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In the course of analyzing data under contract AF19628-
81-C~0141], an attempt was made to fit certain exponential
functions to number density data obtained from. axial scat-
%? tering spectrometer probes.

3
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These data were collected in supercooled clouds assoc-
iated with aircraft icing. It was noted that the distribu-
tion of the number density spectra in the size range of 2 to
30 microns diameter seemed to be describable by the Weibull
function or the Khrgian-Mazin! form of the gamma distribution.
The Weibull function has been used in time-to-failure proba-
bility analysis. These functions follow:

Weibull Distribution

- R - - b
NabxP~1 72X x>0 a>0, b>0

f(x) =_ (1)
0 x<0

where N is the distribution function

Further discussion of this Weibull function can be found in
Bethea et al.?

o~

1:1

Gamma Distribution of degree 2 (Khrgian-Mazin)'! <
E

. 3 - -

% x2e” 32X x>0 a>0 d

£(x) = ‘ (2) :

0 x<0 "

where N is the distribution function -
v

.

---------------------




Pt i e PRl

e i i i i Thage Bty Bt SAatS |

A T TV T Ve e At w TR TN e e e Ve Ay . e 2t

The method of least squares analysis can be used to de-
termine values of a and b in these functions. It is noted
that this effort will require extensive use of numerical
analysis to solve the resulting simultaneous non-linear
equations. In order to save computation costs it was decided
to utilize the maximum likelihood method (MLM) which has the
advantage of reducting most solutions to a closed form. The
maximum likelihood method (MLM) is described by Breiman?.
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In order to fit a function, f(x), to a data distribu~
tion (y)., one mathematical method which can be used is the
MLM. This method requires that, for the entire data distri-
bution, the sum of the products of each observed value and
the corresponding value of the function

n
T oy, £(x;)
i=1 "t

must be maximized.
Now, from equation 1, the Weibull is defined as:
b

f£(x) = Nabx> ™ le~2%¥

In order to fit this function to (xi,yi), where,

x; = channel i diameter
Y; = channel i normalized number density

"
N

P )

"a" and "b" must be solved. Since the In[f(x)] and f(x)

are maximized for the same values of "a" and "b", and since

£(x) is a product of functions of "a" and "b", it is easier

to solve for those values of "a" and "b" which maximize 1ln{f(x) ].

"]
'ﬂ
~
e

Therefore, since the MLM implies that the partial deri- g
vatives equal zero, "a" and "b" can be solved for by the fol- :
lowing equations: ;

7 :
v

....................

........
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" b
:_:_ 3 n _7 —ax
T; 3a i§1 yiln(Nabxib 1e 1) =0 (2)
and
3 n b-1 'ax?
3% iil yiln(Nabxi e ) =0 (4)

Solving equation (1):

b
3 n b-1_"2%j
3a .E yiln(Nabxi e ) =0
i=1
b
o 3 b-1_~3%;
z Yi) ErY (1n(Nabxi e )) =0

n
L (y,) %; (lnN+1na+lnb+(b-1)lnxi—ax?) =0

1
a

Solving for "a" yields:
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Similarly solving equation (4):

b-l -ax-

b
i, _
i e ) =0

3_

5 . yiln(Nabx

et

1

b1 ~2X;

(1n(Nabxi e )) =0

-~~~

]
Hv
3

(lnN+1na+lnb+(b-l)lnxi—ax?) =0

(=]
+
(™
QJIQJ
Loy

1 b
(5+lnxi—axilnxi)

i
o

1 n n n b
=~ I y.+ I y.lnx.-a I y.x.lnx, =0 (6)
b j=1 1 j=1 1 i j=1 1 i i

Now, substituting for "a" (from equation (£)) in equation (6)
and realizing that 2 Y # 0, yields:

X
i=1
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+

=0 (7)
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Since b cannot be solved for in closed form, a numerical
method must be used. One such method is the Newton-Raphson
method as described by Scarborough'. In applying this method,
let equation (7) equal g(b). Since the expression

~
[N
s
]
~

|.|.
a3l a3
(=]
~

[N
-
-

is a constant (K) for a given distribution, and independent of
the choice of a, b:

n b
pX yixilnxi
gb) = £ +k - £k
n .
y.xP
2y i

Now, to solve for the root, b, such that g(b) = 0, an initial
guess for g (bo) is made. Next, solve for bn+l where:

g(bn)
bn+l = bn - —_—_— and where (8)
q'(bn)

|bn+l-bn| < t. The object now is to define ¢ small enough

10

n
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so that b = b .- Since the Newton-Raphson method is

repetitive by nature, g'(bn) can be approximated without
significant loss of accuracy:

1im g(bn+E)-g(bn)
E>0 E

[ ] —
g (bn) =

Therefore, substituting this approximation for g'(bn) in
equation 8:

L SibyE

b = -
n+l n g(bn+E)-g(bn)

Letting E = .Ol(bn) yields:

g(b_) (.01) (b )

b =b -
ntl  “n g(bn+.01bn)—gTBn)

.Ol(bn)

g(l.OIbn)-g(BgT -
_ b =b - 5
& n+l n A
§ 9 () :
% ;
o -
S .01(b_) '
- b ,=b - L 3
L n+l n ~ g(I.0Ib ] g
) -1 '
N BN ) d
= .
;a With "a" and "b" defined, equations (5) and (9) respec-
f tively, only the independent factor N remains to be solved. )
Y .
P B
.
L'_‘_.
5 11
- ’
b‘ -
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Now, it can be shown that determining the value of N by
way of the MLM, as was done for "a" and "b" in equation 3 and
4, would result in the expression:

WS PTITD o SED LI

Since this expression is undefined for N, another method must
be utilized to determine N. Therefore, applying the method

of least squares to equation 1 and solving for N using partial
derivatives yields:

4
y

. =aX. n
-2yiabx"i’ 1o + I 2N(abx

b-1 -ax. n b-1 -ax?
y.X; e L =N(ab) I (x; "e ) 2,
11 i=1 1 1

s a ¥ 3 VR _SRaZakilv

P el D VNI

and solving for N yields:
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ITI. The Khrgian-Mazin form of the Gamma Distribution Function

The gamma distribution derivation is accomplished in a
manner similar to the Weibull function by fitting f(x) to
(xi,yi) by way of the MLM. Thus, given that:

( Na' -axi
x>0
£(x) = y T ¥ i - (2)
0 x<0

solving for "a" via partial derivatives yields:

3 n a! 2 -axi

7 L, Wilntgxyfe D) =0

r):'( a—-(1nu+1a'3+1x'- ) =0
jo1 YiTa Tz T oAnxyToaxy

I ASOREICUSANA,

Z Y; ((-*)(—-) - xi) = 0

gl

Y Al Cagae
y'.! IR NP
LN SULL LA R A

i=1
"
n ;
. Z Y (— -x,) =0 5
. i

[

b . duPl o
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! ) Solving for "a" yields:

(9)

Again, to avoid I y; = 0 the method of least squares
analysis is used to solve for N. Thus:

-ax.

3 al 2 Ly2 _
’éﬁ (YI-N(T) xi e ) =0

Mz

i=1

n 3 ~ax 3 -ax,
I 2yNEmxite hi-Z(xte 1) =0

i=1

al 2 _axi
LN (=3) x; e o
1

i3

3 .
w((Z)(x2e =0

[ It

1

Factoring out and cancelling 2a’ yields:

n -ax, 3
I y.x.2e l=n 2_
j=1 11 2

F and solving for N:
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IV. Analysis
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The Weibull and gamma distribution functions were applied
to axial scattering speétrometer probe data obtained from 26
discrete data gathering flight passes made by the Air Force
Geophysics Laboratory's instrumental Cl30-E aircraft during
the 1979-1980 winter. The instrument probe was designed to
collect data in the 2-30 micron range at 2 micron intervals.
The resultant 15 data values (channels) for each flight pass
comprised the raw data sets. However, due to the excessively
noisy data signal present in channel 1, these data were eli-
minated from the analyses. Thus data channels 2-15 were used

¥

. ray < MR ] '.','.' .
AN AUV

ORI

as input to the Weibull and gamma functions. B
A 4
In order to demonstrate the ability of each function to 4
approximate the number density distribution of each flight !
pass, Figures 1-3 are presented to compare the actual number ?
. density distribution for channels 2-15 to the modeled distri- _ ﬁ
f butions. In addition, the pertinent meteorological data (li- if
: quid water content and temperature) for each flight pass are ;
indicated on each figure. ﬁ
The distributions from the three flight passes illustrated 2
in Figures 1-3 were chosen to typify the range of liquid water %
content (LWC) and temperature values encountered during the 26 ﬂ
. flights. As the figures show, both functions approximate the ;ﬁ
number density distributions for channels 2-6 with similar ac- ?
‘ curacy, but the Weibull generally fits the data better than »

the gamma function for channels 7-9. However, as the number
density data levels off for channels 11-15, only the gamma
function consistently models this behavior in an acceptable
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manner. The Weibull's repeated tendency to approach zero at

a rapid rate for channels 13-15, 11-15, and 9-15 respectively,
necessarily eliminated it as the modeling function of choice. 3
(Note: number density values which are less than the lower

limit of the Y axis (1.0E-1l) were not plotted.) €
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The impact of this behavior on the overall performance

SIS

of the Weibull function is demonstrated in Figure 4, which
depicts each functions' log RMS value for each of the 26
flight passes. As can be seen from the figure, 23 of the 26
(88%) gamma RMS values are less than or equal to 2.0 cm > 1
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whereas only seven of the 26 (27%) Weibull RMS values are in
this category.

TE This dissimilarity in the performance of the two func-
tions prompted several analyses of the data to determine if
some relationship or correlation factor could be discerned

between a given data distribution and/or the meteorological
conditions (LWC and temperature), during which the data dis-
tribution was obtained. Among these analyses was the compa-
n? rison of the ratio of the number of LWC values above the

e median LWC value to the number of LWC values below the median
for each function. The same comparison of ratios was made
using temperature as the variate, with neither comparison

: evidencing a correlation between the magnitude of LWC or

s temperature values and the performance of the Weibull func-
tion. This lack of correlation between flight pass variables
and the Weibull performance held true for log RMS values both
b above and below the 2.0cm 3y~ ! delimiter.

i In addition, since the Weibull performed poorest for
data channels 11-15 (usually values < 100), an attempt was
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made to determine if the Weibull was sensitive to a particu-
lar range of data values less than 100. Despite the fact
that the Weibull attained log RMS values very close to those
of the gamma function for seven flight passes where channels
11-15 were in the 7-70 range (see Figure 4, passes 17-23),
there were an equal number of instances where the RMS values
deteriorated for flight passes where channels 11-15 were in
this same range. (Note: the two flight passes (2 and 14) for
which the Weibull attained the worst RMS values were considered
an inadequate sample on which to perform analyses. However,
it can be mentioned that the gamma function also attained its
worst RMS values for the same two passes, albeit an order of
magnitude difference exists between these values for the re-
spective functions.)
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conclusions

These observations and analyses indicate that for this
application, the gamma distribution function is a more accu-
rate and consistent modeling method with which to approximate
the data distributions. Subsequence analysis is planned to
develop a weighting scheme to refine these modeling techni-
ques.
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