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Section 1
INTRODUCTION

In order to allow realistic hardening design criteria to be estab-
lished for the ultimate protection and survivability of U.S. Army military
equipment (e.g., communications shelters and antennae, from nuclear warfare
environments, primarily blast effects), it is necessary to have reasonably
accurate estimates of the time-history of the airblast-induced loads.
Although much experimental work has been done to produce high-fidelity simula-
tions of these loads, there exists a need for the ability to predict these
loads theoretically. Current simple predictive models are at times inade-
quate, and more detailed flow field interaction calculations are advisable.
Unfortunately, the U.S. Army has been hampered in its ability to predict
detailed blast loading pressure distributions on such structures because their
computational tools do not adequately treat the complex geometry of these
structures.

On the scale of the nuclear event, it is a reasonable approxima-
tion to treat the airblast flow as inviscid, and treat objects in the flow
field's vieinity as rigid reflective bodies during the diffraction phase of
the shock loading. This is the approach historically taken by BRL, AFWL, and
SAI for predicting early-time airblast loading on structures. The results for
many cases have been encouraging and in some cases extremely helpful; however,
room for improvement exists.

The experience at BRL with the HULL code (references 1 through 4),
and independently at SAI (references 5 and 6), has demonstrated that HULL, an
efficient multi-material, multi-dimensional inviscid hydrodynamics code with
an option for treating structures as perfectly reflective cells, can success-
fully predict blast loading on generic non-responding shapes if the target
surfaces conform with flow field cell boundaries. It was also recognized at
both BRL and SAI that there existed a need to modify HULL to improve its capa-
bility for irregular rigid structures where the above condition was not met.

This effort, therefore, was performed to improve the BRL HULL
code's ability for predicting loads on surfaces not parallel with the
coordinate axes. The approach is to incorporate into HULL a capability for
treating cells which are partially fluid and partially reflective. The effort
was to consist of the following tasks: (1) Development of a numerical
algorithm for treating two-dimensional partial hydrodynamic/partial rigid
cells, (2) Implementation of this algorithm in the 2-D version (Cartesian and
ecylindrical) of BRL HULL, and (3) Implementation of a similar algorithm in the
3-D version of BRL HULL. Because of the complexity of the effort and the
uncertainty associated with specifying operational modifications to 2-D BRL
HULL, Task 3 was necessarily predicated on finishing Tasks 1 and 2.

The first task consisted of the design and development of numer-
ical algorithms compatible with the BRL HULL computer program for treating
hybrid (hereafter referred to as shore) computational cells that are partly
hydrodynamic and partly rigid material. This extended the "island"™ concept
presently in HULL. The techniques developed treat the reflective boundary
conditions in the shore cells, and update the computation of the flow vari-
ables 1in, and in the vicinity of, tnese shore cells. The algorithms were
formulated in both Cartesian and cylindrical geometry for implementation in
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the 2-D version of BRL HULL. Consideration was given to any restrictions
imposed on the fluxing algorithms and the time-step algorithms by these shore
cells.

The second task consisted of the design of code architectural mod- |
ifications necessary to implement the treatment of shore cells in the 2-D ‘
version of BRL HULL. Various techniques for distinguishing shore cells were ‘
considered, and the method selected was considered the best one primarily :
because of its ease of implementation, and efficient calculation. All modifi- :
cations were implemented in the form of a HULL option, named SHORE, to avoid :
degrading the operational status of HULL and to avoid introducing extraneous 1
coding. This latter design goal of HULL directly contributes to its speed of 1
operation. Furthermore, all architectural modifications are considered to be
consistent with the Vector HULL architecture, and hence, are consistent with
the vector architecture of a Cray-1 vector processor,

Under Task 2, SAI also assisted BRL personnel in setting up and ‘
running 2-D test calculations. These calculations were designed to allow a '
determination to be made of: (1) the correctness of the modifications and (2) |
the agreement with some available experimental data.

The third task was to have consisted of implementing a modified )
version of the 2-D Cartesian SHORE algorithm into 3-D HULL. However, Tasks 1 i
and 2 required more effort than originally planned, with several variations on 1
the algorithm tried before a satisfactory one was found. The work performed X
under Task 3 did indicate that the implementation of a modified algorithm for
3-D SHORE cells is feasible, but will require more effort than originally
estimated.
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Section 2
CURRENT HULL CODE FORMULATION

This section describes the current approach in the BRL HULL code to
solving the partial differential equations describing inviscid fluid flow. It
also describes the approach taken to represent rigid structures before this
effort was performed. This approach was to introduce cells into HULL that are
non-hydrodynamic and perfectly reflective. These reflective cells are called
islands, and an ensemble of them simulates a solid structure.

2.1 The Differential Equations

The HULL code is designed to efficiently solve the hyperbolic
partial differential equations describing inviscid, nonconducting fluid flow
in the form:

dp Ve - (1)
dt+p u=20
dd > (2)
P as * P = PE
dE P S .4 (3)
Pyt * Ve(pu) =pu-‘g
C))

where

= material density (g/cm3)

= pressure (dynes/cmz)

(u,v,w) the fluid velocity (cm/s)
= specific internal energy (ergs/g)
= acceleration of gravity (em/s?)

time (s).

o R H S¢T ©
]

H

These differential equations can be solved using various numerical
difference schemes. In the current implementations of HULL, the difference
equations are formulated in either Cartesian or cylindrical coordinates for
the 2-D versions and in Cartesian coordinates for the 3-D version. The
difference equations for 3-D are described below. They represent the solution
for the above equations when the independent spatial coordinates are so-called
Lagrangian coordinates, that is, they move with the fluid. The difference
nethod is an explicit conservative method, which specifically could be consid-
ered a modification of a two-step Lax-Wendroff (reference 7) scheme. Since
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the original partial differential equations are classified as hyperbolic, a
Courant-Friedrichs-Lewy condition is imposed on the time step to assure numer-
ical stability.

Although the finite difference analogs to the above equations could
be written down directly, another equation is used in the differencing. This

equation:

dp . (5)
at * POege) (7°0) = 0

where Yeff is the effective ratio of specific heats, is derived in Appendix A.

Although HULL has been used quite successfully for a variety of
problems, it should be understood that while equation (5) is shown to be
exact, it is used in HULL in an approximate way in that it is assumed that the
effective gamma of the gas, calculated as

1+ B (6)

Yerr = ' % oI

is constant over the interval of the time step. This approximation, which
amounts to ignoring the time derivative of gamma, is not strictly valid for
all regimes and warrants additional investigation. Nevertheless, this approx-
imation has been historically used for HULL air blast calculations.

The remainder of this section consists of a presentation of the
difference equations typically used for 3-D air blast problems. The formula-
tion given is as found in the BRL HULL code and is included as a prelude to
the discussions on the shore cell concept. Approximations made in solving the
original differential equations are also identified. Only the first phase of
the usual HULL technique is included here. The first phase solves the differ-
ential equations couched in a Lagrangian frame of reference, that is, the
frame moves with the fluid. (Although HULL is an Eulerian code, the approach
is to calculate in the Lagrangian reference frame, and then to move mass,
momentum, and energy rather than material boundaries.) The second phase uses a
donor cell technique.

2.2 The 3-D HULL Differencing Scheme

The differencing in the Lagrangian phase is a two step technique.
The equations are presented in reverse order of calculation.

Equation (3) repeated here for convenience, is
dE -> > >
p-d—t-.-v (pu) =p wg

In a 3-D Cartesian frame of reference the divergence is
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V. (pd) = % (pu) + ‘g'i (pv) + -3; (pw),

where u, v, and W are the velocity components in the x, y, and z directions,
respectively.

Rewriting equation (3), using the definition of the divergence, and
requiring gravity be along the negative z-coordinate direction, i.e.,

§>= -Bﬁ, or U g = wg, Yylelds

dE 3 3 a s -
P gt * 3% (Pu) + 3y (pv) + 57 () = ~pwg.

In the standard HULL scheme this is differenced as:

< g2

MPRITRTPND 19

n+} _ n+} k
R {l("“’i-;,J.k (Pu)yed g, Oy 4
1,3,k - 1,5,k T At on
- ivjvk "
‘ n+} _ n+3} l
. vt - b h] e
n .
o m :
- 1,3,k N
: ‘.3
b -
- n+3} n+} 1
[("") 1,3,k-3 = (P i,J,k+}leiAvj n+1 B
- . b- @ ow ) M )
n ko 1,3,k
5 m
3 1,3,k ]
3 f
. 19
l.*_-: ..-‘:l
- - where Gk is a gravitational potential term and E is the total energy (i.e., 3
= kinetic™ + internal). The mass in cell (i,j,k) at time (n) is denoted by ﬁf
- mE,J ke The superscript n means the value is at the current time, and n+1 g
i; denotes the value at the updated time (or a one time step advance from n to 5
2 | n+1). Similarily the superscript n+} means the value is at the center of the '
b - time step. The subscripts indicate positions in space; the integer values j
: denote cell centers, differences of one denote adjacent cells, and half :
. integer values means the quantity is at one of the boundaries of the cell. .1
- This same notation is used even when the cells are not of equal size. ;
e vl
= 13 B
s _
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The cell denoted by i, j, and k lies between X5 _q and x., between

l’
yj_1 and Yy and between z, , and z,. Further, Axi = Xy-X by

and /e

ie1r Yy = Y575

k = Zx"%k-1"

Two confusing features of the difference equations in HULL are
illustrated by Equation (7). Consider

n+} n+#
100w o P53 5, 7 P 5] Vst
TP Xk "
i, i,k

The negative sign is supplied by a reversal of the natural order of differ-
encing and

A
y; e o
n i Axspl )
1,30k 11,5,k
The latter is true because m? 3k’ the mass of fluid in cell (i, j,k) at time
’ H
n
i i = Ax. A
(n), is equal to the product of density, pi,j,k and volume, Vijk X, yjAZk‘

The velocities are updated to time (n+1) by differencing equation
(2), which is

d+ >
u
P3t Vp = pg

This is differenced for each scalar component of velocity as:

pn+§ - pn+;
n+l _ n i-3,4,k i+d, 3,k (8)
u; = u, | + At 1 Ay . Az
i, j,k i,3,k mn yJ k
ijk
pn+} - pn+}
Vl:l+1 = V[:l + At i,j-%,k i;j"';‘nk AX. Az (9)
i,J,k i, J,k mn i k
iik
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pn+£r pn+§
n+1 n i,3,k=-% 7 "i,3,k+3 (10)
1,9,k = V1,56 " 8 5 by bxg= B8 G
1jk

In order to evaluate these expressions the values for the half time
step (e.g., pn+% and (pu)n+%) are needed on the boundaries of the unit cell.
The pressure at time (n+3) is obtained from the differential equation derived
in Appendix A and repéated here:

P 4 b (y )T+ D) = 0

dt
dp _ du 3v N
or dy - P (Yef‘f‘)[ax * dy * %2

in 3-D Cartesian. coordinates.

In order to solve this equation without computing hydrodynamie
quantities on the cell corners, an approximation is made in HULL. The partial
derivatives at a given side (i.e., a boundary) of a cell are assumed to be
small in the plane of the side and are ignored. While this approximation has
been used since HULL was first implemented, we believe additional work is
needed in understanding the effect of this approximation. HULL differences
the above equation at cell boundary i+%, j, k as:

n+} . n 1 - At n ol P (1)
Pied, i,k = Pisl, 5,k g 2Axi+% Yeffi+% ik is1,3,k 1,3,k
9 H
Ax. + Ax
where Axi+% = ——3——5—-211 .
n+%

The values of u sy « « o On the boundaries are obtained in a manner
similar to what was done for the velocity at the whole step; however, here the
differencing (assuming equally-sized cells) is occurring at the boundaries:

n n
LTS oAt Piet,5k 7 Pigd (12)
i*%vjsk - i+d, 3,k 2 A n+3

X343 Pisd, 3,k

where
u? -
on+d = of 1.0 - At [ iv1,3,k i,j,k]% (13)
i+4,3,k 7 Ti+d, 5,k ) 2 ij_.,.;.
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and

n n
n - mi’J:k * mi+11j1k (14)
pj_-o-i,j,k - (Axi + Axi+1) ij Azk.

The product (pu)"*i in Equation (7) is obtained directly by
(pu)t+ - ph+dyned (15)
and (pv)™?¥ and (pw)™*? are similarly computed.

In order to conserve storage, reduce data handling, and increase
efficiency, an orderly sweep is made through the mesh, advancing the cell
hydrodynamic quantities at the appropriate time when the necessary data are
available, but being careful not to destroy a quantity if it is needed later.
To accomplish this, some temporaries are sparingly used.

2.3 The HULL Island Concept

The BRL version of HULL has the capability for treating rigid
perfectly reflecting structures by allowing the user to specify ensembles of
cells in the mesh that are themselves perfectly reflecting. These reflecting
cells are called islands.

In the current version of HULL, a cell is either an island or it is
not. This requires that all structures be represented as combinations of
right rectangular solids. Analyses performed by the AFWL had address:<d this
approach, specifically for the MX application (reference 8). They found that
indiscriminate zoning would tend to produce too high an overpressure for
certain zones adjacent to islands when the islands represented a slope as in
Figure 1a. They also found that zoning in the manner shown in Figure 1b
(i.e., where they required the center of the air cells to fall on the hypo-
thetical surface of the structure) produced good agreement with theory (in the
regular reflection region) and with experimental data from BRL.

HULL requires information on each of the six faces of a 3-D cell at
time n and n+3. It derives the pressures and velocities at these boundaries
at these times from information from the adjacent cells at time n.

When processing a given cell in the mesh, the left, aft and bottom
cells have already been updated to n+1; the information is saved at the
boundaries in additional arrays.

Islands use reflective boundary conditions to represent rigid struc-
tures. A reflective boundary is one where the normal component of velocity at
the surface is identically zero. Therefore the normal component of velocity
inside an island cell is conceptually equal and opposite in sign to the normal
velocity component at the same distance from the boundary in the adjoining
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fluid cell, as illustrated in Figure 2. Using linear interpolation and noting
that the velocity on the boundary joining the island and fluid cell should be

FE 4

zero yields:

s «» @ = = = of)

uj

island cell
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fluid cell

Figure 2. The reflection condition for veloecity.
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Section 3
SHORE CELLS

This section describes shore cells which are intended for use in
representing rigid structures in the 2-D (Cartesian and cylindrical) BRL HULL
code. The shore cell approach allows the introduction of cells into HULL that
are half fluid (normally air) and half perfectly reflective. Most HULL imple-
mentations currently allow cells that: (1) consist entirely of a fluid or (2)
are perfect reflectors or islands (see Section 2). A solid structure has in
the past been simulated by an ensemble of islands. However, not all struc-
tures can be well represented with the island approach. For example, a wedge
has been simulated by a set of islands arranged in a stairstep manner. It has
been shown (see Appendix B for a brief review) that the stairstep simulation
is inadequate for certain important problems. Therefore, the concept of
partially reflective cells was investigated as one possible solution to some
of the problems of interest to the BRL.

In order to improve the simulation of certain structures (e.g.,
ramps or other surfaces not aligned to the coordinate system), shore cells
have been implemented in 2-D BRL HULL, and a conceptual approach to three
dimensions has been formulated. A shore cell in two dimensions ean be
imagined as a cell cut in half along its diagonal. (In cylindrical coordi-
nates the 'diagonal' is a surface of revolution which cuts the cell only
approximately in half; nevertheless, in the ensuing discussion a shore cell is
referred to as if it were cut in half.,) Half of a shore cell is fluid and the
other half is perfectly rigid and reflective, or in HULL terminology, half-
fluid and half-island.

3.1 Introduction to Shore Cells

A 2-D shore cell is by definition a cell which is one-half fluid
and one-half island. Furthermore, the boundary between these two halves must
be one of the two cell diagonals. Therefore, four shore cell orientations are
possible as shown in Figure 3. To illustrate how the diagonal affects the
flow, boundary conditions can be calculated interior to the shore cell.

Two basic assumptions are made about pressure in a shore cell: (1) the
pressure is linear parallel to the diagonal and (2) the partial derivative of
pressure, on the diagonal, normal to the diagonal is zero. These lead to the
computation of virtual pressure on the island sides of shore cells. Consider
Figure 4., By geometric considerations

LC = CL' = g, = %;-sin o (16)

B'C ﬁ=g2=A2-zcosa (17)
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By the linearity assumption

(82 PL + 8, PB) >
P, = = cosg P
c (82 + g1)

+ sinzq PB (18)

L

Where PL’ PB,

and PC are the pressures at points L, B, and C
respectively. Also by linearity, ;

Pz 3 (P + pLo) (19) :

and .

PC = i (PB +PB') (20)

or :

va =2P, - PL (21) a

and 1

B!

= = . 2 -

? PB' 2 PC PB (22) ;
4

o By reflectivity, 1

::'. PR :pL,' = 2 PC - PL (23) f

and d

PA = PB' =2 PC - PB (24) -:

2

Interpolated results are only expected to be physically meaningful within
the confines of a cell. The pressure on the boundary points L and B will in
the physical case be positive. Experience has shown that when properly used,
HULL will preserve this positivity. However, note, that while interpolation
to point L' in Figure I will always yield a positive number, it is possible
that the pressure at B' will be negative. Point B' can be considered to be
"outside” of the cell, and its value is only a numerical convenience to
calculating the gradient of pressure across the cell. It should not be forced

PIPEP TSR O R

to be positive. 3

E{' It is also assumed that the component of velocity normal to the cell 1
e diagonal must vanish at the cell center. This is imposed at the end of each <]
o time step. Let ;
j! t=ul +vi YA
- 1
be the computed velocity at the center of the cell where'i and'B are the usual ]

. unit vectors in the x and y directions, respectively. One can also write G
', > N » TT‘, j
) Uu=u n+u 4
- 22 X
» i
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where % and T are unit vectors normal to and tangent to the diagonal,

respectively. By the assumptions, for the orientation in Figure y,

uN = 0 (25)
and

T
U = -usina+ V cos o (26)
then, u and v at the cell center are recomputed by

-uT sin o 27)

v = uT ¢os q. (28)

=
1}

3.2 Neighboring Cells

For a fluid cell calculation without shore or island cells, only the
fluid-fluid interactions need to be considered. Without any loss in gener-
ality, only one combination of two cells is inspected. This approach is valid
whether sweeping the mesh from left to right or from bottom to top (or from
fore to aft in 3-D). When islands are added, four possible interactions must
be inspected. These are:

Interactions Boundary between cell is
1. fluid=-fluid normal
2. fluid-island reflective
3. island-fluid reflective
y, island-island ignored

The order chosen to calculate the cell quantities is important when
handling the data. Therefore, fcur interactions were listed above instead of
only three. The additional interactions required with the addition of shore
cells are:

5. fluid-shore (fluid) normal
6. fluid-shore (island) reflective
7. shore (fluid)-fluid normal
8. shore (island)-fluid reflective
9. island-shore (fluid) reflective
10. island-~-shore (island) ignored
11. shore (fluid)-island reflective
12. shore (island)-island ignored
13. shore (fluid)-shore (fluid) normal
14. shore (fluid)-shore (island) reflective
15. shore (island)-shore (fluid) reflective
16. shore (island)-shore (island) ignored

where a shore cell can have its fluid side or island side facing its neighvor.
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3.3 Shore Cell Modifications to the Volume, Density, and
Mass Computations

In general, the most important change for shore cells is in the correct
expression of the density. The usual density calculations assume a full cell.
The shore cell changes generally calculate a partial cell's volume and then
subsequently calculate the density as the ratio of the mass of fluid in the
cell to its volume. This approach keeps the coding from obscuring the
physies.

Numerous minor changes are required for the density computation. Since
these changes are spread all over the code, it is worthwhile reviewing their
calculation so that individuals making future revisions will be aware of what
is being done.

3.3.1 Modifications of Shore Cell Volumes, Density and Mass in
2-D Cartesian Coordinates

The volume, V, of a 2-D Cartesian cell of height, Ay, and width, Ax, 1is

V = AxAy
and mass is
m=z=pV

The volume of fluid in a 2-D Cartesian shore cell is

Vf. = dAxAy = W
and mass is
m= 3pV
3.3.2 Modification of Shore Cell Volume, Density and Mass in

2-D Cylindrical Coordinates

In cylindrical coordinates the volume, V, of a cell of height, Ay, and
width, Ax is that for a toroidal cell

] ax] 2 bx] 2
IS R U S I

or V==or Rc Ax Ay

where x is the radial component.
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For cylindrical coordinates, HULL defines PI =7, RCy = 3(x{ + Xi41)

and TAU; = 3 PI RCij Axj. An obscurity exists in HULL to allow use of the same
code for Cartesian geometry as for cylindrical geometry. The variable PI is
set to % and R, to 1 so that in Cartesian geometry TAU = Ax. 1In either

geometry
V = TAU Ay.

No attempt has been made to remove this obsurity, and furthermore,
such use of TAU may have been included in coding for SHORE cells. Eventually,
such coding should be removed from HULL for although it can be considered to
be computationally efficient in some sense, its use could easily lead to
future errors.

Consider the shore cells shown in Figure 5. The number, L contained
within the fluid portion of the shore cell identifies its orientation. If L
is greater than 2 the volume is greater than one-half the volume of the cell;
otherwise it is less.

In general, the volume of a s0lid of revolution can be calculated as
shown in Figure 6. From the Theorem of Pappus the volume of revolution of a
cell can be obtained easily if the center of gravity and cross-sectional area
are known. The center of gravity on the fluid side is one-third Ax and one-
third Ay from the boundaries adjacent to the fluid. Therefore, the volume of
fluid is

- 1
Vt. -ﬂ(Rc tg AX) AX Ay

instead of 2yrR, AxAy. The sign depends on which side of the diagonal is being
considered. In other words, the radius to the centroid is no longer R, but
instead is Ro * 1 Ax and the cross-sectional area has been cut in half. 1In
our implementation an array TAUS has been defined that stores the difference
that needs to be added to (or subtracted from) TAU. Its value is

Taus = § (ax)2 (29)

so that in cylindrical coordinates the volume of a shore cell of type L>2 is

Vo = (JTAUSTAUS Ay

For type L < 2,
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3.4 Shore Cell Modifications to the Lagrangian Phase

This section provides an overview of the physics of the implementation of
the shore cell concept for the Lagrangian Phase. The approach does not
require extensive modification to the code's architecture, and in fact, has
been implemented with an appropriate POST option so that unless the user
explicitly invokes the shore cell opticn, its source code will not be included
in HULL.

The conditions on fluid boundaries of a shore cell are computed in the
normal manner. That is, if a cell adjacent to the fluid boundary is a fluid
cell or the fluid side cof a shore cell, then the boundary is treated the same
as two adjoining fluid cells. If the neighbor is an island or the reflective
side of a shore cell, then the boundary is treated as reflective.

The difference equation analog of Eguation (2) used in HULL for 2-D
Cartesian fluid-cells is

n+¥ _ n+} )
nel _ on t(pi-;,j Pivd, j) BY;

= 30
ui’j i’J A mlil . ( )
1,)
and (pn+% _ pn+§_r )Ax
L N RN i T e T3 ¥k S VY (31)
1,3 7 1,3 I J
i,j

Here Gj is the "gravity potential®" which prevents any change in vij in an

undisturbed ambient atmosphere. Note that
Ay, s v, .
Dyo. by L Ny (32)
n” Ax, m? Ax, V pn Ax pn
ij i ij i i3 7ij i"ij
and similarly
Bxy ) vij _ 1 (33)
n n _n n °
m Ay Vv
13 %Y Vigfiy M5 Py

where Vi 4 is the volume of the cell.
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By a "clever" choice of multipliers the same coding is used for both
Cartesian and cylindrical geometry. In either case 1/°2j is represented by

n

For shore cells the volume of fluid and density in the cell are
explicitly computed. The pressures on the two fluid sides of the shore cell
at time n+% are computed as for cells that are entirely fluid. Assuming the
orientation described in Figure 4, P;, and Pg are computed in the normal manner
and PR and Py are computed as described in Section 3.1.

Then
P, - P
n+1 n L R
1, TY,5 7 At A%, oF (34)
iPi,j
and
P, -P
n+1 n B A
) = _— - G, .
i,5 7 Ly t8t T At Gy (35)
iPi,;]

Since these equations do not depend on mass or volume, they are applica-
ble to both Cartesian and cylindrical geometry and to both all fluid cells and
shore cells.

The energy equation (Equation 3) in Lagrangian coordinates can be
rewritten as:

dE

T év . (ph) + B} (36)

When formulating a difference equation involving the divergence it is conven-
ient to write down its definition and then work from there. The divergence
used in the HULL difference equations is the "average" value in the cell. For
a vector'F,

(average y. *) jv dv = IV v ¥ av,

By Gauss' theorem

fyvkav = [ Fdh (37)

where V is volume of the cell, S is the surface area of the cell, and di is

the product of the differential of area with the unit normal on the surface.
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For a rectaagular cell of size ax and Ay (with Az = 1), the divergence

-
of pu is approximately

-Ay(pu), + Ay(pu), - Ox(pv)y + Ax(pv)
Ve (pu) = L & B A (38)

where (pu)L means its value on the left side of the cell, R = right, B =
bottom, and A = top. Remember, u is the velocity's component along x and v is

its component along y.
Substituting in Equation (36) with m = oV,

AE = %E {I(pU)L - (pu)R] Ay + l(pv)B - (pv)A‘}Ax -AtvG (39)

The same sort of argument for cylindrical coordinates produces

AE - %& {I(XPU)L _ (XPU)R] 1Ay + l(pv)B - (pv)A] 21IRc Ax} (39b)

- At vG.

A shore cell on the other hand has three sides enclosing the fluid
instead of four (in two-dimensions). The contribution to the divergence
across the diagonal is zero and therefore only the sides of the cell contri-
bute. Furthermore, since the velocities at the reflective sides of the shore
cell are zero, the original energy equation could be used if it were not for
the gravity potential term. The gravity potential term computed in HULL for a
full cell is

P. - P .

G = =3 +i
' Ay,
J DJ YJ

where the pressures and densities are taken from an ambient atmosphere and
computed just as they would be for the difference equations. For all fluid
cells, for both Cartesian and cylindrical geometry, the same term prevents a
change of vertical velocity and accounts for the effect of gravity on energy
in an ambient atmosphere. The Gj stored is correct for the momentum equation
for shore cells in both cylindrical and Cartesian coordinates. However, we
must multiply the gravity term Gj by V/Vf in the energy equation. For
Cartesian coordinate shore cells

A
AE =-1% {BDU)L-(pu)R] Ly + pr)B-(pv)A] Ax}— 2 At vG
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For cylindrical shore cells

AE = & {[(xpu)L- (xpu)JZnAy

m
+[i(pv)8-(pv)JZchAx}

2n Rc AxAy

- -—__V;_——' At vG

Here, 2mR, AxAy = Ay TAU is the volume of the cell and Ve is the volume of the

fluid part of the cell. This will have been computed to find density from
mass.

3.5 Shore Cell Modifications to The Fluxer Phase

The approach taken for fluxing mass, momentum, and energy is
similar to the original HULL approach. However if the donating cell is a
shore cell, the density, p, is computed and the mass flux computed using p

explicitly,
Mass flux = O(udt) A

where, u is the velocity component perpendicular to the cell boundary, A is
the cell boundary area, and At is the time step.

After fluxing mass, momentum and total energy, the boundary
conditions are applied so the velocity normal to the reflecting surface will
be zero at the cell center (see Section 3.1). This is done while striectly
conserving mass and total energy. The result when the flow does not happen to

come out strictly parallel to the diagonal wall is to convert kinetic energy
into internal energy.
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Section U
ADDITIONAL DETAILS OF THE IMPLEMENTATION OF SHORE CELLS

4.1 Modifications to PLANK

The changes to PLANK primarily involved the modifications necessary to
include an additional option, SHORE, into the HULL system. At the same time
the OPT array was reduced to what it had been when HULL was initially
installed at BRL.

4,2 Modifications to KEEL

Appropriate comments were added to KEEL, the grid generator for HULL, to
maintain the current state of documentation; these should be self explanatory.
The option SHORE was also included in the HULL z-block, since each program in
HULL should know of its existence, and it would be inappropriate to exclude it
from the restart files.

The architecture of KEEL has not evolved to an easily modifiable or
maintainable state, and it was out of the scope of this effort to change this
circumstance. Therefore, a technique was developed that avoided a significant
rewrite; unfortunately, the approach is obscure to the casual user. For that
reason, some detailed comments are appropriate even though they will not make
KEEL easy to understand.

Essentially KEEL is designed for convenience of use; it allows simple
descriptions of geometric objects or regions to be specified by the analyst
and then will assign hydrodynamic values to each cell by mass-weighting the
hydrodynamic values for subcells (discussed below). The allowable two-dimen-
sional objects or regions are: rectangles, triangles and circles. The
allowable three-dimensional objects or regions are: boxes, tetrahedrons,
spheres, cylinders and cones. The standard 2-D HULL permits multi-material
input. The 3-D HULL (or the 2-D shore option) restricts the contents of any
region to be air (the state of the air may be different in each region) or an
unyielding solid, designated as ISLAND.

Let it suffice to say that very complex geometrical shapes can be speci-
fied rather easily, since obJjects can be added or deleted as needed. The
coding to perform this in KEEL, however, isn't straightforward. This is
partially the result of many years of disjoint development.

All the regions containing fluid are processed before the ISLAND regions.
Currently, for the fluid regions, each cell is divided into subcells with 3
partitions in each direction. This produces 9 subcells for 2-D geometry and
would produce 27 subecells for 3-D. If the center of a subcell is in a region,

that subcell's portion of the cell is assigned the hydrodynamic values of that
region.

The island regions are processed last. Each potential island cell is
considered as a unit (one suhcell). If the center of the cell is inside any
island region the cell is designated an island cell.

A final check fills the unfilled portions of cells with ambient air.

31

A K ara 23 08 'R Ihacs-aax At i 0. A -



If the center of a subcell should lie on the common boundary between two
fluid regions, that subcell might be included in both regions. In this case
the cell might be overfilled and the program would halt with a warning print.
Conversely, it might be excluded from both regions. In this case the omitted

volume would be filled with ambient air. Overlap of island regions with
either fluid or other island regions does not cause trouble because the

islands are entered last and entire cells are either island or not.

For the 2-D shore cell option the fluid regions were treated just as
before except there are Y4 partitions in each direction. This gives 16
subcells. This partition into 16 subcells is retained for the rigid regions
designated by the word SHORE (or ISLAND). If any subcell in the cell is in a
shore region, the appropriate bit in a 16 bit true-false piece of a word is
set true. After all the regions have been processed, this true-false informa-
tion is used to determine whether the cell should be fluid, island, or one of
the four possible shore cells.

This determination of the type of cell is carried out as the last part of
the final pass that fills the unfilled portion of cells with ambient air. The
coding includes adjustments to the content of cells to the proper level for
shore cells or for discarded island subcells.

If there are less than six subcells filled with island material, then the
cell is considered to be entirely fluid and the subcells that were islands are
filled with fluid. If there are more than thirteen subcells that are filled
with island, then the entire cell is made an island.

The remainder of the cells are treated as potential shore cells. Depend-
ing on the outcome of the following tests the cell may become a shore cell, an
island, or a fluid cell. These potential shore cells are checked to see if
their "corner" subcells are island or not. If the six corner subcells marked
with an X in Figure 7a contain island material then the cell can become a
shore cell with an orientation tag of 1. This is recognized by setting a
logical flag, LS1, to TRUE. A similar test is performed for each of the other
orientations and corresponding logical flags are set. There are three possi-
bilities: ~

1. If LS1, LS2, LS3, and LS4 are all false, the cell is fluid.

2. If any two or more of LS1, LS2, LS3, and LSY are true, the cell is
an island.

3. If exactly one of LS1, LS2, LS3, and LS4 is true, say LSi, then the
cell is a shore cell of type i.

Note that the cell in Figure U4b does not pass the corner criterion for
any shore orientation, and therefore becomes a fluid cell. It is unlikely
that this case will be encountered except possibly at point junctions of three
structures, in which case making it a fluid could be appropriate.

Some simplifying assumptions have been made to avoid most of the changes
that would be necessary at the mesh boundaries. For the time being, shore
cells are not allowed to be adjacent to a boundary except at either a reflec-
tive left boundary (LBOUND = 0), or a reflective bottom boundary (BBOUND=0).
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Figure 7. Determining whether a cell is a shore cell in KEEL
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The remaining changes to KEEL involve calculating the volumes of the
cells and subcells and modifying the materials maps.

R m.'._A_';_'.J

4.3 Modifications to HULL: Adding the SHORE Option

The modifications to HULL in IDENT HULBS1 add the shore option to the
code and properly treat its value in the z-block. Also, comments were added

consistent with the practice at BRL.

g
m
B
K

4.4 Modifications to HULL: 2-D Consideration and Lagrangian Phase
Modifications

Information about a shore cell is kept in the H-array as another hydro-
dynamic variable. This is consistent with Vector HULL architecture, and is
the appropriate way to introduce shore cells to make it possible to vectorize
the code.

This additional hydrodynamic variable contains the shore orientation
indicated by a real value of 1.0, 2.0, 3.0, or 4,0, If this variable is 0.0
the cell is fluid, and if -1.0 an island. Rather than use a real variable for
comparison, an integer L3SX is used where X can be I for the current cell, R
for the right cell, or A for the above cell--consistent with HULL mnemonics.

A change made to the time step calculation was included in this update.
In H1 (the Lagrangian phase) it was also necessary to consider how

density should be computed at a boundary between two cells, one or both of
which are shore cells.

-
As an example of the approach used, consider a fully fluid cell with an !
LSAz4 shore cell above it (its fluid side faces the fully fluid cell). X
Consider the case for cylindrical geometry. M
In HULL the mass of two all-fluid cells is ;
e !
A AMA = H(N145) + H(NA1+5). o
o The density at that boundary is calculated as B
. RHOA = AMA/(TAU(I) * (DY(J) + DY(J+1))) »
- In order to calculate the density with this equation we choose to modify the f
.. mass associated with each shore cell at the boundary. !
b . :
L If Mg represents the mass of fluid in the shore cell, and V¢ the volume }
bi' of fluid, and m represents the mass of the cell if filled with the fluid (the -
- quantity desired), and V its volume, we can write: -
- m_of
- v vf
L:' or
[ m oo of
Y = -
(Vf/V)
b
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Then, for a shore cell above a fluid cell, the apparent mass for this density

interpolation is

AMA = H(N145) +  De/(Vp/V)

For the chosen case, i.e., LSA = 4,

V = TAU(I) * DY(J+1)

and Ve = (15 TAU(I) + TAUS(I)) * DY(J+1)
v
£ TAUS(I)
or v = b

Similarly for LSA = 1

) TAUS(I)

Ve
v ~ ¥ - TAU(T)
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Section 5
PRELIMINARY RESULTS

5.1 Initial Code Checking

In late May 1981, SAI's files containing the modifications for shore
cells were transferred to the BRL's CDC 7600 computer and code checking was
begun. The majority of the test computations were performed by the BRL. A
number of changes were made and tested. A revised set of shore modifications
files, with additional improvements, was sent from SAI to BRL in mid-
September.

Much of the checking of the shore changes was accomplished by review of
the coding and considering the correctness under all permissable conditions.
This is not completely reliable, but is more feasible than actually testing
all possible code configurations.

5.2 Test Computations (2-D Cartesian Coordinates)

Testing 1is still continuing and will be documented in a later BRL
report. To illustrate the use and effect of shore cells, three computations
from the first series of tests will be briefly discussed here. All three used
a 100 by 100 grid of square cells 5 cm on a side, had the same ambient atmos-
phere, and had the same 68.95 kPa (10 psi) step shock striking a square
unyielding target at an angle of 450 to the front sides. The runs were
initiated with the shock front 20 cm from the leading corner of the square
target. The initial time was set at 4.1 ms and the computations ran to 16 ms.

Problem 181.0714, which we call the shore diamond test, used the shore
modifications. The step shock was input from the left boundary, and struck
the square target (the diamond) at U450 to the front edges (See Figure 8).
Problem 181.0715, which we call the obligue shock test, had none of the shore
modifications. The step shock moved from the lower left toward the upper
right at 459 to the square computational field and the square target, as indi-
cated in Figure 9. Problem 181.1028, which we call the staircase diamond
test, was a duplicate of the shore cell diamond test except the shore changes
were not used. The target was compressed slightly so the shore cells in
Problem 181.0714 were replaced by all fluid cells.

We include two of the HULL-produced plots from each of these runs.
Figures 8, 9, and 10 are plots of the vector velocities at 14 ms for the shore
diamond test, the oblique shock test, and the stairstep diamond test,
respectively. This time was selected to point out the strong vortices that
form behind the targets. A close inspeclion of Figures 8 or 10 reveals an
apparent asymmetry in the velocity vectors. This apparent asymmetry in the
vicinity of the target is entirely due to the plotting procedure which plotted
velocity vectors for cells in alternating rows and columns. The asymmetry
near the bottom boundary relative to positions near the top boundary is real.
BRL HULL does not have a satisfactory transmissive lower boundary. Since we
wanted to compare results with the oblique shock test, which is transmissive
parallel to the shock front, we made the lower boundary reflective and the
upper boundary transmissive. The effect of this near the target was negligi-
ble at 14 ms. The plotting from alternate cells in the oblique shock test is
symmetric.
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Figures 11, 12, and 13, are overpressure contour plots at 10 ms for the
same three HULL problems (in the same order as before).  This particular time
was chosen because the plotting procedure selected the same contour levels for
all three cases. The apparent outlines of the target are an artifice of the
plotting program (A very low pressure is assigned to the target cells and the
interpolation produces several close contours.) There has been no attempt to
modify the plotting procedure for shore cells. The pressure contour plotting
procedure assumes square cells, even to the point of recomputing the pressure
in a cell assuming the entire cell is fluid. This does no real harm as long
as the observer remembers that the apparent target outline is severely

distorted.

A definitive comparison of results from these runs is not possible from
these plots. Our intention was to compare values at various "stations" around
the perimeter of the target. The values at a station are the values for the
cell in which the station is located. The results for the shore diamond test
and the oblique shock test were not quite the same. This is largely because
the cells and the centers of the cells were oriented differently with respect
to the target. The centers of the shore cells are on the target, while the
centers of bordering cells for the other case were 2.5 cm away from the target
edge. An examination of overpressure plots (not shown here) at various points
around the target indicates very similar results on the front (windward)
sides, quite different results just around the corners, and fair agreement
further along the back side.

Figure 14 shows the history of average overpressure in cells whose
sides, or diagonals, form the front of the target and average overpressure in
cells wvhose sides, or diagonals, form the back. The higher curves are, of
course, from the front. Occasional squares mark the shore diamond test
results, triangles identify the off angle results, and the stairstep diamond
results have no superposed symbol. The results for the shore diamond test and
the oblique shock test are close enough that their differences may be due to
the relative 1locations of the cell centers. The average pressure for the
staircase diamond run is significantly different. Note particularly that the
difference in pressure on the front and the back is much smaller after about
10 ms.

If results from the oblique shock test are accepted as correct (this
option has been well checked), a slanting wall of shore cells is significantly
better than a stairstep wall for predicting loads.

5.3 Test Computation (2-D Cylindrical Coordinates)

A sample run with cylindrical coordinates compiled and ran with no
obvious errors. The run modeled a step shock moving down a cylindrical tube
with a constricting section and an expanding section. Although che results
appear reasonable, the model is artificial and hence this case does not serve
as a check for correctness. (In fact, a minor error in the cylindrical
coordinate coding was later found and corrected).

A cylindrical shock tube test is planned at the BRL in the near future,

Data from this test will be used to check the shore coding for cylindrical
coordinates.
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Section 6
CONCLUSIONS AND RECOMMENDATION

The results of the tests briefly discussed in the previous section, and

other preliminary results, suggest that the shore cells will prove to be a
useful addition to HULL. The use of shore cells should increase the number of
shapes that can be satisfactorily modeled.

It should be pointed out that not all shapes can be modeled. The edges
of the modeled so0lid will follow cell boundaries or cell diagonals. A very
shallow or very steep ramp cannot be modeled without introducing cells with
very high aspect ratios. Use of such cells 1is generally unacceptable.
Further, a sudden change of slope, say from 300 to U450, would also cause
modeling difficulties. To maintain smoothness a sudden change in all dimen-
sions would be necessary, which can lead to other inaccuracies. Nevertheless,

for these cases a more realistic model can be formed by using some shore cells
than without them.

Although we are pleased with the shore cell coding for 2-D Cartesian
geometry, some further testing for simplification or improvement is in order.
For example, it is not definite that stagnation (foreing the velocity in shore
cells to be parallel to the diagonal) is needed. If one considers the hydro-
dynamic variables to be values at the cell center, there should not be any
velocity component normal to the diagonal in shore cells. However, if the
hydrodynamic variables are values associated with the cell center {e.g.,
average values in the cell), a small velocity component normal to the cell
diagonal may be acceptable. A cursory study of wusing stagnation versus not
using it was effected for a step shock striking a ramp. The only significant

result apparently was to produce slightly higher peak pressures when stagna-
tion was not used.

At the time of this writing, the accuracy of results from shore cells
with 2-D cylindrical coordinates has not been verified.

In view of the apparent success of 2-D shore cells, we recommend
proceeding with implementation of 3-D shore cells in BRL HULL.
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APPENDIX A

DERIVATION OF TIME DERIVATIVE OF PRESSURE
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Appendix A

DERIVATION OF TIME DERIVATIVE OF PRESSURE

This appendix presents the derivation of the time derivative of
the pressure in order to demonstate the validity of the differential
equations that are differenced in the HULL code.

Substituting equations (4) from the main text into (3) and using
(2) one can show that

dI R
Dag +p (Veu) =0 (A1)

and then if one defines Y oo = 1 + P_ it also can be shown (using (1)) that

pI

dp 0y =
at * P Yepp (V7U) = 0 (A2)

The proofs follow. Substituting equation (4) into (3) yields

+

d > > > + >
Pt (T + dutu) + Ve (pu) = gu'g

Now since

»> »> >
Ve(pu) = (Vp)*u + p(V*u)
it follows that
p:_t (I+ f0'0) + (Vp)*u + p(¥eu) = P g
d1 a >+ > b wn
or Pt + Pgp(wu) + (Vp)eu + p(Veu) = pug

&>

di o1 U AR
or par + P (Veu) +u {pdt+Vp-Og}- 0
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from equation (2) in the main text it follows that

-
pg%. +p(Veu) =0

which is the first thing to be shown.

- P_
Defining Yeff =1+ i and writing it simply as Y

dp _ (vo1yodl 74P
= (Y 1)0& + (Y 1)Ia-E

dt
1dp _ 1dl 1dp
i.e., EEE-T—t+p t

p dt dt dt
Substituting the above for O%% from equation (Al) yields

fI dp 4ae oy =
> dt'Idt"'p(Vu)"o

Substituting into this for %%-from (1):

AL dp Ve Vea) =
b at + Ip(Veu) + p(Veu) = 0
dp , B (p+Ip)(V';) =0

or 42, pY(V'J) =0

dt

which was the second thing to be shown.
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Appendix B

This appendix contains a listing of the change deck that is sent to the
CDC UPDATE facility. These changes represent the recommended changes to the

BRL HULL system to effect shore cells and were developed during this effort.
In addition, various changes were introduced to correct errors unrelated to

shore cells that were found by chance during the implementation phase of this
contract. These recommended changes are believed to be correct, however,
additional work needs to be done to fully check out their correctness.

As a note of interest, the first author would 1like to point out that
the typed listing in this appendix is produced directly from the magnetic
media where the changes were stored while being developed. With current tech-
nology we can produce listings of letter quality without the usual introduc-
tion of errors associated with retyping. Furthermore, the changes when ready
to be tested were sent telephonically to BRL, sent back to the sending site,

and compared at the sending site, character by character, to mitigate communi-
cation errors.

Finally, the ability to develop the changes off-line greatly reduced
associated communications costs.
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Please take a few minutes to answer the questions below; tear out 3
this sheet., fold as indicated, staple or tape closed, and place 3
1n the mail. Your comments will provide us with information for 1
improving future reports. )
1. BRL Report Number .
2. Does this report satisfy a need? (Comment on purpose, related 1
project, or other area of interest for which report will be used.) '
]
".a
3. How, specifically, is the report being used? (Information
source, design data or procedure, management procedure, source of
ideas, etc.)
.d
4. Has the information in this report led to any quantitative 'i
savings as far as man-hours/contract dollars saved, operating costs p
avoided, efficiencies achieved, etc.? If so, please elaborate. (A
1
"]

5. General Comments (Indicate what you think should be changed to R
make this report and future reports of this type more responsive P
to your needs, more usable, improve readability, etc.) O

p
6. If you would like to be contacted by the personnel who prepared .
this report to raise specific questions or discuss the topic,
please fill in the following information.
Name : v
Telephone Number: R
Organization Address:
v
v
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