

- - --- m .

A Language-Oriented Interactive
Programming Environment

Based on Compilation Technology

Peter H. Feller

Department of Computer Science

Carnegie-Mellon University

Pittsburgh, Pa. 15213

May 1982

Submitted to Carnegie-Mellon University
in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

DTICS ELECTEJAN 1 3 1983

Copyright) 1982 Peter H. Feller

This work was sponsored in part by the Software Engineering Division of
CENTACS/CORADCOM, in part by the Defense Advanced Research Projects Agency (DOD),
ARPA Order No. 3597, monitored by the Air Force Avionics Laboratory Under Contract
F33615-81 -K-1539.

The views and conclusions contained in this document are those of the authors and should F
not be interpreted as representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the US Government.

ID RIBUTION STATEMENT A
Approved for public release4

Distribution Unlimited

Abstract

This work is a feasibility study of a Language-Oriented Interactive Programming Environment
(LoIPE) based solely on compilation. In this new approach to compiler-based environments we
show that integrated interactive programming environments are not limited to interpretive

K systems, and that programming environments can have an understanding of the
programmer's task and actively. contribute to its solution. A prototype of LOIPE has been
implemented.

LOIPE is language-oriented. Both language-oriented program construction and language-
oriented debugging are supported through a syntax-directed structure editor. This editor
maintains a program tree as the primary program representation, but presents the user with a
textual source program view. The debugger's functions are expressed in form of language
constructs, utilizing the expressive power and abstraction mechanisms of the supported
language, and are invoked by editing the program tree.

LOiPE is an integrated programming environment centered around the program tree. The
structure editor is used as a uniform user interface. LOiPE takes responsibility for the integrity
of the program data base, i.e., the program tree augmented with semantic and status
information and the executable object code. The maintenance of the program representations
and the invocation of tools is hidden from the user. The distinction between program
manipulation and debugging diminishes.

LOiPE is interactive. Semantic errors are detected and reported while the user is still in
context. Flexibility is provided by supporting the partial execution of programs with
incomplete or semantically incorrect parts. Programs can be executed at any time.

LOiPE is an incremental programming environment. All processing steps of the compiler-
based environment are performed incrementally between editing operations allowing for fast
response time. Even LomE'a debugger is realized with this incremental program replacement
mechanism. By doing so debugging for optimizing code generators are supported.

We discuss the design and implementation of LOiPE both from the user's view and under the
aspect of a solely compiler-based system. Our feasibility claim of LOIPE is substantiated by an
evaluation of the design and the prototype implementation. The evaluation includes
measurements on the running prototype and a discussion of the generation of LOIDE for a

4 specific language.

Accos ion For

i p

i

Acknowledgements

This dissertation was developed under the guidance and patience of my advisor Nico Habermann.
The thesis work contributed to the Gandalf project and benefitted from the many discussions with the ir

* members of the project.. Barb Denny, Bob Ellison, Dave Garlan, Gall Kaiser, Raul Medina-Mora, Dave
Notkin, Dwayne Perry, Steve Popovich -- and especially from Raul Medina-Mora's thesis work on
structure editors. The comments and suggestions from the other members of my thesis committee,
Anita Jones, Walter Tichy, and Bill Wulf, improved the presentation of the thesis considerably.

I would like to acknowledge the departmental computers and the Scribe system that facilitated the
production of this document. I am also grateful to Karl Zaninger and Horst Mauersberg for letting me
finish the thesis while working for Siemens Corporation over the last year. Last, not least, a
immeasurable thanks to my wife Holly for being on my side in every way during my battle with the
dissertation.

4 p;

I U

S'

REFERENCES r

Table of Contents

1. Introduction 1

1.1. A Definition of Programming Environment 3
1.2. Integrated Programming Environments Vs. Toolkits 5
1.3. Language-Oriented Vs. Generic Systems 8
1.4. Compiler-Based Vs. Interpreter-Based Programming Environments 9
1.5. Display-Oriented Systems 10
1.6. Review of Previous Work on Programming Environments 11

1.6.1. Traditional Compiler-based Programming Systems 11
1.6.2. Interpretive Programming Systems 13
1.6.3. Individual Contributions to Programming Environments 14 r

1.6.3.1. Mitchell's Thesis Work 14
1.6.3.2. Swinehart's CoPiLoT System 15
1.6.3.3. Model's Monitoring System 16
1.6.3.4. Deutsch's Interactive Program Verifier 17
1.6.3.5. The Cedar Project 17

1.7. Plan of the Thesis 18

2. A User's View of Program Construction 21

2.1. LomE's Language-Oriented Program Manipulator 22
2.1.1. The Text Approach 22
2.1.2. The Structure Approach 23
2.1.3. Text Vs. Structure 24
2.1.4. The ALOE Program Manipulator 27

2.2. Display of Information 28
2.2.1. Display Management in LOIPE 29

2.2.1.1. Display During Program Construction - A Browsing Facility 29
2.3. A Flexible Agent 31

2.3.1. Phases of Program Development 32
2.3.2. Executability of User Programs 35

2.4. Active Participation 38
2.4.1. Replication of Program Parts 35
2.4.2. Utilization of Semantic Information 35 1 p
2.4.3. Maintenance of the Program Data Base 37

2.5. Summary of the Program Construction User View 37

3. Integrated Language-Oriented Debugging 39

3.1. Integration of the Language-Oriented Debugger 41
3.1.1. Execution Image Based Debugging vs Program Tree Based Debugging 42

3.1.2. Source Program Representations and Programming Languages 45

-A

REFERENCES

3.1.3. Language Extensions A Command Interface 46
3.1.4. Summary on Integration of Language-Oriented Debugging 46

3.2. Program State 47
3.2.1. Control Flow Display 48
3.2.2. Data State Display 51 r

3.2.2.1. Display Format 51
3.2.2.2. Data Display Requests 53
3.2.2.3. Modification of Data Object State 54

3.2.3. Information Hiding for Record Types 55
3.2.4. Summary of Program State Representation 56

3.3. Debug State 56
3.3.1. Semantics of Debug Statements 58
3.3.2. Dynamic Assertion Checking 59
3.3.3. Scope of Debug Statements 60
3.3.4. Enabling of Debug Statements 61
3.3.5. Cost of Debug Statements 63 r
3.3.6. Summary of Debug State in LoiPE 63

3.4. Execution Control 64
3.4.1. Continuation of Execution 65

3.4.1.1. Program Evaluation 68
3.4.1.2. Unwinding of Execution Flow 67
3.4.1.3. Restoration of Program State 68

3.4.2. Consistency of The Program Execution State 69
3.4.2.1. Non-Damaging Modifications 70
3.4.2.2. Correction of Program State 71
3.4.2.3. Restoration of Previous Program State 72
3.4.2.4. Fatal Modifications 73 0
3.4.2.5. Detection of Structural Inconsistency 74

3.5. Summary of the LoiPE Debugging Facility 74

4. Incremental Program Construction 77

4.1. Incremental Consistency Checking 79
4.1.1. Availability of Semantic Information 80
4.1.2. Incremental Checking of Semantics 81
4.1.3. Propagation of Side Effects 83
4.1.4. Consistency of the Executable Representation 86

4..4.1.5. Summary of Incremental Consistency Checking 86
4.2. Partial Program Replacement 86

4.2.1. Use of Indirection 87
4.2.1.1. Indirect References 87

4.2.1.2. Unit of Partial Code Replacement 88
4.2.1.3. Incomplete Indirection for Data Objects 89

4.2.2. Cooperation of Processing Steps 90
4.2.3. Remote Program Execution 91

4.3. Summary of Incremental Program Construction 94

5. Realization of Language-Oriented Debugging 97

5.1. Realization of Debug Actions 98
5.1.1. Interpretation of the Program Tree 99
5.1.2. Patching of Object Code 101

REFERENCES III

5.1.3. Debugging Through Partial Replacement 102
5.1.4. Summary 104

5.2. Accessibility of Program State 105
5.2.1. Mapping of Control Flow 105

5.2.1.1. Mapping of Program Locations 106
5.2.1.2. Maintenance of Mapping Information 107
5.2.1.3. LoIPE's Hybrid Mapping Approach 108

5.2.2. Access to Data Objects 1.10
5.2.3. Summary 112

5.3. Code Optimizations and Debugging 112
5.3.1. Effects of Optimizations 113

5.3.1.1. Use of General Purpose Registers 114
5.3.1.2. Evaluation Order 115
5.3.1.3. Static Evaluation 116
5.3.1.4. Summary 117

5.3.2. Cooperation of Debugging and Code Optimization 117
5.3.2.1. Selective Use of Code Optimization 118
5.3.2.2. Degrees of Debugging and Code Optimization 119

5.3.3. Conclusions on Code Optimization and Debugging 120
5.4. Summary of the Language.Oriented Debugger Implementation 120

6. Evaluation of the LOIPE Design 123

6.1. A Prototype of LoiPE 123
6.1.1. Experience With The Prototype Implementation 125

6.1.1.1. ALOE as User Interface 125
6.1.1.2. Display Management 126
6.1.1.3. Interface to Existing Programs 127
6.1.1.4. Active Participation 127
6.1.1.5. Integrated Language-Oriented Debugging Support 128
6.1.1.6. The Program Tree as Central Information Depository 129
6.1.1.7. Incremental Program Construction With Existing Software 129
6.1.1.8. Remote Program Development 130
6.1.1.9. Support for the Debugger Implementation 131
6.1.1.10. Code Optimizations 132
6.1.1.11. Tuning of LOiPE 132
6.1.1.12. Extensibility of LOIPE 133
6.1.1.13. Summary 133

6.1.2. Measurements on the Prototype. 134
6.1.2.1. System Size 134
6.1.2.2. Timing of Operations 135
6.1.2.3. Program Storage Cost 138
6.1.2.4. Summary of Measurements 138

6.2. LoIPE: A System for Generating Environments 139
6.2.1. Ada: An Example of Support for High-Level Languages 139

6.2.1.1. Overloading of Operators 140
6.2.1.2. Packages 140
6.2.1.3. Separate Compilation 140
6.2.1.4. Exceptions 141
6.2.1.5. Generics 141

iv REFERENCES

6.2.1.6. Tasking 142
6.2.1.7. Summary 142

6.2.2. Generation of a LOPE 142
6.2.2.1. Generation of an ALOE Language Description 143
6.2.2.2. Language Dependent System Parts 145
6.2.2.3. Adaptation of an Existing LoiPE 147

6.2.3. Summary on the Generation of LOIPES 148

7. Conclusions 149

7.1. Contributions 149
7.2. Future Research 151

Appendix A. Language Description For LOIE 153
A.1. Language Description for GC 153

A.2. Abstract Syntax of Debug Statements 158

Appendix B. A LOIE Session 159

LI

REFERENCES

List of Figures

Figure 1-1: Traditional Compiler Environment
Figure 1-2: The LOIPE Environment
Figure 2-1: Area Cursor Display
Figure 2-2: Two Textual Views of a Package Tree
Figure 2-3: Error Reporting Through Structure Editor
Figure 2-4: Browsing In A Modular Language
Figure 2-5: Marked Error Status Tree
Figure 3-1: Callstack Display on Screen

1- Figure 3-2: Current Value Of A Record Object

Figure 3-3: Examination Of Dynamic Objects
Figure 3-4: Alternative Tree Representations For State Information
Figure 3-5: Comparison of Debugging Functionality
Figure 4-1: Definition Site Access Through Symbol Table
Figure 5-1: Retrieval and Display of Current Values
Figure 6-1: System Sizes
Figure 6-2: Operation Times

INTRODUCTION 1

Chapter 1

Introduction

) The purpose of the research in this dissertation is to study a new approach in supporting a
/

programmer with the construction and maintenance of programs. Our goal is to provide an

integrated interactive programming environment that has some understanding of the
programmer's tasks and actively participates in their solution. As a result it reduces the

amount of time spent by a programmer at the possible expense of computer resources, which

are readily available on the new generation of computers, the personal computers. This

programming environment i- known under the term Language-Oriented Interactive

Programming Environment (LoIPE). 4

LoiPE is an integrated environment in which the editor, the compiler, the debugger, and the

user interact through a single interface. The uniformity of the interaction is determined by the

supported source language. The user no longer edits programs in terms of text but in terms

of language constructs. The system contributes to the programming activity and informs the

user of errors while the user is still in context. Similarly, debugging is performed at the

language level and not in terms of the object code. All parts of the environment use a common

data base for maintenance of the program. This program data base consists of the program

source representation, a program tree, that is augmented with semantic and status

information, and the executable object code representation. It is the responsibility of LoiPE to

maintain the integrity of the program data base. Instead of the typical pipelining of application

of software tools to the program text, LOiPE automatically invokes the various system parts

incrementally in order to keep the program data base consistent. The executing program

reflects the user's view of the source program at any time. Appendix B shows a user session

with Lompa.

The LotPe contributes to the enhancement of program development in several ways:

14

2 INTRODUCTION

* Uniformity - Integration provides the basis for uniformity. The user is presented
with a source language view of both the program and the program execution.
Other program representations are hidden. The user interacts with different parts
of the environment in the same manner because they use a common interface.
The transition between different programming activities is not noticeable.
Uniformity extends to the implementation of LOIPE. An internal high-level
program representation in form of a syntax tree is the primary representation that
is common to all parts in the environment. Both the text form and the executable
representation are generated from it. The use of a common program data base
avoids redundancy of information and mechanisms.

e Active Participation - LoiPE takes responsibility for certain tasks in the
programming process. It maintains an executable representation of the program
-that is consistent with the source program as seen by the user. All effects of a
program modification are propagated by LoIPE such that all status information in
the program data base is consistent. The complete program data base is
automatically stored in the file system. The user is neither concerned with the
application of the appropriate tool at the right time, nor with the use of the
underlying file system.

e Language-Oriented Programming and Debugging - The notion of language-
oriented structure manipulation (commonly known as syntax-directed editing) is
used consistently as the means of communication between the programmer and
the whole system. Both program construction and program debugging are
performed by manipulating programs and their execution state in terms of their
logical structure as defined by a high-level programming language, such as
Pascal or Ada. As a result, the debugging facility provides functions that take
advantage of the expressive power of the programming language and works at
the level of abstractions in the source program.

* Responsive Behavior- All programmer activities have a predictable response
time. This response time is relatively short, such that the programmer does not
have to wait for the system to do its share of the work, no matter whether he
wants to add another statement or switch to program execution. The notion of
incremental update, being applied consistently in all system parts, contributes
significantly to this goal.

* Flexibility - The user may manipulate the logical program structure in any way he
desires. LOIPE detects semantic errors, but does not enforce their correction. In
addition, the user may attempt to execute the program at any time. The program
will execute until an incomplete or erroneous piece of the program is reached.

The dissertation is a feasibility study of an interactive programming environment with the

above characteristics, whose implementation is based on compilation rather than

interpretation. We demonstrate that flexibility and fast response of a programming

environment do not require the use of the interpretive approach but can also be provided

through use of compilation techniques. The LoIE system combines the efficiency of

INTRODUCTION 3

executing programs in compiler-based systems with flexibility in program manipulation

uniformly through one mechanism, namely incremental program replacement. A benefit of

this approach is that remote program development, i.e., the computer executing the program

differs from the host computer on which the support system runs, can be supported with little

effort.

We maintain that

e active participation of LOIPE simplifies the programmer's task by LOIPE taking
responsibility for certain chores,

9 our support system provides a framework for the generation of environments for
different languages,

9 and the system is expandable into a progam development system supporting
multiple versions of programs and several programmers simultaneously.

We have implemented a demonstration system in order to substantiate the claim that our
approach is feasible, i.e., can be done with satisfactory efficiency, and to test and refine the

basic ideas.

In the remainder of this chapter we define the term programming environment for the

context of the dissertation, discuss some of the important properties of LOIPE, review other

work in the area of programming environments in relation to LOIPE. We also give a plan of the

thesis.

1.1. A Definition of Programming Environment

There are many interpretations of the term programming environment. On one hand, a

programming environment is sometimes understood to consist of a programming language,

an editor, a compiler or interpreter, and a symbol debugger. On the other hand, it can have a

very broad meaning. In an effort to standardize the support facilities for the programming

language Ada, the DoD specified a programming support envir(,,ment and gave guidelines

for its implementation [DoD 78, Buxton 80]. The term programming support environment

includes tools such as project budgeting, automatic report generation, and program libraries.

The Gandalf project [Habermann 79a] understands a programming environment to be a

Program Development and Maintenance Environment for programming, system composition,

and project coordination. Programming facilities support an individual programmer on a

IP

- 4 INTRODUCTION

program in relative isolation from others. System description facilities deal with problems that

are related to the maintenance of programs, that exist in multiple versions, and are composed

of smaller entities. Project coordination support addresses problems such as coordinating

programmers and controlling the access of programmers to parts of the project, and

maintaining consistent documentation.

In this dissertation we define a programming environment to be a support environment for a

single programmer dealing with a single version of a program. The basic facilities of such a

programming environment are

* an editor to enter and modify programs,

* a checker to ensure the syntax and the semantic correctness of the program,

* a translator to convert the program into an executable representation,

* a linker/loader to combine separately translated program pieces into one
executable program and to place it into the computer memory for execution,

* a debugger for monitoring the execution of the program and for locating errors.

In addition to these basic facilities a programming environment for large programs must

provide managerial support. This includes mechanisms for maintaining up-to-date copies of

different program representations and for checking the interfaces of the building blocks of a

program.

LOIPE is a programming environment of the above type with the following characteristics.

The facilities for program construction and program debugging are integrated, providing a

uniform user interface. That interface is language-oriented in that all communication takes

place in terms of language constructs, and only the source representation of the program is

* visible. LoiPE is display-oriented, i.e., information is displayed in an organized manner. LOIPE

is compiler-based, i.e., it translates programs into machine code and executes them in a

manner that permits support of program development for different target machines.

Nonetheless, LOiPE provides flexibility and fast response, informing the user of

inconsistencies while he is still in context. In the following sections we argue for the choice of

each of these characteristics.

INTRODUCTION 5

1.2. Integrated Programming Environments Vs. Toolkits

Programming facilities can be provided in different ways. One possibility is to implement

each facility as a separate tool and present the programmer with a toolkit. This is illustrated in

Fig. 1-1.

Cmd File

Text File

igu rrditFile System

~lec --d- lrterte

Object File

Executable File Execution Image

Figure 1-1: Traditional Compiler Environment

An example of this approach is the Programmers Work Bench [Ivie 771. In the toolkit approach

the user invokes the tools explicitly and applies them to various representations of the user

program. The toolkit does not restrict the use of the tools. The programmer can apply tools at

arbitrary times or not at all, generating inconsistent versions of the program. There are rules

that guarantee consistency of the program representations after program pieces have been

added or modified. Some toolkit systems provide tools that allow certain rules to be enforced,

e.g., the Unix make facility [Unix 81a]. These tools are also applied at the user's disgretion.

In a toolkit tools are implemented as separate and independent programs. They

communicate only through textual or intermediate representations. First, this results in

1 6 INTRODUCTION

considerable duplication. For example, both the compiler and the pretty-printer have to

"understand" the syntax of the language, thus contain a parser for the same language.

Second, different tools often require the user to be aware of different views of the program. A

text editor refers to lines and pages, a link-editor to external references, pages and segments.

Third, tools often serve several purposes and, therefore, can provide only the least common

denominator. For example, a text editor, used for both document preparation and writing of

programs in different languages, interacts with the programmer in terms of a text file -

independent of the actual contents.

The second approach, which has been chosen for LOIPE, is an integrated system approach.

Tools are integrated into one system and are tuned to serve a common goal, share

information, and use a common terminology. The user only sees the source program

representation and interacts with a single user interface during the whole programming

process. In the case of LOIPE this interface is a structure editor. Other system tools are

automatically called by the interface and are hidden from the user. Similarly, the user is not

aware of program representations other than the source program, which in LOIPE is the

program text generated from the program tree. This is illustrated in Fig. 1-2.

An integrated programming environment overcomes problems of the toolkit approach by

using knowledge of the environment and the tasks to be performed. The programming

environment takes responsibility for maintaining all program representations, i.e., the program

data base, in a consistent state. The program data base is considered to be in a consistent

state, if all effects of a user modification on other source program pieces and derived

information, such as semantic information or object code, have been propagated. The state of

consistency includes state information as to whether a program part is incomplete or contians

semantic errors. The program data base is kept in a consistent state by controlled application

of tools. The system knows what tools exist and what their effect on the program is. The use of

a tool on the source representation of a program piece may invalidate a derived

representation, e.g., the object code. It must be regenerated before the program can be

executed.

Integration of tools allows them to be tailored to specific tasks. For example, the program

editor may have knowledge of the language syntax, allowing the user to build a program out

of language constructs rather than lines of characters. For display purposes, the editor may

have some knowledge about the formatting conventions in this language. The editor may

INTRODUCTION 7

Edi torommands

Structure Editor User Interface

Semantic Action

St ement Pr edure PormTe

r

Figure 1-2: The Loie Environment

explicitly share information with the compiler, i.e., that the editor produces syntactically

correct programs, thus simplifying its implementation. The display and program construction

mechanisms of the editor can be used as a front-end through which other tools communicate

with the user. A debugger, for example, can display the program execution state and allow

setting of conditional breaks in terms of the programming language. Thus, in an integrated

system, language knowledge, program information and processing mechanisms can be

shared between the tools, avoiding duplication. The result is a uniform view of the program

and its execution in terms of the source program, and uniform communication between the

system and the user using the vocabulary of the supported language.

IP

8 INTRODUCTION

1.3. Language-Oriented Vs. Generic Systems

The programming language provides the means to describe a program. This should be the

only program representation through which the user and the system communicate. In a

language-oriented system the source program as well as the execution state is examined and

manipulated at the level of the programming language, i.e., at the abstraction levels

introduced by the user in the program. To do so, all system facilities that interact with the user

must have embedded in them information about the syntax and semantics of the

programming language. That information can be included to various degrees and in different

forms.

* A tool may be totally language-independent, i.e., has no knowledge of the
language on hand. Such tools can support different languages. One example is
the text editor, which makes no assumption about the structure of the textual
information. Thus it cannot aid the programmer in writing programs that adhere
to the language specifications.

• A tool may be language-related in that it makes certain assumptions about a
programming language, that are satisfied by a class of languages. The Language-
independent Symbolic Debugging System [Johnson 771 and the VAX/VMS
debugger [VMS 78] are able to handle multiple source languages. They
understand language structures, such as procedures, statements, objects, that
are found in many languages. However, the set of languages is limited in that their
runtime support must be compatible. The user interacts with such a tool in terms
of concepts that exist in several languages, but are not specific to any language.

* A tool may be language-specific or language-oriented in that it has full knowledge
of the language structure. A prime example is the parser of a compiler. The
information about the language can be encoded directly in the tool or be provided
in a descriptive form. in the first case, the tool itself is affected by a language
change, whereas in the second case only the description must be updated. The
description can be interpreted, such as in table.driven editors and constructors
[Feiler 81a, Donzeau-Gouge 80], or used as input to a generator of the tool, e.g.,

a parser generator [Johnson 75].

Much of LOPE's language knowledge is encoded in a descriptive form. Therefore, we claim

that LoiPE is able to support different languages. In its realization, LOIPE supports one, but

not one specific language. Chapter 6 contains a discussion of the dependence of LOIPE on

language specific knowledge.

INTRODUCTION 9

1.4. Compiler-Based Vs. Interpreter-Based Programming
Envi ronments

Programming systems fall into two major categories. Some systems perform as much

checking and binding as possible statically in order to limit the amount of runtime checking.

Because of the amount of processing before runtime, these systems are assumed to work in

batch-oriented fashion. Such systems are perceived to be quite inflexible, especially in

connection with strongly typed languages. Other systems perform most or all of the necessary

checking and binding at runtime. As a result, little processing is required when the source

program is modified. The system is more responsive. Such systems are also more flexible

because semantic rules are not enforced until the program is executed.

Compilation tends to be associated with the first kind of systems, whereas interpretation is

viewed as the implementation technique for systems of the second kind. Furthermore, it is

often assumed, that systems with static processing, i.e., compiler-based systems, result in

efficient program execution due to the transformation of programs into a representation that

is directly interpreted by the hardware. Interpretive systems are less efficient at runtime due to

software interpretation. Thus, interpretive systems have been viewed as a tool for

experimental and prototype programming, whereas production software is developed with

compiler-based systems, which often provide relatively poor programming support.

It seems to be an intrinsic property of every major software that it will be modified as long as

it is used. Program correction, adaption to specific environments, and improvements

contribute to this "Law of Continuing Change" [Belady 78]. Because of the continuing

change, it is desirable to combine the flexibility of the interpretive system and the efficiency of

the compiler system into one programming environment.

We believe that it is not inherent to a compiler-based system to be inflexible and

noninteractive, but it is a property of a particular implementation. In this dissertation we show

that with appropriate mechanisms a purely compiler-based system can perform as much

static checking and binding as possible, yet maintain flexibility and fast response. The

behavior of such a system appears to the user to be similar to that of an interpretive system.

The compiler-based approach has an advantage over an interpretive system. Compiler-

based systems allow the host/target approach of program development (incidentally one of

10 INTRODUCTION

the requirements for a programming environment in Pebbleman [DoD 78]). The executable

representation can be executed independently from the source program, i.e., on a different

machine than the one on which the source program resides. The object code is generated on

the host machine by a cross-compiler, see for example Bliss11 [Wulf 75]. Minimal support

resides on the target machine for loading and executing the program. An interpretive system,

in contrast, requires the interpreter and the source program in internal representation to be

resident on the executing machine. This means that the interpretive system must be ported to

the target machine. The interpretive system itself has certain requirements on the hardware,

e.g., the availability of a disk, that must be satisfied.

1.5. Display-Oriented Systems

CRT and raster scanned display terminals provide the facility for random manipulation of

the two-dimensional display screen. This facility, however, was rarely taken advantage of in

programming environments (with the exception of screen editors). An early example of a

screen-oriented debugger is RAID [Petit 69] which allows display and monitoring of variables

at fixed screen positions. In COPILOT, an interactive programming system, Swinehart later

used multiple CRT displays to provide the user with several contexts simultaneously

[Swinehart 74]. With the appearance of personal computers with high bandwidth display,

e.g. Alto [Thacker 79], the use of two.dimensional display has been exploited to a larger

extent. Both the DLISP system [Teitelman 77] and the Smalltalk system [Ingalls 781 use the

notion of windows, an idea initially proposed by Kay in 1969 [Kay 69].

Windows are regions that may be overlapped on the screen. Each window provides a

display area that is maintained independently of other windows. These windows are used to

organize information. They provide a facility to to maintain program editing, program

execution, and debugging contexts simultaneously. Special windows, called menus, list a set

of commands which can be invoked with the cursor.

A pointing device permits the user to refer to arbitrary locations on the screen. This

pointing device is being used to perform window -selection, cursor repositioning, and

command invocation by menu selection. Although, we consider a pointing device desirable

for user interaction, we do not include it as a necessary communication medium for LOiPE.

We believe that even in a system with such a pointing device the user should be able to

achieve the same effect by using only the keyboard.

INTRODUCTION 11

The high bandwidth of the two-dimensional display has been further explored to provide

alternative display forms in addition to textual display. Graphics facility permits pictorical
display of data structures and analog display of the execution [Myers 80, Model 79, Yarwood

77]. In this dissertation we are not concerned with the mechanisms for providing two-

dimensional display and a window management facility for different types of display hardware,

but assume that they are available. However, certain properties of such a window

management facility that are desirable for LOIPE are discussed in section 2.2.

1.6. Review of Previous Work on Programming
Environments

In this dissertation the review of programming environments is limited to programming

support for individual programmers. Many articles have been written on this subject,

including some that provide a good historical survey of programming and program
debugging, e.g., [Gaines 71, Blair 71, Satterthwaite 75, Model 79]. A large number of

contributions, however, are limited to a single tool in a programming environment, for

example to program editing, e.g., [Donzeau-Gouge 80], user friendly compilers, e.g., IBM's

checkout compiler [Warren 75], or programming languages with support for construction of

larger software systems [Wirth 77, Lampson 77, DoD 80]. In this review section we restrict

ourselves to pointing out contributions to the overall concept of an integrated programming

environment, in which tools are built to cooperate in supporting the programmer. References

to existing work on individual parts can be found throughout the dissertation.

In the next two sections we examine two programming environments in actual use. One is

a traditional compiler-based programming system, and the other a sophisticated interpreter-

based system. The specific systems have been chosen as an illustration of the facilities that
can be expected in programming systems. In the third section individual contributions to the

advancement of interactive programming environments in the style of LOIPE are reviewed.

1.6.1. Traditional Compiler- based Programming Systems 1

One of the more advanced programming systems in day-to-day use that is based on a

compiler is the Mesa system [Mitchell 79]. It consists of a high level programming language

with strong type checking, data abstraction facilities, and the concept of modules, a text

editor, a compiler with separate compilation, and a display-oriented, interactive source

12 INTRODUCTION

program debugger. Much of the leverage in this system is gained through the power of the

language, its enforcement by the compiler and the debugger's ability to show the user both

the source program, and the execution state in terms of the user defined symbols and data
types.

In addition to the high-level source language, the Mesa system supports a configuration

language, C-Mesa [Mitchell 79]. This configuration language permits the user to express the

interconnection and dependency of different software modules that comprise a runnable

system. Using this description the Mesa system determines all modules that have to be

processed in order to restore consistency of the program representations. The processing,

i.e., compilation and link/loading, is performed in batch form. In LOIPE the dependency of

software modules is recorded in the program tree as part of the semantic information.

Consistency of the program data base is restored incrementally.

In the Mesa system, several of the tools cooperate in that they know of each others

existence and make use of their knowledge. The compiler provides extensive information

about the program for both the configuration processor and the source program debugger.

The debugger works at the level of the source program. All references to program locations

are expressed in terms of the source program text, the text line being the unit of reference.

Debug commands are invoked relative to the source code lines. The debugger is able to

evaluate source language expressions that are entered by the user, and show the program

state in terms of the data abstractions defined in the program. The debugging facility of Mesa

takes advantage of the ability to organize displayed information in different windows or

contexts on a display screen, and the ability to refer to any location on the screen through a

pointing device. The debugging support does not affect the speed or size of the executing

program, if the debugger is not invoked. The Mesa debugger, however, lacks some

functionality that can be found in other debugging systems, such as single stepping and

conditional breakpoints [Unix 81b], or monitoring of variables and abortion of procedure

invocation [Lane 73]. In contrast to existing debuggers the LOiPE debugging facility Is

language-oriented. Its functions are expressed in terms of the abstractions provided in the

source program, and their expressive power grows with that of the supported language.

The Mesa programming system has taken the toolset approach. Thus, it is not fully

integrated. Even though an effort has been made for some tools to cooperate, other tools are

0 quite independent of the programming system. A prime example in the Mesa system is the text

editor, which assumes no knowledge of the information being manipulated.

INTRODUCTION 13

In contrast to the LopE system, the Mesa system is not fully interactive, even though some

of its tools provide fast response. Program editing and program debugging are interactive.

Switching from program editing to program execution, however, requires larger amounts of

batch-type processing.

1.6.2. Interpretive Programming Systems

Due to their nature, interpretive systems are interactive and integrated. Any program part

can be evaluated at any time, and all support facilities are provided through one system. One

of these interpretive systems, called BASIC, has become familiar to many users through the

mass marketing of home computers. The interpretive system with the most extensive

programming support is Interlisp [Teitelman 78]. It is heavily used in the Artificial Intelligence

community for experimental software, as are the many other Lisp systems, e.g., UCILisp

[Perdue 74], and FranzLisp [Unix 81a].

As an interpretive system, it permits quick alternation between program construction and

program debugging. Program editing can be performed in terms of Lisp structures.

Emphasis is on sophisticated debugging and monitoring facilities, including the ability to undo

certain actions. However, no guarantees are made for the continuation of execution after user

modifications to the source program.

Over the years packages have been added to enhance both the programming language

and the support system. One example of language enhancement is some additional support

for data abstraction and modularization, commonly found in modem high-level languages.

Similarly, support packages such as DwIM and Masterscope improve the interaction between

the user and the system. A special version of InterLisp, called DLISP [Teitelman 77], provides

a display-oriented system that takes advantage of the display and pointing device of a

personal computer in a manner similar to the Mesa system.

Interpretive systems tend to have slower program execution than compiler-based systems

due to program processing at runtime. InterLisp attempts to overcome this handicap by

providing a hybrid system, i.e., an interpretive system in which program parts can be compiled

in order to improve efficiency. This approach, however, has some disadvantages. The

runtime system must be able to accommodate the execution of both program representations,

an increase in its complexity. A certain amount of interpretation is necessary, even if all

L

14 INTRODUCTION

program parts are compiled. Another problem concerns the equivalence of program behavior

under interpretation and compilation, and the transition between the two executable

representations. The Interlisp system [Teitelman 78] requires the user to explicitly specify

which program parts should be compiled.

By comparison, LOIPE system attempts to provide an environment with characteristics and

functionality that is very similar to that of the InterLisp system, i.e., an integrated, interactive,

and flexible system. LOIPE differs from InterLisp in that it supports modern programming

languages with abstract data types and modularization. Furthermore, the implementation of

LOIPE is solely based on compilation technology.

Recently, several interactive programming systems have been developed for high level

languages that are normally implemented in traditional compiler-based systems. All those

systems, however, perform a certain amount of interpretation. The most notable system is the

Cornell Program Synthesiser [Teitelba;m 80], which supports PL/CS, a small subset of P/i1.

This system has some similarities with LOIPE in that it provides a language-oriented, syntax-

directed program editor with integrated facilities for tracing and debugging. The program is

maintained in an internal representation, which is interpreted at runtime. The Synthesizer is

intended and used for small programs, such as written by students in introductory computing

courses. A similar system has been built for Pascal [Shapiro 80]. Finally, the COPE system

[Archer 811 is another interpretive system for P1/CS, which in contrast to the Cornell

Program Synthesizer uses incremental parsing techniques rather than a syntax-directed

editor.

1.6.3. Individual Contributions to Programming Environments

1.6.3.1. Mitchell's Thesis Work

Over the years, a whole series of studies has been done to investigate the improvement of

programming support and communication between the user and the machine. One of the

earlier works is a dissertation by J.G. Mitchell, entitled "The Design and Construction of

Flexible and Efficient Interactive Programming Systems" [Mitchell 70]. Mitchell was

concerned with the long turn-around time for program modifications in compiler-based

systems. He proposed a system that has the flexibility of an interpreter and the efficiency of a

compiler. In this system an internal representation of the program is interpreted. However, as

S,
I

.

INTRODUCTION 15

program pieces are executed for the first time, code is generated as a side effect of the

interpretation. These code pieces are executed directly when control flow passes through the

program piece again. Thus, the executable program representation converges to a

representation with all program pieces in compiled form. These pieces, however, are

dynamically linked together through interpretation. This idea was later applied by Hansen

[Hansen 74] to improve the code quality of frequently executed program pieces by applying

various optimizations automatically.

Flexibility is achieved in Mitchell's system through incremental parsing and code

generation. After a modification of the program text, the extent of the modification is

determined by the system in order to find all affected program parts and to reprocess them r

incrementally. The thesis contains an extensive study of several languages at the time (1970),

and their implementation in such a system. The author also suggests certain language design

considerations to simplify the implementation in flexible and interactive systems. Since the

publication of the Mitchell dissertation, languages have evolved, which support the concept of

localization of information and modularization [Parnas 72]. By making use of the module

interface information and the interconnection structure of modules, incremental checking of

even large programs becomes a possibility [Tichy 80].

1.6.3.2. Swinehart's COPILOT System

The COPILOT system [Swinehart 74] is another attempt to provide a flexible and interactive

system, but use compilation to generate an executable representation. The source program

text is the only visible program representation. The system, however, maintains several other

internal representations and mappings between them, including executable machine code.

The mechanisms for detecting modifications and determining all program parts to be

reprocessed is based on Mitchell's work. In the COPILOT system, processing of these parts is

not delayed until execution time. Each statement in the program is compiled individually and

the generated code is placed in separate code segments. These code segments are mapped

directly into segments of the underlying operating system, relying on it to perform the

necessary dynamic binding at runtime.

The emphasis of this dissertation, as compared to COPILOT, is more on user interface issues

and some characteristics of the debugging support. Several CRT screens are used for

display of information to the user. The display space is subdivided into different windows.

One window contains the user program output, a second window provides access to the

16 INTRODUCTION

program text, and additional windows are used to orgranize the display of execution state

information.

Swinehart argues that the debugging system should always be in full control over the

executing user program. Therefore, the two reside in different processes. The debugging

facility provides break and trace points, examination and monitoring of variables. These

functions are implemented in a manner similar to the advise facility in Interlisp. Between each

statement there is a placeholder, through which debug statements are threaded into the

executable program. These placeholders are generated by the system independent of the

application of debug statements, at a considerable cost in program size. The COPILOT system

is interactive, because the user can change beteen program modification and program

debugging without considerable delay. However, the system does not support continuation of
execution after user modifications.

The COPILOT system differs from LOIPE in several ways. COPILOT provides a source

program view, yet is not language-oriented, i.e., it does not communicate with the user in

terms of language-constructs. COPILOT relies heavily on the underlying operating system to

support the incremental update of the executable representation. With the choice of a

statement being the unit of replacement puts high demands on the segmentation system in

that every statement resides in a separate segment. The executable image of the LoiPE

system does not place such demands on the supporting operating system and hardware. The

COPILOT debugging facility works at the source text level, but not in terms of the constructs in

the language. Debug statements are added through special commands, increasing the

complexity of the user interface. It lacks some of the functionality that is provided in the LOIPE

debugging system, most prominently the ability to resume execution after user modifications.

0 1.6.3.3. Model's Monitoring System

Model's thesis [Model 79] discusses program debugging in the context of Artificial

Intelligence applications. He introduces the term meta monitoring, which refers to the ability

of the system to communicate with the user in terms of abstractions expressed by the user in

the program. A source-level debugger is proposed that accepts complex queries such as
"whether anything unusual has happened during execution" [Model 79].

The system interprets debug events that are generated by a program run, and presents the

user with information that was requested. This may require recognition of differences

INTRODUCTION 17

between discrete program states and active processes. The information may be organized

into different windows, highlighted by using different fonts, or shown in graphical form. This

approach to debugging is based on the assumption that for each user system, there is a small

set of fundamental structures and operations on them. It is claimed that a fairly complete,

high-level description of the system activity can be generated by associating events with these

structures and operations. The stream of events then becomes the input for the debugging

monitor. A prototype system, built on top of DLISP and taking advantage of many of DLiSP'S

facilities, demonstrates some of the ideas by providing monitoring support for two large Al

systems.

LOiPE is able to support such an approach to debugging in that it has a language-oriented

debugging facility that grows with the power of the supported language. Through dynamic

assertion checking and the ability to associate assertions with procedures, objects, or even

data types, related high-level program state information can be monitored (see chapter 3).

1.6.3.4. Deutsch's Interactive Program Verifier

The Interactive Program Verifier of Deutsch's dissertation [Deutsch 73] has many traits of a

programming environment, even though its goal is to support interactive program verification.

The editor has some knowledge of the language structure, and attempts to correct mistyped

or misspelled keywords or identifiers. A canonical internal program representation is used for

both efficient storage and efficient manipulation. Based on this internal representation the

proof control mechanism interactively guides the user through proof steps, permits entering

and modification of assertions and allows changes to variables. This work indicates that

methods for program verification can be carried over to enhance language-oriented program

debugging by supporting interactive dynamic assertion checking with appropriate expressive

power for the assertions.

1.6.3.5. The Cedar Project

The Cedar project [Deutsch 80] is an effort to design and implement an advanced program

development system that satisfies the needs of researchers currently using Mesa, InterLisp,

and Smalltalk. This project includes a programming environment as one part, in addition to

support for managing multiple versions and configurations and for project management.

Major concerns in the first phase of the project are the design and implementation of a
language that encompasses the capabilities of Mesa and InterLisp, a user interface supports

Lp

18 INTRODUCTION r

system that is well-separated from the application program, and an entity-based data base

that manages all information about the program and coordinates modifications activities

[Cattell 79]. For the programming en%,-)nment support initially a traditional approach based

largely on the Mesa system is taken. In a later phase more sophisticated programming

support with an integrated prcgram manipulation facility is planned to be included [Deutsch

80].

r

1.7. Plan of the Thesis

LOIPE takes a novel approach to compiler-based programming environments. This

approach can be discussed along three dimensions:

e The user's view of LOIPE can be treated separately from the technical issues
related to the implementation of LOIPE solely by compilation.

* LOIPE'S support for incremental program construction, i.e., editing and
compilation, can be separated from its language-oriented debugging support.

* Both the design of LOPE and an evaluation of LOIPE based on a prototype
implementation can be discussed.

LOIPE from the designer's point of view is discussed in the next four chapters (chapters 2- 5).

Chapter 6 elaborates on the prototype and evaluates the feasibility of LOIPE's approach. The

design discussions of LOIPE are divided into two parts: issues relating to the user's view in

chapters 2 and 3, and problems of implementing an interactive programming environment

through compilation in chapters 4 and 5. Incremental program construction is addressed in

the first chapter of the two design parts, i.e., chapters 2 and 4, whereas chapter 3 and

5 concentrate on integrated, language-oriented debugging in the programming environment.

In chapter 2 the user's view of program construction is presented. First, a crucial element of

LOiPE, the structure editor ALOE is introduced. For a full discussion of ALOE itself we refer to

[Medina-Mora 82]. Here we point out those mechanisms of the structure editor that are

important to the design of LOIPE. The chapter also shows how these mechanisms are used to

provide the user with an incremental program construction facility that is flexible and takes up

the responsibility for certain chores such as storage of the program in permanent storage and

consistent update of the program data base.

Chapter 3 elaborates on the user's view of a program debugging facility that is integrated

• •

INTRODUCTION 19

into the program construction facility presented in chapter 2. By doing so a new dimension is

added to debugging. As in some interpretive systems the distinction between debugging and

program manipulation diminishes. Furthermore, language-oriented debugging support can be

provided, whose power grows with the power of the supported language.

Chapter 4 discusses the modification cycle edit, compile, link, load in the context of LOIPE.

The steps of the modification cycle are performed between user interactions in order to

restore consistency of the program data base. Fast response is guaranteed through

incremental semantic checking and partial replacement of program pieces in the executable

representation.

Chapter 5 addresses problems of supporting language-oriented debugging in the context

of incremental program construction. Issues such as continuation of execution after user

modifications and support of optimizing code generators are discussed.

Chapter 6 evaluates the LOIPE design and a prototype implementation. In the process of

discussing the support of the programming language Ada the localization of dependence on a

specific language is pinpointed and LOIPE'S potential as a system for generating interactive

language environments is illustrated. The feasibility of the LOIPE approach is shown through

some measurements on the LOIPE prototype.

Chapter 7 concludes the dissertation with a summary of the contributions and a list of

topics that will require further investigation.

4:

p

20 AUSER'SVIEWOFPROGRAMCONSTRUCTION

-4

r

3 r

I

I
U

U

U

A USER'S VIEW OF PROGRAM CONSTRUCTION 21

I

Chapter 2

A User's View of Program Construction

The user manipulates the program in terms of the programming language. He is concerned

only with the source code representation. It is modified through an editing system with

language-specific knowledge. The program appears to be structured by the constructs in the

programming language, such as procedures and modules.

The actual storage of the program in files is of no concern to the user. It is irrelevant

whether every procedure or every module is kept in a separate file. Similarly, it is of no

concern to the user when and how changes to the program are reflected in the file system as

long as the system can provide a consistent view of the changes. Furthermore, some LoIPE

components, such as the semantic checker, code generator, and linker/loader, are invoked

automatically. The user does not have to remember when to invoke a tool.

The user enters and modifies the program through a syntax-directed editor. The user fills in

language constructs for which the editor supplies the concrete syntax. The editor enforces

the syntax of the language by permitting only language constructs that are legal at any time.

As the program is being entered or modified, the system constantly checks its semantic

correctness. The user is informed of errors, but is not required to correct them. Similarly, the

user is permitted to leave any piece of the program incomplete although syntactically correct.

The system also takes an active role in informing the user of the potential effects of a

modification on other program parts, and allows him to reconsider the change. If the user

performs a modification, all affected program parts are rechecked for semantic consistency.

Once an error is detected, the system may propose a correction which can be accepted by

the user through confirmation. An example is the filling in of the appropriate declaration for

undeclared variables.

22 A USER'S VIEW OF PROGRAM CONSTRUCTION

Program parts are transformed into an executable form as they become semantically

correct. At any point in time the user can attempt to execute even incomplete programs

without delay. Execution will proceed until an incorrect or incomplete program part is

reached. It is the system's responsibility to keep the executable program consistent with the

source code representation. The discussion of monitoring and debugging facilities is

deferred until chapter 3.

After this bird's eye view of the system we continue with section 2.1 by discussing our

choice of a structure editor as the basis of the LoIPE system and by pointing out the properties

of the chosen structure editor ALOE that the LOIPE design depends on. In the remaining three

sections we elaborate on LOIPE's ability to provide a display-oriented environment, to provide

the flexibility of an interactive environment, and to be an active participant in the programming

task.

2.1. LOIPE'S Language-Oriented Program Manipulator

In a language-oriented system the user views the program in terms of the supported

programming language. The program manipulation facility has some knowledge of the

programming language and can assist the user in the programming task. There are basically

two approaches to language-oriented program manipulation. They are referred to in this

dissertation as the text approach and the structure approach. In both cases the user sees

program text. The difference in the two approaches lies in the way the user manipulates the

program.

2.1.1. The Text Approach
0

In the text approach any character can be referred to and modified. The rules for moving

through program text follow the rules for character strings, namely movement to the previous

or next character, word, or line. The cursor refers to a single character position. Some text

editors are equipped with a certain amount of information about the program structure. This

information is used to perform some pretty-printing and to allow insertion of text templates for

language constructs [Gosling 81a]. For program modification, however, little more than free-

form text editing is provided.

The syntactic knowledge of the supported language is embedded in the program parser. It

4 A USER'S VIEW OF PROGRAM CONSTRUCTION 23

processes the program text in order to recognize the syntactic structure of the program and

to check for syntactic errors. The result is an intermediate representation that is used by

other processing units, such as semantic analyzer, code generator, or pretty-printer.

Incremental parsers have been investigated in order to limit the processing cost of the

parser to the extent of the program modifications [Mitchell 70, Ghezzi 79]. The incremental

parser determines how much can be saved from the previous analysis when provided with the

location of the modification from the text editor in an attempt to minimize reprocessing. Some

parsers have been extended to inform the user interactively of syntax errors [Day 79, Wilcox

76], or to provide guidance for the correct syntax [Pinc 73].

2.1.2. The Structure Approach

In the structural approach the user perceives the program as tree-structured text. The

4 structure is manipulated in terms of syntactic units. The user moves through the program
according to syntactic units, for example from an if statement to its enclosing syntactic unit, to

one of its components (e.g., the condition of the if statement), or to the preceding or

succeeding statement. The current cursor position is indicated by high-lighting the whole

construct (see Fig. 2-1).

function factorial (n integer) : Integer;
be in

rtr

end factorial;

Mode: if Class: STATEMENT

Figure 2-1: Area Cursor Display

In this approach the editor has full knowledge of the language syntax. It can enforce the

construction of syntactically legal programs, and provide guidance during the construction.

At any point only a certain number of syntactic constructs can be applied legally. Upon an

P

- -

* 24 A USER'S VIEW OF PROGRAM CONSTRUCTION

application of such a construct (by typing its keyword) the editor fills in all syntactic

information that is not program specific and then returns control to the user to complete the

missing parts. The syntactic information that is filled in by the editor can only be referred to in

one unit. Individual pieces, e.g., a keyword or terminator, cannot be manipulated by changing

characters, but only by conversion into different syntactic constructs. Thus, even though the

user perceives it as structured manipulation of text, he actually is dealing with a parse tree

[Lasker 74] or an abstract syntax tree [Donzeau.Gouge 80, Medina-Mora 82]. This tree

structure is the primary program representation, and the textual representation is generated

by the program manipulation facility in a pretty-printed form. This is the only textual

representation visible to the user.

2.1.3. Text Vs. Structure

For LOIPE we chose the structure approach over the text approach for several reasons.

First, in the structure approach the syntax-directed editor or structure editor, has full

knowledge of the language syntax. The user communicates with the system in terms of

language constructs rather than in terms of characters and lines. Since the structure editor

"knows" the syntax of the language it relieves the user of the burden to remember the

syntactic details such as key words, separators and terminators. They are automatically

provided by the editor as a construct is applied. Since these do not need to be typed, they

cannot be mistyped or forgotten. As a result, the structure editor requires fewer characters to

be typed and reduces the number of mistakes that a user can make. However, the structure

editor requires the user to always think of the program as highly structured information. It

does not permit free-form manipulation of the program text. The mental effort for

manipulating the program in a rigidly structured way is different and may be higher than that

for plain text manipulation. Some editing systems combine both editing approaches. For

example, in the Cornell Program Synthesizer [Teitelbaum 80] the overall program structure is

manipulated in a structured way, but expressions are treated in free-form. The impact of the

structured style of program manipulation on the programmers is not discussed here, but is

being studied in several structure editor projects, e.g. [Medina-Mora 82, Teitelbaum 80].

The second reason for our choice is that the text approach would require the system to

either maintain both the text representation and an internal structured representation, e.g.,

when using an incremental parser, or to rederive the structured information over and over

from the text representation for syntactic and semantic processing. The structure approach

A USER'S VIEW OF PROGRAM CONSTRUCTION 25

requires only a single representation, a tree. This representation is used as the common

program representation for all other LOIPE parts. The textual representation of the program

part visible to the user is generated dynamically from the program tree by a process called

unparsing. It performs the inverse function of a parser. The unparser maps every element of

the internal structure into a text template. Such a mapping, which defines the concrete syntax

of a construct, is called an unparse scheme. Due to the dynamic generation the program text

does not have to be stored in the program data base. The recurring cost of generating the

program text is limited by the small amount of program text visible on the display.

Third, the structure approach permits different textual representations to be generated

from the same program tree. We refer to them as different textual views of the program or

program views. A textual representation is dynamically generated from an internally

structured representation. By associating different unparse schemes with the same structured

representation, the unparser is able to produce different textual views of the program

expressed by the internal representation. An unparse scheme affects the textual view in the

following ways.

1. Hiding
The tree structured program representation can be unparsed to various depths.
Program parts below a certain depth are not shown explicitly, but indicated in
form of ellipses or named labels. This permits programs to be shown at various
levels of details. Different approaches and techniques for the provision of this
facility can be found in [Teitelbaum 80, Donzeau-Gouge 80, Mikelsons 81].

2. Pretty Printing
The unparse schemes contain formatting information. This information is
interpreted by the unparser when generating the textual representation. The
result is a formatted program text. Thus, the unparser has the effect of a pretty
printer.

3. Concrete Syntax
By mapping elements of the internal representation into text templates, the
structure editor gives the user the impression of filling in forms. Since the text
templates are defined by the unparse scheme, different concrete syntax can be
specified for the same abstract tree.

4. Selective Views
The unparser can limit the view of a program by selecting only a subset of all
offsprings to be shown in the program text. For example, the text form of both the
specification and the implementation of a module (package) can be generated
from the same program tree. When the unparser displays in specification display
mode the implementation of the module is not accessible. Fig. 2-2 illustrates the
use of limited views for an Ada package text representation. Furthermore,

P

* 26 A USER'S VIEW OF PROGRAM CONSTRUCTION

offsprings can be shown read only, i.e., cannot be reached by the cursor for
modification.

Package

TO Procedure Procedure Procedure

spec body spec body

getstring ... stat getint ... ec stat

Package 1O is Package Body TO is

procedure getstrlng(str:strlng); grocedure getstrtng(str:string):.. • eg in
procedure getint(val:integer):

end package 10; end getstrlng;

grocedure getlnt(val:integer);

end getint;

end package 10;

Figure 2-2: Two Textual Views of a Package Tree

This is not to say that in the text approach the generation of different textual views is not

possible. However, the cost for doing so is much higher, since original program

representation is an unstructured text representation.

Finally, the structure editor has an advantage over the text editor in that for every editing

operation context information is available in an internal structured form. This permits the

system to perform context sensitive processing in small steps to respond to user actions

intelligently, and to actively contribute to the programming process, as the user is

manipulating the program. The use of an incremental parser in the text editing approach

would also allow the system to pinpoint the modifications in the program tree representation.

However, the program text must be submitted to the parser frequently - possibly after every

keystroke since the text editor only knows strings of characters - in order for the system to

respond while the user is still in context. Furthermore, mechanisms must be provided to
partition the program text into smaller units than the whole program in order to limit the

amount of text to be scanned by the incremental parser, especially for large programs.

A USER'S VIEW OF PROGRAM CONSTRUCTION 27

2.1.4. The ALOE Program Manipulator

ALOE, a syntax-directed editor, which was designed and implemented by Raul Medina-Mora

[Medina-Mora 82], has been chosen over other structure editors, because it combines all of

the features of a structure editor that were essential for its use as a component of LoIPE.

ALOE is language-independent in the following sense. An editor for a particular language is

generated from a grammatical description of the language. In the grammar the structure of

the abstract syntax is separated from the concrete syntax. For each production in the abstract

syntax several unparse schemes specifying concrete syntax can be specified [Medina-Mora

811. Multiple views can be defined for the same abstract program representation.

ALOE provides an action mechanism, which allows other system functions to be associated

with editor operations on each of the nodes in the program tree. These functions are

automatically called by the editor whenever an editor operation (for example create node,

delete node, move cursor) is performed on a tree node. Thus, the editor acts as driver for the

whole LOIPE system.

A reporting mechanism in ALOE allows a sequence of messages to be displayed to the user

after an, action routine completes. Each message can be associated with tree node. The

program text corresponding to the subtree, e.g. a variable, statement or procedure, is

highlighted by the cursor and the message is shown on the terminal screen (Fig. 2-3).

procedure factorial (n:tnteger)
begin

1fo) 0 then

else

variable a undefined

Figure 2-3: Error Reporting Through Structure Editor

This reporting mechanism provides a standard way for other system parts to communicate

with the user through ALOE.

28 A USER'S VIEW OF PROGRAM CONSTRUCTION

ALOE manipulates abstract syntax trees. These are more compact than parse trees, but still

contain all required information. The abstract syntax tree can be obtained by collapsing and

normalizing a parse tree [Donzeau-Gouge 80, Medina-Mora 82]. The structure of the abstract

syntax tree used by ALOE is very similar to that of program trees defined by DIANA (Diana 811

and the external DIANA representation can be generated without difficulty through an unparse

scheme. DIANA is a description of the intermediate representation of Ada programs and is

used by various Ada compilers. For example the Pocc project uses it as the interface

between different phases of the compiler [Wulf 80]. Since our syntax trees can be unparsed

into DIANA trees we should be able to interface to code generators produced by POcc for

different machines and languages.

In the next sections we discuss how we use the mechansims of ALOE to provide a language-

oriented, interactive program construction facility in LOIPE, that cooperates with the user. In

section 2.2 facilities for communication of information between the system and the user are

discussed. Section 2.3 elaborates on facilities that provide flexibility of programming for a

compiler-based high level language with data typing. The use of the action mechanism for

active participation of the LOIPE system in the programming task is illustrated in section 2.4.

2.2. Display of Information

The structure editor ALOE makes use of the two-dimensional display of CRT terminals. One

example is the indication of the current cursor position in the program by a highlighted area

(see section 2.1.2). Another example is the subdivision of the screen into three display areas:

a command window, a message window, a help window and an edit window. The user enters

all commands through the command window. The message window is used by the editor to

show status information and to report errors as part of the error reporting mechanism. Status

information includes information about selected editor modes and additional information

concerning the cursor position. Help information such as the legal set of constructive

commands on a description of editor commands is shown in a help window. An edit window

shows the textual representation of a program tree according to a certain unparse scheme,

highlighting the position of the cursor in that window.' The user can scroll the window both

horizontally and vertically over the program text. The user can also change the unparse

scheme. If appropriate unparse schemes are provided by the designer of the language

description for ALOE, the user can look at the program at different levels of detail.

A USER'S VIEW OF PROGRAM CONSTRUCTION 29

2.2.1. Display Management in LoIPE

The organization of program display, as provided by ALOE, may be satisfactory for a simple

program editing facility, but maintenance of larger software programs requires additional

support. The demands on the display change from program construction to program

execution and debugging. While scanning through the program the user would like to see it

organized according to the abstractions defined in the program. Such a browsing facility for

LOIPE is discussed in the paragraph below. While editing the program the user prefers to use

the full screen for display of the program piece being modified. During the execution the

screen must be rendered to the user program for display. If the program is being debugged

only part of the screen can be made available for the user program because the debugger

wants to communicate the progress of execution to the user. Thus, it is necessary for LOIPE

to maintain several several layouts of the display screen and to allow the user to switch

between them. The layouts are defined in form of a description, which can be tailored to eachKA user. Furthermore, the user is able to adjust the layout dynamically. The details of the display

management functions are dependent on the specific display device. The At [Ball 80] and

Canvas [Ball 81] subsystems are two examples of such a layout management facility for raster

scan displays with a pointing device. We will, therefore, not elaborate on such a support

facility, but continue by discussing the implementation of a browsing facility based on

structure editor mechanisms and the window support.

2.2.1.1. Display During Program Construction - A Browsing Facility

It is usually left to the user to partition a large program into files and organize them such

that it is possible to maintain the program by moving through these files with a text editor. In

an integrated language-oriented programming environment, the management of files should

be of no concern to the user. The user should be able to move about the whole program at

the level of the source program. Modern programming languages e.g. Ada [DoD 80], provide

structuring facilities that support even "programming in the large." This idea of having the

user manipulate a program only in terms of the structure provided by the supported language

has been partially tested in a tool that is used to build both the LOIPE and the Gandalf system

[Feiler 79a, Denny 81].

In LOIPE the whole program is displayed through the structure editor. By using different

unparse schemes, the editor is able to show the program at various levels of details. For

example, only the specification of a module may be shown. LOIPE takes advantage of this

30 A USER'S VIEW OF PROGRAM CONSTRUCTION

capability by associating a different program window with each level of detail to be displayed.

The levels of detail follow the abstraction mechanisms of the supported language. This is

illustrated in Fig. 2-4.

Box InputOutput; Nodule FilejO;

Module StdO; function FlleOpen(Fllename:string) FILE;

Module PlpelO; procedure FlleClose(file:FILE);

Module Filelo: [procedure FileRead file:FTLE; str:strin

end Box; procedure FileWrite(file:FILE; str:string);

Module Commandlnterpreter: end module;

Module MenuSelection;

procedure FlleRead(flle:FILE; str:strlng);

begin

end FileRead;

Loipe: ,

Figure 2-4: Browsing In A Modular Language

The first program window shows the too level of abstraction, namely the list of modules that

comprise the program. The user can manipulate that program window as any other edit

window. The cursor can be moved to one of the modules. That module can, then, be selected

for display at the next level of abstraction. Selection is done by moving the cursor in at the

target module. The action mechanism of the editor informs LOIPE that an attempt has been

made to enter a program subtree that is currently not visible. LOIPE reacts by attaching the

subtree of the selected module as the root to a new program window, the. ,dule window,

and displays it with a different view. The result is that the specifications of the module and a

A USER'S VIEW OF PROGRAM CONSTRUCTION 31

list of its procedures, global variables, and data types appear in the module window, and that

window becomes the current edit window. Similar to the selection of a module, the user can

select a procedure and cause its implementation to appear in a third program window, the

procedure window. In order to examine or modify a different module or procedure, the user

just changes the current edit window to the program or the module window and repeats the

selection process. The effect is that of a browsing facility in which the user moves about the

program in a hierarchical fashion. Such a browsing facility exists, for example, in the

Smailtalk system [Goldstein 81].

2.3. A Flexible Agent

Provided with a description of the syntax of the supported language, the structure editor

enforces correct syntax by limiting the set of language constructs that can be applied at any

point, and by automatically supplying the concrete syntax when a construct is applied. Since

the user is not required to complete every part of the program, the resulting program

representation is syntactically correct, but potentially incomplete.

This program representation must be processed further by LOIPE to determine the semantic

correctness and to generate an executable equivalent. Through ALOE'S action mechanism,

the semantic analyzer of LOIPE is invoked incrementally. The semantic analyzer checks the

modified program part for semantic errors. Once a semantic error is detected, it is recorded in

the program tree and reported to the user via the error reporting mechanism. The realization

of the incremental semantic checking mechanism will be discussed in chapter 4.

Semantic correctness of the program is not enforced. Enforcement of semantic

correctness would prohibit certain program modifications. Because LOIPE checks for effects

on the semantic correctness incrementally and records the results of the analysis for

individual program pieces in the executable representation, LOIPE is able to permit execution

of program that are incomplete or semantically incorrect. This gives the user the flexibility that

is customary in interpretive systems. The next two paragraphs elaborate on the interaction of

the semantic analyzer with the user and on the support for execution of incomplete programs.

P

P

32 A USER'S VIEW OF PROGRAM CONSTRUCTION

2.3.1. Phases of Program Development

So far the semantic checker reports semantic errors as they are detected. The user,

however, goes through different phases of program development. In some phases it is more

hindering than helpful to be immediately notified of errors. During the construction of a

program, for example, the user wants an assignment to a local variable that has not been

declared. The user does not want to change the focus of attention to add a declaration. Since

he is aware of the intentional inconsistency, notification should be suppressed until the user

considers the construction of the procedure complete. The system can recognize that when

the cursor leaves the procedure and informs the user of remaining errors.

In LOIPE the user has control over the amount of communication from the system. For this

purpose semantic checking is designed to be logically independent of the error reporting.

Semantic checking is performed incrementally at the grain of individual language constructs,
and the resulting state is recorded as part of the program tree.

Semantic errors are reported through an error report filter. The semantic action mechanism

invokes this filter after the semantic checker has completed. The filter decides whether to

have error messages from the semantic checker displayed by the editor upon return of

control, or to suppress the error messages. In the latter case the error messages are

discarded, and must be regenerated by the semantic checker when their display is requested.

When error reporting is suppressed no additional actions have are taken. Error messages are

disposed of rather than maintained explicitly because the maintenance cost is higher than the

cost of regeneration through the semantic checker.

The grain of error reporting can be controlled by the user. The filter supplies a range of

different grains. The finest grain is immediate error reporting. In this case errors are reported

as soon as they are detected by the semantic checker. Then there is error reporting at

various levels corresponding to the different language constructs, ranging from an expression

to the whole program. For example, if the grain is set to the statement level and the user

leaves a statement with the cursor, the semantic action associated with that cursor movement

causes semantic errors in that statement to be reported. These messages may be suppressed

if no modification has been made to to the statement. Cursor movement as well as the

attempt to start or resume execution of the program may cause semantic checking to be

invoked and errors to be reported. In the case where the whole program is selected as the

A USER'S VIEW OF PROGRAM CONSTRUCTION 33

grain of reporting remaining semantic errors are reported when execution is attempted.

Finally, dynamic error reporting causes errors to be reported only for nonexecutable program

units whose execution has been attempted.

In addition to suppressing error messages the error report filter must reproduce error

messages when the user's focus of attention, i.e., cursor, leaves a program part of the

specified error reporting grain. The semantic action associated with cursor movement

leaving a node informs the filter of such a change of focus. The filter checks whether errors

must be reported, i.e., whether the exited or any contained program unit is semantically

incorrect. If errors must be reported the filter retrieves the error messages by asking the

semantic checker to regenerate them. Then control returns to the editor whose reporting

mechanism displays the messages.

Let us examine the overhead of the filter. At first glance it seems that most of the filter's

work is in the check for errors to be reported. This check requires a traversal of the program

subtree for which possible errors should be reported. Every node in the subtree must be

visited to determine whether it is of the error reporting grain and whether it is semantically

correct. The tree walk can be improved in the following way. Instead of recording the

existence of semantic errors in every node, the semantic checker may record this state

information only in those nodes that correspond to the various error reporting grains. These

error status carrying nodes are interconnected in a linked list. As a result, the tree walk

algorithm can follow this error status tree structure to find erroneous program pieces, a

reduction in the number of nodes visited.

An alternative to a full search of the program tree or error status tree is a guided walk.

During the error message filtering process guide markers are placed along paths leading to

program pieces that are semantically incorrect. The checking process follows these paths

directly to the program pier.s whose semantic errors must be reported. The number of visited

nodes is greatly reduced for the guided walk. The root of the subtree to be checked contains

information as to whether semantic errors are contained in the subtree. Thus, subtrees

without semantic errors are not traversed at all. If the subtree contains program pieces with

semantic errors the walk is restricted to the part of the program or error status subtree that is

marked. The number of visited nodes is substantially smaller in this restricted tree (see Fig.

2.5).

34 A USER'S VIEW OF PROGRAM CONSTRUCTION

Moul Nodes leading9 to Errors

Procedure 0

While"""

Statements 00

Condition Body

Figure 2-5: Marked Error Status Tree

During the filtering process the error status tree is marked in the following way. Each error

status node maintains a count of how many of its immediate descendant error status nodes

contain semantic errors. A path is marked by going to the next enclosing error status node

and updating its count. The path has a maximum length of the depth of the error status tree.

The root has a nonzero count if any contained error status node has errors.

A chLnge in the error state of one program piece does not necessarily require remarking of

the whole p,'h to the root. The marking process is aborted if the count of an error status node

does not change between zero and nonzero values. This is possible because the count in a

error status node records how many immediate descendant error status nodes have a

nonzero count rather than recording the actual number of contained errors. The denser the

error status nodes with semantic errors are, the shorter is the path to be marked.

In summary, by using the marked error status scheme LOIPE is able to support different

phases of program development and permits the user to adjust LOIPE'S verbosity t,) his own

needs. The cost associated with the error report filter mechanism depends only on the

nesting depth of program units. It is therefore relatively independent of the overall program

size.

-

A USER'S VIEW OF PROGRAM CONSTRUCTION 35

2.3.2. Executability of User Programs

While being constructed and modified, programs may contain program parts that are

incomplete or have semantic errors. In a traditional compiler-based system such programs
cannot be executed. Such systems require that all program parts are compiled and linked

before execution can be attempted. Interpretive systems take a different, more flexible
approach to program execution. Since most of the checking is performed at runtime, the

execution, i.e., invocation or evaluation of a piece of source code can be attempted at any
time. Execution is suspended if an error is encountered in a program part being executed.
This permits the user to freely mix construction and testing of program parts, an activity often
necessary for experimental programming. r

LOIPE provides a flexible system that appears to the user to behave like an interpretive
system. The user can attempt execution at any time. Execution proceeds until a
nonexecutable, i.e., an incomplete or semantically incorrect program part is encountered.
The only difference that the user may notice is how close execution proceeds to the cause of

the suspension. In interpretive systems execution proceeds right to the point in error, whereas
in LOiPE execution is suspended at the entry of an enclosing program piece, which we refer to

as unit of executability. For each such unit LOIPE determines independently whether it is
executable or nonexecutable. For example, for a grain size of statement for the unit of
executability a conditional statement is considered executable if the condition is complete
and semantically correct, even though one of the branches may contain a nonexecutable
statement. A similar interpretation applies to the grainsize of a procedure. Using this model, a
traditional compiler-based system can be viewed as a system with the unit of executability

being the whole program.

The procedure was chosen as the unit of executability because it is satisfactory for many
practical purposes. Being an abstraction mechanism as a member of a module, the procedure
defines a coherent operation on a data object. Thus, it seems sensible to stop execution when
encountering such a nonexecutable operation. For executable procedures the user is able to
suspend execution at smaller program units through the use of the debugging facility (see 9

chapter 3). There is, however, nothing inherent in the LOiPE implementation that would
prohibit the support of a unit of executability smaller than a procedure, e.g., a statement (see

chapter 4).

W

36 A USER'S VIEW OF PROGRAM CONSTRUCTION

2.4. Active Participation

The action mechanism of the structure editor passes control to LOIPE after every editor

operation. As we have seen in the previous section, LOIPE uses this time to perform semantic

checks. LOIPE can also contribute in other ways. It can guide the user through the program

construction process and provide helpful information as necessary. It can also fill in some of

the program parts itself, deriving them from the context. Furthermore, it can take over some of

the bookkeeping chores to maintain the program data base consistently.

2.4.1. Replication of Program Parts

Modem programming languages contain quite a bit of redundancy. This redundancy is due

to some of the new concepts in the languages such as module interface checking and

separation of specification and implementation. For example, in the body of an Ada package

the specifications of the visible part of the package must be repeated. This requires the

specification to be typed or modified twice. Another example of replication is the common

practice of repeating the procedure name at the end of the procedure body.

Such duplication of program parts is easily taken over by LOIPE. The more obvious way of

providing such a facility is to include the replication and consistent update of all copies as

part of certain semantic actions. In many cases LOIPE, however, can use the power of the

unparse scheme mechanism. Procedure names can be replicated by specifying in the

unparse scheme to show the program tree node containing the proedure name to be shown

twice. Similarly, both the package specification and the package body of an Ada program can

be generated from the same program tree, as shown in Fig. 2-2.

2.4.2. Utilization of Semantic Information

As part of the semantic analysis process semantic information is accumulated during the

construction and modification of the user program. This information can be utilized by LOIPE

in various ways. We will not provide a full list of possible support facilities using semantic

information here, but rather point out the potential for such support in LOIPE through a few

examples.

* As the user enters the procedure name for a procedure call, LOIPE uses the
semantic binding of the name to retrieve the procedure specification and display
it to the user to help entering the parameters correctly.

*:

A USER'S VIEW OF PROGRAM CONSTRUCTION 37 r

e A mistyped identifier is corrected by comparing it to the set of identifiers that is
visible and satisfies the data type requirements.

o If the user attempts to make a modification to a program part, which may have
side effects on other program parts, LOIPE warns the user of the extent of the
possible damage done by the modification beforehand.

* Declarations for undefined identifiers can be provided at an appropriate place in
the program.

2.4.3. Maintenance of the Program Data Base

So far the program representation has been described as a program tree augmented with

semantic information. ALOE provides a mechanism for partitioning the program tree and for

automatically storing and retrieving the partitions in the underlying file system [Medina.Mora

82]. LoIPE takes up the responsibility for maintaining the executable representation in parallel

with the program tree and for storing a copy in the file system in order to expedite the

generation of an executing instance of the program. This involves stepwise processing of the

program tree as it is being modified to generate an executable representation, namely code

generation and binding, updating the copy of the executable representation in the filing

system, and incrementally maintaining a process address space that contains the user

program for immediate execution. The technical details of this support mechanism are

discussed in chapter 4.

2.5. Summary of the Program Construction User View

LOIPE has taken a new approach to supporting program construction in an interactive

manner. Some of the components and characteristics of LOIPE can also be found in other

systems. LoIPE'S contribution is to provide all of them in an integrated system. The system is

centered around a program tree as the primary program representation and a structure editor

for the program tree manipulation. The chosen structure editor has certain mechanisms that
support the program display to be organized according to different levels of abstraction, and
that permit the editor to act as a single user interface.

The operations on the program tree representation trigger actions in the LOIPE system such

as incremental semantic checking and stepwise generation of an executable representation.

LOIPE, however, does not enforce semantic correctness and permits incorrect and incomplete

38 A USER'S VIEW OF PROGRAM CONSTRUCTION

programs to be executed. Inconsistencies are reported while the user is still in context. The

user even has control over the grain at which the system reports inconsistencies. This

provides the user with flexibility for modification of programs normally not found in compiler-

based systems.

The structurre editor's action mechanism allows LoiPE to present a data-driven

programming model, in which all system activity is triggered through manipulation of the

program tree. As part of the system activity LOIPE takes over the management of the program

data base, thus hiding both the underlying operating system and filing system from the user.

J1

INTEGRATED LANGUAGE-ORIENTED DEBUGGING 39

Chapter 3

Integrated Language-Oriented Debugging

In this chapter we present the LOIPE facilities for dealing with the dynamic behavior of

programs. This encompasses program testing, debugging, and monitoring. Testing is the

process of executing a program in a manner such that different parts of the program are

exercised. Its purpose is to determine that an error exists, which is done by comparing the

actual results with expected results. Debugging is the process of localizing the cause of an

error. This is achieved by examining the control flow and data flow for the test case that leads

to the erroneous behavior. Monitoring is the process of recording and displaying the

progress of execution in terms of control flow and changes in the data objects. It is used to

determine whether and when the program does not behave as expected, and evaluate the

performance of the program.

Because the three activities depend on each other, they are treated together under the

heading program debugging in this dissertation. LoiPE'S support for testing is limited to the

provision of a script driver which permits repetition of test patterns. The topic of automatic

generation of scripts that exercise all paths of a program is outside the scope of this thesis.

However, the system structure of LOIPE is a good basis for such facilities because the

program tree as the central program representation provides a rich source of information

about the program structure. In the context of this dissertation the discussion of LOIPE'S

support for monitoring is also restricted. We refer to monitoring of program execution mostly
in the context of debugging, where monitoring consists of displaying the progress of
execution in terms of control flow and data state changes. However, the underlying

mechanisms support performance monitoring as well as will be pointed out in the appropriate

places in the next sections.

In our view a program debugging facility should have the following characteristics:

u -t

40 INTEGRATED LANGUAGE-ORIENTED DEBUGGING

* It communicates with the user in terms of the source language.

* It permits debug functions to be issued interactively.

e It presents the program execution state in terms of the abstractions in the source
program.

* It executes incomplete programs.

* It controls the executing user program.

* It is integrated with the program construction facility such that the resulting
system for smooth transition between the two activities without slow system

response.

* It does not overhead in space or time in the executing program for unused
debugging support.

The debugging facility of LOIPE has the above characteristics. LOIPE'S debugging facility is

closely integrated with the program construction facility that is discussed in the previous

chapter. Both the program state and the debug state are integrated into the program tree

representation. The program state represents the current execution state of the program. This

includes the call chain of active procedures and the current values of data objects. The debug

state refers debug functions that have been defined and are enabled such as break points or

assertions. The integration of program state and debug state into the program tree allows

LOIPE to represent the information in a language-oriented manner. Debug functions such as

dynamic assertion checking at various levels of abstraction in the user program are provided.

Debug functions are entered into the source program in the same manner as the program

itself is modified. LOIPE automatically reflects the application of a debug function in the

executable representation using the incremental program construction mechanism. Similarly,

the program state is examined and modified in a structured representation that is derived from

the type definitions in the source program. A program can be executed at any time, even

though it may not be completed or contain errors. Program execution stops when

encountering an incomplete or erroneous program piece. The user interactively makes

changes to the source program, the debug state, and the program state and can alternate

between modification and program execution without delay or explicit invocation of

subsystems. The user has full control over the executing program, in that it can be

suspended at at any time. Once the program is suspended, the user can make modifications

and continue execution even after changes to the source program. Continuation may be at

the point of suspension or at a previous point in the execution history.

INTEGRATED LANGUAGE-ORIENTED DEBUGGING 41

This concludes our bird's eye view of LOIPE'S language-oriented debugging facility. We

continue this chapter by first discussing the integration of the debugging facility with the

program construction facility through the program tree. The integration affects both the

structure of the program tree and the language that the user deals with through LOIPE. The
remaining three sections elaborate on the way language-oriented debugging is provided.

Section 3.2 discusses the necessary extensions to the program tree for the representation of

the program state and describes the user interactions that allow its display and modification.

These interactions are limited to editor commands. Section 3.3 discusses LOIPE's debug state,

i.e., the representation of debug functions through debug statements in the program tree.

These debug statements profit from the expressive power of the supported programming

language. The user interaction concerning the application of debug function is limited to

editor commands as well. Section 3.4 elaborates on LOIPE's ability to control the program

execution. For that purpose the user interface is extended with two commands to allow
starting and continuation of execution. If execution is continued after a modification LOIPE

must ensure that the program state is consistent with the user program. Mechanisms for

detection of damage to the program state and for its correction are discussed.

3.1. Integration of the Language-Oriented Debugger

A program debugger examines the dynamic behavior of an executing program. In

compiler-based systems the executable representation of a program differs from the source

representation in that the program is expressed in terms of machine instructions rather than

statements of the programming language. The execution state of a program exists only in the

machine representation. A program debugger must be able to present the user with

information from the execution image of the program.

Early debuggers, called octal debuggers, converted both the program and the program

state from the execution image into an octal representation. It was left to the user to

determine any relationship to the source program.

The next step were symbolic debuggers. Symbolic debuggers have the ability to generate

an assembly code representation for the static program, and to interpret execution image
references in terms of symbols defined in the source program [Kotok 61, Lane 73].

Some debuggers in use today are source program debuggers. In such debuggers the

42 INTEGRATED LANGUAGE-ORIENTED DEBUGGING

machine representation is hidden from the user. They attempt to give the user a view of the

program and its execution state in terms of the source code only. All references to program

locations are expressed in terms of the source representation, i.e., lines in the text file. Data

objects are displayed according to their type. Some expressions in the source language can

be evaluated interactively [Mitchell 79, Unix 81 b].

In LOIPE we provide a language-oriented debugger. Similar to the source program

debugger, the language-oriented debugger presents the user with a source program view of

the program and its execution state. In the language-oriented debugger, however, the source

program is represented in constructs of the supported programming language rather than

lines of a text file. The program state is mapped into structures defined by the language, e.g.,

the current value of objects is represented just as the initial value is.

A language-oriented debugger can make use of the language information in the program

tree in two ways. In the execution image based approach the debugger works directly with

the executing program in the representation of the target machine. Through the use of

information from the program tree and compiler generated symbol tables the debugger is able

to present a source program view of the program and its execution. The alternative approach

is program tree based debugging. In this case the program tree is the primary representation

being manipulated by the debugger. Both the static program and the program execution state

are represented in the program tree. Access to the program state in the execution image is

provided through the same mapping information that is used for code generation. The

program tree based approach has been chosen for LOIPE. In the following section we give

some arguments for this decision.

3.1.1. Execution Image Based Debugging vs Program Tree Based

Debugging

The execution image based approach to interactive debugging dominates the realization of

debuggers for compiled languages. There are several reasons for this dominance.

o The first reason is historical. The development' of debuggers originated in the
octal (or machine code) debugger. In this debugging system the execution image
is the only program representation. Through the use of relocation information
and mapping information between the execution image and the source, symbolic
and source program debuggers are able to express program location references
and data object references in terms of the symbols and representation of the

INTEGRATED LANGUAGE-ORIENTED DEBUGGING 43

source program. The functionality of these debuggers, however, is still strongly
modelled after the machine code debugger.

* The second reason lies in the need to debug programs that are translated with
optimizing compilers. This is a difficult task if debugging at the source program
level is desired. We are aware of only one attempt to approach this problem
[Warren 75]. The commonly used solution is symbolic debugging support, e.g.,
Six12[Lane 73] for the highly optimizing Bliss11 compiler[Wulf 75]. The
debugger presents the user with an assembly code version of the program. It is
for the user to determine the relationship between that program representation
and the source representation.

e The third reason is that the source representation of the program is commonly
maintained in text files. The logical structure of text files has no relationship with
the logical structure of the program. Therefore, all references to the source14 program are on a line by line basis.

With the availability of the program tree as the permanent source program representation,

execution image based debuggers can express program locations in terms of the logical

program structure by mapping an execution image reference to a reference into the program

tree. This is a first step towards language-oriented communication with the user. References

to the source program are given in a language-oriented manner, but the debug functions are

issued by explicit commands. In this functional approach to user interaction, each activity is

performed through a separate command. Examples are separate commands for examining

data object values, modifying them, setting breakpoints, or setting trace points. Invocation by

command is necessary, because the textual representation of the program state and debug

state information is generated directly from the execution image, thus cannot be manipulated

by the structure editor. As a result the user interaction during program debugging differs from

the user interaction during program construction.

The execution image based debugging approach must support two transformations

between representations. On one hand, information from the execution image such as

program state must be mapped into a textual representation for display. On the other hand,

expressions that are supplied by the user as part of a debug condition or for evaluation, are in

text or program tree form. Debuggers usually interpret them with respect to the execution

image, i.e., an interpreter must be supplied as part of the debugger.

Program tree based debugging, in contrast to the execution image based approach,

permits program construction and program debugging to be coupled tightly, resulting in a

well-integrated programming support system. The user deals with a uniform interface, in that

44 INTEGRATED LANGUAGE-ORIENTED DEBUGGING

both program construction and debug actions are issued through construction and edit

commands. As mentioned earlier, both the debug state and the program state are included in
the program tree representation and are manipulated through structure editing commands.
The result is a form of interaction between the user and LOiPE that is referred to as aata driven

interaction [Sandewall 78], because system actions are caused by manipulation of data. The

user does not perceive any difference between the programming and the debugging activity.

The choice of the program tree as the primary program representation for debugging makes it

the central program representation of the LOIPE system. This simplifies the structure of the

LOIPE debugging facility. Only one mapping from the program tree representation to the

execution image has to be performed. For this purpose the code generator, i.e., the

mechanism that initially determines the mapping, is used. In chapter 5 we discuss how a

consistent view of the execution image and the program tree representation is maintained for

program state and debug state. In the remainder of this chapter we assume the state

information to be available in the desired program tree representation.

The integration of the debug state and the program state into the source program

representation requires extensions of its logical structure. This means extensions to the

programming language, and extensions to the permanent source program representation in

LowE - the program tree. Extensions to the programming language have side effects. The

language may become more complex due to increased number of language constructs and

concepts expressed by these constructs. The second side effect is that programs written in

the extended language are not supported by existing programming environments for the

standard language, thus are not portable unless the support system for the extended

language is ported, too. We maintain that in the context of LOIPE language extensions have

different effects on the programming environment. The language that is used in LOIPE to

express the textual representation cannot be equated with the programming language that is

used in traditional programming systems. In the following we point out the different meaning

of the term programming language in the LOPE context and argue that these extensions

reflect the integration of the debug command interface into the program tree representation.

INTEGRATED LANGUAGE-ORIENTED DEBUGGING 45

3.1.2. Source Program Representations and Programming

Languages

In LOIPE programs are maintained in form of program trees and textual representations are

generated dynamically by the structure editor. The structure editor is able to generate several

textual representations with different concrete syntax from the same progam tree
representation. For example, certain programs can be shown to the user with Pascal
keywords or with Ada keywords. Does this mean that the two textual r-presentations are

expressed in different languages? The logical structure and the semantic meaning of the
program are not changed, because the abstract syntax and the semantics associated with the

elements in the abstract syntax representation, which determine the characteristics of a
programming language are the same. Thus, in the context of LOIPE, two programs,

originating from one program tree, but differing in the concrete syntax, are considered to be
represented in the same abstract language.

The selective view mechansim of the structure editor (see section 2.1) permits LOIPE to

suppress all extensions to the program tree (and language) that reflect the program state and
debug state. Thus, LOIPE is able to produce a textual representation of the user program in

the basic programming language. Thus, LOIPE does not limit the potential portability of

programs.

The structure editor can also generate a textual description of program module interfaces
and their interconnections as well as a textual representation of the implementation of

modules from the same program tree, thus showing the program at two levels of abstraction.
The notations used to describe the two levels are often considered two separate, but often

closely related languaqes in traditional programming systems, e.g., Mesa and C/Mesa
[Mitchell 79]. In these systems, the two representations frequently must be maintained W

saparately by the programmer and require consistency checking of the represented logical
information.

The LOIPE approach permits integration of the logical information in the abstract syntax w

representation. Duplication of information can be avoided in the permanent program

representation, eliminating consistency checks of the redundant information. The concrete
syntax of the two textual representations can be defined, such that the programmer does not

perceive a difference in the notation used to express the two descriptions, especially the

46 INTEGRATED LANGUAGE-ORIENTED DEBUGGING

redundant parts. The result is a uniform logical structure of the permanent source program

representaticn and a consistent view of the different textual representations that are

dynamically derived from the program tree representation.

3.1.3. Language Extensions - A Command Interface

At first sight the extensions to the language may seem confusing to the user. However, it

must be remembered that the extensions do not increase the complexity of the notation in

which the user program is written. These extensions are used to represent debug and

runtime information, that otherwise would be shown to the user in a separate notation. The

manipulation of this information through the structure editor has the effect of issuing

debugging commands. A separate command interpreter is therefore not necessary. In other

approaches such operations are applied with explicit commands. This increases the number

of commands, requiring the choice of obscure keyboard sequences to invoke a command

(see for example the emacs editor [Gosling 81a]).

In LOIPE the user manipulates the information through structure editing commands.

Information is added, changed, or renewed. At any time the structure editor limits the

applicability of commands that can be issued by the user. Certain pieces of the program tree

can be shown read-only, i.e., cannot be modified through editor commands [Medina.Mora

81]. Furthermore, the availability of constructive commands is limited to a small legal set,

enforcing the syntactic correctness of the program tree structure. For example, breakpoints

cannot be set in a type definition. Thus, LOIPE provides the user with guidance as to which

commands are sensible at any given time.

3.1.4. Summary on Integration of Language-Oriented Debugging

LOIPE provides a language-oriented debugging facility based on the program tree as its

primary program representation. Both debug information and program execution state are

integrated into the program tree representation. Not only the source program, but also the

debug and program state are manipulated by the structure editor. The action routines that

are invoked by the editor cause the debug function to be performed. The result is a simplified

and uniform user interface in which only editor commands are applied. Interactions that are

performed in other systems through special commands, are expressed in terms of

manipulation of data.

INTEGRATED LANGUAGE-ORIENTED DEBUGGING 47

By basing the implementation of the debugging facility on the program tree, LOiPE can take

advantage of the language knowledge embedded in that program representation, and

improve the functionality of debugging facility over that of existing source code debuggers. In

the next three sections we discuss issues related to each of the three parts of the LoIPE

debugging facility, the presentation of the program state in a language-oriented manner, the

realization of debug operations in terms of language-oriented debug statements, and the
user's control over the actual program execution.

3.2. Program State

The program state consists of the current values of data objects and the call chain of active

procedures. Usually the user desires to examine the program state when execution is

suspended, to monitor the progress of the execution, and to make changes to the program

state. Such facilities have been the heart of debuggers for a long time. However, different

debugging systems provide them in different form and with varying functionality.

In traditional debugging systems, the user must request the display of items in the program

state, e.g., the procedure activation stack (callstack) or current value of a variable explicitly.

The presented information is commonly displayed in the form of a scrolling script. Some

systems support display of program state information in different areas (windows) of the

display screen [Mitchell 79, Petit 69]. Data objects can be monitored by repeated automatic

display at preselected program locations, e.g., procedure entry/exit [Lane 73], or conditional

and unconditional user defined trace prints [Unix 81b]. A display request is issued in a

functional manner, naming the object to be displayed. Examination of linked structures of

dynamically created objects requires a name path to be specified, that indicates the full

access pattern starting from a named object [Mitchell 79]. The values of objects are displayed

in terms of the representation of the base types in the language [Unix 81b] and sometimes in

terms of the user defined abstractions. The value of an object is usually changed through an

explicit command or the evaluation of an assignment by the debugger's expression evaluator.

The state of the control flow cannot be modified.

With the availability of high-resolution displays as part of a computer work station [Thacker

79] new ways of displaying information in an interactive debugging environment have been

explored. The DLisp system [Teitelman 77]utilizes multiple overlapping windows on the same

display. These windows are used to organize displayed information and to permit interaction

* P

48 INTEGRATED LANG UAGE- ORIENTED DEBUGGING r

with different processes. It is possible to display linked data structures in graphical form. Due

to the extensible nature of Lisp the user can add display routines of his own. Incense [Myers

80] is the frontend for an interactive debugging system for the compiler-based language

Mesa. Similar to DLisp, this system supports multiple overlapping windows and utilizes the

graphical display capabilities for analog representation of data structures. The analog display

of linked structures permits the user to conveniently examine elements in that structure by

selection with a pointing device. Information regarding the logical and physical structure of

data objects is made available by the compiler in an extensive symbol table. Documents are

associated with data objects in order to display them. A document describes the concrete

display representation of a data object - similar to the unparse schemes in ALOE. Incense

permits the user to define additional documents for the display of objects, and dynamically

change between them.

LoiPE's debugging facility is display-oriented in that it makes use of the ability to divide the

screen into different windows. All information is displayed to the user through the unparse

mechanism of the structure editor. Currently, the unparse mechanism is limited to character

representations. Graphical display would require an extension of the set of operations

supported by the unparser and appropriate display hardware. Because the syntactic details

of the textual representation can be adjusted in the unparse schemes for readability and for

consistency with the supported language, we do not consider the exact textual representation

as relevant as the logical structure of the program tree for the discussions in the remainder of

this dissertation. We continue by discussing the representation of the state of control flow in

the program tree and its visualization to the user in LOIPE. Then, LOIPE'S support for the

examination of the state of data objects in a language.oriented manner is elaborated.

3.2.1. Control Flow Display

The control flow state of an executing program consists of the stack of currently active

procedures or callstack, and a current execution point in each of these procedure

invocations. The current execution point refers to the callsite to the next procedure in the

active procedure stack or to the point of suspension in' the procedure on the top of the stack.

The current execution point refers to a program location and can be shown by associating a

program cursor with the appropriate subtree in the program tree. Similarly, an active

procedure can be displayed by showing the textual representation of the program subtree

that represents its definition. The actual stack of active procedures, however, cannot be

INTEGRATED LANGU AGE-ORIENTED DEBUGGING 49 2
represented in the basic program tree of the user program. The stack may contain several

invocations of the same procedure.

The callstack is represented by an additional structure in the program tree, a list of nodes.

Each node corresponds to a procedure activation on the callstack, and has two components.

One component is a reference to the definition subtree of the active procedure. The other

component is a program tree reference to the current execution point. The position of the

activation record of a procedure in the actual runtime stack can be derived from the position

of the corresponding node position in the list.

The program tree structure representing the control flow state is automatically maintained r

by LOIPE. It is updated any time the execution image of the user program temporarily

suspends execution. This may be the case for actual suspension of execution (breakpoint) or

for tracing of control flow or data flow. Once the program tree representation has been

updated, the control flow stack is displayed without explicit request from the user.

Two windows are used to show the control flow state to the user, a calistack window and a

control flow monitor window. The callstack window shows the list of currently invoked

procedures by their name, whereas the control flow monitor window is used to display one of

the active procedures and its current execution point. The callstack is displayed in the

following way. The rootnode of the stack of active procedures is associated with the root of

the callstack window. This subtree is unparsed by showing only the component of each node

in the list, that refers to the procedure definition site, and displaying only the procedure name

from the procedure definition subtree. Actual parameters of an active procedure are

displayed only if a display request is issued (see next section).

The cursor of the callstack window is used by the programmer to indicate the current oil

context for other debug functions, e.g., examination of local variables and actual parameters.

The current context is indicated by moving the cursor to the appropriate element in the

callstack and selecting that element. Selection is performed by moving the cursor down at

the selected element, which causes a action routine to be invoked with the editor action

faildown [Medina-Mora 81]. This action routine causes the control flow monitor window to be

updated to show the definition site of the selected active procedure and that window's cursor

to be placed at the current execution point of the procedure invocation. The resulting display

on the screen is shown in Fig. 3-1. By default the top element of the callstack is selected as

b _ ,..

50 INTEGRATED LANGUAGE-ORIENTED DEBUGGING

the current context when the control flow state is updated in the program tree. The effect is

that the cursor in the control flow monitor window acts as the "program counter", showing

the progress of execution.

Box Inputoutput; Module Fil10:

Module StdO; function FileOpen(Ftlename:strlng) : FILE;

Module PipelO; procedure FtleClose(flle:FILE);

IModule Filel0; procedure FileRead(file:FILE; str:strlng);

end Box: 1procedure FileWrite(file:FILE: str:strlnh

Module CommandInterpreter; end module;

Module MenuSelection;

Ca11 stack :

V procedure FileWrite(file:FILE; str:strlng ("hello"]);

begin

ift str - 0 then LoadText

return; CmdInterp
Main

end FileRead;

Lolpe:

Figure 3-1: Callstack Display on Screen

The user has the ability to delete sequences of elements from the calistack. The effect of

such a shrinkage of the callstack is that the current point of resumption is reset to the current

execution point of the new top element on the callstack. In section 3.4 LoIPE's support

0 facilities for controlling the excution of the user program are discussed in more detail.

INTEGRATED LANGUAGE-ORIENTED DEBUGGING 51

3.2.2. Data State Display

The execution state of data is comprised of the current value of global or statically

allocated variables, of local variables and local parameters that are allocated as scopes are
entered, and of data objects that are dynamically created on a heap. The user is able to

examine the data object state using syntax of the programming language and the names of

abstractions defined in the program.

In LOIPE the data object state is represented as part of the program tree representation.

Because the data object state is actually changed in the execution image during program

execution, the program tree representation must be updated repreatedly by extracting the

information from the execution image. However, only those parts of the data object state that

have been requested by the user for display are updated in the program tree. The result is

demand-driven dis;ay of data objects via the program tree representation and retrieval of

their state in small steps. The mechanism for extracting data object state from the execution

image will be discussed in chapter 5. We continue by first discussing the form in which data

object state is represented in the program tree and as text, then elaborating in which way

display requests for data objects are issued. Finally, the facility for modifying the current

value of data objects by editing is introduced.

3.2.2.1. Display Format

The initial value of a data object is a special case of the current value. Thus, it is natural to

represent the current value and the initial value in the same manner. Because many

programming 'anguages already provide support to specify the inital value of a data object as

part of its declaration, we adopt the same representation for the current value.

Object values of basic data types are given in their standard representation. For objects of

enumerated types the user defined value representation is used. In case of record structures

both the name and the value of each component are given. An example of such an initial

value representation for records is the record aggregate in Ada [DoD 801.

In the program tree representation the current value takes the following form. The current

value subtree is a new offspring in the node that representation declaration. This subtree is

constructed automatically by LOIPE when the declaration is entered in to the program. From

the object declaration site information about the object and its type are directly available to

* 52 INTEGRATED LANGUAGE-ORIENTED DEBUGGING

LOIPE. The definition site of the type is reached quickly by following the semantic link from the

symbol table entry to the subtree of the type definition. The type information is used to
determine the structure of the current value subtree. The current value subtree acts as
placeholder, which is used to extract the current value from the execution image (see section

5.2.2).

For objects with a single value, i.e., objects of base types, and enumerated types, one node

acts as a placeholder for the value. The unparsing mechanism of the structure editor

converts the internal representation of the value into a textual representation, using the print

routines that are normally provided as part of the runtime system of the language. For arrays

and records the current value subtree is a list of nodes with two offsprings. One of the

offsprings represents the name of a component in the record. The other offspring is the

placeholder for the component value. Information about the record components is retrieved

from the record definition site (Fig. 3-2).

"0

TypeOj D l t

IdentOef Record IdentUse mit Value Current Value

Fields

'Field Name' 'Value'

Figure 3-2: Current Value Of A Record Object
0

A component value can be a single-valued component, i.e., of a base type, subtype or

enumerated type, or a nested aggregate of values, or a pointer reference. The display of a

single-valued component has already been described. For nested value aggregates, a limited

view is provided. The user sees nested aggregates only to a certain depth. For any

component at that depth that is of record type the current value is shown as ellipses. Cursor

movement down at the ellipses invokes an action routine with action faildown. This routine

extends the display depth of a given data object, resulting in the expansion of the current

value subtree. The value of a pointer reference is never shown, because it should be of no

concern to the user. Instead, a special symbol or key word, e.g., '->' or 'ptr', indicates the

INTEGRATED LANGUAGE-ORIENTED DEBUGGING 53

presence of a pointer in the actual representation. As in the case of the ellipses the user

expands the display by moving the cursor down at the pointer field.

3.2.2.2. Data Display Requests

During program construction and usually during program debugging, the unparser

selectively hides the current value subtree at the declaration site. Only those current values of

data objects whose subtree is being displayed are retrieved from the execution image and

updated in the program tree. The user can issue a display request for global data objects by

changing the unparse mode of the window showing the declaration site of the global object to

be examined. A change of unparse mode means that a different unparse scheme is

associated with the generation of the textual representation in the given window. The newly

selected scheme includes the current value subtree as part of the textual display.

Local data objects can only be displayed during their lifetime, i.e., if an active procedure

invocation exists. In LOIPE, the display of local objects is caused as a side effect of the

selection of the current context in the callstack. The actual unparse mode of the window

showing the definition site of the selected procedure is changed to display the current values.

The result of this display request is the extraction of both the parameter and the local object

values corresponding to the selected context from the execution image into the program tree

representation and their display or the screen.

The user can also examine linked data structures, i.e., dynamically created data objects,

that are connected by pointer reference. The examination must start from a named pointer

reference, i.e., a pointer or access variable or a record component that is of pointer type.

Since linked data structures may be quite expansive, a separate window, the data object

examination window, is provided for the display of such structures. The user follows elements

in the linked structure by expanding the appropriate pointer references through cursor

movement (Fig. 3-3). The user's ability to traverse the linked data structure by moving with

the cursor through the current value subtree eliminates the common problem of having to

specify the full name path from a program variable to the desired object. For linked data

structures that represent trees or graphs it may be advantageous to show them in graphical

form because the textual representation shows the links only in a limited scope. For a

discussion of effective way to display interconnections using graphics, we refer to the work in

Incense [Myers 80].

54 INTEGRATED LANGUAGE-ORIENTED DEBUGGING

Peter Peter

Name: Peter Name: Peter
Ae2g Age: 2g

Father: ------------ Name: Rudi
Status: married Status: married Age: 5g

|-%Father: ref person

Status; died

Figure 3-3: Examination Of Dynamic Objects

LOIPE supports visual monitoring of data objects. In contrast to dynamic assertion

checking, which will be discussed in section 3.3.2, visual monitoring continuously displays the

current value of data objects and leaves it to the user to detect any anomalies in the values.

The current values of all data objects being monitored are shown in a data object monitor

window. This avoids switching of the program window to the declaration sites of the different

data objects to be displayed. Monitoring of a data object is requested by entering the data

object, i.e., its name, into the data object monitor window..The effect of this editor operation is

the establishment of a crosslink from the subtree in the data object monitor window to the

declaration site.

The current value of monitored data objects is refreshed in place any time execution is

suspended temporarily. Thus, the user can define a set of data objects to be examined

whenever a break point is reached or an assertion does not hold. The effect of monitoring all

modifications of a data object can be achieved in connection with the ability to associate the

trace action with data object declarations (see section 3.3.3).

3.2.2.3. Modification of Data Object State

LoipE provides two ways for changing the current value of objects. The expression

evaluation facility (described in section 3.4.1.1) processes statements with the effect of an

assignment statement changing the current value of the assigned variable. The more

common way of modifying the current value, however, is realized through the ability of the

structure editor to manipulate the program tree structure representing the data object state.

INTEGRATED LANGUAGE.ORIENTED DEBUGGING 55

The user can move the cursor to the node holding the current value and apply modification

operations. For record aggregates only the component values are modifyable by the user.

This is enforced by the structure editor. The display of the component name is specified

read-only in the unparse scheme, i.e., is not accessible by the cursor. Deletion at the root of

the current value subtree is prevented through the access control mechanism in ALOE

[Medina-Mora 81].

Pointer values can only be modified by expression evaluation. In that case all the semantic

rules of the context in which the evaluation is performed apply. Thus, the user cannot do more

damage than he could through the program itself. In the program tree representation for

current values pointer values are maintained, but never shown to the user (see paragraph

3.2.2.1). The special symbol, that is shown instead, is not modifyable.

3.2.3. Information Hiding for Record Types
* r

Progams that are written in languages with information hiding through software modules, a

record type may have two specifications. One is the complete definition of the record type in

the module providing the implementation. The other is the exported definition for use outside

the providing module. This definition may hide some of the component details. This brings up

the question as to whether the declaration of a record type object outside the defining module

should be bound to the exported record definition site, or to the implementor's definition site

for the purpose of generating the current value representation. LOIPE can realize either one

of the two approaches, since the necessary semantic information is available.

From the pratical point of view, the limitation of data object display to the accessibility

defined in the export definition is too restrictive. The user could examine only those parts of a

data object that are visible. For display of the full content, execution would have to be

suspended in the implementing module and the data object would have to be accessible at

the point of suspension. Therefore, LOIPE supports examination of data objects according to

the full definition. The user is expected to be cooperative in that he is aware of the potential

damage to the consistency of a data object through modification of the data object state.

P

p

56 INTEGRATED LANGUAGE ORIENTED DEBUGGING r

3.2.4. Summary of Program State Representation

LOIPE supports access to the progam state in a language-oriented manner. The program

state is represented as part of the program tree. This representation allows the user to

examine and modify the program state in the same manner the source program is

manipulated. The program tree representation of the program state acts as a write-through

cache for the actual program state in the execution image. The current value of program

state parts are extracted from the execution image into the program tree upon display

requests. Changes to the program tree representation are recorded in the execution image

3.3. Debug State

The debug state of a program records the definition of debug statements, the locations of

their application, and whether they are enabled. Debug statements may be unconditional

debug actions, such as breakpoint or tracepoint, or conditional debug actions with user-
* defined conditions.

In traditional programming systems, the debug state is represented and maintained in (a

combination of) two ways. User-defined debug statements are expressed through the

supported language, e.g., conditional point statements, and are enabled through the

conditional compilation mechanism. The enabling of such debug statements requires

recompilation and linking, thus, cannot be performed interactively. Interactive debugging

support is provided through a separate debugging tool. This tool is used in conjunction with

the executing user programs. Through commands, the user interactively defines and enables

debug statements in a form that is accepted by the debugging tool. The debugging tool

0 records the debug state in a structure that is separate from the source program and modifies

the execution image of the user program to reflect enabled debug statements. The debug

state is lost when leaving the debugger, because the state is maintained only within the

debugger. The debugger, however, must be left in order for the user to make modifications to
- the program.

Debugging systems usually support breakpoints and tracepoints. The user may specify a

condition under which these debug actions are applied. One kind of conditional debug

statement, the assertion, has originally been included in a program as information for formal

INTEGRATED LANGUAGE-ORIENTED DEBUGGING 57

program verification. Assertions specify conditions that are assumed to hold for a certain

program state. The inclusion of assertions in the program text documents the expressed

assumptions. It has been recognized that dynamic checking of these assertions provides an

excellent debugging aid [Satterthwaite 75, Lampson 77]. Assertions have the property that

they do not affect the program state of the user program when enabled. This means that user

programs. can be executed with enabled or disabled dynamic assertion checking, without

changing the program behavior (except for execution speed). Assertions without side effects

can be guaranteed by restricting the assertion condition to expressions without side effects

[Lampson 77]. The restriction of the assertion condition, however, has been recognized as

too limiting for the expressive power of assertions and extensions have been provided such

as quantifying operators and access to previous values of variables [Deutsch 73, Martin 77].

When defining a debug statement the user not only specifies the debug action and the

condition under which the action is taken, but also the program location at which it is applied.
In the most common case a debug statement is defined for one program location, e.g., a

breakpoint is set at one location. Some debugging systems allow a range of program

locations to be specified for a given debug statement. Examples are single stepping, i.e.

breakpoint at every instruction of the whole program [Kotok 61], array bound checking for all

array accesses [Jensen 741, break or trace for all procedure entries and exits [Lane 73], and

evaluation of an assertion condition in a specified program region [Martin 77].

In LOIPE debug statements support debugging activities that range from simple breakpoint

to dynamic assertion checking and execution timing. Debug statements are maintained as

part of the program tree, thus, are documented permanently and are not invalidated by

program modifications. Debug statements are defined to be applicable within a certain

scope, i.e., at a range of program locations. The scope is determined by the scope rules of

the language. In LOIPE, debug statements are enabled for runtime evaluation independent of

their definition. This separation of definition and enabling of debug statements permits an

enabling statement to be associated with several debug statements. The separation, more

importantly, permits debug statements to be defined permanently in the program without

being enabled. The effect is the documentation- of test cunditions for later use.

In the remainder of this section we discuss LOIPE'S support of debug statements in more

detail. First, the semantics of debug statements are given. Then, the dynamic assertion

checking mechanism in LOIPE, whose expressive power supports all assertions handled by

58 INTEGRATED LANGUAGE-ORIENTED DEBUGGING

existing systems, is presented. Finally, the scope of applicability of debug statements and the

resulting debug activities, and the mechanisms and cost of enabling debug statements are

discussed.

3.3.1. Semantics of Debug Statements

A debug statement basically consists of a debug condition and a debug action. If a debug

statement is enabled for runtime execution, the condition is evaluated to determine whether

the debug action should be performed. LOIPE provides two predefined debug actions:

execution suspension, and execution tracing. Execution suspension means that the

executing user program relinguishes control to LOPE when this debug action is encountered

in the control flow. LOiPE, then, displays the program state and accepts user interaction. If

the executing program encounters an execution tracing action, execution is temporarily

suspended to display the program state, but does not prompt for user interaction.

Debug statements can be dis- or enabled without changing the program behavior (other

than execution speed). By attaching strict semantics to debug statements, LOiPE can statically

enforce that this is the case by ensuring that the debug statement does not perform write

access to a data object in the program. Without this restriction the expressive power of debug

statements is increased, but application of debug statements may change the program

behavior. The enabling mechanism for debug statements would effectively become a

conditional compilation inechnism.

If side effects are permitted in the debug action, the debug statements take up the

characteristics of an exception handling facility. Violation of the debug condition raises an

exception - see for example range-error or assert-error in Ada [DoD 80]. The debug action

acts as an exception handler that is statically bound to the exception. The handler may

examine and modify the program state. Upon completion, execution is resumed at the

location that raised the exception. An exit or return statement in the debug action achieves

the effect of exception handlers in Ada, namely abortion of the program unit in which the

exception was raised.

In the context of LOiPE, we assume that both conditional compilation and exception

handling are provided through separate mechanisms, and limit ourselves to the stricter

semantics for debug statements. The three mechanisms fulfill different tasks and, therefore,

INTEGRATED LANGUAGE-ORIENTED DEBUGGING 59

should be available to the user as distinguishable mechanisms. Conditional compilation is

commonly used to maintain different versions of programs in one source file. Exception

handling provides the capability of handling recurrent exceptional conditions permanently as

part of the expected user program behavior. Debug statements facilitate monitoring of the

program state for unexpected behavior. The user is informed of such an occurrence, but the

cause of this unexpected behavior is assumed to be remedied by modifications in the user

program.

3.3.2. Dynamic Assertion Checking

LOIPE supports dynamic checking of assertions that contain quantifying operators and

references to previous values. If quantifying operators are not provided by the programming

language, the user can emulate the effect of the quantifying operators by a value-returning

function without side effects (e.g., a Euclid function). This function can contain loop variables

for stepping through a set. A natural extension is to permit the declaration and use of local

variables in the debug statement directly rather than requiring the user to define a separate

function for that purpose. This is achieved by using a value-returning block with write access

to locally declared data objects as assertion condition.

In verification previous values of data objects are often referenced in post conditions for

procedures (to specify how the program state relates to the program state at procedure entry)

and in iteration and recursion invariants (to make claims about the progress of execution). It

is difficult to come up with a general rule that determines when the content of a data object

should be saved for later reference as previous value, such that it can be done automatically

by the system. The previous value may refer to the value at procedure entry, the value at the

last execution of an assertion, or the value before the last write access to the data object.

Therefore, we follow the route taken in the Interactive Program Verifier (Deutsch 73] and the

HAL/S testing system [Martin 77], i.e., require the programmer to specify when and where the

old value of a data object is saved. For that purpose we introduce the notion of debug

variables in LOIPE.

Debug variables have a scope that is larger than a single debug statement. They are

declared in the same manner as program variables, but are marked as debug variables. The

actual choice of textual representation to distinguish the declaration of debug variables (as

well as the definition of debug statements) is irrelevant at this point. For example, in this

60 INTEGRATED LANGUAGE-ORIENTED DEBUGGING

dissertation, we use the keyword assert to visualize the difference between elements of the

user program and elements of the debug state.

Program variables and debug variables have the same scope rules, but differ in that debug

variables are only accessible in debug statements (in the latter only with read access). Debug

variables can be modified in both the debug condition and the debug action. The
modification of debug variables does not violate the semantics of debug statements because
debug variables are inaccessible by the user program, thus not part of the program state. The

abstract syntax description for debug statements must take into account that debug variables

can be modified as a debug action, i.e., assignment statements must be permitted in addition

to the break and trace actions. The full abstract syntax description of debug statements is

given in appendix A.2.

With debug variables, the user can maintain previous values of program variables as

necessary to express assertion conditions. With this quite powerful assertion mechanism, the

user can monitor relationships between data objects and between time sequenced values of

data objects at a high level, i.e., the level of abstractions provided in the program. The ability

of debug variables to maintain state information for debugging purposes can be used for

performance measurement. For example, frequency counts and time measurements may be

kept in debug variables. They can be used for statistical processing or displayed. A

discussion of the full potential of performance monitoring support, however, is beyond the

scope of this dissertation.

3.3.3. Scope of Debug Statements

Debug statements have a scope of application. This scope defines the range of program

locations at which a debug statement would be evaluated if enabled. Usually, the definition

site of a debug statement corresponds to its application site, i.e., debug statements are

defined in the code only. However, [Taylor 801 has recognized that there is a need for

defining a debug statement once and specifying a scope in the program for which it is

applicable. It is comronly the case that certain assertion conditions should hold for a

program part, e.g., a procedure or module. The assert facility in Euclid [Lampson 77] requires

the user to repeat the assert statement at all application sites. The Hal/S system [Martin 77]

permits the indication of a range of statements for which the debug statement is to be applied.

A preprocessor takes care of the replication of debug statements.

INTEGRATED LANGUAGE-ORIENTED DEBUGGING 61

In LOIPE the scope of a debug statement is determined by the location of its definition. If

the debug statement is defined in a statement sequence, the definition site is the location of

application. If the debug statement definition is associated with a program block, procedure,

or module the scope of applicability corresponds to that defined by the given language

construct. Debug statements can also be associated with data objects or data types. In both

cases, the scope of applicability is that of the respective item.

As a combination, the expressive power of debug statements and their scope of application

provides a rich debugging environment that should satisfy the most common needs of

programmers. For example, the unconditional debug action break associated with a

procedure provides single-stepping through that procedure. The break action does not apply

to other procedures being called by the target procedure if not applied in their scope.

Unconditional trace action associated with a module has the effect of showing the progress of

control flow in that module with the structure editor cursor. Conditional debug activities or

assertions, when defined for a procedure or module, make sure that the assertion condition

holds at any time within that scope.

The association of a debug statement with a data object declaration causes the debug

statement to be applied whenever the data object is modified by the program. If the debug

statement is an unconditional trace action, the result is monitoring of the assert object value.

Assertions associated with a data object will guarantee the validity of its condition throughout

the lifetime of the object. Assertions can also be defined for a data type. In this case, a

statement is made about any object of the given type.

3.3.4. Enabling of Debug Statements

Once a debug statement is defined the user can choose to enable it f,,, execution. The

user may want to enable a single debug statement definition, or all definitions of debug

statements within a certain scope, or even all debug statements that have an application site

in a given scope. LOIPE provides two mechanisms for doing so. The first mechanism allows

the user to enable individual debug statements by marking the definition site appropriately.

The definition site can be marked in three ways.

1. The state can be recorded in an additional offspring to the debug statement node.
The user may fill the binary state value by constructing a node of one of two legal
terminal productions. The offspring is shown textually as a keyword (see Fig.
3-4-a).

IP

62 INTEGRATED LANGUAGE-ORIENTED DEBUGGING

assert disabled debug statement disabled assert

state condition assert condition

'enabled' condition

enabled assert 'condition'; assert 'condition' }; disabled assert condition';

(a) (b) (c)

Figure 3-4: Alternative Tree Representations For State Information

2. The state can be recorded by the existence of an additional ancestor node. The
enabled debug statement is represented by the usual program subtree. However,
if disabled, the debug statement subtree is nested into a node which acts as the
disabling indicator. In textual representation, the act of disabling may appear to
the user as nesting the debug statement into a comment. This alternative is
illustrated in Fig. 3-4.b.

3. The state can be represented by two productions in the abstract syntax
description for the debug statement node. The two productions have the same
offsprings. They differ, however, in that the semantic interpretation of one means
disabled debug statement, whereas the other indicates an enabled debug
statement. The application state is changed by applying the transform command
of the structure editor to the debug statement node in order to convert it from one
node type to the other. The textual representation may show the state either as
keyword or bracketing symbols (see Fig. 3-4.c).

The implementor of a LOIPE, i.e., the person providing the grammatical description of the

programming language, decides the way of marking by specifying the approapriate

* productions in the language description. We suggest the use of a separate state node

because the editing commands to change the state are most obvious to the user.

The second mechanism for enabling debug statements in LOIPE is provided through an

enabling construct. The pragma statement in Ada [DoD 80] is an example of a construct that

provides directives for the programming system. Similar to the definition site of debug

statements, the location of the enabling construct in the program tree determines the scope

for which it is applicable. By providing the enabling statement with a procedure name, for

V example, the user indicates that all debug statements with an application site in the given

INTEGRATED LANGUAGE-ORIENTED DEBUGGING 63

scope whould be enabled. This includes debug statements where scope of application

conforms the enabling scope as a subset.

3.3.5. Cost of Debug Statements

Debug statements and enabling constructs are maintained by the user in the program tree

representation. LOIPE, however, does not include debug statements in the execution image

unless they are enabled for runtime evaluation. Thus, no cost penalty incurs on the executing

program for unused debugging aids. This approach requires processing by LOIPE to include

debug statements in the execution image when they are enabled. For debug statements that

are enabled by modification of the application state the processing cost is proportional to

their scope. For example, enabling of single stepping in a procedure requires processing of

that program piece. For conditional debug statements, processing is restricted to those

program pieces in the scope of applicability whose execution may affect the condition being

tested. For example, an assertion associated with a global data object requires processing of

those procedures that actually access the object for modification. These program pieces can

be determined without much difficulty from the available semantic information in the program

tree.

The processing cost directly affects the responsiveness of LOIPE as an interactive system.

Therefore, LOIPE makes the user aware of the processing cost for the request to enable debug

statements. In order to issue the enabling request through an editing command the user must

move the editor cursor to the definition of the debug statement or to the enabling construct.

As the cursor moves through the ancestor node, it gives a good estimate of the scope of

applicability by highlighting the appropriate program piece, e.g., a procedure or a module.

3.3.6. Summary of Debug State in LoIPE

By integrating the debug state into the program tree representation, LOIPE extends the

uniformity of user interaction through editing commands to the definition and enabling of

debug statements. Debug statements are entered and modified in the same way as the user

program, i.e., in a language-oriented manner. By separating definition and enabling of debug

statements, LOIPE permits the user to document assertions as part of the source program for

later use without incurring any cost on the executing program. Because LOIPE's debugging

facility uses the program tree as its primary program representation, it can make use of the

64 INTEGRATED LANGUAGE-ORIENTED DEBUGGING

available language knowledge and semantic information. One example is the capability to

associate debug statements with various constructs in the language, thus, specifying different

scopes in which the debug statements would be applied. By exploiting the limits of the

semantic restrictions for debug statements, LOIPE increases the expressive power of c '-bug

statements beyond conditional break and trace statements. As some other systems LoiPE is

able to support sophisticated dynamic assertion checking with quantifiers and previous

values. in addition LOIPE permits assertions to be defined at different levels of abstraction.

The debug statement mechanism can also be utilized for performance monitoring tasks.

The language-orientation permits LOIPE to increase its debug functionality with the power

of the supported language. New concepts can be utilized by LOIPE's debugging facility, as

they are included into languages. One such candidate are path expressions, which have

already been included in an extension of Pascal [Campbell 78]. Path expressions define

certain ordering relationships between operations on a data type. These are in their original

-0 form intended as a synchronization mechanism, but can also be interpreted as constraints on

the application of those operations. In [Habermann 79b] a realization for dynamic path

expression checking is indicated, which has been implemented in [Habermann 78, Andler 79].

3.4. Execution Control

Execution control gives the user the ability to influence the normal flow of control during

program execution. Execution can be started and suspended. After suspension the user can

continue execution or redirect it to a different program piece. This capability is essential to

program debugging.

Execution control can be found in various forms in existing debugging systems. Usually the

execution of a program is suspended if a hardware exception (e.g., divide by zero) occurs and

is not handled by the user program. The exception is handed to the debugging system for

reporting to the user. If the debugging system is not active the operating system is informed,

which then aborts the user program and possibly saves a copy of the current execution image
for post-mortem examination, e.g., Unix [Unix 81a]. Debugging systems permit the user to

interactively define breakpoints. Suspension occurs when execution encounters such a

program location. In many systems the user can interrupt the program execution by typing

one or a sequence of special control-characters.

S.

INTEGRATED LANGUAGE-ORIENTED DEBUGGING 65

Once the user program is suspended the user can examine the program state and issue

debug commands. Execution can be continued in several ways. Program execution can be

started from scratch. Execution can also be resumed at the point of suspension, if the user

interactions are limited to debug commands. Usually, after modifications to the user program,

execution must be started over in compiler-based systems. Some debugging systems support

interactive expression evaluation, that accepts as one of its expressions the invocation of a

procedure or function. This allows the user to continue the execution at a different program

location.

LoIPE is similar to other programming systems in the provision of execution suspension

facilities. In contrast to other compiler-based programming systems, however, LOIPE Supports r

the execution of incomplete programs. Execution is suspended when an incomplete or

incorrect program piece is encountered. The Incation of execution suspension is shown

through the structure editor (see section 3.2.1), and a message informs the user of the cause

of suspension. Upon suspension of execution the user of LOIPE can freely mix manipulation of

the user program, the program state, and the debug state. Some of the modifications may

affect the ability to resume execf ition at the point of suspension. LOIPE keeps track of the user

modifications and their side effects on the execution image, and determines whether the user

may be permitted to resume execution, or may be required to continue at an earlier point in

the execution history. The user can also continue by redirecting execution to a different

program part. In the remainder of this section we elaborate on the mechanisms for

continuation of execution, and investigate the criteria that are applied to determine whether

execution can be resumed at the point of suspension.

3.4.1. Continuation of Execution

In LOIPE the user causes execution of the user program either by issuing an extended editor

command, or by evaluation of an expression. The extended command continue is one of two

commands that have been added to the structure editor for LOIPE. The continue command

causes program execution to start at the point that is indicated by the program execution

state. After a suspension of execution this is the point of suspension. When a program is

being constructed the program execution state is defaulted to the entry point of the program

and the initial global data object state. Thus, the initial continue command has the effect of

starting the program - if the program entry point exists. At any time the user can reset the

program execution state to the initial state with the second extended command initialize (see

66 INTEGRATED LANGUAGE-ORIENTED DEBUGGING

paragraph 3.4.2.3). The command sequence initialize continue will start execution of the user

program from the beginning.

The user can also start execution at a point that is different from the program entry point or

the point of continuation indicated by the program execution state. This is accomplished

through the evaluation of an expression or statement that is supplied by the user. In this

program piece procedures and functions can be invoked, i.e., execution is redirected. The

next paragraph discusses the program evaluation mechamism of LOIPE in more detail.

3.4.1.1. Program Evaluation

Program evaluation is the ability for the user to specify an arbitrary piece of program

interactively and have it executed immediately in the current context of the suspended

program. Upon completion control is returned to the point of execution suspension. Some

compiler-based debugging systems provide such a facility under the term expression

evaluation. The debugger interprets the entered expression and displays the result of the

evaluation.

In LOiP any executable program piece, i.e., expressions and statements, that can be

expressed by the supported programming language is eligible for execution if it is

semantically correct in the given context of the suspended program. The context is

determined by the element selected on the callstack. The user constructs the piece of

program to be evaluated with the structure editor in a special evaluation window. The user

can also select the program piece from the program window and clip it into the evaluation

window. Several program pieces may be maintained in the evaluation window.

When LOIPE is informed to evaluate a program piece it invokes the semantic checker on the

selected subtree for the given context. If the subtree is semantically correct code is

generated and loaded into the execution image. Then control flow is rerouted to start

executing that temporary piece of code without destroying the runtime stack. When execution

is completed the result of the execution, if any, is displayed, control flow is reset to the point of

suspension, and the temporary code piece is removed from the execution image.

This mechanism is used for different purposes.

. Data objects can be examined by simply submitting their name to the evaluator.
With the implementation described above the overhead for examination is

INTEGRATED LANGUAGE-ORIENTED DEBUGGING 67

relatively high. However, LoIPE provides another facility for displaying values of
data objects (see section 3.2.2).

* Individual fields of composite data objects and elements of linked structures can
be accessed. Again, LOiPE already provides an efficient mechanism.

e Arbitrary expressions can be evaluated. This includes invocations of procedures.

* Evaluation of program statements may affect the program state. An assignment
statement to a data object has the effect of modifying the current value, an
alternative to editing the current value directly.

* The evaluation of the return statement differs from other statements, because it
causes program execution to resume by returning from the top procedure
invocation, possibly with a user specified return value. This allows the user to
prematurely complete (abort) a procedure invocation.

The cost for the evaluation of an expression seems relatively high, because code is

generated and loaded into the user program. However, the advantages of this approach
justify its cost. In the LOIPE approach, code is executed on the target machine evaluating the

expression using target machine arithmetic. The debugger subsystem has no specific

knowledge about the target machine or the supported language. This knowledge is

embedded in the semantic analyzer and the code generator. In the conventional (interpretive)

approach to expression evaluation, mechanisms must be provided that understand all

constructs that are legal in the supported language, know to interpret the runtime

environment including accessing mechanisms, and simulate the arithmetic of the target

machine, if it differs from the host machine. This machinery makes the debugging system both

language and machine dependent, requires higher complexity of the debugging software, and

often does not perform a complete job.

3.4.1.2. Unwinding of Execution Flow

The continue command allows the user to resume execution at the point of suspension.

This is, however, only possible if the control flow state, i.e., the call chain of active

procedures, is not affected by modifications to the user program. In some cases the control

4 flow state can be adjusted to correct the affected part. LOiPE detects such effects on the

control flow state. The detection criteria are discussed in the next section. When LOIPE has

detected an affected control flow state, it unwinds the control flow state automatically to

remove the damage. Unwinding of the control flow state means that the point of resumption is
reset to the current execution point of the first undamaged active procedure. The data object

P

68 INTEGRATED LANGUAGE-ORIENTED DEBUGGING

state is not restored to previous values. LOIPE informs the user of the correction to the control

flow state such that the user may decide not to continue execution because of inconsistent

data object state.

The user is also given the opportunity to unwind the control flow state explicitly. This is

done by deleting the appropriate elements from the program tree represention of the control

flow state (see section 3.2.1). Removal of all elements on the callstack and application of the

continue command has the effect of restarting the execution without reinitializing the global

data object state.

3.4.1.3. Restoration of Program State

Restoration of program state refers to the ability to reset the current state of program

execution to be one at an earlier point in execution. In effect, the state is assumed to be the

one as if execution had been suspended and restarted at the appropriate point. Restoration

by starting execution over has several disadvantages. Repeatability of the execution must be

guaranteed. This may be difficult if the execution includes access to external devices or files.

Furthermore, the computational effort may be unacceptably high if long-running programs are

involved. Therefore, we consider the alternative approach of restoring a previous execution

state from saved state information for LOIPE.

We take a simplistic approach to restoration of execution state. We limit the execution state

to be restored to the execution image, i.e., to the source program and program state.

Furthermore, restoration is restricted to predefined points in the program. One of these points

is the initial program state. LOIPE restores that state by totally unwinding the callstack and

reinitializing the global data object state. Reinitializion of the global data object state consists

of updating the current value in both the program tree and execution image to the initial value.

Reloading of code is avoided. The user can request this restoration by the extended

command initialize.

Other points of restoration must be defined by the user explicitly. A potential restoration

point is indicated by a new language construct, keep. Whenever execution passes through

such a point a copy of the execution image is saved in a file that is associated with the given

restoration point. The program state can be restored to one of these restoration points if the

6 enclosing procedure is active on the runtime stack. The restriction of restoration to points in

active procedures is necessary to ensure that the saved execution image has not been

INTEGRATED LANGUAGE-ORIENTED DEBUGGING 69

affected by any user modification. Otherwise, the saved snapshots of the program execution

would have to be checked explicitly for side effects of user modifications. Due to this

restriction the usefullness of user-defined restoration points is limited. S

As the reader will have noticed the support mechanism for restoration is somewhat clumsy

and inefficient. We have included it only to complete the set of mechanisms that aid in
continuation of execution. Additional research will be required for the design of a general

restoration mechanism that withstands the dynamic changes to the program representation in

the LOIpE environment, possibly drawing from the experience with recovery blocks [Randell

751 and stable variables [Liskov 80].

3.4.2. Consistency of The Program Execution State

Modifications to a user program change its logical structure. Such a change may affect the

semantic consistency of the user program, i.e., the modified part and all program parts

depending on its semantics. The modification may also affect the structural consistency of

the program execution state. Structural consistency of the program execution state refers to

the validity of program state information with respect to the current instance of the user

program, such that resumption of execution can be permitted. This means that the control

flow state contains correct references to existing program locations, and the data object state

reflects a valid state for all active data objects, i.e., all data objects whose lifetime includes the

current point of execution resumption. The content of data objects is not part of the

structural consistency. S

In traditional compiler-based systems, the program execution state is maintained

consistently only for modifications due to debug actions. For any modifications to the user

program, the program execution state is discarded, the consistency of the execution image is

restored by reconstruction, and execution must start from the beginning. In interpretive

systems the user can make modifications to the user program as well as apply debug

statements without loss of data object state. However, user program modifications may affect

the control flow state. It is for the user to decide whether execution resumption is safe. The

user can always redirect execution by invoking a function through expression evaluation.

In LoIPE the user the user does not distinguish between a modification of the user program
wand a modification of a debug statement. Therefore, LOIPE must be able to maintain structural

• Jr . -

70 INTEGRATED LANGUAGE-ORIENTED DEBUGGING

consistency of the program execution state for a class of user modifications that include the

manipulation of debug state. As a result, resumption of execution is possible not only after

debug interactions, but also after modifications of the user program.

Structural consistency of the program execution state can be maintained in several ways.

Two are being used in traditional compiler-based systems. In those systems, debug

statements are inserted into the executable code in such a way that the program state is not

damaged. Resumption of execution can safely be permitted. We refer to this class of

modifications as non-damaging modifications. All other modifications require restart of

execution and are therefore classified as fatal modifications.

In LOIPE, we increase the number of non-damaging modifications by locating those

modifications of the user program that leave the program execution state invariant. We also

introduce two new classes of modifications; the correctable class and the restorable class.

The correctable class contains modifications, for which the structural consistency of the

program execution state can be corrected without changing the point of resumption. The

restorable class consists of modifications, whose side effects do not permit corrections.

However, the program execution state can be restored to a state for which structural

consistency holds again. An extreme case is tie restoration to the initial execution state. The

next four paragraphs discuss the classification of modifications into the four classes and the

criteria used by LOIPE to determine the class of a modification.

3.4.2.1. Non-Damaging Modifications

Non-damaging free modifications do not affect the structural consistency of the program

execution state. Therefore, modifications do not require additional processing, once they are
recognized as a member of this class. In two occasions a modification is non-damaging. A

change to the initial value of a data object in its declaration does not affect the program

execution state, i.e., the current value of the data object. The current value is only restored to

the initial value when execution is started from the initial state or control flow enters the block

containing the local declaration. Similarly, any change to a procedure that is not active, does

not involve the control flow state or the local data object state. An active procedure can be

recognized by checking whether it is a member of the callstack subtree structure. The class

of non-damaging modifications contains a variety of modifications. Procedures and local

variables can be added, modified, or removed, if the procedure (or enclosing procedure) is

not active. In all cases it has to be remembered that a user modifications itself may be

L INTEGRATED LANGUAGE-ORIENTED DEBUGGING 71

non-damaging, but the propagation of semantic information may result in structural

inconsistencies due to the change in the affected program part.

3.4.2.2. Correction of Program State

The corrections of the program state are limited to updating the control flow state, and

certain changes to the data object state. The control flow state is corrected if the change

involves an active procedure, but the current execution points of the procedure are not

directly modified. A current execution point is modified directly if the callsite representing the

current execution point is a member of the statement subtree, being modified by editing

operations. The modification of such a subtree is excluded because it may have damaging

effects on the program state (see paragraph 3.4.2.3).

The control flow state is affected in two ways. The current execution points may have a

new position relative to the entry to the procedure, or the program part containing the callsite

may have become nonexecutable. In the first case, the control flow state information in

program tree representation is not affected because the references to the procedure

definition site and the current execution points are expressed in terms of node references into

the program tree. These node relerences are not changed by insertion or deletion in front or

after a callsite location. This invariance property of the program tree representation permits

LOIPE to correci .he side effects in the execution image equivalent of the program state.

The second kind of effect on the control flow state, i.e., nonexecutablity of the callsite, is

due to semantic errors or incomplete program pieces. If the semantic error is contained in the

enclosing statement subtree, any correction of the semantic error by the user may damage

the correct execution point. However, if the executability unit is chosen to be greater than

one statement, e.g., a prodecure, it is desirable to correct the control flow state for the case

that one of the other statements is the cause of the nonexecutability. This nonexecutability is

frequently temporary and is followed by a user modification without damage to the current

execution point. LOIPE corrects the control flow state by marking the current execution point.

If, upon resumption, execution encounters such a marked current execution point, execution

must be suspended. •

Structural consistency is also corrected for addition or removal of global data objects.

Creation of a new global data object causes its current value to be initialized to be its initial

value. As a side effect of the creation previously undefined use of a variable may be bound, a

!p

72 INTEGRATED LANGUAGE-ORIENTED DEBUGGING

previously bound variable may be rebound to the new declaration, or a name conflict may

have been introduced. Similarly, deletion of a global data object results in rebinding or

undefined user of a variable. These side effects, if they occur, result in changes to program

parts that fall into the classes side effect free, correctable or restorable.

3.4.2.3. Restoration of Previous Program State

If the program state cannot be corrected, it can be restored to an earlier state by disposing

of the program state information in question. Removal of an element from the callstack has

the effect of disposing of some control flow state as well as some of the local data object

state. Thus, unwinding of the procedure activation stack provides the restoration mechanism

(see section 3.4.1.2).

Modifications or side effects to statement subtrees containing current execution points, i.e.,

active callsites, are included in the restorable class. This has been done for several reasons.

" The modification may have mutilated or even removed the active callsite. The
current execution point on the callstack has no meaning.

* The modification may have nested the active callsite into a loop statement or a
block with local declarations. In such cases the state of local variables is
undefined.

" In the semantics of many languages the the order of evaluation is not strictly
defined within expressions or statements. Therefore, the actual order of
evaluation is implementation dependent and resumption of execution may have
unexpected results.

The occurence of a modification or side effect in a subtree containing an active callsite can

be detected while the affected program piece is checked for semantic consistency. Every tree

* node, representing a procedure or function invocation, is checked for membership in the set

of active callsites recorded in the callstack subtree. Once an active callsite is detected, the

program state can be adjusted. All active procedures above the procedure activation

containing the suspicious active callsite are removed from the callstack and the current

execution point, i.e., point of execution resumption is reset to refer to the beginning of the

affected statement. The effect of this restoration is that the call including the parameter setup

is repeated. If the statement containing current execution point is deleted, the point of

execution resumption reset to refer to the beginning of the succeeding statement. Thus,

removal of a breakpoint, at which execution is suspended, is possible with the result of

resuming execution at the next statement.

INTEGRATED LANGUAGE-ORIENTED DEBUGGING 73

Unwinding of the procedure activation stack is a remedy for modifications that affect the

local data object state. Addition and removal of local variables are included in this class in

contrast to the addition or removal of globals for two reasons. First. the lifetime of a local data

object is determined at runtime upon invocation of the enclosing procedure. At that point the

current value is initialized. The creation of a local variable in an active procedure may leave

the current value in an undefined state. For global data objects, the lifetime is determined by

their existence in the program, i.e., they have current value, at the time of their creation.

Second, the commonly chosen representation of local data objects in the execution image

does not provide the flexibility to correct the data object state to include or remove local data

objects (see section 4.2.1.3). Global data objects, however, are added or removed individually

from the execution image through the partial replacement mechanism (see section 4.2.1.3).

Structural inconsistency, due to modifications that change the representation of a local

data object, i.e., change of type in the declaration or modification of the type, can also be

resolved by unwinding. Modifications to local data objects are recognized by determining

from the context that a change has been made to the specification part of a local declaration.

Once such a change has been determined, the enclosing procedure is checked for

membership in the callstack subtree. Thus, modifications to local variables fall into the

restorable class only if the enclosing procedure is active. Otherwise those modification

belongs to the side-effect free modification class.

3.4.2.4. Fatal Modifications

Fatal modifications are those changes for which the program state cannot be preserved or

restored, but must be set to its initial state. Thus, all modifications that affect the global data

object state of both statically and dyamically allocated data objects, other than creation or

deletion, belong into this class. Such modifications are replacement of the type of a global

data object declaration or modification to a data type definition that is used in a global

declaration. The current value of the data object, which exists under the old type definition, is

not valid under the new definition.

In general, the representation of a data object cannot be converted automatically to the

new representation without conversion instructions by the user. The maintenance of multiple

versions of data object representations has been investigated in [Goulon 78] for continuously

running systems. For program debugging in LOIPE, however, we do not consider such a

facility as essential. A modification that changes the representation of data object

74 INTEGRATED LANGUAGE-ORIENTED CEBUGGING

representation affects the semantic consistency of many program parts, which then must be

corrected by the user, such that resumption of execution is hardly desirable.

3.4.2.5. Detection of Structural Inconsistency

A modification can be an explicit modification by the user or the result of a side effect of a

user modification, such as a change in a data type. The class of a modification is determined

as part of the semantic consistency checking process. During a user modificatin semantic

action routines track the extent of the modification. Side effects of semantic changes are

propagated and the affected program parts are also checked for semantic consistency. The

semantic ai alyzer recognizes a change in the semantic consistency, which may affect the

structural consistency. Thus, the semantic checking mechanism provides the context for

structural consistency checking.

LOIPE does not attempt to place all modifications into the best possible class. The

placement must be cost-effective, i.e., the resulting ability to continue execution must warrant

the processing cost for both recognition of the class of a modification and the cost for th

necessary corrections or adjustments to the program state. Thus, the desire to continue after

a modification, such as modifications to issue debug actions, as well as the frequency of

occurrence of such a modification taken into consideration in the placement of a

modification.

3.5. Summary of the LOIPE Debugging Facility

LOIPE takes a novel approach to the debugging facility for a compiler-based language

system. The debugging support is based on the program tree as the primary program

representation. Both the program execution state and the debug state are integrated into the

program tree representation. This allows LOIPE to provide a language-oriented, uniform

interface for both program construction and program debugging. The user interacts with the

system in a data-driven manner through editir j operations. By making use of the incremental

program construction mechanisms LOiPE is able to support truly interactive programming, i.e.,

program construction and debugging in arbitrary combination without loss in response time.

Thus, the behavior exhibited by LOIPE at the user interface is very similar to that of interpretive

systems, even though LOIPE uses compilation technology.

By operating on the program tree rather than the execution image the LOiPE debugger is

INTEGRATED LANGUAGE-ORIENTED DEBUGGING 75

able to provide debugging activities that take advantage of the programming language and

the abstractions provided in the program. One example is a powerful dynamic assertion

checking facility. Debug functions that are commonly found in debuggers are supported by

LOIPE. The following table gives a comparison of the compiler-based programming system

Mesa, lnterLisp as a prime example of interpretive systems, and LOIPE.

Compiler-Based Systems Interpretive Systems
LOIPE

Mesa InterLisp

Method Compilation Interpretation and Compilation Compilation

highlevel highlevel

Supported Languages strong typing little typing strong typing

Interactiveness Editing and Debugging Full Modification Cycle Full Modification Cycle

Visibility of Program Source Text Language-Oriented Language-Oriented
Machine Code

Integration of
Tool Set Integrated System Integrated SystemSubsystems

Flexibility Complete Programs Incomplete Programs Incomplete Programs

Static Binding Dynamic Binding Static Binding

Mode of Interaction Functional Functional Data-Driven
Multiple Command Sets Uniform Command Interface Uniform Command Interface

Display-Oriented yes yes yes

Expression Evaluation Outside Language

Conditional Debugging Subset of Language Integrated In Language Support Integrated In Language Support

Explicit Debug Statement Anywhere Explicit Debug Statement

Control Flow Monitorin Single Step At Any Grain

Code Patching Interpretive Incremental Replacement

Variable Monitoring At Procedure Entry/Exit Full Monitoring Deterministic Monitoring
Through Interpretation Through Compiled Code

Continuation of After Modification To After User Modifications

Execution After Debug Functions Onl Active Procedures At Own Ris Informs User If Not Possible

Optimizing No Debugging For Compiled Cod

Code Generators Debugging At Machine Code In Hybrid System Limited Debugging Functionalit

Figure 3-5: Comparison of Debugging Functionality

(76 INTEGRATED LANGUAGE-ORIENTED DEBUGGING

LOIPE's approach to providing debugging and monitoring support is a deterministic

approach. The system supports monitoring of execution state at program locations that are

defined a priori by the user. For example, modifications to data objects are monitored only in

places where the user program is expected to change the value. Random write access to a

data object due to some error in the code will be caught at the next expected modification

location. Monitoring of data objects independent of the program logic requires checking after

every statement in the program or interpretation of the execution image. With cooperation of

the hardware or firmware, detection of random changes in the program state can be detected.

Examples of such hardware support are machine instruction single-stepping on the PDP1 1

[PDP1 1 73], and exceptions on write access to specific memory locations, e.g., in object

oriented systems [Jones 78]. We believe that deterministic debugging support is satisfactory,

especially with the availability of relatively safe languages such as Mesa, Euclid, and Ada.

-I

II

I I

I I

INCREMENTAL PROGRAM CONSTRUCTION 77

Chapter 4

Incremental Program Construction

During program construction the user goes through the steps edit, compile, link, load,

execute, which we refer to as the modification cycle. In a traditional compiler-based system

the user interactively edits the source program in text form. Then, the program is submitted to

the compiler to detect syntactic or semantic errors and to generate object code if no errors

4 are detected. Many programming systems support separate compilation. This permits only

those parts of a program to be compiled that have been modified, reducing the time a user

has to wait for an executable version of the program to be available.

Modern programming languages control the dependence between separately compiled

program parts by supporting the concepts of localization of information and information

hiding. Some programming systems, e.g., the Mesa system [Mitchell 79], use this

dependence information to ensure that the program data base, i.e., both the source program

and the executable representation are consistent. They cause all compilation units that are

dependent on the modified unit to be rechecked by the semantic analyzer, and an executable

representation to be constructed if no errors are encountered.

LOIPE takes a different view of the modification cycle. The time between editing operations

can be utilized by LOIPE to process the modifications. The structure editor informs LOIPE of

every editing operation through the action routine mechanism. Through these action routines

LOIPE can do some processing of the modification cycle immediately, i.e., does not delay it

until the user is ready to execute the program. In order to keep the processing cost between

the interactions within limits, all steps in the modification cycle are applied frequently, but in a

way such that only a limited part of the program is processed at any time. This is achieved by

partitioning the modification cycle differently, and by reducing the dependence between

program parts. As mentioned above, the module concept in modern programming languages

78 INCREMENTAL PROGRAM CONSTRUCTION

limits the dependence between program parts and permits these modules to be compiled

separately. LOIPE extends this capability of incrementally processing program parts to the

maintenance of the executable representation. It does so by reducing the dependence of

program parts on physical information. Parts of the executable representation can be

replaced without affecting other parts.

As Tichy points out in [Tichy 801, a program has logical properties concerning the

semantics of the program, and physical specifications that are used in the generation of the

executable representation. The semantic consistency depends only on logical, i.e., semantic

information. Therefore, it can be checked separately from code generation. This property

allows us to choose a different processing grain for semantic analysis and for code

generation. The unit of processing for semantic analysis is chosen such that the user

receives feedback on the source program when desired, i.e., while the user is still in context.

Code generation is performed at a grain that is more suited to the incremental update of the

executable representation.

The result is a modification cycle structure for LOIPE of the following form. Parsing of the

source program is eliminated through the use of the structure editor. Semantic analysis is

performed on the program tree in small steps as user modifications are progressing. Effects

of the modifications on the executable representation are accumulated, and the executable

representation is partially replaced independent of the grain of semantic checking. The

executable representation is partially replaced by combining the code generation, and linking

and loading step. Partial replacement can be done efficiently because the program part is

accessible as program tree that is augmented with additional information and it is processed

in context, i.e., all necessary information is available.

In LOIPE all steps of the modification cycle are performed sequentially. Alternatively, some

of the processing steps could be performed concurrently with the editing activity. This

approach has been tested in the SMILE system [Denny 81], where one piece of program text is

compiled in a background process while the user edits the next program piece. We have

refrained from taking this approach in LOIPE for the following reasons. All steps of the

modification cycle not only access information in the program tree, but also modify some

information. Elaborate mechanisms would be required to support sharing of the program tree

between several processes and correctly synchronized update operations. The purpose of

this effort is to guarantee fast response of interactions. As can be seen from measurements

INCREMENTAL PROGRAM CONSTRUCTION 79

on the prototype implementation of LOIPE, the use of the partial replacement mechanism

permits sequential application of processing steps with sufficiently short processing time.

Thus, we believe that the additional overhead for concurrent access to the program data base

does not warrant the possible reduction in response time.

The remainder of this chapter consists of two sections. In section 4.1 we discuss LOIPE'S

support for incrementally maintaining a consistent program data base. This support includes

repeated semantic analysis of program parts that are affected by modifications in order to

determine the state of semantic correctness, and update of the executable representation in

order to reflect the appropriate ex'cution belavior. Section 4.2 elaborates on the provisions

for incrementally maintaining the executable representation in accordance with the source

program.

4.1. Incremental Consistency Checking

In LOIPE, semantic information on the program is already available in structured form,

namely in the form of subtrees representing the definition sites of data types, object or

procedures. This semantic information is directly updated by the user when he modifies the

definition site subtree with the structure editor. LOIPE makes effective use of this semantic

information by extending the name table mechanism provided by ALOE. Paragraph

4.1.1 discusses how the maintenance of semantic information can become an integral part of

the program tree representation. The actual details of the resulting symbol table structure are

not discussed here. The symbol table structure depends on the semantics of the specific

language, i.e., scope rules, overloading, etc., and resembles that of compilers for the

language.

The structure editor informs LOIPE of every operation on the program tree. Paragraph 9

4.1.2 discusses a mechanism in LOIPE that makes use of this information to perform semantic

analysis at a small grain. This mechanism invokes semantic analysis routines of the form as

they exist in compilers. Therefore, their details are not discussed here.

Incremental update of semantic information, as it is done in LOIPE, requires that program

parts, whose semantic correctness depends on the modified information, are checked again.

Paragraph 4.1.3 discusses the support mechanism in LOIPE that accomplishes this task.

80 INCREMENTAL PROGRAM CONSTRUCTION

Even though semantic checking and code generation can be performed separately at

different grains, effects of modifications must be reflected in the executable representation.

Paragraph 4.1.4 describes a mechanism that is used to communicate effects on the

consistency of the executable representation, which are detected as part of semantic

processing, to the partial replacement mechanism.

4.1.1. Availability of Semantic Information

ALOE enters identifiers in the program into a name table, and all references to an identifier

are represented in the program tree as pointers to the same name table entry. This name

table mechanism has been designed such that it can be extended to a symbol table

mechanism through the action routine mechanism [Medina-Mora 81]. This allows us to

implement a symbol table in the usual manner. Each name table entry has a list of symbol

table entries linking the different defining occurrences of the identifier with the name

contained in the name table entry. Each of these symbol table entries consists of a reference

to the subtree representing the definition site. Once references to an identifier are bound to a

specific symbol table entry rather than the name table entry, the semantic information about

the symbol is directly accessible from any location in the program tree referring to that

symbol. This is illustrated in Fig. 4-1.

Procedure

IdentDef Body
Par meters Saeet

S'ReadTree'! -!aeRt

Figure 4-1: Definition Site Access Through Symbol Table

For example, type match of two operands of an assignment is determined by comparing the

type nodes in the declaration subtrees of the two variables.

INCREMENTAL PROGRAM CGP',)TRUCTION 81

The symbol table entries are maintained by semantic action routines associated with the

nodes representing identifiers. As in the formal semantic description of Ada [Honeywell 801

we distinguish defining and using occurrences of identifiers by two separate productions,

identdef and identuse (see Appendix A.1). By doing so we avoid the semantic action routine

to search the surrounding program tree in order to determine whether the identifier is a

defining or using occurrence. The action routine associated with the identdef production

maintains the symbol table, whereas the action routine associated with the identuse

production attempts to bind the using occurrence to a legal definition.

The action routine for an identdef node adds a new symboltable entry with a reference to

the definition site subtree when the node is created. The name table reference in the node is

replaced by the symbol table reference. Similarly, when an identdef node is deleted the

corresponding symbol table entry is removed.

4 Since modifications to a definition site directly reflect the change of semantic information,

no updates are necessary in the symbol table entry. However, effects of the modification on

the semantic information must be propagated to all use sites (see section 4.1.3).

Because semantic information is maintained incrementally rather than being regenerated,

special care must be taken for defining occurrences of identifiers that conflict with already

existing definitions. LOiPE could prevent the creation of defining occurrences of identifiers

with conflicting names. ALOE'S action routine mechanism allows the action routine for

identdef to abort the creation when it detects the conflict [Medina-Mora 81]. We refrain from

doing so because the enforcement of using only declared identifiers would limit the user's

ability to modify the program freely. However, this requires that later removal of one of the

conflicting definitions by a user modification does not accidentally delete the symboltable

entry for the remaining definition.

4.1.2. Incremental Checking of Semantics

The structure editor informs LOIPE of every editing operation. Thus, it appears that

semantics can be checked whenever a node is created. Its realization, however, presents

some problems. For certain languages context information is necessary to identify the

binding of a use site of an identifier to one definition site. Similarly, validation of operators in

an expression requires availability of semantic information on the operands. During

82 INCREMENTAL PROGRAM CONSTRUCTION

construction of an expression information on operands is not available until both offspring

subtrees are completed. Furthermore, the user can fill in components of an expression in

arbitrary order. Thus, semantic processing of a node must be delayed until all context

information is available. This means, that fully incremental semantic checking must

propagate semantic state information along the program tree after every modification

operation. Attribute grammars provide a notation to describe this information flow formally.

Descriptions in form of attribute grammars have been used to automatically generate traversal

patterns for semantic checking in compilers [Ganzinger 77]. Investigations of their

applicability in the dynamic setting of an incremental, constructive environment are in their

early stages [Teitelbaum 80, Kahn 81]. I

In LOIPE we opted for a different approach to incremental semantic checking. Instead of

attempting semantic analysis after every modification operation, LOIPE invokes semantic

checking on an enclosing program part, once all modifications in that program part are

completed. The unit of the enclosing program part, which we refer to as modification unit, has

been chosen such Lhat it can be checked for semantic consistency without depending on

adjacent program parts, i.e., only depending on the semantic context provided by defining

occurrences of symbols. The statement was chosen as the smallest modification unit,

because no semantic information is carried over from one statement to another. Nested

statements are also checked separately. For example, the statement in the then.part of a

conditional statement is checked independent of the condition. The condition is checked as

part of the conditional statement.

Through action routines, LOIPE keeps track of the modification unit in which the

modificatior is performed. A modification context is used to record the nesting of modification

units which can be checked separately and whether a user modification has been performed.

The modification context is realized as a stack whose entries consist of a reference to

currently nested modification units that can be checked independently, and a dirty bit which

applies to the top element on the stack. The dirty bit is set through semantic action routines

whenever a user modification is made.

If the cursor leaves a modification unit either by exiting its subtree or by entering the

subtree of a nested modification unit and the dirty bit is set, the subtree in question is

submitted for semantic analysis. Semantic analysis on a modification unit is performed as it

would in a compiler and is not elaborated here. Both entry and exit of the cursor in a

INCREMENTAL PROGRAM CONSTRUCTION 83

modification unit subtree are detected by the semantic action routine associated with the

node representing the modification unit. Upon entry to a modification unit, the entered

subtree is added to the modification context stack. The exit from a modification unit causes

removal of the top element from the modification context stack, in addition to the checking for

semantic consistency.

The result of the semantic analysis is recorded in the rootnode of the modification unit

subtree. This state information is used by the error report and filtering mechanism to record

its state information for repeated reporting (see section 2.3). This state information is also

used to indicate to the code generator the state of executability. The code generator can then

emit a call to the runtime system when such a unit is encountered.

4.1.3. Propagation of Side Effects

The validity of semantic consistency in a program part is dependent on the semantic

context. Similarly, the consistency of the executable representation of a program part

depends on the physical information that is supplied through the semantic context. Any
change in the semantic context of a program part requires its revalidation of semantic

consistency and potentially the replacement of its executable representation. A modification

to the definition site of an item, i.e., that part of the definition subtree that contributes

semantic information, potentially affects all program parts within the scope ot the definition

site, because it contributes to their semantic context. If the definition site is a type definition

that is used in another type definition or an object declaration their semantic information is

affected which must be propagated in turn.

LOPE determines whether propagation is necessary by detecting through action routines
whether the user modification is made in a subtree containing semantic information, e.g., the

specification subtree of a procedure. Once the need for propagation is established, affected

program parts must be located for reprocessing. Potentially all program parts in the scope of

the modified definition are affected and would require checking. The cost of locating affected

program parts can be greatly reduced by maintaining use lists, as has been shown by Mitchell

[Mitchell 70]. Use lists record the binding of using occurrences of identifiers to a definition.

By traversing the use list attached to a definition, all affected program parts are located. If for

propagation complete use lists, i.e., use lists with every use site explicitly recorded, are

traversed, the same replacement unit may be processed several times. This is the case if the

84 INCREMENTAL PROGRAM CONSTRUCTION

replacement unit contains more than one use site. This duplication of processing can be

avoided at the cost of ordering use lists according to replacement units, or at the cost of

propagating in two phases, first marking all affected units, and then processing them.

For LOIPE we chose a different solution, namely maintenance of a replacement unit use list.

For every use site of an identifier, the enclosing replacement unit is added to the list, if it is not

yet included. The cost is proportional to the length of the replacement unit use list, which is

considerably shorter than a complete use list. Use sites are only added to the use list when

being bound.

During propagation of the replacement unit use lists, cach affected replacement unit is

encountered only once for processing, independent of the number of use sites. As a

replacement unit is processed the actual use sites that are involved in the propagation are

detected by the semantic analyzer. It checks for every use site of an identifier whether it is

bound to the definition site causing the propagation. This information is useful for the error

reporting mechanism to avoid reporting errors during propagation that are not connected to

the propagation.

The propagation mechanism must be able to handle addition of semantic information, and

removal of semantic information correctly. Semantic information is added by the creation of a

defining occurrence of an identifier. The new definition may cause previously undefined use

sites to become defined. However, the use sites are not contained in any of the replacement

unit use lists of the symbol table entries for the given identifier. In order to be able to locate

the undefined use sites other than by complete search of the program tree, LOIPE maintains a

list of replacement units containing the uniefined use sites with the name table entry.

Addition of semantic information may also require previously bound using occurrences of

* identifiers to be rebound. Such use sites are located by finding the symbol table entry of a

definition whose scope is overwritten by the new definition and propagating with its use list.

The deletion of a declaration implies the removal of semantic information, causing using

0 occurrences previously bound to that definition site to become invalidated. Semantic action

routines inform LOIPE of a deletion of a node before the actual removal, This allows LOIPE to

utilize semantic information, e.g., replacement unit lists, to propagate the efforts of the

removal and update the binding of use sites. However, since the node has not actually been

removed yet, the semantic analysis process must make sure that the definition site, which is

INCREMENTAL PROGRAM CONSTRUCTION 85

being deleted, is used when processing the replacement units that are located by the

propagation mechanism.

4.1.4. Consistency of the Executable Representation

The consistency of the executable representation is affected by:

* actual modifications to the user program,

* change of the state of executability as a result of changes in the semantic
information, and

* changes in the physical information.

LoiPE uses the partial replacement mechanism to update pieces of the execution image as

they become affected. Even though the grain size for partial replacement can be chosen

independently of the grain used for semantic checking, the results of the semantic checker

must be communicated to the partial replacement mechanism to inform it of program pieces

whose executable representation is invalidated. For that purpose LOIPE maintains a

replacement context much in the same way as the modification context. The replacement

context consists of a stack of nested replacement units and an invalidation indicator. The

stack is managed by action routines for the replacement units. The invalidation indicator

records whether the top element of the replacement context must be updated in the

executable representation. If the cursor leaves a replacement unit (either by entering an

enclosed replacement unit or by returning to the enclosing replacement unit) and the

invalidation indicator is set, the program part is submitted for processing to the partial

program replacement mechanism. For a discussion of the choice of the replacement unit we

refer to section 4.2.

It is the responsibility of the incremental semantic checker to set the invalidation indicator.

The semantic checker does so whenever it encounters a dirtied modification unit, a change in

the state of executability of a modification unit, or a change in the physical information. The

latter two cases can occur without an explicit user modification to the given program piece

due to side effects of other user modifications. The propagation mechanism discussed in

paragraph 4.1.3 broadcasts these side effects by reprocessing the affected program pieces.

86 INCREMENTAL PROGRAM CONSTRUCTION

4.1.5. Summary of Incremental Consistency Checking

Semantic checking and consistent maintenance of the program data base is an integral

part of the program construction support in LOIPE. Semantic information is maintained as part

of the program tree. Semantic correctness is checked in short intervals to give the user

feedback while still in context. Effects of changes to semantic information are propagated

immediately in order to keep state information in the program data base uptodate. Similarly,

consistency between the source program and its executable representation is maintained

incrementally. Execution can be attempted at any time without casuing long delays, and the

execution will show the behavior expected from the source program view.

4.2. Partial Program Replacement

This section deals with the mechanisms for generation and maintenance of an executable

program representation that is consistent with its source representation. In compiler-based

environments, program execution is performed with a statically preprocessed representation

of the program. All instructions from the source program are directly mapped into

instructions of the computer, and all interconnections between program parts, i.e.,

references, are bound before execution. The result is efficient execution of the program,

static binding of interconnections between program parts, however, also results in a strong

dependence between pieces of the executable representation. This dependency makes

maintenance of the executable representation " ;ficult undertaking. In traditional compiler-

based systems, the maintenance issue has been avoided by requiring reconstruction of the

complete executable image to incorporate a change. A partial update of the executable

representation would have extensive side effects due to the network of reference

dependencies.

The dynamic linking facility of Multics [Organik 72] is an early example of runtime support

that permits addition of program parts without a complete reconstruction or high cost of

replacement. This is achieved by delaying some of the binding process to execution time,

thus reducing the interconnection dependencies.

For large long-running software systems, dynamic upgrading of software parts under

realtime constraints, such as airline reservation systems or telephone switching systems, is

essential. As Fabry points out in [Fabry 76], the introduction of a level of indirection provides

INCREMENTAL PROGRAM CONSTRUCTION 87

the flexibility necessary to replace program pieces on the fly. Even the incremental update of

data structure modifications in a running system has been investigated [Goulon 781. In these

approaches, all invocations of the old version of a program piece complete under the old

version. In LOWE this is not acceptable because program modifications are expected to be

reflected in the executing program immediately. This is crucial during program debugging,

where the actual program behavior must correspond to the behavior, expected in the source

program. However, the idea of a level of indirection can be used to realize the effect of an

immediate partial replacement in the executable representation.

The next section elaborates on the use and cost of indirection to permit incremental update

of the executable representation. In section 4.2.2 we discuss the effects of the resulting

virtual machine for the executable representation affects the three processing steps in partial

replacement, i.e., code generation, binding and loading. Finally, section 4.2.3 discusses the

feasibility of interactive, remote program development and execution.

4.2.1. Use of Indirection

Linking is the process of binding elements in the symbolic name space to elements in the

physical name space. The symbolic name space consists of names of items in the source

program representation, e.g., procedures, data objects, whereas the physical name space is

made out of addresses to locations in the execution image, i.e., the address space of the user

program executing on the target machine. Static binding maps symbolic names to physical

addresses during the construction of the execution image. This mapping can only be

changed by rebinding.

4.2.1.1. Indirect References

Indirect references introduce an intermediate name space, whi-h we refer to as

placeholder name space. This third name space allows for a two-step mapping. Symbolic

names are statically bound to elements in the placeholder name space. Each element of the

placeholder name space defines a mapping to a physical name for an item. This mal _,r)n

however, is performed dynamically by the hardware using indirect adureS ,', ,

Because the second mapping is performed dynamically, physical names c an t,, -

items can be moved, without affecting the static binding of symbolic na..

names. A component within an item is referred to by the pair ,

INCREMENTAL PROGRAM CONSTRUCTION

pair Is known statically. The address of the component can be generated using an index-

deferred addressing mode. Since components within an item are bound statically relative to

the item, they cannot be rearranged without affecting the bound name. Items themselves can

be moved around, necessitating only the update of the dynamic mapping information in the

appropriate placeholder.

The placeholder name space is realized as a reserved set of storage locations in the

address space of the executing user program. Each of these locations contains the physical

name of the item being referred to. The cost for the use of the intermediate name space is the

storage space for the placeholders, and an extra memory reference at runtime when the

dynamic mapping is performed.

The executable representation of a program consists of code and data. Flexibility of the

executable representation is achieved by placing both code and data items into the physical

name space and assigning placeholders for them. Resemblance of this indirection

mechanism with capability systems is not accidental. In both cases an appropriate choice

must be made for the grain size of units referred to by placeholders, such that the gained

flexibility justifies the cost incurred by the placeholder mechanism. In the following two

paragraphs we discuss the choice of replacement unit for code, and argue for not using

indirection for all data objects.

4.2.1.2. Unit of Partial Code Replacement

Several considerations must be taken into account when chosing the unit of partial code

replacement.

All references between replacement units must be bound to placeholder names in
order not to be affected by a replacement, which may store the new code piece in
a different physical location.

The size of the replacement unit determines the cost of partial replacement, i.e.,
code generation, binding, and loading. Since partial replacement is performed
between user interactions, the processing time must be kept beolow a certain
threshold in order to maintain fast response time. Acceptable The response time
should not be more than a couple of seconds.

o Code generation and optimization require a certain context. If the replacement
unit is smaller than the context, context information must be updated
incrementally.

-". .

INCREMENTAL PROGRAM CONSTRUCTION 89

Based on these considerations, the procedure has been chosen as the replacement unit.

The procedure defines a program part with exactly one external reference point, the entry to

the procedure. All references to locations within the procedure are confined to the procedure

body. They can be resolved as part of the partial replacement process (see section 4.2.2).

The entry of a procedure is only referenced in the context of a procedure or function

invocation. Thus, the access via placeholder can be performed by an indirect call instruction.

Indirect procedure call is familiar in implementations of compiler-based languages. It is

supported by several language systems, e.g., Mesa [Mitchell 79] or Perq Pascal [Barel 81].

The procedure provides a satisfactory context for most optimizations with the exception of

inter-procedure optimization.

The processing time for partial replacement is kept to a minimum in LoiPE. Code is

generated from a semantically correct program tree representation. As will be discussed in

section 4.2.2, the three steps of partial replacement can be closely integrated, because the

program part is processed in context. The result is efficient processing during partial r

replacement. The average size of procedures tends to remain within one page of source

program. Measurements on a prototype implementation of LOIPE have shown that for

procedures of less than one page replacement takes about two seconds (see section 6.1.2).

4.2.1.3. Incomplete Indirection for Data Objects

The use of a placeholder for each data object results in a proliferation of placeholders.

Therefore, we investigate in this paragraph whether indirection for all data objects is

necessary to support partial replacement. We argue that indirection through placeholders

must not necessarily be provided in LOIPE.

Indirection is inherent to the implementation of some types of data objects, even though the

user may not be aware of it. Arrays with dynamically determined dimensions or flexible arrays,

i.e., arrays whose dimension changes during their lifetime, are implemented through dope

vectors. The access to an array element is performed through the dope vector. Thus, dope

vectors can be considered placeholders for arrays.

Local data objects are usually stored in procedure activation records and are accessed

relative to its base address. This iidirect access permits references to these data objects to

be bound independent of the physical location of the activation record. However, addition,

modification, or removal of a local declaration affects the binding of these relative references

90 INCREMENTAL PROGRAM CONSTRUCTION

and the layout of the activation record. The relative references are rebound when the

procedure is recompiled. Activation records whose layout has changed are removed through

unwinding (see section [execcontrol]).

Rebinding of direct references to global data objects is required when the physical position

of data objects changes. A change of the physical name space position is caused by an

increase in the size of the data object beyond the space allocated for that data object. A

reduction in size of the data object does not require repositioning because the old space can

be reused. The size of a data object changes, either if the data object is an array and the

array bounds are extended, or if the data type of the object is replaced or modified. Such

modifications, however, frequently also have effects on the semantic or physical information

-: at the usage site of the data object, which must be propagated. For example, the code of an

assignment statement includes the number of bytes to be moved. Similarly, information on

the range of an array may be recorded as part of a loop accessing the array. Propagation

causes reprocessing of the affected program parts, i.e., parts containing use sites. As part of

the reprocessing, the use sites are bound to the new location.

Updating of references to dynamically created data objects is not an issue, because

modification of the type of a data object is a fatal modification requiring reinitialization of the
program execution state. Therefore, an implementation of data objects without explicit

placeholders is satisfactory for LoiPE.

4.2.2. Cooperation of Processing Steps

In LOIPE all steps of the modification cycle are closely coupled through the program tree.

This allows us to design these processing steps to be cooperative. One example of

cooperation is the provision of support for code generation by the semantic checker. Physical

information is made available in the program tree. Furthermore, dbring propagation of side

effects code can be generated as the semantic checker traverses the procedure subtree.

The code generator also cooperates with the linker. It performs the linker's task of name

binding. Code is produced for semantically correct program parts. By assigning an entry In

the placeholder name space for a procedure as soon as the specification, i.e., the procedure

name, has been created, the placeholder name of the procedure is available for binding even

before the procedure Itself is complete or semantically correct. Similarly, from a complete

p

INCREMENTAL PROGRAM CONSTRUCTION 91

data object specification the size of the data object can be derived and space assigned.

Thus, binding information for global references is available to the code generator. Local

references can also be bound by the code generator because both definition and use sites

reside within the procedure. However, this requires two passes of the code generator,

because forward references to code locations may occur, e.g., in the code for a conditional

statement. The second pass can be considered the binding step for local references.

The code generator can produce location independent code. All global code references

must be expressed in absolute terms, and local references must be represented by relative

references. For local references this means activation record relative addresses to local data

objects, and program counter or procedure entry relative addresses to local code locations.

Location independent code eliminates relocation of code references. Thus, once the size of a

code piece being generated is determined at the end of the first pass of the code generator,

the emitted code can be placed directly into an appropriate location in the physical name

space without buffering the complete code sequence in the second pass. Code generation, "

binding, and loading are combined into two traversals of the procedure representation.

Cooperation between system parts is necessary for the management of the physical name

space, i.e., the address space of the process executing the user program. The partial

replacement mechanism of LOiPE incrementally requests assignment and deassignment of

space in the physical name space over the lifetime of the executable program representation.

If the supported programming language provides dynamic creation of data objects, user

programs may also request assignment and deassignment of physical name space during

execution of the program. In this case a common space manager must be used to handle the

request. An alternative solution, separate management of two disjoint partitions of the

physical name space has not been considered, because the estimation of a reasonable

partition is difficult.

4.2.3. Remote Program Execution

Compiled programs can be executed by themselves with limited runtime support. The

source program does not have to be present. This permits standalone execution of programs

in a separate process or on a different machine without program development support.

Runtime support for interactive program debugging can be provided either by linking debug

software into the user program, or through a separate debug process. The second approach

92 INCREMENTAL PROGRAM CONSTRUCTION

is preferred over the first for several reasons. The user process with its own address space

protects the development and debugging system from damage by a faulty user program. The

user does not have to decide until runtime whether debug support is desired. By executing

separately from the user program, the debugger cannot be preempted from communication

with the user by the user program. This is an important consideration If the program consists

of several processes, e.g., for Ada tasks. The user is able to multiplex the debugger for

monitoring of each process in one environment [Swinehart 74]. This approach, however,

requires that the debug process has access to the address space of the user process, and

can control its execution.

In LOIPE the user program is executed remotely in a separate process. Access to the user

process, whether on the host machine or a different machine, is provided through one

module, the remote access module. The specification of the module is chosen such that

LOIPE is independent of the .specific mechanism that is used to access the user process.

LoIPE's implementation of this module is based on a message scheme. The routing of

communication is handled by the message system. The user process contains runtime

support that cooperates with the LOIPE process. Operating system support, e.g., the Unix

ptrace function, is required if the user process cannot be expected to cooperate. The

remainder of this paragraph discusses the specification of the remote access module.

The interface of the remote access module is defined such that it allows for efficient

implementation for different situations. This is evident in the set of functions provided for

updating the execution image. Both code and data are updated through block write

operations. The information to be written is either produced by the code generator, or Is

available on permanent storage. In the first case the information is placed into the user

process as it being generated with the operations WriteBIlock and AppendBlock. WriteBlock

starts writing a block of information, indicating the total amount to be stored. Repeated calls

to AppendBlock supply the information to be written. The effect is pipelining of the

information from the code generator through the remote access module into the user

process. In the second case the remote access module is passed a reference to the

permanent storage as part of a call on the operation LoadBIlock. This gives the implementor of

the remote access module several alternatives for retrieval of the information from the file and

storage into the user process.

The program construction facility must aquire space In the user process to store new

INCREMENTAL PROGRAM CONSTRUCTION 93 W

program parts. When program parts are replaced both new space may have to be allocated

and used space may become available. For that purpose the remote access module provides

two operations, GetUserSpace and FreeUserSpace. Knowledge as to whether a space

allocation mechanism is available as part of the runtime system in the user process, or the

user process address space is managed by a simple mechanism in the remote access module

is confined to the remote access module.

The remote access module also provides operations necessary for program execution and

program debugging. Program execution is initiated through one of two operations,

StartExecution and ContinueExecution. StartExecution causes execution to begin at the

specified location, remembering the previous program execution state. ContinueExecution

causes execution to be resumed at the location indicated by the current program execution

state. Both operations are asynchronuous, i.e., execution of the user process proceeds in

parallel with the execution of LOIPE. LOIPE waits for the result of an execution through the

operation WaitOnExec. This operation returns upon a report from the user process. The user

process informs LoiPE of normal termination of execution or of exceptions that have been

encountered. Exceptions include hardware exceptions such as divide by zero and software

exceptions such as trace or break points. Exceptions leave the user process suspended at the

point that caused the exception. Exceptions are parameterized, i.e., the program tocation

raising the exception can be reported in terms of program tree references for predetermined

locations (break and trace points). An asynchronous form of the exception mechanism, that

does not suspend the user process, is available as an event generation mechanism for

monitoring purposes.

The remote access module also includes operations to read from the user process address

space. The read operations are used to retrieve the program execution state, i.e., the content

of data objects and the runtime stack. The amount of information to be transferred is limited,

because LOIPE issues read requests only for those parts of the program execution state

actually being displayed to the user. One read operation, ReadBlock, retrieves a specified

block of data from the user process. Another read operation, ReadCallStack, extracts the list

of procedure activations from the runtime stack. The list consists of pairs of references in the

physical name space to the active procedure and its call site. By providing this special

operation reading of the whole runtime stack is avoided. Finally, the ReadFrame operation

allows LOIPE to read data from one activation record by referring to it as frame number, i.e.,

position number of the activation record on the callstack, and offset. Both local variables and

N

94 INCREMENTAL PROGRAM CONSTRUCTION 21
parameters can be retrieved with this operation. In addition to the read operations, the remote

access module supports program debugging through a WriteFrame operation and operations

for updating the callstack structure in the runtime stack. The latter set consists of an

operation for unwinding the set of active procedures, an operation for updating current

execution points, and an operation for marking current execution points, I.e., return

addresses, as nonexecutable. A current execution point is marked nonexecutable by

replacing its physical reference on the runtime stack with a reference to an exception

handling routine in the runtime system that reports the exception back to the remote access

module.

4.3. Summary of Incremental Program Construction

Incremental program construction is critical to the success of LOIPE as an interactive,

compiler-based programming environment. In this chapter we have demonstrated how

incremental application of all processing steps in the modification cycle is used consistently.

The result is maintenance of a program whose executable representation is consistently

brought up to date between user interactions such that the program can be executed at any

time. Incremental processing means that existing information is updated rather than

regenerated. For this purpose an executable representation has been chosen that permits its

maintenance with limited side effects. This tradeoff between maintenance of information and

its regeneration occurs repreatedly in LOIPE. The different parts of LOIPE perform their task in

context, i.e., in a well-defined environment. Therefore, they can be tailored to each other and

can share information, resulting in a simple system structure with limited redundancy of

information and support mechanisms.

The program tree acts as a central depository for information, which is maintained by the

structure editor in cooperation with other system parts through the semantic action

mechanism. Some semantic information is available as an inherent part of the program tree

representation, whereas other information is derived from the source program. Since derived

information can be regenerated, permanent maintenance is not necessary. However, it must

be regenerated quickly when the demand arises, because all processing is done between

user interactions. The alternative, maintenance of information also has a certain processing

cost. LoiPE uses a combination of maintenance and regeneration of information as can be

seen in the realization of incremental consistency checking. By doing so and working with the

program tree, which can be easily accessed and manipulated, LOIPE is able to exercise the

I

INCREMENTAL PROGRAM CONSTRUCTION 95

modification cycle frequently between user interactions without destroying the

interactiveness of the system behavior. Measurements on a prototype implementation

support this claim (see section 6.1.2).

j

-i

rl

"ii- .- . . .r

96 REALIZATION OF LANGUAGE-ORIENTED DEBUGGING

REALIZATION OF LANGUAGE-ORIENTED DEBUGGING 97

Chapter 5

Realization of Language-Oriented Debugging

In LOIPE the source program is synonymous with the program tree. Both program

construction and debugging are handled in the same way by manipulating the program tree

through a structure editor. An obvious realization of program execution and interactive

debugging is the interpretation of the program tree. Such an implementation of debugging

support violates one of LowE's premises, the compilation of programs. Therefore, we have to

consider debugger implementations for compiled code. Section 5.1 discusses several

alternatives including the approach taken in the LOIPE system.

In a compiler-based system the source program is translated into object code. This

program representation is executed directly on the hardware. During execution the hardware

maintains the current program state in terms of the object code on a runtime stack. In LOIPE

the program state is presented to the user in the form of the program tree representation.

Therefore, LOIPE must map snapshots of the actual program state into the program tree at

appropriate times. Section 5.2 elaborates on the necessary support mechanisms for this

mapping.

The translation of a source program into its executable representation, the object code, is

not unique. The code generator can improve the quality of the object code through the use of

optimization techniques. In order to optimize a program, the code generator treats the

program as a single static entity. This means that the code generator may change the order of

evaluation for some constructs without affecting the overall program behavior. The treatment

of the program as a single static entity conflicts 1) with the debugger's ability to examine the

executing program at any point, and 2) with LOIPE's notion of incremental modification of the

program. Section 5.3 discusses this problem and proposes an approach that permits LOIPE to

support a certain degree of code optimization.

P

98 REALIZATION OF LANGUAGE-ORIENTED DEBUGGING

5.1. Realization of Debug Actions

A basic function of the debugger is the insertion and enabling of debug statements in a

program. These debug statements are entered into the source program, in the case of LOIPE,

the program tree. Since the user may not know a priori what debug actions should be taken,

he must be able to interactively enter and enable them. When executed, enabled debug

statements cause the debugger to report the progress of execution to the user.

Interpreters lend themselves well to the support of interactive debugging. The interpreter

works with an intermediate representation that closely resembles the program text, for

example, the program tree. In the context of LOIPE that means that the source program and

the executable representation are identical, i.e., the mapping of debug statements and the

program execution state is trivial. Due to this fact and the delayed binding of references, the

interpreter is flexible enough to adjust program execution immediately to program changes.

In contrast to interpreters, compiler-based systems maintain a second program

representation, the object code. Object code is executed directly on the hardware. It is

executed efficiently because the code generator does as much static processing as possible,

e.g., references are bound at compile time. Such an executable representation has the

disadvantage of being rather inflexible for modifications. Existing compiler-based systems

have embedded program modifications into the object code by compilation and complete

relinking of the execution image. Complete relinking destroys the program execution state. It

can, therefore, not be used to implement interactive insertion and enabling of debug

statements.

Existing compiler-based debugging systems have taken two approaches to overcome the

problem of losing the program execution state when inserting debug statements. In the first

approach code for debug statements is inserted into the object code at compile time. The

debugging system provides runtime support that allows the user to selectively enable the

inserted debug statements during program execution. This approach has two drawbacks.

First, all debug statements that can be enabled interactively must be defined at compile time.

Second, debug statements contribute overhead to the size of object code and the execution

time even though they may not be enabled.

In the second approach, known as code patching, the debugger inserts code for a debug

REALIZATION OF LANGUAGE-ORIENTED DEBUGGING 99

statement by replacing instructions in the object code. The insertion is made interactively,

avoiding the runtime overhead for unused debug statements. The instructions are patched in

such a way that the program execution state is not damaged and execution can be resumed.
C' The drawback of this process is that the debugger requires detailed knowledge of the object

code, i.e., the machine architecture and the way the source program is translated.

LOIPE'S debugging facility is not based on the object code, but on the program tree. It has

no knowledge of the object code. All changes to the program tree, including enabling of

debug statements, are inserted in the object code through a single mechanism that is

provided by the incremental program construction facility, i.e., partial program replacement.

This mechanism updates the execution image by replacing pieces of object code without

requiring complete relinking. However, this replacement may have side effects on the

program execution state that must be corrected in order to permit resumption of execution.

This approach of implementing debug statements is being compared to the other approaches

that have been outlined above. r

5.1.1. Interpretation of the Program Tree

Although we precluded the use of interpretation for LOIPE, a closer look at interpretation

reveals some features that are valuable for debugging support. Interpretation of the program

tree permits implementation of language-oriented debugging facilities in a simple manner.

Debug statements are defined by inserting them into the program tree, and enabled by

tagging the appropriate construct. As pointed out before, the program tree is the executable

representation, and source program modifications are immediately available for execution.

During execution the interpreter checks for the tags and suspends execution if necessary.

Single stepping and tracing of language constructs throughout the program is also easily
implemented. The program tree not only is the source program representation, but also

contains semantic information such as a description of the interdependence of program

parts. This information is available as part of the execution context and can be utilized at

runtime.
IF

The interpreter advances the control flow of a program and performs all accesses to data

objects. Consequently, the provision of variable monitoring is trivial. The interpreter can also

keep a record of all changes to the program state during execution, be it control flow or data
flow. Such a record of program state changes nicely supports the realization of a reverse

execution facility, such as InterLisp's undo facility [Teitelman 78].

P.

1 100 REALIZATION OF LANGUAGE-ORIENTED DEBUGGING

Because interactive debugging support at the language level is provided with little

additional effort, interpreters have become popular as the basis for language-oriented

programming environments [Teitelman 78, Archer 81, Shapiro 80, Teitelbaum 801. In existing

interpreters debug statements must be defined at the location of their evaluation (with the

exception of single stepping). Debug statements with larger application scopes, e.g.,

assertions for a module, require additional support to locate the actual evaluation sites.

The flexibility of interpretive systems to reflect user modifications in the program execution

immediately is achieved at the expense of execution time. Some hybrid systems, e.g.,

Interlisp, have tried to overcome the high cost of interpretation by supporting code generation

of program parts. Any use of debugging facilities forces the interpretation of the program

parts being debugged. The hybrid system must be able to switch between execution of

compiled code and interpretation of the program tree. Furthermore, both modes of execution

must produce the same program behavior, a difficult task if the program is sensitive to timing.

During execution the interpreter must be resident on the machine executing the program

even though all program parts may be compiled because they are linked together by

interpretation. This means that the interpreter's runtime system, a substantial amount of

code, must be available on the machine executing the program.

By assuming the LOIPE system to be based on compilation only, we give up some of the

features inherent to interpretive systems. First, a second representation, the object code,

must be consistent with the program tree. Second, the object code, which is the executable

representation, is generated by statically binding program parts. The static binding makes the

object code inflexible to modifications. This inflexibility must be overcome in order to support

interactive program changes and debug actions. Third, semantic information that is stored

with the program tree is used for code generation, but not passed on to the object code. It is,

therefore, not accessible to the debugger's runtime support in the execution image. This

must be compensated for by LOIPE explicitly supplying debugging code for all locations, at

which a debug statement must be evaluated.

The execution of object code on the hardware is a form of interpretation. But the hardware

interpreter does not provide any support for recording changes to the program state during

execution and for monitoring access to selected memory locations. Therefore, the necessary

support for variable monitoring and reverse execution must be implemented in software.

Code must be inserted explicitly at all appropriate locations in the execution image. We

REALIZATION OF LANGUAGE.ORIENTED DEBUGGING 101

recognize this as a deficiency of the compiler-based debugging approach as long as no

additional support is provided by the hardware interpreter.

5.1.2. Patching of Object Code

Code patching exists in two forms. In the simple fo-m signalling instructions are inserted in

the object code by overwriting existing instructions. The signal activates the debugger. The

debugger then locates the debug statement that is associated with the signal and evaluates it

interpretively. When execution resumes the overwritten instruction must be executed. This is

commonly done by using the single instruction trap mechanism. This simple form of code

patching has the disadvantage that an interpreter for a large part of the supported language

must be available, because the interpreted debug statements can be quite elaborate.

In the other form of code patching debug statements are translated into object code. This

object code is threaded into the existing execution image by rerouting the control flow to the

inserted code with a patch. [Deutsch 711 discusses the use of this mechanism for interactive

insertion of performance monitoring probes.

Both forms of code patching require write access to object code. This is in conflict with the

common practice of placing code into the read-only section of the execution image. This

problem is usually resolved in one of two ways. Either the write protection for the code area

of the execution image is lifted, allowing even the user program to modify code, or the

debugger process is given special access privilege to the execution image. One example is

the ptrace facility of Unix [Unix 81 a] that gives a parent process (the debugger) modification

rights to the address space of any of its offsprings (the user program).

The code patching mechanism must have detailed knowledge of the machine architecture

and the runtime system of the supported language in order to perform the patch without doing

damage to the execution image or to the program execution state. This means that this

knowledge must be embedded into both the compiler and the debugger. Any inconsistency
between the execution image and the runtime stack would prevent the resumption of

execution after enabling or disabling of a debug statement. There are cases where

resumption of execution cannot be guaranteed after patching of debug statements. One case

is the occurrence of a runtime error in the code of a debug statement, e.g., in an assertion.

I

Th[orcino eoa ftedbgsaeetcno eesl ie o xcto

i,1

102 REALIZATION OF LANGUAGE-ORIENTED DEBUGGING

resumption because the error occurs at a random program location. The second case

concerns the use of debug variables. Debug variables, whose scope is local to a procedure,

are allocated with the local variables. Their interactive insertion changes the activation

record if the procedure is active at the time of insertion.

LOIPE encourages frequent alternation between program construction and debugging. It

must be able to keep the debug context, i.e., the set of enabled debug statements, invariant to

program modifications. Traditional compiler-based systems include a program modification

into the object code by compiling the modified source part and complete relinking. The newly

generated execution image must be repatched with all enabled debug statements in order to

restore the debug context for execution. This is a costly undertaking, especially if the

modified program part did not contain any enabled debug statements. Complete relinking of

the execution image destroys the program execution state on the runtime stack. The program

execution state is lost even if the modified program part is not located in one of the

procedures on the runtime stack. By extending the code patching mechanism to patching of

program modifications, the execution state could be preserved in those cases, where the

structural consistency of the source program and the program state are not invalidated (see

section 3.4.2). Code patching of all modifications, however, results in a increasingly

fragmented execution image, and correct patching without damage to the program execution

state becomes a problem. Thus, the code patching approach deals with the same issues

concerning resumption of execution as partial replacement, but must support two

.. mechanisms (compilation/linking and code patching) instead of one.

5.1.3. Debugging Through Partial Replacement

As we showed in chapter 4, partial replacement overcomes the inflexibility of object code

through the use of indirect procedure references. A change of the source program is

included in the object code by generating code for the enclosing procedure and its

replacement in the execution image. LoIPE uses this mechanism to support incremental

program construction and to implement interactive debugging. This reduces the complexity of

the system because the executable representation is maintained by a single mechanism.

Furthermore, all modifications to the source program including enabling of debug statements

are treated uniformly. For every modification LOIPE decides whether the resulting update of

the object code has side effects on the program execution state and whether the effects can

be corrected. LoPE must be able to keep the program execution state consistent with the

REALIZATION OF LANGUAGE-ORIENTED DEBUGGING 103

updated object code for a class of modifications that includes enabling and disabling of

debug statements. Otherwise, execution could not be resumed after a debug interaction.

Before we elaborate on the support for resumption of execution, let us examine the cost of

implementing debug statements by partial replacement.

Setting and enabling of a single breakpoint requires the enclosing procedures to be

recompiled and relinked. The cost of setting a breakpoint by partial replacement is higher

than the cost of patching it, but the processing cost is still affordable for interactive

debugging, as can be seen from the measurements on the prototype (see section 6.1.2).

Partial replacement fairs even better in relation to code patching when the enabled debug

statement has a larger application scope, i.e., must be inserted several times, or when several

debug statements are enabled. For example, on enabling single stepping of statements in a

procedure all necessary debugging code is inserted in one processing cycle of the partial

replacement mechanism. Code patching would require a separate patch after every

statement.

For enabling single stepping of statements, partial replacement cannot compete with

interpretation, especially if the whole program is to be single stepped. However, LOIPE's high

level debugging facilities, such as dynamic assertion checking at various abstraction levels,

should eliminate the need for single stepping or reduce it to single stepping in individual

procedures.

In section 3.4.2 we discussed the effects of different modifications on the program tree

representation of the execution state. The replacement of a procedure due to a modification

in the object code may also have an effect on the runtime stack if the replaced procedure is

active. The runtime stack consists of a sequence of procedure activation records, each

representing an active procedure invocation. An activation record contains 1) a reference to

the callsite, 2) the actual parameters and local variables of the respective invocation, and 3)

additional state information that is specific to the implementation of procedures on the given

hardware, e.g., use of general purpose registers. The additional state information changes

after a modification has been made to a procedure. For the moment we limit the discussion to

non-optimizing code generators and refer the reader to section 5.3 for a treatment of

optimizations. The layout of parameters and local variables changes if either of them has

been modified in the source program. In that case we have already determined in section
3.4.2 that the affected activation record must be removed by unwinding the runtime stack in

104 REALIZATION OF LANGUAGE-ORIENTED DEBUGGING

order to permit continuation of execution. This leaves us with the correction of side effects

for references to the calisites.

References to cailsites, also known as return addresses, are direct pointers into the

execution image. They can be damaged for two reasons when the procedure containing a

cailsite is replaced: 1) the object code for the procedure must be relocated because it does

not fit into the space provided for the previous copy of the code; 2) the position of the calisite

relative to the base of the procedure object code changes because the procedure source

code in front of the callsite has been modified. In both cases it is possible to correct the

calsite reference on the runtime stack. From section 3.4.2.2 we know that callsite references

in terms of the program tree are invariant to user modifications (with the exception of removal

of an active callsite which causes unwinding of the runtime stack). We also know that LOIPE

updates the program tree representation of the callstack whenever program execution is

suspended. Thus, an invariant form of calisite references is available when modifications are

made. After a modification, the new execution image location of any active calsites are

determined by the code generator and can be updated in the runtime stack. The mapping of

references between the two program representations is discussed in section 5.2.1.

5.1.4. Summary

The realization of debugging support through partial program replacement is feasible.

Measurements on a prototype confirm that the cost of translating a whole procedure for

insertion of debug statements is acceptable. Partial replacement is chosen over code

patching because it treats modification to the source program and enabling of debug

statements in the same manner, reducing the complexity of LOIPE. We recognize that the use

of an interpreter has advantages over the execution of compiled code. Control flow tracing

for the whole program at the statement level is trivial for an interpreter, whereas its provision

in the context of partial replacement is costly. However, LOPE provides high level debugging

facilities that reduce the need for single stepping. Without additional support from the

hardware "interpreter" for reverse execution, LOIPE resorts to unwinding of the callstack and

to recovery techniques for restoration of program state.

REALIZATION OF LANGUAGE-ORIENTED DEBUGGING 105

5.2. Accessibility of Program State

The program state is visible to the user in the form of the program tree representation,

whereas the executing hardware changes the program state in the execution image. These

changes must be reflected in the program tree in order for the user to have a consistent view

of the progress of execution. The program state consists of the callstack, i.e., a list of all

active procedures and their callsites, and of the current contents of global objects and local

objects of active procedures. This can be a considerable amount of information. LorpE only

maps those parts of the program state into the program tree representation that are requested

to be displayed. The callstack is always updated in the program tree when execution is

temporarily suspended. The current value of data objects is only mapped if the data object is

being monitored in the monitoring window, or the user has issued an explicit display request

(see also section 3.2.2.2).

We continue by elaborating on the support mechanisms for the implementation of the

mapping between the two representations. Section 5.2.1 discusses the provision of

information for mapping the control flow and its use for correction of side effects in the

runtime stack. In section 5.2.2 we present an access mechanism to data objects in the

execution image that allows display and modification.

5.2.1. Mapping of Control Flow

The relationship between locations in the source program and the object code Is
established by the compiler and the linker/loader. The compiler assigns object code

locations relative to compilation units, and the linking/loading step determines absolute

positions in the execution image. This information must be made available to the debugger to

locate source program positions for execution image references and vice versa.

In existing systems the compiler passes this mapping information on to the debugger in a

mapping table that is produced together with the object code. This mapping table contains

reference pairs to source code and object code for all program locations that are expected to

be mapped. These locations include those that are marked by a user defined symbol, e.g., a

procedure name, and predefined locations in the source program. For source program

debuggers such predefined locations are usually lines of program text. The debugger

searches the mapping table in order to locate a source program reference that corresponds

to an object code reference.

106 REALIZATION OF LANGUAGE-ORIENTED DEBUGGING

The cost of maintaining the mapping information and looking up a mapping is high because

all program locations that could potentially be mapped are included in the table. In the case

of the source-level debugger sdb on Unix, the size of the mapping table can be a factor of ten

larger than the object code. In the case of LOIPE the size of the mapping table would increase

further because the program tree allows for a finer grain of program locations than lines of

program text. Therefore, we consider other means of providing the mapping information.

First, paragraph 5.2.1.1 analyses the set of program locations that must be mapped between

the two representations. Then, different ways of actually keeping mapping information and

making it available when needed are discussed in paragraph 5.2.1.2. Finally, paragraph

5.2.1.3 presents a hybrid solution that trades off between different representations of mapping

information for different types of program locations.

5.2.1.1. Mapping of Program Locations

Debugging systems must be able to map program locations in both directions. The

mapping from the source program to the object code is necessary for modification or

correction of the execution image. Debuggers that implement debug statements through

code patching are given a location in the source program at which the debug statement
should be inserted. This reference is mapped into the object code location that is to be
patched. For that purpose, mapping information must be provided for every program location

at which a debug statement could potentially be inserted. In the case of source program

debuggers this is every line of source program text. LOIPE implements debug statements

through partial replacement. The mapping of debug statements and their location into object

code is taken care of by the code generator. Therefore, no explicit mapping information must

be kept for potential application sites of debug statements.

The replacement of a procedure in the object code may require correction of side effects.

First, the incremental loader must be able to locate the placeholder of the replaced procedure

to update its reference to the actual location of the procedure's object code. Second,

replacement of a procedure requires correction of callsite references, if the procedure is

active. Any callsite reference to the active procedure on the runtime stack must be adjusted

to refer to the appropriate location in the newly generated object code. As pointed out in

section 5.1.3 such references are corrected by deriving the new object code location from

their program tree location.

The debugger maps control flow information in the program execution state, as it is

REALIZATION OF LANGUAGE-ORIENTED DEBUGGING 107

recorded on the runtime stack, into the program tree in order to visualize it for the user. This

control flow information consists of the list of active procedures with their current execution

point. As explained in section 3.2.1 the current execution point of an active procedure points

to the callsite of another active procedure, to a debug statement that caused execution to be
suspended, or to the location of a runtime error. The current execution point is recorded on

the runtime stack as the return address in the next activation record. The return address is

used to extract the reference to the procedure being invoked at the calsite. This procedure

reference is a reference to the procedure's placeholder. The program tree location of

procedure references, callsites, and debug statements must be uniquely identified because

their program tree reference is used for correction of the runtime stack. For random runtime

errors an approximation is given. Examples of approximations are the program line,

statement, or expression containing the runtime error.

5.2.1.2. Maintenance of Mapping Information

As mentioned earlier, the common way of providing mapping information is the generation

of a mapping table by the compiler. This mapping table supports mapping of program

locations in both directions equally well. A reference is mapped by a search of the table. The

table lookup is improved by organizing the information into subtables, one for each

procedure, and a table of procedure references. The lookup now amounts to first locating the

procedure containing the reference, and then searching the procedure's subtable.

An extreme case of a structured mapping table is obtained by embedding the object code

references in the program tree. The derivation of object code references from program tree

references is trivial. The reverse mapping, however, requires a search of the program tree.

The search can be guided if both the object code location and the object code size of the

given subtree are available to the search. Search of subtrees not containing the reference is

avoided at the cost of adding the size information to every node in the program tree.

The opposite extreme is the implementation of the mapping tabis in the execution image.

Program tree references are inserted into the object code at specific places. A similar

practice is occasionally found in existing debugging systems. The Bliss debugger Six12, for

example, stores a key in front of the procedure object code to get quick access to the

mapping table. This form of mapping information maintenance violates LOIPE'S premise to

only burden the execution image with overhead for actually used debugging support.

108 REALIZATION OF LANGUAGE-ORIENTED DEBUGGING

The last alternative is to not maintain mapping information explicitly. The code generator

has produced the original mapping. Therefore, it is able to reproduce the mapping as long as

the processed source program has not been modified. Both program tree references and

object code references can be mapped.

5.2.1.3. LOIPE's Hybrid Mapping Approach

LOIPE uses a combination of methods for maintenance of mapping information, trading off

the cost of maintenance with the cost of lookup for different types of references. LoIE must

be able to map procedure references, callsite references, debug statement references and

locations of runtime errors. Object references do not have to be mapped because they are

never shown explicitly to the user. Procedure, callsite and debug statement references are

mapped every time the callstack is displayed. Note that the program tree representation of

the callstack can be updated incrementally. If the object code references are stored with

entries of the callstack, LoiPE can quickly determine the callstack entries that have not

changed since the last snapshot. The debug statement reference appears only as the current

excution point of the top procedure on the callstack, as does the location of a runtime error.

Runtime error locations are mapped infrequently because execution suspension due to a

runtime error should be rare, especially with a relatively safe programming language. The

callstack program tree is updated before any modifications by the user are permitted. Thus,

all control flow references are available as program tree references for correction when

procedures are replaced due to modifications.

For procedure references, a mapping table is maintained that parallels the placeholder

space, i.e., the entry vector for procedures. An entry in the table contains the physical

location of the procedure's object code (as does the placeholder of the procedure), the size

of the procedure code, and the program tree reference to the procedure subtree. The

placeholder address of the procedure can be used as a key to the mapping table, because the

mapping table parallels the placeholder space. This placeholder address is available both in

the execution image as the procedure reference at the callsite, and in the program tree as

part of the information kept in the symbol table entry for the procedure identifier. Thus, the

mapping in either direction is a matter of indexing into the mapping table.

In addition to supplying mapping information for procedure references, this table permits

localization of a random object code reference. A reference is localized by checking whether

it falls into the range covered by the physical base address and size of any given procedure.

REALIZATION OF LANGUAGE-ORIENTEO DEBUGGING 109

The cost of localizing the right procedure is in the worst case linear to the number of
procedures in the program (linear search).

The mapping information about all callsites in a procedure is kept in a mapping table

associated with the procedure. This representation is preferred over storage of the object

code address with the callsite node because the number of entries in the cailsite mapping

table is less than the total number of nodes in a procedure, resulting in a quicker reference

lookup. The lookup cost for the object code reference of a callsite consists of the cost of

localizing the reference to a procedure and the cost of searching the callsite mapping table of

the localized procedure. This lookup cost could be greatly reduced (to two indirect

references) if we were willing to pay the cost of storing one node reference with the callsite in

the execution image. This latter solution was not adopted because it imposes space overhead

on the execution image for the sake of debugging. Object code references of callsites are

corrected in the runtime stack by mapping the program tree reference in the callstack to the

new object code reference with the newly generated callsite mapping table.

For debug statements LOIPE includes a program tree reference in the code being generated

for a debug statement. Because debug statements are inserted into the object code only

when they are enabled, the size of the execution image is not increased by program tree

references for unused debug statements. When execution is suspended at a debug

statement, the program tree reference is passed back to LOIPE. It provides immediate access

to the source program location of the debug statement.

The point of suspension in the debug statement object code is recorded on the runtime

stack. It must be corrected when the procedure containing the active debug statement is

being replaced. The new location in the object code is determined by the code generator as

part of the replacement process. The replacement of the procedure may have been due to

the removal of the active debug statement. This fact is passed on to the code generator. In

that case the code generator locates the object code location of the succeeding statement as

the location to be resumed.

LoIP maps the object code location of random runtime errors into program tree reference

through the use of the code generator. First, the procedure containing the object code

reference is located through the procedure mapping table. Then, the procedure subtree is

submitted to the code generator for reprocessing. The code generator is able to reproduce

110 REALIZATION OF LANGUAGE-ORIENTED DEBUGGING

the mapping because the program part has not been modified yet. The code generator

returns the node in the program tree that it considers as most closely reflecting the location of

the runtime error.

In summary, LOnPE is able to provide all information necessary for mapping the control flow.

Explicit mapping information is kept in a procedure mapping table, and a callsite mapping

table per procedure. The procedure mapping table is also used by the partial replacement

mechanism. Other mappings are established by the code generator. The cost of updating the

program tree representation of the callstack is acceptable especially because the tree

representation of the callstack is updated incrementally.

5.2.2. Access to Data Objects

One of the tasks of a debugger is to provide access to the contents of data objects, both for

display of the current value and for its modification by the user. It must convert the

representation of the object in the execution image into a human readable form and vice

versa. Some existing debuggers show data objects in terms of the data abstractions that are

specified in the program. For that purpose, symbol table information on the data type is

usually made available by the compiler and interpreted by the debugger.

In LOIPE, a placeholder subtree is maintained for the current value of a data object. This

additional subtree is associated with the program tree representation of the declaration (see

section 3.2.2). It is generated automatically by the system, which interprets the type definition

of the data object. Regeneration is not necessary unless the declaration or the data type of

the object have been modified.

One possible way of providing access to the current value of a data object is the following.

Whenever a display request is issued for a data object its current value is retrieved from the

execution image and inserted into the placeholder subtree. As discussed in section 3.2.2, the

unparser of the structure editor then generates the textual representation, converting the

internal representation of the base type elements into their external representation. In the

case of a composite type, each field of the current value subtree must be supplied with values

from the execution image. This is illustrated in Fig. 5-1 .a. The retrieval mechanism must have

access to type information in order to extract the component values correctly.

REALIZATION OF LANGUAGE-ORIENTED DEBUGGING 111

Object Declaration Object Declaration

mit Value Current Value Init Value Current Value
IdentUse I dentUse

'number:' '154' 'letter:' a' 'number:' *letter:

tractio

triev 1

Retieval

(a) (b)

Figure 5-1: Retrieval and Display of Current Values

LOIPE has adopted a different solution that utilizes the unparser for the extraction of

component data. The unparsing mechanism is extended to support indirect access in
addition to conversion of the internal representation of base type values. (The support of
indirect access is already available in the structure editor for display of strings.) Using the
indirect access mechanism the unparser can extract the components of a data object from

contiguous storage, which is referred to by the placeholder subtree (see Fig. 5-1.b). This
contiguous storage is either a buffer into which the data object has been retrieved from the

execution image, or a range in the LOIPE address space into which the execution image is

mapped.

Local data objects and actual parameters of a procedure invocation are retrieved in one

block because they are located together in the procedure activation record. The unparser

extracts individual local variables out of this contiguous data area. In LoiPE,the user can
examine the local variables and parameters of only one active procedure at a time. Therefore,

-I

112 REALIZATION OF LANGUAGE-ORIENTED DEBUGGING

the same contiguous storage area can be used for retrieval of all local data. This allows the

references in the placeholder subtree to be bound at the time code is generated for the

enclosing procedure, i.e., when the offsets in the activation record are assigned. The cost of

displaying a global data object or the locals and parameters of a procedure amounts to a

block retrieval of the data from the execution image and the unparsing of the appropriate

subtree with the current value unparse scheme. Measurements on the prototype

implementation of LOIPE indicate that the response time for display requests is acceptable

(see section 6.1.2).

In LOIPE the current content of a data object can be modified by editing the placeholder

subtree. The structure editor converts the new values into their internal representation and

stores them with the placeholder subtree, i.e., buffer area assigned to it. Semantic actions

recognize the fact that the current value has been modified and cause the data in the buffer to

be written back into the execution image.

5.2.3. Summary

We have shown that LOIPE is able to generate snapshots of the program state in the

program tree representation. The program tree representation is updated incrementally at

points of execution that are specified by the user. The code generator provides mapping

information for mapping of the control flow. The amount of explicitly kept mapping

information is minimized. For the display of current data object values the interpretive nature

of the unparser is utilized. The user is able to modify the program state in the execution

image by editing its program tree representation.

5.3. Code Optimizations and Debugging

A code generator processes the source program in sequence, generating object code

instructions for each source construct one by one. An optimizing code generator attempts to

49 improve the quality of the resulting object code by generating code for each source construct

in the context of surrounding constructs. Analysis of the data flow and control flow semantics

of the source program as a single static entity provides the optimization context. With this

context information the optimizing code generator can take advantage of special hardware

features that are not directly reflected in the programming language. The optimizing code

generator can use this context information to determine a more efficient evaluation order than

the one given by the source program.

REALIZATION OF LANGUAGE-ORIENTED DEBUGGING 113

Source program debuggers are confronted with the problem of showing the actual flow of

control in the object code in terms of the source program. This task is difficult if not

impossible for optimized object code. The optimizing code generator may have chosen an

evaluation order that is in conflict with the order indicated by the source program, i.e., a

sequence of individual constructs. Therefore, existing source program debuggers have

limited themselves to nonoptimizing code generators.

A closer look at compilers, for which source program debuggers are provided, reveals that

some of them actually du perfnrm some optimizations. One example is the Unix C compiler

and sdb debugger [Unix 81a]. The C compiler performs constant folding, even though the

optimization flow is disabled for the use of sdb. As we shall see in the next section, this

optimization does not destroy the source program ordering of the program locations that are

mapped by the debugger. The control flow sequence through these program locations in the

object code is identical to the corresponding ones in the source program.

A source program debugger modifies the optimized object code by patching in debug

statements. Execution can be resumed because these patches are performed at program

locations that are not affected by the optimizations. LoIPE uses the partial replacement

mechanism to update the object code. A program modification may change the optimization

context for the replaced procedure. This may result in a different object code sequence not

only for the modified program part but the whole procedure. If that procedure is active the

program execution site on the runtime stack is affected as well, possibly preventing

continuation of execution even for enabling of debug statements.

Section 5.3.1 discusses the effects of various optimizations on the ability to display the

progress of execution in terms of the source program and to resume execution after debug

interactions or program modifications. Section 5.3.2 follows with a proposal for LOIPE to deal

with optimizations by providing degrees of debugging.

5.3.1. Effects of Optimizations

Compilers use a variety of optimization techniques to improve the quality of the object

code. A number of the optimization techniques are centered around the exploitation of

general purpose registers as fast memory. A second set of optimization techniques

capitalizes on improving Che evaluation order of constructs as given in the source program. A

i1

114 REALIZATION OF LANGUAGE- OR IENTED DEBUGGING

third set of optimizations makes use of static evaluation of expressions. Finally, there are

some optimizations that take advantage of specific properties of the hardware instruction set.

In the following paragraphs we examine the different optimization techniques with respect

to interferences with language-oriented debugging in order to determine a strategy for LOIPE

to deal with them. The list of optimization techniques being discussed may not be complete

but covers most of the ones commonly used.

5.3.1.1. Use of General Purpose Registers

The use of general purpose registers can both improve the execution time of the program

and reduce the size of the object code. The registers are usually used within the scope of a

procedure. On a procedure call the old contents of the registers are saved into the procedure

activation record before they are used by the called procedure. In order to minimize the cost

of a procedure call some optimizers save only those registers that are actually being used. A

change in the number of saved registers affects the layout of the activation record and

prevents resumption of execution.

In some languages the user specifies explicitly which local variables are kept in registers.

Such a use of registers can be supported in LOIPE. The number of registers assigned to local

variables is changed by the user editing local declarations. This modification results in

unwinding of the callstack to remove the affected activation record, as discussed in section

3.4.1.2. As part of the removal the saved registers are restored.

* Registers can act as a cache. The content of a data object is kept in a register for faster

access. Local data objects may reside only in registers without a counterpart in main

memory. The assignment of a register as the location of a local object can be made available

by the code generator to permit correct retrieval of the data for debugger. The content of a

global data object may temporarily reside in a register in addition to main memory. Load-Store

motion optimization determines when it is necessary to update the copy in main memory. In

different procedures the global data object may be cached in different registers. The task of

locating the appropriate storage for retrieval requires detailed information from the

optimization context. If the scope of the optimization context is limited to one procedure at a

time, the code generator must update the main memory copy whenever control leaves the

procedure. The called procedure assumes the current value to be found in the primary

location of the data object. Thus, at all callsites cached global objects are written to main

REALIZATION OF LANGUAGE-ORIENTED DEBUGGING 115

memory. The debugger can retrieve the current value from there. Since the called procedure

may have modified the global data object, the calling procedure must pick up its current value

in main memory after the call returns.

Another use of registers is temporary storage of intermediate results. In expression

evaluation the result of a subexpression may be kept in a register rather than on an evaluation

stack. If the same expression is repeated in the source program, the result of the first

evaluation can be retained, avoiding redundant calculation (common subexpression

elimination). In either case the display of the program state is not affected, because the

intermediate result is not visible at the source program level.

Resumption of execution cannot be guaranteed, because of possible reassignment of

registers or a change in the number of used registers. This is the case when the optimization

context has been affected through a program modification. Reassignment invalidates the

program execution state if the registers contain valid information at current execution points.

This is the case for expression evaluation if the current execution point of an active procedure

is part of an expression. Similarly, the program execution state in registers can only be

affected if the scope of a common subexpression contains a current execution point. A

callsite may be included in the scope if a common subexpression consists of data objects that

are not accessible by other procedures.

5.3.1.2. Evaluation Order

The source program specifies an initial ordering of evaluation. The evaluation ordering in

the object code may differ from the initial order for two reasons. First, the semantics of many

languages permit the mathematical laws of commutativity and associativity to be applied to

expressions. The code generator may reorder expressions to achieve a better object code

sequence. Second, the program can be viewed as a mapping of input variables to output

variables. Code may be moved without affecting the program behavior according to this view.

Reordering of expressions does not affect the display of the program state, because it only

shuffles the order of intermediate results. Expression reordering does affect the trace of

control flow. However, the object code order may be visible to the user, even if only

statements are traced. For example, expression reordering may interchange the order of

invocation of two functions in an expression. Tracing of these two functions will make the

interchange evident to the user. But, as mentioned above, the language does not allow the

user to rely on the source program order within expressions.

iU

116 REALIZATION OF LANGUAGE-ORIENTED DEBUGGING

Code motion affects the display of program state in two ways. First, code motion may

change the evaluation order of statements, i.e., constructs that modify the program state.

After the evaluation of one statement the preceeding statement may not have been executed.

On examination of data object contents, the user cannot relate the shown program state to

the source program. A trace of the control flow reveals the actual evaluation order. Second,

code may be moved out of the branches of a conditional statement, merging two code

sequences in the source program into one in object code. The moved code may include a

callsite. This callsite cannot be shown uniquely as part of the callstack display, because one

object location represents two callsite source code locations.

The evaluation order in the object code is determined through the optimization context.

Any modification to a procedure affects its optimization context and may result in a different

evaluation order. If the modified procedure is active, resumption of execution cannot be

supported. Execution cannot be resumed at the current execution point, because constructs

that succeed the current execution point in the old object code order may have been moved

in front of the current execution point in the new order, and they would not get evaluated.

5.3.1.3. Static Evaluation

The result of constant expressions is known statically. The code generator, thus, does not

have to produce object code for their evaluation. This optimization is known as constant

folding. Since LOIPE does not support tracing of individual elements in an expression, neither

the display of program state nor resumption of execution are affected.

Constant propagation is an extended form of constant folding. In constant propagation the

flow of constant values through data objects is analyzed to locate data objects with statically

known values for constant folding. The content of a data object can be changed with the

debugger when execution is suspended. Thus, if the scope of the constant propagation

includes a current execution point, the change of the current value may violate the

assumption made for the propagation.

Static evaluation of expressions may show that some code is never executed. For example,

if the condition of an if statement is known statically, one branch is never executed. In such a

case, there is no need to generate object code for it (dead code elimination. This does not

affect the display of the program state, because code that is not executed is not traced. Due

to a modification, a sequence of code may become dead and will not appear in the object

REALIZATION OF LANGUAGE-ORIENTED DEBUGGING 117

code. That code sequence may contain a current execution point. According to the static

view of the modified program this current execution point is not executable, i.e., the program

state becomes inconsistent, and the execution cannot be resumed.

5.3.1.4. Summary

Optimizations increase the complexity of the mapping between the source code and the

object code. This mapping must be understood by the debugging support in order to display

the program state in terms of the source program. The code generator must provide an exact

mapping for control flow and data objects. Locations of data objects are recorded in the

program tree as they are assigned by the code generator. The possibility of a second object

location in a register must be coped with. Exact mapping information for current execution

points can be provided because the optimizations mentioned in the previous paragraphs are

performed on the program tree representation before the object code is emitted. An

evaluation order different from the source program order is revealed to the user through

tracing of control flow. Some code generators also perform a set of optimizations directly on

the object code sequence, known as peephole optimizations. Since these optimizations are

usually performed without reference to the program tree, the provision of mapping

information is more difficult. r

Optimizations affect resumption of execution. Both change of a current value and

modification to the source program can result in inconsistent program execution state.

Change to the current value may be in conflict with the data flow analysis of the optimizations.

Source program modifications change the optimization context. This may result in a change
of the number of used registers in a reassignment of registers, or a different evaluation order

of constructs. The side effects cannot be corrected if the number of used registers is saved,

or if a current execution point is involved in an optimization.

5.3.2. Cooperation of Debugging and Code Optimization

LOIPE is an integrated environment in which different subsystems have knowledge of each

other and are tailored to the common task. In the case of an optimizing code generator, both

the code generator and the debugging support are aware of the effect of optimizations. The

two subsystems cooperate by adjusting to each other's need. The result is the support of

different degrees of debugging and optimization. The user is in control of the degree of

118 REALIZATION OF LANGUAGE-ORIENTED DEBUGGING

optimization. LOIPE allows the user to specify selectively where to use code optimizations and

to indicate the degree of optimization. The degree of optimization influences the amount of

debugging support available for the given program part.

5.3.2.1. Selective Use of Code Optimization

The selection of program parts for optimization works similar to the selection of program

parts for code generation in the Interlisp system. The user selects program parts to be

optimized through an optimization pragma. This pragma can be attached to a single

procedure or a module. As procedures are processed by the partial replacement mechanism,

they are submitted to either the nonoptimizing or the optimizing code generator. For

nonoptimized procedures all debugging facilities are available to the user. For optimized

procedures debugging supported is limited. The amount of supports varies according to the

optimizations used in a specific code generator. No attempt is made to utilize information

from the optimization context. Only those parts of the program state of an active optimized

procedures that can be shown consistently are displayed.

In the cal:stack the reference to an invoked procedure can always be shown. The current
execution point is not always uniquely identified (see above on code motion). Even though

the control flow state, i.e., the callstack, is shown in terms of the source program, and

optimized procedures cannot be traced, the object code evaluation order of an optimized

procedure is not hidden from the user. If the optimized procedure calls two procedures being

debugged, the reordering of their invocations is visible in the control flow trace.

The displayable data object state is restricted, if the full range of optimizations is applied.

Only data objects that are not cached in registers can be shown. These are the actual

parameters. Local variables often are not cached because a register can be assigned as

primary storage location. Global data objects are only shown, if caching is not performed, or

a callsite causes update of the primary object location under the assumption that the called

procedure potentially accesses the object. Support for change of the current value of a data

object is restricted in the same manner.

For modifications to optimized procedures no attempt is made to support resumption of

execution at the point of suspension, if the procedure is active. Instead, the callstack is

unwound to allow continuation from the calling procedure. Enabling of any debug statement

in an optimized procedure does not only cause unwinding, but also results in nonoptimized

W

REALIZATION OF LANGUAGE-ORIENTEO EBUGGING 119

code generation. That is to say, the optimization pragma for a procedure is overwritten by any

attempt to debug.

5.3.2.2. Degrees of Debugging and Code Optimization

WOIPE allows the user not only to indicate for each procedure whether optimizations should ;

be used, but also how much optimization can be permitted, i.e., how much debugging is 2
desired. In addition to no optimization and full optimization, it is possible for LOIE to Support

two intermediate forms. In these intermediate forms, enabling of debug statements does not

disable optimization. One intermediate form provides complete display of the program state.

In this intermediate form the optimizing compiler is asked not to cache data objects across

callsites or debug statements, i.e., to write the cached value back to the primary storage
location if it has been modified.

The second intermediate form provides full debugging support even though the code is r

optimized. This intermediate form requires more consessions from the optimizing code

generator. First, a change in the number of registers that is saved on an invocation is avoided

by always saving a fixed number independent of the number used. Statistics shows that most
procedures use only a small number of registers [Lunde 74]. Thus, saving three registers
seems a reasonable compromise between the extra overhead for saving unnecessary
registers and limitation of optimizations. Second, current execution points, i.e., cailsites and

debug statements, have a special status. They cannot be involved in any optimization. No
evaluation can be moved across such a program location. No register may contain valid IN

information, unless it is assigned to a local variable.

The assignment of registers to local variables is not dependent on the number of registers

used for temporaries or as cache. They are assigned in addition to the three registers
mentioned above. A change in their number results from a modification to a local declaration,
which causes unwinding of the callstack (see section 3.4.2.3). The removal or disabling of an

active debug statement, cannot be supported without damage to the runtime stack. The

reference to the point of resumption now points into an optimized code sequence with all the
problems of mapping a fully optimized procedure.

120 REALIZATION OF LANGUAGEORIENTED DEBUGGING

5.3.3. Conclusions on Code Optimization and Debugging

We have outlined how code optimization can be supported in LOIPE. We feel that such

support is necessary. On one hand, programs never are complete. They continue to be

improved and debugged. On the other hand, optimizations will continue to be used in code

generation. Optimizations are necessary because the user may have written the program such

that it contains redundant or unnecessary evaluations. Since the optimizer performs

transformations on a copy of the program tree, many of them could be made visible to the

user in the source program. It is questionable, however, whether a change of the source

program by LOIPE is desirable.

When supporting an optimizing code generator in the context of a language-oriented (or

source program) debugger we assume that the optimizer does not introduce errors. Since

reality is different the implementors of a LOiPE must be given the ability to examine the

generated object code.

5.4. Summary of the Language-Oriented Debugger
Implementation

The implementation of a compiler-based debugging facility for LoiPE has been outlined.

This implementation is centered around the program tree representation. Debug interactions

are expressed in terms of the supported language. The implementation makes extensive use

of support mechanisms that already exist for incremental program construction. The result is

a simple system structure for LoIPE with a small number of additional mechanisms.

The partial replacement mechanism is used throughout the system for updating of the

executable program representation. This includes the interactive insertion of debug

statements. This approach has been chosen over code patching, because it utilizes existing
compilation mechanisms for program construction without incurring high processing cost.

In comparison to an interpretive approach the compiler-based approach has some

deficiencies. Without additional support from the hardware, complete traces of program state

changes for the purpose of providing reverse execution must be implemented in software at

high cost.

REALIZATION OF LANGUAGE-ORIENTED DEBUGGING 121

The program state is made accessible to the user in the program tree. The mapping

between the actual program state in the execution image and the program tree is established

in cooperation with the code generator. Using this mapping information, mechanisms in the

structure editor extract the data for display and update it upon user modification.

The LoiPE approach of using partial replacement for the implementation of the debugger

permits the use of optimizing code generators. The code generator does not have to provide

extensive information of the optimization context. Through cooperation of the debugger and

the optimizer it is possible to provide several tradeoffs between debugging functionality and

efficency of the executing program.

122 EVALUATION OF THE LOIPE DESIGN

.I-

4p

EVALUATION OF THE LOIPE DESIGN 123

Chapter 6

Evaluation of the LOIPE Design

In this chapter the LOiPE system is evaluated. The evaluation procedes in two parts. In the

first part (section 6.1) a prototype of LOWE is examined. Experiences from its implementation

are presented and measurements on the prototype are compared with traditional tools for
L software development. In the second part (section 6.2) the generation of a LOiPE System for

various languages is evaluated. First, LoIPE's ability to support Ada, an advanced high level

language, is analyzed. Then, dependencies of the LOIPE design and implementation on a

specific language are discussed. This chapter does not contain an evaluation of design

alternatives per se because they have been discussed in the previous chapters.

6.1. A Prototype of LoiE

In order to substantiate our claim that a language-oriented comiler-based programming

environment with consistently fast response is feasible, we have implemented a prototype of

LOIPE. We implemented this prototype on a VAX running Berkeley Unix. It has been

implemented in GC [Feiler 79b], an extension of the C language that supports full type

checking and modularity. The prototype was later extended to support program development

in form of the Gandalf system [Habermann 79a].

The prototype implementation of LOiPE supports the programming language GC. The

structure editor for the prototype is an ALOE for GC, which we generated with Medina-Mom's

editor generator [Medina-Mora 82]. The structure editor acts as the user interface and

manages the display screen of CRT terminals. A layout facility accepts user specific layout

descriptions. The user moves through the program at different levels of abstraction. ALOE

also maintains the program tree data base and triggers the execution of other subsystems

through the action routine mechanism. We implemented semantic checking and propagation

qP

124 EVALUATION OF THE LOIPE DESIGN

of side effects (see section 4.1) through action routines. We have adapted the GC compiler, a

modified version of the portable C compiler [Johnsson 78], to the program specific ALOE tree

representation for GC. It performs complete semantic analysis and code generation at the

grain of a procedure. The prototype supports incremental loading of procedures, i.e., partial

program replacement, and execution of incomplete programs. Support mechanisms for

remote program development have been implemented, but have not been tested with a target

machine different than the host machine.

The LOiPE debugger operates on the program tree and makes use of the partial

replacement mechanism to handle debug statements. The prototype supports both

unconditional and conditional tracing and breakpointing. Dynamic assertion checking and

debug variables have not been implemented in the prototype. The idea of application scopes

is shown in the example of a procedure scope for tracing and breakpointing of statements.

The prototype includes display of the callstack and examination of data objects in terms of the

source program. Global data objects can be monitored in the monitoring window. The

display of data objects is currently limited to base types of GC and modification of the current

value has not yet been completely implemented. Continuation of execution is currently

provided in a limited form in that execution can be resumed at the point of suspension if the

modified procedure is not in the call chain. Otherwise the callstack is unwound. The

implementation of partial unwinding of the callstack is not yet completed. The global data

object state can be preserved or can be reinitialized when execution is started.

With this prototype implementation we believe we have shown the feasibility of the LOIPE

system as discussed in the dissertation, even though the prototype does not support all

features of LOIPE. As part of the Gandalf system, the prototype has supported the

development of programs consisting of seven modules with thirty procedures, but it has not

yet been used extensively. Some of the ideas of LOIPE, however, have been tested out in

SMILE, a system that was used to implement LOiPE -and Gandalf [Denny 81, Feiler 80]. This

experience as well as experience gained from the implementation of the LOIPE prototype are

discussed in section 6.1.1. Our claim that an implementation of LOIPE runs reasonably

efficiently is supported by measurements taken with the prototype. In section 6.1.2 these

measurements are related to measurements on traditional tools for program development.

EVALUATION OF THE LOIPE DESIGN 125

6.1.1. Experience With The Prototype Implementation

The discussion of our experience gained from the prototype implementation of LOIPE and

its initial use follows the general outline of the previous four chapters. We have chosen to

elaborate on those points that we think are relevant to the implementation of this particular

approach. First, we discuss issues that are related to the user's view of the LOIPE system.

They include the use of ALOE as the user interface, management of the display screen, the

necessity of an interface to existing programs, the participation of LOIPE in the programming

task, and the tight coupling of the incremental program construction and the debugging

support. Then, we deal with issues resulting from the implementation of the prototype on a

specific operating system.

6.1.1.1. ALOE as User Interface

All interaction with the user is implemented through ALOE. This proved to be a sound

approach, even though some flaws were detected. Some problems are due to the fact that

ALOE is still evolving, and the implementation is not yet completed. Other problems have been

discovered only after ALOE has been used as a user interface for LOIPE and Gandalf.

ALOE'S command interpreter has no lexical information on the supported language, even

though the editor is syntax-directed. The user is required to use prefix format and to type the

operator name for identifiers or numbers before entering the value, e.g., "+ ' a int 21" instead

of "a + 21 ". ALOE could accept infix notation for expressions without resorting to parsing if it

had a more intelligent command interpreter [Feiler 81b]. The unparser of ALOE already is

aware of the precedence ordering properties of parentheses (see section 2.1.4). The

concrete syntax of the language is available in the unparse scheme and could be used by the

command interpreter [Feiler 82].

Based on initial experience with the editor the program modification capabilities of ALOE

have been improved by its implementor. Several operations (nest, unnest, transform, textual

search) have been added to the basic set (construction, delete, clip, insert). However, the set
of editing operations is not complete. Operations such as substitute or renaming of an

identifier are still missing. Their implementation is not difficult, but every additional operation

must be provided by the implementor of ALOE. Mentor [DonzeauoGouge 80], for example,

allows the user to define more complex operations out of basic ones using a meta language.

Thus, ALOE to not allow the user to tailor the environment to his individual needs.

P.

-J

126 EVALUATION OF THE LOIPE DESIGN

Similarly, the user cannot tailor the display of programs. Only the implementor of a specific

ALOE, i.e., the person defining the abstract and concrete syntax for the supported language,

has the freedom to specify the formatting of programs and the display of different abstraction

levels, possibly in different windows (See section 2.2.1.1). For a full evaluation of ALOE we

refer to [Medina-Mora 82].

6.1.1.2. Display Management

The display manager has been implemented as part of ALOE. This has posed some

problems with managing the input and output of the program being developed. The display of

the user program, which executes in a separate process, must be confined to the assigned

screen area. Such support requires a display manager as an autonomous entity, which

services all processes connected to a display device (see for example Canvas [Ball 81]). Unix

and the I/0 support through the C language are not able to support such an implementation

without modifications. In the prototype implementation we were able to use a hardware

windowing mechanism in the Conceptl00 terminal to enforce the confinement of I/O to the
assigned screen area, but had to rely on the user program not redefining the hardware

window.

The display management facility is limited by the use of a character oriented display

terminal and a relatively low bandwidth between the computer and the terminal. The

resolution of 24 lines by 80 characters restricts the number of windows that can be reasonably

shown on the screen. LOIPE maps several windows that are not used simultaneously, e.g., the

program, the module and the procedure window, into the same screen area. A hidden

window is made visible through a keyboard command. As the number of windows increases

interaction with the window manager becomes more awkward. The user does not have visual

feedback of the screen partitions oecause of the low display resolution.

Since LoIPE is display intensive, the communication bandwidth between the terminal and

the computer is a critical factor for the effectiveness of the system. A bandwidth of 9600 baud

is acceptable. As an absolute minimum we consider 1200 baud, if an intelligent display

algorithm is used [Gosling 81b]. A higher resolution display, such as the bitraster display and

a pointing device would improve the display management considerably, but the use of CRT

terminals is feasible under the above conditions.

EVALUATION OF THE LOIPE DESIGN 127

6.1.1.3. Interface to Existing Programs

LOIPE, as discussed so far, deals with programs that are completely represented by the

program tree. Because programs already exist in text form, it is desirable to provide support

for converting them into the LOIPE representation for further development with LOIPE. ALOE

works exclusively with constructive commands which do not treat a program as text. To be

able to work with existing programs, we built a parser which produces an ALOE program tree

from program text. This parser is an adapted version of the parser in the GC compiler. Some

problems were encountered with the placement of comments into the program tree. Usually,

comments can be placed anywhere in the program. They are discarded by the parser of a

compiler. A structure editor, however, requires that all possible locations for a comment are

specified in the language description, i.e., they can be entered only in well-specified places.

Since comments should be preserved when converting program text to program trees, the

parser must derive from the textual position of the comment where to insert it in the program

tree.

During program construction the user indicates where comments are placed in the

program tree. The parser of a compiler usually throws away comments. In the context of

LOIPE, however, comments must be preserved, so the parser must decide as to what construct

to associate the comment with.

6.1.1.4. Active Participation

The concept of active participation exists in the SMILE system [Denny 81] as well as in

LOwE. SMILE was used extensively by all members of the Gandalf group for the

implementation of the ALOE, the LOIPE, and the Gandalf system. The following list reflects

those features of active participation that were valued most highly:

e The system's responsibility to map the program tree, i.e., the source program, into
the existing file system; the user is not bothered with file names.

* Warning of potential damage beforehand when a modification with effects on
other program parts is started; request for confirmation to continue modification.

* Reporting of semantic errors while still in context; the grain of a procedure
seemed satisfactory.

* Propagation of side effects; reporting of these side effects and the ability to be
guided to the location of errors.

128 EVALUATION OF THE LOIPE DESIGN

9 The ability to suppress error messages.

* Nonenforcement of semantic correctness.

These features give the programmer the necessary support and confidence to attempt

modifications of globally used type definitions and procedure specifications without risking a

chaos. The additional cost for maintaining the necessary semantic information for

propagation of side effects in the program tree is well spent, considering the alternatives in

existing systems (see section 6.1.2).

6.1.1.5. Integrated Language-Oriented Debugging Support

LOIPE'S support for interactive program development and debugging is superior to

traditional systems, even though the functionality of the debug statements that have been

implemented in the prototype does not exceed that of debug actions in existing debuggers.

The integration of program construction support and debugging support into one system

allows the user to interact with both of them in the same manner. As extensions of the

supported language, debug statements and program execution state blend into the source

program. The user can switch between debugging and program modification smoothly

without loss of the debug context. Modfications are processed incrementally, and incomplete

or incorrect programs can be executed. This provides a quick turnaround time, and important

factor for truly interactive systems.

In contrast, traditional systems require the user to explicitly leave the debugger and enter

the editor via the command interpreter of the generating system, when a program

modification is to be made. The debug context is usually lost. The user must locate the

program part to be fixed with the editor's search command. The user interface of the editor

differs from that of the debugger, requiring the user to be aware that he is communicating

with the editor and not the debugger. After all program modifications are completed, the

object code is regenerated by explicit invocation of the compiler and the debugger is

reentered. This rather high cost of a pass through the modification cycle tends to force the

user to locate as many bugs as possible in one debugging session before correcting any one

of them in the source program. He has to make a conscious decision when to give up finding

another bug and destroy the debug context.

EVALUATION OF THE LOIPE DESIGN 129

6.1.1.6. The Program Tree as Central Information Depository

In LOIPE the program tree acts as the program data base in which all information

concerning the program is maintained. By centralizing the information, redundant copies of

information are avoided. All subsystems of LOIPE use the program tree as their primary

program representation. They share the mechanism to access and manipulate this structured

representation of the program. This mechanism relieves the subsystems from dealing with

the storage of the program tree in the file system. The program tree is partitioned and stored

in several files. The program tree is partitioned such that parts of the program tree can be

loaded into the LOIPE process one at a time. When checkpointing the program tree, only parts

are written out. Since Unix does not support mapping of files into a process address space,2

the files containing program tree partitions must be read in explicitly. This is realized with the

help of the fienode mechanism provided by ALOE [Medina-Mora 81], and a separate symbol

table for each program tree partition. Unfortunately, filenodes are visible in the program tree

and must be dealt with by every system part of LOIE that works with the program tree. This

problem of maintaining the structured program representation on permanent storage is being

addressed in [Notkin 82].

The subsystems share the information contained in the program tree. For example,

semantic information is used for semantic analysis and code generation as well as

propagation of side effects. Even though a considerable amount of information accumulates

with the program tree, its size compares favorably with conventional form of program

maintenance, as can be seen from the measurements on the prototype.

6.1.1.7. Incremental Program Construction With Existing Software

The incremental program construction support performs many of the same functions that a

compiler does. To avoid a reimplementation we interfaced the compiler for GC to the

program tree. We did so tv removing the parser and replacing it with an interface module to

the program tree. This interface module simulates the actions of the parser while traversing

the program tree. Symbols are entered into the symbol table of the compiler and expression

4 trees are built in a form acceptable for the code generator. Whenever the user enters a

module, the compiler is preloaded with the module context, i.e., with all relevant

specifications. When the user leaves a procedure after a modification, the procedure's

program tree is passed to the compiler. The compiler performs a complete semantic check

and generates code at the same time. Semantic errors are reported back in terms of program

130 EVALUATION OF THE LOIPE DESIGN

tree references rather than line numbers. Given a relatively clean implementation of a

compiler, writing this compiler interface is a straight forward task. Additional changes in the

compiler deal with the generation of indirect procedure calls and the generation of calls to

trace and breakpoint handlers.

The GC compiler produces assembly code. Consequently, we must run the Unix assembler

to convert it into object code and the Unix linker to relocate the object code to the correct

position in the execution image. Since the linker's job is limited to relocation, only the

procedure being replaced must be processed.

The GC compiler does not provide information for handling the propagation of side effects.

In the regular Unix programming support this information would be provided by the user in the

form of a makefile. The LOIPE prototype has a set of action routines that automatically

maintain the propagation information in the form discussed in chapter 4 as part of the

program tree.

6.1.1.8. Remote Program Development

The LOIPE prototype executes the user process separately from the debugger process

under Unix. However, LOIPE does not use the Unix ptrace facility to access the user address

space. This mechanism provides too small a window for transfer of more than a couple of

words. Instead, the LOIPE process and the user process communicate through Unix pipes in

the manner outlined in section 4.2.3.

Unix provides control over the execution of the user process in two ways. First, the

ancestor process could abort the user process. A copy of the user process image is created

in a file for further examination. This user process image, however, cannot be modified and its

execution resumed. The second mechanism is an interrupt signal which is issued from the

keyboard. This signal raises an exception in every process belonging to the job on the

terminal. Individual processes can ignore the signal or set up their own handler. LOIPE sets

up the user process to suspend execution and report to the LOiPE process. The LoIPE

process itself ignores the actual signal, but is informed. of it by the runtime system of the user

process. The user program cannot redefine the handling of this signal.

EVALUATION OF THE LOIPE DESIGN 131

6.1.1.9. Support for the Debugger Implementation

The provision of mapping information is peculiar to the specific code generator being used.

The code generator of the GC compiler does not keep track of the amount of code generated. F

However, the mapping information can be generated with the help of the assembler. The

code generator emits labels into the assembly code for all locations to be mapped, and pairs

of label references and corresponding program tree references into a separate data area.

This data area is processed by the assembler, which resolves all the label references, but is

not added to the object code in the execution image. This is similar to the provision of

mapping information for the Sdb debugger with the exception that the amount of retained

mapping information is much smaller. Some compilers have a code generator that counts the

amount of code being generated. Such a code generator can derive the mapping information

as it is counting.

Mapping information for procedure references and global data objects is maintained by the

incremental loader and updated whenever a program part is replaced. For local data objects

and parameters the offsets into the activation record are assigned by the compiler. Instead of

simulating this assignment process, we simply submit the procedure to the compiler and

query the offsets from the compiler symbol table, whenever necessary.

From the discussions in section 5.1 we have seen that interpretation has an advantage over

compiled code if it comes to monitoring access to data objects and recording of changes of

the program execution state. Such support requires explicit insertion of debugging code in

the object code at predetermined locations. Random access to a data objects cannot easily

be monitored. However, the hardware (or firmware) can be viewed as an interpreter itself.

Under this view, the hardware could be expected to give support to debugging, in addition to

single stepping of individual object code instructions. Until such hardware support is

available, software must implement the support by inserting code at appropriate locations.

In Unix a process has the ability to save a copy of the process image in a file. This file can

be examined, but cannot be reloaded to resume execution at the saved state. Other methods

of saving program state for later recovery are the subject of research [Randell 75, Liskov 80].

Therefore, the LOIPE prototype does not support resetting of the complete program state to a

previous point. LOIPE does support correction of return addresses in the control flow state,

unwinding of the control flow state, and resetting to the initial state.

41

l 132 EVALUATION OF THE LOIPE DESIGN

6.1.1.10. Code Optimizations

The GC compiler has an optimization switch, When enabled, it activates peephole

optimizations. Even with disabled optimization switch the compiler performs some

optimizations. The extent of optimizations in a compiler is often poorly documented or not at

all. Therefore, the implementor of LOIPE must perform some tests to determine the range of

optimizations in the code generator. [Wulf 79] discusses a test set for optimizations as part of

a method to derive the quality of generated code from small test samples. Application of this

optimization test indicates that the GC compiler used in the prototype performs only constant

folding. Therefore, full debugging can be provided in LOIPE without difficulties.

Some optimizing compilers allow the progammer to specify optimization directives at a

smaller grain than a compilation unit. The Blissi1 compiler, which is a highly optimizing

compiler, accepts directives in the source program. With these directives the user can select

ranges of program statements to be optimized or not. The user can also specify firewalls in a

sequence of statements that guarantee that no optimization is carried across that program

location. This shows that some optimizing compilers are prepared to make the concessions

that are neceesary for LOIPE to provide the full range of debugging support (see section

5.3.2).

6.1.1.11. Tuning of LOIPE

A LOIPE implementation can be tuned in several respects. First, the display layout is defined

in a description file and can be adjusted to utilize the resolution of the screen and the

bandwidth of the display. Second, the language description for ALOE permits the LOIPE

implementor to arrange the formatting of the program as well as to subdivide the program

views into various levels of abstraction. Similarly, the partitioning of the program tree into

0 separate files for permanent storage is controlled in the language description for ALOE.

Other forms of tuning require changes to the action routines. Such changes often consist

of little more than invocation of an action in a different action routine, e.g., invocation of the
40 code generator at the module node of the program tree instead of the procedure node.

Examples of such tuning parameters are: selection of the different grains of error reporting,

choice of modification unit, i.e., the grain at which semantic checking is performed, choice of

replacement unit, i.e., the grain at which code is generated and replaced in the executable

representation, and the selection of the mechanism for communication between the LOIPE

process and the runtime support in the user process.

EVALUATION OF THE LOIPE DESIGN 133

6.1.1.12. Extensibility of LOIPE

LOIPE provides an interactive programming environment that supports incremental program

construction and debugging by a single programmer. However, LOIPE is not limited in its

functionality. Additional services can be provided by extending LOIPE with appropriate

subsystems. Performance monitoring has been mentioned in section 3.3.6 as a possible

extension.

As part of the Gandalf project [Habermann 79a], the LOIPE prototype has been extended
and integrated with additional subsystems for support of multiple versions of programs and

support for management of documentation and multiple programmers. Such an extension

was facilitated by three factors in the LOIPE approach:

* The program tree is the central depository of information, which is shared by all
subsystems.

4A e Separation of abstract and concrete representation, allows the program tree to be
extended with version control and management information through additions in
the grammar description without increasing the complexity of #Ie supported
language (see section 3.1.2).

* All subsystems are driven by the action mechanism of the structure editor.
Additional actions, i.e., calls to added subsystems, are asociated with the
appropriate program tree nodes in the grammar description.

6.1.1.13. Summary

Even though the LOIPE prototype does not implement to full functionality of the LoE

design, we believe that, despite the fact that the set of implemented debugging aids

corresponds to those of existing debuggers, LOIPE provides more effective support for the

development of even larger programs in an interactive manner. The effectiveness of LOIPE
results from

" the structured and organized presentation of information to the user within the
limits of the display medium,

* the active participation of LOIPE by maintaining a consistent program data base at
any time and informing the user of semantic errors while the user is in context,
and

" the flexibility provided by the ease of alternating between program construction
and debugging and by the interactive behavior of the system in always
maintaining an executable program.

4w

134 EVALUATION OF THE LOIPE DESIGN

The LoIPE prototype illustrates the possibility of interfacing existing software, i.e., a

compiler for semantic checking and code generation. The implementation of the LOIPE

prototype shows the benefit of uniform access to the program in a structured manner through

the program tree. It also points out the necessity for adequate support for storing the

program tree permanently. Support for recovery from system crashes must be provided, but

has not been addressed in the prototype. The extensibility of LOIPE for additional functionality

has been demonstrated with the Gandalf system.

6.1.2. Measurements on the Prototype

We have taken measurements on the prototype implementation of LOIPE. The results are

compared to those of existing programming support for C on Unix, i.e., a screen editor

(Emacs), the GC compiler, and the source program debugger Sdb. The object code size of

the systems as well as processing times of different operations and the storage cost for

10 programs are compared. These numbers, we believe, show the feasibility of the LOIPE

approach as an interactive system. No measurements have been taken to verify an

improvement of the development cost of a program in LOIPE over traditional systems. Such a

study requires human factors research and is beyond the scope of this dissertation.

6.1.2.1. System Size

The system size is the amount of space it takes to run a programming evironment. Both the

code size and the combined size of code and initialized data such as compiler tables and the

grammar for ALOE have been measured. The measurements do not include the space for the

source program in core, i.e., the program tree in the case of LOiPE and the program text in the

case of Emacs. Also excluded from both measurements is the cost of the Unix assembler and

linker, because the two are executed as separate processes in both programming

environments.

The measurements are given in Fig. 6-1. In these measurements LOIPE compares favorably

to the Unix support. S3oth editors use the same display optimization package, which keeps

two copies of the screen core resident. The large difference between code size and total size

for both compilers is mostly due to static allocation of the compiler's symbol table and

expression tree space. In the case of LOIPE no attempt was made to reduce that size or to

avoid two symbol tables (ALOE maintains the second symbol table). As expected, the cost of

EVALUATION OF THE LOIPE DESIGN 135

C/Unix Loipe

Bytes Code Code & Data Bytes Code Code & Data

emacs 129024 176236 Aloe 69372 127260
Grammar - 10840

Parser 12370 23146
gc compiler 71680 176100 Compiler 51764 145826

Propagation &
Incr. Loading 14572 21926

sdb 53248 64912 Debugging 4356 7652

total 253952 417248 total 152434 336650

Figure 6-1: System Sizes

implementing LOIPE'S debugger is small because many parts of the other subsystems are

being utilized.

6.1.2.2. Timing of Operations

All timing measurements were performed on a lightly loaded VAX 11/780 (two users). The

measurements were taken with the a microsecond clock provided by the Unix system and

represent elapsed time. Fig. 6.2 shows processing times for a procedure modification. The

comparison of the replacement cost for a single procedure may seem somewhat unfair to the

traditional compiler-based environment. In such an environment the user frequently makes

several modifications before a whole module is compiled. However, two facts have to be kept

in mind. First, LOE compiles between editing operations whereas C/Unix delays all

compilation until the program is run. At that point the user must expect a long delay. Second,

as long as the user does not alternate between two procedures when editing, these two

procedures are only compiled once. In C/Unix the module containing the procedures

(including procedures that have not been modified) is compiled.

136 EVALUATION OF THE LOIPE DESIGN

No measurements are available for editing operations. From our experience with using

ALOE as a standalone we conclude that the higher processing cost of ALOE due to unparsing
after a modification is not noticeable at 1200 baud, even if eight people use ALOE at the same
time. The I/O bandwidth is the bottleneck. At 9600 baud the difference is hardly noticeable

unless the system is heavily loaded.

C/Unix Loipe

Specifications N/A 0.25 sec

Compilation 2.4 sec 0.2 sec

Replacement 8 sec Z sec

Modification Cycle 12 sec 2 sec

Figure 6-2: Operation Times

The cost of a procedure modification was measured several times on a three procedure

program, where the modified procedure consisted of twenty lines. The measured times do

not include the time for editing. Compilation time is the time for producing assembly code for

the modified procedure. It includes semantic analysis. The replacement time measures the

time it takes to restore the execution image after completion of the modification, i.e.,

compilation time plus execution time of the assembler and linker. The modification c.ycle time

also takes the context switching time between editor and debugger into account.

In LOIPE, the compilation time consists of specification processing and of semantic analysis

and code generation. Specification processing is performed only when the module being
modified is switched or a specification has been modified. The processing time is dependent

on the number of specifications, thus must be extrapolated for larger programs. The time for

semantic analysis and code generation is typical for a procedure and independent of the size

of the program. In C/Unix, the compilation time measures the time it takes to process the

modified procedure and the specifications of the other procedures. Note, that usually several

procedures reside in a compilation unit and are compiled together.

EVALUATION OF THE LOIPE DESIGN 137

LOIPE'S replacement time shows the cost of replacing a procedure, i.e., semantic analysis,

code generation, assembling, relocation and incremental loading. This replacement time

does not change much when the total program size increases. The replacement time for

C/Unix consists of compilation and assembling of one procedure and reconstruction of the

execution image by the linker. This number increases considerably as the programs get

larger due to the cost of reconstruction. Note, however, that usually several program

modifications are made in C/Unix before the program is relinked.

In LoIPE there is no overhead for switching between editing and debugging. Therefore, the

modification cycle time is the same as the replacement time. In C/Unix, we must account for

invocation of Emacs and reinitialization of Sdb with symbol table and mapping information.

The measured times do not include the cost of setting up the debug context again. The

initialization time for Sdb increases with the size of the program.

The LOIPE debugger inserts breakpoint code by partial replacement. Thus, the cost of

setting a breakpoint is equivalent to the replacement time of 2 seconds. Sdb's cost of setting a

breakpoint is well below a second, even though we do not have concrete numbers. Display of

individual data objects is virtually without delay on both debuggers. For retrieval of larger

amounts of data the one-word communication path of ptrace, which is used by Sdb, can

become a bottleneck.

The final measurement of the LOIPE debugger is the cost of statement tracing. The

measured time of 0.4-0.7 seconds accounts for the execution of one statement in the user

program and updating of the callstack, monitored data object and the cursor position for the

control flow. It also includes four context switches of Unix processes, two for the execution of

the statement and two for the retrieval of the monitored data object. The variance of this

measurement is due to the changing amount of screen that must be updated.

In summary, the timings show that incremental program construction can be provided with

fast response. On one hand, an increase in the specification processing time for larger

programs has to be expected. On the other hand the use of a code generator that produces

relocated or position independent (see section 4.2.1) code eliminates the cost of running the

Unix assembler and linker. The cost of debugger interactions are roughly comparable with

those of the Unix debugger. LOIPE cannot compete in continuous tracing with interpretive

systems like the Cornell Program Synthesizer because of the context switching overhead.

138 EVALUATION OF THE LOIPE DESIGN

6.1.2.3. Program Storage Cost

Program storage cost refers to the cost of keeping a program in the file system.

Measurements on a seven module/thirty procedure program indicate that it takes about three

(3) times the space for storing the program trees than the storage of program text. Note,

however, that the program tree storage includes symbol tables, semantic information for

propagation, and physical information regarding the location of procedures and data objects.

To make the comparison fairer, we have to consider the total amount of information to be

kept for the development of a program. In C/Unix, we have to add to the program text cost

• the cost of a makefile, i.e., a file that describes the dependencies between
modules and is used by the make facility [Unix 81a], p

* the cost of an object code file per compilation unit, that contains object code
symbol table information, mapping information for the debugger, and relocation
information for the linker,

* the cost of an executable file, that contains the execution image and information

for the debugger.

The object code is duplicated in the object code file and the executable file. The total size of

an object code file is a factor of 4-5 of the size of the contained object code. The large total

size is due to relocation information and mapping information. The total size of the

executable file is 2 times the size of the execution image for small programs (3 procedures)

and up to 8 times the size for large programs, e.g., a standalone ALOE. In LOIPE, we only have

to add the cost of the execution image. All other information is already available in the
program tree. Thus, the total storage cost for LOIPE of three (3) times program text plus

execution image compares favorably to C/Unix's total storage cost of program text plus

approximately eight (8) times the size of the execution image (four for object code file and

four for executable file).

6.1.2.4. Summary of Measurements

The measurements indicate that LOIPE is a viable alternative for programming

environments. The overall system size has proven to be smaller than a comparable set of

software tools as a result of integration and information sharing. Information sharing through

the program tree also reduces the storage requirements for maintenance fo the user

programs. Note that in LOIPE that various subsystems are invoked more frequently than

corresponding tools in C/Unix, but they have less information to process, due to the

EVALUATION OF THE LOIPE DESIGN 139

incremental nature of the system. Stepwise proces.ing of program parts by all subsystems

allows LOiPE to show a truly interactive nature for all programming activities, as the timing

results indicate. It is our guess that stepwise processing throughout LOIPE, e.g., partial

replacement and use of available semantic information, e.g., warning of potential damage and

guidance to errors, reduces the amount of computing resources used in the development of a

program. This claim will have to be supported by appropriate experiments with LOIPE.

6.2. LOiPE: A System for Generating Environments

So far we have discussed LOIPE without reference to a specific programming language. In

fact, LOIPE can support a whole class of languages. Even though we have been referring to

abstract data types and the. module concept, they are not essential to the LOIPE approach.

For example, LOIPE can support Pascal, which does not have modules. These two concepts

have been brought up in previous discussions to point out how their structuring capabilities

can be carried over to LOIPE.

In this section we investigate the generation of a programming environment for a specific

programming language from the framework that is provided by LOIPE. First, we determine

LOIPE'S limitations in the support of modern high-level languages by considering a LOIPE for

Ada. Then, we examine the generation process by locating language dependent system parts

of LOIPE and discussing their provision by the implementor of a LOIPE.

6.2.1. Ada: An Example of Support for High-Level Languages

Ada has been developed for the Department of Defense in an effort to reduce the number of

languages being used by them. The resulting language is a powerful, high-level language that

attempts to satisfy the requirements of a wide range of applications. It is, therefore, a good

candidate to test LOIPE'S ability to support different programming languages. In the previous

chapters we discussed LOIPE with a language supporting abstract data types and the module

concept in mind. Therefore, we limit the treatment of Ada to those parts that require additional

elaboration.

P

140 EVALUATION OF THE LOIPE DESIGN

6.2.1.1. Overloading of Operators

In most languages only one declarative instance of an identifier is legal in any scope. Ada

permits the same identifier to be used for several procedures without hiding each other. Such

overloaded operators must uniquely identifiable from contextual information at the use site.

The actual identification process is discussed in the Rationale for Ada [Ichbiah 79]. The

binding of a use site to the correct definition site of an operator is supported in LOIPE through

the use of an appropriate name/symbol table mechanism. ALOE permits various

name/symbol table implementation to be used that satisfy the expected interface

specifications (see [Medina-Mora 81]).

6.2.1.2. Packages

An Ada package consists of a visible part, a private part and a body. The visible part

provides specifications of program parts that can be used outside a package. The private part

describes the representation of private data types which cannot be used outside the package,

but is needed for code generation. The package body contains the actual implementation of a

package. The effect of modifications of the implementation is entirely localized to the scope of

the package body. Modifications of specifications in the package body only affect program

parts in the same package, whereas modifications of the visible part of a package affect all

packages that use the modified package. A modification to the private part of a package does

not change the semantics of the visible part, but affects the physical information. Therefore,

these modifications must be propagated in the same manner as modifications to the visible

part. The actual propagation mechanism of LOIPE is not aware of the distinction between

modifications to the visible part, private part, or body. It processes the use list of the modified

specification. The semantic analyzer must know about the scope and visibility rules in Ada.

When binding use sites according to these rules the correct uselists are set up.

6.2.1.3. Separate Compilation

Ada supports separate compilation with the goal to partition large programs into more

manageable parts and to help reduce the cost of compilation [Ichbiah 79]. Separate

compilation is distinguished from independent compilation in that it illows program parts to

be compiled by themselves, but requires a certain compilation order to be adhered to in order

to enforce interface checking between compilation units. Ada's compilation order and

recompilation order are reflected in LOIPE'S propagation mechanism. LOIPE propagates new

EVALUATION OF THE LOIPE DESIGN 141

specifications as well as modifications to existing specifications as they are entered by the

user (see section 4.1.3).

I!
Ada requires the user to make decisions as to the partitioning of a program into separate

compilation units, i P, into files. For that purpose it provides a stub construct called separate.

In the context of LOIPE there is no need for such stubs. LOIPE is responsible for maintaining

the program in files and for submitting it in appropriate chunks to the compiler, relieving the

user from that task. Stubs are also not necessary for improvement of program readability,

because LOIPE already provides mechanisms to show the program at various levels of detail.

6.2.1.4. Exceptions

Ada provides an exception handling mechanism that terminates the operation which raised

the exception. This means that the runtime stack is unwound to the scope of the appropriate

handler. Exception handling does not pose problems to LOIPE. Exception handlers are

treated like other parts of the program, i.e, can be debugged. It is expected from the runtime

system of Ada to report any exceptions, that are not caught by the user program, to LoE as

outlined in section 4.2.3. It may be desirable to display to the user the set of handlers that are

able to process exceptions at any given point in execution in a manner similar to the display of

the callstack.

6.2.1.5. Generics

Generics provide a facility for translation time parameterization of program units. A generic

program unit definition acts as a template for different instances without requiring replication

of the source code. Different instances may result in separate copies of object code. In

LOIPE, we have to assign a separate placeholder for each instance of a generic procedure

such that the procedure can be identified correctly in terms of the program tree, e.g., for 0

display of the callstack. The placeholders of two instances may refer to the same piece of

object code if its code sequences are identical. Debug statements are defined and enabled in

the generic definition. This results in reprocessing of all instances by the partial replacement

mechanism. This is similar to the insertion of debug statements in inline procedures, where 0

all procedures enclosing a callsite must be reprocessed to reflect the insertion in the

execution image. The display of data objects in an active instance of a generic procedure

requires additional support. The type information must be retrieved through the instance

declaration, which is accessible through the callstack (see above). In summary, support of 0

generics requires extentions to the mechanisms provided by LOIPE.

142 EVALUATION OF THE LOIPE DESIGN

6.2.1.6. Tasking

Ada supports concurrent processing through tasks and provides a mechanism for

communication and synchronization. In LOiPE, we have not addressed issues related to the

development of such programs. Because the user program is executing in a separate

process, we can extend LOIPE to connect to different processes and provide sequential

debugging aid for each of them. However, incremental construction and debugging of a

multiple task program at the source program level requires further investigation to

appropriately deal with this new language concept. We are aware of only one project that

addresses the problem of adequately supporting tasking in program development

[Mauersberg 82].

6.2.1.7. Summary

LOIPE provides support for most of Ada. Two concepts, generics and tasking, require
S further attention, if they were to be supported by LOIPE. LOIPE eliminates Ada's concern for

partitioning of the source program for separate compilation. The remainder of the language

is directly supported by LOIPE. Thus, other languages with similar or smaller sets of

constructs, e.g., Pascal, Euclid, C, or Fortran, can also be supported by LOIPE. Due to the

incremental nature of LOIPE's processing of program parts, forward declarations of

specifications, which are introduced into some languages to reduce the number of passes in

the compiler, can be eliminated. In the next section we investigate the effort of generating the

language dependent parts of LOIPE for a specific language.

6.2.2. Generation of a LOIPE

The program tree reflects the structure of the program as it is expressed by the language.

Some parts of LOIPE understand the details of a specific language, whereas other parts only

make use of certain aspects of the language and are independent of a specific language. We

refer to the language independent parts of LOIPE as the LOIPE framework, from which a

language specific LOIPE is generated. Knowledge of a specific language is embedded in

LOIPE both in descriptive form and in the code of system parts. When building a LOIPE for a

specific language the implementor must add the language description and language specific

code to the language independent LOIPE framework. In paragraph 6.2.2.1, we elaborate on

the generation of the language description, which defines the structure of the program tree

and provides syntactic information for the language-independent structure editor, ALOE (See

EVALUATION OF THE LOIPE DESIGN 143 p

also section 2.1.4 and [Medina-Mora 811). Then, the provision of system parts with language

dependent code, i.e., system parts dealing with semantic analysis, code generation, and the

runtime support of the language, is discussed in paragraph 6.2.2.2. As an alternative to the

generation of a LOIPE from the framework, we consider the adaptation of an existing LOIPE for

one language to support a different language in paragraph 6.2.2.3.

6.2.2.1. Generation of an ALOE Language Description

Certain factors have to be taken into consideration when an ALOE language description is

generated as discussed in [Medina-Mora 82]. The ALOE ILaguage description has the form of
a grammar for abstract syntax of the language and a set of unparse schemes for each

production specifying the concrete syntax. It provides ALOE with language specific

information [Medina-Mora 81]. The abstract syntax defines the structure of the program tree

and constraints the set of legal offsprings of a node. The concrete syntax defines how nodes

in the program tree are shown to the user as program text.

The funct 'n of ALOE language description is similar to that of a BNF description. The BNF

description is a commoniy used notation for specifying the syntax of a programming language

[Backus 59]. It defines the structure of the parse tree as it is generated by a parser. The

ALOE language description can be derived from the BNF description by observing the

difference between a parse tree and an abstract syntax tree (see also section 2.1.4). Here are

some important steps:

e Keywords, separators and terminators are not represented by nodes in the
abstract syntax tree, i.e., they do not appear in abstract syntax productions; they
are attached to productions in the form of an unparse scheme.

* BNF productions, whose purpose is to permit unique recognition of the concrete
syntax, can be eliminated. For example, simpleexpression, term, and factor,
which aid in the recognition of operator precedence, can be collapsed into 0

expression. In a structure editor the application order of operations is indicated
by the user through the construction order.

e Sequences are expressed as such in the abstract syntax without concern of left

or right recursiveness of a production. p

The resulting abstract syntax description is more compact than the BNF description. An

example of an abstract syntax description is the structural information part of the DIANA

description for Ada [Diana 81].

144 EVALUATION OF THE LOIPE DESIGN

A language can have several possible abstract syntax descriptions. Two abstract syntax

descriptions can differ in the depth of the abstract syntax tree they are describing. For

example, a procedure declaration can be represented as

(1) procedure -> identifier PARAMETERS body
body -> LOCALDECLS STATEMENTS

or as

(2) procedure -> identifier PARAMETERS LOCALDECLS STATEMENTS

When deciding alternative abstract syntax descriptions the implementor must keep the

following factors in mind:

* The structure of the abstract syntax tree (to be exact, the visible part as indicated
in the unparse scheme) is noticeable to the user through cursor movement.
Therefore, the abstract syntax grammar should avoid the creation of unecessary
nodes, but express conceptual units that are present in the language. Example
(1) above expresses the notion of procedure specification and body better, even
though an extra node will be created in the tree that must be passed through with
the cursor.

e The abstract syntax description defines the set of legal offsprings for each node.
The description can be adjusted to be more restrictive, e.g., limit the set of legal
offsprings for a condition to relational operators rather than permit the full set of
expressions. Some restrictions may not be desirable because they result in
nonuniform enforcement. In the example of relational expression, the structure
editor enforces the use of relational operators. However, the user can still insert a
variable of the type string.

* The abstract syntax description defines the structure of the program tree, which
is used by all system parts of LOIPE. Some system parts may need information
about the program that can easily be provided without burdening the user. An
example is the distinction between the definition site and the use site of an
identifier by two different productions (see also section 4.1.1). The distinction is
not noticeable to the user because both productions use the same synonym
(command name by which the production is recognized). This is only possible as
long as both productions do not appear in the same legal set.

In the appendix we have given the abstract syntax description and the unparse schemes for

the concrete syntax of the language GC. The GC description is the result of its extensive use

as language description for an ALOE editor of GC, which is part of the SMILE system, for the

LOIPE prototype, and for the Gandalf system.

* p.... .. ' ...

EVALUATION OF THE LOIPE DESIGN 145

6.2.2.2. Language Dependent System Parts

The ALOE language descripton provides ALOE with information on the abstract and

concrete syntax of the supported language. It also specifies tie partitioning of the program

tree, whose structure is defined by the abstract syntax, into snaller units for file storage and

the assignment of action routines to productions. Using this description ALOE manipulator,

displays, and stores syntactically correct programs and invokes other system parts through

the semantic action mechanism [Medina-Mora 82]. In addition, ALOE provides a library of

language independent utility routines for the implementor of a system part [Medina-Mora 81].

The utility routines include program tree manipulation and traversal routines, routines for

assignment of various program views to different display windows, error reporting support,

access control support and program tree status maintenance.

Instead of ALOE'S default table package [Medina-Mora 81], LoIPE has implemented its own

name and symbol table package. It provides mechanisms for the maintenance of use lists and

the propagation of possible side effects at the grain of procedures (see section 4.1). These

mechanisms are language independent, thus, are available as part of the LOIPE framework.

Semantic analysis itself and code generation are language dependent. Semantic analysis

includes binding of identifiers to an appropriate definition site. Such language dependent

code usually already exists in the form of a compiler. This compiler can be interfaced to the

program tree as demonstrated by the LOIPE prototype(see paragraph 6.1.1.7). Interfacing

includes

* separation of the parser from the compiler backend,

* an interface package to map the ALOE program tree into the compiler's symbol
table and program tree,

* adjustment of the code generator to produce indirect procedure calls,

o adjustment of the compiler's error reporting mechanism to the facility provided by
ALOE,

o support for generation of necessary mapping information,

o and a mechanism to produce relocated object code (if necessary with the help of
an existing assembler and linker).

The interface package consists of a set of traversal routines and routines that provide access

to the compiler's symbol table. The traversal routines traverse the ALOE program tree and

invoke code in the compiler backend in the same way as the parser does. The symbol table

146 EVALUATION OF THE LOIPE DESIGN

access routines allow LOIPE to determine the binding of identifiers in order to maintain the

uselists in LoIPE'S name and symbol table.

Compilers are usually not incremental. However, they can still be used for the generation of

a LOIPE, as has been shown with the GC compiler for the LOIPE prototype. LOIPE'S

incremental processing is limited to the grain of statements for semantic analysis (section

4.1.2), and to the grain of procedures for code generation (section 4.2) and for propagation of

side effects (section 4.1.3. This incremental processing can be realized with a

nonincremental compiler in the following way. Processing of specifications is separated from

compiling procedure bodies. This separtion is implemented through the traversal routines in

the program tree interface package. Separate specification processing allows the compiler's

symbol table to be preloaded with context information for semantic analysis and code

generation. For semantic analysis at the statement grain, code generation is suppressed or

discarded after generation. For languages with name scopes the compiler symbol table

mechanism usually supports only removal of all symbols in a scope. Therefore, a modification

to a specification requires clearing of the symbol table for the given scope and reprocessing

the specifications in the scope, if the compiler symbol table mechanism is not extended to

support removal of individual symbols. The driver routines for invocation of specification

processing, semantic analysis and code generation are independent of the specific language,

thus, are part of the LOIPE framework.

The LOIPE debugger is mostly language independent, but it has to be interfaced with the

supported language. The necessary extensions to the language for debug statements and

program state representation are made to the ALOEE language description (see section 3.1.2).

The debug statement extensions are mapped into elements of the supported language for

semantic checking and code generation by routines in the program tree interface package.

4 Routines that generate the subtrees for current value display must be adjusted to the

structure of declarations and type definitions of the specific language.

Finally, the runtime support of the supported language must be interfaced with LoIPE.

4 Space management in the user process must be coordinated between LOIPE'S incremental

loader and the dynamic space allocation routines of the language. Runtime exceptions must

be handed to LOIPE'S runtime support package in the user process which reports them back

to LOIPE (see section 4.2.3). The support for retrieval of information from the runtime stack

4 and for its correction must be adjusted to the runtime stack layout for the specific language. r

I P

EVALUATION OF THE LOIPE DESIGN 147

6.2.2.3. Adaptation of an Existing LOIPE

An existing LOIPE supporting one language can be adapted to support a different language

under certain circumstances. The feasibility of an adaptation depends on the closeness of

the two languages. LOIPE can be adapted at two levels: at the program tree level, and at the

level of the interfaced compiler.

Adaptation at the program tree level means that for the second language the abstract

syntax of the first language is used. The abstract syntax may be more restrictive by removing

productions from the list of legal productions for offsprings, but the basic structure of the

program tree is maintained. The differences between the two languages are expressed in the
r

unparse schemes defining the concrete syntax. Unparse schemes can perform simple

transformations by reordering offsprings of a node for display. An attempt has been made to

use ALOE for the transformation of GC programs into Pascal [Feiler 81c], whose results are

discussed in [Medina-Mora 82]. In [Feiler 82] the idea of using an ALOE-like structure editor

as a multi-language editor is pursued further. This approach, however, frequently leads to

support of subsets of languages only because one language has constructs not present in the

other. [Albrecht 80] discusses compatible subsets of Pascal and Ada and transformations

between them.

Adaptation at the level of the interfaced compiler permits the abstract syntax of the second

language to differ from that of the original language. However, the program tree interface

package must be able to handle the differences by mapping the new constructs into elements

understood by the interfaced compiler. For example, an assert statement can be mapped into

a conditional statement. Additional semantic checking may be necessary. In the example of

the assertion the condition is not supposed to have side effects whereas side effects are

permitted in a general conditional statement. Such additional semantic analysis must be

implemented either by modifying the semantic analyzer of the compiler, or by providing a

separate set of semantic routines that work on the ALOE program tree directly. Differences in

the abstract syntax of the two languages may include type definitions or object declarations.

In that case, the routines for generating placeholder subtrees for current values of objects

must be adjusted to the structure of the second abstract syntax.

148 EVALUATION OF THE LOIPE DESIGN

6.2.3. Summary on the Generation of LOIPES

Using Ada as an example we have shown that OIPE can support languages of the Pascal

family. Some language constructs require extensions to LOIPE. Support for multitasking

rerquires further investigation.

A LOIPE for a specific language is generated by providing a syntactic description in form of

an ALOE language description and by interfacing an existing compiler and language runtime

system as supplier of a semantic analyzer and code generator. The ALOE language

description can be derived from the BNF description of a language. The designer of the ALOE

language description must be aware of the difference in functionality of the two descriptions.

Existing compilers do not have to be able to process programs incrementally in order to be

interfaced. A relatively clean implementation of the compiler is, however, desired to ease

separation of the parser and necessary modifications to the compiler backend. As an

alternative to the generation of a new LOIPE, adaptation of an existing LOIPE can be

considered, if the two languages are relatively close. The adaptation of the LOIPE prototype

for GC to support Pascal for use in an introductory course was investigated by the Gandalf

group [Gandalf 82].

41

CONCLUSIONS 149

Chapter 7

Conclusions

In the previous chapters we discussed the design and implementation of a language-

oriented interactive programming environment that is based on compilation technology.

Chapters 2 and 3 elaborated on the user's view of incremental language-oriented program

construction and language-oriented debugging. The user uniformly performs all tasks

interactively through a structure editor, and LOIPE contributes to the tasks by active

participation and by hiding the underlying file system and operating system. Chapters 4 and 5

discussed the realization of such an environment through the use of compilation. The

implementation of all LOIPE system parts is centered around a program tree representation

which acts as central information depository. The integration of these system parts permits

sharing of knowledge about the supported language and programs, and sharing of

mechanisms that maintain the program data base. In chapter 6 the feasibility of the LOIPE

approach has been demonstrated with an evaluation of a prototype implementation, which

includes measurements of a running system. This chapter concludes the dissertation by

summarizing the contributions and by indicating areas that require further investigation.

7.1. Contributions

This dissertation is a feasibility study of an interactive programming environment whose

implementation is solely based on compilation technology. This environment differs from

existing programming environments through the following characteristics:

* Uniformity - Uniformity is present in LOIPE in three ways. First, the user has a
uniform view of the source program and the program execution state in terms of
the supported programming language. Other representations of the program do
not have to be dealt with. Second, interaction with different tools is not
distinguishable because the tools are integrated into one system and use a
structure editor as their common user interface. All interaction is performed

150 CONCLUSIONS

through editor operations. The user interacts with a single interface in form of a
data-driven programming model. Third, all parts of the LOIPE system share the
program tree as their common program representation and information
depository. resulting in a simple system structure by avoiding redundancy of
information and mechanisms, and efficient maintenance of the program on
permanent storage.

9 Active Participation - LOIPE actively participates and contributes to the
programming task in several ways. First, it hides the underlying file system and
operating system from the user by taking up the responsibility of maintaining the
program in permanent storage without user interaction. Second, it maintains the
program tree, i.e., the program data base, in a consistent state by automatically
invoking system parts as necessary and recording the result of the processing.
Side effects of changes are propagated, and the user is informed of their extent.
The user can concentrate on construction and modification of the program, and
can count on support for keeping the program consistent without having to
explicitly invoke system tools.

. Language-Oriented Programming and Debugging - The user interacts with
LOIPE through language-oriented manipulation of the program data base. Both
program construction and debugging are performed in that manner. The correct
syntax of the manipulated structures is enforced and the semantic consistency is
checked and reported, while the user is still in context. For language-oriented
debugging the expressive power of the supported language is taken advantage
of. The debug state is integrated into the language and high level debugging
support such as dynamic assertion checking is provided. The debug functions
are implemented on the program tree and mapped into the executable
representation by incremental program replacement rather than implemented
directly on the execution image as done with existing debuggers.

. Flexibility - LOIPE is flexibile in two respects. First, LOIPE permits programs with
semantically incorrect or missing parts to be constructed, even though the
supported language may be strongly typed. Such incomplete programs can be
executed at any time. Second, LOIPE immediately reflects all changes to the
source program in the executable representation, such that the program can be
executed without delay at any time. This is achieved by consistently applying the
notion of incremental update in all system parts. Because the executable
representation of the program is always up to date, the transition between
program modification and debugging is not noticeable.

* Compilation - LOIPE maintains the executable representation of a program
through compilation and static binding, resulting in efficient execution of the
program. Flexibility is maintained through partial replacement of program parts
rather than reconstruction of the execution image. All modifications including
debug statements are reflected in the execution image through partial
replacement. LOIPE utilizes the fact that in a compiling environment the
executable representation is separate from the source program by supporting
remote program development, i.e., execution of programs on a machine different
than the host. The consistent use of compilation and partial replacement to

L4 CONCLUSIONS 151

reflect all modifications in the execution allows LOPE to support optimizing code
generators.

The feasibility of such an interactive programming environment has been demonstrated

with a prototype implementation of LoIPE. Measurements on the prototype indicate that the

LOIPE approach compares favorably with traditional systems with respect to system size,
program size, and processing or response time. An evaluation of LOIPE's ability to support the
programming language Ada has shown that LOIPE is able to support languages of the Pascal

family. Furthermore, we have shown that LOIPE provides a framework for generating

environments. Language-specific information is added to the LOIPE framework through a
formal language description and through adaptation of existing language-specific code.

7.2. Future Research

In the course of this thesis we have encountered several issues that require further
investigation. We briefly summarize them in this section.

LOIPE takes a new approach to program development, in which the user interacts uniformly
in terms of the program structure and the system contributes to the programming task. We

have done some measurements on the prototype implementation whose results are given in
section 6.1.2. These measurements of system size, program size and cost of a modification,
indicate that the LOIPE approach compares favorably to traditional compiler-based

programming. The measurements, however, do not permit conclusions to be drawn as to the
impact of the LOwE approach on the overall program development cost. Only a

comprehensive study is able to determine the factors that possibly increase the productivity of
a programmer. Such factors include the use of a structure editor over a text editor, immediate

feedback on semantic consistency and aids in program construction dealing only with the
source program, i.e., hiding of file system and implicit application of LOIPE system parts, the
uniform treatment of programming and debugging, and the effects of language-oriented
debugging on the ability to detect and localize errors.

LOIPE supports continuation of execution after program modifications. For some
modifications continuation is only possible if the program execution state is reset. Complete
recovery of a previous execution state is only marginally supported by LOIPE. Adequate
implementation of recovery requires further investigation, drawing on experience from

152 CONCLUSIONS

research in fault tolerance and on appropriate support from the hardware architecture, which

"interprets" object code representation of the program.

LOIPE maintains all information about a program in a central location, the program tree. All

system parts access this program data base uniformly without concern for how the structures

are kept in permanent storage. The chosen filenode mechanism is not quite adequate

because the partitioning of the data base into files is visible in the tree structure. Additional

research will be necessary to investigate the replacement of the file system by a data base

* system in the traditional sense or an abstract data system as proposed in [Notkin 82].

Various attempts have been made to provide support for multitasking and communication

between the tasks in programming languages, e.g., Concurrent Pascal, Modula, Path Pascal

and Ada. In other systems. e.g., in Unix, such support is available through routines in the

runtime system. The discussions of Loin in this dissertation have ignored the need for

appropriate support to develop and debug such programs. As a matter of fact, we are aware

of only one research activity that attempts to provide support for developing and debugging

individual tasks as well as the high.level interconnection structure of a group of tasks.

Even though LOIPE supports a specific programming language, the language specific

knowledge is localized. Some of the language knowledge is embedded in LOIPE through a

formal description, whereas other information is embedded directly in the code of some

system parts. Section 6.2 described the process of generating a specific LOIPE from a

framework by providing an ALOE language description, that defines the program data base

structure and the concrete syntax and by adapting existing language-specific software, i.e., a

compiler. Work has been done over many years to automate the generation of compilers from

formal descriptions, i.e., generation of parsers [Johnson 75], generation of semantic

analyzers [Ganzinger 77] and compiler backends [Wulf 80]. The application of this work to

LoIPE in the context of incremental processing and propagation of information will have to be

investigated, in order to formalize and automate more of the generation of a LOIPE for a

specific language or a specific machine. The generation of parsers is only relevant in the

context of providing support for conversion of existing programs in text form into the

structured representation of Loip.

LANGUAGE DESCRIPTION FOR LOIPE 153

Appendix A

Language Description For LowPE

A-1L Language Description for GC

(gandalf) /* language name s/

/0 terminal operators 0/

INT " (s) '"int" I semmark ;
SHORT - (s) "short int" I semmark
LONG * (s} "long int" I semmark
UNSIGNED = (s) "unsigned int" I semmark
LFLOAT = (s) "long float" I semmark
FLOAT - (3) "float" i senmmark
DOUBLE - (s) "double" semmark ;
CHAR - {sl "char" I semmark ;
USETYPEDEF - (v} "@S" I semmark I lexnil
COMMENT - (a) "8>Q>/" 9C */" I semmark lexcomment
INTCONST - (1) "SC" I sIniMark
CHARCONST = (c) "'@C'" I sIniMark
STRING - (a) "\"@C\"" I slniMark
IDENTUSE - (v) "@S" I sIDUSE I
IDENTDEF - (v) "OS" I sIDDEF I ;
EMPTY - (S} " " I semmark
EMPTYNAME - {s} " " I semmark
EMPTYTYPE - (s} " " I semmark
QUEST - (a} "?" I semmark I I "7"
DEFAULT - (s} "default:" I senulark
BREAK = (s) "break;" I sommark ;
CONTINUE - (s) "continue;" I semmark ;
VOID - () "/*VOID*/ ;" .I senmark
LABEL - (v) "@S:" I semmark I lexnl :
GOTO = (v} "goto IS;" I semmark i lexntl;
ADRIDENT - {v) "& @S" I slniMark i I "&"
I

*154 LANGUAGE DESCRIPTION FOR LOIPE

/0 non-terminal operators1

PROGRAM - <extdef> I "I9O8N~ecno items>" Isemmodule
EXTPROC - otype procdecl iparam -f I "@xlibproc @z"

"OuOeiitern @1 @2(@3)-.u1' I semlten; /0 filenode
EXTOBJ - otype varbi -f I "@xextobject Oz" t

"Ou~extern @I 92;@u" I semltem /01 filenode
PROCOEF - otype procdecl iparam body -f I"@xprocedure ft" t

"@u081 @2(@3)@+@N@4@-@N~u" I semltem I "PROC"; /1 filenode 0/
OBJOEF -type varbi oinitia -f I "@xobject ft" t

"Su0@1 02 @3;@u" I semitem I "108J3"; /0 filenode
OBJDEFLOC - type varbi olnitia I"@1 @2 03;" 1 semmark;
REGOEF - type varbi ainitia I"register @1 @2 @3;" 1 semmark
/0 nameless type structures as needed for casting 0/
TYPENAME -type tnchain I"@I W2 seminark
TNPTR =tnchain (14) I"* 01" Isemmark
TNARRAY =tnchain oicst (15) 1 "01[@2]" Iseninark "E
TNCALL -tnchain (15) I"@1()" Isemmark "(

LPARAM -<param> I"@O;@E "I semmark
DECLS - <declaration> I "@OON@Q@N@N@EOB @N" I sennark;
STATS - <stat> I "00NOE " Isemniark;
COMPOUND *<stat> I "@<(@N@00N@Q@N@<18E;" I semmark I
DECLCOMPOUND - ideci Istat I "1@<@(NO1@20N8<}" I semlocal I "{D"
ARRDECLP - variable oicst (15) I"81[92)" 1 semniark
PTRDECLP - variable (14) 1 1101" Isemmark I"
PARAM -type ivarbi "@I 82 1 semmark ""

LVARBL =<variable> I"@0," 1 semmark I
STRUCTDEFLOC - defident iconiponent I "struct @I {19+@N@2@N)@-;" I senvuark
ARROECL - varbi olcst (15) 1 "@1[82]- senmmark "E
PTRDECL - varbi (14) 1 "*@1" Isemmark I"
PROCDECL - varbi (15) 1 "01()" Isemmark "(

STRUCTDEF - defident icomponent -f I "@xstructure 9z"
"Ostruct %I {8+O1102@N)O- :@u" I semitemordal ; 1 filenode

UNIONDEF - defident lcomponent -f I "Oxunion @z" t
"Ou~union 81 (8+ON@2@N)@- ,8u" I semitemordel :I/ filenode *

TYPEDEF - type varbi -f I "@xtypedef ft" t
"@uOtypedef @1 @2;@u" I seniitemordel ;/0 fllenode 0/

ENUMOEF - defident lenums -1f I "Oxenui ft" t
"SuOenum @I f 82 };Ou" I semitemordel ;/0 filenode

/0 C oddity. Defintion of type and use in declaration in one *
NEWSTRUCT =oldent icomponent I"struct 81 {O+@N@2@N)@- "Isemmark
NEWUNION =oldent icomponent I"union @I (8+QN@2@N)@- "Isemmark
NEWENUM =oldent lenums I"enum 81 0 2 1"Isemmark
/0 use of types 0/
STRUCT *ident I "struct 01" 1 semmark
UNION =ident I"union 81" 1 semmark

*ENUM *ident "enum 111" Isemmark
LENUMS -<enumelem> I"110, 1 senmmarkI".
ASSELEM =defident cexp I 8 1 2 senimark I"
LCOMPONENT < fielddecl> I"SOON" I semmark I C"
FIELDDECL =type lvarbl I"@1 82;" 1 senimarkI";
NONAMEFIELO type tnchaln I"81 82;" Isemmark

L.

*LANGUAGE DESCRIPTION FOR LOIPE 155r

/0 statements
CSTAT - stat comment I 1N@2" Isemmark
EXPSTAT - exp I.1" I semmarkj
IF - exp stat I"if (61)@+@N@2@-" I semmark
IFE = exp stat stat I"if (61)@+@N@2@-6Nelse@+@N@3@-" Isemmark
WHILE - exp stat I"while (61)6+@N626-" Isemmark
00 = stat exp I"do6+@N61@-@Nwhile (@2)"Isemmark
SWITCH - exp compound I"switch (@I)6+O+@N@26-@-6N" I semmark
CASE - cexp I"@<ccase @1:" 1 semmark
FOR - oexp oexp oexp stat I "for (61; @2; @3)0+@N@4@-" Iseimnark
RETURN - oexp (16) I"return O1; I semmark ;
/0 initialized declarations "0/"1 emrPROCDECLP - variable (15) I"1"1sear j (

LCEXP = <ccexp> I"(6O,6Q}"l I niMark
LEXP - <exp> I "60.@E "Isemmark ""

CCEXP - cexp conmment I"611 semmark

1P

156 LANGUAGE DESCRIPTION FOR LOWPE

/0 expressions '

EXPIF - exp exp exp (3) "@*'1 7 @2 03" Isenimark ""
FIELD - ivalue ident (15)l "01.02" 1semmarkI
PTRFIELD sexp ident (15)l "@I->@2" 1 semmark I ">

CONTENTS - exp (14) I"*" 1 senmark I"U0"
ADDRESS -exp (14) I"&@1" I sniMark "U&
NEGATE =exp (14) I"-@1" senmark I"U-"
NOT =exp (14) I"101" Isenmmark I""
COMPLEMENT - exp (14) J ")@1" I senmmark I "
BINC - ivalue, (14) I"++@01" Isemark I"+4*X"
AINC - ivalue (14) I"@1++" Isemmark I"X++"
BOEC - ivalue (14) I"--@1" Isenark I"--X"
ADEC - Ivalue (14) I"@1--" Iseniark "X-
SIZEOF - typexp (14) I"sizeof(O1)" I senmark;
CAST - type tnchain exp (14) 1 "(01 02) 113" Isemmark
PROCCALL - procexp lexp (15)1 "01(02)" 1 semmark I"("
INDEX - arrexp exp (15)l "@l[@2]" 1 semniark I
PAREXP -exp (15) I"(01)" 1 semmark I "()"
PLUS -exp exp (12) "Il1 + 02"1 semmark ""j

MINUS - exp exp (12) @ 0 2" Isenimark
MULT = exp exp (13) I"@1 @ 2" Isemniark I
DIV - exp exp (13) I"@1 @ 2" Isefniark ""

Mon - exp exp (13) I"@1 %% 02" Iseninark ""
LSHIFT - exp exp (11) I"01 << 02" Isemmnark
RSHIFT - exp exp (11) I"01 >> 02" Isenmark ">'

*LSS - exp exp (10) I"@1 < 02" IsenimarkI""
GTR -exp exp (10) I"01 > @2" IseimnarkI""
EQL - exp exp (9) I"01 -= 02" Isemmark
GEQ - exp exp (10) I"@1 >- @2" Isemniark I"-
LEQ - exp exp (10) I"@1 <- 02" Isenmark
NEQL - exp exp (9) I"01 1- 02" Isenmark I"1-"
BAND - exp exp (8) I"@1 & 02" Isenimark I"k
BOR - exp exp (7) I"@1 @ 2" I senimark I"I"
BXOR . exp exp (6) I"@1 1'02" Isenimark I
AND - exp exp (6) I"@1 && 02" Isemmuark
OR - exp exp (4) I"@1 @I 2" Isemmnark I"I
ASSIG - Ivalue exp (2)l "01 @ 2"' 1 semniark I
APLUS - Ivalue exp (2)l "@1 @- 2" 1 semmnark I""
AMINUS - ivalue exp (2)l "@1 -- 2" 1 senimark I "'

AMUL - ivalue, exp (2) I"@1 @ 2" Isemmnark "=

ADIV - Ivalue exp (2) I"@1 @. 2" Isenimark ""

AMOD - Ivalue exp (2) I"@1 %%- @2" Isenimark I"-
ARSHIFT - Ivalue exp (2) I"@1 <<- 02" Isemmnark "'"

ALSIIIFT - ivalue exp (2) "@1 >>- 02" Isemmark
AAND - Ivalue exp (2) I"01 @- 2" Isenimark
AOR - ivalue exp (2) I"@1 @- 2" Isemmnark I"-KAXOR - Ivalue exp (2) I"@1 @- 2" Isemmnark I"-
COLATERAL *exp exp (1) I "@1 *02" I semmnark ""

0LANGUAGE DESCRIPTION FOR LOIPE 157

/0 classes '

extdof EXTPROC EXTOBJ PROCDEF OBJDEF STRUCTDEF COMMENT ENUMDEF UNIONDEF
TYPEIE F

oldent - IDENTOEF EMPTY
ident - IDENTUSE
defident - IDENTOEF
iparam -LPARAM;
body - DECICOMPOUND
Ideci - DEC15
istat - STATS
parai - PARAM QUEST
lenums - LENUMS;
enumelem - IDENTDEF ASSELEM
lcoinponent = LCOMPONENT;
fielddecl - FIELDOECI NONAMEFIELD COMMENT
varbl IDENTDEF ARRDECL PTRDECL PROCDECI
variable - ARRDECLP PTRDECLP PROCDECLP
procdecl - IDENTDEF PTRDECL;
stat - EXPSTAT IF IFE WHILE FOR RETURN BREAK CONTINUE

DO LABEL GOTO SWITCH CSTAT COMPOUND CASE
DEFAULT VOID

comment - COMMENT

compound - COMPOUND
type - INT CHAR NEWSTRUCT STRUCT SHORT LONG UNSIGNED

LFLOAT FLOAT DOUBLE USETYPEDEF
NEWUNION UNION NEWEMUM ENUM

otype - EMPTYTYPE INT CHAR NEWSTRUCT STRUCT SHORT LONG UNSIGNED
LFLOAT FLOAT DOUBLE USETYPEDEF
NEWUNION UNION NEWENUM ENUM

typexp =TYPENAME IDENTUSE INTCONST CHARCONST PROCCALL INDEX PAREXP PLUS
MINUS MULT DIV LSS GTR EQI GEQ LEQ NEQL AND OR ASSIG APLUS
AMINUS FIELD PTRFIELD CONTENTS STRING EXPIF ADDRESS NEGATE NOT
COMPLEMENT BINC AINC BDEC ADEC SIZEOF CAST AMUL ADIV AMOD
ARSHIFT ALSHIFT AAMD AOR AXOR MOD LSHIFT RSHIFT BAND BOR UXOR
CO LAT E RAL;

tnchain -TNPTR TNARRAY TNCALL EMPTYNAME
declar.tion - REGDEF OBJDEFLOC STRUCTDEFLOC COMMENT
ivarbi - LVARBL;
olcst - INTCONST IDENTUSE EMPTY
exp - IDENTUSE INTCONST CHARCONST PROCCALL INDEX PAREXP PLUS MINUS

MULT DIV LSS GTR EQL GEQ LEQ NEQL AND OR ASSIG APLUS AMINUS
FIELD PTRFIELD CONTENTS STRING EXPIF ADDRESS NEGATE NOT
COMPLEMENT BINC AINC 8DEC ADEC SIZEOF CAST AMUL ADIV AMOD
ARSHIFT ALSHIFT AAND AOR AXOR MOD LSHIFT RSHIFT BAND BOR BXOR

COLATERAL ;
procexp - IDENTUSE CONTENTS
arrexp - IDENTUSE CONTENTS INDEX PLUS MINUS APLUS AMINUS AINC ADEC BINC

BDEC CAST
olnitia - EMPTY INTCONST CHARCONSI STRING LCEXP IDENTUSE ADRIDENT ADDRESS;
lexp - LEXP;
ivalue - IDENTUSE INDEX FIELD PTRFIELD CONTENTS
cexp - INTCONST CHARCONST STRING LCEXP IDENTUSE ADRIDENT ADDRESSI
ccsxp - INTCONST CHARCONST STRING LCEXP IDENTUSE ADRIDENT ADDRESS CCEXP;
oexp - EMPTY IDENTUSE INTCONST CHARCONST PROCCALL INDEX PAREXP PLUS

MINUS MULT DIV LSS GTR EQL GEQ LEQ NEQL AND OR ASSIG APLUS
AMINUS FIELD PTRFIELD CONTENTS STRING EXPIF ADDRESS NEGATE NOT
COMPLEMENT BINC AINC BDEC ADEC SIZEOF CAST AMUL ADIV AMOD
ARSHIFT ALSHIFT AAND AOR AXOR MOD LSHIFT RSHIFT BAND BOR BXOR

COLATERAL P

P;

158 LANGUAGE DESCRIPTION FOR LOIPE

A.2. Abstract Syntax of Debug Statements

1" production for debug statements.
Second unparse scheme hides Jebug statements:
used for display of program only

OEBUGSTATEMENT - state condition action I "M1 assert 02 do @3;" t
IsemDEBSTMT

ENABLE - is) I "enabled" I semenable;
DISABLE -s) I "disabled" I semdisable;
PAUSE is() I "pause" I semmark:
TRACE *s) I "trace" I semmark;r

/0 classes 0/

state - ENABLE DISABLE
condition - DECLCOMPOUND
action =PAUSE TRACE;

UA LOWPE SESSION 159

Appendix B

A LOIPE Session

If
while
forloop

function factorial (n : integer) integer; assign
begin return

end factorial:

r

Node: Meta class: STATEMENT

LOIPE: If

)
<
0 .

function factorial (n : integer) :integer;
!>

begin <:

if Sconditlon then

Sstat identuse
else

Sstat
end factorial;

Node: Meta class: CONDITION

LOIPE: > -'

0 0 0

; 'I

function factorial (n : integer) : integer;
begin

If n > 0 then <

return(n 0 factorial(n-I));
else <+

return();lu+)

end factorial;
or

Node: Mete class: EXPRESSION

LOIPE: I

function factorial (n : integer) : integer;
be in

if n) 0 then

return(n * factorial(n-i));
rlseturn(I ;

end factorial;

Node: if class: STATEMENT

LOIPE:

Entering A Program

function factorial (n :integer) : integer;/* trace statement 0/
begin
enabled assert n) 0 do pause:

if d > I then[
return(n factorial(n-))

else
return(I ;

end factorial;

Node: if class: STATEMENT

LOIPE:

Cursor out

function factorial (n :integer) : Integer;/* trace statement 0/
begin
enabled assert n > 0 do pause;

if0[M> I then
return(n factorial(a-1));

else
return(I);

end factoriali

Error 0: Variable undefined

LOIPE:

Replace d by n

function factorial (n :Integer) : integer;/* trace statement 0/
begin

enabled assert n) 0 do pause;
ifI') I then

return(n factorial(n-I));
else

return(I);

end factorial;

Mode: ident class: EXPRESSION

LOIPE:.run

4 Code Generation. Replacment. and Start Execution

Detection and Correction of an Error

function factorial (n integer) integer;/* trace statement 0/ CALLSTACK:
begin

enabled assert n > 0 do pause;

if O) I then
return(n factorial(n-1));

else
return(I):

end factorial;

Factorial Program

Type in a number between I and 100:

User Program

Running

function factorial (n Integer [7]) :integer; /* trace statement CALLSTACK:
begin main
enabled assert n > 0 do pause;

if n > I theni

return(n 0 factorial(n-I)
else

return(I

end factorial;

Factorial Program

Type in a number between I and 100: 7

Node: if class: STATEMENT

Running

p
0 0 0

function factorial (n : integer [5]) : integer: / trace statement CALLSTACK:
begin main

enabled assert n > 0 do pause; factorial

if M > 1 then factorial

return(n factorial(n-I));
else

return(I);

end factorial;

Factorial Program

Type in a number between I and 100: 7

User Program

Running

Trace Execution of Program

* 160 REFERENCES

References

[Albrecht 80] Albrecht, P.F., Garrison, P.E., Graham, S.L., Hyerle, R.H., Io, P., Krieg-
Brueckner, B.
Source-to-Source Translation: Ada To Pascal and Pascal to Ada.
Sigplan Notices 15(11), Nov, 1980.

[Andler 79] Andler,S.
Predicate Path Expressions: A High-Level Synchronization Mechanism.
PhD thesis, Carnegie-Mel'on University, Computer Science, Aug, 1979.

[Archer 81] Archer, J., Conway, R.
COPE: A Cooperative Programming Environment.
Technical Report TR 81-459, Corne University, Computer Science, June,

1981. R

[Backus 59] Backus, J. W.
The Syntax and Semantics of the Proposed International Algebraic

Language of the Zurich ACM-GAMM Conference.
In Proceedings of the International Conference on Information Processing,

pages 125-132. UNESCO, 1959.

[Ball 80] Ball, J. E.
Alto as Terminal.
1980.
Carnegie-Mellon University.

[Ball 81] Ball, J. E.
Canvas: Graphics for the Spice personal timesharing system.
Proceedings of Comgraph 1981, Online Conferences, Oct, 1981.

[Bare181] Barel, M.
Perq Pascal Extensions
Three Rivers Computer Corp., 1981.

[Belady 78] Belady, L.A.
Large Software Systems.
Technical Report RC-6966, IBM Thomas J. Watson Research Center, Jan,

1978.

[Blair 71] Blair, J.C.
An Extendible Interactive Debugging System.
PhD thesis, Purdue University, June, 1971.

[Buxton 80] Buxton, J.N.
Requirements for Ada Support Environments.
Department of Defense.

V

REFERENCES 161 r

[Campbell 78] Campbell, R.H., Miller T.J.
A Path Pascal Language.
Technical Report, University of I1. at Champaign-Urbana, Computer

Science, April, 1978.

[Cattell 79] Cattell, R.G.G.
An Entity-Based Database Interface.
Technical Report CSL-79-9, Xerox Parc, Aug, 1979.

[Day 79] Day, N.G.P.
Correct Editing with ATNs.
IUCC Bulletin 1(2), 1979.

[Denny 81 Denny, B., and Feiler P.
SMILE: System Management and Incremental Language-Oriented

Environment.
Manual of Gandalf project, Carnegie-Mellon University.

[Deutsch 71] Deutsch,P., and Mac Ewen.
A Flexible Measurement Tool For Software Systems.
In Proceedings of IFIP. 1971.

[Deutsch 73] Deutsch, P.
An Interactive Program Verifier.
Ph.D. Thesis CSL-73-1, Xerox Parc: Palo Alto, May, 1973.

[Deutsch 80] Deutsch, L.P. and Taft, E.A. (editors).
Requirements for an Experimental Programming Environment.
Technical Report CSL 80-10, Xerox Palo Alto Research Center, june, 1980.

[Diana 81] G. Goos and W.A. Wulf (editors).
Diana Reference Manual
Universitaet Karlsruhe and Carnegie-Mellon University, 1981.

[DoD 78] Department of Defense.
Requirements For The Programming Environment For The Common High

Order Language.
Technical Report, Department of Defense, July, 1978.

[DoD 80] United States Department of Defense.
Reference Manual for the Ada Programming Language.
1980.

Proposed Standard Document.

[Donzeau-Gouge 80].
Donzeau-Gouge, Veronique, Huet, Gerard, Kahn, Gilles and Lang, Bernard.
Programming Environments Based on Structured Editors: The Mentor

Experience.
Presented at the Workshop on Programming Environments in Ridgefield,

CT on June 1980.

* 162 REFERENCES

[Fabry 76] Fabry, R.S.
How to Design A System in which Modules Can Be Changed On The Fly.
In 2nd International Conference on Software Engineering. IEEE, 1976.

[Feiler 79a] Feiler, Peter H.
IPC System Version 1.
Gandalf internal documentation.
1979.

[Feiler 79b] Feiler, P. H. and Medina-Mora, R.
The GC Language.
1979.
Gandalf Internal Documentation. Carnegie-Mellon University.

[Feiler 80] Feiler, Peter and Medina-Mora, Raul.
An Incremental Programming Environment.
Technical Report CMU-CS-80-126, CMU, Computer Science Department,

April, 1980.

[Feller 81a] Feiler P., and Medina.Mora R.
An Incremental Programming Environment.
IEEE Transactions on Software Engineering SE.7(5), Sept, 1981.

[Feiler 81b] Feiler, P.H.
Comments on the ALOE Structure Editor.
1981.
Working Notes of the Gandalf project. P

[Feiler 81c] Feller, P.H., Engholm, L.
GC to Pascal Program Translation Through ALOE.
1981.
Working Notes on an experiment.

[Feiler 82] Feller, P.H., and Kaiser, G.E.
A Display-Oriented Structure Manipulator: A Multi-Purpose System.
Submitted to 6th International Software Eng. Conference IEEE , Sept.,

1982.

[Gaines 71] Stockton Gaines.
The Debugging of Computer Programs.
Institut for Defense Analysis, 1971.

[Gandalf 821 Habermann, A.N., et.al.
A Pascal Programming Environment Supporting Pascal For Undergraduate w

Education.
1981-82.
Design discussions and working notes for its generation from the Gandalf

system.

ip

REFERENCES 163

[Ganzinger 77] Ganzinger,H., Ripken K., Wilhelm, R.
Information Processing 77.: Automatic Generation of Optimizing Multipass

Compilers.
IFIP, North Holland, 1977,.

[Ghezzi 79] Ghezzi, C., Mandrioli, D.
Incremental Parsing.

ACM Transactions on Programming Languages and Systems 1(1), July,
1979.

[Goldstein 81] Goldstein, I.P. and Bobrow, D.G.
Browsing in a Programming Environment.

In Proc. 14th Hawaii Conference on System Science. jan., 1981.

[Gosling 81a] Gosling, J.
Unix Emacs
Carnegie-Mellon University, 1981.

[Gosling 81 b] Gosling, J.

A Redisplay Algorithm.
In Proceedings of the ACM SIGPLAN/SIGOA Symposium on Text

Manipulation. ACM SIGPLAN/SIGOA, June, 1981.

[Goulon 78] Goullon, H., Isle, R., Loehr, K.-P.
Dynamic Restructuring in an Experimental Operating System.
IEEE Transactions on Software Engineering 4(4), July, 1978.

[Habermann 78] Habermann, A.N., et.al.
Modularization and Hierarchy in a Family of Operating Systems.
Technical Report CMU-CS-78-101, Carnegie-Mellon University, Computer

Science, Feb, 1978.

[Habermann 79a] Habermann, A. N.
The Gandalf Research Project.
In Computer Science Research Review 1978-79, pages 28-35. Carnegie-

Mellon University, 1979.

[Habermann 79b] Habermann, A.N.
Implementation of Regular Path Expressions.
Technical Report, Carnegie-Mellon University, Computer Science, Feb,

1979.

[Hansen 74] Hansen, G. J.
Adaptive Systems For The Dynamic Runtime Optimization of Programs.
PhD thesis, Carnegie-Mellon University, Computer Science, Dec, 1974.

[Honeywell 80] Honeywell Inc.
Formal Definition of the Ada Programming Language.
Technical Report, Honeywell Inc, CII Honeywell Bull, INRIA, Nov, 1980.

164 REFERENCES

[Ichbiah 79] Ichbiah, J.D., et.al.
Rationale for the Design of the Ada Programming Language
Sigplan Notices edition, 1979.

[Ingalls 78] Ingalls, D.H.H.
The Smalltalk-76 Programming System Design and Implementation.
In Fifth Annual ACM Symposium on Principles of Programming Languages.

ACM, Jan, 1978.

[Ivie 77] Ivie, Evan L.
The Programmer's Workbench - A Machine for Software Development.
CACM 20(10), Oct, 1977.

[Jensen 74] Jensen, K. and Wirth, N.
Pascal User Manual and Report.
Springer-Verlag, 1974.

[Johnson 75] Johnson, S.C.
YACC - Yet Another Compiler-Compiler.
Computing Science Tech. Report 32, Bell Laboratories, July, 1975.

[Johnson 77] Johnson, M.S.
The Design of a High-Level, Language-Independent Symbolic Debugging

System.
In Proceedings ACM National Conference. 1977.

[Johnsson 781 Johnsson, R.K.
A Portable Compiler:Theory and Practice.
In Fifth ACM Symposium on Principles of Programming Languages.

SIGPLAN-SIGACT, Jan, 1978.

[Jones 78] Jones, A.K., et.al.
Programming Issues Raised by a Multiprocessor.
Proceedings of the IEEE 66(2), Feb, 1978.

[Kahn 81] Kahn, Gilles.
Beyond Mentor.
1981.
Private Conversation at Workshop on Ada Environments, Murnau Germany.

[Kay 69] Kay, A. C.
The Reactive Engine.
PhD thesis, University of Utah Dept. of Electrical Engineering and

Computer Science, Aug, 1969.

[Kotok 61] Kotok, A.
DEC Debugging Tape.
Technical Report MIT-1, MIT, 1961.

Iw

REFERENCES 165

[Lampson 77] Lampsom, Butler, et.al.
Report on the Programming Language Euclid.
SigPlan Notices 12(2), Feb, 1977.

[Lane 73] Lane,T., et.al.
Six 12 User's Manual.
Technical Report, Carnegie-Mellon, 1973.

[Lasker 74] Lasker, D.M.
An Investigation of a New Method of Constructing Software.
Technical Report CSRG-38, University of Toronto, Computer Systems

Research Group, Sept, 1974.

[Liskov 80] Liskov, Barbara.
Primitives for Distributed Computing.
Distinguished Lecture Series at CMU.
1980.

[Lunde 74] Lunde, A.
Evaluation of Instruction Set Processor Architecture by Program Tracing.
PhD thesis, Carnegie-Mellon University, Computer Science, Jan, 1974.

[Martin 77] Martin,F.H.
HAL/S - The Avionics Programming System for Shuttle.
In Proceedings of the AIAA Conference on Computers in Aerospace. Nov,

1977.

[Mauersberg 82] Mauersberg, H., Bruegge, B.
High-Level Network Debugging Support.
Private Communication.

[Medina-Mora 81] Medina-Mora, Raul and Notkin, David S.
ALOE Users' and Implementors' Guide.
Technical Report CMU-CS.81 -, CMU, Computer Science Department,

November, 1981.

[Medina-Mora 82] Medina-Mora, R.
Syntax-Directed Editing: Towards Integrated Programming Environments.
PhD thesis, Carnegie-Mellon University, expected at beginning of 1982.

[Mikelsons 81] Mikelsons, M.
Prettyprinting in an Interactive Programming Environment.
Technical Report RC 8756, IBM T.J. Watson Research Center, Computer

Science, March, 1981.

[Mitchell 70] Mitcheli J.G.
The Dec 'gn and Construction of Flexible and Efficient Interactive

Programming Syst. -is.
PhD thesis, Carnegie-Mellon University, 1970.

166 REFERENCES

[Mitchell 79] Mitchell, J.G., et.al.
Mesa Language Manual, Version 5.0.
Technical Report CSL-79-3, Xerox Parc:Palo Alto, 1979.

[Model 79] Model, M.L.
Monitoring System Behavior In a Complex Computational Environment.
PhD thesis, Stanford University, 1979.'

[Myers 80] Myers, E: ad A.
Displaying Data Structures for Interactive Debugging.
Technical Report CSL-80-7, Xerox Parc:Palo Alto, June, 1980.

[Notkin 821 Notkin D.
Interactive User Environments Without Files.
1982.
Thesis Proposal.

[Organik 72] Organik, E.I.
The Multics System; an examination of its structure.
M.I.T. Press, Cambridge, 1972.

[Parnas 72] Parnas, D.L.
On the Criteria to be Used in Decomposing Systems into Modules.
Comm. ACM 15(12):1063-1058, Dec, 1972.

[PDP11 73] Digital Equipment Corp.
PDP 11 processor handbook.
DEC, 1973.

[Perdue 74] Perdue,C.
User's Introduction to UC(Lisp
Carngegie-Mellon University, Computer Science, 1974.

[Petit 69] Petit, P.
Raid.
Technical Report Operating Note 58, Stanford Artificial Intelligence

Laboratory, 1969.

[Pinc 73] Pinc, J.H., Schweppe, E.J.
A Fortran Language Anticipation and Prompting System.
In Proceedings ACM National Computer Conference. Sept, 1973.

[Randelf 75] Randell, Brian.
System Structure for Fault Tolerance.
SIGPLAN Notices 10(6), June, 1975.

[Sandewall 78] SandeWall, E.
Programming in the Interactive Environment: The InterLisp Experience.
ACM Computing Surveys 10(1), March, 1978.
IP

! 1

REFERENCES 167

[Satterthwaite 75] Satterthwaite.
Source Language Debugging Tools.
PhD thesis, Stanford University, May, 1975.

[Shapiro 801 Shapiro,E., et.al.
Pases: A Programming Environment for Pascal.
Technical Report, Yale University, April, 1980.

[Swinehart 74] Swinehart, D. C.
Copilot: A Multiple Process Approach to Interactive Programming Systems.
PhD thesis, Stanford University, July, 1974.

[Taylor 80] Taylor, R.N.
Assertions In Programming Languages.
Sigplan Notices 15(1), Jan, 1980.

[Teitelbaum 80] Teitelbaum, Tim and Reps, Thomas.
The Cornell Program Synthesizer: A Syntax-Directed Programming

Environment.
Technical Report TR 80-421, Cornell University, Department of Computer

Science, May, 1980.

[Teitelman 77] Teitelman, Warren.
A Display Oriented Programmar's Assistant.
Technical Report CSL-77-3, Xerox Parc:Palo Alto, March, 1977.

[Teitelman 78] Teitelman, Warren.
Interlisp Reference Manual
XEROX Paio Alto Research Center, 1978.

[Thacker 79] Thacker, C.P., et.al.
A:to: A Personal Computer.

or Technical Report CSL-79-1 1, Xerox Parc:Palo Alto, Aug, 1979.

[Tichy 80] Tichy, Walter.
Software Development Control Based on System Structure Description.
PhD thesis, Carnegie-Mellon University, Jan, 1980.

[Unix 81a] Unix Programmer's Manual
Seventh Edition edition, 1981.

[Unix 81b] Katseff, H.P.
Sdb: A Symbolic Debugger
Unix User's Manual edition, 1981.

[VMS 78] VAX VMS Manual
Digital Equipment Corp., 1978.

[Warren 75] Warren, H.
Design of The FDS Interactive Debugging System.
IBM Report, 1975.

S1C-8 REFERENCES

[Wilcox 76] Wilcox. T.R., et.al.
The Design and Implementation of a Table Driven, Interactive Diagnostic

Programming System.
Communications of the ACM 19(11), Nov, 1976.

[Wirth 77] Wirth, Niklaus.
Modula: A Language for Modular Programming.
Software - Practice and Experiance 7(1), 1977.

[Wulf 75] Wulf, William, et.al.
Programming Languages Series. Volume 2: The Design of an Optimizing

Compiler.
American Elsevier Publishing Company Inc., 1975.

[Wulf 791 Wulf, W., Feiler, P.H., Brender R.. Zinnikas, J.
A Quantitative Technique For Comparing the Quality of Language

Implementations.
1979.
Working Paper, Computer Science, Carnegie-Mellon University.

[Wulf 801 Wulf, W.A.

P0CC: A Machine-Relative Compiler Technology.
Technical Report CMU-CS-80-144, Carnegie-Mellon University, Computer

Science, Sept, 1980.

[Yarwood 77] Yarwood, E.
Toward Program Illustration.
Master's thesis, University of Toronto, Oct, 1977.

*

