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FOREWORD

This paper presents the results of an electromagnetic

analysis of submerged antennas. The work is part of an effort

by the Institute for Defense Analyses (IDA) to support a joint

DARPA-Navy design team. The team was formed to investigate the

feasibility of invisible VLF receive antennas for SSBNs, and to

develop a paper design for a selected antenna configuration.

One of the objectives of the Submarine Antenna Study has

been to reach an understanding on whether a cable antenna, pro-

perly designed, can be submerged several meters deep to achieve

radar and optical undetectability. To accomplish this objective,

an accurate analytical tool has been developed to evaluate the

dependence of the antenna sensitivity and thermal noise--related

to the antenna resistance--upon the antenna configuration and

physical parameters. This paper documents and discusses in de-

tail this analytical tool. Numerical results for the impedance

of a potentially low noise configuration are also presented.

They have been instrumental in identifying the key design param-

eters and in establishing criteria for their selection. A com-

prehensive system evaluation of different antenna designs is,

however, outside the scope of this report and is the subject of

a separate paper.
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ABSTRACT

This paper provides a comprehensive accoun. of analytical

* results for computing the antenna impedance and the equivalent

length of a linear antenna, either insulated or end-grounded,

- immersed in a conducting medium. The theoretical results and

* the concomitant computer codes are directly applicable to the

analysis of the sensitivity and thermal noise of a submerged

* .cable antenna.r
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The purpose of computing is insight, not numbers.

...R.W. Hamming
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SU.AR AND CONCLUSIONS

A computer model for a linear antenna in an unbounded,

possibly dissipative medium has been developed, with the ob-

jective of providing a tool for the numerical evaluation of the

q antenna impedance and sensitivity. The model is flexible, its

range of applications covers a variety of physical situations

and antenna configurations. Among them, of great practical

interest, are the insulated antenna in a conducting medium,

the bare antenna in a conducting medium, and the antenna in

partial contact with the medium via electrodes in the antenna

terminal regions. The model applies also to antennas in a semi-

infinite medium (submerged antennas in the ocean), provided

the distance from the surface is greater than several antenna

skin depths in the dissipative medium.

The analytical approach is based on an expression for the

antenna impedance which is stationary with respect to the func-

tional form of the antenna current, in the sense of being in-

sensitive to a first-order variation of the current functional

form with respect to the correct one. A drastic simplification

of the analysis and of the numerical computations has been

achieved by representing the field as a superposition of cylin-

drical waves, whose complex amplitudes--the Fourier Transforms

of the field components in the direction of the antenna axis--

depend in a relatively simple way upon the antenna current dis-

tribut ion. ~

Confirming the physical intuition, the numerical computa-

14 tions show that a desirable configuration for a VLF antenna sub-

merged in sea water consists of an end-grounded cable, with

xvii



electrodes having a large area, and consequently a low contact

r resistance. Low impedance, low Q, and high sensitivity are de-
sirable features of this design approach.
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1.INTRODUCTION

1.1 MOTIVATION

The primary parameters characterizing the performance of

an electrically small antenna in a communication system are two:

* . a) The antenna (open circuit) equivalent length.*

b) The antenna impedance.

It is the purpose of this paper to introduce and discuss in de-

*tail an analytical tool for the numerical evaluation of a) and

* b) for a thin cylindrical antenna in an unbounded, generally
dissipative medium. The analytical model here presented is

flexible and can accommodate different physical situations and

antenna condigurations. Cases of particular importance are:

*the insulated antenna, the bare antenna, and the "grounded" cable

* antenna with the terminal regions in contact with the dissipative

medium.

Consider a receive linear antenna of length h immersed in

a field whose electric component in the direction of the antenna

* axis at the abscissa s along the antenna is E(s). Suppose now

that the antenna is operating in transmission: further, assume

that a current generator of unit strength feeds the antenna

*terminals. (This condition does not need to correspond to a

*practical or useful way of op~ration but rather should be con-

1 sidered as a conceptual device to evaluate certain quantities

characterizing the antenna receive properties.)** Suppose

The antenna gain is a concept of limited or no value for
antennas in dissipative media. P,

Recall that submarine VLF antennas are used only for reception.



the current distribution in transmit operation is I(s). Then,

on the basis of reciprocity theorem [Ref. 1], it can be shown

that the open circuit receive voltage is equal to

Vr =[ E(s) I(s) ds (I)

0

(Appendix A). If E(s) is a plane wave field, an effective length

Xe can be introduced, related to Vr by

V e9, E, (2)r e

with

-h

e I(s) ds. (3)

0

If the antenna input impedance is Z = R + JX, the open circuit

thermal noise at the antenna open terminals is

PN 4KTR, (4)

where T is the temperature of both the antenna and the surround-

ing medium.* Equations (l) and (4) are general and apply to an

antenna in an arbitrary medium, either lossless or dissipative.

Clearly, their application requires the analysis of the antenna '-

The antenna impedance in conjunction with the antenna Q, deter-
mines the overall noise figure of the antenna/front-end am-
plifier combination. If the antenna Q, defined as the ratio
between the antenna reactance and resistance at center frequency,
is low or moderate, the noise figure can be made low by tuning
the reactive component of the antenna impedance [Ref. 2]. If
the antenna Q is very high, see examples in Section 1.2, the loss
in the tuning circuit and the input resistance of the front end
amplifier will have the effect of increasing the system noise
(and, of course, reducing the overall Q of the input stage/an-
tenna combination). The discussion of these important issues
is outside the scope of this report.

2
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in transmit operation, with the objective of determining the

antenna current distribution and input impedance. -,

1.2 BACKGROUND

An antenna in a conducting medium is a physical object very

different from an antenna in free space, the difference stem-

ming, of course, from the fact that the medium surrounding the

antenna can support a conduction current in one case and not

in the other. This has, in turn, an enormous effect on the

antenna impedance and current distribution. To elaborate, con-

sider Figs. 1 to 6. Figure 1 represents a short dipole in free

space whose geometric parameters are

h 4.69104 h = 1.83.10- 3
lo

0

where X is the wavelength in free space. If the frequencyo

were equal to 18 kHz, h would be equal to 30.5 m. The antenna

impedance, calculated by using the computer model described

later in this paper, is

Z = 1.4.10 - Ji.98 105 ohm

two

and the equivalent circuit--valid for frequencies such that

h << Xo--consists of a small resistance in series with a large

reactance corresponding to a very small series capacitance. As

is well known, the current distribution along the antenna is '

approximately triangular, see Fig. 1, the current leading the

excitation voltage by almost exactly 90 degrees.* This example

To save computer time, only a small number of harmonics (N = 5)
has been used here and in the example of Fig. 2 to represent
the current (see Section 2). If a higher number of harmonics
had been used, the triangular shape of the current distribution
would be more clearly apparent. The impedance, however, is
virtually unaffected.



shows clearly why such a short dipole is a most inefficient

antenna. Consider, for the sake of discussion, the dipole in

transmit operation. Tuning it with a lossless inductance, a

physical impossibility, would result in a resonant circuit hav-

ing a Q greater than 10 7, with a concomitant 3 dB bandwidth of

about 0.001 Hz for a center frequency equal to 18 kHz. Intro-

ucing losses in the tuning circuit will reduce the system Q
Ito an acceptable value, but at the expense of the radiation

efficiency, which will become a small fraction of unity. Par-

allel reasoning applies to the receive situation, for which

it is easy to see that an enormously impractical high input

impedance for the receiver front end would be necessary.

Suppose now that the same dipole is coated with an insu-

lating jacket and immersed in sea water (Fig. 2). The jacket

is assumed to have an outer diameter 2p = 16.5 mm with a rela-

tive dielectric constant = 1.65. The calculated impedanceP

is

* Z = 2.2 10  - J 3.3210 ohm

and the equivalent circuit and current distribution are also

shown in Fig. 2. The resistance has increased but it is still

comparatively small with respect to the reactance. The system

Q, still exceedingly high, is less than for the antenna in free

space. The physical reason is, of course, that in the region

surrounding the antenna the displacement current has been re-

placed by a conduction current, the reactance corresponding,

heuristically, to the capacitive coupling between the antenna

and the conducting medium. The current distribution is again

triangular, with the current essentially in quadrature with the

gap voltage. As expected, it is numerically found that, if the

thickness of the insultating jacket is reduced, the capacitance

between the antenna conductor and the salt water increases,

with a reduction of the antenna impedance (see Fig. 3).

5



0.3

t T c( WATR) =4.2 mho/m
h = 30.5. m
I e(ATR Is 30

V0= IV -h 2@ = 1.2..
2p- 11.5 ma
e, = 1.65

I I
Z 0.22 -Z1.u 10u oh

EaIiVLENTCSUI

0.2

FIGURE 2. Short insulated dipole in seawater, example I



1.I I I I'
_ IV r C I h- 3.5m (WATER) - 4.2 Mho/i

0.230 1 1MkHz e(WATER)= 0
2o- 1.3 mm

1.. i p 2p= 2mm
1655

Z= 0.231- 15.62 *103 ohm

he = I 193

(N= 5)

0 2 4 a a 10 12 14 is

Z (mie)
4-14-12-7

FIGURE 3. Short insulated dipole in seawater, example II

In Figs. 4 and 5 the results of the numerical analysis are

shown for a completely different physical situation. The an-

tenna is now "bare" and immersed in salt water. For the same

frequency diameter and length of the antenna conductor as in the

previous examples, the antenna impedance is

Z = 0.326 + J.353 ohm,

with a Q close to unity. It can be shown numerically that the

impedance becomes insensitive to the antenna length, provided

the latter is greater than a few skin depths in the medium. The

reason is, of course, the rapid attenuation of the current along

7
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the antenna with the distance from the feed point. In fact, ex-

cept in the immediate vicinity of the feed point, the calculated

a antenna current distribution fits very well a decreasing exponen-

* tial with an attenuation close to that of a plane wave in salt

* water, 4t.66 dB/rn*. Thus, in this kind of design, the antenna
flactive" parts is limited to a length equal to only several skin

depths in salt water, no matter what the physical length of the

antenna is. The antenna sensitivity is small. Clearly, this

kind of design does not lead to a desirable antenna configuration.

Consider, finally, an antenna in a dissipative medium--sea

water--insulated by a dielectric jacket, except at the ends where

two cylindrical metal segments, the "electrodes", are in contact

with the medium, Fig. 6. In this case, we heuristically expect

* the impedance to be much smaller than in the cases of Figs. 2

and 3, a very desirable feature. In addition, however, unlike

the case of Figs. 14 and 5, the current distribution does not decay

*fast with the distance from the feeding point, being for h <<X«
almost a constant (Fig. 6). Therefore, the antenna sensitivity

is excellent, its effective length being practically equal to

its physical length. From the heuristic discussion and the

* numerical examples in this section,, and from the detailed analy-

sis in the next sections, it is apparent that the structure of

Fig. 6. conductively coupled to the medium, is a physical object

* very different in many respects from that of Figs. 2 and 3. For

example, the antenna of Fig. 6 can be operated at or close to dc,

* unlike the insulated antenna of Fig. 2 (see Section 5). This

physical difference has its mathematical counterpart in the some-

what different analytical formulation, although based on the

same general concept, and in the concomitant computer code.

The fit to a decaying exponential would be even better if a
larger number of harmonics had been used in representing the

* current when applying moment method.

10
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FIGURE 6. End-grounded antenna in seawater

1.3 ANALYTICAL APPROACH

The literature on linear antennas is, of course, immense.

Yet it does not appear that a sufficiently general method of

* - analysis for dipoles in a dissipative medium has hitherto been

established. R.W.P. King and his coworkers, in a series of

papers, addressed the problem of determining the impedance and
the current of an insulated antenna in a lossy medium. Ref-

erence [3] is a concise tutorial introduction to the subject.

The approach in Refs. [4] and [5], is based on an extension of
Hallen's integral equation for the antenna current, which was

originally established for antennas in free space. The kernel

of the integral equation is, however, approximated, and the

validity of the solution is limited to restricted ranges of.
11
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certain physical and geometric parameters, such as the ratios of

the moduli of the propagation constants in the medium and in -*

the dielectric jacket and the ratio of the conductor's to the

jacket's diameters, Refs. [4] and [5]. For the end-grounded

antennas no solution seems available. The simple idea of con-

sidering the antenna as a section of a short-circuited trans-

mission line, Ref. [5] does not take into account the geometry

and size of the antenna regions in contact with the medium.

Consequently, this simple approach is not useful for the end-

grounded, electrically short antenna for which the electrode

parameters crucially affect the antenna resistance (see Sec-

tion 4).

The method used here is not restricted to a limited range

of parameters, but applies, with the appropriate modifications,

to both the insulated and end-grounded antennas. An expression

for the impedance is established which depends upon the Fourier

Transforms of the various quantities with respect to the axis

of symmetry of the problem. The approach drastically simplifies

the computations, transforming into single integrals multiple

integrals of convolutional type, which are difficult to evaluate

because of the singularities of the integrands. For the insu-

lated case, the current is determined by enforcing the appro-

priate boundary conditions for the electric field on the antenna

conducting surface, via an application of the moment method,

Ref. [6], in the wavenumber domain rather than in the coordinate

domain (Section 3). The simplification thus obtained is sub-

stantial. For the end-grounded antenna, a parallel approach

could have been used. However, in this case, for electrically

short dipoles, a further simplification of the analysis is per-

missible (Section 4), due to the possibility of making a rea-

sonably accurate guess of the functional form of the antenna

current and to the stationary character of the expression for

the antenna impedance.
-P
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The analysis is, in principle, limited to antennas in an

unbounded medium. Practically, it can be applied to submerged

antennas in sea water, provided the distance from the ocean sur-

face to the antenna is greater than a skin depth. In this case,

the presence of the surface, as physically clear, has no sig-

nificant effect on the antenna impedance and current distri-

bution, (Ref. [7]).*

r

To understand this, the following heuristic reasoning will help.
The antenna impedance in the presence of the water/air interface
is equal to that of the antenna in an unbounded ocean plus a
correction term due to the energy scattered from the ocean sur-
face. If the radiation of the antenna is represented via a
plane wave expansion, each plane wave experiences, after a re-
flection at the interface, an attenuation - two ways - greater
than 17 dB for every skin depth. This corresponds to an error
in the impedance calculation of less than 8.10-12, 2.10-2,J 3.10-3
at one, two, and three skin depths, respectively. To put the
issue in perspective, the skin depth at 18 Khz is approximately
1.8 m, and depths greater than, say, 5 or 6 m minimum are those
of greatest practical interest in this study. F

13
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2. CURRENT AND IMPEDANCE CALCULATIONS

[ 2.1 GENERAL PHILOSOPHY

Although already mentioned in the Introduction, for the

sake of clarity it is here restated that the objective of ther

analysis and the associated computer codes is to find the an-

tenna impedance and the current distribution, in turn related

to the thermal noise and sensitivity.

Denote by "e" the antenna radius of the feed point of ther

antenna, the latter being a small region, a cylindrical gap,

interrupting the continuity of the antenna conductor. Because

this region is small, the axial component of the electric field

is constant in the feed gap. If p, z, and 0 are cylindrical

coordinates, the z-directed field in the gap is equal to

V
E (p=e, Z.0) = 0- rect (5)z 7

(Fig. 7), where rect(x) is a function equal to 1 for lxi 1 and

zero for lxJ > 1. Consider now a structure equal to that of

the actual antenna but with the gap eliminated; that is,, with

* the metallic continuity of the antenna conductor reconstituted.

Consider the gap field, (5), as a ribbon of magnetic current ra-

diating in the presence of the antenna conductor (with the gap

eliminated). The magnetic current must be imagined to be located

at p = e+ that is, separated, but very close to the antenna

cylindrical surface. It can be easily shown on the basis of one

of the forms of the equivalence theorem, that the field outside

the antenna is not changed in the new situation (depicted in *

Fig. 7), a fact perhaps intuitive (Appendix B). The problem to

15
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be solved can be viewed now as a near-field scattering problem:

determine the current on the antenna (uninterrupted) conductor

when the ribbon of magnetic current

_ = -- rect 6(p-e) = rect 6(p-e) ¢ (6)

+

is present at p = e . The field (5) is the incident field of

the scattering problem, because the ribbon of magnetic current

is infinitely close to the antenna surface. The current (to be

found) will be the correct one if it supports an electric tan-

gential (z-directed) field equal to zero on the antenna surface

except for Izj < 6, where it must be equal in magnitude and op-

posite in sign to the gap field (5). In computing the field,

-the current must be assumed, according to the equivalence theorem,

as radiating without the conductor present, that is, in homogen-

eous medium for the case of Figs. 1 and 4, and in a cylindrically

*layered region in the other cases.

2.2 A VARIATIONAL EXPRESSION FOR THE ANTENNA IMPEDANCE

Call J the density of current on the surface of the con-

ductor. Let us denote by L(J) the integro-differential opera-

tor - which does not need to be specified for the time being -

which, when acting on J, generates the tangential electric field

*t on the conductor surface
-t

4= L(J) . (7)

The correct current distribution generates a tangential field

on the conductor equal in magnitude and opposite in sign to the

incident field due to the ribbon of magnetic current. Thus,

from (5) and (7), on the antenna surface

-zf~-z -7- rect=L()()

17
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For obvious reasons of symmetry, the current density is z direc-

ted and independent of €

1

J (z,¢) 1-e I(z)z

A variational expression for the antenna impedance, which is

stationary with respect to small variation of J with respect

to the correct functional form, can be established via the

following procedure. Introduce the inner product in a function

space

J" it • J d- J • L(J) , (10)

a

where a is the surface of the antenna conductor. From (9), one

obtains

2w (5/2

V 021 61 (z) dzdO = J.L(J) (11)
6 27re

o -6/2

Because 6 << h < X, in (11) I(z) = 1(0)-- 1o, yielding

- V0 10 J*L(J) (12)

Since the antenna impedance is

V
Z 0z = o (13)

0

from (12), it follows that

J.L(J)
Z 2  (14)

0
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Let us take the first variation of (14 ):

.SJL(J) + J.L(SJ) J.L(J)
6Z=- + 2 61 (15)12 10

Since L is a symmetric operator (because of reciprocity),

6J.L(J) J.L(6J) . (16)

Also, from (7) and (8),

- Vo 61 6J.L(J) . (17)

Therefore,

+ 2V0 610 2J.L(J)

6Z = 6- (18)1 12 13 o
o o

If the current distribution has been varied from the correct

one, from (13) and (14) it follows that

6Z = 0 , (19)

which shows that the expression (14) for the impedance is insen-

sitive to a "small" (first-order) variation of the current dis-

tribution from the correct one. The practical meaning of this

result is that the expression (14) of the antenna input impe-

dance is rather forgiving with respect to a somewhat inaccurate

guess of the antenna current. Notice that, because of the nor-

malizing term in the denominator of (13), only the functional

form of the current is relevant, and not its absolute level.

K" -
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For the antenna of Fig. 6, in the range of frequencies

and physical length of interest for which

h < 1 (20)

0

(where X is the free space wavelength), the assumption of con-

stant current on the antenna is completely adequate--most of

the antenna resistance being of ohmic nature and localized at

the electrode/seawater contact. In other cases, for which a

guess of the form of the current may not be easy, or when a

greater accuracy is sought, the moment method can be applied to

determine the current distribution and the antenna impedance.

2.3 INTERVENTION OF THE MOMENT METHOD

In the remaining part of this section, a sketchy exposition
of the moment method will be given. Again, the essence of the

method can be explained in rather abstract terms without the

need to discuss the explicit form of the operator L(J), the

latter issue being the subject of the next sections. The moment

method can be discussed without reference to the variational ex-

pression (14) for the impedance. However, the use of (14) as

a starting point provides perhaps a better insight into the

nature of the method and the reason for its accuracy in predict-

ing the antenna impedance, which is related to the stationary

character of (14).

Postulate that the antenna current distribution J is

approximated well by a weighted superposition of a finite, and

small, number of suitably selected known basis functions J n
--n

N

c n Jn (21)

n=l
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For the structure of interest, a linear antenna, from (9)

1 ^

Jn 2 z In (z) (n = 1, ..N) (22)

- The set {In (z)} can be chosen suitably as consisting of func-

tions different from zero only in Izi < h, see Section 3. Then

the expression (14) is written as follows, because of the

linearity of L( ):

N N!

C c~c J L(Jk)

_ __s=l k=l (23)
Z - [nl ] 2

C n In(O)

- By invoking the variational character of (14) it is argued that,

if (21) holds, the coefficients c must be such as to make (23)n
stationary. Thus, the derivatives of (23) with respect to each

of the coefficients must be equal to zero. This leads, with a

- little algebra, to the set of N equations:

cSck Js'L(JN

Eck Js.L(Jk) I= k=l s (0) (s = ,. .N) ,(24)
k=1 t CnIn (0)

n=l

but the term in square brackets is equal to J L(J), and because

of (21) the denominator is equal to 1(0). Therefore, for the
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* 2]

correct set of coefficients, from (14) one obtains the N

relationships:

N
k is L(Jk) = - V Is (0) (25)

k=l

Consequently, if the notation is introduced,

msk s * L(Jk) , (26)

the set of equations (24) is written:

N

. msk k = - V0 Is(0) (s = 1, ..H) (27)

1k=l

which gives the set of coefficients ck. Then from (27), (24),

and (14)

-V
Z0 o. (28)N

cs1s(0 )

s=l

Since the basis functions I (z) can be normalized arbitrarily,
n

their value at z = 0 will be chosen equal to unity. The matrix

M is conveniently introduced

S, ik (i,k = 1, ..N) , (29)
E jmik,

arid V is chosen equal to unity. The numerical column vector

e of dimension N is defined as a string of ones

e E., 1, 1, l T (30)
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i

where T means transpose. The coefficients c of the expansion
of the current are also considered the components of a numerical
vector c. With this notation and choice of normalization, the
fundamental equation (27) becomes

M c =-e (31)

that is,

S_ e . (32)

The elements of M take a relatively simple form if a convenient
mathematical representation for the operation L( ) is used. By
invoking the azimuthal symmetry of the structure, a diagonali-
zation of L( ) is achieved by representing the antenna field
as a superposition of cylindrical waves, each identified by its
wavenumber in direction z. As will be apparent, the simplifi-
cation thus obtained is substantial for an antenna in a homo- r
geneous medium, and becomes drastic and essential for more com-
plex situations, such as those depicted in Figs. 2 and 6. The
instances in which the functional form of the antenna current
distribution can be guessed a priori, can be considered par-
ticularly simple and trivial applications of the particular
procedure outlined here. In fact, in such cases N = 1, and
from (32) and (28) one reobtains (14), as it must be.

I-
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Vr

3. THE BARE AND THE INSULATED ANTENNA IN A DISSIPATIVE MEDIUM.
ANALYSIS VIA MOMENT METHOD IN THE WAVENUMBER DOMAIN.r

In this section, the analytical structure of the linear

* operator L( ), symbolically introduced in the previous sections,

will be discussed in detail. The objective, of course, is tor

establish a practical procedure for the numerical calculation

* of the field supported by a current on the antenna conductor,

a necessary ingredient for the calculation of the antenna im-

- pedance, according to the recipe expressed by (1~4) or (28).

The antenna metal part is modeled as a conducting tube with

a thin wall. The assumption that the antenna is tubular rather

*than solid makes the mathematics neater and simpler. On the

other hand, the physics of the phenomena clearly suggests that

in any practical sense the current and impedance calculated for

the tubular model are not different from those pertaining to the

case of a solid conducting rod, provided 2e << h < X. For the

insulated antenna only, and not for the antenna with electrodes

depicted in Fig. 6, another simplifying assumption is introduced:

* the dielectric jacket in the idealized model is considered to

extend axially well beyond the limits of the antenna conductor

4 (Fig. 8). Since the current goes to zero at the antenna end,

it is clear that the difference in the antenna impedance and

the current distribution is negligible in the two cases. (It

would not be so for a very thick rod.) With this assumption,

all the cases in Figs. 1 to 5--dipole in a dielectric medium

(free space), dipole in a conducting medium, and dipole coated

* by an insulating jacket in a dissipative medium--can be lumped

together in the analysis and treated as particular cases of a

more general class of structures, defined as follows.
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A tubular conductor with thin walls excited by a ribbon

L of magnetic current at the gap (see Section 2.1), is immersed

in a radially inhomogeneous medium whose dielectric constant

is, in general, a complex quantity, to accommodate losses, and

is a function of the radius:

E(p) = Er(p) + JEj(p) , (33)

with

a (p)
e((P) (34)

where e0 is the permittivity of free space. In practical cases

(e.g., an antenna in water with an insulating Jacket), e(p) will

be a stepwise function, with very few steps, as in Fig. 8.

Clearly, because of the azimuthal symmetry, only the z and

" p components of the electric field and the 4 component of the w

magnetic field will be different from zero. For p # e,

Maxwell's equation yields then the three relationships

_Ez =% - JwUH, (35)2.- -

1 p (pH) = JwEE z  (36)

and

- = JwCE (37) ,

where E is a function of p, and the field components are func-

tions of p and z. Equations (35), (36), and (37) hold in both

27



the regions p > e and p < e. At p = e, the magnetic field has

a jump equal to the surface current density

He ) (z,ez H(z,e-) = e (38)

where e and e are values of p greater or smaller than, but in-

finitesimally close to e. It is recalled that I(z) in (38) is

a function different from zero only for jzi S h/2.

The first step for the solution of the problem at hand is -r
the introduction of the Fourier Transforms (FTs) with respect

to z of the various quantities, denoted here by the same letter

as the quantities themselves, with however, the addition of a

caret "^". For example,

Ez(wP) f lfEz(zP) e WZdz (39)

and parallel definitions hold for EP(w.p), H (w,p), and I(w).

The inversion of (39) gives: -I

Ez(Z3P) = 1 Ez(w,P) e-jwz dw (40)

and again, parallel expressions hold for the other quantities.

According to (40) and its companions, the electromagnetic field

is represented as a superposition of azimuthally symmetric

cylindrical waves, each identified by a wavenumber w in the z

direction.

28
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In Appendix C, it is shown that Eqs. (35) and (36) become,

by using the FTs of the various functions of z

2 2
d k2-w 2 Hi (41)

7- k 2

and

1 d (pH) = Jw E , (142) W

where the FTs of the field components are clearly functions of

w and p, I is a function of the longitudinal wavenumber w, and~e

e and

k = w /'E (43)

are functions of p. In (43), the branch of the root must be

chosen in such a way that

Re[k] > 0 , (44)

consistent with the assumed time dependence exp jwt. In deriv-

ing (41), the FT of (37),

WH = E (45)

has been used.

For each value of w, and each particular stratification

profile e(p), (41) and (42) constitute a system of ordinary dif-

ferential equations whose solution for H has a jump at p = e
0w

equal to the FT of the current. For the simple case of a
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homogeneous medium, the solution is well known (see example

below). In general, for each p # e, a wave impedance can be

introduced

AE z(W,P)
)= z(w,p) (46)

H (w,p)

which does not depend, of course, upon the source I(w), being

associated with the source-free solution of the system (41) and

(42). The FT of (38), with self-explanatory notation is

+ (47)

where the arguments of the functions have been dropped.

According to the discussion in Section 2.1, the current

I(z) must support a tangential field E z(z,p) equal to zero on

the antenna conducting surface, except in the gap region, where

the tangential electric field must be equal in magnitude and

opposite in sign to the impressed field, see (8).

To proceed, notice that Ez(w,p) is continuous at p = e.

Thus, the wave impedances at the conductor surface, on its ex-

terior and interior sides, are, from (46)

E (w,e)z+ (w) s z(w,(4) 8)
H (w,e

and

E (w,e)
z-(w) z(w,e-) = ^z , (4 9 )

He (w,e-)
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respectively. Then from (47) we obtain:

^ +-I(w) z z

E (w,e) = - + (50)
z z-z

[If so inclined, one can interpret (50) as the voltage generated

by a current generator of strength - I(w) feeding two parallel
+circuits having impedance -z and z-, not an exceedingly useful

exercise.] The important point is that analytical expressions

- for z (w) and z-(w) can be established. The difficulty of their

evaluation ranges from almost nil (for homogeneous medium) to

moderate for several thin layers. The general discussion of

this issue is, however, beyond the scope of this report.

We pause now, for the benefit of the reader who wants to

understand the method by thinking in less abstract terms, to

recall the analytical expression of z(w,p) for the simplest case,

an antenna in a homogeneous, possibly dissipative medium.

Example 1. Bare Antenna

The solution of (41) and (42) for a homogeneous medium,

that is, for e and k independent of p, is found in any textbook

on electromagnetics. It is recalled that the integration is ob-

tained by eliminating H between (41) and (42), solving the

standard wave equation so obtained, and then using (41) to

determine H 0 (see for example, pages 198-216 of Ref. [8]). The

C solution has, of course, different analytical form for p > e

and p < e, because of the need to satisfy in the two regions

the radiation conditions and the regularity at the origin p = 0,

respectively. In the two regions the ratio (46) is found to be

z(w,P) = o (51)
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for p > e, and

z(w,p) = o J(52)
W E J (p~I2 -w'

for p < e. Of course, z (w) and z-(w) are obtained from (51)

and (52) by setting p = e. In order to satisfy radiation con-

ditions, the branch of the square root in the argument of the

cylindrical functions must be chosen as follows:

Re 1k2_w2> 0 (53)

Because of (44), (53) guarantees that

k~ 2 2
- < Arg -kw < 0• (54)

In connection with (51) and (52), a few observations are in order:

For slender antennas (that is, for e << h), it is

Iz+(w)j << 1z-(w)l (55)

for w in the range of interest which is, roughly, Iwj less than

several times the inverse of the antenna length; in fact, the

behavior of z (w) and z-(w) for larger wavenumbers is unimpor-

tant because I(w) becomes comparatively negligible, being Fourier

Transform of I(z) which is a smooth function different from zero

only for Izi < h/2. Therefore, (50) becomes

Z+ -
+Z = (56)

z -Z
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an approximation that, for solid rod antennas, perhaps not sur-

prisingly, gives better fit to experimental data on current dis-

tribution and impedance.

On the other hand, by using the Wronskian relationship

for cylindrical functions,

2

Jl(Z)Yo(Z) - Jo(z)Yl(Z) = (57)

it can be promptly shown that in the case here addressed of a

dipole in a homogeneous medium

+-- 2 2
1 z k -w ew Ho(2) 2 w 2 )

27re Z 0 0

an equation that can be reestablished via a completely different

approach as is done in Appendix D. This computation of the cylin-

drical functions for complex argument does not create any numeri-

cal problem. In fact, for the modulus of the argument less than

approximately 20, a series expansion is used, whereas, for greater

values of the argument, a standard asympotic expansion is avail-

able. This ends the discussion of this example.

We are now in the position to write (8) more explicitly.

To simplify the notation, the function is defined

1 z +(w) z-(w) (
27re z-(w) - z +(w)

Introduce (59) into (50) and take its inverse Fourier Transform.

One finds that for Izi < 6/2,

- - I(w) z(w)e-WZdw (60a)
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and for 6/2 Izi h/2,

-jwz0 I ](w) z(w)e dw. (60b)

By using the symbol rect (), (6 0a) and (60b) can be written

compactly as follows:

S z I(w) z(w)e-JWZdw. (60)
- rect 2z = rect h2o

If we postulate that, not only in homogeneous media, but in more

general situations the simplifications (56) hold in the range

of wavenumbers of interest (see previous example), then (59)

becomes

z~w =1 z+2Z-- z (w) (59a)

The right side of (60) defines the nature of the operator L(),

introduced symbolically in Section 2.1, if the explicit expres-

sion of z(w) is shown.

Equation (60) is an integral equation for the FT of the

* antenna current. Notice that (60) holds for -h/2 < z < h/2

only: this crucial fact makes its solution non-trivial and

not given simply by an inverse FT.* Notice also that the in-

formation on the nature of the medium surrounding the antenna

* is totally summarized in the particular z(w) germaine to the

specific problem under consideration. The case of a homogeneous

The situation is analogous to that in the well-known Weiner-
p Hopf equation for which the range of the variable is zero to

infinity.
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medium has been considered in Example 1 and the expression of

z(w) for the more complicated situation of the antenna with an

rX insulating jacket in a dissipative medium will be given in

Example 2 at the end of this section, more general configura-

tions being briefly discussed in Appendix E.

We are now in the position to apply the moment method,

introduced in Section 2.3 for an operator L( ) unspecified,

to the solution of (60).

Write the current as a superposition of components I n(z),

where I (z) are functions different from zero only for IzI < h/2,n
see (21) and (22):

N

I(z) E c I (z) (61)
n=1 n n

Since the current goes to zero at the antenna ends, that is, at

z = ± h/2, a convenient set of basis functions is

In(z) = rect ( )cos (2n-1 z) (62)

whose FTs are easily found to be

wh

w 7rh (_1 )n (2n-l) cos Tn(W) 2 _/-27" wh) 2 2 (63)
(~)- [2n-1) J1

The elements of the matrix M are obtained according to the pre-

scription (26), with L( ) defined by the right side of (60).
The result, as shown in Appendix F, is

msk =f Is(-w) z(w) Ik(w)dw (64)

The coefficients of the current expansion are then given by (32).
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Prior to discussing in Example 2 a practical case, it is

worth pausing to examine the analytical and computational nature

of the solution. The elements of M involve simple integrals

extended to a domain, theoretically infinite, but practically

limited to the region where all I (W)'s are not negligible with

respect to their maximum values. The key idea, which makes

the approach analytically and computationally simple, is the

evaluation of the elements of M via integrals in the wavenumber

domain rather than in the coordinate domain. Had the computa-

tions of the elements of M been done in the coordinate domain

using directly (26), multiple integrals of convolutional type

should have been evaluated. Besides the greater numerical

complexity, those integrals require careful analytical manipula-

tions before attempting their numerical evaluations, because of

the presence of singularities in their integrands. None of these

problems exists in the method here adopted.

Example 2. Insulated Antenna

The structure considered is that shown in Figs. 3 and 4.

Let E1 and E2 be the dielectric constant, generally complex, of

the insulating jacket and of the surrounding medium. Denote by

2p the diameter of the insulating jacket. As is practically

always the case, the assumption will be made that

Ik1pl << 1 ; Ik2PI " 1 , (65)

which allows one to establish a remarkably simple approximate

expression for z(w,e +). In fact, if (65) holds, inside the

dielectric jacket with extremely good approximation

0 H (ZP) I(z) (66)

27r p

and consequently

* A 1(w)
H (wp) P T , (6)
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which, inserted in (41), with k = kI , yields the law of varia-

tion of Ez inside the jacket

_ 2
A k 1 1 (w). -Q 68

dE z = j 2 2 7
ki

By integrating from p = e to p = p

k2 2

Ez(w,e) = E z(w,p) - IN) log k 2  (69)kl

Divide both sides of (69) by H4 (we). Recall that (67) implies

that inside the insulating jacket

H (w,e) = He(w,p) P" (70)

Then, from (69) and the definition (48)

2_2
S(w) z(wp) - jwue log a kl2-W

P e k1
2  (71)

where z(w,p) is the wave impedance at p = p for an outgoing

wave in the dissipative medium, whose expression is given by

(51) if we put p = p and k = k2 . Equation (71) is then used
in the expressions (64) of the elements of the matrix M.

With the discussion of Example 2, all the ingredients are
now available for the evaluation of the current and impedance

of insulated antennas in a conducting medium.

To end this section, a few remarks about the validaticn of

. the formalism and the concomitant computer code for the analysis

of the insulated antenna are in order. Of course, it would be
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highly desirable to achieve a complete validation by comparing

computed results and measurements for several configurations.

This task appears to be difficult, however, because scarce ex-7

perimental data on current and impedance of insulated antennas

in dissipative media exist, but they are presented in a way that

makes it difficult to understand what the pertaining physical

and geometrical parameters are (Refs. [31, [4I], and [51). One

has to be content with a partial validation based on the argu-

ment that the perfect current and impedance prediction for the

case of antenna in free space, see below, is a good indication

of the validity of the approach for more complicated situations.

The reason lies, as discussed above, in the capability of the

formalism to handle different structures belonging to the class

shown in Fig. 8 in a unified way, the only difference being the

definition of the functional form of z(w) in (614).

In Fig. 9, the current and impedance for a dipole in free

space are shown. The experimental data for the same set of

geometrical and physical parameters are shown in the insert in

the upper right corner of the figure, as is the current distri-

bution computed with King's three-term theory. The perfect

agreement with the experimental data is clearly apparent.
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4. END-GROUNDED ANTENNA IN A DISSIPATIVE MEDIUM

4.1 ANALYSIS

The configuration studied here is depicted in Fig. 6. The

antenna consists of a cylindrical segment of a cable ending with

two terminal sections in contact with the water. Unlike the in-

sulated antenna considered previously in this configuration,

the antenna is assumed to be fed at one end (as it would be in

* any practical application). The electrode's diameter is equal

to the diameter "12p" of the cable. The electrode's length is

denoted by "L" - a parameter of crucial importance in determin-

ing the antenna impedance if the overall antenna length is

"small", that is, if h << X 0

In the case of interest, for which Is2! >> jell, a guess

*of the form of the current is easy to make. In fact, the an-

tenna structure can be heuristically likened to a section of a

lossy coaxial line, short circuited at the end, the dissipativep

medium constituting its outer conductor. Clearly, for very

* short antenna lengths a current constant on the antenna insu-

lated part and linearly going to zero along the electrode's

-4 length is an excellent approximation*. A slightly better guess

The heuristic justification of the assumption of a linear cur-
rent decay is the following. The electrode is short with
respect to skin depth in the medium. Therefore, the current

* - decay on the electrodes is approximately the same as for the
de (static) case. For the latter, the equipotential surfaces
are approximately cylindrical because L >> p. Therefore, the
radial electric field on the electrodes and therefore the
radial current injected into the dissipative medium must be
constant along the electrode length. This fact implies a

* -_ linear decay of the longitudinal current on the electrode sur-
face (because of the equation of continuity for the current).
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for the functional form of the current on the insulated section

of the antenna would approximate it by the current on a short-

circuited section of the transmission line having the cross

section shown in Fig. 10. Under this assumption, if y is the

complex propagation constant of the line, the antenna current

is immediately found to be

1(z) = cos[y(h-z)]
cosyh (72)

which, neglecting second-order terms for jyhl << 1, is approxi-

mated by

I(z) = 1 . (73)

Guessing a priori the functional form of the antenna current

distribution is equivalent to representing the current with a

single term in the current expansion (21), or equivalently, to

applying directly (14) (see the end of Section 2.3).

Call the currents on the insulated region of the antenna

conductor and on the two electrodes Ic(z), Iel(Z) , and Ie2(Z) ,

respectively. The FT of the antenna current is, with self-ex-

planatory notation

I(w) = Ic (w) + Iel (w) + Ie2 (w) (74)

the explicit expressions for (74) being given in Appendix G.

Under the excellent approximation (67)

H (w,p) = IN) (75)2Trp
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where

E 2  0 (2r J-) (7)

and

k =2 " (79)

In (79), 1

Im [k2 ] 0 (80)

and

- 7 < arg k -w 2 < 0 . (81)2 2

The application of (14) gives formally for the antenna impedance,

recalling that the input current is assumed equal to unity,

1 E (z p) da +
z= - [Iel(Z) + Ie2(Z)] 2TpE z d

electrodes

1(Z) E (z e) da (82)

conductor

which can be rearranged as the sum of two terms

z =z 1 + Az, (83)
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with

el(Z) + Ie2 (Z) + Ic(z) dz zf z(w,p)e- WZ
-L

(having introduced the FT of E z(z,p)), and

h
Az f Ic(z) [Ez(zP) - Ez(z.ej dz (85)

0

The evaluation of z1 is now straightforward. By interchanging

the orders of integration in (84), one obtains [see (74)]

z= - E(w,p) I(-w) dw (86)

Equation (76) provides the relationship between the FT of the

current and that of the electric tangential field at p =p.

Consequently, (86) takes the form

- Z1 - 2 I(w) z(w,p) I(-w) dw . (87)

The evaluation of the "correction term" Az is more complicated

and is postponed to Appendix H, where it is shown that Az is

equal to

Az = log I (z) dz (88)

0

an expression that perhaps is intuitively satisfactory, repre-

senting an inductive term related to the magnetic energy stored

in the end-grounded cable.
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The analysis conducted so far assumes that the ohmic resis-

tance of the antenna conductor and electrodes is zero (but takes

into account, of course, the ohmic resistance of the contact

between electrodes and sea water). However, for antennas with
"good" electrodes, that is, having a low contact resistance,

the ohmic resistance of the wire, although a relatively small

fraction of the total impedance, cannot be totally neglected

(see Section 4.2 and 5). An approximate heuristic way of tak-

ing it into account is to increase the resistance of the antenna

by a quantity

,- r dz , (89)1I(0)1

where r is the wire resistance per meter. The expression (89)

is, in a way, ad hoc, and does not fit well in the theory de-

veloped so far. However, it has a clear physical interpretation.

According to it, the current in the perfectly conducting wire is

assumed to be not too different from the current on the actual

wire having a finite resistance. This makes (89) a good approx-

imate estimate of the ohmic loss on the wire. Clearly, this

is true for good conductors and small antenna lengths, as in -

the numerical cases discussed here below.

4.2 NUMERICAL CASES

In this section selected numerical results are presented
6 for different values of antenna length, electrode length, cable

diameter, and frequencies. In Tables 1 to 4, the antenna im-

pedance is shown as a function of the frequency for an antenna

having a length of h = 30.5. Also shown are the terms zl, Az,

and Ar, whose relative values vs. frequency may be of some

interest, being related to different physical phenomena. It is

clearly apparent that at low frequency the size of the electrodes,

related to their contact resistance, (see also Section 5)
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crucially affects the antenna resistance. In agreement with

the physical intuition, it appears also that with the increase

of frequency the effect of the contact resistance becomes less

important, at 300 kHz the effect of the electrode size on the

antenna resistance being negligible. Experimental data, pro-

vided by T. Susi of Naval Underwater System Center, referring

to an end-grounded antenna having the same length, cable diame-

ter, and conductor diameter, are showi, in Table 5. The elec-

trodes consist of helical wires housed in the outer layer of the

foam jacket. They are of different lengths, the larger electrode

being approximately 5 in. long. From a comparison with

Tables 1 to 4, it appears that the contact resistance of these

TABLE 5. MEASURED IMPEDANCE OF A 30.5 m
(100 ft) END-GROUNDED ANTENNA

Frequency Impedance
(kHz) (ohms)

10 3.7 + j3.4
20 4.0 + j6.5
30 4.3 + j9.5
40 4.6 + j12.4
50 5.0 + J15.3
60 5.3 + j18.1
70 5.6 + J20.9
80 6.0 + J23.6
90 6.3 + j26.4

100 6.7 + j29.1
110 7.0 + J131.8
120 7.4 + j34.6
130 7.7 + J37.3
140 8.1 + j40.4
150 8.4 + J42.7
160 8.8 + j45.2
200 10.2 + j56.2

250 12.2 + J69.9
300 14.3 + J04.1
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electrodes is roughly equivalent to that of two cylindrical

electrodes having a length of approximately 3.5 cm. The agree-

ment with the calculated data is good. Better agreement probably

would have been obtained if the variation of the conductivity

with frequency had been taken into account in the computations,

instead of using a constant value equal to a = 4.2 mho/m.-

Table 6 shows the calculated impedance of an antenna hav-
ing the same diameter as in Tables 1 through 4 as a function

of the antenna length for several electrode lengths.

TABLE 6. ANTENNA IMPEDANCE VS. LENGTH (h) AND ELECTRODE LENGTH (L).
(f = 18 kHz, 2p = 16.5 mm, 2e =1.3 mm, ep= 1.65, r = 0.0134 ohm/n)

L
h

5 cm 30 cm I m

10 m 2.9 + j1.7 ohms 1.1 + j1.7 ohms 0.6 + j1.8 ohms-

20 m 3.2 + j3.4 ohms 1.4 + j3.5 ohms 0.9 + j3.5 ohms

40 m 3.5 + j6.9 ohms 2.0 + j7.0 ohms 1.6 + j7.0 ohms

80 m 3.4 + j13.9 ohms 3.1 + j14.0 ohms 2.8 + j14.0 ohms

160 m 5.2 + j28.1 ohms 5.2 + j28.1 ohms 5.2 + j28.2 ohms

In Table 7, the antenna parameters are as in Table 6, ex-

* cept for the much smaller antenna diameter. The main effect is

an increase of the resistance, the physical reason lying in the

* reduced area of the electrodes.
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TABLE 7. ANTENNA IMPEDANCE VS. LENGTH (h) AND ELECTRODE LENGTH (L).
(f = 18 kHz, 2p = 3.2 mm, 2e : 1.3 mm, p 1.65, r : 0.0134 ohm/m)

L
h

5 cm 30 cm 1 m

10 m 4.9 + jl.7 ohms 1.5 + 1.7 ohms 0.7 + jl.8 ohms

20 m 5.2 + j3.5 ohms 1.8 + j3.5 ohms 1.0 + j3.6 ohms
40 m 5.4 + j7.0 ohms 2.4 + j7.0 ohms 1.7 + j7.1 ohms
80 m 4.5 + j14.O ohms 3.3 + j14.4 ohms 2.0 + j14.2 ohms

160 m 5.3 + j28.7 ohms 5.3 + j28.8 ohms 5.3 + j28.9 ohms
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5. ANALYSIS OF THE DC CONTACT RESISTANCE OF THE ELECTRODES

In Section 4.1, a procedure has been discussed for the de-

termination of the impedance of an electrically short, submerged

antenna, grounded in the end regions. The numerical calculations

* of Section 4.2 show the crucial role played by the electrode

geometry in determining the resistance of a VLF antenna. As

expected, longer and thicker electrodes are concomitant with

a lower antenna resistance.

On the basis of these numerical results, it is physically
clear that the antenna resistance, neglecting the ohmic resis-

tance of the wire, can be heuristically considered as the sum

- of a radiation resistance and a contact resistance. Tc gain

better insight into the situation, the dc resistance of the

structure of Fig. 6 has been evaluated. To do that, interest-

ingly enough, nothing had to be changed in the procedure de-

scribed in Section 4.1, the formulation rema~ining valid also

for w = 0. Notice that the second term in the expression (83)

now becomes identically zero. Also, in all the functions

appearing in (87)

k2= 0

* and

2e 2 -Jc

W
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The current on the antenna wire, assumed here to be a perfect

conductor, is evidently constant. As it should be, the com-

puted impedance of the "dc antenna" is purely resistive. Some

values are shown in Table 8 for the different antenna lengths

and electrode lengths. Notice that for the shortest electrodes,

there is a small difference in the computed values of the re-

sistance for the greatest of antenna lengths considered. This

is expected because the computed resistance pertains to the

entire dc circuit, including both the electrodes and the cur-

rent path in the seawater, different for different antenna

lengths. However, because the current density is high only

in the immediate neighborhood of the electrodes, the resistance

is mostly localized in that region. This explains the weak

dependence of the dc resistance upon the antenna length. -

TABLE 8. DC RESISTANCE (2p = 16.5 mm, 2c = 1.3 mm)

L
h

5 cm 30 cm 1 m

10 m 2.6 R(ohms) 0.8 R(ohms) 0.3 R(ohms)

20 m 2.5 R(ohms) 0.8 R(ohms) 0.3 R(ohms)

40 m 2.5 R(ohms) 0.8 R(ohms) 0.3 R(ohms)
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APPENDIX A

OPEN CIRCUIT RECEIVE VOLTAGE

Since the matter is well known, only a sketchy derivation

of the fundamental relationship is given (for a detailed dis-

cussion see Ref. 1).

Consider the antenna terminals connected to a current open

circuit generator (Fig. A-i). Let Er , H the receive field in
- Er

which the antenna is immersed, that is, the field that would

exist in the region occupied by the antenna in the absence of

the antenna conductor. If I is the strength of the current0
* **generator, the receive voltage i obtained via Lorentz's re-

ciprocity theorem. If Et, H is the transmit field when thet
antenna is fed by the generator, the following relationship holds:

f (Et x x Ht) n do 0 V (A-1)ff = r Ito Vr

where V is the open circuit receive voltage, a is a surface
r0

* completely surrounding the antenna, chosen here as shown in

Fig. 7, and n is the unit vector normal to the surface. Since
Et has no circumferential component and Hr is approximately

constant on a length scale equal to the antenna diameter, the

first term in the integrand does not give any contribution to

(A-i). Thus, (A-i) can be simplified as follows:

Sff(n x t). E V (A-2)
Iot --r r
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FIGURE A-I. Illustration of the equivalence principle - 9;

But with extremely good approximation

H (s) I(s) ^  (A-3)= 2r pt,(A3

where s is an abscissa on the antenna and t is a circumferen-
tially directed unit vector. Since r is constant on a length

scale equal to the antenna diameter, from (A-2) and (A-3,.

h

V - J E(s)I(s)ds.

that is, it is the same as (1) for I = 1.

A-

A- 2
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APPENDIX B

THE ANTENNA IMPEDANCE EVALUATION AS

- A SCATTERING PROBLEM

Consider an antenna consisting of' a metal structure, possi-

bly coated totally or partially with dielectric, as shown in

Fig. A-1. Consider a surface a completely enclosing the metal

antenna surface. The surface can be otherwise arbitrary:

*examples of possible a's are the surfaces a0, a,, and a2 of .

Fig.~~~ A1.etEt t denote the field supported by the antenna

* in transmit operation. Assume now that the system of sources

inside a is removed. The actual sources are then replaced by

a distribution of magnetic and electric currents on a equal to

M(r)E (rxn (B-1)
-:-t -

and

J(r.) =n x H t (r.) .(B-2)

What we have done is to replace the actual electromagnetic prob-

lem with a different one with different sources. The equivalence

theorem of interest here states that outside a the field in the

4 original and in the modified problem are identical. Further- 0
more, inside a the field in the new problem is zero. Thus, the 7

equivalent currents (B-1) and (B-2) support the actual field

outside a (the equivalence region) but generate zero field in-
6 '4 side a. These statements can be rigorously proved in several

ways. One of them 1s amazingly simple and is based on the

B-1



* uniqueness theorem. It is recalled that this theorem states

that the field in both the regions inside and outside a is
+uniquely determined by the tangential field at a and a . re-

spectively (rigorously one has to postulate some dissipative

losses, possibly infinitesimally small, present in the media).

The superscripts "+"~ and "-" refer to points immediately out-

side and inside a, respectively. This theorem will be used in

conjunction with the fact that surface currents necessarily

correspond to discontinuities of the tangential field:

M(r ) E E xn (B-3)-a=

and

J(r a nx (H-+1t .(B-4)

If the magnetic and electric currents are given by (B-i) and

(B-2) at a +, then (B-3) and (B-14) imply that the electric and

magnetic tangential field, in the new electromagnetic problem

replacing the original one, are equal to E (r ) and Itr on
+ t-
a and are zero on a .Consequently, by invoking the uniqueness

theorem, we can state that the system of currents (B-1) and

(B-2) support the field of the actual problem outside a, the

region of equivalence, and produce zero field in the points

inside a. The latter fact means that the field generated out-

*side a by the equivalent current (B-i) and (B-2) on a +is not

affected by any change in the region inside a where the field

in the equivalent problem is zero. On the basis of this obser-

vation, choose a as the surface of the conductor, extended,

* however, through the gap region, and assume that the region

inside a is completely filled with metal. This means in the

case of interest that the actual antenna structure--having an

excitation gap--is replaced by an uninterrupted cylindrical

conductor excited by a ribbon of magnetic current immediately

B-2



outside it. Then a (B-4) is obtained as the solution of a scat-

- tering problem: the current on a must be such to generate anr

electric tangential field in the gap region equal and opposite

to that pertaining to the magnetic current (B-1). j
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APPENDIX C

DERIVATION OF (41) (42)

Equation (42) is simply the FT of (36). From (35) and
(37) one obtains

JE-dEz(c)
-jw1E zpw --az = - JuH¢ (C-1)

p dp

and

H 2 -- E . (C-2)we P

Ap

Eliminating E between (C-1) and (C-2), one obtains (41).
p

C.1

i o -
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APPENDIX D

ALTERNATIVE DERIVATION OF (58)

As a partial check of the analysis of Section 3, (58),

valid for a homogeneous medium, will be rederived via an al-
ternative approach whose validity holds only for homogeneous

media.

For the antenna in a homogeneous medium, a well-known

expression for the field supported by a current distribution

is the following (Ref. 9):

E~) -~i~ +!.]f J(o 4, (Ir-r I)do (D-l). E(r) = -J j 1 + Z _

where r represents a point of the antenna surface and

e ej k r

(r) e (D-2)

is the scalar Green's function for unbounded medium. More

explicitly, for the tubular antenna, (D-l) is written as follows:II h/ fs 2s7
E(z,p) J z + [1 Z + edV

k" -h/2 0

I(z0 (z-z') 2 + P + e - 2ep cos<) (D-?)

D-1

U



which holds for arbitrary p, z. Recall the well-known integral

representation for ip(r) in terms of a cylindrical function

(Ref. 8, page 244)

I J +H 0 (2) ( k- 2  ) eJZ dX (D-4)

which, inserted in (D-3) yields

E(z,o) =-iwj (z-~ 2

2 T h
~.jd f I(z )dzf I H( 2 )

k/7_X2 (o2+e2pecos ~)e \ZZdX (D-5)

The FT of the z component of (D-5) is clearly

Ez(wp) = -Jwi( - d

*f

-p
1- H (2O 2w p 2+e 2 pecos 1 mz (D-6)

4j - l(z')e'w  dz'

By invoking the well-known expansion (Ref [8], page 232)

+0o

Ho(2) (x+y-2xy cos ) = Hn(2)(x) Jn ) ej n¢  (D-7) -,

D-2

- - - - -- - - -



valid for x y, and recalling the definition of l(w), one obtains

2_ 2
k (W(2) k2_ 2) 2_w2 (w) ,z" (w e , Ho0( e J o (e k w D

which reestablishes (5).

D
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APPENDIX E

WAVE IMPEDANCE FOR A RADIALLY STRATIFIED MEDIUM

The study of a radially stratified medium is relevant for

applications other than submerged cable antennas, the case ofr

primary concern here. Therefore, the problem will be discussed

only cursorily and analytical results will be given only for

the case of a multilayered jacket whose outer radius is "small"

* - in a sense clarified below.

Label with the index "k" each region in which the permit-

tivity is constant. Thus, if the number of layers is L, there

will be L + 1 dielectric constants, the first and the last, E 1
and FL+11 pertaining to the region in contact with the antenna

* conductor and to the surrounding medium, respectively. Call

Pthe radius of the cylindrical interface between the kth and
the (k+l)th medium (see Fig. E.-1 in which L = 3). The evalua-

tion of z +(w) is, of course, based on the solution of (41)
(42), with the appropriate radiation condition, for the case

of dielectric constant variable with p discussed here. The

radiation condition is enforced by requiring that at p =pL
the radius of the interface between the jacket and the medium,

the wave impedance be equal to that of an outgoing cylindrical

wave in a homogeneous medium having a dielectric constant equal

to E L+l. Therefore, the wave impedance z(w, L ) is given by

(51), evaluated for c = cL To obtain z~ (w), the continuity

of E and H is enforced at the various interfaces, by using

well-known expressions for the functional form of the field in

each layer; see for example, (Ref. [8], pages 198-216). A 0
number of linear relationships is established which allow one 1

E- 1
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POim e ,

L= 3

FIGURE E-1. Radially stratified medium

II

.0i

to eliminate the amplitudes of the wave components in each
layer and to establish finally the impedance relationship sought

between E and H at p = e. The method is straightforward,
z+

but the expressiJn for z (w) is involved for more than one layer.
However, if one assumes that for every layer

Iks  pSI << 1 (s = (, ... ,L) , (E-1)

E-2



r

an approximate expression for z+(w) is promptly established.

Assume that for p < p the relationship (67) holds. Then, bY

-eneralizinE the derivation of (69) of Example 2 of Section 3,

one finds

k2 2() s j o / (7-2)

SS=I S

where it is understood that P0- = e. From (E-2),

L L kW 2+s -wsD_ _I

z (w) = z(wPL) jw e k log(
s=l s

the expression sought.
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APPENDIX F F

DERIVATION OF THE EXPRESSIONS OF THE ELEMENTS OF M

The operator L( ) appearing in (26) is defined by the right

side of (60). By recalling (10), one obtains from (26)

2 T h/2 +00jw

i 2r ed f I/ (z) dz lk (w) z(w) e-JWz dw,(F-l)

o -h/2 _

or

-Co h/2
I(w)z(w)dw Is(z) e dz , (F-2)

00 -- h/2

which is equal to (64).

I
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APPENDIX G

APPROXIMATE EXPRESSION FOR THE CURRENT
IN THE END-FED GPOUNDED ANTENNA AND

FOR ITS FOURIER TRANSFORM

The fundamental mode in the guiding structure whose cross

section is in Fig. 10, has a propagation constant given in Ref. 7:

j Tr + log [0.89 Pp) 1 /2 =4- 2_ 7T I- (G-1)

o log( )

where A0 is the wavelength in free space, ep is the relative

dielectric constant of the insulating coat, a is the conductivity

of the medium and the hypothesis has been made that for the fre-

quency of interest the imaginary part of the dielectric constant

in the medium is much greater than the real part.

Since the origin of the abscissae on the antenna is at the

feed point, the expression of the current is

I(x) = Ae -jYz - Be j Yz . (G-2)

With current normalization I(0) = 1, from (G-2),

A-B=l1 (G-3)

Because of the short-circuit condition at z h)

i-1
Ae- jYh + Be jYh 0,-

G-1
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from which one finds

-r
e Jy h  e-Jy h

A y = -' - ; B = - e~
SJYh + ejyh ejYh + e-jyh

and therefore on the antenna insulated region
I

eJY(h-z) +eJY (h-z)
e eJYh + e-JYh (G-6)

The subscript "c" (for "conductor") indicates that the expression

(66) holds on the insulated part of the antenna 0 < z m h. The

current on the electrode far from the feed point has values vary-

ing from I c(h) to zero, according to the discussion in Section 4.

Thus, for h < z < h + L, where L is the electrode length:

Ie() 2 e JYh [1 1--) = e h r - E. (z-h)lel j2YhL (G-7)

On the other electrode, that is, for - L < z < 0, the current

is varying from 1 (at z = 0) to zero (at z = -L). Therefore,

its functional form is

Ie2(Z) (G-8)

The FT of the current is the sum of the FTs of the currents on

the antenna insulated parts:

= -L I(Z) + Ie(Z) + Ie(z) eJwzdz. (G-9)

The evaluation of (G-9) is tedious but straightforward and the

transforms of the three terms are:

G-2
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I~ (W) =1 2jwei(w+y)h-I(W+y)e j -hj (Vw-y) (-
c ije~yhY 2  2y

v2 1+2ed~I~ L -1nw

I (W) = 2e e hf in
el1 T 1+e 2yh 7 wL

+e (w 2 [ i(w2) (G-11

7 (0-12

(w) - p i(7) O(2

e2 /2-- r 2 L w,
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APPENDIX H

DERIVATION OF AZ FOR THE END-GROUNDED ANTENNA

The relevant field equations in the region inside the

cable are:

3E aE
Pz - z JwH¢ (H-1)

and

SH-
- = JWEE , (H-2)

with E= E op ' Also, we assume that inside the cable, that is,

for P < P, (66) is valid

H¢(z,p) = c(z) (H-3)

With reference to Fig. 6, the left electrode's right end is

* located at z = 0 , that is, immediately on the left of the an-

* tenna feed point. Notice that inside the cable E is zero forp
z = 0-, and, according to (H-2), is proportional to the deriva-

tive oL 1(z) in 0+ < z < h. Therefore, the left side of (H-2)

has a discontinuity at z = 0. (Of course, this non-physical

feature is a consequence of the non-physical assumption of a

point-like source at z = 0.) Consistent with this fact, we

H-1



should properly write (H-2), for points inside the cable, as

follows: -'4

Q jW2E [d z) + dz z l(z

where 1(z) is the unit step function. The derivative of (H-L)

with respect to z is

Ep_ d2 1cZ d1(Z
E l 2 dc(z) + d (z) 6(z)

Jw127r dT d z =O Z2]z I H5

valid for 0 < z < h. By inserting (H-3) and (H-5) into (H-l),

one obtains

-Ez I jw ic(z )  [d 2 Ic (z) dI(Z) S()(H 6 )
_- 2rP c + c I

J I  dz 2  az z=0

or, by integrating (H-6) with respect to p from p = e to p = p

Ez(z,p) - Ez (z,e) = log (H-7)

where the expression in curl brackets is as in (H-6). When

(H-7) is inserted into the expression (85) of Az, one obtains:

h h

Az =L2log I (z) dz + I~ Id c2 T c c ;-z= d z

+ ~[ I 1zo (H-8)

H-2



The second integral is evaluated bY parts as foo7ews:

f h dl 
C c d z T "r - _ .N

ez' -17 z C)-{I 9'

I I

where the fact that - is zero at z = h has been used. Thus,

the first term on the right side of (H-9) car.ces o t ,.th the

last term in (H-8). On the other hand, the last term of (H-9)

is negligible, for a short antenna, with reesect t- the first

term of (H-8). To see this, consider the approximatfon (72)

for the current and insert it in (H-9). We cbtain

f h2 
Y~ (tdlo1 h di h sin7Yh (TT-I0)

k I  (dI ) k 2 cos 2yh

1 0

which, neglecting terms of order higher than the first in IlhI

and recalling that ri has the same order of magnitude as k

is found to be negligible with respect to

h

fCo(z) dz - 1 + 4sin2yh) (H-11)
I 0 cos~h

The term (H-10) has the physical interpretation of a capacitive

term due to the electric reactive energy trapped in the cable,

obviously, for a short, end-grounded cable, much smaller than

the inductive term (H-11).
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