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I. Introduction

In the course of analyzing data under contract AF19628-

81-C-0141, an attempt was made to fit certain exponential

functions to number density data obtained from. axial scat-

tering spectrometer probes.

These data were collected in supercooled clouds assoc-

iated with aircraft icing. It was noted that the distribu-

tion of the number density spectra in the size range of 2 to

30 microns diameter seemed to be describable by the Weibull

function or the Khrgian-Mazin' form of the gamma distribution.

The Weibull function has been used in time-to-failure proba-

bility analysis. These functions follow:

Weibull Distribution

~ab
f Nabxb- e x>0 a>0, b>0 %

0 x<0

where N is the distribution function

Further discussion of this Weibull function can be found in

Bethea et al.
2

Gamma Distribution of degree 2 (Khrgian-Mazin)l

a 2eax
N7 x>0 a>0

f(x) = (2)
0 x<0

where N is the distribution function

5



The method of least squares analysis can be used to de-
termine values of a and b in these functions. It is noted

that this effort will require extensive use of numerical

analysis to solve the resulting simultaneous non-linear

equations. In order to save computation costs it was decided

to utilize the maximum likelihood method (MLM) which has the

advantage of reducting most solutions to a closed form. The

maximum likelihood method (PILM) is described by Breiman3.

-.',
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II. Weibull Distribution Function

In order to fit a function, f(x), to a data distribu-

tion (y), one mathematical method which can be used is the

MLM. This method requires that, for the entire data distri-

bution, the sum of the products of each observed value and

the corresponding value of the function

~n n Yi f(x.)

must be maximized.

Now, from equation 1, the Weibull is defined as:

b-i a
f(x) = Nabx eaxb

In order to fit this function to (xi,Yi), where,

x - channel i diameter

yi = channel i normalized number density

"a" and Ob" must be solved. Since the ln[f(x)] and f(x)

are maximized for the same values of "a" and "b", and since

- f(x) is a product of functions of "a" and "b", it is easier

to solve for those values of "a" and "b" which maximize In[f (x)].

Therefore, since the MLM implies that the partial deri-

*: vatives equal zero, "a" and "b" can be solved for by the fol-

lowing equations:

7
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b-i ~x
Tai- Yi1n(1Nabx. e 0) (3)

anid

-axb
3b-i iEyiln (Nabx 1  e )=0 (4)

Solving equation (1):

a nb-I -ax i
aa EY iln(Nabxi e ~)=0

ba ~b-i1ax
ii *~(1n(Nabx. e )=0

E= 1 i) (lnN+lna+lnb+(b-l)lnx.-ax.) =0

1 b
E y. (- -x) 0

i=1 ia 1

n n

a i=l1 1

Solving for "a" yields:

8



A.0

n

a = 5 )

b
i=1 3.

Similarly solving equation (4):

b .

S n b-i ax,
yln(Nabx e ) = 0

* n (y)-ax 3b-i ii. 1y. - (ln(Nabx.-e-aX = 0
n a b

n
(v.) -- (lnN+1na+inb+(b-l)lnxi-axb) 0

n 1 b
Z (yi) (9+1nxi-axilnxi) = 0.* i=l *

1 n n n
Z Yi + Z yi inxi-a Z yixblnxi 0 (6)bi=1 i=1l i=l 1

Now, substituting for "a" (from equation (1)) in equation (6)

and realizing that n Y 0, yields:

l'. i=1

9
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n n bEYilnx i  E yiX ilnx i1 + i=l 1 =l =0 (7

i=l i=l

Since b cannot be solved for in closed form, a numerical
method must be used. One such method is the Newton-Raphson

method as described by Scarborough4. In applying this method,

let equation (7) equal g(b). Since the expression

n
SYi lnx.i=l 11

n
SYi

1=1

is a constant (K) for a given distribution, and independent of

the choice of a, b:
n b
E yixilnxi

1 i=l 1
g(b) = E + K - nb n

1.i= L

Now, to solve for the root, b, such that g(b) = 0, an initial

guess for g (bo ) is made., Next, solve for bn+ 1 where:

g(bn )
b . = gb - n) and where (8)i. n+1 n -''

bn+l-b nI < ;. The object now is to define c small enough

10



so that b bni Since the Newton-Raphson method is
repetitive by nature, gU(b n) can be approximated without

significant loss of accuracy:

rng(b +E) -g(b)

Therefore, substituting this approximation for g'(b n) in2
equation 8:

g(b )E
b n+i =bn g(b +E)-g(b

n n

Letting E =.01(b )yields:n

gO(b )0)bn

nl n g(1.Olb )-g(b)
n n n

.0(b )

*~lOlb )-
bn+l =n-g(Ob)

1 (9
n

Wihorad""deieeutos(5 n q epc

tiel, nl teinepndntfctr rman.t0b1slvd
nI

b bI
n~l n (I.Ol



Now, it can be shown that determining the value of N by

way of the MLM, as was done for "a" and "b" in equation 3 and

4, would result in the exprebsion:

Since this expression is undefined for N, another method must

be utilized to determine N. Therefore, applying the method

of least squares to equation 1 and solving for N using partial

derivatives yields:

3 n b-.-ax.
7 (y1-Nabxi e )2-0

il

n-ax. -a

n -ax.ax
E-yaxb-I e 1+ 2ab -i 12

Factoring out 2ab vields:

n b-ax ~ n b- 1

E y.X b- e = N(ab) E (x1 le )2

and solving for N yields:



.b-

b-bZ y~x-ae .

ab Z (xb- 1 e 12

1.3



MI. The IXhrgian-Mazin form of the Gamma Distribution Function

The gammua distribution derivation is accomplished in a
manner similar to the Weibull function by fitting f(x) to

(XjeY.) by way of the IM. Thus* given that:

t~3  -ax
f(x) xeXO(2)

0o x<O

solving for "a" via partial derivatives yields:

n

~a 3  lnx x 0

E (Yi (lnN+ln--i + I
2 3a'

ii 2

n n

14



T T

S Solving for "am yields:

n
3 E Y

w - i=l

Again, to avoid E yi =0 the method of least squares

analysis is used to solve for N. Thus:-

n 3 -ax.
~il(y -N (a )Xi2e 1)2 =0

n a ax a -ax.
E 2(y.-N(-2)xi 2e )(-2) (xi 'e 1)=0

i= 1

an -ax. an -ax.

y'i .) 2e 1+ Z 2N(( 2)(Xi2 e W)2 0

Factoring out and cancelling 2a' yields:

n -ax. a n -ax.
E yiXi2e 1  N- a (X 2 e 1)2

11 2

and solving for N:r

1.5



n -ax
2 YiXi

S n -ax (12)
a 3  X x 2 e ) 2

16
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IV. Analysis

The Weibull and gamma distribution functions were applied

to axial scattering spectrometer probe data obtained from 26
discrete data gathering flight passes made by the Air Force
Geophysics Laboratory's instrumental C130-E aircraft during

the 1979-1980 winter. The instrument probe was designed to

collect data in the 2-30 micron range at 2 micron intervals.

The resultant 15 data values (channels) for each flight pass

comprised the raw data sets. However, due to the excessively

noisy data signal present in channel 1, these data were eli-

minated from the analyses. Thus data channels 2-15 were used

as input to the Weibull and gamma functions.

In order to demonstrate the ability of each function to

approximate the number density distribution of each flight

pass, Figures 1-3 are presented to compare the actual number

* density distribution for channels 2-15 to the modeled distri-

butions. In addition, the pertinent meteorological data (li-

quid water content and temperature) for each flight pass are

$ indicated on each figure.

The distributions from the three flight passes illustrated

in Figures 1-3 were chosen to typify the range of liquid water

content (LWC) and temperature values encountered during the 26

flights. As the figures show, both functions approximate the

9 number density distributions for channels 2-6 with similar ac-

curacy, but the Weibull generally fits the data better than

* the gamma function for channels 7-9. However, as the number

density data levels off for channels 11-15, only the gamma

function consistently models this behavior in an acceptable

17
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manner. The Weibull's repeated tendency to approach zero at

a rapid rate for channels 13-15, 11-15, and 9-15 respectively,

necessarily eliminated it as the modeling function of choice.

(Note: number density values which are less than the lower

limit of the Y axis (1.OE-l) were not plotted.)

The impact of this behavior on the overall performance

of the Weibull function is demonstrated in Figure 4, which

depicts each functions' log RMS value for each of the 26

flight passes. As can be seen from the figure, 23 of the 26
-1 -

(88%) gamma RMS values are less than or equal to 2.0 cm 
3  ;

whereas only seven of the 26 (27%) Weibull RMS values are in

this category.

This dissimilarity in the performance of the two func-

tions prompted several analyses of the data to determine if

some relationship or correlation factor could be discerned

between a given data distribution and/or the meteorological

conditions (LWC and temperature), during which the data dis-

tribution was obtained. Among these analyses was the compa-

rison of the ratio of the number of LWC values above the

median LWC value to the number of LWC values below the median

for each function. The same comparison of ratios was made

using temperature as the variate, with neither comparison

evidencing a correlation between the magnitude of LWC or

temperature values and the performance of the Weibull func-

tion. This lack of correlation between flight pass variables

and the Weibull performance held true for log RMS values both

above and below the 2o0cm-3 i delimiter.

In addition, since the Weibull performed poorest for

data channels 11-15 (usually values < 100), an attempt was

22
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made to determine if the Weibull was sensitive to a particu-

lar range of data values less than 100. Despite the fact

that the Weibull attained log RMS values very close to those

of the gamma function for seven flight passes where channels

11-15 were in the 7-70 range (see Figure 4, passes 17-23),

there were an equal number of instances where the RMS values

deteriorated for flight passes where channels 11-15 were in

this same range. (Note: the two flight passes (2 and 14) for

which the Weibull attained the worst RMS values were considered

an inadequate sample on which to perform analyses. However,

it can be mentioned that the gamma function also attained its

worst RMS values for the same two passes, albeit an order of

magnitude difference exists between these values for the re-

spective functions.)

23
23
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V. Conclusions

j These observations and analyses indicate that for this

appl.ication, the gamma distribution function is a more accu-

rate and consistent modeling method with which to approximate

the data distributions. Subsequence analysis is planned to

develop a weighting scheme to refine these modeling techni-

ques.
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