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d" NOTATION

, A Wave action density, where A =E/cy

...:c phase speed for surface waves

c 9group velocity of Eq (6) for surface waves

d.' df fetch

""E local energy density

f(()) wind directional function of Eq (13)

F(k) energy spectral density of Eq (12)

g acceleration due to gravity

k wavenumber vector of magnitude k

-:m slope, see Eq (98)

;: n apparent or observed frequency of Eq (2) :

""N(k) spectral action density, where N(k) =F(k)/a

: S. source term of Eq (19), see also Eq (20) - (24) ;.

'1' Sa radiation stress as found in Eq (7) '.

-' t time

Tratio of surface tension to water density ,

u* friction velocity

X(k,n) displacement spectral density of Eq (10)

' '.,.o, nondimensional fetch

x V1 : location vector

z : . distance above the mean sea surface

. a .... 8 •see Eq (20)

":.:a.,v8 see Eq (21)

I # , . . ,Phillips constant of Eq (14), (30)

\(k,k') see Eq (22) .

ivi



¥f attenuation coefficient in presence of dense slick

Yv attenuation coefficient for clean surface

Sc(k,k') see Eq (23)

surface displacement about the mean surface

x . wavelength, where k =29/

V kinetic viscosity

p density

o intrinsic frequency whose k dependence gives the dispersion
relation

*(n) displacement frequency density of Eq (Ila)

i(k) displacement spectral density of Eq (ub)

C.
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I. INTRODUCTION

Two important naval system problems, acoustic torpedo surface

reverberation in shallow water and remote radar sea surface imaging, have a

coon physical interface, ie, the sea surface. The proper and adequate

modeling of the sea surface determines our ability to model and predict the o

behavior of homing torpedoes in shallow water and the imaging of remote radar

* sensors. Therefore, this report examines the state of the art in

ocean7-atmosphere interface modeling.

A survey of recent oceanographic literature showed that there are

relatively few fundamental mathematical relations for modeling the sea

*surface. These relations are presented in Section II and applied in Section

* MI. In addition, several useful theoretical results and empirical relations

are included throughout this report. As shown throughout Section III, many

* models begin with the appropriate forms of the kinematical equation (Section

II.A.~) and the action conservation principle (Section II.B.). Sometimes the

* radiative stress equation (Section II.C) is used instead of the action

conservation principle. A much older and less prolific relation, the

Bernoulli equation, is discussed in one of its useful forms in Section II.D.

The waves found on the surface of the sea are almost always random in the

* sense that the detailed configuration of the sea surface varies in an

irregular manner in both space and time. Therefore, only the various

statistical measures of the surface motion can be regarded as significant

observationally or predictable theoretically. Consequently, Sections IL.E and

II.F discuss various spectral relations (and their directional behavior) and

concepts. Equation (18), the conservation of action spectral density, often

proves to be a useful statistical relation for sea surface modeling purposes.

However, the radiative transfer equation, Eq (19), promises to be the most7



fruitful statistical relation for modeling the sea surface and is discussed in

Section II.F.

The state of the art in practical ocean surface modeling is treated in

Section III and represents the main results of this survey. The "mean JONSWAP

spectrum" (Section III.B) is a well-accepted relation and provides a major

empirical benchmark for many theoretical developments. This study was

designed to treat the effect of four phenomena on the sea surface behavior.

These four phenomena are wind velocity, surface current, swell, and internal

waves. The directional behavior of the wind is discussed in Section II.E and

the effects of its magnitude are shown in Section III.B. Four significant

properties of a variable surface current are presented in Section III.C.

These are (1) upwelling, (2) lateral spreading, (3) frequency-dependent

attenuation, and (4) refraction of surface waves by a shear current. Section

III.D discusses the interaction of swell and short gravity waves and gives

some special consideration to imaging by a remote radar sensor. The most

thoroughly developed and verified theory concerns the interaction of surface

and internal waves. This is discussed in Section III.E. Finally, Section

III.F considers wave attenuation.

In Section IV it is tentatively concluded that the state of the art in

sea surface modeling is sufficiently developed to permit the two important

naval system problems specified to be addressed. Therefore, Section IV

proceeds to suggest a possible method of developing a software model for this

purpose. The appendix examines imaging for remote radar sensing.

2



II. FUNDAMENTAL MATHEMATICAL RELATIONS

A. KINEMATICAL EQUATION

The kinematical equation (Ref 1) gives the kinematical conservation of

the density of waves in the form

8k + Vn = 0()

as given by Ref 2 and 3, where k is the wavenumber vector and

n + k-U (2)

is the apparent or observed frequency of waves passing a fixed point when the

medium itself is moving with velocity U(x,t), which is a slowly varying

function of position x and time t, and a = o(k) is the intrinsic frequency

whose k dependence represents the dispersion relation. The distribution of

the local wavenumber k in space obeys

V x k = 0. (3)

In deep water

2(k)= gk + Tk, (4)

where g is the acceleration due to gravity, and T is the ratio of the surface

tension to the water density (Ref 1, p 37-38). The first right-hand term in

1. O.M. Phillips, The Dynamics of the Upper Ocean, Cambridge University
Press, 1977.

2. F. Unsell, "Steady wave patterns on a non-uniform fluid flow,"
J. Fluid Mech., 9, 1960, 333-346.

3 G.B. Whitham, "A note on group velocity," J. Fluid Mech., 9, 1960,
347-352.

3"
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Eq (4) represents gravity waves, while the second represents capillary waves;

gravity waves dominate for wavelengths A > 10 cm, where k = 2n/A.

B. ACTION CONSERVATION PRINCIPLE
-4

The action conservation principle [established by Bretherton and Garrett

(Ref 4) and elaborated further by Bretherton (Ref 5); see also Ref 1,

p 26-271 is

Ft + V.[(U + c ).A] 0, (5)~- =

where the wave action density A = E/a, E is the local energy density, and

= VkO(k) (6)

is the group velocity (Ref 1, p 25). Equation (5) is valid generally for

nondissipative, short, small-amplitude waves in a moving medium. It states

that the local rate of change of A is balanced by the convergence of the flux

of A that flows relative to the moving medium with velocity c . It can be
-g

shown that the phase speed c for a surface gravity wave obeys c 9 kc.

C. THE RADIATION STRESS EQUATION

If the fluctuating motion consists entirely of a wave train in which the

energy dissipation is negligible, the energy balance is given by

4. F.P. Bretherton and C.J.R. Garrett, "Wavetrains in inhomogeneous moving
media," Proc. Roy. Soc., A, 302, 1969, 529.

5. F.P. Bretherton, "The general linearized theory of wave propagation," in
Mathematical Problems in the Geophysical Sciences, vol. 1, 61-102, Amer.
Math. Soc., Providence, RI, 1971.

4



8Eu
+ -!(E[U (c )a]) + S 0 (7)

at ax a ga OP ax

(Ref 1, p 63-68, and Ref 6-8), where a,p = 1,2 and the radiation stress S

represents the excess momentum flux associated with the wave motion alone.

Phillips (Ref 1, p 68) shows that S S %E in deep water.

D. THE BERNOULLI EQUATION

Starting with the momentum equation in the form

u- w x u + V(p/p + l + + gz) = vVu (8)
at

where p is the pressure, p is the density, V is the kinetic viscosity, z is

distance above the mean sea surface, w = V X u is the vorticity, and

expressing the particle velocity u in terms of the velocity potential 0 or u =

V. gives (Ref 1, p 19-20) the Bernoulli equation for irrotational (or

potential) flow with w =0 and v =0

P+ 2 + ku2 + gz = f(t), (9)
P at

where f(t) is an arbitrary function of time determined by the pressures

imposed at the boundaries of motion. F

6. M.S. Longuet-Higgins and R.W. Stewart, "Changes in the form of short
gravity waves on long waves in tidal currents," J. Fluid Mech., 8, 1960,
565-583.

7. M.S. Longuet-Higgins and R.W. Stewart, "The changes in amplitude of short
gravity waves on steady non-uniform currents," J. Fluid Mech., 10, 1961,
529-549.

8. G.B. Whitham, "Mass momentum and energy flux in water waves," J. Fluid
Hech., 12, 1962, 135-147.

5
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E. SOME SPECTRAL AND DIRECTIONAL RELATIONS

The mean square surface displacement is represented spectrally by

- f X(k,n)dkdn (10)

= f 0(n)dn = f 0(k)dk (11)
0

so that

E = f F(k)dk (12)

= pgU = pg f ql(k)dk.

From the directional material in Barnett and Kenyon (Ref 9, p 688-689,

713-714) and the "saturation range" material in Phillips (Ref 1, p 102-104,

140-149), the following useful relations can be obtained. Waves leaving a

storm area can have a broad, say ±450, directional distributioi relative to

the mean wind direction. Represent the directional spectrum 01 (n,O) by

01(n,O) = 0(n)f(O) , (13)

where 0 = 00 in the mean wind direction. For the saturation range Phillips

(Ref 1, p 102-104, 149) gives

0(n) = yg2n5 , n << n << 2g/u. , (14)

where n is the spectrum peak apparent frequency, u, is the friction velocity,

and y is a "constant" whose dimensionless fetch dependence is given by Eq (30)

and

9. T.P. Barnett and K.E. Kenyon, "Recent advances in the study of wind
waves," Rep. Prof. Phys., 38, 1975, 667-729.

6



-4
V(k) = Dk f(8), k0  k < 2g/4 , (15)

where k is the spectrum peak wavenumber magnitude, 0 specifies the direction0

of k relative to the mean wind velocity, and D - k¥ (Ref 1, p 148-150). For

an extension of Eq (14) to higher frequencies see Ref 10. For a critique of

Eq (14) see Ref 11.

The distribution of wave energy in k-space for a fully aroused sea was

first estimated with some accuracy during the SWOP project (Ref 9, Section

4.2) by Cote, et al (Ref 12). The rough sea under the action of a steady wind

gave

-b -bf(O) = 1 + ale cos 0 + a2e cos 40 , (16)

4
where the a. are constants and b = k(oU/g) Basically this equation says

that the waves are distributed as cos 20 near the spectral peak, with the

beamwidth broadening at higher frequencies. A substantial advance in

estimating f(O) was made by Longuet-Higgins et al (Ref 13) and Cartwright and

Smith (Ref 14):

f(2) =cos , - n < 0 < 1 and s = s(n). (17)

10. H. Mitsuyasu, "Measurement of the high-frequency spectrum of ocean
surface waves," J. Phys. Ocean., 7, 1977, 882-891.

11. S.A. Kitaigorodskii, "The statistical characteristics of wind-generated
short gravity waves," in Spaceborne Synthetic Aperture Radar for Oceanography,
R.C. Beal, et al., eds., The Johns Hopkins University Press, 1981.

12. C.S. Cote, et al., Meteorological Papers, 2(6), W.J. Pierson, Jr., ed.,

1960.

13. M.S. Longuet-Higgins, D.E. Cartwright, and N.D. Smith, Ocean Wave
Spectra, Prentice-Hall, 1963, 111-136.

14. D.E. Cartwright and N.D. Smith, Buoy Technology, Marine Technology
Society, Washington, D.C., 1964, 112-121.

7



The values of s ranged from 1 for high frequencies to 10 at low frequencies.

Ewing (Ref 15) confirmed these results. Phillips (Ref 16) suggests f(0) =

cos2 0 or cos40 as a rough rule of thumb.

A further useful spectral equation is

CN(k) + (c + U)'VN(k) 0, (18)

where the spectral energy density is related to the spectral action density by

N(k) = FM/a (see Ref 1, p 181). Equation (18) expresses the conservation of

action spectral density N(k,x,t) of short waves.

F. THE RADIATIVE TRANSFER EQUATION

The radiative transfer equation, Eq (19), describes the energy balance of

the wind wave field in terms of the energy spectrum F(k) of surface gravity

waves. This equation, which summarizes all the various physical processes Si

which can change the wave energy, is given by

n

dF kF F I OF
dF3F + si + R- a-k. , (19)

where the spectrum F(k,x,t) is locally a function of k but is allowed to vary

slowly as a function of x and t. The characteristic equations are

8x. (6a
1* at ~57k-,= cgi (a

7 15. J.A. Ewing, J. Marine Res., 27, 1969, 163-171.

16. O.M. Phillips, "The structure of short gravity waves on the ocean
surface," in Spaceborne Synthetic Aperture Radar for Oceanography, R.C. Beal,
et al, eds., The Johns Hopkins University Press, 1981.

8



and

8k:' i On
-= - -(la)

8t 8x.

and are equivalent to Hamilton's equation for a particle. Barnett and Kenyon

(Ref 9, p 678-684, 698-704, 718-722) survey the state of the art of applying

Eq (19). Hughes (Ref 17) applies Eq (19) to the interaction of internal waves

and surface wind waves.

Hasselmann (Ref 18) and Ba,..e t and Kenyon (Ref 9, p 678-682) give some

forms for the source functions S., namely

S= a (20)

S2 = PF(k) (21)

S3 = F(k) f y(k,k')F(k')dk' (22)

S4 = -6F(k) + f e(k,k')F(k')dk' (23)

Ss = f [TiF(k')F(k-k'-c") - T2F(k)F(k')F(k")jdk'dk" (24)

The Phillips linear growth function S, represents the constant energy transfer

to the wave field through turbulent atmospheric pressure fluctuations. The

Miles exponential growth function S2 represents the increasing transfer of

energy to the wave field due to an instability in the coupling between the

wave field and the mean boundary layer flow in air. The term S3 is a

nonlinear correction to S2. The term S4 represents the energy transfer due to

the interaction between waves and turbulence in the atmosphere. The term S5

17. B.A. Hughes, "The effect of internal waves on surface wind waves. 2:
Theoretical analysis," J. Geophys. Res., 83, 1978, 455-465.

18. H. Hasselmann, Basic Developments in Fluid Dynamics, Vol. 2, H. Holt,
ed., Academic Press, 1968, 117-182.

9I
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represents the energy transfer among the various wavenumber components due to

weak nonlinear wave-wave interactions; S5 is further treated in Ref 9,

p 682-684, and is discussed in Ref 1, p 135-140, where the equation

8 = 4nk6 f [(NI + N2 )N3N4 - (N3 + N4 )N1N2 ]
at .0

6(o1 + OY - 03 - 04 )6(k1 + -k t3  4 )dk dk3dk4 , (25)

N. = N(k.), is found to be valid in the neighborhood of the spectral peak at k

= k (Ref 19). See also Fig 4 of Ref 9, where the "overshoot effect" in the
0

spectral density development is shown.

Recent results on prediction models based on the radiative transfer

equation are discussed in Ref 9, p 721-722. Barnett (Ref 20, 21) used

finite-difference methods to solve the radiative transfer equation over the

entire North Atlantic under the following assumptions:

aF + a
+ !- s l + S 2 ± S S - S6  (26)

at i ax.

where S 1 is a version of Phillips' resonance theory modified by the

observations of Section 5.1 of Ref 9; S2 is an exponential growth term based

entirely on the observations described in Section 5.1 of Ref 9; S5 represents

computer-simplified parameterizations of the wave-wave interactions; and Se is .

a representation of wave breaking (limiting growth) based on the equilibrium

ideas of Phillips as described in Section 5.5 of Ref 9. No assumption of a

19. M.S. Longuet-Higgins, "On the nonlinear transfer of energy in the peak of
a gravity-wave spectrum: a simplified model," Proc. Roy. Soc., A, 437, 1976,
311-328.
20. T.P. Barnett, "On the generation, description, and prediction of ocean

wind waves," Ph.D. dissertation, University of California, San Diego, 1966.
21. T.P. Barnett, "On the generation, description, and prediction of ocean
wind waves," J. Geophys. Res., 73, 1968, 513-529.

10
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fully developed spectrum was made. The same approach has been followed by

Ewing (Ref 22). His formulation utilized a more accurate parametric version

due to Cartwright of the term S5 and a higher-order finite-difference

approximation for the advective term of Eq (19). Ewing's comparisons were

made against the two-dimensional spectrum, the first such verifications

attempted. The results gave, in Ewing's words, "adequate estimates of the

significant height and one-dimensional wave spectrum. The standard deviation

of all the computed estimates of H 1/3 [the significant wave (the mean of the

highest third of all waves present)] compared to measurements is about 0.6 is.

Reliable estimates of the two-dimensional wave spectrum were only achieved in

a limited region at the high-frequency end of the spectrum." This later

discrepancy was attributed to inadequate specification of the wind field.

22. J.A. Ewing, "A numerical wave prediction for the North Atlantic Ocean,"
Deutsche Hydrogt. Z., 24, 1971, 241-261.

1oi



III. STATE OF THE ART IN PRACTICAL OCEAN SURFACE MODELING

A. INTRODUCTION

An important empirical relation is the "mean JONSWAP spectrum," Eq (27).

This is discussed in Section III.B along with some other useful empirical

relations. Using Eq (27) allows the wind speed magnitude to be considered;

the directional behavior of the wind is addressed in Section II.E, especially

Eq (17). Surface waves in a variable current are discussed in Section III.C,

where direction and energy density relations are given for four situations:

(1) upwelling, (2) lateral spreading, (3) frequency-dependent attenuation, and

(4) refraction of surface waves by a current shear. Section III.D treats the

interaction of swell and short gravity waves. Equation (73) represents a key

result for imaging by a remote radar sensor. The interaction of surface and

internal waves, Section III.E, is our best-understood phenomenon. Particular

emphasis is given to the approaches of Phillips (Ref 1, p 78-81, and Ref 23),

Ko (Ref 24), and Hughes (Ref 17). Finally wave attenuation is addressed in

Section III.F.

Weak wave-wave interactions will not be discussed further since they are

covered thoroughly in Ref 1, p 27-32, 81, 135-140, and Ref 9, p 682-684. On

the other hand, long wave-short wave interaction is still a controversial

subject. Garrett and Smith (Ref 25) update the survey material contained in

Ref 9, p 690-691, and conclude that the long waves can grow if short wave

23. O.M. Phillips, "On the interactions between internal and surface waves,"
Phys. Atmos. and Oceans, 9, 1973, 954-961.

24. J.E. Lewis, B.M. Lake, and D.R.S. Ko, "On the interaction of internal
waves and surface gravity waves," J. Fluid Mech., 63(4), 1974, 773-800.

25. C. Garrett and J. Smith, "On the interaction between long and short
surface waves," J. Phys. Oceanogr., 6, 1976, 925-930.

12



generation is correlated with the long wave orbital velocity. Reference 26 is

very instructive and contains some tools from which a model can be built.

References 27 and 28 give some experimental results; the latter paper uses

swells as the long waves. Valenzuela and Wright (Ref 29) use the radiative

transfer equation, developed for gravity-capillary waves, but their work is

too theoretical for easy model development.

B. THE MEAN JONSWAP SPECTRUM

Phillips (Ref 1, p 139-140) and Barnett and Kenyon (Ref 9, p 715-717)

reviewed the "mean JONSWAP spectrum." Fox (Ref 30) found for the mean JONSWAP

spectrum an empirical fit to results from the Joint North Sea Wave Project

(Ref 31) as follows:

{h
= yg2n 5 exp [ ( )y , (27)

26. O.M. Phillips, "The dispersion of short wavelets in the presence of a

dominant long wave," J. Fluid Mech., 107, 1981, 465-485.

27. O.H. Shemdin, "Modulation of centimetric waves by long gravity waves:
Progress report on field and laboratory results," NATO Conference on Turbulent
Fluxes Through the Sea Surface, Wave Dynamics and Prediction, A. Farve and K.
Hasselmann, eds., NATO Conference Series V, vol. 1, 1977.

28. E.D. Graves and O.H. Shemdin, "An investigation of the modulation of
capillary and short gravity waves in the open ocean," J. Geophys. Res.,
85(C9), 1980, 5019-5024.

29. G.R. Valenzuela and J.W. Wright, "Modulation of short gravity-capillary
waves by longer-scale periodic flows--a higher-order theory," Radio Science,
14(6), 1979, 1099-1110.

30. M.J.H. Fox, "On the nonlinear transfer of energy in the peak of a

gravity-wave spectrum--I," Proc. Roy. Soc., A 348, 1976, 467-483.

31. K. Hasselmann, et al, "Measurements of wind wave growth and swell decay
during the Joint North Sea Wave Project (JONSWAP)," Herausgegeben von Deutsche
Hydrosraph. Institut , Reihe A, 12, 1973.



where

ha exp [0 )2 (28)
L 0 j

mn m a for n < n 0and mn = i. for n > n 0 This form contains five parameters:

Y1 Ya ma' n and the frequency of the spectral peak no. Note that Eq (27) is

an extension of Eq (14) to all frequencies. For the mean JONSWAP spectrum, ya

=3.3, inm 0.07 and mb0.9. Figure 17 of Ref 9gives yand no as a

function of the nondiinensional fetch

x=dfg/U2 , (29)

where d fis the fetch and the U is the wind speed in the forms

Y= y(R) =0.076 i-. (30)

(see also Table 4.1 of Ref 1) and

no = n 0 2n-3.5 i - . (31)

In Ref 1, p 148, 161, the following useful relations are found:

n Z2.2(g3/U~df (32)

U* Bu*
U(Z) = -log ( i) W-f(koz) (33)

where

-2k zt
f(k z) (k Z)2 ft e dt (34)

0 0 1

0

K 0 0.42 is Kirmin's constant, B 2-10- and k 0is the wavenumber spectral

peak.

14



C. WAVES ON A VARIABLE CURRENT

Waves on a variable current are treated in Ref 1, p 74-78, and Ref 16.

When a wave train encounters a current in which the surface velocity varies,

" the excess momentum flux results in an interchange of energy between waves and

. current. Suppose that the current strength varies along the direction of flow

so that U = U(x) in Eq (2); a situation like this may be encountered at an

estuarine outflow with waves incident from the open sea. If a represents the

angle between the local wavenumber and the current in the x-direction, then Eq

(1) and (2) for a steady wave train in deep water give

n =o + k cos a =const. = °  g/c =(gk) , (36)
0 0 0

where o° is the wave intrinsic frequency in the open sea, where U = 0. Also
0

Eq (3) gives

k sin a k sin a = const. (37)
0 o

The wavenumber component in the y-direction is conserved. From these two

expressions

(gk)k + U[k2 k2 sin 20o a . (38)
0 0 0I

With a current in the same direction as that in which the waves are

traveling, U > 0 and the wavenumber k is reduced, the wavelength increases,

and the wave paths are turned away from the current. In an adverse current,

on the other hand, U < 0, and the waves turn into the current as they shorten.

Their group velocity decreases and they become less able to propagate against

the current. If the strength of the latter is sufficient, an interesting

phenomenon of blockage occurs. The algebra is simplest when a = 0 and the

1
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waves are running directly into the current. Equation (38) then becomes a

simple quadratic equation in k , or equivalently in the local phase velocity c

= (g/k)k, with the solution

c 1 + + 4U (39)
c 2c

0 (

which has a critical point at U = -kc = -cg, where energy can no longer be

propagated against the current. This is a kinematical limit; the waves break

before this point. In summary, for waves in the presence of an adverse

. current, the waves turn toward the stream. Their local wavelength decreases

and the energy density increases as the waves are pushed toward saturation and

possible blockage. In a favorable current they turn away from the current,

the local wavelength increases, the energy density is reduced, and the waves

become less saturated.

Equation (5) gives

E(U + kc)c = const. = Eoc2  (40)
0 0

which was originally derived by Longuet-Higgins and Stewart (Ref 7) from Eq

(7). In the absence of wave breaking, the local amplitude is given by (see

Fig 3.6 of Ref 1)

ca E o(41)
a0 [c(c + 2U)] 0

When the convergence of the current is balanced, not by upwelling as

above, but by lateral spreading,

ex By (42)
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If the flow is symmetrical about the line y = const., then on this line

a [c2 (43)

0

Now assume Eq (16) applies. Suppose that the wind-generated waves are

unidirectional and move in direct opposition to the local current. In a

frequency band do in still water, the wave energy is initially, via Eq (16),

* 0 ()do = yg2o-sdo • (44)

At the point where the adverse current is the greatest, (U = -U ), the
m

frequency of this band is a' and the wave energy is

W()= Yg 2(o)- 5  (45)

As the current decreases to zero, the frequency of the band returns to a and

the wave energy is reduced by the expansion to *2(a)da. In this part of the

notion, no energy is lost by wave breaking. Equation (40) gives

(o)do'(c' - 2U)C' = *2(a)dac 2 , c' = g/o, c = g/a . (46)

Equation (38) with a = 0 gives

-a a' - VU y o' - a'2U /g (47)
m m/g(7

Hence

#2(a)= Yg2 G2 (C')-7  (48)

and

(CY) 7
2 = "  ,(49)

where

+ (I 
(5o)~a,7 (50)
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A slowly varying current case is treated in Ref 32.

Refraction of surface waves by shear is probably encountered more

frequently in the ocean than the situation just described, particularly at

oceanic fronts, where a contrast in surface temperature is necessarily

accompanied by shear. Since surface waves are dispersive, refraction effects

by currents are stronger than they are in nondispersive waves.

* The wave patterns can be analyzed in a manner similar to that given

above. If a represents the angle between the local wavenumber and the current

and U =U(y) represents the shearing surface current, Eq (1) and (2) give

a + Wi cos a a (51)
0

but now k =k(y) in Eq (3) gives

k kcos a k cos a const. (52)0 0

From these expressions and the dispersion relation a =(gk) , it follows that

gk 0cos a0
Cos a 2(a (53)a)

which is necessarily less than or equal to unity. If cos a < 0 and the waves
0

approaching the current are opposed to it, they will be turned toward the

normal. If cos a > 0, however, they are turned away, the effect being
0

augmented beyond simple convection by the dispersive nature of the waves.

Just as the local wavelength increases as a result of the stretching, so does

the wave velocity. The maximum penetration of the waves into the current

* system is reached when a =0 and

e 32. D. Holliday, "Nonlinear gravity-capillary surface waves in a slowly
* varying current," J. Fluid Mlech., 57(4), 1973, 797-802.
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1 - (cos a)
-- = -(54)

0 0

The waves are then refracted back by the stream. When the initial angle of

incidence between the waves and the current, a , is relatively small, the0

stream current needed to turn back the waves is also small, approximately

a2 c /4, where a is measured in radians.
00 0

The distribution of wave energy density can be found from Eq (5). Since

U = U(y), the flux of wave action normal to the current is independent of y:

(Ec /a) sin a = const. (55)

or, since c = g/2o,g

E sin a c o2 = [a° -U(y)k ° cos ao]2 (56)
0 0 0

from Eq (51) and (52), with again a theoretical singularity in E at a = 0 when

Eq (54) is satisfied. Note that from Eq (53) and (56)

E sin 2a = const. (57)

Waves refracted toward the normal to the current are reduced in energy

density; in those refracted away from the normal, the local energy density is

augmented. The same is true for the mean square slope, which is proportional

to Ek2 :

Ek2  sin 2a + sin 4a (o o (58)
o o sin 2a + sin 4a

so that wave trains refracted back from the current are driven toward local

saturation as the turning line a = 0 is approached.

How may these variations be reflected in the SAR (synthetic aperture

radar)* imagery, in which a given wavenumber on the surface is sampled,

*See appendix.

19



not a given wave train? If the instrument is looking directly across the

current, a1 = a n T/2; the wavenumber and energy density are unchanged and there

is little reason to expect that the stream will be detected at all. If the

current U has a positive component along the direction of observation, as U

increases with range, for example, it will sample waves that are closer to

local saturation; but beyond the line of maximum wave penetration, the return

signal would be expected to be much less. If U has a negative component along

the direction of observation, outwardly travelling waves will be refracted

toward the normal; their mean square slope decreases and they become less

saturated, giving a reduced signal intensity, provided the wind regeneration

distance is large enough. The behavior of approaching wave trains can be

inferred similarly.

D. INTERACTION OF SWELL AND SHORT GRAVITY WAVES

We turn to Phillips (Ref 16) for a discussion of the modification of

short waves by swell. The short wave components are convected and distorted

by longer waves or swell. Short wave energy and amplitude are in fact

concentrated near the crests of the long waves and somewhat depleted in the

troughs. In an actively generated wind-wave field, the short components may

then be saturated only locally, near the long wave crests, and somewhat

undersaturated elsewhere. The long waves propagate faster than the short

waves so that a given group of short waves, being overtaken by a swell crest,

may become saturated with local sporadic breaking, then--as the crest moves

past--become unsaturated as it slips into the trough. It continues, however,

to receive energy from the wind; and, if the input is sufficient, it is ready
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again for more occasional wave breaking just before and at the next crest of

the swell. This local saturation at the crests of the swell thus produces a

modulation in the return signal of a SAR that enables the long wave pattern to

be discerned if its wavelength is greater than about twice the discrimination

distance. This effect is enhanced somewhat by a stationary wave effect when

short waves, whose wavelength varies with respect to the phase of the swell,

are viewed with the fixed radar wavelength signal. The steepness of the

spectrum of Eq (15) provides further enhancement. Field studies by Evans and

Shemdin (Ref 28) have demonstrated this modulation in radar return signals and

associated them clearly with variations in short wave structure produced by

longer waves.

The modulation of short wave structure by swell was first analyzed

correctly by Longuet-Higgins and Stewart (Ref 6), but their analysis was

limited to conditions in which the swell amplitude is less than the short wave

wavelength. Numerical calculations that are free of this restriction were

performed by Longuet-Higgins (Ref 33), and if (as is the situation of interest

here) the ratio of long to short wavelength is large, simple asymptotic

methods can be used. The details of this are given by Phillips (Ref 26).

These analyses were concerned with individual wave trains. For the

present purpose they must be extended: (a) to allow for an arbitrary

direction of propagation of the short waves relative to the swell, (b) to

express the results of the interaction in terms of the local short wave

spectral density, and (c) to determine the magnitude of the modulations in

short wave spectral density of a fixed wave number on the surface, not on a -7

given energy path along which the wavenumber varies.

33. M.S. Longuet-Higgins, "The instabilities of gravity waves of finite
amplitude in deep water, Part I: Superharmonics," Proc. Roy. Soc. A 360,
1978, 471-488.
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The geometry is illustrated in Fig 1. Axes x and y are chosen in the

direction of swell propagation and along the crests, respectively; * is the

angle between the direction of observation and the direction of swell propa-

gation, and 6 is the direction of the local wind relative to the viewing
w

direction. In a frame of reference moving with the swell, let its surface

displacement be ts = A cos Kx = A cos X. The short, locally generated wind

waves are riding over the swell; the local wavelength of a wave train and its

direction of propagation vary as a result of the variable orbital velocities

and vertical accelerations produced by the swell. In this frame of reference,

the near-surface velocity is

U = -C(1 - AK cos X) (59)

in the positive x-direction, where C and AK represent the phase speed and

slope of the swell, respectively. The effective gravitational acceleration

experienced by the short waves is

g' = g(1 - AK cos x) (60)

as shown in Ref 26.

LOCAL WIND
DIRECTION

/VIEWING
e DIRECTIONXW

SHORT WAVE
ENERGY PATH

0

Figure i. Short wave trajectories riding on a swell.
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In the frame of reference moving with the swell 8/8t = 8/By = 0, so Eq

(1) and (3) reduce to

X[ - kjC(1 -AK cos x)= 0 (61)

and

8k
=0 (62)

Ox

respectively, where k = (kl,k 2 ) in the x- and y-directions, respectively.

Equations (4) and (60) render

02 = g'k , (63)

and it follows that

Ok
2ak= gkK(AK) sin X + g' cos * -i (64)k ex

Equation (61) gives

8k
= -kK(AK)G(C,c,*) sin X , (65)Ox

where

C cos - c/2 (66)G(C,c,$) = (66) cs
C -kc Cos 0

to the lowest order in AK. The modulations in wavenumber are strongest when 0

-0 and disappear when cos * c/2C << 1, that is, when the short waves are

running almost along the crests of the swell. It is interesting to note that

short waves propagating exacting along the swell crests are deformed somewhat

since the effective gravitational acceleration experienced by the short waves

is smaller there and the propagation speed is smaller than in the troughs.
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Between long wave crests, when the short waves are unsaturated, the

dynamics of the interaction are expressed most simply by Eq (18). For short

gravity wavelengths of the order of 30 cm, energy input from the wind from one

swell crest to the next can be ignored if, as is generally the case, T of Eq
w

(67) is substantially larger than the swell period; T is the time scale overw

which the energy density decreases by a factor e in the absence of dissipative

processes such as wave breaking and when c > 10 u. or so, and is given by

Tw  20c2/au2 (67)

or

T ~ 3(c2 /u*)2  (wave periods) (67)

In a frame of reference moving with the swell, the distribution of N(k) is

steady so that

(c + U).VN(k) = 0 (68)

Consequently N(k) is constant along ray trajectories, though k = k(x), and so

if the local wind field is uniform, it is constant throughout. Thus, in

particular,

dN _ ON +N Ok=0 = -+- -.- 0(69)
dx 8x ak.a3x

where ON/3x expresses the variation at a fixed wavenumber k as sampled by the

SAR. Furthermore, since 3k 2 /3x = 0,

O8k

8x 3k1 3x

+in 8N Iwk N jI (70)
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in terms of the polar coordinates of Fig 1. The amplitude of the modulations

in short wave action spectra at a fixed wavenumber is then

6N 6 k,

- kG(C,c, (AK) (71)

from Eq (65) and is proportional to the swell slope AK.

Further progress is dependent on some knowledge of the N(k). If, near

the swell crests, the locally generated wind waves are close to saturation at

the wavenumbers providing the backscattering, with local energy input from the

wind being balanced largely by sporadic small-scale wave breaking, the

spectral density of the short waves is given by Eq (15), where f(O) is

symmetrical about the wind direction. The corresponding action spectral

density is

N(k) = to(k)/o = Df()g-k -9 / 2 , (72)

so that from Eq (65), (70), and (71), the amplitude of the modulations 6 in

short wave spectral density at a fixed wavenumber referred to the mean is

~J6N _6F

cos (* - w e - ew G(C,c,$)(AK). (73)
2 T f( -) T si 1 * - )

According to Bragg scattering theory, the amplitude of the modulations in

return signal intensity relative to the mean is equal to 6*/* and so, from

this expression, is proportional to the swell slope AK.
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The result given above shows how the swell-induced modulations depend on

the viewing direction * relative to the swell and on the distribution of

short, locally generated waves about the wind direction 6 . The angle*w

between the direction of propagation of the swell and the direction of viewing

can be determined directly from the SAR imagery, but the direction of the

local wind cannot. This requires either a simultaneous scatterometer

measurement at shorter wavelengths or some independent information about the

local meteorology. The phase speed C of the swell can be deduced from the

wavelength of the observed swell pattern and the mean phase speed c of the

scatterers by a knowledge of the Bragg wavelength. Equation (73) does not

explicitly involve the local wind speed, though clearly there are limits to

the range of wind speeds over which it is applicable. The wind must be

sufficiently strong to generate locally short waves at the Bragg scattering

wavelength but not so large that the dominant locally generated waves have

orbital velocities comparable with those of the swell. In this latter case,

the modulation of the short waves by the longer, locally generated waves may

be dominant but, being on a scale smaller than the resolution distance of the

SAR, will not be observed. Beal (Ref 34) gives a range of 2 rn/s < U110 <

10 rn/s (where 111 is the wind speed at 10 m above the mean sea surface) over

which swell-induced modulations have been detected.

An ideal observing situation would be one in which 6 w 0* with swell

moving in the viewing direction and a following (or opposing) local wind. The

relative modulation amplitude then reduces simply to

=4-5AK .(74) .

34. R.C. Beal, "Spaceborne imaging radar: monitoring of ocean waves,"~
Science, 208, 1980, 1373-1375.
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As *increases from zero, since C >> c in the last factor of Eq (73), the

modulation amplitude decreases, reaching a minimum near n/2. This is

consistent with Beal's remark (Ref 34) that the swell can be imaged success-

fully when there is a substantial component of the swell traveling along the

line of sight of the radar.

The first factor in Eq (73) involves the spectral distribution of the

short locally generated wind waves that provide the surface scatterers, the

*first term representing the consequences of variations in wavenumber magnitude

and the second in local short wave direction. The directional distribution of

the short gravity components in a wind-generated wave field is discussed in

Section II.E. Unless the directional distribution of these waves is very

narrow, however, the second term is likely to be numerically rather smaller

than the first, especially when ( e- is small. Under these circumstances,w

* a simplified form of Eq (73) may be useful in estimating the swell slope AK

directly from satellite measurements.

In an experimental paper Evans and Shemdin (Ref 35) observe that the

modulation of short waves by swell is found to be strong enough to be an

important component of SARl image formation for the swell. Phillips (Ref 1,

p 97-98) presents some further analysis of the action of swell moving across

* the sea surface. He observes that if the augmented drift U of Eq (59) near

4 the swell crests approaches the local phase speed c of the short waves, the

latter may be suppressed entirely. This effect was apparently observed first

* 35. D.D. Evans and D.H. Shemdin, "An investigation of the modulation of
capillary and short gravity waves in the open ocean," J. Geophys. Res., 85,
1980, 5019-5024.
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by Mitsuyasu (Ref 36) and analyzed by Phillips and Banner (Ref 37), who also

conducted further laboratory measurements.

The dispersion relation for short waves is a = (g'k)k [see Eq (4) and

(60)), and for short waves in the frame of reference of the swell, Eq (1) and

(2) give

a + k(U - C) = const. (75)

If c is the short wave speed at the point X = n/2, where the surface

displacement of the swell is zero (remember that X = 0 at the swell crest) and

k is the corresponding wavenumber,

(g'k)k + k(U - C) = (gk0 ) - k C

- ko(c - C)

= g(c° - C)/c. (76)

This is a quadratic in k- , or equivalently in c = (g'/k) , and since U = U
0

and cos X = CAK cos X, it can be written as

a2(1 - AK cos x) C ) - (1 - AK cos X) = 0 , (77)

where a = c/C << 1. Since c/C a when X - n/2, the appropriate root is
0

c/C = a(i - AK cos X) (78)

36. H. itsuyasu, "Interactions between water waves and wind (I),"
Rep. Res. App1. Mech., Kyushu University, 14, 1966, 67-88.

37. O.1. Phillips and M.L. Banner, "Wave breaking in the presence of wind
drift and swell," J. Fluid Mech., 66, 1974, 625-640.
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Note that the phase speed c of the short waves is reduced as the crest is

approached, while the ambient drift q increases. Consequently the ratio q/c

increases and the maximum height of an unbroken wavelet decreases. The

maximum amplitude that wavelets can have when they are at the point of

incipient breaking at the swell crest is, from Eq (3.9.6) of Ref 1,

Coax (2g')' (cc - q) 2 ' (79)

where cc = co(1 - AK) is the phase speed of the short wave at the swell crest,
c 0

and qc is the augmented value of the drift at this point, given in Eq (3.9.4)

of Ref 1 as

qc= (C- Uo) - [(C -U 0 )2 - qo(2C - qo) 0 (80)

The ratio r of the maximum wavelet amplitude to its maximum in the absence of

the swell is, from Eq (3.9.6) of Ref I and Eq (79),

(c - )(81)r = 9 (co  qo ,()

g'C0 - 0

which is an algebraic function of the three parameters a = C0/C, AK = U0/C and

y = qo/C. Measurements by Mitsuyasu (Ref 36) and Phillips and Banner (Ref 37)

on the suppression of short wind-generated waves in the laboratory by longer,

mechanically generated swell gave good agreement with Eq (81) over the rather

limited range of conditions studied.
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E. INTERACTION OF SURFACE MND INTERNAL WAVES

* 1. Introduction

Qualitative relations for the behavior of short surface waves interacting

* with internal waves are found in Ref 1, p 78-81, 230-232, Ref 23, and Ref 38.

Lewis, Lake, and Ko (Ref 24) do a one-dimensional theoretical analysis of a

tank experiment. They demonstrate that the normalized amplitude and slope

- modulations increase with the interaction distance and that the maximum

interaction effect occurs when the phase speed of the internal wave equals the

group speed of the surface wave. Hughes (Ref 17) produced a theoretical model

* that showed promising agreement with the experimental results of Ref 39.

* Holliday (Ref 32) shows that the "wave barrier" noted by Gargett and Hughes

* (Ref 38) for infinitesimal gravity waves on a slowly varying current from an

* internal wave is removed by considering finite amplitude effects.

This section considers in detail the results of Phillips (Ref 1, p 78-81,

and Ref 23), Lewis, Lake, and Ko (Ref 24); and Hughes (Ref 17). First, the

Phillips approach is given. It considers the blockage of surface waves by

interaction with internal waves. In the absence of blockage, when energy

* packets move continuously across the surface, he finds that a steady state can

* be obtained in which the energy ratio for surface is given by Eq (88). He

* then proceeds to show that when the wide spectral range of wind-generated

* waves is considered, the blockage singularity at U + c - C = 0 in Eq (88)

* vanishes and Eq (93) results. Finally, he considers the problem from the

38. A.E. Gargett and B.A. Hughes, "On the interaction of surface and internal
waves," J. Fluid Mech., 52(l), 1972, 179-191.

39. B.A. Hughes and H.L. Grant, "The effect of internal waves on surface wind
* waves. 1: Experimental measurements," J. Geophys. Res., 83, 1978, 443-454.
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point of view of weak wave-wave interactions and finds the resonance condition

of Eq (96).

Next the Ko approach is reviewed. To model the Lewis, Lake and Ko (Ref

24) tank experiment he begins with the appropriate one-dimensional forms of Eq

(1) and (7), applies the characteristic Eq (102) and, through a perturbation

analysis, obtains Eq (129) and (130). Both the theoretical and experimental

results for slope and amplitude modulations show that, when normalized by the

ratio of induced surface current to internal wave phase speed (ie, u /C), the
0

resonant case (ie, internal wave phase speed C matches the surface wave group

speed c ) modulation magnitudes are dependent only on the interactiongo

distance and are independent of the magnitudes of the other physical

parameters. Likewise, the maximum normalized slope and amplitude interaction

effects are found to occur when C = c
go

Finally Hughes' approach is treated. The Hughes (Ref 17) model is

designed for comparison with the experimental results of Ref 39. He begins

with the appropriate forms of Eq (1), (2), and (4) with a source term added to

the latter. This is Eq (133), which he manipulates to a form of Eq (8) in Eq

(134), with the source term given by Eq (135), which is a form of the first
3

three terms I S. of Eq (22)-(24). After some manipulation he arrives at Eq
i=l

(140), which is a simplified form of the radiative transfer equation in terms

of the action spectrum. From this, to the first order in IUI/C, he obtains Eq

(143c). Expressing the internal wave surface speed U as a sum of different

internal wave wavenumber components [Eq (144)], he then obtains Eq (145) for

the wave displacement spectrum *(kl,k 2 ), from which he obtains some quantities

which he can compare with the experimental results of Ref 39. The resulting

comparison of theory and experimental results is encouraging.

'4 4

31

V



r

2. Phillips' Approach

The Phillips approach to the modulations in surface waves induced by

internal waves is given in Ref I and 23 (p 78-81). When long internal waves

of the kind described in Section 5.3 of Ref 1 propagate with velocity C along

the oceanic thermocline, the orbital motion near the surface is oscillatory,

in essence horizontal and of the form U[K-(x - Ct)1, where K is the wavenumber

of the internal wave. As far as short surface waves are concerned, provided

that their wavenumber k >> K, the disturbance current induced by the internal

wave is independent of depth within the range IkzI < 1 and has a horizontal

length scale (the internal wave wavelength) that is very much greater than

their own wavelength. The methods of Section 3.6 of Ref 1 can then be applied

to such a train of short surface waves as they are modified by the moving

current distribution U[K.(x - Ct)], supposed known.

The algebra is simplest when the two wave trains are collinear. In a

frame of reference moving with the internal wave, the pattern of surface waves

when steady gives, from Eq (1) and (2),

a - k(C - U) = const. = o - k C , (82)
0 0

where ao (gko) is the surface wave intrinsic frequency at the phase point
0 0

of the internal wave, where the induced current vanishes. This equation can

be written as a quadratic in c/c with the solution
0

r =[2° )1 4) +C)
c 12(c - o +co (c-C) [ + C)J (83)

which is real, provided

(c - 2C)2

U > 0 (84)
- 4(c° -C)
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If at some point equality occurs,

c
c 0 o(85)
c 2(c - C)

and it can be shown that kc + U - C = 0. Relative to the internal wave

pattern, the energy flux of the surface wave vanishes. Note that if the

undisturbed group speed approaches the phase speed C of the internal waves, it

appears from Eq (84) that an arbitrary small adverse current is sufficient to

induce blockage.

The distribution of wave energy can be found from the action conservation

principle. In a frame of reference moving with the speed C of the current

pattern, Eq (5) becomes

a- C) =0. (86)

For a steady wave train, since a = g/c,

Ec(U + kc - C) = const. E co('c - C) , (87)
0 0 0

where E is the energy density at the phase point of the internal wave, where
0

U = 0. As U varies with resprct to the phase of the internal wave, the local

phase speed c varies also as specified by Eq (83), with corresponding modula-

tions in the energy density. Near a blockage point, U + kc - C - 0 and from

Eq (87), the steady-state solution requires an indefinitely large wave energy

density and evidently fails. From a given init-al state, a time-dependent

solution can, of course, be calculated numerically from Eq (1) and (86). In

the absence of blockage, when energy packets move continuously ss the

surface, a steady state can be obtained in which the energy ratio of the

surface waves is
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E _c (hc - C)

Ec (U + hc -C) (88)

0

in agreement with an expression given by Gargett and Hughes (Ref 38) for this

case. The singularities in the energy density that occur in Eq (88) if the

denominator vanishes are clearly associated with the kinematic limits,

described previously, when the energy propagation speed relative to the moving

* pattern vanishes or when the phase speed itself vanishes and the wavenumber

• :tends to infinity. Under either of these conditions, the steady-state

solution will fail. The time-dependent Eq (86) becomes, at the points on the

surface where U + c - C 0,

3E_ _U
at ax " (89)

-atAccordingly, E = E e , where E is the energy density at the blockage point

at time t = 0 and a represents the rate of surface divergence at this point.

If a is negative (at a convergence point) the energy density increases

monotonically.

The analysis to this point has been concerned with a single train of

waves, slowly varying in space and time as a result of the interactions with

the current distribution. Wind-generated waves, however, extend over a wide

spectral range, and the previous results can be extended to describe this

situation. When the surface waves are sufficiently two-dimensional, simple

analytical results can be derived directly from the solutions given above. If

F(k) represents the spectral density in the wave field, then the energy

contained in the wavenumber band dk is F(k)dk. The total energy content (per

unit area) is specified in the steady state in terms of the energy content

F(k)dk of the band in its undisturbed state by Eq (88):
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Co(kC°  C)
F(k)dk - c (90C(k)dk c(U + kc - C) (90)

Note that the width of the band varies with x as well as the energy density.

The variation c;an be found from Eq (82) in the form

k[(g/k)k + U - C1 = k [(g/ko ) - CJ (91)

Taking differential increments in the wavenumber k and k for a given U and C
0

gives

dk ic 0 - C (92)

dk 0 c 4 U- Co

The combination of Eq (90) and (92) leads to the surprising simple result

F(k) C 0 Ik (93)
F(k c ~k 0

An interesting property of this expression is that the singularity in Eq (90),

when the net group speed vanishes, has disappeared from Eq (93). The reason

for this is that the range of wavenumbers about the critical value at the

kinematic limit becomes large, as does the energy content, so that the energy

density in wavenumber space remains finite. The singularity when c - 0

remains, though for situations of interest in this section, this limitation is

not encountered.

It is instructive to examine briefly the same example from the point of

view of the resonant interactions discussed in Section 2.8 of Ref 1. Two

surface wave trains with wavenumbers k,,k 2 can form a resonant triad with a

collinear internal wave with wavenumber k3 = K, provided the conditions

k,= k2 + k3  al= C2 + (3 , (94)
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where 03 is the frequency of the internal wave, are satisfied. Since the

wavelength of the internal wave is very much greater than those of the surface

waves, k3 = K << kl,k 2 , and the difference k, - k2 = 6k between the two

surface wavenumbers is very small. If o - 02 = 6o, the resonance conditions

of Eq (94) are

6k = k3 , 6a= 03 (95)

so that

6y = _a or c =C 
(96)6k -k3 g

For resonance, the phase speed of the internal wave is equal to the group

speed of the surface wave. This is identical to the condition for blockage

with an internal wave of small amplitude. Under these conditions a

steady-state solution is not possible. Energy resident initially in a uniform

surface wave train with wavenumber k1 flows to a neighboring wavenumber k, -

6k (and to the internal wave). The wave train develops modulations on the

scale of the internal wave, their amplitude continually increasing with time.

The resonant generation of internal waves by nonlinear interactions with

surface waves has been studied by Brekhovskikh, et al (Ref 40). This theory

predicts that an initially uniform surface wave, in the presence of an

internal wave such that Eq (96) is satisfied, will develop growing modulations

aS an additional Fourier component of the surface wave with an adjacent wave-

number (the third member of the triad) is generated. The two types of

approach are clearly complementary at this point. However, the assumption of

a slowly varying wave train is unable to cope with a situation in which two

quite different Fourier components of the surface wave are involved. In the

40. L.M. Brekhovskikh, et al, "On the resdnant generation of internal waves
through nonlinear interactions of surface waves," Bull. (Dzv.) Acad. Sci.
USSR, Atmos. and Oceanic Phys., 8, 1972, 192.
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same way, the simple resonance theory is not well suited to consider the

blockage phenomenon that occurs when C -c~ is not small and the adverse

current is substantial.

3. Ko's Approach

The Ko approach to the interaction of internal waves and surface gravity

waves is given in Ref 24. He defines the internal wave induced fractional

changes in surface wave amplitude a and slope m as follows:

a -a.
max min

max min

andr

m -in

*= ma m(98)
m + m
max min

Instead of a general solution to Eq (1) and (9) for this problem, this study

was directed toward the one-dimensional wave interaction corresponding to

* their tank experiment. The surface current U from the internal wave is

generated by the interfacial waves of a two-fluid system with frequency Q~ and

* phase speed C for time t > 0. An independent surface wave generator with

frequency w is used to produce for all time a single surface wave train with

wavenumber k and unperturbed group speed c g. The problem was to determine

the change in the surface wave characteristics as functions of both position x

along the tank and time t, when the internal wave induced surface current

field U was present.

For these one-dimensional waves, the governing relations, ie, Eq (1) andK (7), were simplified as follows. Equation (1) became
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8k + + k = 9U
t g U (x x '(99)

where c = k(g/k)k and U = U(x,t). Equation (7) reduced tog

+  x C + U)A] -%A2 ' (100)
at ax g9a

which was written in the alternative form

BA2  ._A c (11
-- +(Cg + U)- -A a (101)

Both Eq (99) and (101) were written in a characteristic form for which the

solution could be readily obtained. These characteristics were defined by

dxx = c + U , (102)
dt g

for which the two governing equations reduce to

dk _kU
t -k- (103)

and

Bc

dt - A  ax ax  
(104)

In other words, in the characteristic coordinate system defined by integrating

Eq (102) such that x = x(x,t), t = 1, where = constant denotes a charac-

teristic, the governing equations [Eq (103) and (104)] become

-Ink I O8 (105)

t

and

* BnA2  _ 381 06)
8 2 8x x

t t

To simulate the tank experiment the surface current field was represented by
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U = u sin K(x - Ct)H(x)H(t - x/C) , (107)

where H(x) represents the Heaviside function.

To simplify the analysis further, it was assumed that the magnitude of

the surface current u° was small compared with the minimum of the group speed

for surface waves, ie,

SU/cg << 1 (108)

wherec go = k(g/ko), the unperturbed group speed. Then it was assumed that

the solutions could be represented by the following perturbation series in C:

x x +Ex + 2 X2 +0

Ink I~nk 0+ ink1 + e2tnk2 + i.

nA2 =nA 2 + cnAj + 2 1nA +
0

S c + &c + c c +... (109)g go g1  2

where c = -c go-Ink,.

Substituting Eq (109) into Eq (102), (105), and (106) and grouping terms

of the same order in & gave for 0(s0):

ax 8k 8A2  8c-=0 o=A2 go 0 (110)
a[ go' BT ' T o ax

These equations describe the unperturbed surface wave field, which was assumed

to be a uniformly generated monochromatic wave train. Integration of Eq (110)

gives

k = const., A2 = const., x = co(T - ) , (111)
0 0 o go
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where denotes the intersection of the characteristic with the t axis. For

0(e) the governing equations become

EHal =u o [K cos K(x -Ct)H(x)H(t -x /C)
aT 0 0 0 0

+ sin K(x - Ct)6(x )H(t - x/C)
0 0 0

- C " sin K(x - Ct)HX )(t - X/C) , (112)

atnI = 2£nk c, (113)
aT 2 aT ax

and

taxI = u sin K(x - Ct)H(x )H(t - X/C) + cc , (114)
oT oo 0 o0

where &Ink, and elnAf represent the first-order change of the wavenumber and

the square of the amplitude, respectively, while ex, gives the deviation from

the unperturbed characteristic.

Using the zeroth-order characteristic gives

x ° - Ct (c -c) T-c go. (115)

Then the equations could be integrated from I = 0 to T along a given

characteristic = const. The solution to Eq (112) was obtained first, then

used on the right-hand sides of Eq (113) and (114). The solution for the

wavenumber is given by

k
C nk I n-

k0

u
- 0 cH(xo) in K(x - Ct)H(t - x/C)
c 0 0go I

--Lsin KC--ti H(t-x/c ) ,(116)

go go ogoI
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and for the amplitude by

A 1 0 Ito_
n- - = -- c(Xo) + sin K(x - Ct)H(t - X/C)

4c 0 0o go go

0 0

.i~i -cC- -[ (4 + c °-Csin KCI:- -t

. . go o\go

+ C Kx cos KC co K0-

Cg° o \go 0o

For k =k 0+ Ak and A =A 0+ AA, the right-hand sides of Eq (116) and (117)r

give the changes in wavenumber (&k/k ) and wave amplitude (AA/Ao),
0 0

respectively, for small changes. In practice, their interest was in the

change of the local surface wave slope, which is related to the changes in

wavenumber and amplitude by

n- - = nk + A

eni Ln- (118)m k A'
0 0 0

or for small variations by

Am =AA + Ak.(1)
(119)

m 0 A 0 k 0

They found it interesting to also calculate the maximum changes in the

surface wavenumber, the amplitude and the slope at a given x-station, as well

as the corresponding phase of the interval wave current where the maximum

effect occurs. For the region where both Heaviside functions in Eq (116) and

(117) are equal to 1, it is appropriate to drop the Heaviside function

notation. Furthermore, they define

=K(x -Ct) (120)

and
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e KC B(121)

with

B =Kx (1 -C/co) (122)o go

Then Eq (116), (117) and (118) can be rewritten as

A k 0 sin sin , (123)-k c -C in -Cg

o gogo

A 1 0_ gnW - u 3 + sin
o Cgo 9cgo

Co 1(4+g - C sin + -KX cose (124)

and

o + sin
o go g

C 8+ o sin 0 + C Kx cos 0 (125)
go go - Cgo

For a given x° and C/c8 o, the maximum or minimum change occurs at 0, the

phase of the internal wave where 8()/O$ = 0; the quantity inside the

parentheses can be any one of the three quantities given on the left of Eq

(123), (124), and (125). The results of performing the indicated

differentiations are

_i(c /C - cos B(
tan 1  (126)

4 sin B2
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rg - -

3 + - s- 11 + coB B + -Kx 0snB
3*+ go go ogo / go

A tan (127)

C go.k[(4 Xa...)sin B - -Kx cos B]
c CC 0gogo goI

and

S Cg C c

7 + go _ 8 + go c Kx sin B]C C c C C C 0
*= n 1 go go go /go

[(ta-C go B (128)

gogo go

The corresponding maximum or minimum values are obtained by substituting Eq

(126), (127), and (128) into Eq (123), (124), and (125), respectively.

Since the solutions of Eq (116) and (117) appear to be inversely

proportional to C - c , a singular behavior may seem probable at resonance.
*However, with a proper limiting procedure, it can be shown that, for c ° - C,.'Igo

L= - -H(x )H(t - xo/C)[sin K(x - Ct) + Kx cos K(x - Ct)] (129)k C 0 o 0 0 0
0

and

u
nA = - 0H )H(t - Xo/C)1(4 -K2x) sin K(x - Ct)
A 4C 0 o 0 00

+ 5Kx cos K(x - Ct)] (130)
0 0

Notice the strong dependence of the solution on kx , which effectivelyIo

measures the distance or "time" of interaction. Further, in this model, the

energy transfers only from the internal wave, and there is no provision to

3ccount for the limited energy available in the internal wave. Without

considering the other nonlinear effects and the energy loss of the internal
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wave train, the linearized solutions for the resonance case predict a

monotonic increase of the effects with distance as shown by Eq (129) and

(130).

Both the theoretical and experimental results for slope and amplitude

modulations show that, when normalized by the ratio of induced surface current

to internal wave phase speed (ie, u0/C), the "resonant" case (ie, C c go )

modulation magnitudes are dependent only on the interaction "distance" kx and

are independent of the magnitudes of the other physical parameters. The

maximum normalized (by uo/C) slope and amplitude interaction effects are found

to occur, for both theory and experiment, when the phase speed of the internal

wave and the group speed of the surface wave are matched (ie, C = c

go

4. HUGHES' APPROACH

Hughes (Ref 17) begins with Eq (1), (2), and (5), which in his notation

reduce to

8k, + L(kU a) 0 (131)

at ax

k2 = const. (132)

3A a c(13aw
+ L[A(U + c = A c = - (133)

Note that he has added a source (or "growth/decay") term, which, we shall see,
n

leads to I S. of Eq (19). By manipulation of his variable dependence, heI
i=1

arrives at Eq (8) in the form

ON + (U + c)L N A (134)
Ox g ax
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where he uses

3

A = IS = a(kl,k 2 ) + P(kl,k 2)N - y(kl,k 2)N
2  (135)

in place of the relations in Section II.E. He justifies ignoring a(kl,k 2) and

observes that the third term represents a nonlinear limitation to the

exponential growth, and while it does not allow for overshoot effects, it does

provide an inherent upper limit to the spectral growth.

Let k be the initial value of k, in the sense that k1(k ,Xt) = k at x

= t = 0. If the wave spectrum in the absence of interaction is stationary or

growing/decaying very slowly, the left side of Eq (134) is zero; therefore at

equilibrium, A = 0, so that

y(kok 2) = P(kok 2)/N , (136)

where N (k ,k2 ) is the unperturbed equilibrium spectral value. It is also

assumed that this condition holds for perturbed wave numbers, ie, during

surface-internal wave interaction, but with k replaced by k1 . This is

* equivalent to assuming that the wind shifts the spectral amplitude for given k

toward the equilibrium spectral amplitude of the same wavenumber. Under these

* conditions, Eq (134) becomes

+ [U(x,t) + 8N - N
4a cg9 ax pkk)N 0 (kl,k 2 )(17

To complete the mathematical statement of the problem, ie, Eq (131), (132),

and (136), initial conditions on k1 and N are imposed:

k1(t = O,x,y) = k

N(t = O,x,y) = N0 (kok 2 ) (138)
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Using the method of characteristics on Eq (131), k, can be obtained by

solving the pair of coupled nonlinear first-order ordinary differential

equations

dx= U(x,t) + c

dk -kl , (139)
dt OX

x=x(t)

where x(O) is arbitrary. Along the path x(t) with k1 (t) known (in principle),

Eq (137) becomes

dN2d = P[k 1 (t),k 2 ]N - p2 N2 /Notk 1 (t),k 2 ] , (140)

which is just a particular form of Eq (9). Equation (140) is a simplified

form of Eq (19), whose solution, after integrating once by parts on q and

using Eq (139), is

t

N(kl(t),k 2) = Nlk(t),k21 1 - N [k1(t),k 2l J (k1(i)k2

k( 35- exp f P(kl(q),k2)d di (141)
)(n) "

If the orbital velocity of the internal waves is represented by U = U(x - r

Ct), where C is the phase velocity of the internal wave, then trapped waves

exist between locations where
UP

c + U(x - Ct) - C = 0 (142)
g

as described in Ref 38 and in Ref 1, p 78-81. Hughes (Ref 17) discussed

some properties of the solution of Eq (141), including the trapped waves.
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Hughes (Ref 17) next considers only steady, dispersionless current

fields. Therefore, he particularizes the theory to the case of U = U(x - Ct)

and IUI/C * 0. If all powers of IUI/C except the first are ignored, Eq (139)

and (141) have the solution

x = x + c t + 0(U) (143a)
go

t t

N(k1 ,k2) = Nok'k ) + k j U'1x ° - (Cg - C)ri]

•exp [- (k,,k2 )(t - q)]dq, (143c)

where U and c =

0

In terms of the wave displacement spectrum t, with U expressed as a sum of

different internal wave wavenumber components, ie,

N

U(x,t) = B sin Kn(x -Ct)+n] , (144)
E., n n n
n=1

the integration can be carried out to yield

N B Bn uk, ON°0

P(kl'k2) = *o(k l k2) + -- C k,

(P/CKn)Cn (x,t) + (c /C - 1)Dn (x,t)

(P/cK) 2 + (c /C - 1)(145)
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where for t > 30 min

Cn (%,t) = cos [Kn(x - Ct) + en-

and

D (X,t) = sin [Kn(x -Ct) +0]. (146)
n n n

In Eq (145) note that exact resonance occurs when c = C and each component of
g

the surface wave field is additively perturbed by each component of the

internal wave field (in this approximation).

From ordinary resonance analysis, the phase angle p for each

perturbation component is given by

P/CK
tan p = c n/C 1 (147)

and thus for weak damping, p increases from -180* to 00 as c increases from
n 9

much less than C to much greater than C. As P/Ck n* 0, the range of c overn g

which pn changes appreciably becomes more closely confined to the resonance

point c = C. The phenomenon of trapping is degenerate in this linearg

approximation, and only those waves that satisfy the resonance condition [Eq

(142) with U/C * 0] can be said to be "trapped."

With this description and with a least-squares regression, the

sensitivity and phase of the mean square slope can be defined. Let s repre-

sent the total surface slope variance (the sum of the variances of the two

slope components). Then

7= ff (k2 + k)t(k,,k 2)dkldk2  (148)
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and from Eq (145)

C 
N

BR sin [k(x- Ct) + 0 + pn (149)n n knCX

n=l

N

= BR {sink n (x - Ct) + en ] cos pn

n=l

+ cos [kn(x - Ct) + 0n sin pn

where R and pn are, respectively, the sensitivity and phase of the component
n

s- with wavenumber kn, ie,

aN
Rn cos P n 1- ff akl(ki + kl

(c lC - 1)
([ - 1 2dkldk2  (150a)

(P/Ck n)2 + [c 9 C -j

R sin pn= 1 kl(k + k)-

P/Ck n(

(P/Ck) 2 + [cg/C - 1 dk l dk2 . (150b)

In accordance with the measurement piocess, an overall sensitivity R and

phase p may be determined by correlating the perturbations in sZ with phase-

shifted current values and defining p as the phase shift that maximizes the

correlation and R as the corresponding regression line slope. By performing

U the required manipulations to Eq (144) and (139), it can be shown that

tan P= B 2 sin N B 2R Cos -115a

n=1 n=lnP
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and

N

Values for R and p are obtained by evaluating the integrals given in Eqn n

(150), but before this can proceed it is necessary to estimate to (kl,k 2) for

each data set.

Measured values of tP integrated in angle at various values of x,t within

the internal wave field can also be obtained. That is, with k, = k cos 6, k2
2n

- k sin 6 and H(k) = f det(k,O),
0

NN B ka 2n 2N

H(k) = H (k) + n dOcosS C ((k cos B)
__ 0n=1

(P/Ckn)nXt) + (c /C - 1)D (x,t)

" (/Ckn) 2 + (Cg/C - 1)2 J (152)

where

P= o[(u~cos O/c](O.01 + 0.016"icos Oi'u*/c}

-11 exp[-8.9(u,/c - 0.03) 1} (153)

and e is the angle between the surface wave propagation and the wind

direction.

The theoretical and measured values of the sensitivity gave good

agreement, while for the phase p the agreement was poor except that all

theoretical and measured values lay in the same quadrant. An illustration of

the agreement between the theoretical and measured forms for the integrated

spectrum H(k) is given in Fig 4 of Ref 17. The agreement was satisfactory

except at high wavenumbers. _
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F. WAVE ATTENUATION

Wave attenuation coefficients are found in Ref 1, p 51-54. The simplest

case is that of deep water and a clean surface. Although the viscous stresses

in the surface layer are important, the layer itself makes a negligible

contribution to the overall rate of energy dissipation since the rates of

strain there are no larger than in the irrotational flow and the layer

thickness is small. The energy losses arise almost entirely from the

straining of the irrotational motion, so that the attenuation coefficient is

Yv= 2vk2 , (154)

where the kinematic viscosity of water is v 0.01 cm sec at 200C and

350/oo salinity. The energy density of the wave field decreases as exp(-2y vt)

and the amplitude as exp(-y vt) .

With a densely packed surface film, the attenuation factor yf resulting

from the surface layer alone is now

Yf = kvk-a/2v (155)

in deep water. The v&riation of y and yf with wavelength and frequency is

illustrated in Fig 3.1 of Ref 1. It is evident that, except for the very

short capillaries, yf >> YV" Short waves incident upon a slick are quite

rapidly attenuated and, since the apparent smoothness of the sea surface is

very much dependent on small-scale components, this attenuation evidently

accounts for the smooth appearance of oil slicks in the ocean.
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IV. PRELIMINARY CONCLUSIONS AND RECOMMENDATIONS

The purpose of this study of the state of the art of sea surface modeling

was to determine the feasibility of designing a software model that could

adequately describe the sea surface for treating (1) acoustic torpedo surface

reverberation in shallow water and (2) remote radar surface imaging. From the

above material we come to the preliminary conclusion that such a sea surface

software model is presently possible. We now outline how such a software

model might be developed and implemented.

The basic tool for the sea surface model would be the radiative transfer

equation, Eq (19), as described in Section II.F. Since, as seen in Section

III, the interaction of surface and internal waves is the best-understood

phenomenon, this provides a good area in which to start developing our sea

surface software model. First, the radiative transfer relation of Ref 17

would be implemented based on the information contained in Section III.E.4.

This would be compared with the experimental results of Ref 39 (Section

III.E.4) and Ref 24 (Section III.E.3). Then additional radiative transfer

source terms from Section II.F would be included and the experimental

comparison would be repeated. As a further check, the model would be

reconciled with Eq (88) and (93).

Next the model would be extended to agree with the JONSWAP spectrum of Eq

(27) and the directional relation of Eq (17). Then the model would be

generalized to consider variable surface currents and checked against Eq (41),

U (43), (49), and (58). Finally swell conditions would be added and tests made

against Eq (73). At this point all four phenomena of interest (ie, wind

velocity, surface currents, swell, and internal waves) would be present in the

development.
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To be useful for the stated naval system problem modeling, the sea

surface software model should be treated to yield the spectra for slopes,

velocities, and accelerations and then extensively tested by varying the many

variables and checking the results. The material following Eq (148) presents

an interesting area of experimental verification for slope properties, as does

the information in Ref 24, Section III.E.3.

The total software package for the statistical modeling of the sea

surface would then be ready for application to modeling the acoustic torpedo

surface reverberation in shallow water and remote radar sea surface imaging.

This would be accomplished by formulating (1) software that gives a

statistical description of surface reverberation and (2) software that gives a

statistical description of imaging for remote radar sensing. The latter

should be extended to address the phenomena of the directional attenuation of

surface wave trains and solitary waves.
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APPENDIX: IMAGING FOR REMOTE RADAR SENSING

Beal (Ref 41) discusses the fundamentals of aperture synthesis for the

Seasat SAR (synthetic aperture radar). More detailed discussions of imaging

for remote radar sensing are found in Ref 42-44. Seasat SAR obtains its high

resolution by artificially synthesizing an aperture many kilometers long in

space. For studying the ocean, SAR has two essential advantages over other

high-resolution remote sensors: it collects its data through cloud cover and

without help from the sun. It has demonstrated the potential ability to image

and globally monitor ocean wave systems. SAR is sensitive primarily to the

structure of the short gravity waves (30-cm waves for Seasat SAR) on the ocean

surface that were shown in Section III to be sensitive to wind velocity,

surface currents, swell, and internal waves.

According to classical diffraction theory, the angular resolution of any

transmitting or receiving system, including SAR, is ultimately limited by the

size of its aperture. Expressed simply

* = 1/2 , (A-I)
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where 4is the angular resolution and 2 is the size of the aperture expressed

in wavelengths. When the same aperture is used for both the transmitter and

the receiver of energy, as it is in SAR, the resulting angular resolution 0

is effectively halved (ie, 4p' = 0/2). The Seasat orbited at a slant range h

(200 from its nadir) of about 106 m and contained a SAR that operated at a

radar wavelength of 0.2 m. The length L of the synthetic aperture is related

to the azimuth resolution ra (the ground resolution in the flight direction of

the satellite) by

A
ra *'h = jh .(A-2)

An azimuth resolution of 25 m requires a synthetic aperture of 4 km. A

satellite traveling at an altitude of about 106 m has an orbital velocity of

about 8 kin/s and, therefore, requires about 0.5 s to synthesize the required

aperture.

Note that the length of the real aperture D on the spacecraft has not

explicitly entered into the equations. However, the real aperture must be

short enough to allow a particular point on the ground to remain entirely

within the real beam 6 = AID during the aperture synthesis interval. This

leads to the relationship

L = h- (A-3

Combining Eq (A-2) and (A-3) leads to the fundamental lower limit for

* resolution

r a D/2 .(A-4)
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Therefore, if a ground resolution of 25 m is desired, the real aperture can be

no longer than 50 m to maintain a point in the real beam for a sufficiently

long time. The resolution limit is independent of range because the time

during which a particular point is illuminated increases with range, thus

allowing a corresponding larger synthetic aperture to be formed. The SeasatI

SAR has a real aperture length of about 12 m and was, therefore, theoretically

capable of an azimuth resolution of 6 m. This assumes that the maximum

allowable synthetic aperture of 16 km could be constructed, a distance that is

covered by the satellite in about 2 s.

Although a resolution of 6 m in azimuth is theoretically possible from

Seasat, the imagery is typically processed to yield only 25 m. That is, only

* 4 km of synthetic aperture (about 0.5 s of data) are simultaneously processed.

Any 4 m from the total 16 km length will satisfactorily produce a resolution

of 25 m. Moreover, since the predominant system noise in the SAR is caused by

"coherent speckle," which tends to be Rayleigh distributed in amplitude (ie,

there are wide variations in the reflected signal from a resolution element as

the illumination angle is slightly varied), each 4-km segment potentially

allows an independent sample of the "average" reflectivity distribution.

Therefore, the variance within a scene can be reduced considerably by

separately processing and combining four independent 25-rn images.

obtaining high azimuth resolution along the velocity vector of the satellite.

* We have not examined the actual mechanics of collecting and processing the

information to reform the image, nor have we expanded our discussion to

include the orthogonal (range) dimension. It should be apparent, however,

that the synthetic aperture must be constructed with extreme care to realize

its potential fully. For example, the azimuth resolution suffers if the
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satellite is perturbed from the perfect trajectory by a significant fraction

of its operating wavelength (23 cm for Seasat) as it traces out the 16-km

aperture. Various types of aberrations can occur, all of which lead

ultimately to loss of resolution and contrast in the image.

Having explored some of the fundamental requirements for aperture

synthesis, we shall now summarize systematically the major steps in forming an

image in terms of a stationary point-source response. Because an imaging

system must be essentially linear, superposition arguments can extend the

results to an arbitrary distribution of radar backscatter. A point source

(step 1) having been illuminated by a coherent radar, emits a series of

concentric wavefronts (step 2). Of course, the emission occurs only while the

point source is within the aperture beam, as discussed above. The spacecraft

cuts through the concentric wavefronts (step 3) and the SAR receiver

intercepts an energy flux that varies with position (or time) as the

wavefronts are traversed (step 4). This wavefront record is usually referred

to as the Doppler-or signal-history, but it can also be considered a

hologram, diffraction pattern, or a one-dimensional zone plate. The essential

point is that this wavefront record, which contains a complete phase and

amplitude history of the point source for the entire synthetic aperture

interval, also contains adequate information to reproduce a

diffraction-limited version of the original point source. The wavefront

record is transferred via a data link (step 5) from the spacecraft to any of

several ground statinns, where it is recorded on either digital tape or

optical film. For Seasat, the signal was normally recorded on tape at the

station and was later transferred to film at a central facility. To reproduce

the point source from the wavefront record, a coherent reference function

(such as a family of plane waves from a laser) (step 6) impinges on the
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* Doppler history (step 7). The Doppler history, which is essentially the

diffraction pattern of a point source, causes a lens-free convergence of the

plane waves in free space (step 8) and forms a replica of the original point

aource.

*In practice, there are several variations to the simple scheme described 4

above, some of which are helpful, some nuisances, and others inevitably

destructive. A simple lens inserted at step 8 can shorten the convergence

* distance. On the other hand, the spacecraft trajectory (step 3) is better

described by an arc of varying center of curvature than by a straight line.

This is clearly a nuisance, entailing an adaptive processing strategy.

* Atmospheric turbulence, reference function instabilities, and lens aberrations

* are examples of destructive and uncorrectable sources of contamination. Much

of the effort and expense of spaceborne SAR can be attributed to the need to

* account precisely for the systemic sources of contamination and to minimize

the random sources.

The extension of SAR image formation to the range (cross-velocity)

direction is straightforward, but it places strict timing and synchronization

requirements on the design and severely restricts the total range interval (or

* corresponding ground swath width) that can be accommodated. Range information '

is possible in a SAR only because the synthetic aperture need not be

4 continuous, but may be constructed with samples; that is, the transmitter may

be pulsed. It is enough that one pulse be transmitted each time the real

aperture moves by half its length. This is called "filling the aperture" and

U leads to a maximum time interval x of D/2v, during which range information can-

be collected. For D = 12 m and v = 8 km/s, I = 750 ps. In actual practice,

the aperture is slightly "overfilled" to reduce the possibility of spurious

U signals that could lower image contrast. The Seasat SAR, for example,
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typically operated at an interpulse period of 600 ps. Moreover, somewhat less

than half of this time interval represented signals of sufficient quality to

produce good imagery.

The synchronization constraints imposed by the Seasat geometry were as

follows. Transmitter pulses are emitted every 600 ps in the cross-track

direction, 200 away from nadir. The pulses form concentric expanding rings of

energy with a separation of about 200 km (cT = 3-108 m/s X 600-10 - 6 s

200 km). With the satellite orbiting at an altitude of 800 km there are four

such pulses descending at any time. Since the antenna illuminates only that

region around 200 from nadir, no significant backscatter occurs except at a

slant range of about 850 km. This is no accident, since the round-trip

distance of 1700 km must be chosen to allow the return from a particular pulse

to occur exactly between two subsequently transmitted pulses. The geometry

and pulse interval for the Seasat SAR are chosen to allow the return from a

given pulse to occur exactly midway between the eighth and ninth subsequent

pulses. The middle 200 ps of return, T, represents a swath width of about
s

100 km for the Seasat geometry. Large swaths inherently require long real

apertures to adequately accommodate all ranges and simultaneously fill the

synthetic aperture properly. This can be a serious limitation in spaceborne

SAR.
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