p'/p     U 2 

p eo eo 

H boundary layer shape factor, 6*/6* 

H-j incompressible shape factor 

M Mach number 

p static pressure 

p1 interactive pressure perturbation, p-p-j 

Ap pressure jump across incident shock 

Re  , Re. Reynolds number based on length  I and boundary layer thickness, 
respectively 

T absolute temperature 

T basic interactive wall-turbulence parameter  (see  Eq.  23) 

u1,  v1 streamwise and normal   interactive disturbance velocity components, 
respectively 

U0 undisturbed incoming boundary layer velocity in x-direction 

x, y streamwise and normal  distance coordinates (origin at the inviscid 
shock  intersection with the wall) 

y effective wall  shift seen by interactive inviscid flow (see Fig.  3) 
weff 

Y specific heat ratio 

<S boundary layer thickness 

6* boundary layer displacement thickness 

6S, inner deck  sublayer thickness 

eT kinematic turbulent eddy viscosity 
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LIST OF SYMBOLS (continued) 

Ej1      interactive perturbation of turbulent eddy viscosity 

y/60 

v molecular coefficient of viscosity 

v u/p 

w viscosity-temperature dependence exponent, M ~ T^ 

P density 

6* boundary layer momentum thickness 

T total shear stress 

T
1 interactive perturbation of total shear stress 

Subscripts 

1       undisturbed inviscid values ahead of incident shock 

e       conditions at the boundary layer edge 

inc      incompressible value 

inv     inviscid disturbance solution value 

o       undisturbed incoming boundary layer properties 
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APPENDIX A 

COMPOSITE LAW OF THE WALL-LAW OF THE WAKE 

TURBULENT VELOCITY PROFILE RELATIONSHIPS 
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APPENDIX A 

COMPOSITE  LAW OF THE WALL-LAW OF THE WAKE 
TURBULENT VELOCITY  PROFILE RELATIONSHIPS 

Because of its convenient analytical form, accurately blended representa- 
tion of the combined Law of the Wall-Law of the Wake behavior and generality, 
we have adopted Walz's model32 for the incoming turbulent boundary layer up- 
stream of the interaction. For the low Mach number adiabatic wall conditions 
appropriate to transonic applications, it may be satisfactorily corrected for 
compressibility effects by the Eckert Reference Temperature method (which 
under these conditions is, in fact, comparable in accuracy to, but far simpler 
to implement than,  the Van Driest compressibility transformation approach). 

Let TT be    Coles    (incompressible)    Wake    Function,  n = y/S and   denote    for 

convenience R = .41 Re6o*/[(l + Tr)(Tw/Te)1 + ***] where 1/1    = 1 +   .18 Me? and 

a) - .76   for   a   perfect   gas;   then   the   compressible   form   of  Walz's   composite 
profile may be written 

2   = 1 + T^T   /TT^  [0  n2 (M + 27r ^ (3-2TI)  " 2ir 
oe 

(A-l) 

+   in  (^H)  -  (2.15 +  1.235 Rn)e"-3R,>] 

subject   to   the   following   condition   linking TT to   Cf0   and Re6 * that   derives 

from the u ■*■ ue matching condition at the boundary layer edge: 

2Tr +  2.15 +   In  (1+R)  =        •41 (A-2) 

A fO/Twv 
2  We; 

Eqs.  (A-l)  and (A-2)  have the following desireable properties:    (a)  for 
n > .10 or  so,  Uo  is  dominated  by  a  Law of the Wake  behavior which correctly 
satisfies  both  the  outer   limit  conditions Uo/Ue ♦ 1  and dU /dy ■>■ 0 as n > 1; 

(b) on the other hand, for very small n values, Uo assumes a Law of the Wall- 
type behavior consisting of a logarithmic term that is exponentially damped 
out extremely close to the wall  into a linear laminar sublayer profile U0/Ue 

- Rn as n ->■ 0;  (c)    Eq.    (A-l)    may   be   differentiated   w.r.t.  n to   yield   an 
analytical  expression for dU /dy, which proves advantageous in solving the 
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middle   and   inner   deck   interaction   problems   (see   text)   where dM0/dy must   be 
known and vanish at the boundary layer edge. 

The   use   of   the   incompressible   form   of   (A-l)   in   the   defining   integral 
relations   for 6-* and e.* yields   the   following   relationship   that   links   the 

wake parameter to the resulting incompressible shape factor H--^ = (<S^*/e^*)j: 

Hil "  1        2      /Tw Cf0    ,1+1.59TI+   .757r2> ,.  ,. 
wn   =T2n:/Ti"r [ m ' ^-6) 

Eqs. (A-2) and (A-3) together with the defining relation for R enable a 
general and convenient parameterization of the profile (and hence the interac- 
tion that depends on it) in terms of the shock strength Mej the local dis- 

placement thickness Reynolds number Re. *, and one additional physical para- 

meter upstream of the shock. This parameter is taken to be the shape factor 
H.j because it reflects the upstream history of the incoming boundary layer 

including possible pressure gradient and surface mass transfer effects. With 
this prescribed, the aforementioned three equations may be solved simulta- 
neously for the attendant skin friction value Cf0, the value of R and, if 

desired, the ir value appropriate to these flow conditions. 
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